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THE 2+1-DIMENSIONAL MONOPOLE EQUATION

MAGDALENA CZUBAK

The space-time monopole equation on R2+1 can be derived by a dimensional reduction of the antiselfdual
Yang–Mills equations on R2+2. It can be also viewed as the hyperbolic analog of Bogomolny equations.
We uncover null forms in the nonlinearities and employ optimal bilinear estimates in the framework of
wave–Sobolev spaces. As a result, we show the equation is locally wellposed in the Coulomb gauge for
initial data sufficiently small in H s for s > 1

4 .

1. Introduction

In this paper we study local wellposedness of the Cauchy problem for the monopole equation on R2+1

Minkowski space in the Coulomb gauge. The space-time monopole equation can be derived by a dimen-
sional reduction from the antiselfdual Yang–Mills equations on R2+2, and is given by

FA = ∗DAφ, (ME)

where FA is the curvature of a one-form connection A on R2+1, DAφ is a covariant derivative of the
Higgs field φ, and ∗ is the Hodge star operator with respect to the Minkowski R2+1 metric. (ME) is
a hyperbolic analog of Bogomolny equations, and was first introduced by Ward [1989] and discussed
from the point of view of twistors. Ward [1999] also studied its soliton solutions. Recently, Dai, Terng
and Uhlenbeck [2006] gave a broad survey on the space-time monopole equation. In particular, using
the inverse scattering transform they have shown global existence and uniqueness up to a gauge trans-
formation for small initial data in W 2,1. However, L2 based wellposedness theory for this equation has
not been investigated. The objective of this paper is to fill this gap by specifically treating the Cauchy
problem for rough initial data in H s .

Written in coordinates, (ME) is a system of first order hyperbolic partial differential equations. The
unknowns are a pair (A, φ). If (A, φ) solve the equation, then so do

λA(λt, λx) and λφ(λt, λx), for any λ > 0.

This results in the critical exponent sc=0. Since in general one expects local wellposedness for s> sc the
goal would be to show (ME) is wellposed for s> 0. Nevertheless, the two dimensions create an obstacle,
which so far only allows s > 1

4 . We explain this now. In Section 4 we choose a Coulomb gauge, and
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reformulate (ME) as a system of semilinear wave equations coupled with an elliptic equation, to which
we refer as auxiliary monopole equations (aME). Schematically it looks as follows:

�u =B+(∂u, ∂v, A0),

�v =B−(∂u, ∂v, A0),

4A0 = C(∂u, ∂v, A0),

(aME)

where B±,C are bilinear forms,1 A0 is the temporal part of the connection A, ∂u, ∂v denote space-time
derivatives of u and v respectively, and are given in terms of φ and the spatial part of A. As a result,
showing wellposedness of (ME) for s > 0 can follow from showing (aME) is wellposed for s > 1 (see
Theorem 4.1). Also, the most difficult nonlinearity that we have to handle is contained in B±(∂u, ∂v, A0).
Luckily, it exhibits a structure of a null form. There are two standard null forms:

Q0(u, v)=−∂t u∂tv+∇u · ∇v, Qαβ(u, v)= ∂αu∂βv− ∂βu∂αv.

The null condition was introduced by Klainerman [1984], and it was first applied to produce better local
wellposedness results for wave equations with a null form by Klainerman and Machedon [1993]. Indeed,
in low dimensions, for these kind of nonlinearities one can assume much less regularity of the initial data
than for the general products. Counterexamples for general products were shown by Lindblad [1996].
We uncover the null form Qαβ in our system of wave equations as well as a new type of a null form
which is related to Qαβ . Unfortunately, the results in two spatial dimensions for Qαβ are not as optimal
as they are in higher dimensions or as they are for Q0. In fact, the best result in literature so far for Qαβ in
two dimensions is due to Zhou [1997]. He establishes local wellposedness for initial data in H s

×H s−1

for s > 5
4 . In addition, by examining the first iterate Zhou shows that this is as close as one can get

to the critical level using iteration methods.2 On the other hand, for dimensions n ≥ 3 Klainerman and
Machedon [1996] showed almost optimal local wellposedness in H s

× H s−1 for s > n/2. The articles
[Klainerman and Machedon 1995; Klainerman and Selberg 2002] give equally satisfying results for Q0,
and in all dimensions n ≥ 2.

Now, one of the nonlinearities in the system (aME) is Qαβ , so showing (aME) is locally wellposed
for s > 5

4 would be sharp by iteration methods. This is what we do, and as a result we obtain local
wellposedness of (ME) in the Coulomb gauge for s > 1

4 (see the Main Theorem below). However,
(aME) is not exactly (ME), so we hope to treat (ME) directly in the near future and improve the results.
What should be mentioned here is that we have considered other traditional gauges such as Lorentz and
Temporal, but they have not been as nearly useful as the Coulomb gauge. Perhaps other, less traditional
gauges could be used. Moreover, we note that even the estimates involving the temporal variable A0

seem to require s > 1
4 .

We include a brief discussion about global wellposedness. As already mentioned, in [Dai et al. 2006]
the inverse scattering transform is used to show global existence and uniqueness up to a gauge transfor-
mation for small data in W 2,1. To extend it to global wellposedness in L2 based theory, we would like
to benefit from the local result in this article. It is not immediately clear how this can be accomplished

1See Section 4 for the precise formula for B± and C.
2The discussion of the first iterate can be also found in the appendix of [Klainerman and Selberg 2002], and it can be deduced

from the estimates and counterexamples found within [Foschi and Klainerman 2000].
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since, for example, the energy functional is not positive definite and, in fact, it vanishes for the solutions
of (ME) [Ward 1989]. Global wellposedness is an interesting question, and we would like to investigate
it in the future.

The main result of this paper is contained in the following theorem.

Main Theorem. Let 1
4 < s < 1

2 and r ∈ (0, 2s] and consider the space-time monopole equation

FA = ∗DAφ, (ME)

with initial data
(A1, A2, φ)|t=0 = (a1, a2, φ0),

then (ME) in the Coulomb gauge is locally wellposed for initial data sufficiently small in H s(R2) in the
following sense.

• Local existence: For all a1, a2, φ0 ∈ H s(R2) sufficiently small there exist T > 0 depending contin-
uously on the norm of the initial data, and functions

A0 ∈ Cb([0, T ], Ḣ r ), A1, A2, φ ∈ Cb([0, T ], H s),

which solve (ME) in the Coulomb gauge on [0, T ] ×R2 in the sense of distributions and such that
the initial conditions are satisfied.

• Uniqueness: If T > 0 and (A, φ) and (A′, φ′) are two solutions of (ME) in the Coulomb gauge on
(0, T )×R2 belonging to

Cb([0, T ], Ḣ r )× (H s,θ
T )3

with the same initial data, then (A, φ)= (A′, φ′) on (0, T )×R2.

• Continuous dependence on the initial data: For any a1, a2, φ0 ∈ H s(R2) there is a neighborhood
U of a1, a2, φ0 in (H s(R2))3 such that the solution map (a, φ0)→ (A, φ) is continuous from U into
Cb([0, T ], Ḣ r )× (Cb([0, T ], H s))3.

Remark 1.1. The spaces H s,θ
T are defined in Section 2B.

Remark 1.2. The initial data does not have to be given in the Coulomb gauge. See Theorem 3.3.

Remark 1.3. There are two reasons for the requirement of the small initial data. First, the construction
of the global Coulomb gauge requires an assumption on the size of the data (see Section 3B). The second
obstacle comes from the elliptic equation for A0 in (aME), and including A0 in the Picard iteration. See
Remark 4.2 for further discussion.

Remark 1.4. We do not prescribe initial data for A0, because when A is in the Coulomb gauge, A0(t)
can be determined at any time by solving the elliptic equation. See Section 4 for more details.

Remark 1.5. To simplify the exposition, in this paper we assume 1
4 < s < 1

2 . See [Czubak 2008] for all
s > 1

4 . In general, the higher the value of s, the less delicate the estimates have to be. We have a uniform
way to handle all s > 1

4 for the estimates involving the null forms (see Section 5B1 for a discussion).
Therefore the reason for restricting the range of s is rather due to the technicalities of the estimates for
A0 (Theorems 5.3 and 5.5 and Corollaries 5.4 and 5.6) and the regularity of the gauge transformations
(Lemma 3.1). The technicalities are not very interesting and are handled in [Czubak 2008] with similar
arguments as those presented here.
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The outline of the paper is as follows. Section 2 sets notation, introduces spaces, and estimates used
throughout the paper. In Section 3 we take a closer look at the equations and discuss gauge transforma-
tions. In Section 4 we rewrite (ME) as a system of wave equations coupled with an elliptic equation. We
also show local wellposedness of the new system implies local wellposedness of (ME) in the Coulomb
gauge. Section 5 is devoted to the proof of the Main Theorem, which is reduced to establishing estimates
(5-4)–(5-8).

2. Preliminaries

First we establish notation, then we introduce function spaces as well as estimates used.

2A. Notation. The expression a . b means a ≤ Cb for some positive constant C . A point in the 2+1-
dimensional Minkowski space is written as (t, x) = (xα)0≤α≤2. Greek indices range from 0 to 2, and
Roman indices range from 1 to 2. We raise and lower indices with the Minkowski metric diag(−1, 1, 1).
We write ∂α = ∂xα and ∂t = ∂0, and we also use the Einstein notation. Therefore, ∂ i∂i =4, and ∂α∂α =
−∂2

t +4 = �. When we refer to spatial and time derivatives of a function f , we write ∂ f , and when
we consider only spatial derivatives of f , we write ∇ f . Finally, d denotes the exterior differentiation
operator and d∗ its dual given by d∗= (−1)k ∗∗∗d∗, where ∗ is the Hodge ∗ operator (see, for example,
[Roe 1998]) and k comes from d∗ acting on some given k-form. It will be clear from the context, when
∗ and d∗ operators act with respect to the Minkowski metric and when with respect to the Euclidean
metric. For the convenience of the reader we include the following: with respect to the Euclidean metric
on R2 we have

∗dx = dy, ∗dy =−dx, ∗1= dx ∧ dy,

and with respect to the diag(−1, 1, 1) metric on R2+1,

∗dt = dx ∧ dy, ∗dx = dt ∧ dy, ∗dy =−dt ∧ dx .

2B. Function spaces. We use Picard iteration. Here we introduce the spaces, in which we are going to
perform the iteration3. First we define the following Fourier multiplier operators

3̂α f (ξ)= (1+ |ξ |2)α/2 f̂ (ξ), 3̂α+u(τ, ξ)= (1+ τ 2
+ |ξ |2)α/2û(τ, ξ),

3̂α−u(τ, ξ)=
(

1+
(τ 2
− |ξ |2)2

1+ τ 2+ |ξ |2

)α/2
û(τ, ξ),

where the symbol of 3α
−

is comparable to (1+
∣∣|τ |− |ξ |∣∣)α. The corresponding homogeneous operators

are denoted by Dα, Dα
+
, Dα
−

, respectively.
Now, the spaces of interest are the wave-Sobolev spaces, H s,θ and Hs,θ , given by4

‖u‖H s,θ = ‖3s3θ
−

u‖L2(R2+1), ‖u‖Hs,θ = ‖u‖H s,θ +‖∂t u‖H s−1,θ .

3We are also going to employ a combination of the standard L p
t W s,q

x spaces for A0. See Section 5C.
4These spaces, together with results in [Selberg 2002b], allowed Klainerman and Selberg to present a unified approach to

local wellposedness for wave maps, Yang–Mills and Maxwell–Klein–Gordon types of equations in [Klainerman and Selberg
2002], and are now the natural choice for low regularity subcritical local wellposedness for wave equations. See also [Tao
2006].
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An equivalent norm for Hs,θ is ‖u‖Hs,θ =‖3s−13+3
θ
−

u‖L2(R2+1). By results in [Selberg 1999] if θ >1/2,
we have

H s,θ ↪→ Cb(R, H s), (2-1)

Hs,θ ↪→ Cb(R, H s)∩C1
b(R, H s−1). (2-2)

This is a crucial fact needed to localize our solutions in time. We denote the restrictions to the time
interval [0, T ] by

H s,θ
T and Hs,θ

T ,

respectively.

2C. Estimates used. Throughout the paper we use the following estimates:

‖D−σ (uv)‖L p
t Lq

x
. ‖u‖H s,θ‖v‖H s,θ (2-3)

is a theorem established by Klainerman and Tataru [1999] for the space-time operator D+. The proof
for the spatial operator D is in [Selberg 1999]. There are several conditions that σ, p, q have to satisfy,
and they are listed in Section 5D, where we discuss the application of the estimate. Further,

‖u‖L p
t L2

x
. ‖u‖H0,θ ≤∞ if 2≤ p ≤∞, θ > 1

2 , (2-4)

‖u‖L p
t Lq

x
. ‖u‖H1−2/q−1/p,θ if 2≤ p ≤∞, 2≤ q <∞, 2/p ≤ 1

2 − 1/q, θ > 1
2 , (2-5)

‖uv‖L2
t,x
. ‖u‖Ha,α‖v‖Hb,β if a, b, α, β ≥ 0, a+ b > 1, α+β > 1

2 . (2-6)

Estimate (2-4) can be proved by interpolation between H 0,θ ↪→ L2
t,x and (2-1) with s = 0. Estimate (2-5)

is a two-dimensional case of Theorem D in [Klainerman and Selberg 2002]. Finally, (2-6) is a special
case of the proposition in [Klainerman and Selberg 2002, Appendix A.2].

3. A closer look at the monopole equations

3A. Derivation and background. Electric charge is quantized, which means that it appears in integer
multiples of an electron. This is called the principle of quantization and has been observed in nature.
The only theoretical proof so far was presented by Paul Dirac [1931]. In the proof Dirac introduced the
concept of a magnetic monopole, of an isolated point-source of a magnetic charge. Despite extensive
research, magnetic monopoles have not been (yet) found in nature. We refer to magnetic monopoles as
Euclidean monopoles. The Euclidean monopole equation has exactly the same form as our space-time
monopole equation (ME),

FA = ∗DAφ,

with the exception that ∗ acts here with respect to the Euclidean metric and the base manifold is R3

instead of R2+1. The Euclidean monopole equations are also referred to as Bogomolny equations. For
more on Euclidean monopoles we refer the reader to [Jaffe and Taubes 1980] and [Atiyah and Hitchin
1988]. In this paper we study the space-time monopole equation, which was first introduced by Ward
[1989]. Both the Euclidean and the space-time monopole equations are examples of integrable systems
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and have an equivalent formulation as a Lax pair. This and much more can be found in [Dai et al. 2006].
Given a space-time monopole equation

FA = ∗DAφ, (ME)

the unknowns are a pair (A, φ). A is a connection 1-form given by

A = A0dt + A1dx + A2dy, where Aα : R2+1
→ g. (3-1)

Here g is the Lie algebra of a Lie group G, which is typically taken to be a matrix group SU (n) or U (n).
In this paper we consider G = SU (n), but everything we say here should generalize to any compact Lie
group.

To be more general we could say A is a connection on a principal G-bundle. Then observe that the
G-bundle we deal here with is a trivial bundle R2+1

×G.
Next, φ is a section of a vector bundle associated to the G-bundle by a representation. We use the

adjoint representation. Since we have a trivial bundle, we can just think of the Higgs field φ as a map
from R2,1

→ g.
FA is the curvature of A. It is a Lie algebra valued 2-form on R2+1

FA =
1
2 Fαβdxα ∧ dxβ, where Fαβ = ∂αAβ − ∂β Aα + [Aα, Aβ], (3-2)

where [ · , · ] denotes the Lie bracket, which for matrices can be thought of simply as [X, Y ] = XY−Y X .
When we write [φ, B], where B is a 1-form, we mean

[φ, B] = [φ, Bi ]dx i and [B,C] = 1
2 [Bi ,C j ]dx i

∧ dx j , for two 1-forms B,C . (3-3)

In the physics language, frequently adopted by the mathematicians, A is called a gauge potential, φ a
scalar field and FA is called an electromagnetic field.

Next, DA is the covariant exterior derivative associated to A, and DAφ is given by

DAφ = Dαφdxα, where Dαφ = ∂αφ+ [Aα, φ]. (3-4)

The space-time monopole equation (ME) is obtained by a dimensional reduction of the antiselfdual
Yang–Mills equations on R2+2, given by

FA =−∗FA. (ASDYM)

If the curvature of a connection A satisfies (ASDYM), then A is called an antiselfdual connection. (The
corresponding selfdual Yang-Mills equation is

FA = ∗FA; (SDYM)

in either case FA satisfies the Yang–Mills equation DA∗F = 0, since FA =±∗FA implies

DA∗F =±DA F = 0,

as can be seen from the second Bianchi identity, or by direct computation from (3-2).)
Both (ASDYM) and (SDYM) are known to give rise to many different integrable equations (see [Ward

1985; Ablowitz et al. 2003] and references therein). In particular, the 2+2 signature is used to derive
both KDV and NLS in [Mason and Sparling 1989], and harmonic maps from R2 and R1+1 into a Lie
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group in [Uhlenbeck 1992]. Also see [Ward 1989], where Einstein’s vacuum equation for cylindrically
symmetric space-times, and the sine-Gordon equation are derived from (ME).

We now present the details of the derivation of (ME) from (ASDYM) outlined in [Dai et al. 2006].
Let

dx2
1 + dx2

2 − dx2
3 − dx2

4

be a metric on R2+2, then in coordinates (ASDYM) is

F12 =−F34, F13 =−F24, F23 = F14. (3-5)

The next step is the dimensional reduction, where we assume the connection A is independent of x3, and
we let A3 = φ. Then (3-5) becomes

D0φ = F12, D1φ = F02, D2φ = F10, (3-6)

where we use index 0 instead of 4. This is exactly (ME) written out in components.

Remark 3.1. Equivalently we could write (ME) as

Fαβ =−εαβγ Dγφ, (3-7)

where εαβγ is a completely antisymmetric tensor with ε012= 1, and where we raise the index γ using the
Minkowski metric. We choose to work with the Hodge operator ∗ as it simplifies our task in Section 4.

Following [Dai et al. 2006], there is another way to write (ME), which is very useful for computations.
(ME) is an equation involving 2-forms on both sides. By taking the parts corresponding to dt ∧ dx and
dt ∧ dy on the one hand, and the parts corresponding to dx ∧ dy on the other, we obtain, respectively,

∂t A+ [A0, A] − d A0 = ∗dφ+ [∗A, φ], (3-8)

d A+ [A, A] = ∗(∂tφ+ [A0, φ]). (3-9)

Observe that now operators d and ∗ act only with respect to the spatial variables. Similarly, A now
denotes only the spatial part of the connection, i.e., A = (A1, A2). Moreover, (3-8) is an equation
involving 1-forms, and (3-9) involves 2-forms.

3B. Gauge transformations. (ME) is invariant under gauge transformations. Indeed, if we have a
smooth map g, with compact support such that g : R2+1

→ G, and

A→ Ag = g Ag−1
+ gdg−1, φ→ φg = gφg−1, (3-10)

then a computation shows FA → gFAg−1 and DAφ → gDAφg−1. Therefore if a pair (A, φ) solves
(ME), so does (Ag, φg).

We would like to discuss the regularity of the gauge transformations. If A ∈ X, φ ∈ Y where X, Y are
some Banach spaces, the smoothness and compact support assumption on g can be lowered just enough
so the gauge transformation defined above is a continuous map from X back into X , and from Y back
into Y . First note that since we are mapping into a compact Lie group, we can assume g ∈ L∞t,x and
‖g‖L∞t,x =‖g

−1
‖L∞t,x . Next, note that the Main Theorem produces a solution so that φ and the spatial parts

of the connection A1, A2 ∈ Cb(I, H s), 1
4 < s < 1

2 , and A0 ∈ Cb(I, Ḣ r ), r ∈ (0, 2s].
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Lemma 3.1. Let 0 < α < 1, and Y = Cb(I, Ḣ 1
∩ Ḣα+1) ∩ L∞, then the gauge action is a continuous

map from
Cb(I, Hα)× Y → Cb(I, Hα), (h, g) 7→ ghg−1

+ gdg−1, (3-11)

and the following estimate holds:

‖hg‖Cb(I,Hα) . (‖h‖Cb(I,Hα)+ 1)‖g‖2Y . (3-12)

Proof. The continuity of the map easily follows from the inequalities we obtain below. Next, for fixed t
we have

‖g(t)h(t)g−1(t)+ g(t)dg−1(t)‖Hα . ‖ghg−1
‖L2 +‖Dα(ghg−1)‖L2 +‖gdg−1

‖Hα ,

where for the ease of notation we eliminated writing of the variable t on the right side of the inequality.
The first term is bounded by ‖h(t)‖Hα‖g‖2L∞ . For the second one we have

‖Dα(ghg−1)‖L2 . ‖Dαgh‖L2‖g‖L∞ +‖h Dαg−1
‖L2‖g‖L∞ +‖h‖Ḣα‖g‖2L∞ .

It is enough to only look at the first term since g and g−1 have the same regularity. By Hölder’s inequality
and Sobolev embedding

‖Dαgh‖L2 ≤ ‖Dαg‖L2/α‖h‖L(1/2−α/2)−1 . ‖g‖Ḣ1‖h‖Ḣα , (3-13)

where we use that α
2
=

1
2
−

1−α
2

. Finally for the last term we have

‖gdg−1
‖Hα . ‖g‖Ḣ1‖g‖L∞ +‖Dαgdg−1

‖L2 +‖g‖Ḣα+1‖g‖L∞, (3-14)

and we are done if we observe that the second term can be handled exactly as in (3-13). �

Remark 3.2. We assume 0< α < 1 since this is the case we need. However it is not difficult to see the
lemma still holds with α = 0 or α ≥ 1 [Czubak 2008].

From the lemma, we trivially obtain the following corollary.

Corollary 3.2. Let 0< r , s < 1,

X = Cb(I, Ḣ r )×Cb(I, H s)×Cb(I, H s), and Y = Cb(I, Ḣ 1
∩ Ḣ s+1

∩ Ḣ r+1)∩ L∞.

Then the gauge action is a continuous map from

X × Y → X, (A0, A1, A2) 7→ Ag, (3-15)

as well as from
Cb(I, H s)× Y → Cb(I, H s), φ 7→ φg = gφg−1, (3-16)

and the following estimates hold:

‖Ag‖X . (1+‖A‖X )‖g‖2Y ,

‖φg‖Cb(I,H s) . ‖φ‖Cb(I,H s)‖g‖2Y .
(3-17)
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Since in this paper we work in the Coulomb gauge, we ask: given any initial data a1, a2, φ0 ∈ H s(R2),
can we find a gauge transformation so that the initial data is placed in the Coulomb gauge? Dell’Antonio
and Zwanziger [1991] produce a global Ḣ 1 Coulomb gauge using variational methods. Here, we also
require g ∈ Ḣ s+1, and two dimensions are tricky. Fortunately, if the initial data is small, we can obtain a
global gauge with the additional regularity as needed. This has been studied by the author and Uhlenbeck
for two dimensions and higher; the result in two dimensions is the following:

Theorem 3.3 [Czubak and Uhlenbeck ≥ 2010]. Let s > 0. Given A(0)= a sufficiently small in

H s(R2)× H s(R2),

there exists a gauge transformation g ∈ Ḣ s+1(R2)∩ Ḣ 1(R2)∩ L∞ such that ∂ i (gai g−1
+ g∂i g−1)= 0.

4. The monopole equation in the Coulomb gauge as a system of wave and elliptic equations

We begin by rewriting the monopole equation in the Coulomb gauge as a system of wave equations
coupled with an elliptic equation. We refer to the new system as the auxiliary monopole equations (aME).
Then we establish that local wellposedness (LWP) for (ME) in the Coulomb gauge can be obtained from
LWP of (aME).

4A. Derivation of (aME) from (ME). Suppose we have initial data

Ai |t=0 = ai for i = 1, 2 and φ|t=0 = φ0, (4-1)

where ∂ i ai = 0. Recall equations (3-8) and (3-9):

∂t A+ [A0, A] − d A0 = ∗dφ+ [∗A, φ], (4-2)

d A+ [A, A] = ∗(∂tφ+ [A0, φ]), (4-3)

where d and ∗ act only with respect to the spatial variables, and A denotes only the spatial part of the
connection. If we impose the Coulomb gauge condition, then

d∗A = 0. (4-4)

By equivalence of closed and exact forms on Rn , we can further suppose that

A = ∗d f, (4-5)

for some f : R2+1
→ g. Observe that

d ∗ d f =4 f dx ∧ dy, [∗d f, ∗d f ] = [d f, d f ] = 1/2[∂i f, ∂ j f ]dx i
∧ dx j , (4-6)

and ∗ ∗ω =−ω for a one-form on R2. Hence (4-2) and (4-3) become

∂t ∗ d f + [A0, ∗d f ] − d A0 = ∗dφ− [d f, φ], (4-7)

4 f + [∂1 f, ∂2 f ] = ∂tφ+ [A0, φ]. (4-8)

Take d∗ of (4-7) to obtain
4A0 =−d∗[A0, ∗d f ] − d∗[d f, φ].
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This is the elliptic equation in (aME). To uncover the wave equations we proceed as follows. Take d of
(4-7)

∂t4 f + ∂ j
[A0, ∂ j f ] = 4φ+ ∂2[∂1 f, φ] − ∂1[∂2 f, φ]. (4-9)

Consider (4-9) and (4-8) on the spatial Fourier transform side:

−∂t |ξ |
2 f̂ + |ξ |2φ̂ = i(ξ2 ̂[∂1 f, φ] − ξ1 ̂[∂2 f, φ] − ξ j ̂[A0, ∂ j f ]), (4-10)

−|ξ |2 f̂ − ∂t φ̂ =− ̂[∂1 f, ∂2 f ] + ̂[A0, φ]. (4-11)

This allows us to write (4-10) and (4-11) as a system for φ and d f :

(∂t − i |ξ |)(φ̂+ i |ξ | f̂ )=−B̂+(φ, d f, A0), (4-12)

(∂t + i |ξ |)(φ̂− i |ξ | f̂ )=−B̂−(φ, d f, A0), (4-13)

where

B̂± =− ̂[∂1 f, ∂2 f ] + ̂[A0, φ] ±

(
ξ1

|ξ |
̂[∂2 f, φ] −

ξ2

|ξ |
̂[∂1 f, φ] +

ξ j

|ξ |
̂[A0, ∂ j f ]

)
. (4-14)

Indeed, multiply (4-10) by i/|ξ |, and first add the resulting equation to (4-11) to obtain (4-12), and then
subtract it from (4-11) to obtain (4-13). Now we let

φ̂+ i |ξ | f̂ = (∂t + i |ξ |)û and φ̂− i |ξ | f̂ = (∂t − i |ξ |)v̂, (4-15)

where u, v : R2+1
→ g. This gives

�u =B+(φ, d f, A0), �v =B−(φ, d f, A0).

See Remark 4.1 below.
Now we discuss initial data. From (4-15), we have

∂t û(0)= φ̂0+ i |ξ | f̂ (0)− i |ξ |û(0), (4-16)

∂t v̂(0)= φ̂0− i |ξ | f̂ (0)+ i |ξ |v̂(0). (4-17)

We are free to choose any data for u and v, as long as in the end we can recover the original data for φ
and A. Hence we just let u(0)= v(0)= 0. We still need to say what |ξ | f̂ (0) is in terms of the initial data
(a, φ0). Let ĥ = |ξ | f̂ (0). By (4-1) and (4-5) we ahve a1 = A1(0)=−∂2 f (0) and a2 = A2(0)= ∂1 f (0).
Therefore

R1h = a2, R2h =−a1,

where R j denotes the Riesz transform, (−4)−1/2∂ j . Differentiate the first equation with respect to x ,
the second with respect to y, and add them together to obtain

4D−1h = ∂1a2− ∂2a1.

So
h = R2a1− R1a2, (4-18)

It follows that the initial data for u and v are

u(0)= v(0)= 0, ∂t u(0)= φ0+ ih, ∂tv(0)= φ0− ih, (4-19)
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with h defined by (4-18).
In summary, the monopole equation in the Coulomb gauge

FA = ∗DAφ, d∗A = 0,

with initial data (4-1) can be rewritten as the system

�u =B+(φ,∇ f, A0),

�v =B−(φ,∇ f, A0),

4A0 = C(φ,∇ f, A0),

(aME)

where
C=−∂1[A0, ∂2 f ] + ∂2[A0, ∂1 f ] + ∂ j [∂ j f, φ], (4-20)

B± =−B1∓ iB2+B3∓ iB4, (4-21)

and

B1 = [∂1 f, ∂2 f ], B2 = R1[∂2 f, φ] − R2[∂1 f, φ], B3 = [A0, φ], B4 = R j [A0, ∂ j f ]. (4-22)

The initial data for (aME) is given by (4-19).

Remark 4.1. u and v are our new unknowns, but we are really interested in φ and d f . Therefore, we
observe that once we know what u and v are, we can determine φ and d f by using

φ̂ =
(∂t + i |ξ |)û+ (∂t − i |ξ |)v̂

2
, i |ξ | f̂ =

(∂t + i |ξ |)û− (∂t − i |ξ |)v̂
2

, (4-23)

or equivalently

φ =
(∂t + i D)u+ (∂t − i D)v

2
, ∂ j f =−i R j

((∂t + i D)u− (∂t − i D)v
2

)
. (4-24)

From d f we get A by letting A=∗d f . Finally, for simplicity we usually keep the nonlinearities in terms
of φ and d f . However, since φ and d f can be written in terms of derivatives of u and v we sometimes
write B±(φ, d f, A0) as B±(∂u, ∂v, A0).

Remark 4.2. (aME) has some resemblance to a system considered by Selberg [2002a] for the Maxwell–
Klein–Gordon (MKG) equations, where he successfully obtains almost optimal local wellposedness in
dimensions 1+ 4. Besides the dimension considered, there are two fundamental technical differences
applicable to our problem. First comes from the fact that the monopole equation we consider here is
an example of a system in the nonabelian gauge theory whereas MKG is an example of a system in
the abelian gauge theory. The existence of a global Coulomb gauge requires smallness of initial data in
the nonabelian gauge theories, but is not needed in the abelian theories. Another technical difference
arises from Selberg being able to solve the elliptic equation for his temporal variable A0 using the Riesz
representation theorem, where he does not require smallness of the initial data. The elliptic equation in
(aME) is more difficult, so we include A0 in the Picard iteration. As a result we are not able to allow
large data by taking a small time interval, which we could do if we only had the two wave equations.
Finally, we point out that the proof of our estimates involving A0 is modeled after Selberg’s proof in
[Selberg 2002a] (see Remark 5.1 and Section 5C).
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4B. Return to the monopole equation. Now we have a theorem, where we show how LWP for (aME)
implies LWP for (ME) in the Coulomb gauge. For completeness, we first state exactly what we mean by
LWP of (aME).

Let r ∈ (0,min(2s, 1+ s)], s > 0. Consider the system (aME) with initial data

(u, ut)|t=0 = (u0, u1) and (v, vt)|t=0 = (v0, v1)

in H s+1
× H s , then (aME) is LWP if the following conditions are satisfied:

Local existence. There exist T > 0 depending continuously on the norm of the initial data, and functions

A0 ∈ Cb([0, T ], Ḣ r ), u, v ∈Hs+1,θ
T ↪→ Cb([0, T ], H s+1)∩C1

b([0, T ], H s),

which solve (aME) on [0, T ] ×R2 in the sense of distributions and such that the initial conditions are
satisfied.

Uniqueness. If T >0 and (A0, u, v) and (A′0, u′, v′) are two solutions of (aME) on (0, T )×R2 belonging
to

Cb([0, T ], Ḣ r )×Hs+1,θ
T ×Hs+1,θ

T ,

with the same initial data, then (A0, u, v)= (A′0, u′, v′) on (0, T )×R2.

Continuous dependence on initial data. For any (u0, u1), (v0, v1) ∈ H s+1
×H s there is a neighborhood

U of the initial data such that the solution map (u0, u1), (v0, v1)→ (A0, u, v) is continuous from U into
Cb([0, T ], Ḣ r )×

(
Cb([0, T ], H s+1)∩C1

b([0, T ], H s)
)2.

In fact, by the results in [Selberg 2002b] combined with estimates for the elliptic equation, we can
show the stronger estimates

‖u− u′‖Hs+1,θ
T
+‖v− v′‖Hs+1,θ

T
+‖A0− A′0‖Cb([0,T ],Ḣ r )

. ‖u0− u′0‖H s+1 +‖u1− u′1‖H s +‖v0− v
′

0‖H s+1 +‖v1− v
′

1‖H s , (4-25)

where (u′0, u′1), (v
′

0, v
′

1) are sufficiently close to (u0, u1), (v0, v1).

Remark 4.3. Note that below we have no restriction on s, that is, if we could show (aME) is LWP in
H s+1

× H s , s > 0, we would get LWP of (ME) in the Coulomb gauge in H s for s > 0 as well.

Theorem 4.1. Consider (ME) in the Coulomb gauge with the following initial data in H s for s > 0:

Ai |t=0 = ai , i = 1, 2, φ|t=0 = φ0, with ∂ i ai = 0. (4-26)

Then local wellposedness of (aME) with initial data as in (4-19) implies local wellposedness of (ME) in
the Coulomb gauge with initial data given by (4-26).

Proof. First, in view of Section 4A it is clear that if u, v satisfy (aME) with initial data as in (4-19), then
solutions of (ME) in the Coulomb gauge satisfy the initial data as given in (4-26).

Local existence. From (4-24), if

u, v ∈Hs+1,θ
T , then φ, A = ∗d f ∈ H s,θ

T ,

as needed. We now verify that if (u, v, A0) solve (aME), then (φ, d f, A0) solve (ME) in the Coulomb
gauge. Since A= ∗d f , A is in the Coulomb gauge: d ∗A=−∗d∗(∗d f )= 0. Next note that (ME) in the
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Coulomb gauge is equivalent to (4-7) and (4-8). Suppose u, v, A0 solve (aME). It follows (d f, φ) solve
(4-12) and (4-13). Add (4-12) to (4-13) to recover (4-11), which is equivalent to (4-8).

Next given (aME) we need to show (4-7) holds. Write (4-7) in coordinates,

∂1 A0− ∂2φ+ ∂t∂2 f = [∂1 f, φ] − [A0, ∂2 f ], (4-27)

∂2 A0+ ∂1φ− ∂t∂1 f = [∂2 f, φ] + [A0, ∂1 f ]. (4-28)

From the elliptic equation in (aME) we have:

A0 =4
−1(−∂1[A0, ∂2 f ] + ∂2[A0, ∂1 f ] + ∂1[∂1 f, φ] + ∂2[∂2 f, φ]). (4-29)

Also subtract (4-12) from (4-13) and multiply by |ξ | on both sides to obtain (4-9), which implies

φ− ∂t f =4−1(∂ j [A0, ∂ j f ] − ∂2[∂1 f, φ] + ∂1[∂2 f, φ]). (4-30)

In order to recover (4-27), first use (4-29) to get

∂1 A0 =4
−1(−∂2

1 [A0, ∂2 f ] + ∂1∂2[A0, ∂1 f ] + ∂2
1 [∂1 f, φ] + ∂1∂2[∂2 f, φ]). (4-31)

Next use (4-30) to get

∂2(φ− ∂t f )=4−1(∂2∂1[A0, ∂1 f ] + ∂2
2 [A0, ∂2 f ] − ∂2

2 [∂1 f, φ] + ∂2∂1[∂2 f, φ]), (4-32)

and subtract this from (4-31) to get (4-27) as needed. We recover (4-28) in the exactly same way.

Continuous dependence on initial data. We would like to show that

‖A0− A′0‖Cb([0,T ],Ḣ r )+‖A1− A′1‖H s,θ
T
+‖A2− A′2‖H s,θ

T
+‖φ−φ′‖H s,θ

T

. ‖a1− a′1‖H s +‖a2− a′2‖H s +‖φ0−φ
′

0‖H s (4-33)

for any a′1, a′2, φ
′

0 sufficiently close to a1, a2, φ0. In view of LWP for (aME) with data given by

u(0)= v(0)= 0, ∂t u(0)= φ0+ ih, ∂tv(0)= φ0− ih, h = R2a1− R1a2,

and by (4-25) we have

‖u− u′‖Hs+1,θ
T
+‖v− v′‖Hs+1,θ

T
+‖A0− A′0‖Cb([0,T ],Ḣ r )

. ‖u′0‖H s+1 +‖φ0+ ih− u′1‖H s +‖v′0‖H s+1 +‖φ0− ih− v′1‖H s , (4-34)

for all u′0, v
′

0, u′1, v
′

1 satisfying

‖u′0‖H s+1 +‖φ0+ ih− u′1‖H s +‖v′0‖H s+1 +‖φ0− ih− v′1‖H s ≤ δ, for some δ > 0. (4-35)

In particular choose

u′0 = v
′

0 = 0, u′1 = φ
′

0+ ih′, v′1 = φ
′

0− ih′, h′ = R2a′1− R1a′2, (4-36)
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such that

‖φ0+ih−φ′0−ih′‖H s+‖φ0−ih−φ′0+ih′‖H s . ‖φ0−φ
′

0‖H s+‖R1(a2−a′2)‖H s+‖R2(a1−a′1)‖H s

≤ ‖φ0−φ
′

0‖H s+‖a1−a′1‖H s+‖a2−a′2‖H s

≤ δ.

(4-37)

Then, by (4-34)–(4-37), ‖A0− A′0‖Cb([0,T ],Ḣ r ) is bounded by the right side of (4-33). Next observe that

‖A1− A′1‖H s,θ
T
. ‖R2(∂t + i D)(u− u′)‖H s,θ

T
+‖R2(∂t − i D)(v− v′)‖H s,θ

T

≤ ‖u− u′‖Hs+1,θ
T
+‖v− v′‖Hs+1,θ

T
.

So again by (4-34)–(4-37) ‖A1− A′1‖H s,θ
T

is bounded by the right side of (4-33). We bound the difference
for A2 and φ in a similar fashion.

Uniqueness. By LWP of (aME), A0 is unique in the required class. We need to show A and φ are unique
in H s,θ

T . However, by (4-33) this is obvious. �

5. Proof of the Main Theorem

By Theorem 4.1 it is enough to show LWP for (aME). We start by explaining how we are going to
perform our iteration.

5A. Set up of the iteration. Equations (aME) are written for functions u and v. Nevertheless, functions
u and v are only our auxiliary functions, and we are really interested in solving for d f and φ. In addition,
the nonlinearities B± are a linear combination of terms Bi , i = 1, 2, 3, 4, given by (4-22), and the Bi are
written in terms of φ, d f and A0. Also, when we do our estimates, it is easier to keep the Bi in terms
of φ and d f with the exception of B2, which we rewrite in terms of ∂u and ∂v (see Section 5B2 for the
details). These comments motivate the following procedure for our iteration. Start with φ−1= d f−1= 0.
Then B± ≡ 0. Solve the homogeneous wave equations for u0, v0 with the initial data given by (4-19).
Then to solve for d f0, φ0, use (4-24). Then feed φ0 and d f0 into the elliptic equation,

4A0,0 =−d∗([A0,0, ∗d f0] + [d f0, φ0]), (5-1)

and solve for A0,0. Next we take d f0, φ0 and A0,0 plug them into B1,B3,B4, but rewrite B2 in terms
of ∂u0, ∂v0. We continue in this manner, so at the j th step of the iteration, j ≥ 1, we solve

�u j =−B1(∇ f j−1)− iB2(∂u j−1, ∂v j−1)+B3(A0, j−1, φ j−1)− iB4(A0, j−1,∇ f j−1),

�v j =−B1(∇ f j−1)+ iB2(∂u j−1, ∂v j−1)+B3(A0, j−1, φ j−1)+ iB4(A0, j−1,∇ f j−1),

4A0, j =−d∗([A0, j , ∗d f j ] + [d f j , φ j ]).

5B. Estimates needed. The elliptic equation is discussed in Section 5C. Therefore we begin by dis-
cussing the inversion of the wave operator in Hs+1,θ spaces. The main idea is that for the purposes of
local in time estimates �−1 can be replaced with 3−1

+ 3
−1
− . The first estimates, leading to wellposedness

for small initial data, were proved by Klainerman and Machedon [1995]. The small data assumption was
removed by Selberg [2002b], who showed that by introducing ε small enough in the invertible version
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of the wave operator, that is, 3−1
+ 3

−1+ε
− , we can use initial data as large as we wish.5 Selberg [2002b]

also gave a very useful, general framework for local wellposedness of wave equations, which reduces
the proof of the Main Theorem to establishing the estimates below, for the nonlinearities B±, and to
combining them with appropriate elliptic estimates from Section 5C. The needed estimates for B± are

‖3−1
+
3−1+ε
−

B±(∂u, ∂v, A0)‖Hs+1,θ . ‖u‖Hs+1,θ +‖v‖Hs+1,θ , (5-2)

‖3−1
+
3−1+ε
−

(
B±(∂u, ∂v, A0)−B±(∂u′, ∂v′, A′0)

)
‖Hs+1,θ . ‖u− u′‖Hs+1,θ +‖v− v′‖Hs+1,θ , (5-3)

where the suppressed constants depend continuously on the Hs+1,θ norms of u, u′, v, v′. Since B± are
bilinear, (5-3) can follow from (5-2). In this paper small initial data is necessary (see Theorem 3.3 and
Section 5C), so we do not need ε, but we keep it to make the estimates general. Let 1

4 < s < 1
2 and set

θ, ε as follows:

3
4
−
ε
2
< θ ≤ s+ 1

2
− ε, and θ < 1− ε, 0≤ ε <min

(
2s− 1

2
,

1
2

)
.

Next observe 3+31−ε
− Hs+1,θ

= H s,θ−1+ε, as well as that

‖∇ f ‖H s,θ , ‖φ‖H s,θ . ‖u‖Hs+1,θ +‖v‖Hs+1,θ .

Therefore, using (4-21) and (4-22), it is enough to prove the following:

‖B1‖H s,θ−1+ε = ‖[∂1 f, ∂2 f ]‖H s,θ−1+ε . ‖∇ f ‖2H s,θ , (5-4)

‖B2‖H s,θ−1+ε . ‖[∂ j f, φ]‖H s,θ−1+ε . ‖∂ j f ‖H s,θ‖φ‖H s,θ for j = 1, 2, (5-5)

‖B3‖H s,θ−1+ε . ‖A0φ‖H s,θ−1+ε . ‖A0‖‖φ‖H s,θ , (5-6)

‖B4‖H s,θ−1+ε . ‖A0∂ j f ‖H s,θ−1+ε . ‖A0‖‖∂ j f ‖H s,θ for j = 1, 2, (5-7)

where the norm used for A0 is immaterial, mainly because in Section 5C we show that

‖A0‖. ‖∇ f ‖H s,θ‖φ‖H s,θ . (5-8)

A few remarks are in order. Estimate (5-4) corresponds to estimates for the null form Qi j , and estimate
(5-5) gives rise to a new null form Q (this is discussed in the next two sections). A0 in estimates (5-6)
and (5-7) solves the elliptic equation in (aME), which results in a quite good regularity for A0. As a
result, we do not have to look for any special structures to get (5-6) and (5-7) to hold, so we can drop the
brackets, and also treat these estimates as equivalent since φ and d f exhibit the same regularity. Finally,
since Riesz transforms are clearly bounded on L2, we ignore them in the estimates needed in (5-5) and
(5-7). The estimates (5-4) and (5-5) for the null forms are the most interesting. Hence we discuss them
first, and then we consider the elliptic terms.

5B1. Null forms: proof of estimate (5-4). [∂1 f, ∂2 f ] has a structure of a null form Qi j :

[∂1 f, ∂2 f ] = ∂1 f ∂2 f − ∂2 f ∂1 f = Q12( f, f ).

5See also [Klainerman and Selberg 2002, Section 5] for an excellent discussion and motivation of the issues involved in the
Picard iteration.
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It follows that (5-4) is equivalent to

‖Q12( f, f )‖H s,θ−1+ε . ‖∇ f ‖2H s,θ .

Fortunately the hard work for null forms of type Qα,β in two dimensions is already carried out by Zhou
[1997]. His proof is done using spaces N s+1,θ with the norm given by6

‖u‖N s+1,θ = ‖3s+1
+
3θ
−

u‖L2 . (5-9)

In his work θ = s+ 1
2 . We state Zhou’s result.

Theorem [Zhou 1997]. Consider in R2+1 the space-time norms (5-9) and functions ϕ,ψ defined on
R2+1. The estimates

‖Qαβ(ϕ, ψ)‖N s,s−1/2 . ‖ϕ‖N s+1,s+1/2‖ψ‖N s+1,s+1/2

hold for any 1
4 < s < 1

2 .

Our iteration is done using spaces Hs+1,θ . Inspection of Zhou’s proof shows that it could be easily
modified to be placed in the context of Hs+1,θ spaces. However, even though our auxiliary functions’
iterates u j and v j belong to Hs+1,θ , from (4-24) we only have

d f ∈ H s,θ
⇒‖3s3θ

−
D f ‖L2(R2+1) <∞, (5-10)

but again inspection of Zhou’s proof shows we can still handle Q12( f, f ) given only that (5-10) holds.
Zhou’s proof works for 1

4 < s < 1
2 . However, it motivates an alternate proof that uses Hs+1,θ and works

for all values of s > 1
4 . The proof is closely related to the original proof in [Zhou 1997], but on the

surface it seems more concise. The reason for this is that we use Theorem F from [Klainerman and
Selberg 2002], which involves all the technicalities. See [Czubak 2008] for the details.

5B2. Null forms: proof of estimate (5-5). We need

‖[∂ j f, φ]‖H s,θ−1+ε . ‖∂ j f ‖H s,θ‖φ‖H s,θ , j = 1, 2.

However, analysis of the first iterate shows that for this estimate to hold we need s > 3
4 , so we need to

work a little bit harder, and use (4-24)7

[∂ j f, φ] = − i
4 [R j (∂t u+ i Du− ∂tv+ i Dv), ∂t u+ i Du+ ∂tv− i Dv]. (5-11)

If we use the bilinearity of the bracket, we can group (5-11) by terms involving brackets of u with itself,
v with itself, and then also by the terms that are mixed, that is, involve both u and v. So we have

4i[∂ j f, φ] = [R j (∂t + i D)u, (∂t + i D)u] − [R j (∂t − i D)v, (∂t − i D)v]

+ [R j (∂t + i D)u, (∂t − i D)v] − [R j (∂t − i D)v, (∂t + i D)u].

Since u and v are matrix-valued and do not commute we need to combine the last two brackets to take
advantage of a null form structure. This corresponds to (5-13) below (note the plus sign in the formula).

The needed estimates are contained in the following theorem.

6See [Selberg 1999, Section 3.5] for a comparison with Hs+1,θ spaces.
7The obvious way is to just substitute for φ and leave ∂ j f the same, but it is an exercise to see that this does not work — for

several reasons!
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Theorem 5.1. Suppose s > 1
4

and 3
4
−
ε
2
< θ ≤ s+ 1

2
, with θ < 1− ε and 0≤ ε <min

(
2s− 1

2
,

1
2

)
. Let

Q(ϕ, ψ) be given by

Q(ϕ, ψ)= (∂t ± i D)R jϕ(∂t ± i D)ψ − (∂t ± i D)ϕ(∂t ± i D)R jψ, or (5-12)

Q(ϕ, ψ)= (∂t ± i D)R jϕ(∂t ∓ i D)ψ + (∂t ± i D)ϕ(∂t ∓ i D)R jψ. (5-13)

Then
Q(Hs+1,θ ,Hs+1,θ ) ↪→ H s,θ−1+ε (5-14)

or, equivalently,
‖Q(ϕ, ψ)‖H s,θ−1+ε . ‖ϕ‖Hs+1,θ‖ψ‖Hs+1,θ . (5-15)

Proof. We show the details only for

(∂t + i D)R jϕ(∂t − i D)ψ + (∂t + i D)ϕ(∂t − i D)R jψ,

as the rest follows similarly. Observe that the symbol of Q is then

q(τ, ξ, λ, η)=
( ξ j

|ξ |
+
η j

|η|

)
(τ + |ξ |)(λ− |η|).

Suppose τλ≥ 0, then

q ≤ 2
∣∣(τ + |ξ |)(λ− |η|)∣∣≤ { 2

∣∣|τ | + |ξ |∣∣∣∣|λ| − |η|∣∣ if τ, λ≥ 0,
2
∣∣|τ | − |ξ |∣∣∣∣|η| + |λ|∣∣ if τ, λ≤ 0.

It follows∫∫
τλ≥0
|3s3θ−1+ε

−
Q(ϕ, ψ)|2dτdξ . ‖D+ϕD−ψ‖2H s,θ−1+ε +‖D−ϕD+ψ‖2H s,θ−1+ε , (5-16)

and the estimate follows by Theorem 5.2 below.
Suppose τλ < 0. If we break down the computations into the region{

(τ, ξ), (λ, η) : |τ | ≥ 2|ξ | or |λ| ≥ 2|η|
}

(5-17)

and its complement, then in the region (5-17), we bound q by

q ≤ 2(|τ | + |ξ |)(|λ| + |η|),

since there we do not need any special structure. (This is a simple exercise in this region; see [Czubak
2008, Appendix B].)

In the complementary region, we have

q ≤ 4|ξ ||η|
∣∣∣∣ ξi

|ξ |
+
ηi

|η|

∣∣∣∣ ,
which is the absolute value of the symbol of the null form Qt j in the first iterate. It has received a lot
of attention, but we have not seen a reference where it was discussed in a context other than that of
the initial data in H s+1

× H s . This may be because it has not come up as a nonlinearity before, and/or
because it can be handled in the same way as the null form Qi j . The details are in [Czubak 2008]. �



168 MAGDALENA CZUBAK

Now we prove an estimate needed to show (5-16) is bounded by the square of the right side of (5-15).

Theorem 5.2. Let s > 0, max
( 1

2 , 1− s
)
< θ < 1, and 0≤ ε ≤ 1− θ . Then

‖D+ϕD−ψ‖H s,θ−1+ε . ‖ϕ‖Hs+1,θ‖ψ‖Hs+1,θ .

Proof. We would like to show that ‖3s3θ−1+ε
− (D+ϕD−ψ)‖L2(R2+1) . ‖ϕ‖Hs+1,θ‖ψ‖Hs+1,θ . This follows

from showing that
H s,θ
·Hs+1,θ−1 ↪→ H s,θ−1+ε,

which by the product rule8 for the operator 3s in turn follows from

H 0,θ
·Hs+1,θ−1 ↪→ H 0,θ−1+ε, H s,θ

·H1,θ−1 ↪→ H 0,θ−1+ε.

It is easy to check that Hs+1,θ−1 ↪→ H s+1+θ−1,0 and H1,θ−1 ↪→ H θ,0, so we just need to show

H 0,θ
· H s+θ,0 ↪→ H 0,θ−1+ε, H s,θ

· H θ,0 ↪→ H 0,θ−1+ε,

which are weaker than
H 0,θ
· H s+θ,0 ↪→ L2, H s,θ

· H θ,0 ↪→ L2,

but those follow from the Klainerman–Selberg estimate (2-6) as long as s + θ > 1, which holds by the
conditions we impose on s and θ . �

An alternate approach could be to follow the set up used by [Klainerman and Machedon 1995] and
estimate the integral directly.

5B3. Elliptic piece: proof of estimate (5-6). Recall we wish to show

‖A0w‖H s,θ−1+ε . ‖A0‖‖w‖H s,θ . (5-18)

We need this estimate during our iteration, so we really mean A0, j , but for simplicity we omit writing of
the index j . Now we choose a norm for A0 to be anything that makes (5-18) possible to establish. This
results in

‖A0‖ = ‖A0‖L p̃
t L∞x
+‖Ds A0‖L p

t Lq
x
,

where
p̃ ∈

(
1− 2s, 1

2

)
,

2
p
= 1− 1

q
, max

(1
3
(1− 2s), s

2

)
<

1
q
<

2
3

s. (5-19)

For now we assume we can show A0 ∈ L p̃
t L∞x ∩ L p

t Ẇ s,q
x and delay the proof to Section 5C, where the

reasons for our choices of p̃, p, q should become clear. We start by using θ − 1+ ε < 0:

‖A0w‖H s,θ−1+ε ≤ ‖3s(A0w)‖L2(R2+1) . ‖A0w‖L2(R2+1)+‖D
s(A0w)‖L2(R2+1). (5-20)

For the first term, by Hölder’s inequality,

‖A0w‖L2(R2+1) ≤ ‖A0‖L p̃
t L∞x
‖w‖

L p̃′
t L2

x
, for 1

p̃
+

1
p̃′
=

1
2
, p as in (5-19)

. ‖A0‖‖w‖H0,θ , by (2-4)

≤ ‖A0‖‖w‖H s,θ .

(5-21)

8On L2 this is very easy to establish using triangle inequality. See [Klainerman and Selberg 2002].
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We bound the second term in (5-20) by

‖Ds(A0w)‖L2(R2+1) . ‖A0‖L p̃
t L∞x
‖Dsw‖

L p̃′
t L2

x︸ ︷︷ ︸
I

+‖Ds A0‖L p
t Lq

x
‖w‖

L p′
t Lq′

x︸ ︷︷ ︸
II

,

where
1
p
+

1
p′
=

1
2
=

1
q
+

1
q ′

and p, q are as in(5-19) and p̃ as in (5-21). I is handled similarly to (5-21) as follows. Apply (2-4) with
u = Dsw to obtain

I . ‖A0‖‖Dsw‖H0,θ ≤ ‖A0‖‖w‖H s,θ . (5-22)

We now consider II. By the choices of p, q , the Klainerman–Selberg estimate (2-5) applies (see the
discussion in Section 5D for an explanation) and gives

II ≤ ‖A0‖‖w‖L p′
t Lq′

x
. ‖A0‖‖w‖H1−2/q′−1/p′,θ . (5-23)

From (5-19) we also have

II . ‖A0‖‖w‖H1−2/q′−1/p′,θ . ‖A0‖‖w‖H s,θ . (5-24)

and (5-18) follows now from (5-21), (5-22) and (5-24).

Remark 5.1. The above proof illustrates other difficulties due to working in two dimensions. Initially,
we wanted to follow the proof of estimate (38) in [Selberg 2002a], and just use the ‖3s A0‖L p

t Lq
x

norm.
Unfortunately in two dimensions, the condition sq > 2 needed to show that A0 ∈ L p

t L∞x is disjoint from
the conditions needed to use Klainerman–Tataru estimate (2-3) and establish that 3s A0 ∈ L p

t Lq
x in the

first place. This resulted in the L p̃
t L∞x ∩L p

t Ẇ s,q
x space above and also having to employ the Klainerman–

Selberg estimate (2-5), which was not needed for the proof of [Selberg 2002a, estimate (38)].

5C. Elliptic regularity: estimates for A0. Here we present a variety of a priori estimates for the non-
dynamical variable A0. At each point we could add the index j to A0, d f and φ. Therefore the presen-
tation also applies to the iterates A0, j . It is an exercise to show that the estimates we obtain here are
enough to solve for A0, j at each step as well as to close the iteration for A0. Let A0 solve

4A0 =−d∗[A0, ∗d f ] − d∗[d f, φ] = −∂1[A0, ∂2 f ] + ∂2[A0, ∂1 f ] + ∂ j [∂ j f, φ].

There is a wide range of estimates A0 satisfies. Nevertheless, the two spatial dimensions limit our “range
of motion.” For example, it does not seem possible to place A0(t) in L2. We state the general results
and only show the cases we need to prove A0 ∈ L p̃

t L∞x ∩ L p
t Ẇ s,q

x as required in the last section. The rest
of the cases can be found in [Czubak 2008]. We add that the proofs of both of the following theorems
were originally inspired by the proof of estimate (45) in [Selberg 2002a]. We start with the homogeneous
estimates.

Theorem 5.3. Let s > 0, and let 0≤ a ≤ s+1 be given, and suppose 1≤ p ≤∞ and 1< q <∞ satisfy

max
(1

3
(1+ 2a− 4s), 1

2
(1+ a− 4s), 1

2
min(a, 1)

)
<

1
q
<

1+a
2
, (5-25)

1− 2
q
+ a− 2s ≤ 1

p
≤

1
2

(
1− 1

q

)
,

1
p
<
(

1− 2
q
+ a

)
. (5-26)
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(i) If 0 ≤ a ≤ 1 and the H s,θ norm of ∇ f is sufficiently small, then A0 ∈ L p
t Ẇ a,q

x and we have the
estimate

‖A0‖L p
t Ẇ a,q

x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-27)

(ii) If 1< a ≤ s+ 1 and A0 ∈ L p
t L(1/q−1/2)−1

x , then A0 ∈ L p
t Ẇ a,q

x and we have

‖A0‖L p
t Ẇ a,q

x
. (‖A0‖L p

t L(1/q−1/2)−1
x

+‖φ‖H s,θ )‖∇ f ‖H s,θ . (5-28)

Corollary 5.4. Let s > 0, then A0 ∈ Cb(I : Ḣa
x ), where

0< a ≤
{

2s if 0< s ≤ 1,
1+ s if 1< s.

Proof of Corollary 5.4. Suppose 0 < s < 1
2 . Then use part (i) of the theorem with q = 2 and p =∞ to

obtain A0 ∈ L∞t Ḣa
x for a ≤ 2s. A0 continuous as a function of time easily follows from a contraction

argument in Cb(I : Ḣa
x ) using L∞t Ḣa

x estimates. The case s ≥ 1
2 is considered in [Czubak 2008]. �

So far we just need s > 0 in order to make the estimates work. The requirement for s > 1
4 does not

come in until we start looking at the nonhomogeneous spaces, where also the range of p and q is smaller.
However, we can distinguish two cases, aq < 2 and aq > 2.

Theorem 5.5. Let s > 0, and suppose the H s,θ norm of ∇ f is sufficiently small.

(i) If aq < 2 for 0< a <min(2s, 1) and if p and q satisfy

max
(1

2
+ a− 2s, a

2

)
<

1
q
<

1
2
, (5-29)

1− 2
q
+ a− 2s ≤ 1

p
<

1
2
−

1
q
, (5-30)

then A0 ∈ L p
t W a,q

x and we have the estimate

‖A0‖L p
t W a,q

x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-31)

(ii) If aq > 2, we need s > 1
4 and 0< a <min(4s− 1, 1+ s, 2s). Suppose p and q also satisfy

max
(a−s

2
,

1
2
+ a− 2s

)
<

1
q
<

1
2

min(a, 1), (5-32)

1− 2
q
+ a− 2s ≤ 1

p
<

1
2
−

1
q
; (5-33)

then A0 ∈ L p
t W a,q

x and we have the estimate

‖A0‖L p
t W a,q

x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-34)
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Corollary 5.6. If s > 1
4 and the H s,θ norm of ∇ f is sufficiently small, we have in particular A0 ∈ L p

t L∞x
for p satisfying

1− 2s < 1
p
<

1
2
, (5-35)

and we have the estimate
‖A0‖L p

t L∞x
. ‖φ‖H s,θ‖∇ f ‖H s,θ . (5-36)

Proof of Corollary 5.6. For each p∈ (1−2s, 1
2) we can find some a and q, which satisfy the conditions of

Theorem 5.5, part (ii). The corollary then follows from the Sobolev embedding: W a,q(R2) ↪→ L∞(R2)

for aq > 2. �

Remark 5.2. Estimate (5-34) is where s > 1
4 is needed. Conditions on 1

p in (5-33) are needed so we
can use (below) the Klainerman–Tataru estimate (2-3). In order to be able to choose such 1

p , obviously
1− 2

q + a − 2s must be strictly less than 1
2 −

1
q . This forces 1

q to be strictly greater than 1
2 + a − 2s.

We also need aq > 2 to use the Sobolev embedding in Corollary 5.6, so if we want to be able to find q
between 1

2 +a−2s and a
2 , a is forced to be strictly less than 4s−1. Therefore s must be greater than 1

4 .
See below for another instance of requiring s > 1

4 .

5D. Proof of estimates needed in 5B3. Recall we would like to show A0 ∈ L p̃
t L∞x ∩L p

t Ẇ s,q
x . Therefore,

we are interested in part (i) of Theorem 5.3 and part ii) in Theorem 5.5, so we can conclude Corollary
5.6. Moreover, we need a specific case of part (i) in Theorem 5.3, because we need A0 ∈ L p

t Ẇ s,q
x , where

p, q in addition satisfy

1−
2
p
≤

1
q
<

1
2

and
2
q
−

1
2
+

1
p
≤ s, (5-37)

so we can use the embedding

H s,θ ↪→ H 1−(1−2/q)−(1/2−1/p),θ ↪→ L(1/2−1/p)−1

t L(1/2−1/q)−1

x (5-38)

in (5-23) and (5-24). When we put (5-37) together with (5-25) and (5-26) with a = s, we obtain the
second line of (5-19), namely

2
p
= 1− 1

q
, max

(1
3
(1− 2s), s

2

)
<

1
q
<

2
3

s. (5-39)

Remark 5.3. Observe that in order to be able to find such q we must have s > 1
4 .

Consider
‖A0‖L p

t Ẇ s,q
x
= ‖4

−1(d∗[A0, ∗d f ] + d∗[d f, φ])‖L p
t Ẇ s,q

x

. ‖D−1(A0∇ f )‖L p
t Ẇ s,q

x
+‖D−1(∇ f φ)‖L p

t Ẇ s,q
x

. ‖Ds−1(A0∇ f )‖L p
t Lq

x
+‖Ds−1(∇ f φ)‖L p

t Lq
x

. ‖A0∇ f ‖L p
t Lr

x
+‖Ds−1(∇ f φ)‖L p

t Lq
x
,

(5-40)

where we use the Sobolev embedding with 1
q =

1
r −

1−s
2 . The latter term is bounded by ‖∇ f ‖H s,θ‖φ‖H s,θ

using the Klainerman–Tataru estimate (2-3), whose application we discuss in the section below. For the
former we use 1

r =
1
q +

1−s
2 = (

1
q −

s
2)+

1
2 :

‖A0∇ f ‖L p
t Lr

x
≤ ‖A0‖L p

t L(1/q−s/2)−1
x

‖∇ f ‖L∞t L2
x
. ‖A0‖L p

t Ẇ s,q
x
‖∇ f ‖H s,θ . (5-41)
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Then if the H s,θ norm of ∇ f is sufficiently small, we obtain

‖A0‖L p
t Ẇ s,q

x
. ‖∇ f ‖H s,θ‖φ‖H s,θ , (5-42)

as needed.
For the nonhomogeneous estimate, since here 1

4 < s < 1
2 the upper bound for a is simply 4s − 1. In

addition, for our purposes right now it suffices to show the estimate for one particular a. Therefore we
set 0< a <min(s, 4s− 1) for 1

4 < s < 1
2 , and we let p, q satisfy (5-32) and (5-33). We have

‖A0‖L p
t W a,q

x
. ‖D−1(A0∇ f )‖L p

t W a,q
x
+‖D−1(∇ f φ)‖L p

t W a,q
x

. ‖D−1(A0∇ f )‖L p
t Lq

x
+‖D−1(∇ f φ)‖L p

t Lq
x
+‖Da−1(A0∇ f )‖L p

t Lq
x
+‖Da−1(∇ f φ)‖L p

t Lq
x
.

(5-43)

The Klainerman–Tataru estimate (2-3) handles the second and the last term (see below). Consider the
first term:

‖D−1(A0∇ f )‖L p
t Lq

x
. ‖A0∇ f ‖L p

t Lr
x
, for

1
q
=

1
r
−

1
2
,

≤ ‖A0‖L p
t Lq

x
‖∇ f ‖L∞t L2

x

≤ ‖A0‖L p
t W a,q

x
‖∇ f ‖H s,θ . (5-44)

For the third term we have

‖Da−1(A0∇ f )‖L p
t Lq

x
. ‖A0∇ f ‖L p

t Lr
x
, for 1

q
=

1
r
−

1−a
2

. ‖A0‖L p
t Lq

x
‖Da
∇ f ‖L∞t L2

x
, for 1

r
=

1
q
+

(1
2
−

a
2

)
. ‖A0‖L p

t W a,q
x
‖∇ f ‖H s,θ ,

Then as before, this completes the proof if the H s,θ norm of ∇ f is sufficiently small.

Applying the Klainerman–Tataru theorem. We said that several of the above estimates follow from the
Klainerman–Tataru estimate (2-3). We need to check that this is in fact the case. We begin by stating the
theorem. We state it for two dimensions only, and as it is given in [Klainerman and Selberg 2002] (the
original result holds for n ≥ 2).

Theorem [Klainerman and Tataru 1999]. Let 1≤ p ≤∞, 1≤ q <∞. Assume that

1
p
≤

1
2

(
1− 1

q

)
, (5-45)

0< σ < 2
(

1− 1
q
−

1
p

)
, (5-46)

s1, s2 < 1− 1
q
−

1
2p
, (5-47)

s1+ s2+ σ = 2
(

1− 1
q
−

1
2p

)
. (5-48)

Then
‖D−σ (uv)‖L p

t Lq
x (R2) . ‖u‖H s1,θ‖v‖H s2,θ ,

provided θ > 1
2 .
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The first time we use the theorem is in (5-40) for the term ‖Ds−1(∇ f φ)‖L p
t Lq

x
. Note that σ = 1− s.

Clearly 1 ≤ p ≤∞, 1 ≤ q <∞. Next by (5-39) 2
p = 1− 1

q , so (5-45) holds. Since s < 1
2 , σ > 0, and

we can see (5-46) holds when we substitute 1
2 −

1
2q for 1

p in the right side and use 1
q <

2
3 s. Next we let

s1 = s2 and with σ = 1− s > 0, (5-48) implies (5-47), so we only check (5-48). To that end we must be
able to choose s1 so that

2s1 = 1− 2
q
−

1
p
+ s ≤ 2s,

which is equivalent to our condition on p and one of the lower bounds on 1
q .

The next place we use the theorem is in (5-43) for ‖D−1(∇ f φ)‖L p
t Lq

x
, ‖Da−1(∇ f φ)‖L p

t Lq
x
, where p

and q are as in (5-32) and (5-33) with 0< a <min(s, 4s− 1) < 1. Then for σ = 1, by the right side of
(5-33), (5-46) holds and implies (5-45). Note, since (5-46) is true with σ = 1, it is true with σ = 1− a.
Next, for σ = 1 (5-48) gives (5-47) and also for σ = 1−a as long as 0< a < 1. So again it is sufficient
to see we can have s1 defined by (5-48) such that s1 ≤ s, but for σ = 1−a that follows from the left side
of (5-33), and shows we can find it for σ = 1 as well.
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