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ASYMPTOTIC BEHAVIORS OF NONVARIATIONAL ELLIPTIC SYSTEMS

SZU-YU SOPHIE CHEN

We use a method, inspired by Pohozaev’s work, to study asymptotic behaviors of nonvariational elliptic
systems in dimension n≥ 3. As an application, we prove removal of an apparent singularity in a ball and
uniqueness of the entire solution. All results apply to changing sign solutions.

In this paper, we study solutions of elliptic systems on Rn, n ≥ 3.
A classical work by Gidas and Spruck [1981] asserts that any nonnegative solution to1u+|u|α−2u=0

in Rn with 2 < α < 2n/(n − 2) (subcritical case) is trivial. For α = 2n/(n − 2), Caffarelli, Gidas and
Spruck [1989] proved that any nonnegative solution in Rn is of the form u = (a+ b|x |2)−(n−2)/2, where
a, b are constants. Such problem for elliptic systems are also studied, for example, in the studies of
Lane–Emden type systems; see [Zou 2000; Poláčik etal. 2007; Souplet 2009] and the references therein.

By contrast, the behaviors of changing sign solutions are more delicate. For example, there exists a
sequence of changing sign solutions to 1u + |u|α−2u = 0 in Rn with 2 < α < 2n/(n − 2) [Kuzin and
Pohozaev 1997]. In this paper, we study under what circumstances a solution to an elliptic system in
an exterior domain is asymptotic to |x |−(n−2) at infinity. Such decay is optimal in the sense that infinity
is a regular point in the inverted coordinates. It is known [Kuzin and Pohozaev 1997] that there exist
solutions to 1u + uα−1

= 0 in Rn that decay more slowly than |x |−(n−2). Thus, a suitable integrability
condition is necessary to exclude such a case.

While the study of changing sign solutions to elliptic systems is interesting by itself, the problem
is well motivated by differential geometry. For example, the decay of curvature tensors was studied
for Yang–Mills fields [Uhlenbeck 1982], Einstein metrics [Bando et al. 1989] and other generalizations
[Tian and Viaclovsky 2005; Chen 2009], just to name a few. A typical system is of the form

1(Rm)i jkl = Qi jkl(Rm,Rm),

where Rm is the Riemannian curvature tensor and Q is a quadratic in Rm. A natural geometric assump-
tion is that |Rm | is in Ln/2. Therefore, |Rm | vanishes at infinity and the problem is to find out the decay
rate. The study of geometrical systems is more subtle as (Rm)i jkl satisfies an extra relation, the Bianchi
identity, and the underlying spaces are not Euclidean.

The technique we use in this paper is based on the method developed in [Chen 2009] on asymptotically
flat manifolds, where a special geometric setting is considered. In this paper, we study general nonvari-
ational elliptic systems of the reaction-diffusion type. Our result applies to changing sign solutions and
includes the supercritical case (i.e., 1u+Cuα−1

= 0 with α > 2n/(n− 2), where C is a constant).
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grant DMS-0635607.
MSC2000: 35B40, 35J45.
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Let V = (V1, . . . , Vm) and f i
: Rm
→ R. Consider the system of equations

m∑
j=1

Ai j1V j = f i (V ), (1)

where A is a constant invertible symmetric matrix and i = 1, . . . ,m. Note that f i (V ) or Vi may have
no sign. We assume the following structure conditions:

(A1) | f i (V )| ≤ C |V |q .

(A2) |∇ f i (V )| ≤ C |V |q−1.

Let K be a compact subset in Rn .

Theorem 1. Let q > (n + 2)/n and p = (n/2)(q − 1). Suppose that f i satisfies (A1) and (A2). Let
V ∈ L p(Rn

\ K ) be a solution to (1) in Rn
\ K . Then |V | = O(|x |−(n−2)) and |∇V | = O(|x |−(n−1)) at

infinity.

An immediate consequence is a result on singularity removal for affine invariant equations. For scalar
equations, the problem was studied in [Gidas and Spruck 1981; Brézis and Lions 1981; Caffarelli et al.
1989].

Let B1 be the unit ball centered at the origin.

Corollary 2. Suppose f i are homogeneous functions of degree (n+ 2)/(n− 2). Let V ∈ L2n/(n−2)(B1)

be a solution to (1) in B1 \ {0}. Then V can be extended to a smooth solution to (1) in B1.

By performing a linear transformation Wi =
∑

j Ai j V j , the system (1) can be reduced to an equation
of the diagonal form 1W = f̃ (W ). The assumptions (A1)–(A2) and other conditions on V or f i

equivalently hold for W and f̃ . Therefore, for Theorem 1 and Corollary 2, we may assume without loss
of generality the equation is of the diagonal form.

We turn to study the uniqueness of entire solutions for variational systems. Let P(V ) be a homoge-
neous function of degree q+1. Suppose that Ai j is positive definite and f i

= ∂P/∂V i in (1). For scalar
equations, there is a large literature on the uniqueness problem; see, for example, [Gidas and Spruck
1981; Bidaut-Véron 1989; Serrin and Zou 2002]; see also [Pucci and Serrin 2007] and the references
therein. For systems, when P(V ) ≤ 0 and q > (n + 2)/(n − 2) (supercritical case), the problem was
studied by Pucci and Serrin [1986] under some asymptotic assumption of V . Their result also holds for
the nonhomogeneous function P (and more general P(x, V,∇V )) satisfying some inequality.

Theorem 3. Let q > (n + 2)/n, q 6= (n + 2)/(n − 2) and p = (n/2)(q − 1). Suppose P(V ) is a
homogeneous function of degree q+1. Suppose that Ai j is positive definite and f i

= ∂P/∂V i in (1). Let
V ∈ L p(Rn) be a solution to (1) in Rn . Then V ≡ 0.

We outline the proofs. To fix notation, we denote by dx the volume element in Rn and by d S the
area element of a hypersurface in Rn . Let Br (x) and Sr (x) be the ball of radius r and sphere of radius r
centered at x , respectively. When x is at the origin, we simply denote by Br and Sr .

The idea of the proof of Theorem 1 is to compare the size of
∫

Rn\Br
|∇V |2dx (as a function of r ) to its

derivative −
∫

Sr
|∇V |2d S. Then by the ordinary differential inequality lemma, we get the optimal decay

of |∇V | and, as a consequence, the decay of |V |. In order to relate the two integrands, we use some
version of Pohozaev’s identity for nonvariational systems. Pohozaev’s ingenious idea [1965] is to use a
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conformal Killing field to prove uniqueness in a star-shaped domain. This idea was generalized nicely
by Pucci and Serrin [1986] to general variational systems. Our use of the identity is different from the
original one. We apply the identity to an unbounded domain (the complement of a large ball) and use
only the size of | f i

|. Therefore, our method can be applied to nonvariational systems.
The proof of Theorem 3 is a combination of Theorem 1 and Pohozaev’s original idea. Since the

solution decays fast enough at infinity, no terms from infinity contribute to the main integrand. We use
the identity differently such that we obtain the uniqueness also in the subcritical case, in contrast to the
problem in star-shaped regions where one has to restrict to the supercritical case.

Finally, we show that the assumptions in these theorems are sharp.

Example 4. Consider the equation 1u+u(n+2)/(n−2)
= 0 in Rn . By [Caffarelli et al. 1989], nonnegative

solutions are of the form u = (a + b|x |2)−(n−2)/2. Therefore, u decays as |x |−(n−2) at infinity. This
example shows that in Theorem 3, the assumption q 6= (n+2)/(n−2) is necessary. Consider instead the
equation in B1 \{0}. There exists a nonnegative radial singular solution with the blow-up rate |x |−(n−2)/2

near the origin. Therefore, in Corollary 2, the condition V ∈ L2n/(n−2)(B1) is sharp.

Example 5. Consider 1u+uq
= 0 in Rn . For q > (n+2)/(n−2), there exists a solution asymptotic to

|x |−2/(q−1) at infinity [Kuzin and Pohozaev 1997]. Hence, in Theorem 1, the conditions q = (2p+n)/n
and V ∈ L p are sharp. Moreover, in Theorem 3, the condition q = (2p+ n)/n is also sharp.

1. Preliminaries

We collect some standard results in elliptic regularity theory and ordinary differential equations. Lemmas
6–8 follow by an argument similar to [Bando et al. 1989, Section 4].

Let Cs be the Sobolev constant and γ = n/(n − 2). Suppose that the nonnegative function u ∈ C0,1

satisfies 1u+C0uq
≥ 0 weakly in the sense that∫

(−〈∇u,∇φ〉+C0uqφ)dx ≥ 0 for all 0≤ φ ∈ C∞o .

Let ϕ ≥ 0 be a function with compact support and let s > 1. Then, by the Cauchy inequality,∫
ϕ2uq+s−1 dx ≥ C−1

0

∫ (4(s−1)
s2 |ϕ∇us/2

|
2
+

4
s
ϕus/2

〈∇ϕ,∇us/2
〉

)
dx

≥ C−1
0

∫ ( 2
s2 (s− 1)|ϕ∇us/2

|
2
−

2
(s−1)

|∇ϕ|2us
)

dx .

By the Sobolev inequality, we have(∫
(ϕ2us)γ dx

)1/γ

≤ C
∫ (

s2C0
2(s−1)

ϕ2uq+s−1
+

(
1+ s2

(s−1)2
)
|∇ϕ|2us

)
dx, (2)

where C = C(n,Cs,C0).
In Lemmas 6–8, u is a C0,1 function.
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Lemma 6. Let p > 1 and q = (2p+ n)/n. Suppose that the nonnegative function u ∈ L p(Br ) satisfies
1u+C0uq

≥ 0 weakly in Br . Then there exists ε > 0 such that if
∫

Br
u pdx < ε, then

sup
Br/2

u ≤ Cr−n/p
‖u‖L p(Br ), where C = C(n, p,Cs,C0).

Proof. Let s = p in (2). Then(∫
(ϕ2u p)γ dx

)1/γ

≤ C
∫
(uq−1(ϕ2u p)+ |∇ϕ|2u p) dx

≤ C
(∫
{supp ϕ}

u p dx
)2/n(∫

(ϕ2u p)γ dx
)1/γ

+C
∫
|∇ϕ|2u p dx .

We choose ϕ to be a cutoff function such that ϕ = 1 in Br/2 and ϕ = 0 outside Br , with |∇ϕ| ≤ Cr−1.
We get (∫

Br/2

u pγ dx
)1/γ

≤
C
r2

∫
Br

u p dx .

Choose a sequence rk = (2−1
+ 2−k)r . Apply (and rescale) the above inequality for Brk and Brk+1 with

pk = pγ k−1. By Moser iteration, we have supBr/2
u ≤ Cr−n/p

‖u‖L p(Br ). �

Lemma 7. Let p>n/(n−2) and q= (2p+n)/n. Suppose that the nonnegative function u ∈ L p(Rn
\Br )

satisfies 1u + C0uq
≥ 0 weakly in Rn

\ Br . Then there exists ε > 0 such that if
∫

Rn\Br
u p < ε, then

u = O(|x |−λ) for all λ < n− 2 as |x | →∞.

Proof. By Lemma 6, u = O(|x |−n/p). Let s = p((n− 2)/n) > 1 in (2). Then(∫
ϕ2γ u p dx

)1/γ

≤ C
(∫
{supp ϕ}

u p dx
)2/n(∫

(ϕ2u p(n−2/n))γ dx
)1/γ

+C
∫
|∇ϕ|2u p(n−2)/n dx .

ϕ is chosen to be a cutoff function such that ϕ = 1 in Br ′ \ B2r and ϕ = 0 outside B2r ′ \ Br with
|∇ϕ| ≤ C(1/r + 1/r ′). Let r ′→∞. Then(∫

ϕ2γ u p dx
)1/γ

≤ C
(∫
|∇ϕ|n dx

)2/n(∫
{supp ∇ϕ}

u p dx
)1/γ

.

And thus, (∫
Rn\B2r

u p dx
)1/γ

≤ C
(∫

B2r\Br

u p dx
)1/γ

.

This gives
∫

Rn\Br
u p
= O(r−δ) for some small δ > 0. Therefore, by Lemma 6, u = O(|x |−(n/p)−(δ/p)).

Let λ0 = sup{λ : u = O(|x |−λ)}. By iteration and a contradiction argument, we get that λ0 = n− 2. �

Suppose that h ≥ 0 is a C0 function. The nonnegative function u ∈ C0,1 satisfies 1u + C0hu ≥ 0
weakly if ∫ (

−〈∇u,∇φ〉+C0huφ
)

dx ≥ 0 for all 0≤ φ ∈ C∞o .
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Lemma 8. Let p> 1 and t > n/2. Suppose that the nonnegative function h ∈ L t(Br ) satisfies
∫

Br
ht dx ≤

C1/r2t−n . Suppose also that the nonnegative function u ∈ L p(Br ) satisfies1u+C0hu ≥ 0 weakly in Br .
Then supBr/2

u ≤ Cr−n/p
‖u‖L p(Br ), where C = C(n, p,Cs,C0,C1).

Proof. The proof is by standard Moser iteration. See Morrey [1966]. �

The following is a basic result in ordinary differential equations [Chen 2009].

Lemma 9. Suppose that f (r)≥ 0 satisfies f (r)≤−(r/a) f ′(r)+C2r−b for some a, b > 0.

(i) a 6= b. Then there exists a constant C3 such that

f (r)≤ C3r−a
+

a C2
a−b

r−b.

Therefore, f (r)= O(r−min{a,b}) as r→∞.

(ii) a = b. Then there exists a constant C3 such that

f (r)≤ C3r−a
+ a C2r−a ln r.

Therefore, f (r)= O(r−a ln r) as r→∞.

2. Proof of Theorem 1

As we explained in the introduction, without loss of generality we may assume the equation is of the
diagonal form, that is,

1Vi = f i (V ). (3)

We first derive a version of Pohozaev’s identity for nonvariational systems. Let � be a domain in Rn and
N be the unit outer normal on ∂�. We perform integration by parts repeatedly.∫
�

∑
k,l

f k(V )xl Dl Vk dx

=

∫
�

∑
j,l

1V j xl Dl V j dx

=

∫
�

−

∑
i, j,l

Di V j Di (xl Dl V j )dx +
∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S

=

∫
�

(
−|∇V |2−

∑
l

Dl(|∇V |2) xl
2

)
dx +

∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S

=

(n
2
− 1

) ∫
�

|∇V |2 dx −
∫
∂�

1
2

∑
l

|∇V |2xl Nl d S+
∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S. (4)

It is worth mentioning that xl Dl is a conformal Killing field in Rn .
We note that |V | and |∇V | are C0,1 functions. By (3) and (A1)–(A2), we have

1|V | ≥ −C |V |q ,

1|∇V | ≥ −C |V |q−1
|∇V |,
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weakly. Since V ∈ L p(Rn
\ K ), there exists a large number R such that

∫
Rn\BR
|V |pdx < ε, where ε is

as in Lemma 6. Applying Lemma 6 to Br (x0) where |x0| ≥ 2r ≥ 2R, we get |V | = O(|x |−n/p).

Case 1. If (n + 2)/n < q ≤ n/(n − 2) (or equivalently, 1 < p ≤ n/(n − 2)), then n/p ≥ n − 2. By
Lemma 6, we have |V | = O(|x |−n/p). Let ϕ be a cutoff function such that ϕ= 1 in Br and ϕ= 0 outside
B2r with |∇ϕ| ≤ Cr−1. Applying ϕVi to (3) and integrating gives∫

Br (x0)

|∇V |2 dx ≤ C
∫

B2r (x0)

|V |q+1 dx + C
r2

∫
B2r (x0)

|V |2 dx = O(rn−2−(2n/p))≤ O(r−n+2),

where |x0| ≥ 2r � 1. By Lemma 8 with h = |V |q−1, we obtain |∇V | = O(|x |−(n−1)) and thus |V | =
O(|x |−(n−2)).

Case 2. If n/(n−2) < q (or equivalently p> n/(n−2)), by Lemma 7, |V | = O(|x |−λ) for all λ< n−2.
Therefore, ∫

Br (x0)

|∇V |2dx ≤ C
∫

B2r (x0)

|V |q+1dx + C
r2

∫
B2r (x0)

|V |2dx = O(rn−2−2λ),

where |x0| ≥ 2r � 1. Moreover, |V | ∈ L p′ for all p′ > n/(n − 2). Choose p′ < p close to n/(n − 2).
Hence, q > (2p′+ n)/n. We can then find q ′ > n/2 such that∫

Br (x0)

(|V |q−1)q
′

dx ≤ C
r2q ′−n , where |x0| ≥ 2r � 1.

This is possible because λ is close to n− 2. By Lemma 8, we obtain

sup
Br/2(x0)

|∇V | ≤ C
rn/2 ‖∇V ‖L2(Br (x0)) = O(r−λ−1), where |x0| ≥ 2r � 1.

Let �= BR \ Br in (4). We have∫
�

∑
k,l

f k(V )xl Dl Vkdx

=

(n
2
− 1

) ∫
�

|∇V |2dx −
∫
∂�

1
2

∑
l

|∇V |2xl Nl d S+
∫
∂�

∑
i, j,l

Di V j xl Dl V j Ni d S. (5)

Note that

lim
R→∞

∫
SR

R|∇V |2 d S = lim
R→∞

O(R−2λ−2+n)= 0.

Let R→∞ in (5). Then there is no boundary term coming from infinity. We can choose �= Rn
\ Br .

The boundary terms only occur on Sr . On ∂�, N =−x/r . Hence,∫
Rn\Br

∑
k,l

f k(V )xl Dl Vk dx =
(n

2
− 1

) ∫
Rn\Br

|∇V |2 dx +
∫

Sr

r
2
|∇V |2 d S− r

∫
Sr

|∇N V |2 d S

≥

(n
2
− 1

) ∫
Rn\Br

|∇V |2 dx −
∫

Sr

r
2
|∇V |2 d S.
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Let G(r) :=
∫

Rn\Br
|∇V |2 dx . Since G ′(r)=−

∫
Sr
|∇V |2 d S, the previous formula becomes

G(r)≤− r
n−2

G ′(r)+ 2
n−2

∫
Rn\Br

∑
k,l

f k(V )xl Dl Vk dx .

The key idea is to compare the size of G(r) to that of G ′(r). The coefficient in front of G ′(r) plays
an important role. Here is the only place we use the condition of | f i

|. We have∫
Rn\Br

∑
k,l

f k(V )xl Dl Vk dx ≤
∫

Rn\Br

|V |q |x ||∇V |dx = O(r−λ(q+1)+n).

Thus,
G(r)≤− r

n−2
G ′(r)+Cr−λ(q+1)+n.

Since q > n/(n− 2) and λ is close to n− 2, we have λ(q + 1)− n > n− 2. By Lemma 9, this implies
G(r)= O(r−(n−2)). By the Sobolev inequality, we get∫

B2r\Br

|V |2n/(n−2)dx = O(r−n).

Finally, by Lemma 6 and 8 we obtain |V | = O(|x |−(n−2)) and |∇V | = O(|x |−(n−1)). �

3. Proofs of Corollary 2 and Theorem 3

Proof of Corollary 2. Since the equation is invariant under inversion, we transform the solution to Rn
\B1

and apply Theorem 1.
Let y = x/|x |2. Define Ui (y) = (1/|y|n−2)Vi (y/|y|2). This is called the Kelvin transform with the

property that

1yUi (y)=
1
|y|n+21x Vi (x).

This can also be viewed as the conformal change formula of the conformal Laplacian with zero scalar
curvature. Therefore, Ui (y) satisfies∑

j

Ai j1yUi (y)=
1
|y|n+2 f i (|y|n−2U (y))= f i (U (y)) in Rn

\ B1,

where we use that f i is homogeneous of degree (n+ 2)/(n− 2). Moreover,∫
Rn\B1

|U |2n/(n−2)dy =
∫

Rn\B1

(|V ||y|−n+2)2n/(n−2)dy =
∫

B1\{0}
(|V ||x |n−2)2n/(n−2)

|x |−2n dx

=

∫
B1\{0}

|V |2n/(n−2)dx <+∞.

Now we apply Theorem 1 with p = 2n/(n − 2) and q = (n + 2)/(n − 2). We get |U | = O(|y|−(n−2))

and |∇U | = O(|y|−(n−1)). Hence, |V | = O(1) and |∇V | = O(|x |−1). As a result, V ∈ L∞(B1) and
∇V ∈ L p(B1) for all p < n.
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We show that V is a weak solution to (1) in B1. Let ϕ ∈ H 1
0 (B1,Rm). Let ηk(|x |) be a compactly

supported function in B1\{0} such that ηk→ 1 a.e. in B1 and ‖ηk‖Ln(B1)→ 0 as k→∞. (Such functions
were used by Serrin [1964].) Then∫

B1

ηk

∑
i, j,l

Ai j Dlϕ j Dl Vi dx =
∫

B1

−

∑
i

f i (V )ϕiηk dx −
∫

B1

∑
i, j,l

Dlηk Ai jϕ j Dl Vi dx .

The last term can be estimated as follows.∣∣∣∫
B1

∑
i, j,l

Dlηk Ai jϕ j Dl Vi dx
∣∣∣≤ C‖ϕ‖L2n/(n−2)(B1)‖∇V ‖L2(B1)‖ηk‖Ln(B1) ≤ C‖ηk‖Ln(B1)→ 0

as k→∞. Hence, in the limit∫
B1

∑
i, j,l

Ai j Dlϕ j Dl Vi dx =
∫

B1

−

∑
i

f i (V )ϕi dx .

Thus, V is a weak solution in B1. It follows by elliptic regularity that V ∈ C∞(B1). �

Proof of Theorem 3. Since Ai j is positive definite, there exists an orthogonal matrix M such that

M−1 AM =

λ1
. . .

λn

 ,
where λ1, . . . , λn are positive. Let

B = M


√
λ1

. . .
√
λn

M−1.

By performing a transformation Wi =
∑

j Bi j V j , the system can be reduced to 1Wi =
∂ P̃(W )

∂W i . Thus,
without loss of generality we may assume the equation is of the diagonal form.

Let �= BR in (4). Therefore, N = x/R. We get∫
BR

∑
k,l

f k(V )xl Dl Vk dx =
(n

2
− 1

) ∫
BR

|∇V |2 dx −
∫

SR

R
2
|∇V |2 d S+ R

∫
SR

|∇N V |2 d S.

Since f k
= ∂P/∂Vk , we have∫

BR

−n P(V )dx =
(n

2
− 1

) ∫
BR

|∇V |2 dx −
∫

SR

R
2
|∇V |2 d S+ R

∫
SR

|∇N V |2d S−
∫

SR

R P(V )d S. (6)

On the other hand, we also have∫
BR

(q + 1)P(V )dx =
∫

BR

∑
k

∂P
∂Vk

Vk dx =−
∫

BR

|∇V |2 dx +
∫

SR

∑
j

DN V j V j d S, (7)

where we use the Euler formula for homogeneous functions.
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Case 1. n ≥ 4. By Theorem 1, when R→∞, (6) becomes∫
BR

−n P(V )dx =
(n

2
− 1

) ∫
BR

|∇V |2 dx + O(R−(n−2))+ O(R−(q+1)(n−2)+n)

=

(n
2
− 1

) ∫
BR

|∇V |2 dx + o(1),

where we use conditions on p, q and n ≥ 4 to get (q + 1)(n− 2)− n > 0. Similarly, (7) gives∫
BR

(q + 1)P(V )dx =−
∫

BR

|∇V |2dx + O(R−(n−2)).

Combining the above two formulas and noting that q + 1 6= 2n/(n− 2), we finally arrive at∫
BR

|∇V |2dx = o(1).

We have |∇V | ≡ 0 and hence V ≡ 0.

Case 2. n = 3. Note that sup |V | ≤ (C/|x |n/p)‖V ‖L p . Combining this fact with Theorem 1, we have
|V | = O(|x |−λ), where λ=max{1, 3/p}. Therefore,

λ(q + 1)− 3≥max
{

q − 2, 3
p
(q + 1)− 3

}
≥max

{
−1+ 2p

3
,−1+ 6

p

}
> 0.

Then (6) becomes∫
BR

−3P(V )dx =
(3

2
− 1

) ∫
BR

|∇V |2 dx + O(R−1)+ O(R−λ(q+1)+3)

=

(3
2
− 1

) ∫
BR

|∇V |2 dx + o(1),

as in Case 1. The rest of proof is the same as in Case 1. �
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