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DYNAMICS ON GRASSMANNIANS AND RESOLVENTS OF CONE OPERATORS

JUAN B. GIL, THOMAS KRAINER AND GERARDO A. MENDOZA

The paper proves the existence and elucidates the structure of the asymptotic expansion of the trace
of the resolvent of a closed extension of a general elliptic cone operator on a compact manifold with
boundary as the spectral parameter tends to infinity. The hypotheses involve only minimal conditions on
the symbols of the operator. The results combine previous investigations by the authors on the subject
with an analysis of the asymptotics of a family of projections related to the domain. This entails a
detailed study of the dynamics of a flow on the Grassmannian of domains.

1. Introduction

In [Gil et al. 2010] we analyzed the behavior of the trace of the resolvent of an elliptic cone operator
on a compact manifold as the spectral parameter increases radially assuming, in addition to natural ray
conditions on its symbols, that the domain is stationary. We complete this analysis with Theorem 1.4 of
the present paper, which describes the behavior of that trace without any restriction on the domain. The
main new ingredient is Theorem 4.13 on the asymptotics of a family of projections related to the domain.
This involves a fairly detailed analysis of the dynamics of a flow on the Grassmannian of domains.

Let M be a smooth compact n-dimensional manifold with boundary Y . A cone operator on M is
an element A ∈ x−m Diffm

b (M; E), m > 0; here Diffm
b (M; E) is the space of b-differential operators of

Melrose [1993] acting on sections of a vector bundle E → M and x is a defining function of Y in M ,
positive in

◦

M . Associated with such an operator is a pair of symbols, the c-symbol cσ (A) and the wedge
symbol A∧. The former is a bundle endomorphism closely related to the regular principal symbol of
A, indeed ellipticity is defined as the invertibility of cσ (A). The wedge symbol is a partial differential
operator on N+Y , the closed inward pointing normal bundle of Y in M , essentially the original operator
with coefficients frozen at the boundary. See [Gil et al. 2010, Section 2] for a brief overview and [Gil
et al. 2007a, Section 3] for a detailed exposition of basic facts concerning cone operators.

Fix a Hermitian metric on E and a smooth positive b-density mb on M (xmb is a smooth everywhere
positive density on M) to define the spaces xγL2

b(M; E). Let A be a cone operator. The unbounded
operator

A : C∞c (
◦

M; E)⊂ xγL2
b(M; E)→ xγL2

b(M; E) (1.1)

admits a variety of closed extensions with domains D⊂ xγL2
b(M; E) such that Dmin ⊂D⊂Dmax, where

Dmin is the domain of the closure of (1.1) and

Dmax =
{
u ∈ xγL2

b(M; E) : Au ∈ xγL2
b(M; E)

}
.
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When A is c-elliptic, A is Fredholm with any such domain [Lesch 1997, Proposition 1.3.16]. We may
assume without loss of generality that γ = −m/2, since otherwise we may replace A by the operator
x−γ−m/2 A xγ+m/2

∈ x−m Diffm
b (M; E).

The set of closed extensions is parametrized by the elements of the various Grassmannian manifolds
associated with the finite-dimensional space Dmax/Dmin, a useful point of view exploited extensively
in [Gil et al. 2007a]. Recall that both spaces Dmax/Dmin and D∧,max/D∧,min are determined by the
set {σ ∈ specb(A) : −m/2 < Im σ < m/2}, together with certain finite dimensional spaces of functions
associated to each element of this set. Also recall that the boundary spectrum of A, denoted by specb(A),
is the set of points in C at which the conormal symbol (indicial family) of A is not invertible. The
intersection of this set with horizontal strips in C is finite.

Associated with N+Y there are analogous Hilbert spaces x−m/2
∧ L2

b(N+Y ; E∧). Here x∧ is the function
determined by dx on N+Y , E∧ is the pullback of E |Y to N+Y , and the density is x−1

∧ mY where mY is
the density on Y obtained by contraction of mb with x∂x . We will drop the subscript ∧ from x∧ and E∧,
and trivialize N+Y as Y∧ = [0,∞)×Y using the defining function. The space x−m/2L2

b(Y
∧
; E) carries

a natural unitary R+ action (%, u) 7→ κ%u which after fixing a Hermitian connection on E is given by

κ%u(x, y)= %m/2u(%x, y) for % > 0, (x, y) ∈ Y∧.

The minimal and maximal domains, D∧,min and D∧,max, of A∧ are defined in an analogous fashion as
those of A, the first of these spaces being the domain of the closure of

A∧ : C∞c (
◦

Y∧; E)⊂ x−m/2L2
b(Y
∧
; E)→ x−m/2L2

b(Y
∧
; E). (1.2)

A fundamental property of A∧ is its κ-homogeneity, κ%A∧ = %−m A∧κ%. Thus D∧,min and D∧,max are
both κ-invariant, hence there is an R+ action

% 7→ κ% : D∧,max/D∧,min→ D∧,max/D∧,min,

which in turn induces for each d ′′ an action on Grd ′′(D∧,max/D∧,min), the complex Grassmannian of
d ′′-dimensional subspaces of D∧,max/D∧,min. Observe that since the quotient is finite dimensional these
actions extend holomorphically to C r R−.

Assuming the c-ellipticity of A, we constructed in [Gil et al. 2007a, Theorem 4.7] and reviewed in
[Gil et al. 2010, Section 2] a natural isomorphism

θ : Dmax/Dmin→ D∧,max/D∧,min,

allowing, in particular, passage from a domain D for A to a domain D∧ for A∧ which we shall call the
associated domain.

We showed in [Gil et al. 2006] that if
cσ (A)− λ is invertible for λ in a closed sector 3 ( C which is a sector of minimal
growth for A∧ with the associated domain D∧ defined via D∧/D∧,min = θ(D/Dmin),

(1.3)

then3 is also a sector of minimal growth for AD, the operator A with domain D, and for l ∈N sufficiently
large, (AD−λ)

−l is an analytic family of trace class operators. In [Gil et al. 2010] we gave the asymptotic
expansion of Tr(AD− λ)

−l under the condition that D was stationary. Recall that a subspace D⊂ Dmax
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with Dmin ⊂ D is said to be stationary if θ(D/D∧,max) ∈ Grd ′′(D∧,max/D∧,min) is a fixed point of the
action κ . More generally, assuming only (1.3), we now prove:

Theorem 1.4. Let A be an elliptic cone operator of degree m > 0 on M , and let D be a domain for A so
that (1.3) is satisfied. For any ϕ ∈ C∞(M;End(E)) and l ∈ N with ml > n,

Tr(ϕ(AD− λ)
−l)∼

∞∑
j=0

r j (λ
iµ1, . . . , λiµN , log λ)λν j/m as |λ| →∞,

where each r j is a rational function in N + 1 variables, N ∈ N0, with real numbers µk , k = 1, . . . , N ,
and ν j > ν j+1 → −∞ as j → ∞. We have r j = p j/q j with p j , q j ∈ C[z1, . . . , zN+1] such that
q j (λ

iµ1, . . . , λiµN , log λ) is uniformly bounded away from zero for large λ.

The expansion above is to be understood as the asymptotic expansion of a symbol into its components
as discussed in the Appendix. As shown in [Gil et al. 2010],

Tr(ϕ(AD− λ)
−l)∼

n−1∑
j=0
α jλ

(n−lm− j)/m
+αn log(λ)λ−l

+ sD(λ),

with coefficients α j ∈C that are independent of the choice of domain D, and a remainder sD(λ) of order
O(|λ|−l). Here we will show that sD(λ) is in fact a symbol that admits an expansion into components
that exhibit in general the structure shown in Theorem 1.4. More precisely, let

M=
{
Re σ/m : σ ∈ specb(A), −m/2< Im σ < m/2

}
, (1.5)

where specb(A) denotes the boundary spectrum of A; see [Melrose 1993]. Set

E= additive semigroup generated by{
Im(σ − σ ′) : σ, σ ′ ∈ specb(A), −m/2< Im σ ≤ Im σ ′ < m/2

}
∪ (−N0), (1.6)

which is a discrete subset of R− without points of accumulation. Then

sD(λ)∼
∑
ν∈E
ν≤−lm

rν(λiµ1, . . . , λiµN , log λ)λν/m as |λ| →∞, (1.7)

where the µi are the elements of M and the rν are rational functions of their arguments as described in
the theorem.

An analysis of the arguments of Sections 3 and 4 shows that the structure of the functions rν depends
strongly on the relation of the domain with the part of the boundary spectrum in the “critical strip”
{σ ∈ C : −m/2 < Im σ < m/2}. This includes what elements of the set M actually appear in the rν ,
and whether they are truly rational functions and not just polynomials. We will not follow up on this
observation in detail, but only single out here the following two cases because of their special role in
the existing literature. When D is stationary, the machinery of Sections 3 and 4 is not needed, and we
recover the results of [Gil et al. 2010]: the rν are just polynomials in log λ, and the numbers ν in (1.7)
are all integers. If D is nonstationary, but the elements of specb(A) in the critical strip are vertically
aligned, then again there is no dependence on the elements of M, but the coefficients are generically
rational functions of log λ. Note that all second order regular singular operators in the sense of Brüning
and Seeley [1987; 1991] (see also [Kirsten et al. 2008a]) have this special property.
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By standard arguments, Theorem 1.4 implies corresponding results about the expansion of the heat
trace Tr

(
ϕe−t AD

)
as t→ 0+ if AD is sectorial, and about the structure of the ζ -function if AD is positive.

It has been observed by other authors that the resolvent trace, the heat kernel, and the ζ -function for
certain model operators may exhibit so called unusual or exotic behavior [Falomir et al. 2004; 2003;
2002; Kirsten et al. 2006; 2008a; 2008b; Loya et al. 2007]. This is accounted for in Theorem 1.4 by
the fact that the components may have noninteger orders ν j belonging to the set E, and that the r j may
be genuine rational functions and not mere polynomials. For example, the former implies that the ζ -
function of a positive operator might have poles at unusual locations, and the latter that it might not extend
meromorphically to C at all. Both phenomena have been observed for ζ -functions of model operators.

Earlier investigations on this subject typically relied on separation of variables and special function
techniques to carry out the analysis near the boundary. This is one major reason why all previously
known results are limited to narrow classes of operators. Here and in [Gil et al. 2010] we develop a
new approach which leads to the completely general result Theorem 1.4. This result is new even for
Laplacians with respect to warped cone metrics, or, more generally, for c-Laplacians [Gil et al. 2010].

Throughout this paper we assume that the ray conditions (1.3) hold. We will rely heavily on [Gil et al.
2010], where we analyzed (AD− λ)

−l with the aid of the formula

(AD− λ)
−l
=

1
l−1

∂ l−1
λ (AD− λ)

−1,

and the representation

(AD− λ)
−1
= B(λ)+

[
1− B(λ)(A− λ)

]
FD(λ)

−1T (λ), (1.8)

obtained in [Gil et al. 2006]. The analogous formula for (A∧,D∧− λ)
−1 is briefly reviewed in Section 2.

In [Gil et al. 2010] we described in full generality the asymptotic behavior of the operator families
B(λ), [1− B(λ)(A− λ)], and T (λ), and gave an asymptotic expansion of FD(λ)

−1 if D is stationary.
Therefore, to complete the picture we only need to show that FD(λ)

−1 has a full asymptotic expansion
and describe its qualitative features for a general domain D.

We end this introduction with an overview of the paper. There is a formula similar to (1.8) concern-
ing the extension of (1.2) with domain D∧. The analysis of FD(λ)

−1 in the reference just cited was
facilitated by the fact that the corresponding operator F∧,D∧(λ)

−1 for A∧,D∧ has a simple homogeneity
property when D is stationary. In Section 2 we will establish an explicit connection between the operator
F∧,D∧(λ)

−1 and a family of projections for a general domain D∧. This family of projections, previously
studied in the context of rays of minimal growth in [Gil et al. 2007a; 2007b], is analyzed further in
Sections 3 and 4, and is shown to fully determine the asymptotic structure of F∧,D∧(λ)

−1, summarized
in Proposition 2.17. As a consequence, we obtain in Proposition 2.20 a description of the asymptotic
structure of (A∧,D∧ − λ)

−1.
The family of projections is closely related to the curve through D∧/D∧,min determined by the flow

defined by κ on Grd ′′(D∧,max/D∧,min). The behavior of an abstract version of κ−1
ζ (D∧/D∧,min) is ana-

lyzed extensively in Section 3. Let E denote a finite dimensional complex vector space and a : E→ E

an arbitrary linear map. The main technical result of Section 3 is an algorithm (Lemmas 3.5 and 3.11)
which is used to obtain a basis of etaD for all sufficiently large t (really, all complex t with |Im t | ≤ θ
and Re t large); here D⊂E is a linear subspace. The dependence of the section on t is explicit enough to
allow the determination of the nature of the�-limit sets of the flow t 7→ eta on Grd ′′(E) (Proposition 3.3).
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The results of Section 3 are used in Section 4 to obtain the asymptotic behavior of the aforementioned
family of projections, and consequently of F∧,D∧(λ)

−1 when λ ∈3 as |λ| →∞, assuming only the ray
condition (1.3) for A∧ on D∧ (in the equivalent form given by (iii) of Theorem 2.15).

The work comes together in Section 5. There we obtain first the full asymptotics of FD(λ)
−1 using

results from [Gil et al. 2006; 2010] and the asymptotics of F∧,D∧(λ)
−1 obtained earlier. This is then

combined with work done in [Gil et al. 2010] on the asymptotics of the rest of the operators in (1.8),
giving Theorem 5.6 on the asymptotics of the trace Tr(ϕ(AD − λ)

−l). The manipulation of symbols
and their asymptotics is carried out within the framework of refined classes of symbols discussed in the
Appendix.

2. Resolvent of the model operator

In [Gil et al. 2006; 2007a; 2007b] we studied the existence of sectors of minimal growth and the structure
of resolvents for the closed extensions of an elliptic cone operator A and its wedge symbol A∧. In
particular, in [Gil et al. 2006] we determined that 3 is a sector of minimal growth for AD if cσ (A)−λ is
invertible for λ in 3, and if 3 is also a sector of minimal growth for A∧ with the associated domain D∧.
In this section we will briefly review and refine some of the results concerning the resolvent of A∧,D∧ in
the closed sector 3.

The set

bg-res(A∧)=
{
λ ∈ C : A∧− λ is injective on D∧,min and surjective on D∧,max

}
,

introduced in [Gil et al. 2007a], is of interest for a number of reasons, including the property that if
λ ∈ bg-res(A∧) then every closed extension of A∧− λ is Fredholm. Using the property

κ%A∧ = %−m A∧κ%, (2.1)

one verifies that bg-res(A∧) is a disjoint union of open sectors in C. Defining d ′′ = − ind(A∧,min − λ)

and d ′ = ind(A∧max − λ) for λ in one of these sectors, one has that if (A∧,D∧− λ) is invertible, then
dim(D∧/D∧,min)= d ′′ and dim ker(A∧,max− λ)= d ′. The dimension of D∧,max/D∧,min is d ′+ d ′′.

From now on we assume that 3 6= C is a fixed closed sector such that 3r 0 ⊂ bg-res(A∧) and
res A∧,D∧∩3 6= ∅. Without loss of generality we also assume that 3 has nonempty interior. The set
res A∧,D∧ ∩3 has discrete complement in 3 and is therefore connected.

Corresponding to (1.8), there is a representation

(A∧,D∧− λ)
−1
= B∧(λ)+

[
1− B∧(λ)(A∧− λ)

]
F∧,D∧(λ)

−1T∧(λ) for λ ∈3∩ res(A∧,D∧). (2.2)

As we shall see in Section 5, if 3 is a sector of minimal growth for A∧,D∧ , then the asymptotic structure
of F∧,D∧(λ)

−1 determines much of the asymptotic structure of the operator FD(λ)
−1 in (1.8).

If D∧ is κ-invariant, then F∧,D∧(λ)
−1 has the homogeneity property

κ−1
|λ|1/m F∧,D∧(λ)

−1
= F∧,D∧(λ̂)

−1, (2.3)

and is, in that sense, the principal homogeneous component of FD(λ)
−1. This facilitates the expansion of

FD(λ)
−1 as shown in [Gil et al. 2010, Proposition 5.17]. However, if D∧ is not κ-invariant, F∧,D∧(λ)

−1

fails to be homogeneous and its asymptotic behavior is more intricate.
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The identity (2.2) obtained in [Gil et al. 2006] begins with a choice of a family of operators K∧(λ) :
Cd ′′
→ x−m/2L2

b(Y
∧
; E) which is κ-homogeneous of degree m and such that(

A∧−λ K∧(λ)
)
: D∧,min⊕Cd ′′

→ x−m/2L2
b(Y
∧
; E)

is invertible for all λ ∈3r 0. The homogeneity condition on K∧ means that

K∧(%mλ)= %mκ%K∧(λ) for % > 0. (2.4)

Defining the action of R+ on Cd ′′ to be the trivial action, this condition on the family K∧(λ) becomes
the same homogeneity property that the family A∧− λ has because of (2.1). Other than this, the choice
of K∧ is largely at our disposal. That such a family K∧(λ) exists is guaranteed by the condition that
3r 0⊂ bg-res(A∧). We now proceed to make a specific choice of K∧(λ).

Let λ0 ∈
◦

3 be such that A∧,D∧− λ is invertible for every λ = eiϑλ0 ∈3. We fix λ0 (for convenience
on the central axis of the sector) and a cut-off function ω ∈ C∞c ([0, 1)), and define

K∧(λ)= (A∧− λ)ω(x |λ|1/m)κ|λ/λ0|1/m for λ ∈3r 0 (2.5)

acting on D∧/D∧,min ∼= Cd ′′ . The factor ω(x |λ|1/m)κ|λ/λ0|1/m in (2.5) is to be understood as the compo-
sition

D∧/D∧,min

κ
|λ/λ0|

1/m

−−−−−→ D∧,max/D∧,min ∼= E∧,max ⊂ D∧,max
ω(x |λ|1/m)
−−−−−−→ D∧,max,

in which the last operator is multiplication by the function ω(x |λ|1/m) and we use the canonical identi-
fication of D∧,max/D∧,min with the orthogonal complement E∧,max of D∧,min in D∧,max using the graph
inner product

(u, v)A∧ = (A∧u, A∧v)+ (u, v), u, v ∈ D∧,max.

By definition, K∧(λ) satisfies (2.4) and the family(
A∧−λ K∧(λ)

)
: D∧,min⊕D∧/D∧,min→ x−m/2L2

b(Y
∧
; E)

is invertible for every λ on the arc {λ ∈3 : |λ| = |λ0|} through λ0. Therefore, using κ-homogeneity, it is
invertible for every λ ∈3r 0. If(

B∧(λ)
T∧(λ)

)
: x−m/2L2

b(Y
∧
; E)→ D∧,min⊕D∧/D∧,min

is the inverse of
(

A∧,min−λ K∧(λ)
)
, then T∧(λ)(A∧− λ)= 0 on D∧,min, so it induces a map

F∧(λ)= [T∧(λ)(A∧− λ)] : D∧,max/D∧,min → D∧/D∧,min,

whose restriction F∧,D∧(λ)= F∧(λ)|D∧/D∧,min is invertible for λ ∈ res(A∧,D∧)∩3r 0 and leads to (2.2).
Moreover, since T∧(λ)K∧(λ)= 1, we have

F∧,D∧(λ)
−1
= q∧(A∧,D∧− λ)

−1K∧(λ)

= q∧(A∧,D∧− λ)
−1(A∧− λ)ω(x |λ|1/m)κ|λ/λ0|1/m ,

where q∧ : D∧,max→ D∧,max/D∧,min is the quotient map.
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For λ ∈ bg-res(A∧) let K∧,λ = ker(A∧,max− λ). Then, by [Gil et al. 2007a, Lemma 5.7],

λ ∈ res(A∧,D∧) if and only if D∧,max = D∧⊕K∧,λ, (2.6)

in which case we let πD∧,K∧,λ be the projection on D∧ according to this decomposition. If B∧,max(λ) is
the right inverse of A∧,max− λ with range K⊥

∧,λ, then

(A∧,D∧− λ)
−1
= πD∧,K∧,λ B∧,max(λ),

and B∧,max(λ)(A∧,max− λ) is the orthogonal projection onto K⊥
∧,λ. Thus

πD∧,K∧,λ B∧,max(λ)(A∧,max− λ)= πD∧,K∧,λ,

and therefore,
F∧,D∧(λ)

−1
= q∧ πD∧,K∧,λ ω(x |λ|

1/m)κ|λ/λ0|1/m .

Let
D = D∧/D∧,min, K∧,λ = (K∧,λ+D∧,min)/D∧,min. (2.7)

Again by [Gil et al. 2007a, Lemma 5.7], either of the conditions in (2.6) is equivalent to D ∩ K∧,λ = 0,
hence to

D∧,max/D∧,min = D⊕ K∧,λ (2.8)

by dimensional considerations, since dim K∧,λ = dim K∧,λ = d ′. Let then πD,K∧,λ be the projection on
D according to the decomposition (2.8). Then q∧ πD∧,K∧,λ = πD,K∧,λ q∧ and

F∧,D∧(λ)
−1
= πD,K∧,λq∧ω(x |λ|

1/m)κ|λ/λ0|1/m

= πD,K∧,λκ|λ/λ0|1/m , (2.9)

since multiplication by 1−ω(x |λ|1/m) maps D∧,max into D∧,min for every λ.
We will now express F∧,D∧(λ)

−1 in terms of projections with K∧,λ0 in place of K∧,λ. This will of
course require replacing D by a family depending on λ.

Fix λ ∈
◦

3, let Sλ,m be the connected component of {ζ : ζmλ ∈
◦

3} containing R+. Since 3 6= C, Sλ,m
omits a ray, and so the map R+ 3 % 7→ κ% ∈ Aut(D∧,max/D∧,min) extends holomorphically to a map

Sλ,m 3 ζ 7→ κζ ∈ Aut(D∧,max/D∧,min).

It is an elementary fact that
κ−1
ζ (πD,K∧,λ)κζ = πκ−1

ζ D,κ−1
ζ K∧,λ .

A simple consequence of (2.1) is that κ−1
ζ K∧,λ =K∧,λ/ζm if ζ ∈ R+, hence also κ−1

ζ K∧,λ = K∧,λ/ζm for
such ζ since the maps q∧|K∧,λ : K∧,λ→ K∧,λ are isomorphisms. Therefore

κ−1
ζ (πD,K∧,λ)κζ = πκ−1

ζ D,K∧,λ/ζm , (2.10)

if ζ ∈ R+. This formula holds also for arbitrary ζ ∈ Sλ,m . To see this we make use of the family
of isomorphisms P(λ′) : K∧,λ0 → K∧,λ′ (defined for λ′ in the connected component of bg-res(A∧)
containing λ0) constructed in Section 7 of [Gil et al. 2007a]. Its two basic properties are that λ′ 7→P(λ′)φ
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is holomorphic for each φ ∈ K∧,λ0 and that κ%P(λ′) = P(%mλ′) if % ∈ R+. These statements are,
respectively, Proposition 7.9 and Lemma 7.11 of [Gil et al. 2007a]. Let

f : D∧,max→ C

be an arbitrary continuous linear map that vanishes on K∧,λ. For any φ ∈ K∧,λ0 the function

Sλ,m 3 ζ 7→ 〈 f, κζP(λ/ζm)φ〉 ∈ C

is holomorphic and vanishes on R+, the latter because κζP(λ/ζm) = P(λ) for such ζ . Therefore
〈 f, κζP(λ/ζm)φ〉 = 0 for all ζ ∈ Sλ,m . Since f is arbitrary, we must have κζP(λ/ζm)φ ∈ K∧,λ. Hence

P(λ/ζm)φ ∈ κ−1
ζ K∧,λ.

Since P(λ/ζm) :K∧,λ0→K∧,λ/ζm is an isomorphism, we have K∧,λ/ζm = κ−1
ζ K∧,λ when ζ ∈ Sλ,m . This

shows that
K∧,λ/ζm = κ−1

ζ K∧,λ,

and hence that (2.10) holds for ζ ∈ Sλ,m .
The principal branch of the m-th root gives a bijection

( · )1/m
: λ−1

0
◦

3→ Sλ0,m . (2.11)

The reader may now verify that for this root, with the notation ζ̂ = ζ/|ζ | whenever ζ ∈ C r 0, one has

κ−1
|λ|1/m F∧,D∧(λ)

−1
= κ−1
|λ0|1/mκ(λ̂/λ̂0)1/m

(
πκ−1

(λ/λ0)
1/m D,K∧,λ0

)
κ−1
(λ̂/λ̂0)1/m (2.12)

when λ ∈
◦

3 ∩ res(A∧,D∧). The arguments leading to this formula remain valid if 3 is replaced by a
slightly bigger closed sector, so the formula just proved holds in (3r 0)∩ res(A∧,D∧).

The projection in parentheses in (2.12) is thus a key component of the resolvent of A∧,D∧ whose
behavior for large |λ| will be analyzed in Section 4 under a certain fundamental condition which happens
to be equivalent to the condition that 3 is a sector of minimal growth for A∧,D∧ . We now proceed to
discuss this condition.

The condition that the sector 3 with 3r0⊂ bg-res(A∧) is a sector of minimal growth for A∧,D∧ was
shown in [Gil et al. 2007a, Theorem 8.3] to be equivalent to the invertibility of A∧,D∧− λ for λ in

3R = {λ ∈3 : |λ| ≥ R},

together with the uniform boundedness in3R of the projection πκ−1
|λ|1/m D,K

λ̂
. Further, it was shown in [Gil

et al. 2007b] that along a ray containing λ0, this condition is in turn equivalent to requiring that the curve

% 7→ κ−1
% D : [R,∞)→ Grd ′′(D∧,max/D∧,min)

does not approach the set

VK∧,λ0
=
{

D ∈ Grd ′′(D∧,max/D∧,min) : D ∩ K∧,λ0 6= 0
}

(2.13)

as %→∞, a condition conveniently phrased in terms of the limiting set

�−(D)=
{

D′ ∈ Grd ′′(D∧,max/D∧,min) : ∃ %ν→∞ in R+ such that κ−1
%ν

D→ D′ as ν→∞
}
.
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A ray {rλ0 ∈ C : r > 0} contained in bg-res(A∧) is a ray of minimal growth for A∧,D∧ if and only if

�−(D)∩VK∧,λ0
=∅.

Define

�−3(D)=
{

D′ ∈ Grd ′′(D∧,max/D∧,min) :

∃ {ζν}
∞

ν=1 ⊂ C with λ0ζν ∈3 and |ζν | →∞ s.t. limν→∞ κ
−1
ζ

1/m
ν

D = D′
}
, (2.14)

in which we are using the holomorphic extension of % 7→ κ% to Sλ0,m and the m-th root is the principal
branch, as specified in (2.11). We can now consolidate all these conditions as follows.

Theorem 2.15. Let 3 be a closed sector such that 3r 0 ⊂ bg-res(A∧), and let λ0 ∈
◦

3. The following
statements are equivalent:

(i) 3 is a sector of minimal growth for A∧,D∧ .

(ii) There are constants C, R> 0 such that3R ⊂ res(A∧,D∧) and
∥∥πκ−1

ζ1/m D,K∧,λ0

∥∥
L(D∧,max/D∧,min)

≤C for
every ζ such that λ0ζ ∈3R .

(iii) �−3(D)∩VK∧,λ0
=∅.

Proof. By means of (2.10) we get the identity

πκ−1
ζ1/m D,K∧,λ0

= κ−1
ζ̂ 1/mκ|λ0|1/m

(
πκ−1
|λ|1/m D,K

∧,λ̂

)
κ−1
|λ0|1/mκζ̂ 1/m ,

which is valid for large λ ∈3, ζ = λ/λ0, and ζ̂ = ζ/|ζ |. Since κζ̂ 1/m and κ−1
ζ̂ 1/m are uniformly bounded,

Theorem 8.3 of [Gil et al. 2007a] gives the equivalence of (i) and (ii).
We now prove that (ii) and (iii) are equivalent. Let E∧,max=D∧,max/D∧,min and assume (iii) is satisfied.

Since �−3(D) and VK∧,λ0
are closed sets in Grd ′′(E∧,max), there is a neighborhood U of VK∧,λ0

and a
constant R> 0 such that if |λ0ζ |> R then κ−1

ζ 1/m D 6∈U. Let δ :Grd ′′(E∧,max)×Grd ′(E∧,max)→R be as in
Section 5 of [Gil et al. 2007a]. Since VK∧,λ0

is the zero set of the continuous function V 7→ δ(V, K∧,λ0),
there is a constant δ0 > 0 such that δ(κ−1

ζ 1/m D, K∧,λ0) > δ0 for every ζ such that λ0ζ ∈ 3R . Then
Lemma 5.12 of the same reference gives (ii).

Conversely, let (ii) be satisfied. Suppose �−3(D) ∩ VK∧,λ0
6= ∅ and let D0 be an element in the

intersection. Thus D0 ∩ K∧,λ0 6= {0} and there is a sequence {ζν}∞ν=1 ⊂ C with λ0ζν ∈ 3 such that
|ζν | →∞ and

Dν = κ
−1
ζ

1/m
ν

D→ D0 as ν→∞.

If ν is such that |λ0ζν | > R, then λ0ζν ∈ res(A∧,D∧) and D ∩ K∧,λ0ζν = {0}, so Dν ∩ K∧,λ0 = {0}. Thus
for ν large enough Dν 6∈ VK∧,λ0

.
Pick u ∈ D0 ∩ K∧,λ0 with ‖u‖ = 1. Let πDν

be the orthogonal projection on Dν . Since Dν→ D0 as
ν→∞, we have πDν

→ πD0 , so uν = πDν
u→ πD0u = u. For ν large, Dν 6∈VK∧,λ0

, so uν−u 6= 0. Now,
since uν ∈ Dν , u ∈ K∧,λ0 , and uν→ u,

πDν ,K∧,λ0

( uν−u
‖uν−u‖

)
=

uν
‖uν−u‖

→∞ as ν→∞.

But this contradicts (ii). Hence �−(D)∩VK∧,λ0
=∅. �
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If D∧ is not κ-invariant, the asymptotic analysis of F∧,D∧(λ)
−1 (through the analysis of the projection

πD,K∧,λ) leads to rational functions of the form

r(λiµ1, . . . , λiµN , log λ)= p(λiµ1, . . . , λiµN , log λ)
q(λiµ1, . . . , λiµN , log λ)

, (2.16)

with µl ∈ R for l = 1, . . . , N , where q(z1, . . . , zN+1) is a polynomial over C such that∣∣q(λiµ1, . . . , λiµN , log λ)
∣∣> δ,

for some δ > 0 and every sufficiently large λ ∈3, and

p(λiµ1, . . . , λiµN , log λ)=
∑
α,k

aαk(λ)λ
iαµ logk λ,

with µ= (µ1, . . . , µN ), α ∈ NN
0 , k ∈ N0, and coefficients

aαk ∈ C∞
(
3r 0,L(D∧/D∧,min,D∧,max/D∧,min)

)
,

such that aαk(%
mλ)= κ%aαk(λ) for every % > 0.

Proposition 2.17. If 3 is a sector of minimal growth for A∧,D∧ , then for R > 0 large enough, the family
F∧,D∧(λ)= F∧(λ)|D∧/D∧,min is invertible for λ ∈3R and F∧,D∧(λ)

−1 has the following properties:

(i) F∧,D∧(λ)
−1
∈ C∞(3R;L(D∧/D∧,min,D∧,max/D∧,min)), and for every α, β ∈ N0 we have∥∥κ−1

|λ|1/m∂
α
λ ∂

β

λ̄
F∧,D∧(λ)

−1∥∥= O(|λ|ν/m−α−β) as |λ| →∞, (2.18)

with ν = 0.

(ii) For all j ∈ N0 there exist rational functions r j of the form (2.16) and a decreasing sequence of real
numbers 0= ν0 > ν1 > · · · → −∞ such that for every J ∈ N, the difference

F∧,D∧(λ)
−1
−

J−1∑
j=0

r j (λ
iµ1, . . . , λiµN , log λ) λν j/m (2.19)

satisfies (2.18) with ν = νJ + ε for any ε > 0.

The phases µ1, . . . , µN and the exponents ν j in (2.19) depend on the boundary spectrum of A. In
fact, µ1, . . . , µN ∈M and ν j ∈ E for all j ; see (1.5) and (1.6).

This suggests the introduction of operator-valued symbols with a notion of asymptotic expansion in
components that take into account the rational structure above and the κ-homogeneity of the numerators.
The idea of course is to have a class of symbols whose structure is preserved under composition, differen-
tiation, and asymptotic summation. In the Appendix we propose such a class, Sν

+

R (3; E, Ẽ), a subclass
of the operator-valued symbols S∞(3; E, Ẽ) introduced by Schulze, where E and Ẽ are Hilbert spaces
with suitable group actions. The space Sν

+

R (3; E, Ẽ) is contained in Sν+ε(3; E, Ẽ) for any ε > 0.
As reviewed at the beginning of the Appendix, the notion of anisotropic homogeneity in S(ν)(3; E, Ẽ)

depends on the group actions in E and Ẽ . Thus homogeneity is always to be understood with respect to
these actions.

In the symbol terminology, we have

F∧,D∧(λ)
−1
∈ (S0+

R ∩ S0)(3R;D∧/D∧,min,D∧,max/D∧,min),
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where D∧/D∧,min carries the trivial action and D∧,max/D∧,min is equipped with κ%.

Proof of Proposition 2.17. Since 3 is a sector of minimal growth for A∧,D∧ , there exists R > 0 such that
(A∧,D∧− λ) is invertible for λ ∈ 3R , which by definition is equivalent to the invertibility of F∧,D∧(λ).
Since the map ζ 7→ κζ̂ 1/m is uniformly bounded (recall that ζ̂ = ζ/|ζ |), the relation (2.12) together with
Theorem 2.15 give the estimate (2.18) for α = β = 0. If we differentiate with respect to λ (or λ̄), then

∂λF∧,D∧(λ)
−1
=−F∧,D∧(λ)

−1
[∂λF∧,D∧(λ)]F∧,D∧(λ)

−1
=−F∧,D∧(λ)

−1
[∂λF∧(λ)]F∧,D∧(λ)

−1.

Now, if we equip D∧/D∧,min with the trivial group action and D∧,max/D∧,min with κ%, then

F∧(λ) : D∧,max/D∧,min→ D∧/D∧,min

is homogeneous of degree zero, hence ‖∂λF∧(λ)κ|λ|1/m‖ is O(|λ|−1) as |λ| →∞. Therefore,∥∥κ−1
|λ|1/m∂λF∧,D∧(λ)

−1∥∥= O(|λ|−1) as |λ| →∞,

since κ−1
|λ|1/m∂λF∧,D∧(λ)

−1 can be written as

−[κ−1
|λ|1/m F∧,D∧(λ)

−1
][∂λF∧(λ)κ|λ|1/m ][κ−1

|λ|1/m F∧,D∧(λ)
−1
],

and the first and last factors are uniformly bounded by our previous argument. The corresponding esti-
mates for arbitrary derivatives follow by induction.

Next, observe that by (2.12),

F∧,D∧(λ)
−1
= κζ 1/m

(
πκ−1

ζ1/m D,K∧,λ0

)
κ−1
ζ̂ 1/m ,

with ζ = λ/λ0 and ζ̂ = ζ/|ζ |. For λ∈3R let k(λ)= κζ 1/m and k̂(λ)= κ−1
ζ̂ 1/m . Then k(λ) is a homogeneous

symbol in S(0)(3R;D∧,max/D∧,min,D∧,max/D∧,min), where the first copy of the quotient is equipped with
the trivial action and the target space carries κ%. Similarly, k̂(λ) ∈ S(0)(3R;D∧/D∧,min,D∧,max/D∧,min)

with respect to the trivial action on both spaces.
Finally, the asymptotic expansion claimed in (ii) follows from Theorem 4.13 together with the homo-

geneity properties of k(λ) and k̂(λ). �

As a consequence of Proposition 2.17, and since B∧(λ), 1− B∧(λ)(A∧−λ), and T∧(λ) in (2.2) are
homogeneous of degree −m, 0, and −m, in their respective classes, we obtain:

Proposition 2.20. If 3 is a sector of minimal growth for A∧,D∧ , then for R > 0 large enough, we have

(A∧,D∧− λ)
−1
∈ (S(−m)+

R ∩ S−m)(3R; x−m/2L2
b,D∧,max),

where the spaces are equipped with the standard action κ%. The components have orders ν+ with ν ∈ E

and their phases belong to M; see (1.5) and (1.6).

3. Limiting orbits

We will write E instead of D∧,max/D∧,min and denote by a : E→ E the infinitesimal generator of the
R+ action (%, v) 7→ κ−1

% v on E, so that κ−1
% D = etaD with t = log %. In what follows we allow t to be

complex. The spectrum of a is related to the boundary spectrum of A by

spec a=
{
−iσ −m/2 : σ ∈ specb(A), −m/2< Im σ < m/2

}
. (3.1)
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For each λ ∈ spec a let Eλ be the generalized eigenspace of a associated with λ, let πλ : E→ E be the
projection on Eλ according to the decomposition

E=
⊕

λ∈spec a

Eλ.

Define N : E→ E and Nλ : Eλ→ Eλ by

N = a −
∑

λ∈spec a
λπλ, Nλ = N |Eλ,

respectively. Thus N is the nilpotent part of a. Correspondingly, let

a′ : E→ E, a′ =
∑

λ∈spec a
(i Im λ)πλ, (3.2)

so a′ is the skew-adjoint component of the semisimple part of a.
For µ ∈ Re(spec a) let

Ẽµ =
⊕

λ∈spec a
Re λ=µ

Eλ,

let π̃µ : E→ E be the projection on Ẽµ according to the decomposition

E=
⊕

µ∈Re(spec a)

Ẽµ,

and set
Ñµ = N |Ẽµ : Ẽµ→ Ẽµ.

Fix an auxiliary Hermitian inner product on E so that
⊕

Eλ is an orthogonal decomposition of E. Then
a′ is skew-adjoint and eta′ is unitary if t is real.

Proposition 3.3. For every D ∈ Grd ′′(E) there is D∞ ∈ Grd ′′(E) such that

dist(etaD, eta′D∞)→ 0 as Re t→∞ in Sθ = {t ∈ C : |Im t | ≤ θ} (3.4)

for any θ > 0. The set

�+θ (D)=
{

D′ ∈ Grd ′′(E) : ∃{tν} ⊂ Sθ : Re tν→∞ and limν→∞ etνaD = D′
}

is the closure of
{eta′D∞ : t ∈ Sθ }.

We are using �+ for the limit set for consistency with common usage: we are letting Re t tend to
infinity.

If F is a vector space, we will write F[t, t−1
] for the space of polynomials in t and t−1 with coefficients

in F (that is, the F-valued rational functions on C with a pole only at 0). If p∈F[t, t−1
], let cs(p) denote

the coefficient of t s in p, and if p 6= 0, let

ord(p)=max{s ∈ Z : cs(p) 6= 0}.

The proof of the proposition hinges on the following lemma, whose proof will be given later.
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Lemma 3.5. Let D ⊂ E be an arbitrary nonzero subspace. Define D1
= D and by induction define

µl =max
{
µ ∈ Re(spec a) : π̃µDl

6= 0
}
, Dl+1

= ker π̃µl |Dl , Dµl = (D
l+1)⊥ ∩ Dl,

starting with l = 1. Let L be the smallest l such that Dl+1
= 0. Thus

π̃µl |Dl : Dµl → π̃µl Dµl is an isomorphism (3.6)

and D =
L⊕

l=1
Dµl . Then for each l there are elements

p̃l
k ∈ π̃µl Dµl [t, 1/t], k = 1, . . . , dim Dµl ,

such that with
q̃l

k(t)= et Ñµl p̃l
k(t),

we have ord q̃l
k = 0 and the elements

gl
k = c0(q̃l

k),

for k = 1, . . . , dim Dµl , are independent.

Proof of Proposition 3.3. Suppose D ⊂ E is a subspace. With the notation of Lemma 3.5 let

Dµl ,∞ = span{gl
k : k = 1, . . . , dim Dµl }.

Since et Ñµl is invertible and q̃l
k(t) = gl

k + h̃l
k(t) with h̃l

k(t) = O(t−1) for large Re t (t ∈ Sθ ), the vectors
p̃l

k(t) form a basis of π̃µl Dµl for all sufficiently large t . Using (3.6) we get unique elements

pl
k ∈ Dµl [t, 1/t], π̃µl pl

k = p̃l
k .

For each l the pl
k(t) give a basis of Dµl if t is large enough, and therefore also the

e−tµl pl
k(t), k = 1, . . . , dim Dµl ,

form a basis of Dµl for large Re t . Consequently, the vectors

etae−tµl pl
k(t), k = 1, . . . , dim Dµl , l = 1, . . . , L ,

form a basis of etaD for large Re t . We have, with Nλ = N |Eλ ,

etae−tµl pl
k(t)=

∑
λ∈spec a

et (λ−µl )et Nλπλ pl
k(t)

=
∑

λ∈spec a
Re λ=µl

et (λ−µl )et Nλπλ pl
k(t)+

∑
λ∈spec a
Re λ<µl

et (λ−µl )et Nλπλ pl
k(t)

= eta′et Ñµl π̃µl pl
k(t)+

∑
λ∈spec a
Re λ<µl

et (λ−µl )et Nλπλ pl
k(t)

= eta′(gl
k + h̃l

k(t))+
∑

λ∈spec a
Re λ<µl

et (λ−µl )et Nλπλ pl
k(t)

so etae−tµl pl
k(t) = eta′gl

k + hl
k(t), where hl

k(t) = O(t−1) as Re t →∞ in Sθ . It follows that (3.4) holds
with D∞ =

⊕L
l=1 Dµl ,∞. This completes the proof of the first assertion of Proposition 3.3.
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Remark 3.7. The formulas for the vl
k(t)= etae−tµl pl

k(t) given in the last displayed line above will even-
tually give the asymptotics of the projections πeta D,K (assuming VK ∩�

+(D)=∅, see Theorem 2.15).
Note that the shift by m/2 in (3.1) is irrelevant and that the coefficients of the exponents in the formula
for vl

k(t) belong to {
λ−Re λ′ : λ, λ′ ∈ spec a, Re λ≤ Re λ′

}
. (3.8)

Because of (3.1), this set is equal to

−i
{
σ − i Im σ ′ : σ, σ ′ ∈ specb(A), −m/2< Im σ ≤ Im σ ′ < m/2

}
. (3.9)

If all elements of {σ ∈ specb(A) : −m/2 < Im σ < m/2} have the same real part, then all elements of
(3.8) have the same imaginary part ν, the operator a′ is multiplication by iν, and we can divide each of
the vl

k(t) by ei tν to obtain a basis of etaD in which the coefficients of the exponents are all real.

To prove the second assertion of the proposition, we note first that (3.4) implies that �+θ (D) is con-
tained in the closure of {eta′D∞ : t ∈ Sθ }. To prove the opposite inclusion, it is enough to show that

eta′D∞ ∈�+θ (D) (3.10)

for each t ∈ Sθ , since �+θ (D) is a closed set. Writing eta′D∞ as ei Im t a′(eRe t a′D∞) further reduces the
problem to the case θ = 0 (that is, t real). While proving (3.10) we will also show that the closure X of
{eta′D∞ : t ∈ R} is an embedded torus, equal to �+0 (D).

Let {λk}
K
k=1 be an enumeration of the elements of spec a. Define f : RK

×Grd ′′(E)→ Grd ′′(E) by

f (τ, D)= e
∑

iτ kπλk D,

τ = (τ 1, . . . , τ K ). This is a smooth map. Since the πλk commute with each other, f defines a left action
of RK on Grd ′′(E). For each τ ∈ RK define

fτ : Grd ′′(E)→ Grd ′′(E), fτ (D)= f (τ, D),

and for each D ∈ Grd ′′(E) let

f D
: RK
→ Grd ′′(E), f D(τ )= f (τ, D).

The maps fτ are diffeomorphisms.
We claim that f D∞ factors as the composition of a smooth group homomorphism φ :RK

→ TK ′ onto
a torus and an embedding h : TK ′

→ Grd ′′(E),

RK TK ′

Grd ′′(E).
?

f D∞

φ
-

h.

.......................................................................................................=

Both φ and h depend on D∞.
To prove the claim we begin by observing that {u ∈ T RK

: d f D∞(u) = 0} is translation-invariant.
Indeed, let τ0 ∈ RK , let v = (v1, . . . , vK ) ∈ RK , and let γ : R→ RK be the curve γ(t)= tv. Then

f D∞(τ0+ γ(t))= fτ0 ◦ f D∞(γ(t)),
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so
d f D∞

(∑
vk∂τ k |τ0

)
= d fτ0 ◦ d f D∞

(∑
vk∂τ k |0

)
.

Since fτ0 is a diffeomorphism,∑
vk∂τ k |τ0 ∈[ker d f D∞ :Tτ0RK

→T f D∞ (τ0)Grd ′′(E)] ⇐⇒
∑
vk∂τ k |0∈[ker d f D∞ :T0RK

→TD∞Grd ′′(E)].

Thus the kernel of d f D∞ is translation-invariant as asserted.
Identify the kernel of d f D∞ : T0RK

→ TD∞Grd ′′(E) with a subspace S of RK in the standard fashion.
Then f D∞ is constant on the translates of S and if R is a subspace of RK complementary to S, then
f D∞ |R is an immersion. Renumbering the elements of spec a′ (and reordering the components of RK

accordingly) we may take R= RK ′
× 0.

Since f D∞ |R is an immersion, the sets

FD′ = {τ ∈R : f D∞(τ )= D′}

are discrete for each D′ ∈ f D∞(R). Using again the property f D∞(τ1+τ2)= fτ1 ◦ f D∞(τ2) for arbitrary
τ1, τ2 ∈RK , we see that FD∞ is an additive subgroup of R and that f D∞ is constant on the lateral classes
of FD∞ . Therefore f D∞ |R factors through a (smooth) homomorphism φ :R→R/FD∞ and a continuous
map R/FD∞→Grd ′′(E). Since f D∞ is 2π -periodic in all variables, 2πZK ′

⊂FD∞ , so R/FD∞ is indeed
a torus TK ′ . Since φ is a local diffeomorphism and f D∞ is smooth, h is smooth.

With this, the proof of the second assertion of the proposition goes as follows. Let L ⊂ RK be the
subspace generated by (Im λ1, . . . , Im λK ). This is a line or the origin. Its image by φ is a subgroup H
of TK ′ , so the closure of φ(L) is a torus G ⊂ TK ′ , and h(φ(L)) is an embedded torus X⊂ Grd ′′(E). On
the other hand, h ◦φ(L)= f D∞(L) is the image of the curve γ : t→ eta′D∞, so the closure of the image
of γ is X. Clearly, �+0 (D) ⊂ X. The equality of �+0 (D) and X is clear if γ is periodic or L = {0}. So
assume that γ is not periodic and L 6= {0}. Then H 6= G and there is a sequence

{gν}∞ν=1 ⊂ G r H

such that gν→ e, the identity element of G. Let v be an element of the Lie algebra of G such that H is the
image of t 7→ exp(tv). For each ν there is a sequence {tν,ρ}∞ρ=1, necessarily unbounded because gν /∈ H ,
such that gν = limρ→∞ exp(tν,ρv). We may assume that {tν,ρ}∞ρ=1 is monotonic, so it diverges to +∞ or
to −∞. In the latter case we replace gν by its group inverse, so we may assume that limρ→∞ tν,ρ =∞
for all ν. Thus if g ∈ H is arbitrary, then h(ggν) ∈�+0 (D) and h(ggν) converges to h(g). Since �+0 (D)
is closed, this shows that h ◦φ(H)⊂�+0 (D). Consequently, also X⊂�+0 (D).

This completes the proof of the second assertion of Proposition 3.3. �

As a consequence of the proof we have that �+θ (D) is a union of embedded tori:

�+θ (D)=
⋃

s∈[−θ,θ ]

eisa′
{eta′D∞ : t ∈ R}.

The proof of Lemma 3.5 will be based on the following lemma. The properties of the elements
p̃l

k ∈ π̃µl Dµl [t, 1/t] whose existence is asserted in Lemma 3.5 pertain only to Ẽµl , Ñµl , and the subspace
π̃µl Dµl of Ẽµl . For the sake of notational simplicity we let W= π̃µl Dµl and drop theµl from the notation.
The space Ẽ comes equipped with some Hermitian inner product, and Ñ is nilpotent.



130 JUAN B. GIL, THOMAS KRAINER AND GERARDO A. MENDOZA

Lemma 3.11. There is an orthogonal decomposition W=
J⊕

j=0

M j⊕
m=0

Wm
j (with nontrivial summands) and

nonzero elements

Pm
j ∈ Hom(Wj,m,Wj ′)[t, t−1

], (3.12)

where

Wj,m =

M j⊕
m′=m

Wm′
j , W′j =

j⊕
j ′=0

Wj ′,0,

satisfying the following properties:

(1) P0
j = IWj,0 .

(2) Let Qm
j (t) = et Ñ Pm

j (t) and nm
j = ord(Qm

j ). Then the sequence {nm
j }

M j
m=0 is strictly decreasing and

consists of nonnegative numbers.

(3) Let
Gm

j = cnm
j
(Qm

j ), Vm
j = Gm

j (W
m
j ). (3.13)

Then

Wj,m+1 = (Gm
j )
−1
( j−1⊕

j ′=0

M j ′⊕
m′=0

Vm′
j ′ +

m−1⊕
m′=0

Vm′
j

)
. (3.14)

(4) There are unique maps Fm′,m+1
j ′, j :Wj,m+1→Wm′

j ′ such that

Gm
j +

j−1∑
j ′=0

M j ′∑
m′=0

Gm′
j ′ Fm′,m+1

j ′, j +

m−1∑
m′=0

Gm′
j Fm′,m+1

j, j = 0 (3.15)

holds on Wj,m+1, and

Pm+1
j = Pm

j +
j−1∑
j ′=0

M j ′∑
m′=0

tnm
j −nm′

j ′ Pm′
j ′ Fm′,m+1

j ′, j +

m−1∑
m′=0

tnm
j −nm′

j Pm′
j Fm′,m+1

j, j . (3.16)

The lemma is a definition by induction if we adopt the convention that spaces with negative indices
and summations where the upper index is less than the lower index are the zero space. In the inductive
process that will constitute the proof of the lemma we will first define Wj,m+1⊂Wj,m using (3.14) starting
with suitably defined spaces Wj,0 and then define

Wm
j =Wj,m ∩W⊥j,m+1.

Note that the right hand side of (3.14) depends only on Wj,m , Pm
j (through Gm

j ) and the spaces Vm′
j ′ with

j ′< j and m′ arbitrary, or j ′= j and m′<m. The relation (3.15) follows from (3.14) and induction, and
then (3.16) (where Pm

j actually means its restriction to Wj,m+1) is a definition by induction; it clearly
gives that the Pm

j (t) have values in W′j as required in (3.12).
We will illustrate the lemma and its proof with an example and then give a proof.

Example 3.17. Suppose Ẽ is spanned by elements e j,k ( j = 0, 1 and k= 1, . . . , K j ) and that the Hermit-
ian inner product is defined so that these vectors are orthonormal. Define the linear operator Ñ : Ẽ→ Ẽ

so that Ñe j,1 = 0 and Ñe j,k = e j,k−1 for 1 < k ≤ K j . Thus Ñ ke j,k = 0 and Ñ ke j,k+1 = e j,1 6= 0. Pick
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integers 0≤ s0 < s1 <min{K0, K1}, and let

W= span{e0,s0+1, e1,s1+1, e0,s1+1+ e1,s1}.

If w ∈W and w 6= 0, then et Ñw is a polynomial of degree exactly s0 or s1. Let W0,0 =W∩ ker Ñ s0+1,
that is,

W0,0 = span{e0,s0+1}.

Then et Ñw is polynomial of degree s0 if w ∈W0,0. Let W1,0 =W∩ ker Ñ s1+1
∩W⊥0,0. Thus

W1,0 = span{e1,s1+1, e0,s1+1+ e1,s1},

and et Ñw is polynomial of degree exactly s1 if w ∈W1,0 and w 6= 0. With these spaces we have

W=W0,0⊕W1,1

as an orthogonal sum. By (1) of Lemma 3.11, P0
0 = IW0,0 . So et Ñ P0

0 is the restriction of

et Ñ
=

s0∑
k=0

tk

k!
Ñ k

to W0,0, n0
0= s0, and G0

0 is (1/s0!)Ñ s0 restricted to W0,0. Thus V0
0= span{e0,1}. The space W0,1, defined

using (3.14), is the zero space by the convention on sums where the upper index is less than the lower
index. Thus M0 = 0. We next analyze what the lemma says when j = 1. As when j = 0, P0

1 = IW1,0 , so
et Ñ P0

1 is the restriction of

et Ñ
=

s1∑
k=0

tk

k!
Ñ k

to W1,0. Hence n0
1 = s1, and G0

1 = (1/s1!)Ñ s1 |W1,0 . The preimage of V0
0 by G0

1 is

W1,1 = span{e0,s1+1+ e1,s1},

and so W0
1 = span{e1,s1+1} and V0

1 = span{e1,1}. With w = e0,s1+1+ e1,s1 we have

G0
1w =

1
s1!

e0,1 = G0
0

s0!

s1!
e0,s0+1,

so with F0,1
0,1 :W1,1→W0

0 defined by

F0,1
0,1w =−

s0!

s1!
e0,s0+1

we have G0
1+G0

0 F0,1
0,1 = 0. Formula (3.16) reads

P1
1 (t)= IW1,1 + t s1−s0 F0,1

0,1

in this instance, and

et Ñ P1
1 (t)w =

s1∑
k=0

tk

k!
Ñ kw−

s0! t s1−s0

s1!

s0∑
k=0

tk

k!
Ñ ke0,s0+1.
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In the first sum the highest order term is t s1/s1! e0,1, while in the second it is t s0/s0! e0,1. Taking into
account the coefficient of the second sum we see that et Ñ P1

1 (t)w has order < s1. A more detailed
calculation gives that the order is s1− 1, and that the leading coefficient is given by the map

w 7→
( 1
(s1−1)!

−
s0!

s1!(s0−1)!

)
e0,2+ e1,1;

its image spans V1
1. Note that V0

0+V0
1+V1

1 is a direct sum and is invariant under Ñ .

Proof of Lemma 3.11. We note first that the properties of the objects in the lemma are such that

Dµ,∞ =

J∑
j=0

M j∑
m=0

Vm
j (3.18)

is a direct sum. Indeed, suppose we have wm
j ∈Wm

j , j = 0, . . . , J , m = 0, . . . ,M j such that

J∑
j=0

M j∑
m=0

Gm
j w

m
j = 0.

If some wm
j is nonzero, let

j0 =max{ j : ∃m such that wm
j 6= 0}, m0 =max{m : wm

j0 6= 0},

so that wm0
j0 6= 0. Thus

Gm0
j0 w

m0
j0 =−

j0−1∑
j=0

M j∑
m=0

Gm
j w

m
j −

m0−1∑
m=0

Gm
j0w

m
j0 ∈

j0−1∑
j=0

M j∑
m=0

Vm
j −

m0−1∑
m=0

Vm
j0
,

therefore wm0
j0 ∈Wj0,m0+1 by (3.14). But also wm0

j0 ∈Wm0
j0

, a space which by definition is orthogonal to
Wj0,m0+1. Consequently wm0

j0 = 0, a contradiction. It follows that (3.18) is a direct sum as claimed, and
in particular that the maps

Gm
j |Wm

j
:Wm

j → Vm
j

are isomorphisms.
Note that et Ñw is a nonzero polynomial whenever w ∈W r 0 and let

{s j }
J
j=0 = {deg et Ñw : w ∈W, w 6= 0}

be an enumeration of the degrees of these polynomials, in increasing order. Let W−1,0 = {0} ⊂W and
inductively define

Wj,0 =W∩ ker Ñ s j+1
∩W⊥j−1,0, j = 0, . . . , J.

Thus Wj,0 ⊂W and W=
J⊕

j=0
Wj,0 is an orthogonal decomposition of W; moreover,

Ñ s j |Wj,0 :Wj,0→ Ẽ

is injective for j = 0, . . . , J , and if w ∈Wj,0 r 0 then et Ñw is a polynomial of degree exactly s j . The
spaces Wm

j will be defined so that
⊕

mWm
j =Wj,0.
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Let P0
0 (t) = IW0,0 , let Q0

0(t) = et Ñ P0
0 (t). Then ord(Q0

0) = s0 and G0
0 = 1/s0! Ñ s0 |W0,0 . By (3.14),

W0,1 is the preimage of the zero vector space. Since Ñ s0 is injective on W0,0, W0,1 = 0, W0
0 =W0,0 and

M0 = 0. Let V0
0 = G0

0(W
0
0). This proves the lemma if J = 0.

We continue the proof using induction on J . Suppose that J ≥ 1 and that the lemma has been proved
for W′ =

⊕J−1
j=0 Wj,0, so we have all objects described in the statement of the lemma, for W′. The

corresponding objects for WJ ,0 are then defined by induction in the second index, as follows.
First, let P0

J (t)= IWJ ,0 , Q0
J = et Ñ P0

J (a polynomial in t of degree n0
J = sJ ) and G0

J = csJ (Q
0
J ).

Next, suppose we have found

WJ ,0 ⊃ · · · ⊃WJ ,M−1 and Pm
j ∈ L(Wj,m,W)[t, t−1

]

so that the properties described in the lemma are satisfied for j < J and all m, or j = J and m ≤ M−1.
As discussed, it follows that

M−2∑
m=0

Vm
J +

J−1∑
j=0

M j∑
m=0

Vm
j

is a direct sum and that the maps
Gm

j |Wm
j
:Wm

j → Vm
j (3.19)

defined so far are isomorphisms. Suppose further that the nm
J = ord(Qm

J ), m = 0, . . . ,M−1, are non-
negative and strictly decrease as m increases. In agreement with (3.14), let

WJ ,M = (G M−1
J )−1

(M−2∑
m=0

Vm
J +

J−1∑
j=0

M j∑
m=0

Vm
j

)
,

a subspace of the domain WJ ,M−1 of G M−1
J . Define WM−1

J =WJ ,M−1 ∩W⊥J ,M . If w ∈WJ ,M , then

G M−1
J w =

M−2∑
m=0

vm
J +

J−1∑
j=0

M j∑
m=0

vm
j

uniquely with vm
j ∈ Vm

j . Since the maps (3.19) are isomorphisms, there are unique maps

Fm,M
j,J :WJ ,M →Wm

j ,

j = 0, . . . , J − 1 and m = 0, . . . ,M j , or j = J and m = 0, . . . ,M − 2 such that

G M−1
J +

M−2∑
m=0

Gm
J Fm,M

J,J +
J−1∑
j=0

M j∑
m=0

Gm
j Fm,M

j,J = 0

on WJ ,M , that is, (3.15) holds. Define

P M
J = P M−1

J +

M−2∑
m=0

tnM−1
J −nm

J Pm
J Fm,M

J,J +
J−1∑
j=0

M j∑
m=0

tnM−1
J −nm

j Pm
j Fm,M

j,J

so (3.16) holds. Let QM
J = et Ñ P M

J . Because of (3.13), each term on the right in

QM
J = QM−1

J +

M−2∑
m=0

tnM−1
J −nm

J Qm
J Fm,M

J,J +
J−1∑
j=0

M j∑
m=0

tnM−1
J −nm

j Qm
j Fm,M

j,J .
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has order nM−1
J , so cn(QM

J )= 0 if n ≥ nM−1
J . If QM

J 6= 0, let nM
J = ord(QM

J ). A fortiori nM
J < nM−1

J .
We now show that if QM

J = 0, then WJ ,M = 0, so MJ = M − 1 and the inductive construction stops.
Let Fm,m+1

j, j :Wj,m+1→Wj,m be the inclusion map. Note that the combination of indices just used
does not appear in (3.15): these maps are not defined in the statement of the lemma. With this notation

Pm
J =

m−1∑
m′=0

tnm−1
J −nm′

J Pm′
J Fm′,m

J,J + H̃ m
J (3.20)

for m = 1, . . . ,M and some H̃ m
J ∈ L(WJ ,m,W′)[t, t−1

]. Let Pm be the set of finite strictly increasing
sequences ν = (ν0, ν1, . . . , νk) of elements of {0, . . . ,m} with ν0= 0 and νk =m. For ν = (ν0, . . . , νk)∈

Pm (m ≥ 1) define

Fν
J = Fν0,ν1

J,J ◦ · · · ◦ Fνm−1,νm
J,J ,

nνJ = (n
ν1−1
J − nν0

J )+ (n
ν2−1
J − nν1

J )+ · · ·+ (n
νk−1
J − nνk−1

J ).

Since the nm′
J strictly decrease as m′ increases, the numbers nνJ are strictly negative except when ν is

the maximal sequence νmax in {0, . . . ,m}, in which case nνmax
J = 0 and Fνmax is the inclusion of WJ ,m in

WJ ,0. It is not hard to prove by induction on m, using (3.20), that

Pm
J = P0

J
∑
ν∈Pm

tnνJ Fν
J + H m

J (3.21)

for all m ≥ 1 where H m
J ∈ L(WJ ,m,W′)[t, t−1

]. If QM
J = 0, then P M

J = 0, so, since Ñ sJ H M
J = 0,

Ñ sJ P M
J =

∑
ν∈PM

tnνJ Ñ sJ Fν
J = 0.

In particular, Ñ sJ Fνmax
J = c0(Ñ sJ P M

J )= 0. Since Ñ sJ is injective on WJ ,0, we conclude that the inclusion
of WJ ,M in WJ ,0 is zero. This means that WJ ,M = 0, so the inductive construction stops with MJ =M−1.

We will now show that there is a finite M such that QM
J = 0. The inductive construction gives, as long

as Qm
J 6= 0, the numbers nm

J = ord(Qm
J ) which form a strictly decreasing sequence in m, with n0

J = sJ .
Suppose nM−1

J ≥ 0, QM
J 6= 0, and nM

J < 0. In particular, the coefficient of t0 in QM
J vanishes. Using

(3.21) with m = M we have

et Ñ P M
J =

∑
ν∈PM

sJ∑
s=0

t s+nνJ

s!
Ñ s Fν

J + et Ñ H M
J .

The coefficient of t0 is

c0(et Ñ P M
J )=

∑
ν∈PM

1
(−nνJ )!

Ñ−nνJ Fν
J + c0(et Ñ H M

J );

recall that nνJ ≤ 0. Since H M
J maps into W′, we have Ñ sJ c0(H M

J )= 0, and since Ñ s
|WJ ,0 = 0 if s > sJ ,

Ñ sJ Ñ−nνJ = 0 if nνJ 6= 0. Thus

Ñ sJ c0(et Ñ P M
J )= Ñ sJ Fνmax

J ,

where νmax = (0, 1, . . . ,M). Since c0(et Ñ P M
J ) = 0 by hypothesis, since Fνmax

J is the inclusion of WJ ,M

in WJ ,0, and since Ñ sJ is injective on WJ ,0, WJ ,M = 0. �
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Proof of Lemma 3.5. Apply Lemma 3.11 to each of the spaces Wµl = π̃µl Dµl . The corresponding objects
are labeled adjoining l as a subindex. Get in particular, decompositions

π̃µl Dµl =

Jl⊕
j=0

M j,l⊕
m=0

Wm
j,l ⊂ Ẽµl

for each l, and operators Gm
j,l :W

m
j,l→ Vm

j,l ⊂ Ẽµl such that

Jl⊕
j=0

M j,l⊕
m=0

Gm
j,l |Wm

j,l
:

Jl⊕
j=0

M j,l⊕
m=0

Wm
j,l→ Dµl ,∞ =

Jl⊕
j=0

M j,l⊕
m=0

Vm
j,l

is an isomorphism. Let dm
j,l = dim Wm

j,l and pick a basis

wm
j,l.k, 1≤ k ≤ dm

j,l

of Wm
j,l , j = 0, . . . , Jl , m = 0, . . . ,M j,l . Then p̃m

j,l,k(t)= t−nm
j,l Pm

j,l(t)w
m
j,l,k ∈Wµl . These elements

p̃m
j,l,k ∈Wµl [t, t−1

], for j = 0, . . . , Jl, m = 0, . . . ,M j,l, l = 1, . . . dm
j,l,

are the ones Lemma 3.5 claims exist. Indeed, since Qm
j,l(t)= et Ñµl Pm

j,l(t),

lim
Re t→∞

t∈Sθ

et Ñµl t−nm
j,l Pm

j,l(t)w
m
j,l,k = Gm

j,lw
m
j,l,l .

Since the Gm
j,lw

m
j,l,k form a basis of Dµ,∞, the t−nm

j,l Pm
j,l(t)w

m
j,l,k , form a basis of Wµl for all t ∈ Sθ with

large enough real part. �

4. Asymptotics of the projection

With the setup and (slightly changed) notation leading to and in the proof of Proposition 3.3, given a
subspace D ⊂ E and the linear map a : E→ E we have, for fixed θ ≥ 0 and t ∈ Sθ = {t ∈ C : |Im t | ≤ θ},

etaD = span{vk(t)}, Re t � 0

with

vk(t)= eta′gk(t)+
∑

λ∈spec a
Re λ<µk

et (λ−µk) p̂k,λ(t). (4.1)

The gk(t) are polynomials in 1/t with values in Ẽµk , the collection of vectors

g∞,k = lim
t→∞

gk(t)

is a basis of D∞, theµk form a finite sequence, possibly with repetitions, of elements in {Re λ :λ∈ spec a},
and we have

p̂k,λ(t)= et Nλπλ pk(t),
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where the p(t) are polynomials in t and 1/t with values in E. The additive semigroup Sa ⊂C (possibly
without identity) generated by the set (3.8) is a subset of {λ ∈ C : Re λ ≤ 0} and has the property that
{ϑ ∈Sa : Reϑ > µ} is finite for every µ ∈ R.

Proposition 4.2. Let K ∈ Grd ′(E) be complementary to D, and suppose that

VK ∩�
+

θ (D)=∅. (4.3)

There are polynomials pϑ(z1, . . . , zN , t) with values in End(E) and C-valued polynomials

qϑ(z1, . . . , zN , t)

such that

∃C, R0 > 0 such that
∣∣qϑ(ei t Im λ1, . . . , ei t Im λN , t)

∣∣> C if t ∈ Sθ , Re t > R0 (4.4)

and such that

πeta D,K =
∑
ϑ∈Sa

etϑ pϑ(ei t Im λ1, . . . , ei t Im λN , t)
qϑ(ei t Im λ1, . . . , ei t Im λN , t)

, t ∈ Sθ , Re t > R0,

with uniform convergence in norm in the indicated subset of Sθ .

Proof. Let K ⊂ E be complementary to D as indicated in the statement of the proposition, let u =
[u1, . . . , ud ′] be an ordered basis of K . Write g for an ordering of the basis {g∞,k} of D∞. With the
vk(t) ordered as the g∞,k to form v(t), we have[

v(t) u
]
=
[
g u

]
·

[
α(t) 0
β(t) I

]
, (4.5)

where
α(t)=

∑
k

∑
λ∈spec a
Re λ≤µk

et (λ−µk)αk,λ(t), β(t)=
∑
k

∑
λ∈spec a
Re λ≤µk

et (λ−µk)βk,λ(t). (4.6)

The entries of the matrices αk,λ(t) and βk,λ(t) are both polynomials in t and 1/t , but only in 1/t if
Re λ= µk . Define

α(0)(t)=
∑
k

∑
λ∈spec a
Re λ=µk

et (λ−µk)αk,λ(t), α̃(t)=
∑
k

∑
λ∈spec a
Re λ<µk

et (λ−µk)αk,λ(t), (4.7)

and likewise β(0)(t) and β̃(t). Note that α̃(t) and β̃(t) decrease exponentially as Re t →∞ with |Im t |
bounded.

The hypothesis (4.3) implies that
[
α(t) 0
β(t) I

]
is invertible for every sufficiently large Re t , so α(t) is

invertible for such t . In fact,

there are C, R0 > 0 such that
∣∣det(α(t))

∣∣> C if t ∈ Sθ , Re t > R0. (4.8)

For suppose this is not the case. Then there is a sequence {tν} in Sθ with Re tν→∞ as ν→∞ such that
detα(tν)→ 0. Since both α(tν) and β(tν) are bounded, we may assume, passing to a subsequence, that
they converge. It follows that etνa D converges, by definition, to an element D′ ∈�+θ (D). Also the matrix
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in (4.5) converges. The vanishing of the determinant of the limiting matrix implies that K ∩ D′ 6= {0},
contradicting (4.3). Thus (4.8) holds.

If φ ∈ E then of course

φ =
[
g u

]
·

[
ϕ1

ϕ2

]
,

where the ϕi are columns of scalars. Substituting[
g u

]
=
[
v(t) u

]
·

[
α(t)−1 0

−β(t)α(t)−1 I

]
gives

φ =
[
v(t) u

]
·

[
α(t)−1 0

−β(t)α(t)−1 I

] [
ϕ1

ϕ2

]
=
[
v(t) u

]
·

[
α(t)−1ϕ1

−β(t)α(t)−1ϕ1
+ϕ2

]
;

hence
φ = v(t) ·α(t)−1ϕ1

+ u · (−β(t)α(t)−1ϕ1
+ϕ2).

This is the decomposition of φ according to E= etaD⊕ K ; therefore

πeta D,Kφ = v(t) ·α(t)−1ϕ1.

Replacing v(t)= g ·α(t)+ u ·β(t) we obtain

πeta D,Kφ = (g ·α(t)+ u ·β(t))α(t)−1ϕ1
= (g+ u ·β(t)α(t)−1)ϕ1. (4.9)

The matrix α(0)(t) is invertible because of (4.8) and the decomposition α(t)= α(0)(t)+ α̃(t), so

β(t)α(t)−1
= β(t)α(0)(t)−1(I + α̃(t)α(0)(t)−1)−1

= β(t)α(0)(t)−1
∞∑

l=0
(−1)l[α̃(t)α(0)(t)−1

]
l .

(4.10)

The series converges absolutely and uniformly in {t ∈ Sθ : Re t > R0} for some real R0 ∈ R. The entries
of α(0)(t) are expressions ∑

λ∈spec a
ei t Im λ

N∑
ν=0

cλ,ν t−ν;

hence
detα(0)(t)= q(ei t Im λ1, . . . , ei t Im λN , 1/t),

for some polynomial q(z1, . . . , zN , 1/t). Note that because of (4.8),

there are C, R0 > 0 such that
∣∣det(α0(t))

∣∣> C if t ∈ Sθ , Re t > R0. (4.11)

Since α(0)(t)−1
= (detα(0)(t))−11(t)† where 1(t)† is the matrix of cofactors of α(0)(t), (4.10) and (4.6)

give
β(t)α(t)−1

=
∑
ϑ∈Sa

rϑ(t)etϑ (4.12)

where Sa was defined before the statement of Proposition 4.2 as the additive semigroup generated by
{λ−Re λ′ : λ, λ′ ∈ spec a, Re λ≤ Re λ′} and rϑ(t) is a matrix whose entries are of the form

pϑ(ei t Im λ1, . . . , ei t Im λN , t, 1/t)
q(ei t Im λ1, . . . , ei t Im λN , 1/t)nϑ

,
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for some polynomial pϑ(z1, . . . , zN , t, 1/t) and nonnegative integers nϑ . Multiplying the numerator
and denominator by the same nonnegative (integral) power of t we replace the dependence on 1/t by
polynomial dependence in ei t Im λ1, . . . , ei t Im λN , t only. This gives the structure of the “coefficients” of
the etϑ stated in the proposition for the expansion of πeta D,K . �

The terms in (4.12) with Reϑ = 0 come from β(0)(t)α(0)(t)−1. So the principal part of πeta D,K is

σ (πeta D,K )φ = (g+ u ·β(0)(t)α(0)(t)−1)ϕ1

This principal part is not itself a projection, but

‖σ (πeta D,K )−πeta′D∞,K‖→ 0 as Re t→∞, t ∈ Sθ .

We now restate Proposition 4.2 as an asymptotics for the family (2.10) using the notation κ for the
action on E and express the asymptotics of πκ−1

ζ1/m D,K in terms of the boundary spectrum of A exploiting
(3.1). Condition (4.14) below corresponds to our geometric condition in part (iii) of Theorem 2.15
expressing the fact that 3 is a sector of minimal growth for A∧,D∧ . The �-limit set is the one defined in
(2.14). Recall that by ζ 1/m we mean the root defined by the principal branch of the logarithm on CrR−.
We let λ0 6= 0 be an element in the central axis of 3 and define 3̃= {ζ : ζλ0 ∈3}; this is a closed sector
not containing the negative real axis.

Let S⊂ C be the additive semigroup generated by

{σ − i Im σ ′ : σ, σ ′ ∈ specb(A), −m/2< Im σ ≤ Im σ ′ < m/2}.

Thus −iS=Sa. Let σ1, . . . , σN be an enumeration of the elements of

6 = specb(A)∩ {−m/2< Im σ < m/2}.

Theorem 4.13. Let K ∈ Grd ′(E) be complementary to D, suppose that

VK ∩�
−

3(D)=∅. (4.14)

Then there are polynomials pϑ(z1, . . . , zN , t) with values in End(E) and C-valued polynomials

qϑ(z1, . . . , zN , t)

such that

∃C, R0 > 0 such that
∣∣qϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m, t)

∣∣> C if ζ ∈ 3̃, |ζ |> R0, (4.15)

and such that

πκ−1
ζ1/m D

,K =
∑
ϑ∈S

ζ−iϑ/m pϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )
qϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )

, ζ ∈ 3̃, |ζ |> R0,

with uniform convergence in norm in the indicated subset of 3̃.

The elements ϑ ∈S are of course finite sums ϑ =
∑

n jk(σ j − i Im σk) for some nonnegative integers
n jk , with σ j , σk ∈6 and Im σ j ≤ Im σk . Separating real and imaginary parts we may write ζ−iϑ/m as a
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product of factors
ζ n jk(Im σ j−Im σk)/m

ζ in jk Re σk/m .

We thus see that we may also organize the series expansion of πκ−1
ζ1/m D

,K in the theorem as

πκ−1
ζ1/m D

,K =
∑
ϑ∈SR

ζ−iϑ/m p̃ϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )
q̃ϑ(ζ i Re σ1/m, . . . , ζ i Re σN /m,m−1 log ζ )

,

where SR ⊂ R is the additive semigroup generated by{
Im σ − Im σ ′ : σ, σ ′ ∈6, Im σ ′ ≤ Im σ ′

}
and p̃ϑ , q̃ϑ are still polynomials.

Remark 4.16. If 6 lies on a line Re σ = c0, then −iS ⊂ R− − ic0. Also in this case, the coefficients
of the exponents in (4.1) can be assumed to have vanishing imaginary part (see Remark 3.7). Assuming
this, the coefficients of the exponents in (4.7) are real, in particular detα(0)(t) is just a polynomial in 1/t ,
the coefficients rϑ in the expansion (4.12) can be written as rational functions of t only. Consequently,
in the expansion of the projection in Theorem 4.13, the powers −iϑ are real ≤ 0 and the coefficients can
be written as rational functions of log ζ .

5. Asymptotic structure of the resolvent

For the analysis of (AD−λ)
−l for l ∈N sufficiently large we make use of the representation (1.8) of the

resolvent as

(AD− λ)
−1
= B(λ)+GD(λ), (5.1)

where B(λ) is a parametrix of (Amin− λ) and

GD(λ)= [1− B(λ)(A− λ)]FD(λ)
−1T (λ). (5.2)

The starting point of our analysis is

(AD− λ)
−l
=

1
(l−1)!

∂ l−1
λ (AD− λ)

−1 for any l ∈ N.

We are thus led to further analyze the asymptotic structure of the pieces involved in the representation
of the resolvent. In [Gil et al. 2010] we described in full generality the behavior of

B(λ), 1− B(λ)(A−λ), T (λ),

and we analyzed FD(λ)
−1 in the special case that D is stationary. In the case of a general domain D, we

now obtain as a consequence of Theorem 4.13 the following result.

Proposition 5.3. For R > 0 large enough we have

FD(λ)
−1
∈ (S0+

R ∩ S0)(3R;D∧/D∧,min,Dmax/Dmin).

The components of FD(λ)
−1 have orders ν+ with ν ∈ E, the semigroup defined in (1.6), and their phases

belong to the set M defined in (1.5).
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Here S0(3R;D∧/D∧,min,Dmax/Dmin) denotes the standard space of (anisotropic) operator-valued sym-
bols of order zero on 3R (see the Appendix), where D∧/D∧,min carries the trivial group action, and
Dmax/Dmin is equipped with the group action κ̃% = θ−1κρθ . The symbol class

S0+
R (3R;D∧/D∧,min,Dmax/Dmin)

is discussed in the Appendix (see Definition A.7). Recall that 3R = {λ ∈3 : |λ| ≥ R}.

Proof of Proposition 5.3. We follow the line of reasoning of [Gil et al. 2010, Propositions 5.10 and 5.17].
The crucial point is that we now know from Theorem 4.13 and Proposition 2.17 that F∧,D∧(λ)

−1 belongs
to the symbol class

(S0+
R ∩ S0)(3R;D∧/D∧,min,D∧,max/D∧,min),

where the actions on D∧/D∧,min and D∧,max/D∧,min are, respectively, the trivial action as above and
κ%. The components of F∧,D∧(λ)

−1 have orders ν+ with ν ∈ E, and their phases belong to the set M.
Consequently, 80(λ)= θ

−1 F∧,D∧(λ)
−1 belongs to

(S0+
R ∩ S0)(3R;D∧/D∧,min,Dmax/Dmin),

and we have the same statement about the orders and phases of its components.
Phrased in the terminology of the present paper, we proved (see [Gil et al. 2010, Proposition 5.10])

that the operator family

F(λ)= [T (λ)(A− λ)] : Dmax/Dmin→ D∧/D∧,min

belongs to the symbol class

(S0+
R ∩ S0)(3R;Dmax/Dmin,D∧/D∧,min),

and that
F(λ)80(λ)− 1= R(λ) ∈ S−1+ε(3R;D∧/D∧,min,D∧/D∧,min)

for any ε > 0. More precisely, F(λ) is an anisotropic log-polyhomogeneous operator-valued symbol.
We thus can infer further that in fact

R(λ) ∈ S(−1)+
R (3R;D∧/D∧,min,D∧/D∧,min),

and that the components of R(λ) have orders ν+ with ν ∈ E, ν ≤ −1, and phases belonging to the set
M. The usual Neumann series argument then yields the existence of a symbol

R1(λ) ∈ S(−1)+
R (3R;D∧/D∧,min,D∧/D∧,min)

such that F(λ)80(λ)(1+ R1(λ))= 1 for λ ∈3R . Consequently FD(λ)
−1
=80(λ)(1+ R1(λ)) lies in

(S0+
R ∩ S0)(3R;D∧/D∧,min,Dmax/Dmin),

and its components have the structure that was claimed. �

With Proposition 5.3 and our results in [Gil et al. 2010, Section 5] at our disposal, we now obtain a
general theorem about the asymptotics of the finite rank contribution GD(λ) in the representation (5.1)
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of the resolvent. Before stating it we recall and rephrase the relevant results from that paper about the
other pieces involved in (5.2) using the terminology of the present paper.

Concerning T (λ) we have [Gil et al. 2010, Proposition 5.5]:

(i) For any cut-off function ω ∈C∞c ([0, 1)) the function T (λ)(1−ω) is rapidly decreasing on 3 taking
values in L(x−m/2 H s

b ,D∧/D∧,min), and

t (λ)= T (λ)ω ∈ S−m(3;Ks,−m/2,D∧/D∧,min).

Here Ks,−m/2 is equipped with the (normalized) dilation group action κ%, and we give D∧/D∧,min

again the trivial action.

(ii) The family t (λ) admits a full asymptotic expansion into anisotropic homogeneous components. In
particular, we have

t (λ) ∈ S(−m)+
R (3;Ks,−m/2,D∧/D∧,min).

The spaces Ks,−m/2 are weighted cone Sobolev spaces on Y∧. We discussed them in [Gil et al. 2006,
Section 2] and reviewed the definition in [Gil et al. 2010, Section 4] (see also [Schulze 1991], where
different weight functions as x→∞ are considered). Note that K0,−m/2

= x−m/2L2
b(Y
∧
; E).

Concerning 1−B(λ)(A−λ) Proposition 5.20 of [Gil et al. 2010] gives, for any ϕ ∈C∞(M;End(E)):

(iii) The operator function P(λ)= ϕ[1− B(λ)(A− λ)] is a smooth function

3R→ L(Dmax/Dmin, x−m/2 H s
b ),

which is defined for R > 0 large enough. Let ω ∈C∞c ([0, 1)) be an arbitrary cut-off function. Then
(1−ω)P(λ) is rapidly decreasing on 3R , and

p(λ)= ωP(λ) ∈ S0(3R;Dmax/Dmin,Ks,−m/2);

here Ks,−m/2 is equipped with the (normalized) dilation group action κ%, and the quotient Dmax/Dmin

is equipped with the group action κ̃%.

(iv) p(λ) is an anisotropic log-polyhomogeneous operator-valued symbol on 3R . In particular,

p(λ)= ωP(λ) ∈ S0+
R (3R;Dmax/Dmin,Ks,−m/2).

With M as in (1.5) and E as in (1.6) we have:

Theorem 5.4. Let ϕ ∈ C∞(M;End(E)), and let ω, ω̃ ∈ C∞c ([0, 1)) be arbitrary cut-off functions. For
R > 0 large enough the operator family GD(λ) is defined on 3R , and

(1−ω)ϕGD(λ), ϕGD(λ)(1−ω) ∈ S
(
3R, l1(x−m/2 H s

b , x−m/2 H t
b)
)
.

Moreover,
ωϕGD(λ)ω̃ ∈ (S

(−m)+
R ∩ S−m)(3R;K

s,−m/2,Kt,−m/2),

where the spaces Ks,−m/2 and Kt,−m/2 are equipped with the group action κ%. In fact, ωϕGD(λ)ω̃ takes
values in the trace class operators, and all statements about symbol estimates and asymptotic expansions
hold in trace class norms. The components have orders ν+ with ν ∈ E, ν ≤−m, and their phases belong
to M.
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Corollary 5.5. For R > 0 sufficiently large and ϕ ∈ C∞(M;End(E)), the operator family ϕG D(λ) is a
smooth family of trace class operators in x−m/2L2

b for λ ∈3R , and Tr(ϕG D(λ)) ∈ (S
(−m)+
R ∩ S−m)(3R).

The components have orders ν+ with ν ∈ E, ν ≤−m, and their phases belong to the set M.

Theorem 5.4 and Corollary 5.5 follow at once from the previous results about the pieces involved
in the representation (5.2) for GD(λ) and the properties of the operator-valued symbol class discussed
in the Appendix. In the statement of Corollary 5.5 the scalar symbol spaces are also anisotropic with
anisotropy m. In particular, this means that Tr(ϕG D(λ))= O(|λ|−1) as |λ| →∞.

We are now in the position to prove the trace expansion claimed in Theorem 1.4. To this end, we need
the following result [Gil et al. 2010, Theorem 4.4]:

(v) Let ϕ ∈ C∞(M;End(E)). If ml > n, then ϕ∂ l−1
λ B(λ) is a smooth family of trace class operators

in x−m/2L2
b, and the trace Tr(ϕ∂ l−1

λ B(λ)) is a log-polyhomogeneous symbol on 3. For large λ we
have

Tr(ϕ∂ l−1
λ B(λ))∼

n−1∑
j=0
α jλ

(n−lm− j)/m
+αn log(λ)λ−l

+ r(λ),

where
r(λ) ∈ (S(−lm)+

R ∩ S−lm)(3).

Now, combining (v) with Corollary 5.5, we finally obtain:

Theorem 5.6. Let 3 ⊂ C be a closed sector. Assume that A ∈ x−m Diffm
b (M; E), m > 0, with domain

D ⊂ x−m/2L2
b satisfies the ray conditions (1.3). Then 3 is a sector of minimal growth for AD, and for

ml > n, (AD− λ)
−l is an analytic family of trace class operators on 3R for some R > 0. Moreover, for

ϕ ∈ C∞(M;End(E)),
Tr(ϕ(AD− λ)

−l) ∈ (S(n−lm)+
R,hol ∩ Sn−lm)(3R).

The components have orders ν+ with ν ∈ E, ν ≤ n− lm, where E is the semigroup defined in (1.6), and
their phases belong to the set M defined in (1.5).

More precisely, we have the expansion

Tr(ϕ(AD− λ)
−l)∼

n−1∑
j=0
α jλ

(n−lm− j)/m
+αn log(λ)λ−l

+ sD(λ),

with constants α j ∈ C independent of the choice of domain D, and a domain dependent remainder
sD(λ) ∈ (S

(−lm)+
R,hol ∩ S−lm)(3R).

If all elements of the set {σ ∈ specb(A) : −m/2 < Im σ < m/2} are vertically aligned, then the
coefficients rν in the expansion (1.7) of sD(λ) are rational functions of log λ only. This is because, in
this case, the series representation of the projection in Theorem 4.13 contains only real powers of ζ and
rational functions of log ζ ; see Remark 4.16. This simplifies the structure of F∧,D∧(λ)

−1 according to
Section 2, and consequently the structure of FD(λ)

−1 (see the proof of Proposition 5.3). As recalled in
this section, the terms coming from B(λ) and the other pieces in the representation (5.2) of GD(λ) do
not generate phases.

If D is stationary, then the expansion (1.7) of sD(λ) is even simpler: the rν are just polynomials in
log λ, and the numbers ν are all integers. To see this recall that if D∧ is κ-invariant, then F∧,D∧(λ)

−1 is
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homogeneous, see (2.3), so it belongs to the class

S(0)(3R;D∧/D∧,min,D∧,max/D∧,min)⊂ (S0+
R ∩ S0)(3R;D∧/D∧,min,D∧,max/D∧,min).

Consequently, by the proof of Proposition 5.3, FD(λ)
−1 is log-polyhomogeneous. This property propa-

gates throughout the rest of the results in this section and gives the structure of sD(λ) just asserted.

Appendix: A class of symbols

Let 3 ⊂ C be a closed sector. Let E and Ẽ be Hilbert spaces equipped with strongly continuous group
actions κ% and κ̃%, % > 0, respectively. Recall that the space Sν(3; E, Ẽ) of anisotropic operator-valued
symbols on the sector 3 of order ν ∈ R is defined as the space of all a ∈ C∞(3,L(E, Ẽ)) such that for
all α, β ∈ N0 ∥∥κ̃−1

|λ|1/m∂
α
λ ∂

β

λ̄
a(λ)κ|λ|1/m

∥∥
L(E,Ẽ) = O(|λ|ν/m−α−β) as |λ| →∞ in 3. (A.1)

By S(ν)(3; E, Ẽ) we denote the space of anisotropic homogeneous functions of degree ν ∈ R, that is,
all a ∈ C∞(3r {0},L(E, Ẽ)) such that

a(%mλ)= %ν κ̃%a(λ)κ−1
% for % > 0 and λ ∈3r {0}. (A.2)

Clearly χ(λ)S(ν)(3; E, Ẽ)⊂ Sν(3; E, Ẽ) with the obvious meaning of notation, where χ ∈C∞(R2) is
any excision function of the origin. When E = Ẽ = C equipped with the trivial group action the spaces
are dropped from the notation.

Such symbol classes were introduced by Schulze in his theory of pseudodifferential operators on
manifolds with singularities, see [Schulze 1991]. In particular, classical symbols, that is, symbols that
admit asymptotic expansions into homogeneous components, play an important role and were used in
[Gil et al. 2006] for the construction of a parameter-dependent parametrix of Amin−λ. As illustrated in
the present paper, for a general domain D, the structure of (AD− λ)

−1 is rather involved, and classical
symbols do not suffice to describe it. We are therefore led to introduce a new class of (anisotropic)
operator-valued symbols that admit expansions of a more general kind. As it turns out, this class occurs
naturally and is well adapted to describe the structure of resolvents in the general case.

Remark A.3. The operator-valued symbol classes Sν(3; E, Ẽ) and S(ν)(3; E, Ẽ), as well as the spaces
S(ν

+)
R (3; E, Ẽ) and Sν

+

R (3; E, Ẽ) defined in this Appendix, all depend on the choice of the group actions
on E and Ẽ . They also depend on the anisotropy parameter m that appears in (A.1) and (A.2). However,
in order to avoid an overload of notation, we will not emphasize this dependence. In this paper, the
anisotropy m is always the order of the cone operator A under study, and the group actions are explicitly
defined when necessary.

Recall that V [z1, . . . , zM ] denotes the space of polynomials in the variables z j , j = 1 . . . ,M , with
coefficients in V for any vector space V . We shall make use of this in particular for V = C and
V = S(0)(3; E, Ẽ). In what follows, all holomorphic powers and logarithms on

◦

3 are defined using
a holomorphic branch of the logarithm with cut 0 6⊂3.

Definition A.4. Let ν ∈R. We define S(ν
+)

R (3; E, Ẽ) as the space of all L(E, Ẽ)-valued functions s(λ)
of the following form:
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There exist polynomials p ∈ S(0)(3; E, Ẽ)[z1, . . . , zN+1] and q ∈C[z1, . . . , zN+1] in N+1 variables,
N = N (s) ∈ N0, and real numbers µk = µk(s), k = 1, . . . , N , such that the following holds:

(a) |q(λiµ1, . . . , λiµN , log λ)| ≥ c > 0 for λ ∈3 with |λ| sufficiently large;

(b) s(λ)= r(λ)λν/m , where

r(λ)= p(λiµ1, . . . , λiµN , log λ)
q(λiµ1, . . . , λiµN , log λ)

. (A.5)

To clarify the notation, we note that

p(λiµ1, . . . , λiµN , log λ)=
∑

|α|+k≤M
aα,k(λ)λiµ1α1 · · · λiµNαN logk λ

as a function 3r {0} → L(E, Ẽ) with certain aα,k(λ) ∈ S(0)(3; E, Ẽ). We call the µk the phases and
ν+ the order of s(λ).

Every s(λ)∈ S(ν
+)

R (3; E, Ẽ) is an operator function defined everywhere on 3 except at λ= 0 and the
zero set of q(λiµ1, . . . , λiµN , log λ). The latter is a discrete subset of 3r {0}, and it is finite outside any
neighborhood of zero in view of (a).

Proposition A.6. (1) S(ν
+)

R (3; E, Ẽ) is a vector space.

(2) Let Ê be a third Hilbert space with group action κ̂%, % > 0. Composition of operator functions
induces a map

S
(ν+1 )

R (3; Ẽ, Ê)× S
(ν+2 )

R (3; E, Ẽ)→ S((ν1+ν2)
+)

R (3; E, Ê).

(3) For α, β ∈ N0 we have

∂αλ ∂
β

λ̄
: S(ν

+)
R (3; E, Ẽ)→ S((ν−mα−mβ)+)

R (3; E, Ẽ).

(4) Let s(λ) ∈ S(ν
+)

R (3; E, Ẽ). Then

χ(λ)s(λ) ∈ Sν+ε(3; E, Ẽ),

for any ε > 0 and any excision function χ ∈ C∞(R2) of the set where s(λ) is undefined.

(5) Let s(λ) ∈ S(ν
+)

R (3; E, Ẽ) and assume that∥∥κ̃−1
|λ|1/m s(λ)κ|λ|1/m

∥∥
L(E,Ẽ) = O(|λ|ν/m−ε)

as |λ| →∞ for some ε > 0. Then s(λ)≡ 0 on 3.
In particular, S(ν

+

1 )
R (3; E, Ẽ)∩ S(ν

+

2 )
R (3; E, Ẽ)= {0} whenever ν1 6= ν2.

Proof. (1) and (2) are obvious. For (3) note that

∂αλ ∂
β

λ̄
: S(ν0)(3; E, Ẽ)→ S(ν0−mα−mβ)(3; E, Ẽ),

for any ν0. Consequently, ∂αλ ∂
β

λ̄
acts in the spaces

S(ν0)(3; E, Ẽ)[λiµ1, . . . , λiµN , log λ] → S(ν0−mα−mβ)(3; E, Ẽ)[λiµ1, . . . , λiµN , log λ],

C[λiµ1, . . . , λiµN , log λ] → S(−mα−mβ)(3)[λiµ1, . . . , λiµN , log λ],
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with the obvious meaning of notation (the latter is a special case of the former in view of C⊂ S(0)(3)).
Statement (3) is an immediate consequence of these observations.

Statement (4) follows at once in view of property (a) in Definition A.4 (and using (3) to estimate
higher derivatives). Note also that, for large λ, the numerator in (A.5) can be regarded as a polynomial
in log λ of operator-valued symbols of order zero.

In the proof of (5) we may without loss of generality assume that ν = 0, so s(λ) is of the form (A.5).
Since |q(λiµ1, . . . , λiµN , log λ)| =O(logM

|λ|) as |λ|→∞ we see that it is sufficient to consider the case
q ≡ 1, so s(λ)= p(λiµ1, . . . , λiµN , log λ). For this case we will prove that if

‖κ̃−1
|λ|1/m s(λ)κ|λ|1/m‖L(E,Ẽ)→ 0

as |λ| → ∞, then s(λ) ≡ 0 on 3. For this proof we can without loss of generality further assume that
s(λ) contains no logarithmic terms, so we have s(λ)= p(λiµ1, . . . , λiµN ). Moreover, we can assume that
the numbers µ1, . . . , µN ∈R are independent over the rationals, for if this is not the case we can choose
rationally independent numbers µ̃1, . . . , µ̃K ∈ R such that µ j =

∑K
k=1 z jkµ̃k with coefficients z jk ∈ Z,

and so

λiµ j =

K∏
k=1
(λiµ̃k )z jk

for every j = 1, . . . , N . Consequently, there are numbers N j ∈ N, j = 1, . . . , K , and a polynomial
p̃ ∈ S(0)(3; E, Ẽ)[z1, . . . , zK ] such that

λiµ̃1 N1 · · · λiµ̃K NK p(λiµ1, . . . , λiµN )= p̃(λiµ̃1, . . . , λiµ̃K ),

and both assertion and assumption are valid for p if and only if they hold for p̃. So we can indeed assume
that the numbers µ j , j = 1, . . . , N , are independent over the rationals.

Now let λ0 ∈3 be arbitrary with |λ0| = 1, and consider the function f : (0,∞)→L(E, Ẽ) defined by

f (%)= κ̃−1
% p(%imµ1λ

iµ1
0 , . . . , %imµNλ

iµN
0 )κ%.

This function is of the form

f (%)=
∑
|α|≤M

aα(%iµ1)α1 · · · (%iµN )αN

for certain aα ∈ L(E, Ẽ), and by assumption ‖ f (%)‖L(E,Ẽ)→ 0 as %→∞. Let p0(z)=
∑
|α|≤M

aαzα for
z = (z1, . . . , zN ) ∈ CN , and consider the curve

% 7→ (%iµ1, . . . , %iµN ) ∈ S1
× . . .×S1

on the N -torus. The image of this curve for % > %0 is a dense subset of the N -torus, where %0 > 0 can
be chosen arbitrarily, because the µ j are independent over the rationals. The function f is merely the
operator polynomial p0(z) restricted to that curve. Since f (%)→ 0 as %→∞, this implies that for any
ε > 0 we have ‖p0(z)‖< ε for all z in a dense subset of the N -torus. This shows that p0(z) is the zero
polynomial, and so the function f (%)= 0 for all % > 0.

Consequently, the function p(λiµ1, . . . , λiµN ) vanishes along the ray through λ0, and because λ0 was
arbitrary the proof is complete. �



146 JUAN B. GIL, THOMAS KRAINER AND GERARDO A. MENDOZA

Definition A.7. For ν ∈ R define Sν
+

R (3; E, Ẽ) as the space of all operator-valued symbols a(λ) that
admit an asymptotic expansion

a(λ)∼
∞∑
j=0
χ j (λ)s j (λ), (A.8)

where s j (λ) ∈ S
(ν+j )

R (3; E, Ẽ), ν = ν0 > ν1 > · · · and ν j → −∞ as j →∞, and χ j (λ) is a suitable
excision function of the set where s j (λ) is undefined.

We call s j (λ) the component of order ν+j of a(λ). The components are uniquely determined by the
symbol a(λ) (see Proposition A.9).

Familiar symbol classes like classical (polyhomogeneous) symbols, symbols that admit asymptotic
expansions into homogeneous components of complex degrees, or log-polyhomogeneous symbols are
all particular cases of the class defined in Definition A.7. In particular, the denominators q in (A.5) are
equal to one in all those cases.

Of particular interest in the context of this paper are symbols a(λ)with the property that all components
s j (λ) have orders ν+j with ν j ∈E, the semigroup defined in (1.6), and phases in the set M defined in (1.5).

Proposition A.9. (1) Sν
+

R (3; E, Ẽ) is a vector space. For any ε > 0 we have the inclusion

Sν
+

R (3; E, Ẽ)⊂ Sν+ε(3; E, Ẽ).

(2) Let a(λ) ∈ Sν
+

R (3; E, Ẽ). The components s j (λ) in (A.8) are uniquely determined by a(λ).

(3) Let Ê be a third Hilbert space with group action κ̂%, % > 0. Composition of operator functions
induces a map

S
ν+1
R (3; Ẽ, Ê)× S

ν+2
R (3; E, Ẽ)→ S(ν1+ν2)

+

R (3; E, Ê).

The components of the composition of two symbols are obtained by formally multiplying the asymp-
totic expansions (A.8) of the factors.

(4) For α, β ∈ N0 we have

∂αλ ∂
β

λ̄
: Sν

+

R (3; E, Ẽ)→ S(ν−mα−mβ)+

R (3; E, Ẽ).

If s j (λ) are the components of a(λ) ∈ Sν
+

R (3; E, Ẽ), the components of ∂αλ ∂
β

λ̄
a(λ) are ∂αλ ∂

β

λ̄
s j (λ).

(5) Let a j (λ) ∈ S
ν+j
R (3; E, Ẽ), where ν j → −∞ as j → ∞, and let ν̄ = max ν j . Let a(λ) be an

operator-valued symbol such that a(λ)∼
∑
∞

j=0 a j (λ).
Then a(λ) ∈ Sν̄

+

R (3; E, Ẽ), and the component of a(λ) of order M+ is obtained by adding the
components of that order of the a j (λ). This is a finite sum for each M ≤ ν̄ and will yield a nontrivial
result for at most countably many values of M that form a sequence tending to −∞.

Proof. Everything follows from Proposition A.6 and standard arguments. Because of its importance we
will, however, prove (2):

To this end, assume that 0 ∼
∑
∞

j=0 χ j (λ)s j (λ) with s j (λ) ∈ S
(ν+j )

R (3; E, Ẽ), ν j > ν j+1 → −∞ as
j→∞. We need to prove that all s j (λ) are zero. Because

χ0(λ)s0(λ)∼−
∞∑
j=1
χ j (λ)s j (λ),
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we see that χ0(λ)s0(λ) ∈ Sν1+ε(3; E, Ẽ) for every ε > 0. Choose ε > 0 such that ν1+ ε < ν0. Then∥∥κ̃−1
|λ|1/mχ0(λ)s0(λ)κ|λ|1/m

∥∥
L(E,Ẽ) = O(|λ|(ν1+ε)/m)

as |λ| →∞, and by Proposition A.6(5) we obtain that s0(λ)≡ 0 on 3. Consequently all s j (λ) are zero
by induction, and (2) is proved. �

By Sν
+

R,hol(3; E, Ẽ) we denote the class of symbols a(λ) ∈ Sν
+

R (3; E, Ẽ) that are holomorphic in
◦

3.
Let s j (λ) be the components of a(λ)∈ Sν

+

R,hol(3; E, Ẽ). By Proposition A.9, ∂λ̄s j (λ) are the components
of ∂λ̄a(λ)≡ 0, and consequently all components s j (λ) are holomorphic.

In the case of holomorphic scalar symbols (or, more generally, holomorphic operator-valued symbols
with trivial group actions), we can improve the description of the components as follows.

Proposition A.10. Let a(λ) ∈ Sν
+

R,hol(3), a(λ)∼
∑
∞

j=0 χ j (λ)s j (λ) with components s j (λ) of order ν+j .
For every j ∈N0 there exist polynomials p j , q j ∈ C[z1, . . . , zN j+1] in N j + 1 variables with constant

coefficients, N j ∈ N0, and real numbers µjk , k = 1, . . . , N j , such that the following holds:

(a) |q j (λ
iµj1, . . . , λ

iµj N j , log λ)| ≥ c j > 0 for λ ∈3 with |λ| sufficiently large;

(b) s j (λ)= r j (λ
iµj1, . . . , λ

iµj N j , log λ)λν j/m , where r j = p j/q j .

Proof. We already know that the components s j (λ) are holomorphic. We just need to show that in this
case the numerator polynomials p in Definition A.4 can be chosen to have constant coefficients rather
than homogeneous coefficient functions. This, however, follows from Lemma A.11 below. �

Lemma A.11. Let f1(λ), . . . , fM(λ) be holomorphic functions on 3 r {0}, and let p be an element
of S(0)(3)[z1, . . . , zM ]. Assume that the function p( f1(λ), . . . , fM(λ)) is holomorphic on

◦

3, except
possibly on a discrete set.

Then there is a polynomial p0 ∈ C[z1, . . . , zM ] with constant coefficients such that

p( f1(λ), . . . , fM(λ))= p0( f1(λ), . . . , fM(λ))

as functions on 3r {0}.

Proof. Since all singularities are removable, we know that p( f1(λ), . . . , fM(λ)) is holomorphic every-
where on

◦

3. We have

p( f1(λ), . . . , fM(λ))=
∑
|α|≤D

aα(λ/|λ|) f1(λ)
α1 · · · fM(λ)

αM .

Let λ0 ∈
◦

3. Define

p0(z1, . . . , zM)=
∑
|α|≤D

aα(λ0/|λ0|)z
α1
1 · · · z

αM
M .

Then clearly
p( f1(λ), . . . , fM(λ))= p0( f1(λ), . . . , fM(λ))

on the ray through λ0. By uniqueness of analytic continuation this equality necessarily holds everywhere
on

◦

3, and by continuity then also on 3r {0}. �
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