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THE HIGH EXPONENT LIMIT p → ∞ FOR THE ONE-DIMENSIONAL
NONLINEAR WAVE EQUATION

TERENCE TAO

We investigate the behaviour of solutions φ = φ(p) to the one-dimensional nonlinear wave equation
−φt t + φxx = −|φ|

p−1φ with initial data φ(0, x) = φ0(x), φt (0, x) = φ1(x), in the high exponent limit
p→∞ (holding φ0, φ1 fixed). We show that if the initial data φ0, φ1 are smooth with φ0 taking values
in (−1, 1) and obey a mild nondegeneracy condition, then φ converges locally uniformly to a piecewise
limit φ(∞) taking values in the interval [−1, 1], which can in principle be computed explicitly.

1. Introduction

Consider solutions φ : R×R→ R to the defocusing nonlinear wave equation

−φt t +φxx = |φ|
p−1φ (1-1)

where p> 1 is a parameter. From standard energy methods (see, for example, [Sogge 1995]), relying in
particular on the conserved energy

E(φ)(t)=
∫

R

1
2
|φt |

2
+

1
2
|φx |

2
+

1
p+ 1

|φ|p+1 dx (1-2)

and on the Sobolev embedding H 1
x (R) ⊂ L∞x (R), we know that given any initial data φ0 ∈ H 1

x (R),
φ1 ∈ L2

x(R), there exists a unique global energy class solution φ ∈ C0
t H 1

x ∩C1
t L2

x(R×R) to (1-1) with
initial data φ(0)= φ0, φt(0)= φ1. One has a similar theory for data that is only locally of finite energy,
thanks to finite speed of propagation.

In this paper we investigate the asymptotic behaviour of this solution φ = φ(p) in the high exponent
limit1 p→∞, while keeping the initial data fixed. To avoid technicalities, let us suppose that φ0, φ1 are
smooth and compactly supported, and that |φ0(x)| < 1 for all x . Formally, we expect φ(p) to converge
in some sense to some solution φ = φ(∞) of the infinitely nonlinear defocusing wave equation

−φt t +φxx = |φ|
∞φ (1-3)

with initial data φ(0)= φ0, φt(0)= φ1.

MSC2000: 35L15.
Keywords: nonlinear wave equation.
The author is supported by a grant from the MacArthur Foundation, by NSF grant DMS-0649473, and by the NSF Waterman
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1We are indebted to Tristan Roy for posing this question.
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Of course, (1-3) does not make rigorous sense. But, motivated by analogy with infinite barrier po-
tentials2, one might wish to interpret the infinite nonlinearity |φ|∞φ as a “barrier nonlinearity” which is
constraining φ to have magnitude at most 1, but otherwise has no effect. Intuitively, we thus expect the
limiting wave φ(∞) to evolve like the linear wave equation until it reaches the threshold φ(∞) = +1 or
φ(∞) = −1, at which point it should “reflect” off the nonlinear barrier3. The purpose of this paper is to
make the above intuition rigorous, and to give a precise interpretation for Equation (1-3).

1.1. An ODE analogy. To get some further intuition as to this reflection phenomenon, let us first study
(nonrigorously) the simpler ODE problem, in which we look at solutions φ = φ(p) :R→R to the ODE

−φt t = |φ|
p−1φ (1-4)

with fixed initial data φ(0)= φ0, φt(0)= φ1 with |φ0|6 1, and with p→∞. From the conserved energy
1
2φ

2
t +

1
p+1 |φ|

p+1 (and recalling that (p + 1)1/(p+1)
= 1+ (log p)/p + O

(
1
p

)
) we quickly obtain the

uniform bounds

|φt(t)| = O(1); |φ(t)|6 1+
log p

p
+ O

( 1
p

)
(1-5)

for all p and all times t , where the implied constants in the O() notation depend on φ0, φ1. Thus we
already see a barrier effect preventing φ from going too far outside of the interval [−1, 1]. To investigate
what happens near a time t0 in which φ(t0) is close to (say) +1, let us make the ansatz

φ(t)= p1/(p−1)
(

1+
1
p
ψ
(

p(t − t0)
))
.

Observe from (1-5) that φ(t) is positive for |t − t0| 6 c and some constant c > 0 depending only on
φ0, φ1. Write s := p(t − t0). Some brief computation then shows that ψ solves the equation

ψss =−

(
1+

1
p
ψ
)p

for all s ∈ [−cp, cp]; also, by (1-5) we obtain an upper bound ψ 6 O(1) (but no comparable lower
bound), as well as the Lipschitz bound |ψs | = O(1). In the asymptotic limit p→∞, we thus expect the
rescaled solution ψ = ψ (p) to converge to a solution ψ = ψ (∞) of the ODE

ψss =−eψ.

2For instance, if one takes the solution φ = φ(p) to the linear wave equation −φt t +φxx = p1R\[−1,1](x)φ with initial data
smooth and supported on [−1, 1], a simple compactness argument (or explicit computation) shows that φ converges (in, say,
the uniform topology) to the solution to the free wave equation −φt t + φxx = 0 on R× [−1, 1] with the reflective (Dirichlet)
boundary conditions φ(t,±1)= 0.

3Since each of the equations (1-1) are Hamiltonian, it is reasonable to expect that (1-3) should also be “Hamiltonian” in
some sense (although substituting p=+∞ in (1-2) does not directly make sense), and so energy should be reflected rather than
absorbed by the barrier.
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It turns out that this ODE can be solved explicitly4, and it is easy to verify that the general solution is

ψ(s)= log
2a2

cosh2(a(s− s0))
(1-6)

for any s0 ∈ R and a > 0. These solutions asymptotically approach −a|s − s0| + log 8a2 as s→±∞.
Thus we see that if ψ is large and negative but with positive velocity, then the solution to this ODE will
be approximately linear until ψ approaches the origin, where it will dwell for a bounded amount of time
before reflecting back into the negative axis with the opposite velocity to its initial velocity. Undoing the
rescaling, we thus expect the limit φ = φ(∞) of the original ODE solutions φ(p) to also behave linearly
until reaching φ =+1 or φ =−1, at which point they should reflect with equal and opposite velocity, so
that φ(∞) will eventually be a sawtooth function with range [−1, 1] (except of course in the degenerate
case φ1 = 0, |φ0|< 1, in which case φ(∞) should be constant). Because the ODE can be solved more or
less explicitly using the conserved Hamiltonian, it is not difficult to formalise these heuristics rigorously;
we leave this as an exercise to the interested reader. Note that the above analysis also suggests a more
precise asymptotic for how reflections of φ(p) should behave for large p, namely (assuming s0 = 0 for
simplicity)

φ(p)(t)≈ p1/(p−1)
(

1+
1
p

log
2a2

cosh2(ap(t − t0))

)
or (after Taylor expansion)

φ(p)(t)≈ 1+
log p

p
+

1
p

log
2a2

cosh2(ap(t − t0))
, (1-7)

where a measures the speed of the reflection, and t0 the time at which reflection occurs, and we are
deliberately being vague as to what the symbol ≈ means.

Adapting the above ODE analysis to the PDE setting, we can now study the reflection behaviour of
φ(p) near the nonlinear barrier φ(p) = 1 at some point (t0, x0) in spacetime by introducing the ansatz

φ(t, x)= p1/(p−1)
(

1+
1
p
ψ(p(t − t0), p(x − x0))

)
.

where ψ can be computed to solve the equation

−ψt t +ψxx =−

(
1+

1
p
ψ
)p

in the region where φ is near 1 (and is in particular nonnegative). In the limit p→∞, this formally
converges to Liouville’s equation

−ψt t +ψxx = eψ. (1-8)

Remarkably, this nonlinear wave equation can also be solved explicitly [Liouville 1853], with explicit
solution

ψ = log
−8 f ′(t + x)g′(t − x)
( f (t + x)+ g(t − x))2

(1-9)

4Alternatively, one can reach the desired qualitative conclusions by tracking the ODE along the energy surfaces 1
2ψ

2
s +eψ =

const in phase space.



238 TERENCE TAO

for arbitrary smooth functions f, g for which the right side is well-defined5. Somewhat less “magically”,
one can approach the explicit solvability of this equation by introducing the null coordinates

u := t + x; v := t − x (1-10)

and their associated derivatives

∂u :=
1
2(∂t + ∂x); ∂v :=

1
2(∂t − ∂x) (1-11)

and rewriting (1-8) as
ψuv =−

1
4 eψ, (1-12)

and then noting the pointwise conservation laws

∂v(
1
2ψ

2
u −ψuu)= ∂u(

1
2ψ

2
v −ψvv)= 0 (1-13)

which can ultimately (with a certain amount of algebraic computation) be used to arrive at the solution
(1-9); see [Tao≥2009] for details. Using this explicit solution, one can eventually be led to the (heuristic)
conclusion that the reflection profile ψ (∞) should resemble a Lorentz-transformed version of (1-6), that
is,

ψ(t, x)= log
2a2

cosh2(a[(t − t0)− v(x − x0)]/
√

1− v2)
(1-14)

for some t0, x0 ∈ R, a > 0, and −1< v < 1. Thus we expect φ to reflect along spacelike curves such as
(t − t0)− v(x − x0)= 0 in order to stay confined to the interval [−1, 1].

1.2. Main result. We now state the main result of our paper, which aims to make the above intuition
precise.

Theorem 1.3 (Convergence as p→∞). Let φ0, φ1 :R→R be functions obeying the following properties:

(a) (Regularity) φ0, φ1 are smooth.

(b) (Strict barrier condition) For all x ∈ R, |φ0(x)|< 1.

(c) (Nondegeneracy) The sets {x : 1
2(φ1+∂xφ0)(x)= 0} and {x : 1

2(φ1−∂xφ0)(x)= 0} have only finitely
many connected components in any compact interval6.

For each p> 1, let φ(p) :R×R→R be the unique global solution to (1-1) with initial data φ(p)(0)= φ0,
φ
(p)
t (0) = φ1. Then, as p→∞, φ(p) converges uniformly on compact subsets of R× R to the unique

function φ = φ(∞) : R×R→ R that obeys the following properties:

(i) (Regularity, I) φ is locally Lipschitz continuous (and in particular is differentiable almost every-
where, by Radamacher’s theorem).

(ii) (Regularity, II) For each u ∈ R and v ∈ R, the functions t 7→ φ(t, u − t) and t 7→ φ(t, t − v) are
piecewise smooth (with finitely many pieces on each compact interval).

5For instance, the ODE solutions (1-6) can be recovered by setting f (u) := ea(u−t0) and g(v) := e−a(v−t0).
6This condition is automatic if φ0, φ1 are real analytic, since the zeroes of nontrivial real analytic functions cannot

accumulate.
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(iii) (Initial data) On a neighbourhood of the initial surface {(0, x) : x ∈ R}, φ agrees with the linear
solution

φ(lin)(t, x) :=
1
2
(φ0(x + t)+φ0(x − t))+

1
2

∫ x+t

x−t
φ1(y) dy, (1-15)

the free wave equation with initial data φ0, φ1.

(iv) (Barrier condition) |φ(t, x)|6 1 for all t, x.

(v) (Defect measure) We have
−φt t +φxx = µ+−µ− (1-16)

in the sense of distributions, where µ+, µ− are locally finite nonnegative measures supported on the
sets {(t, x) : φ(t, x)=+1}, {(t, x) : φ(t, x)=−1}, respectively.

(vi) (Null energy reflection) For almost every (t, x), we have7

|φu(t, x)| = |φ(lin)u (t, x)| (1-17)

and
|φv(t, x)| = |φ(lin)v (t, x)|. (1-18)

In particular, |φu| is almost everywhere equal to a function of u only, and similarly for |φv|.

Remark 1.4. The existence and uniqueness of φ obeying the above properties is not obvious, but is part
of the theorem. The conditions (i)–(vi) are thus the rigorous substitute for the nonrigorous Equation
(1-3); they superficially resemble a viscosity solution or kinetic formulation of (1-3) (see, for example,
[Perthame 2002]), and it would be interesting to see if there is any rigorous connection here to the kinetic
theory of conservation laws.

Remark 1.5. The hypotheses (a), (b), (c) on the initial data φ0, φ1 are somewhat stronger than what is
likely to be needed for the theorem to hold; in particular, one should be able to relax the strict barrier
condition (b) to |φ0(x)|6 1, and also omit the nondegeneracy condition (c), although the conclusions (ii),
(iii) the limit φ would have to be modified in this case; one also expects to be able to relax the smoothness
assumption (a), perhaps all the way to the energy class or possibly even the bounded variation class. We
will not pursue these matters here.

1.6. An example. To illustrate the reflection in action, let us restrict attention to the triangular region

1 :=
{
(t, x) : t > 0; |t − x |, |t + x |6 10

}
and consider the initial data φ0, φ1 associated to the linear solution

φ(lin)(t, x)= 1− δ((t − 2)2+ x2
− 1),

where δ > 0 is a small constant (for example, δ = 10−3 is safe). Observe that φ(lin) lies between −1 and
1 for most of 1, but exceeds 1 in the disk {(t, x) : (t − 2)2+ x2 < 1}. Thus we expect φ to follow φ(lin)

until it encounters this disk, at which point it should reflect.

7Of course, we can compute the derivatives of φ(lin) explicitly from (1-15) in terms of the initial data as φ(lin)u (t, x) =
1
2 (φ1(0, x + t)+ ∂xφ0(0, x + t)) and φ(lin)v (t, x)= 1

2 (φ1(0, x − t)− ∂xφ0(0, x − t)).
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Figure 1. A subdivision of the triangular region 1 (the diagonal boundaries of 1 are
beyond the scale of the figure). We have A =

(
2− 1

√
2
,− 1
√

2

)
, B = (2, 0), and C =(

2− 1
√

2
, 1
√

2

)
. The circular arc from A to C is part of the circle {(t, x) : (t−2)2+x2

= 1}.
The rays bounding regions III and IV are all null rays.

The actual solution φ can be described using Figure 1. In region I, φ is equal to the linear solution
φ(lin). But φ(lin) exceeds 1 once one passes the circular arc joining A and C , and so a reflection must
occur in region II; indeed, one has

φ(t, x)= 2−φ(lin)(t, x)= 1+ δ((t − 2)2+ x2
− 1)

in this region.
Once the solution passes A and C , though, it turns out that the downward velocity of the reflected

wave is now sufficient to drag φ off of the singular set8 {φ =+1} (which, in this example, is the circular
arc connecting A and C). Indeed, in region III, we have

φ(t, x)= 1+ δ(2(t − 2)x − 1)

(note that this is the unique solution to the free wave equation that matches up with φ on regions I, II)
and similarly on region IV we have

φ(t, x)= 1+ δ(−2(t − 2)x − 1).

8An inspection of (1-14) suggests that the singular set must remain spacelike, thus the timelike portions of the set {φ(lin)=1}
(which, in this case, are the left and right arcs of the circle {(t, x) : (t − 2)2+ x2

= 1}) are not used as a reflective set for φ.
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Finally, on region V we have another solution to the free wave equation, which is now on a downward
trajectory away from φ =+1:

φ(t, x)= 1− δ((t − 2)2+ x2
+ 1).

If one were to continue the evolution of φ forward in time beyond 1 (extending the initial data φ0, φ1

suitably), the solution would eventually hit the φ = −1 barrier and reflect again, picking up further
singularities propagating in null directions similar to those pictured here. Thus, while the solution remains
piecewise smooth for all time, we expect the number of singularities to increase as time progresses, due
to the increasing number of reflections taking place.

It is a routine matter to verify that the solution presented here verifies the properties (i)–(vi) on 1
(if δ is sufficiently small), and so is necessarily the limiting solution φ, thanks to Theorem 1.3 (and the
uniqueness theory in Section 3 below). We omit the details.

Remark 1.7. The circular arc between A and C supports a component of the defect measure µ+, which
can be computed explicitly from the above formulae. The defect measure can also be computed by
integrating (1-16) and observing that

φ〈u, v〉−φ〈u−a, v〉−φ〈u, v−b〉+φ〈u−a, v−b〉 =−µ+
({
(u′, v′) : u−a 6 u′ 6 u; v−b6 v′ 6 v

})
whenever 〈u, v〉, 〈u−a, v〉, 〈u, v−b〉, 〈u−a, v−b〉 are the corners of a small parallelogram intersecting
this arc. Sending b→ 0, say, we observe that the left side is asymptotic to b(φv〈u, v〉 − φv〈u − a, v〉).
Since φv reflects in sign across the arc, we can simplify this as b|φ(lin)v 〈u, v〉|. This allows us to describe
µ+ explicitly in terms of the conserved quantity |φ(lin)v | and the slope of the arc; we omit the details.

Remark 1.8. The above example shows that the barrier set |φ| = 1 has some overlap initially with the
set |φ(lin)| = 1, but the situation becomes more complicated after multiple “reflections” off of the two
barriers φ =+1 and φ =−1, and the author does not know of a clean way to describe this set for large
times t , although as the above example suggests, these sets should be computable for any given choice
of t and any given initial data.

1.9. Proof strategy. We shall shortly discuss the proof of Theorem 1.3, but let us first pause to discuss
two techniques that initially look promising for solving this problem, but end up being problematic for
a number of reasons.

Each of the nonlinear wave equations (1-1) enjoy a conserved stress-energy tensor T (p)
αβ , and it is

tempting to try to show that this stress-energy tensor converges to a limit T (∞)
αβ . However, the author

found it difficult to relate this limit tensor to the limit solution φ(∞). The key technical difficulty was
that while it was not difficult to ensure that derivatives φ(p)u , φ

(p)
v of φ(p) converged in a weak sense to

the derivatives φ(∞)u , φ
(∞)
v of a limit φ(∞), this did not imply that the magnitudes |φ(p)u |, |φ

(p)
v | of the

derivatives converged (weakly) to the expected limit of |φ(∞)u |, |φ
(∞)
v |, due to the possibility of increasing

oscillations in the sign of φ(p)u or φ(p)v in the limit p→∞ which could cause some loss of mass in the
limit. Because of this, much of the argument is instead focused on controlling this oscillation, and the
stress-energy tensor conservation appears to be of limited use for such an objective. Instead, the argument
relies much more heavily on pointwise conservation (or almost-conservation) laws such as (1-13), and
on the method of characteristics.
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Another possible approach would be to try to construct an approximate solution (or parametrix) to
φ(p), along the lines of (1-7), and show that φ(p) is close enough to the approximate solution that the
convergence can be read off directly (much as it can be from (1-7)). While it does seem possible to con-
struct the approximate solution more or less explicitly, the author was unable to find a sufficiently strong
stability theory to then close the argument by comparing the exact solution to the approximate solution.
The difficulty is that the standard stability theory for (1-1) (for example, by applying energy estimates
to the difference equation) exhibits losses which grow exponentially in time with rate proportional to p,
thus requiring the accuracy of the approximate solution to be exponentially small in p before there is
hope of connecting the approximate solution to the exact one. Because of this, the proof below avoids all
use of perturbation theory9, and instead estimates the nonlinear solutions φ(p) directly. It may however
be of interest to develop a stability theory for (1-1) which is more uniform in p (perhaps using bounded
variation type norms rather than energy space norms?). One starting point may be the perturbation theory
for (1-8), explored recently in [Kalyakin 2001].

Our arguments are instead based on a compactness method. It is not difficult to use energy conservation
to demonstrate equicontinuity and uniform boundedness in the φ(p), so we know (from the Arzelá–Ascoli
theorem) that the φ(p) have at least one limit point. It thus suffices to show that all such limit points obey
the properties (i)–(vi), and that the properties (i)–(vi) uniquely determine φ. The uniqueness is established
in Section 3, and is based on many applications of the method of characteristics. To establish that all limit
points obey (i)–(vi), we first establish in Section 4 a number of a priori estimates on the solutions φ(p),
in particular obtaining some crucial boundedness and oscillation control on φ and its first derivatives,
uniformly in p. In Section 5 we then take limits along some subsequence of p going to infinity to recover
the desired properties (i)–(vi).

Remark 1.10. It seems of interest to obtain more robust methods for proving results for infinite nonlinear
barriers; the arguments here rely heavily on the method of characteristics and so do not seem to easily
extend to, say, the p →∞ limit of the one-dimensional nonlinear Schrödinger equation iut + uxx =

|u|p−1u, or to higher-dimensional nonlinear wave equations. In higher dimensions there is also a serious
additional problem, namely that the nonlinearity becomes energy-critical in the limit p → ∞ in two
dimensions, and (even worse) becomes energy-supercritical for large p in three and higher dimensions.
However, while global existence for defocusing supercritical nonlinear wave equations from large data
is a notoriously difficult open problem, there is the remote possibility that the asymptotic case p→∞
is actually better behaved than that of a fixed p. At the very least, one should be able to conjecture what
the correct limit of the solution should be. Interestingly, another p →∞ type limit for an evolution
equation, namely that of the p-Laplacian diffusion equation to a ∞-Laplacian diffusion equation, has
recently been studied in [Andreu et al. 2009].

2. Notation

We use the asymptotic notation X � Y to denote the bound X 6 CY for some constant C depending
on fixed quantities (for example, the initial data); note that X may be negative, so X � Y only provides
an upper bound. We also use O(X) to denote any quantity bounded in magnitude by CY (thus we have

9Except, of course, for the fact that perturbation theory is used to establish global existence of the φ(p).
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both an upper and a lower bound in this case), and X ∼ Y for X � Y � X . If the constant C needs to
depend on additional parameters, we will denote this by subscripts, for example, X�ε Y or X = Oε(Y ).

It is convenient to use both Cartesian coordinates (t, x) and null coordinates 〈u, v〉 to parameterise
spacetime. To reduce confusion we shall use angled brackets to denote the latter, thus

(t, x)= 〈t + x, t − x〉

and

〈u, v〉 =
(

u+ v
2

,
u− v

2

)
.

Thus for instance we might write φ〈u, v〉 for φ( u+v
2 , u−v

2 ).
We will frequently rely on three reflection symmetries of (1-1) to normalise various signs: the time

reversal symmetry
φ(t, x) 7→ φ(−t, x) (2-1)

(which also swaps u with −v), the space reflection symmetry

φ(t, x) 7→ φ(t,−x) (2-2)

(which also swaps u with v), and the sign reversal symmetry

φ(t, x) 7→ −φ(t, x). (2-3)

We will frequently be dealing with (closed) diamonds in spacetime, which we define to be regions of
the form {

〈u, v〉 : u0− r 6 u 6 u0; v0− r 6 v 6 v0
}

for some u0, v0 ∈ R and r > 0. One can of course define open diamonds similarly. We will also be
dealing with triangles{

〈u, v〉 : u0− r 6 u 6 u0; v0− r 6 v 6 v0; u+ v > u0+ v0− r
}

which are the upper half of diamonds.

3. Uniqueness

In this section we show that there is at most one function φ :R→R obeying the properties (i)–(vi) listed
in Theorem 1.3. It suffices to prove uniqueness on a diamond region {〈u, v〉 : |u|, |v|6 T } for any fixed
T > 0; by the time reversal symmetry (2-1) it in fact suffices to prove uniqueness on a triangular region

1 := {〈u, v〉 = (t, x) : |u|, |v|6 T ; t > 0}.

Suppose for contradiction that uniqueness failed on1, then there would exist two functions φ, φ′ :1→R

obeying the properties (i)–(vi) in Theorem 1.3 which did not agree identically on 1.
By property (iii), φ and φ′ already agree on some neighbourhood of the time axis. Since φ, φ′ are

continuous by (i), and 1 is compact, we may therefore find some (t0, x0) ∈1 with 0< t0 < T such that
φ(t, x)= φ′(t, x) for all (t, x)∈1 with t 6 t0, but such that φ and φ′ do not agree in any neighbourhood
of (t0, x0) in 1. We will show that φ and φ′ must in fact agree in some neighbourhood of (t0, x0),
achieving the desired contradiction.
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First suppose that |φ(t0, x0)|< 1, then of course |φ′(t0, x0)|< 1. As φ, φ′ are both continuous, we thus
have φ, φ′ bounded away from −1 and +1 on a neighbourhood of (t0, x0) in 1. By (v), φ, φ′ both solve
the free wave equation in the sense of distributions on this region, and since they agree below (t0, x0), they
must therefore agree on a neighbourhood of (t0, x0) by uniqueness of the free wave equation, obtaining
the desired contradiction. Thus we may assume that φ(t0, x0)= φ

′(t0, x0) has magnitude 1; by the sign
reversal symmetry (2-3) we may take

φ(t0, x0)= φ
′(t0, x0)=+1.

By continuity, we thus see that φ, φ′ is positive in a neighbourhood of (t0, x0); from (v) we conclude
that −φt t +φxx is a nonnegative measure in this neighbourhood. Integrating this, we conclude that

φ〈u, v〉−φ〈u− a, v〉−φ〈u, v− b〉+φ〈u− a, v− b〉6 0 (3-1)

whenever a, b> 0 and 〈u, v〉, 〈u−a, v〉, 〈u, v−b〉, 〈u−a, v−b〉 ∈1 lie sufficiently close to (t0, x0); this
implies in particular that φu is nonincreasing in v (and φv nonincreasing in u) in this region whenever
the derivatives are defined. Similarly for φ′.

3.1. Extension to the right. Write 〈u0, v0〉 := (t0, x0). We already know that φ〈u, v〉 = φ′〈u, v〉 when
〈u, v〉 is sufficiently close to 〈u0, v0〉 and u+ v 6 u0+ v0. We now make extend this equivalence to the
right of u0, v0:

Lemma 3.2. φ and φ′ agree for all 〈u, v〉 sufficiently close to 〈u0, v0〉 in the region u > u0, v 6 v0.

Proof. We may of course assume u0 < T otherwise this extension is vacuous.
Suppose first that φ〈u0, v0 − b〉 = 1 for a sequence of positive b approaching zero. Since a 7→

φ〈u0, v0−a〉 is piecewise smooth by (ii), we see from the mean value theorem that φv〈u0, v0−b′〉= 0 for
a sequence of positive b′ approaching zero; by (vi) the same is true for φ(lin), which by the nondegeneracy
assumption (c) implies that φ(lin)v must in fact vanish on some left-neighbourhood of v0, which by (vi)
implies that φv〈u, v〉 and φ′v〈u, v〉 vanish almost everywhere whenever v is less than v0 and sufficiently
close to v0. Since φ, φ′ already agree for u+ v 6 u0+ v0, and are Lipschitz continuous, an integration
in the v direction then gives the lemma.

Now consider the opposite case, where φ〈u0, v0 − b〉 < 1 for all sufficiently small positive b. As
b 7→φ〈u0, v0−b〉 is piecewise smooth, and its stationary points have finitely many connected components
in 1 by (vi), (c), we conclude that φv〈u0, v− b〉> 0 for all 0< b < b0 for some sufficiently small b0.

By continuity, we can find a small a0 ∈ (0, b0) such that φ〈u0 + a, v − b0〉 < 1 for all 0 < a < a0.
Since a 7→ φ〈u0+a, v−b0〉 is piecewise smooth and the stationary points have finitely many connected
components in1, we see (after shrinking a0 if necessary) that φu〈u0+a, v−b0〉 is either always positive,
always negative, or always zero for 0< a < a0.

If φu〈u0+a, v−b0〉 is always zero, then by (vi) we see that φu〈u, v〉=φ′u〈u, v〉=0 almost everywhere
for u sufficiently close to and larger than u0, and any v, and the lemma then follows from the fundamental
theorem of calculus.

If φu〈u0+a, v−b0〉 is always negative, then as φu is nonincreasing in v, we see that φu〈u0+a, v−b〉
is negative for almost every 0 < a < a0 and −b0 < b < b0; combining this with (vi) we conclude that
φu〈u0+a, v−b〉=φu〈u0+a, v−b0〉 almost everywhere in this region, and similarly for φ′. In particular,
φu and φ′u agree in this region, and the lemma again follows from the fundamental theorem of calculus.
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Finally, we handle the most difficult case,10 when φu〈u0+a, v−b0〉 is always positive. Let 8 denote
the unique Lipschitz-continuous solution to the free wave equation on the parallelogram P := {〈u, v〉 :
u0 6 u 6 u0 + a0; v0 − b0 6 v 6 v0} that agrees with φ (and hence φ′) on the lower two edges of this
parallelogram (that is, when u = u0 or v = v0− b0). We will show that φ and φ′ agree on P .

Call a point 〈u, v〉 ∈ P good if we have 8(u′, v′) 6 1 for all 〈u′, v′〉 ∈ P with u′ 6 u, v′ 6 v; the set
of good points is then a closed subset of P .

We first observe that if 〈u, v〉 is good, then φ = φ′ = 8. Indeed, since φv is positive on the lower
left edge of P , and φu is positive on the lower right edge, we see that 8〈u′, v′〉 < 1 for all 〈u′, v′〉 ∈ P
with u′ 6 u, v′ 6 v, and 〈u′, v′〉 6= 〈u, v〉. Also, from (v), φ and φ′ solve the free wave equation in the
neighbourhood of any region near 〈u0, v0〉 where they are strictly less than 1. A continuity argument
based on the uniqueness of the free wave equation then shows that φ〈u′, v′〉 = φ′〈u′, v′〉 =8〈u′, v′〉 for
all φu〈u0+ a, v− b0〉, and the claim follows.

Now suppose that 〈u, v〉 is not good, thus 8〈u, v〉 > 1. Excluding a set of measure zero, we may
assume that v0−b0 < v < v0 and that |φv〈u, v〉| exists and is equal to |φv〈u0, v〉|, which is nonzero. We
claim that φv〈u, v〉 cannot be positive. For if it is, then we can find v′ less than v and arbitrarily close to
v such that

φ〈u, v′〉< φ〈u, v〉.

See Figure 2. Applying (3-1), we conclude that

φ〈u′, v′〉< φ〈u′, v〉

for all u0 6 u′ 6 u. In particular, φ〈u′, v′〉 must be bounded away from 1. Also, as 8 is continuous, we
may also assume that

8〈u, v′〉> 1.

In particular, φ and 8 disagree at u, v′. This implies that φ〈ũ, ṽ〉 = 1 for at least one u0 6 ũ 6 u,
v0−b0 6 ṽ 6 v′, since otherwise by (v) φ would solve the free wave equation in this region and thus be
necessarily equal to 8 by uniqueness of that equation. Among all such 〈ũ, ṽ〉, we can (by continuity and
compactness) pick a pair that maximises ṽ. Since φ〈u′, v′〉must be bounded away from 1, we have ṽ <v′.
From (v), φ solves the linear wave equation in the parallelogram {〈u′′, v′′〉 : u0 6 u′′ 6 ũ; ṽ 6 v′′ 6 v′},
which implies that

φ〈ũ, v′〉−φ〈ũ, ṽ〉−φ〈u0, v
′
〉+φ〈u0, ṽ〉 = 0.

But by the fundamental theorem of calculus, φ〈u0, v
′
〉 > φ〈u0, ṽ〉, and φ〈ũ, ṽ〉 = 1, hence φ〈ũ, v′〉 >

1, contradicting (iv). Hence φv〈u, v〉 cannot be positive, and hence by hypothesis must be equal to
−|φv〈u0, v〉|. The same considerations apply to φ′, and so φv = φ′v at almost every point in P that is not
good.

Since φ = φ′ at good points in P , and φv = φ′v on all other points of P , we obtain the lemma from
the fundamental theorem of calculus. �

10Indeed, this is the one case where φ will reflect itself on some spacelike curve containing (t0, x0), which is essentially the
only interesting nonlinear phenomenon that φ can exhibit.
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I

〈u0, v0〉

〈u0, v0− b0〉

〈u0, ṽ〉

〈u0+ a0, v0− b0〉

〈ũ, ṽ〉

〈u, v′〉
〈u, v〉

〈u0, v
′
〉

〈u
′ , v
〉

〈ũ
, v
′ 〉 〈u ′, v ′

〉

Figure 2. The proof of Lemma 3.2 in the most difficult case. φ and φ′ are already known
to agree below the dotted line; the task is to extend this agreement to the parallelogram P
with A, B,C as three of its corners. φ is also known in this case to be strictly decreasing
from A to B and strictly increasing from B to C .

3.3. Extension to the left. Using space reflection symmetry (2-2), we can reflect the previous lemma
and conclude

Lemma 3.4. φ and φ′ agree for all 〈u, v〉 sufficiently close to 〈u0, v0〉 in the region u 6 u0, v > v0.

3.5. Extension to the future. By the previous lemmas, we know that there exist a0, b0 > 0 such that
φ〈u0+ a, v0〉 = φ

′
〈u0+ a, v0〉 for all 06 a 6 a0 and φ〈u0, v0+ b〉 = φ′〈u0, v0+ b〉 for all 06 a 6 a0.

To finish the uniqueness claim, we need to show that φ, φ′ also agree in the future parallelogram F :=
{〈u, v〉 : u0 6 u 6 u0+ a0; v0 6 v 6 v0+ b0}.

As before, by shrinking a0 if necessary, we know that φu〈u0+a, v0〉 is either always positive, always
zero, or always negative for 0 < a < a0. The former option is not possible from the barrier condition
(iv) since φ〈u0, v0〉 = 1, so φu〈u0+a, v0〉 is always nonpositive. Using the monotonicity of φu in v and
(vi) we thus conclude that φu〈u0+ a, v0+ b〉 = φu〈u0+ a, v0〉 for almost every 0< a < a0, 0< b < b0,
and similarly for φ′, such that φu and φ′u agree almost everywhere on F ; similarly φv and φ′v agree. The
claim now follows from the fundamental theorem of calculus, and the uniqueness claim is complete.

Remark 3.6. One could convert the above uniqueness results, with additional effort, into an existence
result, but existence of a solution to (i)–(vi) will be automatic for us from the Arzelá–Ascoli theorem, as
we will show that any uniformly convergent sequence of φ(p) will converge to a solution to (i)–(vi).
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4. A priori estimates

The next step in the proof of Theorem 1.3 is to establish various a priori estimates on the solution to
(1-1) on the diamond

♦T0 :=
{
〈u, v〉 : |u|, |v|6 T0

}
for some large parameter T0. Accordingly, let us fix φ0, φ1 obeying the hypotheses (a),(b),(c) of Theorem
1.3, and let T0 > 0; we allow all implied constants to depend on the initial data φ0, φ1 and T0, but will
carefully track the dependence of constants on p. We will assume that p is sufficiently large depending
on the initial data and on T0; in particular, we may take p> 100, say. Standard energy methods (see, for
example, [Sogge 1995]) then show that φ exists globally and is C10 in ♦T0 . This is sufficient to justify
all the formal computations below.

We begin with a preliminary (and rather crude) Hölder continuity estimate, which we need to establish
some spatial separation (uniformly in p) between the region where φ approaches +1, and the region
where φ approaches −1.

Lemma 4.1 (Hölder continuity). For any (x1, t1), (x2, t2) ∈ ♦T0 we have∣∣φ(t1, x1)−φ(t2, x2)
∣∣� |x1− x2|

1/2
+ |t1− t2|1/2.

Proof. We use the monotonicity of local energy

E(t) :=
∫

x :(t,x)∈♦T0

1
2
φ2

t +
1
2
φ2

x +
1

p+ 1
|φ|p+1 dx .

The standard energy flux identity shows that E(t)6 E(0) for all t . From the hypotheses (a), (b) we have

|E(0)| � 1

(note in particular the uniformity in p), and thus by energy monotonicity

|E(t)| � 1 (4-1)

for all t . By Cauchy–Schwarz, we see in particular that we have some Hölder continuity in space, or
more precisely that ∣∣φ(t, x)−φ(t, x ′)

∣∣� |x − x ′|1/2 (4-2)

whenever (t, x), (t, x ′) ∈ ♦T0 . We can also get some Hölder continuity in time by a variety of methods.
For instance, from Cauchy–Schwarz again we have∣∣φ(t1, x)−φ(t2, x)

∣∣2 6 |t1− t2|
(∫ t2

t1
φ2

t dt
)

for any t1 < t2 and any x ; integrating this in x on some interval [x0−r, x0+r ] and using (4-1) we obtain∫ x0+r

x0−r

∣∣φ(t1, x)−φ(t2, x)
∣∣2 dx � |t1− t2|2

when (t1, x0− r), (t1, x0+ r), (t2, x0− r), (t2, x0+ r) ∈ ♦T0 . On the other hand, from (4-2) we have∣∣φ(t1, x0)−φ(t2, x0)
∣∣2� |φ(t1, x)−φ(t2, x)|2+ r
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and thus
2r
∣∣φ(t1, x0)−φ(t2, x0)

∣∣2� |t1− t2|2+ r2.

If we optimise r := |t1− t2|, we obtain∣∣φ(t1, x0)−φ(t2, x0)
∣∣� |t1− t2|1/2;

combining this with (4-2) we obtain the claim (possibly after replacing T0 with a slightly larger quantity
in the above argument). �

Next, we express the Equation (1-1) in terms of the null derivatives (1-11) as

φuv =−
1
4 |φ|

p−1φ. (4-3)

We can use this to give some important pointwise bounds on φ and its derivatives. For any time −T0 6
t0 6 T0, let K (t0) be the best constant such that

|φ(t0, x)|6 1+
log p

p
+

K
p

(4-4)

and
|φu(t0, x)|, |φv(t0, x)|6 K (4-5)

and
|φuu(t0, x)|, |φvv(t0, x)|6 K p (4-6)

for all x with (t0, x) ∈ ♦T0 (compare with (1-5)). Thus for instance K (0)� 1. We now show that the
(4-4) component of K (t0), at least, is stable on short time intervals.

Lemma 4.2 (Pointwise bound). There exists a time increment τ > 0 (depending only on the initial data
and T0) such that

|φ(t1, x1)|6 1+
log p

p
+ OK (t0)

( 1
p

)
for any −T0 6 t0 6 T0 and (t1, x1) ∈ ♦T0 with |t1− t0|6 τ , and either t1 > t0 > 0 or t1 6 t0 6 0.

Proof. We shall use the method of characteristics. We take τ > 0 to be a small quantity depending on the
initial data to be chosen later. Fix t0 and write K := K (t0). Let εK > 0 be a small quantity depending
on K and the initial data to be chosen later, and then let CK be a large quantity depending on K , εK > 0
to be chosen later. By time reversal symmetry (2-1) we may take t1 > t0 ≥ 0; by sign reversal symmetry
(2-3) it suffices to establish the upper bound

φ(t1, x1)6 1+
log p

p
+

CK

p
.

Assume this bound fails, then (by continuity and compact support in space) there exists t06 t16 t0+τ
and x1 ∈ R such that

φ(t1, x1)= 1+
log p

p
+

CK

p
(4-7)

and

φ(t, x)6 1+
log p

p
+

CK

p
(4-8)
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for all t0 6 t < t1 and x ∈ R. From (4-4), we have t1 > t0 if CK is large enough.
From Lemma 4.1 we see (if τ is small enough) that φ(t, x) is positive in the triangular region

1 :=
{
(t, x) : t0 6 t 6 t1; |x − x1|6 |t − t1|

}
(which is contained in �T0). From (4-3) we conclude that φu is decreasing in the v direction in1, and thus
has an upper bound φu 6 K on this region thanks to (4-5). Similarly we have φv 6 K on 1. Applying
the fundamental theorem of calculus and (4-4) we conclude that

φ(t, x)6 1+
log p

p
+

K
p
+ O(K (t1− t0)),

for all (t, x)∈1, which when compared with (4-7) shows (if εK is small enough and CK is large enough)
that

t1 > t0+ 2r

where r := εK CK
p .

Now we consider the diamond region

♦ :=
{
(t, x) : t1+ x1− r 6 t + x 6 t1+ x1; t1− x1− r 6 t − x 6 t1− x1

}
.

Since t1 > 2r , this diamond is contained in the triangle 1 (indeed, it is nestled in the upper tip of that
triangle). As before, we have the upper bounds

φu, φv 6 K

on this diamond. From this, (4-7), and the fundamental theorem of calculus, we have

φ(t, x)> 1+
log p

p
(4-9)

on this diamond (if εK is small enough). Applying (4-3) we conclude that

φuv 6−
(

1+
log p

p

)p
6−cp

for some absolute constant c > 0. Integrating this on the diamond we conclude that

φ(t1, x1)−φ(t1− r, x1− r)−φ(t1− r, x1+ r)+φ(t1− 2r, x0)6−cpr2.

But from (4-8), (4-9), the left side is bounded below by −O(CK /p). We conclude that

pr2
�

CK

p
.

But from the definition of r , we obtain a contradiction if CK is large enough depending on εK , and the
claim follows. �

Now we establish a similar stability for the (4-5) component of K (t0).

Lemma 4.3 (Pointwise bound for derivatives). There exists a time increment τ > 0 (depending only on
the initial data and T0) such that

|φu(t1, x1)|, |φv(t1, x1)| �K (t0) 1
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and
|φuu(t1, x1)|, |φvv(t1, x1)| �K (t0) p

for any −T0 6 t0 6 T0 and (t1, x1) ∈ ♦T0 with |t1− t0| 6 τ , and either t1 > t0 > 0 or t1 6 t0 6 0, if p is
large enough depending on K (t0).

Proof. This will be a more advanced application of the method of characteristics. We again let τ > 0 be a
sufficiently small quantity (depending on the initial data) to be chosen later. Fix t0 and write K = K (t0),
and let CK > 0 be a large quantity depending on K and the initial data to be chosen later.

It will suffice to show that∣∣φu(t1, x1)
∣∣2+ 1

p

∣∣φuu(t1, x1)
∣∣, ∣∣φv(t1, x1)

∣∣2+ 1
p

∣∣φvv(t1, x1)
∣∣6 CK

whenever |t1− t0|6 τ and x1 ∈ R.
Suppose for contradiction that this claim failed. As before (using the symmetries (2-1), (2-2)) we may

assume that 06 t0 6 t1 6 t0+ τ and x1 are such that∣∣φu(t1, x1)
∣∣2+ 1

p

∣∣φuu(t1, x1)
∣∣= CK , (4-10)

say, and that ∣∣φu(t, x)
∣∣2+ 1

p

∣∣φuu(t, x)
∣∣, ∣∣φv(t, x)

∣∣2+ 1
p

∣∣φvv(t, x)
∣∣6 CK (4-11)

for all t0 6 t 6 t1 and x with (t, x) ∈ ♦T0 .
We first dispose of an easy case when φ(t1, x1) is small, say |φ(t1, x1)|6 1/2. Then by Lemma 4.1 we

conclude (if τ is small enough) that |φ|6 1 on the triangular region {(t, x) : t06 t 6 t1 : |x1−x |6 |t1−t |},
and the claim then easily follows from (4-3), the fundamental theorem of calculus, and (4-5). Thus we
may assume |φ(t1, x1)|> 1/2; replacing φ with −φ if necessary we may assume φ(t1, x1) > 1/2.

By Lemma 4.1, we see that φ is positive whenever |t− t1|, |x− x1|6 100τ , say, if τ is small enough.
It will be convenient to make the change of variables

φ(t, x)= p1/(p−1)
(

1+
1
p
ψ(p(t − t0), p(x − x1))

)
;

then from (4-3), ψ solves the equation

ψuv =−
1
4

(
1+

1
p
ψ
)p

(4-12)

on the region |t |, |x |6 100τp. From (4-10), (4-11) we have∣∣ψu(p(t1− t0), 0)
∣∣2+ ∣∣ψuu(p(t1− t0), 0)

∣∣∼ CK (4-13)

and
|ψu(t, x)|2, |ψv(t, x)|2, |ψuu(t, x)|, |ψvv(t, x)| � CK . (4-14)

for 06 t 6 p(t1−t0) and |x |6100τp. Meanwhile, while from Lemma 4.2 (and shrinking τ as necessary)
we have the upper bound

ψ(t, x)�K 1 (4-15)
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for |t |, |x |6 100τp. Note though that we do not expect ψ to enjoy a comparable lower bound, but since
φ is positive in the region of interest, we have

ψ(t, x)>−p (4-16)

for |t |, |x |6 100τp. Finally, from (4-5), (4-4) we have

|ψu(0, x)|, |ψv(0, x)|, |ψuu(0, x)|, |ψvv(0, x)| �K 1 (4-17)

whenever |x |6 100τp.
Motivated by the pointwise conservation laws (1-13) of the Equation (1-12), which (4-12) formally

converges to, we consider the quantity

∂v

(1
2
ψ2

u −ψuu

)
.

Using (4-12), we compute

∂v

(1
2
ψ2

u −ψuu

)
=−

1
4p

Fp(ψ)ψv (4-18)

where Fp(s) := s
(
1+ 1

p s
)p−1. From (4-15) we see that Fp(ψ)= OK (1), and thus by (4-14) we have

∂v

(1
2
ψ2

u −ψuu

)
= OK (C

1/2
K /p).

From this, (4-17), (4-14) and the fundamental theorem of calculus we see that∣∣∣1
2
ψ2

u −ψuu

∣∣∣(t, x)6 A (4-19)

for all 06 t 6 p(t1− t0) and |x |6 50τp, and some A ∼K C1/2
K .

From (4-12) we know that ψu is decreasing in the v direction, so from (4-17) we also have the upper
bound

ψu(t, x)6 OK (1)

for all 06 t 6 p(t1− t0) and |x |6 50τp. To get a lower bound, suppose that ψu(t, x)6−A1/2 for some
06 t 6 p(t1− t0) and |x |6 40τp. Then from (4-19) we have ψuu(t, x)> 0. If we move backwards in the
u direction, we thus see that ψu decreases; continuing this (by the usual continuity argument) until we hit
the initial surface t = 0 and applying (4-17) we conclude that ψu(t, x)>−OK (1), a contradiction if CK

is large enough. We thus conclude that ψu > −A1/2 for 0 6 t 6 p(t1− t0) and |x | 6 40τp. Combining
this with the upper bound and with (4-19) we contradict (4-13) if CK is large enough, and the claim
follows. �

Combining Lemmas 4.2, 4.3 and the definition of K (t) we conclude that

K (t)�Kt0
1

whenever |t − t0| 6 τ and T0 > t > t0 > 0 or −T0 6 t 6 t0 6 0. Since K (0)� 1, we thus conclude on
iteration that

K (t)� 1
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for all t ∈ [−T0, T0]. Thus we have

|φ(t, x)|6 1+
log p

p
+ O

( 1
p

)
, (4-20)

|φu(t, x)|, |φv(t, x)| � 1, (4-21)

|φuu(t, x)|, |φvv(t, x)| � p, (4-22)

for all (t, x) ∈ ♦T0 .
Now we revisit the conservation laws (1-13) which were implicitly touched upon in the proof of

Lemma 4.3.

Lemma 4.4 (Approximate pointwise conservation law). There exists τ > 0 (depending on T0 and the
initial data) such that the following claim holds: whenever 〈u0, v0〉 ∈ ♦T0 is such that φ〈u0, v0〉>−1/2,
then (1

2
φ2

u −
1
p
φuu

)
〈u0, v0+ r〉 =

(1
2
φ2

u −
1
p
φuu

)
〈u0, v0〉+ O

( log p
p

)
(4-23)

and (1
2
φ2
v −

1
p
φvv

)
〈u0+ r, v0〉 =

(1
2
φ2
v −

1
p
φvv

)
〈u0, v0〉+ O

( log p
p

)
for all −τ 6 r 6 τ .

If instead φ〈u0, v0〉6+1/2, then we have(1
2
φ2

u +
1
p
φuu

)
〈u0, v0+ r〉 =

(1
2
φ2

u +
1
p
φuu

)
〈u0, v0〉+ O

( log p
p

)
and (1

2
φ2
v +

1
p
φvv

)
〈u0+ r, v0〉 =

(1
2
φ2
v +

1
p
φvv

)
〈u0, v0〉+ O

( log p
p

)
for all −τ 6 r 6 τ .

Proof. Let τ > 0 be sufficiently small to be chosen later. By sign reversal symmetry (2-3) we may assume
that φ〈u0, v0〉>−1/2. By spatial reflection symmetry (2-2) it suffices to prove (4-23).

Suppose first that−1/26φ〈u0, v0〉61/2, then by Lemma 4.1 we have |φ〈u, v〉|60.9i, say, whenever
|u− u0|, |v− v0|6 100τ . Applying (4-3) and the fundamental theorem of calculus, we see that

φu〈u0+ r, v0〉 = φu〈u0, v0〉+ O
( log p

p

)
for all−τ 6r6τ ; similarly, if one differentiates (4-3) in the u direction and applies the bound |φ〈u, v〉|6
0.9 as well as (4-21), we obtain

φuu〈u0+ r, v0〉 = φuu〈u0, v0〉+ O(log p)

and the claim (4-23) follows.
Henceforth we assume φ〈u0, v0〉 > 1/2. By Lemma 4.1 (or (4-21)) we see that φ〈u, v〉 is positive

when |u− u0|, |v− v0|6 100τ , so by making the ansatz

φ〈u, v〉 = p1/(p−1)
(

1+
1
p
ψ
〈
p(u− u0), p(v− v0)

〉)
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as before, we see that ψ obeys (4-12) for |u|, |v|6 100τp. Also, from (4-20)–(4-22) (and the positivity
of φ) we see that

|ψu〈u, v〉|, |ψv〈u, v〉|, |ψuu〈u, v〉|, |ψvv〈u, v〉| � 1 (4-24)

and

−p 6 ψ〈u, v〉6 O(1) (4-25)

for all |u|, |v|6 100τp. Our objective is to show that(1
2
ψ2

u −ψuu

)
〈0, r〉 =

(1
2
ψ2

u −ψuu

)
〈0, 0〉+ O

( log p
p

)
for all −τp 6 r 6 τp. By (4-18) and the fundamental theorem of calculus it suffices to show that∫ τp

−τp

∣∣Fp(ψ〈0, r〉)
∣∣∣∣ψv〈0, r〉∣∣ dr �T

log p
p
. (4-26)

Applying (4-24) we can discard the |ψv〈0, r〉| factor. Meanwhile, from (1-12), (4-24), and the funda-
mental theorem of calculus we have ∫ τp

−τp
eψ〈0,r〉 dr �T 1.

Observe that Fp(x) �T (log p)ex whenever −100 log p 6 x 6 OT (1), and that Fp(x) � p−50 when
x 6−100 log p, and the claim (4-26) follows. �

We now use this law to show a more precise bound on φu and φv than is provided by (4-21). We first
handle the case when φ has large derivative.

Lemma 4.5 (Piecewise convergence, nondegenerate case). Let ε>0, and let I ⊂[−T0, T0] be an interval
such that |φ(lin)u 〈u, v〉| > ε for all u ∈ I (note that v is irrelevant here). Then for each v ∈ [−T0, T0], we
have

|φu〈u, v〉|2 = |φ(lin)u 〈u, v〉|
2
+ O

( log p
p

)
(4-27)

and

φuu〈u, v〉 = O(log p) (4-28)

for all u in I , excluding at most O(1) intervals in I of length Oε(
log p

p ).
Similarly with the roles of u and v reversed.

Proof. Let τ > 0 be a small number (depending on the initial data and T0) to be chosen later. We may
assume that p is sufficiently large depending on ε, since the claim is trivial otherwise. By space reflection
symmetry (2-2) it will suffice to prove (4-27), (4-28); by time reversal symmetry (2-1) we may assume
that t = u+v

2 is nonnegative.
We introduce an auxiliary parameter 06 T 6 T0, and only prove the claim for t = u+v

2 between 0 and
T ; setting T = T0 will then yield the claim. We establish this claim by induction on T , incrementing T
by steps of τ at a time.



254 TERENCE TAO

Let us first handle the base case when 06 T 6 2τ . Fix v. By sign reversal symmetry (2-3) and Lemma
4.1 we may assume that φ〈u, v〉>−1/2 whenever t= u+v

2 has magnitude at most 100τ . Applying Lemma
4.4, we conclude that(1

2
φ2

u −
1
p
φuu

)
〈u, v〉 =

(1
2
φ2

u −
1
p
φuu

)
〈u,−u〉+ O

( log p
p

)
for all−v−10τ 6 u6−v+10τ . From the hypotheses (a), (b) and (1-1) we see that φuu〈u,−u〉= O(1),
and so we have

φuu〈u, v〉 =
p
2

(
φ2

u〈u, v〉−φ
2
u〈u,−u〉+ O

( log p
p

))
. (4-29)

If we write f (t) := φu〈−v+ 2t, v〉, g(t) := φu〈−v+ 2t, v〉 we thus have

f ′(t)= p
(

f (t)2− g(t)2+ O
( log p

p

))
(4-30)

for all −5τ 6 t 6 5τ .
Let J := {06 t 6 T : −v+ 2t ∈ I }, thus J is a (possibly empty) interval such that ε 6 |g(t)| � 1 for

all t ∈ J . Also observe from the smoothness of the initial data and (1-1) that g′(t)= O(1) for all t ∈ J .
Also from (4-21) we have f (t)= O(1) for all t ∈ J .

Suppose first that f (t0) > 0 and f (t0)2 > g(t0)2+C log p
p for some t0 ∈ J and some sufficiently large

C . Then from the bounds on g and (4-30), we have

∂t( f (t0)2− g(t0)2)�ε p( f (t0)2− g(t0)2).

A continuity argument (using Gronwall’s inequality) then shows that f (t)2− g(t)2 increases exponen-
tially fast (with rate �ε p) as t increases. Since f (t)2 − g(t)2 is O(1) and was � log p

p at t0, we
arrive at a contradiction unless t0 lies within Oε(

log p
p ) of the boundary of J . Similarly if f (t0) < 0 and

f (t0)2 > g(t0)2+C log p
p for some t0 ∈ J . We conclude that

f (t)2 6 g(t)2+ O
(

log p
p

)
for all t ∈ J except for those t which are within Oε(

log p
p ) of the boundary of J .

Now suppose that f (t)2 6 ε2/2, then we see from (4-30) and the bounds on f, g that − f ′(t)�T,ε p;
thus the set of t ∈ J for which this occurs must be contained in a single interval of length Oε(

1
p ).

Next, if ε2/26 f (t)2 6 g(t)2−C log p
p , then from (4-30) we obtain a bound of the form

±∂t(g(t)2− f (t)2)�ε p(g(t)2− f (t)2),

where ± is the sign of f (t). Applying the continuity and Gronwall argument again, either forwards or
backwards in time as appropriate, we see that this event can only occur either within Oε(

log p
p ) of the

boundary of J , or on an interval of length Oε(
log p

p ) adjacent to the interval where

f (t)2 6 ε2/2.
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Putting all of this together, we see that

f (t)2 = g(t)2+ O
( log p

p

)
for all t ∈ J outside of at most O(1) intervals of length Oε(

log p
p ). This gives the desired bound (4-27).

The bound (4-28) then follows from (4-29).
Now suppose inductively that T > 2τ , and that the claim has already been shown for T − τ . By

inductive hypothesis we only need to establish the claim for t ∈ [T − τ, T ]. Fix v. By sign reversal
symmetry (2-3) and Lemma 4.1 we may assume that φ〈u, v〉>−1/2 whenever t = u+v

2 lies within 100τ
of T .

We can now repeat the previous arguments, except that the interval J must first be subdivided by
removing the O(1) subintervals of J of length Oε(

log p
p ) for which (4-27) and (4-28) (with v replaced

by v−τ ) already failed (and which are provided by the inductive hypothesis), and then working on each
remaining subinterval of J separately. Note that on each such interval we still have the ODE (4-30)
(using the inductive hypothesis (4-27), (4-28) as a substitute for control of the initial data). We omit the
details. �

Now we handle the opposing case when φ has small derivative.

Lemma 4.6 (Piecewise convergence, degenerate case). Let ε > 0, and let I ⊂ [−T0, T0] be an interval
such that |φ(lin)u 〈u, v〉|6 ε for all u ∈ I (again, v is irrelevant). Then one has

|φu〈u, v〉| � ε (4-31)

and
|φuu〈u, v〉| � ε2 p (4-32)

whenever 〈u, v〉 ∈ ♦T0 and u ∈ I . Similarly with the roles of u and v reversed.

Proof. This is very similar to Lemma 4.5, in that we first establish the base case 0 6 T 6 4τ and then
induct by steps of τ , where τ > 0 is a fixed timestep independent of T and p. Whereas in the proof of
Lemma 4.5 we did the base case in detail and left the inductive step to the reader, here we shall leave the
base case to the reader and do the inductive step in detail. Thus, assume T > 4τ and that the claim has
already been proven for T − τ and T − 2τ . We may assume ε < τ since the claim follows from (4-21),
(4-22) otherwise.

By inductive hypothesis and time and space reversal symmetry ((2-1) and (2-2)) we only need to
establish the claims (4-31) and (4-32) for t = u+v

2 ∈ [T −τ, T ]. By the sign reversal symmetry (2-3) and
Lemma 4.1 we may assume that φ〈u, v〉 > −1/2 whenever t ∈ [T − 100τ, T + 100τ ]. We can assume
that p is large compared to T0, ε, and the initial data since the claim is vacuous otherwise.

Let J := {u ∈ I : t = u+v
2 ∈ [T − τ, T ]}. Observe (from the smoothness of the initial data) that

|φu〈u, u〉| � ε whenever u lies within ε of J . By inductive hypothesis (replacing ε by O(ε)), we
conclude that

|φu〈u, v− 2τ 〉| � ε,

|φuu〈u, v− 2τ 〉| � ε2 p,
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for all in the ε-neighbourhood of J . Applying Lemma 4.4, we conclude that(1
2
φ2

u −
1
p
φuu

)
〈u, v〉 = O(ε2) (4-33)

for all t in the ε-neighbourhood of J . Thus, if f (u) := φu〈u, v〉, then we have

f ′(u)= p( f 2(u)+ O(ε2))

for all u in the ε-neighbourhood of J .
The ODE f ′(u)= p

2 f 2(u) blows up either forward or backward in time within a duration of Oε(1/p)
as soon as | f (u)| exceeds ε. From this and a continuity and comparison argument, we see that | f (u)|
cannot exceed Cε for u ∈ J for some constant C depending only on u, thus f (u)= O(ε) for all u ∈ J .
Applying (4-33) we close the induction as required; the base case is similar. �

Remark 4.7. The a priori estimates here did not use the full force of the hypotheses (a)–(c); the condition
(c) was not used at all, and the strict barrier condition (b) could be replaced by the nonstrict condition
|φ0(x)| 6 1. Also, a careful examination of the dependence of the implied constants on the initial data,
combined with a standard limiting argument using the usual local-wellposedness theory reveals that (a)
can be replaced with a C2

×C1 condition on the initial data (φ0, φ1). However, we use the hypotheses
(a)–(c) more fully in the uniqueness theory of the previous section, and the compactness arguments in
the next section.

5. Compactness

Now we can prove Theorem 1.3. Fix T0>0. From Lemma 4.1, the solutions φ=φ(p) are equicontinuous
and uniformly bounded on the region ♦T0 := {(t, x) : |t | + |x | 6 T0}, and hence (by the Arzelá–Ascoli
theorem) precompact in the uniform topology on this region. In view of the uniqueness theory in Section
3, we see that to show Theorem 1.3, it suffices to show that any limit point of this sequence obeys the
properties (i)–(vi) on ♦T0 . Accordingly, let pn→∞ be a sequence such that φ(pn) converges uniformly
to a limit φ.

We can now quickly verify several of the required properties (i)-(vi). From (4-20) we obtain the
property barrier condition (iv), while from Lemma 4.1 we have the Lipschitz condition (i). From the
strict barrier hypothesis (b) and Lemma 4.1, we know that the |φ(pn)| stay bounded away from 1 in a
neighbourhood of the initial interval {(0, x) : −T0 6 x 6 T0}, and so the nonlinearity |φ(pn)|

pn−1φ(pn)

converges uniformly to zero in this neighbourhood. Because of this and (1-1), φ(pn) converges uniformly
to φ(lin) in this neighbourhood, yielding the initial condition (iii).

5.1. The defect measure condition. Now we verify (v). Suppose (t0, x0) is a point in ♦ such that
|φ(t0, x0)| < 1. Then by Lemma 4.1 and uniform convergence, we can find a neighbourhood B of
(t0, x0) in ♦ and a constant c< 1 such that |φ(p)(t, x)|6 c for all (t, x) ∈ B and all sufficiently large p.
In particular, the nonlinearity in (1-1) converges uniformly to zero on B as p→∞. Taking limits, we
see that −φt t +φxx = 0 on B in the sense of distributions. Taking unions over all such B, and using null
coordinates we conclude that the distribution−φt t+φxx is supported on the set {(t, x)∈♦: |φ(t, x)|=1}.

Next, we consider the neighbourhood of a point (t0, x0) where φ(t0, x0)=+1, say. Then by Lemma
4.1 and uniform convergence, we can find a diamond D centred at (t0, x0) (with length bounded below
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uniformly in (t0, x0)) such that φ(p)(t, x) is nonnegative for all (t, x) ∈ D and all sufficiently large p. In
particular, the nonlinearity in (4-3) is nonnegative on this diamond, which implies by the fundamental
theorem of calculus that

φ(p)(t, x)−φ(p)(t − r, x − r)−φ(p)(t − s, x + s)+φ(p)(t − r − s, x − r + s)> 0

whenever (t, x), (t − r, x − r), (t − s, x + s), (t − r − s, x − r + s) lie in D. Taking uniform limits, we
conclude that the same statement is true for φ. By the usual Lebesgue–Stieltjes measure construction
(adapted to two dimensions) we thus see that

φ(t, x)−φ(t − r, x − r)−φ(t − s, x + s)+φ(t − r − s, x − r + s)

= µ+
({
(t − r ′− s ′, x − r ′+ s ′ : 06 r ′ 6 r; 06 s ′ 6 s

})
for some positive finite measureµ+ on D, which implies that−φt t+φxx=µ+ in the sense of distributions
on D. Similarly when φ(t0, x0)=−1 (now replacing µ+ by −µ−). Piecing together these diamonds D
and neighbourhoods B we obtain the claim.

5.2. The reflection condition. Now we verify (vi). By space reflection symmetry (2-2) it suffices to
show (1-17).

Let us first consider the region where φ(lin)u 〈u, v〉 vanishes. Applying Lemma 4.6 and taking weak
limits, we see that φu〈u, v〉 vanishes almost everywhere when φ(lin)u 〈u, v〉 vanishes, which of course
gives (1-17) in this region. As the countable union of null sets is still null, it thus suffice to verify (1-17)
for almost every (t, x) in the parallelogram P := {〈u, v〉 ∈ ♦T0 : u ∈ I }, whenever I is an interval such
that

|φ(lin)u 〈u, v〉|> ε

for all u ∈ I (v is irrelevant) and some ε > 0. Applying Lemma 4.5 and taking square roots, we know
that for all p, we have

|φ(p)u 〈u, v〉| = |φ
(lin)
u 〈u, v〉| + OT

( log1/2 p
p1/2

)
(5-1)

for all 〈u, v〉 ∈ ♦T0 with u ∈ I , where we exclude for each fixed choice of v, a union Iv ⊂ I of O(1)
intervals of length Oε(

log p
p ) from I .

We would like to take limits as p= pn→∞, but we encounter a technical difficulty: while we know
that φ(p)u converges weakly to φu , this does not imply that |φ(p)u | converges weakly to |φu|, due to the
possibility of increasing oscillation of sign11 in φ(p)u . The fact that (5-1) only fails on a bounded number
of short intervals for each v rules out oscillation in the u direction, but one must also address the issue
of oscillation in the v direction. Fortunately, from (4-3) we have some monotonicity of φ(p)u in v that
allows us to control this possibility.

We turn to the details. As φ is Lipschitz, we can cover the parallelogram P by a bounded number of
open diamonds D in P , on which each φ varies by at most 0.1, say. If φ takes any value between −1/2
and 1/2 on a diamond D, then by (4-3) φ solves the free wave equation on D, so in particular φu is
constant in v (and agrees with 1

2(φ1+∂xφ0) whenever the diamond intersects the initial surface {t = 0}).
Thus it suffices to establish the claim on those diamonds D on which φ avoids the interval [−1/2, 1/2];

11If one does not address this oscillation issue, one can only get the lower bound in (1-17) rather than equality.
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by the symmetry φ→−φ we may assume that φ > 1/2 on D, and hence (for n large enough) φ(pn) is
also positive. By (4-3), we conclude that φ(pn)

u is decreasing in the v direction.
Let δ > 0 be a small number. We can partition the diamond D into OT (δ

−2) subdiamonds of length
δ in a regular grid pattern. Fix n sufficiently large depending on δ, ε, and call a subdiamond totally
positive (with respect to n) if φ(pn)

u > 0 at every point on this subdiamond; similarly define the notion
of a subdiamond being totally negative. Call a subdiamond degenerate if it is neither totally positive nor
totally negative (that is, it attains a zero somewhere in the diamond). We claim that at most Oε(δ

−1)

degenerate subdiamonds. To see this, let d be a degenerate subdiamond. Since φ(pn)
u is decreasing in

the v direction, we know that φ(pn)
u must be negative in at least one point on the northwest edge of d ,

and positive in at least one point on the southeast edge. Suppose that φ(pn)
u is negative at every point on

the northwest edge. Then from the monotonicity of φ(pn)
u in the v direction, we see that there can be

at most one degenerate subdiamond of this type on each northwest-southeast column of subdiamonds;
thus there are only O(δ−1) subdiamonds of this type. Thus we may assume that φ(pn)

u changes sign on
the northwest edge. But on the line ` that that edge lies on, we have (5-1) holding in D outside of O(1)
intervals of length Oε(

log pn
pn
); also, by hypothesis, we have

|φ(lin)u 〈u, v〉|> ε

for 〈u, v〉 in D. We conclude (for n large enough) that there are at most O(1) subdiamonds with northwest
edge lying on this line ` for which φ(pn)

u changes sign on this edge. Summing over all O(δ−1) possible
edges, we obtain the claim.

Fix δ, and let n→∞. The set of subdiamonds on which φ(pn) is totally positive or totally negative
can change with n; however there are only a finite number of possible values for this set for fixed δ.
Hence, by the infinite pigeonhole principle, we may refine the sequence pn and assume that these sets
are in fact independent of n. For any totally positive or totally negative diamond, φ(pn)

u has a definite
sign; since φ(pn)

u converges weakly to φu , we conclude that |φ(pn)
u | converges weakly to |φu|. Since there

are no sign changes on this diamond, (5-1) must hold throughout the subdiamond (by the intermediate
value theorem); we thus conclude that (1-17) holds on any such subdiamond. Since the measure of all
the degenerate subdiamonds is Oε(δ), we conclude that (1-17) holds on D outside of a set of measure
Oε(δ). Letting δ→ 0 we obtain the claim.

5.3. Piecewise smoothness. The only remaining property we need to verify is (ii). By spatial reflection
symmetry (2-2), it suffices to show that for each v ∈ [−T0, T0], the map u 7→φ〈u, v〉 is piecewise smooth
on [−T0, T0], with only finitely many pieces.

From (c), we know that φ(lin)u 〈u, v〉 vanishes for u in a finite union of intervals and points in [−T0, T0].
On any one of these intervals, we know from (vi) that φu〈u, v〉 also vanishes almost everywhere, which
by the Lipschitz nature of φ and the fundamental theorem of calculus ensures that φ〈u, v〉 is constant
in u on each of these intervals, for any fixed v. So it will suffice to verify the piecewise smoothness of
u 7→ φ〈u, v〉 for any v and on any compact interval I of u for which φ(lin)u 〈u, v〉 is bounded away from
zero, so long as the number of pieces is bounded uniformly in I and v.
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Fix I and v. By hypothesis, we can find ε > 0 such that |φ(lin)u 〈u, v〉| > ε for all u ∈ I ; in particular,
φ
(lin)
u does not change sign on this interval. By Lemma 4.5, we conclude for each n that∣∣φ(pn)

u 〈u, v〉
∣∣= ∣∣φ(lin)u 〈u, v〉

∣∣+ O
( log1/2 pn

p1/2
n

)
for u ∈ I outside of O(1) intervals of length Oε(

log pn
pn
) intersecting I .

By pigeonholing, we may assume that the number k = O(1) of such intervals is constant; denoting
the midpoints of these intervals by u(pn)

1 < · · ·< u(pn)
k ; without loss of generality we may take u(pn)

1 and
u(pn)

k to be the endpoints of I . We may assume from the Bolzano–Weierstrass theorem and passing to a
further subsequence that each of the u(pn)

j converge to some limit u j .

Between u(pn)
j and u(pn)

j+1, excluding those u lying within Oε(
log pn

pn
) of either endpoint, we may write

φ(pn)
u 〈u, v〉 = ε(pn)

j φ(lin)u 〈u, v〉+ O
( log1/2 pn

p1/2
n

)
,

where ε(pn)
j ∈ {−1,+1}. By a further pigeonholing we may take ε(pn)

j = ε j independent of n. Using the
fundamental theorem of calculus and then taking limits, we conclude that φ〈u, v〉 is piecewise smooth
for u ∈ I , with possible discontinuities at u1, . . . , uk , and with φ〈u, v〉 equal to ε jφ

(lin)
u 〈u, v〉 on the

interval (u j , u j+1) for any 16 j < k. The claim follows, and the proof of Theorem 1.3 is complete.
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