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TERENCE TAO

Let d ≥ 3. We consider the global Cauchy problem for the generalized Navier–Stokes system

∂t u+ (u · ∇)u =−D2u−∇ p, ∇ · u = 0, u(0, x)= u0(x)

for u : R+ ×Rd
→ Rd and p : R+ ×Rd

→ R, where u0 : R
d
→ Rd is smooth and divergence free, and

D is a Fourier multiplier whose symbol m : Rd
→ R+ is nonnegative; the case m(ξ) = |ξ | is essentially

Navier–Stokes. It is folklore that one has global regularity in the critical and subcritical hyperdissipation
regimes m(ξ) = |ξ |α for α ≥ (d + 2)/4. We improve this slightly by establishing global regularity
under the slightly weaker condition that m(ξ) ≥ |ξ |(d+2)/4/g(|ξ |) for all sufficiently large ξ and some
nondecreasing function g : R+→ R+ such that

∫
∞

1 ds/(sg(s)4) = +∞. In particular, the results apply
for the logarithmically supercritical dissipation m(ξ) := |ξ |(d+2)/4/ log(2+ |ξ |2)1/4.

1. Introduction

Let d ≥ 3. This note is concerned with solutions to the generalised Navier–Stokes system

∂t u+ (u · ∇)u =−D2u−∇ p,

∇ · u = 0,

u(0, x)= u0(x),

(1)

where u :R+×Rd
→Rd , p :R+×Rd

→R are smooth, and u0 :R
d
→Rd is smooth, compactly supported,

and divergence-free, and D is a Fourier multiplier1 whose symbol m :Rd
→R+ is nonnegative; the case

m(ξ)= |ξ | is essentially the Navier–Stokes system, while the case m = 0 is the Euler system.
For d≥3, the global regularity of the Navier–Stokes system is of course a notoriously difficult unsolved

problem, due in large part to the supercritical nature of the equation with respect to the energy E(u(t)) :=∫
Rd |u(t, x)|2 dx . This supercriticality can be avoided by strengthening the dissipative symbol m(ξ), for

instance setting m(ξ) := |ξ |α for some α > 1. This hyper-dissipative variant of the Navier–Stokes
equation becomes subcritical for α > (d + 2)/4 (and critical for α = (d + 2)/4), and it is known that
global regularity can be recovered in these cases; see [Katz and Pavlović 2002] for further discussion.
For 1≤ α < (d + 2)/4, only partial regularity results are known; see [Caffarelli et al. 1982] for the case
α = 1 and [Katz and Pavlović 2002] for the case α > 1.

MSC2000: 35Q30.
Keywords: Navier–Stokes, energy method.
The author is supported by NSF Research Award DMS-0649473, the NSF Waterman award and a grant from the MacArthur
Foundation.

1The exact definition of the Fourier transform is inessential here, but for concreteness, take f̂ (ξ) :=
∫

Rd f (x)e−i x ·ξdx .
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The purpose of this note is to extend the global regularity result very slightly into the supercritical
regime.

Theorem 1.1. Suppose that m obeys the lower bound

m(ξ)≥ |ξ |(d+2)/4/g(|ξ |) (2)

for all sufficiently large |ξ |, where g : R+→ R+ is a nondecreasing function such that∫
∞

1

ds
sg(s)4

=∞. (3)

Then for any smooth, compactly supported initial data u0, one has a global smooth solution to (1).

Note that the hypotheses are for instance satisfied when

m(ξ) := |ξ |(d+2)/4/ log1/4(2+ |ξ |2); (4)

thus

|D|2 =
(−1)(d+2)/4

log1/2(2−1)
.

Analogous “barely supercritical” global regularity results were established for the nonlinear wave equa-
tion recently [Tao 2007; Roy 2008; 2009].

The argument is quite simple, being based on the classical energy method and Sobolev embedding.
The basic point is that whereas in the critical and subcritical cases one can get an energy inequality of
the form

∂t‖u(t)‖2H k(Rd ) ≤ Ca(t)‖u(t)‖2H k(Rd )

for some locally integrable function a(t) of time, a constant C , and some large k, which by Gronwall’s
inequality is sufficient to establish a suitable a priori bound, in the logarithmically supercritical case (4)
one instead obtains the slightly weaker inequality

∂t‖u(t)‖2H k(Rd ) ≤ Ca(t)‖u(t)‖2H k(Rd ) log(2+‖u(t)‖H k(Rd ))

(thanks to an endpoint version of Sobolev embedding, closely related to an inequality of Brézis and
Wainger [1980]), which is still sufficient to obtain an a priori bound (though one which is now double-
exponential rather than single-exponential; compare [Beale et al. 1984]).

Remark 1.2. It may well be that the condition (3) can be relaxed further by a more sophisticated argu-
ment. Indeed, the following heuristic suggests that one should be able to weaken (3) to∫

∞

1

ds
sg(s)2

=∞,

thus allowing one to increase the 1
4 exponent in (4) to 1

2 . Consider a blowup scenario in which the solution
blows up at some finite time T∗, and is concentrated on a ball of radius 1/N (t) for times 0 < t < T∗,
where N (t)→∞ as t → T∗. As the energy of the fluid must stay bounded, we obtain the heuristic
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bound u(t)= O(N (t)d/2) for times 0< t < T∗. In particular, we expect the fluid to propagate at speeds
O(N (t)d/2), leading to the heuristic ODE

d
dt

1
N (t)

= O(N (t)d/2)

for the radius 1/N (t) of the fluid. Solving this ODE, we are led to a heuristic upper bound N (t) =
O
(
(T∗− t)2/(d+2)

)
on the blowup rate. On the other hand, from the energy inequality

2
∫ T∗

0

∫
Rd
|Du(t, x)|2 dxdt ≤

∫
Rd
|u0(x)|2 dx

one is led to the heuristic bound ∫ T∗

0

1
N (t)(d+2)/2g(N (t))2

dt <∞.

This is incompatible with the upper bound N (t) = O((T∗ − t)2/(d+2)) if
∫ T∗

1 ds/(sg(s)2) = ∞. Un-
fortunately the author was not able to make this argument precise, as there appear to be multiple and
inequivalent ways to rigorously define an analogue of the “frequency scale” N (t), and all attempts of the
author to equate different versions of these analogues lost one or more powers of g(s).

To go beyond the barrier
∫
∞

1 ds/(sg(s)2) =∞ (with the aim of getting closer to the Navier–Stokes
regime, in which g(s)= s1/4 in three dimensions), the heuristic analysis above suggests that one would
need to force the energy to not concentrate into small balls, but instead to exhibit turbulent behaviour.

2. Proof of theorem

We now prove Theorem 1.1. Let k be a large integer (for example, k := 100d will suffice).
Standard energy method arguments (see, for example, [Kato 1985]) show that if the initial data is

smooth and compactly supported, then either a smooth H∞ solution exists for all time, or there exists
a smooth solution up to some blowup time 0 < T∗ <∞, and ‖u(t)‖H k(Rd )→∞ as t → T∗. Thus, to
establish global regularity, it suffices to prove an a priori bound of the form

‖u(t)‖H k(Rd ) ≤ C(k, d, ‖u0‖H k(Rd ), T, g)

for all 0 ≤ t ≤ T <∞ and all smooth H∞ solutions u : [0, T ] ×Rd
→ Rd to (1), where the quantity

C(k, d, ‖u0‖H k(Rd ), T, g) only depends on k, d, ‖u0‖H k(Rd ), T , and g.
We now fix u0, u, T , and let C denote any constant depending on k, d , ‖u0‖H k(Rd ), T , and g (whose

value can vary from line to line). Multiplying the Navier–Stokes equation by u and integrating by parts,
we obtain the well-known energy identity

∂t

∫
Rd
|u(t, x)|2 dx =−2a(t),

where

a(t) := ‖Du‖2L2(Rd ) (5)
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(note that the pressure term ∇ p disappears thanks to the divergence free condition); integrating this in
time, we obtain the energy dissipation bound∫ T

0
a(t) dt ≤ C. (6)

Now, we consider the higher energy

Ek(t) :=
k∑

j=0

∫
Rd
|∇

j u(t, x)|2 dx . (7)

Differentiating (7) in time and integrating by parts, we obtain

∂t Ek(t)=−2
k∑

j=0

‖∇
j Du(t)‖2L2(Rd )− 2

k∑
j=0

∫
Rd
∇

j u(t, x) · ∇ j ((u · ∇)u)(t, x) dx;

again, the pressure term disappears thanks to the divergence-free condition. For brevity we shall now
drop explicit mention of the t and x variables.

We apply the Leibniz rule to ∇ j ((u · ∇)u). There is one term involving ( j+1)-st derivatives of u,
but the contribution of that term vanishes by integration by parts and the divergence free property. The
remaining terms give contributions of the form

k∑
j=0

∑
1≤ j1, j2≤ j
j1+ j2= j+1

∫
Rd

O(∇ j u∇ j1u∇ j2u) dx,

where O(∇ j u∇ j1u∇ j2u) denotes some constant-coefficient trilinear combination of the components of
∇

j u, ∇ j1u, and ∇ j2u whose explicit form is easily computed, but is not of importance to our argument.
We can integrate by parts using D and D−1 and then use Cauchy–Schwarz to obtain the bound∫

Rd
O(∇ j u∇ j1u∇ j2u) dx ≤ ‖(1+ D)∇ j u‖L2(Rd )

∥∥(1+ D)−1(O(∇ j1u∇ j2u))
∥∥

L2(Rd )
.

By the arithmetic mean-geometric mean inequality we then have∫
Rd

O(∇ j u∇ j1u∇ j2u) dx ≤ c‖(1+ D)∇ j u‖2L2(Rd )+
1
c

∥∥(1+ D)−1(O(∇ j1u∇ j2u))
∥∥2

L2(Rd )

for any c > 0. Finally, from the triangle inequality, (7), and the fact that D commutes with ∇ j , we have

‖(1+ D)∇ j u‖2L2(Rd ) ≤ C
(
‖∇

j Du‖2L2(Rd )+ Ek
)
.

Putting this all together and choosing c small enough, we conclude that

∂t Ek ≤ C Ek +C
∑

1≤ j1≤ j2≤k
j1+ j2≤k+1

∥∥(1+ D)−1(O(∇ j1u∇ j2u))
∥∥2

L2(Rd )
. (8)

To estimate this expression, we introduce a parameter N > 1 (depending on t) to be optimised later, and
write

(1+ D)−1
= (1+ D)−1 P≤N + (1+ D)−1 P>N ,
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where P≤N and P>N are the Fourier projections to the regions {ξ : |ξ | ≤ N } and {ξ : |ξ |> N }.
We first deal with the low-frequency contribution to (8). From Plancherel’s theorem and (2) we obtain∥∥(1+ D)−1 P≤N (O(∇

j1u∇ j2u))
∥∥

L2(Rd )
≤ Cg(N )

∥∥〈∇〉−(d+2)/4O(∇ j1u∇ j2u)
∥∥

L2(Rd )
,

where 〈∇〉−(d+2)/4 is the Fourier multiplier with symbol 〈ξ〉−(d+2)/4, where 〈ξ〉 := (1+|ξ |2)1/2. Applying
Sobolev embedding, we can bound the right-hand side by

≤ Cg(N )
∥∥|∇ j1u| |∇ j2u|

∥∥
L4d/(3d+2)(Rd )

.

By Hölder’s inequality and the Gagliardo–Nirenberg inequality, we can bound this by

≤ Cg(N )‖∇u‖L4d/(d+2)(Rd )‖∇
j1+ j2−1u‖L2(Rd ),

which by (7) is bounded by
≤ Cg(N )‖∇u‖L4d/(d+2)(Rd )E

1/2
k .

Next, we partition

‖∇u‖L4d/(d+2)(Rd ) ≤ ‖∇P≤N u‖L4d/(d+2)(Rd )+‖∇P>N u‖L4d/(d+2)(Rd ).

From Sobolev embedding and Plancherel, together with (2) and (5), we have

‖∇P≤N u‖L4d/(d+2)(Rd ) ≤ C‖〈∇〉(d+2)/4 P≤N u‖L2(Rd ) ≤ Cg(N )(1+ a(t))1/2.

Meanwhile, from Sobolev embedding we have

‖∇P>N u‖L4d/(d+2)(Rd ) ≤
1
N

E1/2
k ,

(say) if k is large enough. Putting this all together, we see that the low-frequency contribution to (8) is

≤ Cg(N )2 Ek

[
g(N )2(1+ a(t))+

1
N 2 Ek

]
.

Next, we turn to the high-frequency contribution to (8). From Plancherel, Hölder’s inequality, and (7)
we have ∥∥(1+ D)−1 P≥N (O(∇

j1u∇ j2u))
∥∥

L2(Rd )
≤ Cg(N )N−(d+2)/4∥∥|∇ j1u| |∇ j2u|

∥∥
L2(Rd )

≤ Cg(N )N−(d+2)/4
‖∇

j1u‖L∞(Rd )E
1/2
k ,

while from Sobolev embedding and (7) we see (for k large enough) that

‖∇
j1u‖L∞(Rd ) ≤ C E1/2

k .

Thus the high-frequency contribution to (8) is at most Cg(N )2 N−(d+2)/2 E2
k .

Putting this all together, we conclude that

∂t Ek ≤ Cg(N )2 Ek

[
g(N )2(1+ a(t))+

1
N

Ek

]
.

We now optimize in N , setting N := 1+ Ek , to obtain

∂t Ek ≤ Cg(1+ Ek)
4 Ek(1+ a(t)).
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From (6), (3) and separation of variables we see that the ODE

∂t E = Cg(1+ E)4 E(1+ a(t))

with initial data E(0) ≥ 0 does not blow up in time. Also, from (7) we have Ek(0) ≤ C . A standard
ODE comparison (or continuity) argument then shows that Ek(t)≤C(T ) for all 0≤ t ≤ T , and the claim
follows.

Remark 2.1. It should be clear to the experts that the domain Rd here could be replaced by any other
sufficiently smooth domain, for example, the torus Rd/Zd , using standard substitutes for the Littlewood–
Paley type operators P≤N , P>N (one could use spectral projections of the Laplacian). We omit the details.
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László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu
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