
ANALYSIS & PDE

mathematical sciences publishers

Volume 4 No. 2 2011

JACQUES SMULEVICI

ON THE AREA OF THE SYMMETRY ORBITS OF
COSMOLOGICAL SPACETIMES WITH TOROIDAL OR

HYPERBOLIC SYMMETRY



ANALYSIS AND PDE
Vol. 4, No. 2, 2011

msp

ON THE AREA OF THE SYMMETRY ORBITS OF COSMOLOGICAL
SPACETIMES WITH TOROIDAL OR HYPERBOLIC SYMMETRY

JACQUES SMULEVICI

We prove several global existence theorems for spacetimes with toroidal or hyperbolic symmetry with
respect to a geometrically defined time. More specifically, we prove that generically, the maximal
Cauchy development of T 2-symmetric initial data with positive cosmological constant 3 > 0, in the
vacuum or with Vlasov matter, may be covered by a global areal foliation with the area of the symmetry
orbits tending to zero in the contracting direction. We then prove the same result for surface symmetric
spacetimes in the hyperbolic case with Vlasov matter and 3 ≥ 0. In all cases, there is no restriction on
the size of initial data.
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1. Introduction

The study of the global Cauchy problem constitutes one of the main areas of research in mathematical
relativity and is one of the most natural problems to investigate in view of the hyperbolicity of the Einstein
equations and of the theorems concerning the local Cauchy problem [Fourès-Bruhat 1952; Choquet-
Bruhat and Geroch 1969]. These theorems assert that given an appropriate initial data set, there exists a
maximal solution of the Einstein equations

Rµν − 1
2 gµνR = 8πTµν −3gµν, (1)
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coupled if necessary to appropriate matter equations,1 which is unique up to diffeomorphism in the class
of globally hyperbolic spacetimes. We call this solution the maximal Cauchy development of the initial
data. The global hyperbolicity assumption guarantees the domain of dependence property and is essential
to the uniqueness statement.

The global Cauchy problem consists in understanding the global geometry of the maximal Cauchy
development. A fundamental conjecture, known as strong cosmic censorship,2 states that the maximal
Cauchy development of generic compact or asymptotically flat initial data is inextendible as a regular3

Lorentzian manifold. This can be thought of as a statement of uniqueness in a class of spacetimes not
assumed a priori to be globally hyperbolic.

The expression “generic initial data” in the statement of the conjecture reflects the fact that there exist
particular initial data for which the maximal Cauchy development fails to be inextendible. However, the
extendibility property of the maximal Cauchy development for these particular initial data is expected to
be dynamically unstable and, as we shall see below, this expectation has been verified in several cases.
From the point of view of physics, uniqueness means predictability and thus, strong cosmic censorship
asserts that, generically, general relativity is a deterministic theory in the same sense that Newtonian
mechanics is deterministic.

1A. Areal foliations of T 2-symmetric and k ≤ 0 surface-symmetric spacetimes. In full generality, the
questions tied to the global Cauchy problem are not accessible with the current set of mathematical
techniques. In order to make progress, one may try to look at simpler but connected problems, such as
the study of the global Cauchy problem within certain classes of symmetries.

Following this approach, two classes of solutions arising from compact initial data with symmetry have
been given much attention recently, the so-called T 2-symmetric and surface-symmetric spacetimes. The
T 2-symmetric spacetimes constitute a class of solutions arising from initial data with spatial topology
T 3 and admitting a torus action. They contain as special subcases the T 3-Gowdy spacetimes and the
polarized T 2-symmetric spacetimes.4 The surface-symmetric spacetimes constitute a class of solutions
arising from initial data where the initial Riemannian 3-manifold is given by a doubly warped product
S1
×S, where S is a compact 2-surface of constant curvature k and such that the rest of the initial data

is invariant under the local isometries of S. By rescaling, k may be taken as being −1, 0 or +1 and the
different cases are known as hyperbolic, plane5 or spherical symmetry.

In the case of T 2-symmetric or k≤ 0 surface-symmetric spacetimes, the local geometry of the solution
possesses the particular property that, unless the spacetime is flat, the symmetry orbits are either trapped
or antitrapped, a feature which is shared by the spheres of symmetry in the black or white hole regions of
a Schwarzschild solution with m > 0. If we denote by t the area of the symmetry orbits, this means that

1See [Choquet-Bruhat 1970; 1971] for the case of Vlasov matter.
2The conjecture was originally developed by R. Penrose [1979] and first formulated as a statement about the global geometry

of the maximal Cauchy development in [Moncrief and Eardley 1981]. See also the presentation in [Christodoulou 1999].
3The regularity concerns here the degree of differentiability of the possible extensions and gives rise to different versions

of the conjecture. For instance, the C2 formulation of the conjecture is obtained by replacing “regular” with C2 in the above
statement of the conjecture.

4They also contain the even more special case of polarized T 3-Gowdy spacetimes.
5Note that the plane symmetric case is a special case of T 3-Gowdy polarized solutions.



SYMMETRY ORBITS OF COSMOLOGICAL SPACETIMES WITH TOROIDAL OR HYPERBOLIC SYMMETRY 193

the gradient of t is everywhere timelike and that t may be used as a time coordinate.6 For the vacuum
T 2-symmetric case with zero cosmological constant (3 = 0), the existence of a global areal foliation
where t takes value in (t0,∞)with t0≥0 was proven in [Berger et al. 1997]. The proof was then extended
to the Vlasov case [Andréasson 1999; Andréasson et al. 2004] and to the case with 3> 0 [Clausen and
Isenberg 2007]. Similarly, the existence of a global areal foliation for the surface-symmetric case with
k =−1, 3= 0 and Vlasov matter7 was proven in [Andréasson et al. 2003] and extended to the case with
3> 0 in [Tchapnda and Rendall 2003; Tchapnda and Noutchegueme 2005].

It was soon realized that in the vacuum T 3-Gowdy case with 3 = 0, one has t0 = 0 unless the
spacetime is flat [Moncrief 1981; Chruściel 1990]. The natural question arose: Is t0 = 0 generically for
all the possible cases? The proofs that t0 = 0 generically for T 2-symmetric spacetimes with 3 = 0, in
the vacuum or with Vlasov matter, were given in [Isenberg and Weaver 2003] and [Weaver 2004]. It has
also been proven that t0 = 0 in the case of plane symmetric initial data with 3 = 0 and Vlasov matter
as well as in the case of plane or hyperbolic symmetric initial data with 3≥ 0 and Vlasov matter under
an extra small data assumption [Rein 1996; Tchapnda 2004]. Moreover, the results for k ≤ 0 surface-
symmetric initial data have been extended to the Einstein–Vlasov-scalar field system [Tegankong and
Rendall 2006].

1B. Strong cosmic censorship for T 2-symmetric or surface-symmetric spacetimes. One motivation for
the study of the value of t0 was the expectation that, in the cases were t0 = 0, the curvature should in
general blow up as t goes to 0, thus providing a proof of inextendibility (and thus of strong cosmic
censorship) for these cases. Indeed, for vacuum T 3-Gowdy spacetimes with 3= 0, first in the polarized
case8 and then for the full class, detailed asymptotic expansions were obtained and used in this sense
to establish a proof of the C2 formulation of the strong cosmic censorship conjecture [Chruściel et al.
1990; Ringström 2006; 2009].

While it seemed difficult to extend the analysis of the vacuum T 3-Gowdy spacetimes to the more
general case of T 2-symmetric spacetimes, strong cosmic censorship was nonetheless proven for T 2-
symmetric spacetimes with 3= 0 in the presence of Vlasov matter [Dafermos and Rendall 2006]. The
analysis starts with the remark that for T 2-symmetric or k ≤ 0 surface-symmetric spacetimes, with
or without Vlasov matter and with 3 ≥ 0, the fact that t is unbounded implies inextendibility in the
expanding direction because of the continuous extension of the Killing fields to possible Cauchy horizons
[Dafermos and Rendall 2005]. Thus it is sufficient to study the contracting direction in order to complete
the proof of strong cosmic censorship for these classes of spacetimes. The proof given in [Dafermos
and Rendall 2006] relied on a rigidity of the possible Cauchy horizon, linked with the fact that t0 = 0,
and on the particular properties of the Vlasov equation. The assumption that 3= 0 was necessary only
as to ensure that t0 = 0. Therefore the proof remained valid in the case where 3 > 0, if one added

6In particular, any nonflat T 2-symmetric or k ≤ 0 surface-symmetric spacetime can be oriented by ∇t . With this choice of
orientation, the future corresponds to the direction where t increases (expanding direction) and the past to the direction where t
decreases (contracting direction).

7Note that, in the surface-symmetric case, a result analogous to Birkhoff’s theorem applies, by which we mean that these
spacetimes have no dynamical degree of freedom in the vacuum.

8Note that, in [Chruściel et al. 1990], strong cosmic censorship was also proved for polarized Gowdy spacetimes arising
from initial data given on S2

× S1, S3 and L(p, q).
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the extra assumption that t0 = 0. In [Smulevici 2008], we studied the remaining cases, namely the T 2-
symmetric spacetimes with 3> 0 and Vlasov matter for which t0 > 0, and proved their inextendibility,
thus completing a proof of strong cosmic censorship for T 2-symmetric spacetimes with 3 ≥ 0 and
Vlasov matter. In the same article, we proved that vacuum T 2-symmetric spacetimes with 3 > 0 and
t0 > 0 were also generically inextendible. Finally, in the surface-symmetric case with Vlasov matter,
strong cosmic censorship was resolved in the affirmative for k ≤ 0 and 3≥ 0 and for k = 1 and 3= 0,
some obstructions remaining in the spherical case with 3 > 0, in particular the possible formation of
Schwarzschild–de-Sitter or, even worse, extremal Schwarzschild–de-Sitter black holes [Dafermos and
Rendall 2007].

1C. The past asymptotic value of t and the main theorems. The results of [Smulevici 2008], as well
as the proof of inextendibility for the k≤ 0 surface-symmetric cases where t0> 0 contained in [Dafermos
and Rendall 2007], gave satisfactory answers to the strong cosmic censorship conjecture. However, they
did not address the question of the value of t0. It is the subject of this article to resolve this question.

First, in Theorem 1 (see Section 5), we will extend the work of M. Weaver [2004] proving that the
maximal Cauchy development of T 2-symmetric initial data with 3 ≥ 0 and nonvanishing Vlasov matter
can be covered by global areal foliations with t going to zero in the contracting direction. Thus t0 = 0
for these spacetimes.

As often happens in these types of problems, the vacuum case is more difficult than the Vlasov case.
This is already reflected in the fact that for vacuum T 2-symmetric spacetimes with 3> 0, one can find
special families of (nonflat) solutions for which t0 > 0 . That these solutions are indeed special is the
content of Theorem 2 which states that vacuum T 2-symmetric spacetimes with 3 ≥ 0 for which t0 > 0
are necessarily polarized. Thus, generically, t0 = 0 for vacuum T 2-symmetric spacetimes with 3≥ 0.

Finally, we will show that the proof given for the T 2 case with Vlasov matter may be adapted to
the hyperbolic case. We will obtain Theorem 3 which asserts that t0 = 0 for k ≤ 0 surface-symmetric
spacetimes with3≥ 0 and nonvanishing Vlasov matter. Thus Theorem 3 asserts that the results of [Rein
1996; Tchapnda 2004] are true in general and do not require any smallness assumption. To summarize,
we provide in Tables 1 and 2 a picture of the current status of the analysis of singularities for the T 2-
symmetric and surface-symmetric spacetimes in the vacuum or with Vlasov matter.

1D. Outline. The outline of this article is as follows. We start in Section 2 with an introduction to the
different classes of symmetry and present the classes of initial data that we will consider in the rest of
the paper. In Section 3, we recall the existence and uniqueness of the maximal Cauchy development and
in Section 4, we present the previous results concerning the global foliations of T 2-symmetric and k ≤ 0
surface-symmetric spacetimes that we shall use as a starting point for our analysis. The statements of the
theorems proved in this article then follow in Section 5. Before giving the proofs of the three theorems
in sections 7, 8 and 9, it will be useful to describe the approach that we will take, especially for the proof
of Theorem 2, and this is done in Section 6. We end this paper with some comments and open questions
in Section 10. In Appendix A, we provide some information on the initial data sets of the Einstein and
Einstein–Vlasov systems for the reader not familiar with this. In Appendix B, we very briefly describe
a coordinate transformation for k = −1 surface symmetric spacetimes and finally in Appendix C, we
recall the classical results that symmetric initial data lead to symmetric spacetimes.
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vacuum
{

3= 0 t0 = 0 [Moncrief 1981; Chruściel 1990]

T 3-Gowdy 3> 0 t0 = 0 Theorem 2

Vlasov
{

3= 0 t0 = 0 [Weaver 2004]
3> 0 t0 = 0 Theorem 1

vacuum
{

3= 0 t0 = 0 [Isenberg and Weaver 2003]

T 2-symmetric 3> 0 t0 = 0 Theorem 2

Vlasov
{

3= 0 t0 = 0 [Weaver 2004]
3> 0 t0 = 0 Theorem 1

k = 0 Vlasov
{

3= 0 t0 = 0 [Weaver 2004]
3> 0 t0 = 0 Theorem 3; see also [Tchapnda 2004] with small data

k =−1 Vlasov
{

3= 0 t0 = 0 Theorem 3; see also [Rein 1996] with small data
3> 0 t0 = 0 Theorem 3; see also [Tchapnda 2004] with small data

Table 1. Value of t0 for generic T 2-symmetric and k ≤ 0 surface-symmetric spacetimes.

vacuum
{
3= 0 Holds [Chruściel et al. 1990; Ringström 2006; 2009]

T 3-Gowdy 3> 0 Holds for cases with t0 > 0 [Smulevici 2008]; open otherwise

Vlasov
{
3= 0 Holds [Dafermos and Rendall 2006]
3> 0 Holds [Dafermos and Rendall 2006; Smulevici 2008]

vacuum
{
3= 0 Open

T 2-symmetric 3> 0 Holds for cases with t0 > 0 [Smulevici 2008]; open otherwise

Vlasov
{
3= 0 Holds [Dafermos and Rendall 2006]
3> 0 Holds [Dafermos and Rendall 2006; Smulevici 2008]

k = 0 Vlasov
{
3= 0 Holds [Dafermos and Rendall 2007]
3> 0 Holds [Dafermos and Rendall 2007]

k = 1 Vlasov
{
3= 0 Holds [Dafermos and Rendall 2007]
3> 0 Holds under some conditions [Dafermos and Rendall 2007]; open otherwise

Table 2. Status of strong cosmic censorship for T 2-symmetric and surface-symmetric spacetimes.

2. Preliminaries

2A. T 2-symmetric spacetimes with spatial topology T 3. A spacetime (M, g) is said to be T 2-symmetric
if the metric is invariant under an effective action of the Lie group T 2 and the group orbits are spatial.
The Lie algebra of T 2 is spanned by two commuting Killing fields X and Y everywhere nonvanishing
and we may normalize them so that the area element t of the group orbits is given by

g(X, X)g(Y, Y )− g(X, Y )2 = t2.

In previous analysis of these spacetimes [Chruściel 1990; Berger et al. 1997; Andréasson et al. 2004;
Clausen and Isenberg 2007], it has been shown that any nonflat globally hyperbolic T 2-symmetric space-
time with spatial topology T 3 that satisfies the Einstein equations in the vacuum or with Vlasov matter
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and with 3≥ 0 admits a metric in areal coordinates of the form

ds2
= e2(ν−U )(−αdt2

+ dθ2)+ e2U (dx + Ady+ (G+ AH)dθ
)2
+ e−2U t2(dy+ H dθ)2, (2)

where all functions depend only on t and θ and are periodic in the latter. Note that the form (2) of the
metric is unchanged under an SL(2,R) transformation of the Killing vectors X = ∂/∂x and Y = ∂/∂y.

As T 2-symmetric spacetimes contain several dynamical degrees of freedom, certain special cases
have been introduced. A first simplification appears in the case where the Killing fields X and Y may be
chosen such that their inner product, and thus the function A, vanishes. Such cases are called polarized
T 2-symmetric spacetimes.

Associated with T 2-symmetric spacetimes are certain quantities called the twist quantities, defined by

J = εabcd XaY b
∇

c Xd , (3)

K = εabcd XaY b
∇

cY d . (4)

These are related to the metric functions by

J =−
te−2ν+4U
√
α

(G t + AHt), (5)

K = AJ −
t3e−2ν
√
α

Ht . (6)

For any pair of commuting Killing vectors on a spacetime satisfying the vacuum Einstein equations,
the associated twists quantities are constant [Geroch 1972]. Thus, for vacuum T 2-symmetric spacetimes,
by an SL(2,R) transformation of the Killing fields X and Y , we may ensure that the form of the metric (2)
is unchanged while one of twist quantities vanishes. Therefore, in the vacuum, we shall always assume
that J = 0.

The cases where both J = 0 and K = 0 are called T 3-Gowdy spacetimes. By Frobenius’s theorem,
the conditions J = K = 0 are equivalent to the integrability of the planes orthogonal to dx , dy.

2B. Spacetimes with a hyperbolic surface of symmetry. A spacetime (M, g) is said to be k = −1
surface-symmetric if it can be foliated by spacelike surfaces 6t such that, for all t , 6t is isometric
to a doubly warped product (S1

×S, ht) where S is a fixed compact surface of constant curvature −1.
It follows from previous analysis [Rendall 1995] that any k =−1 surface symmetric spacetime which

is globally hyperbolic and satisfies the Einstein equations with 3 ≥ 0, in the vacuum or with Vlasov
matter, admits a metric in areal coordinates of the form9

ds2
=−

e2ν

t
(αdt2

− dθ2)+ tγabdxadxb, (7)

where the functions ν and α depend only on t and θ and are periodic in the latter with period 1 and γ
induces a metric of constant curvature −1 on the orbits of symmetry.

9Compared to the usual metric for these spacetimes, we use the square of the radius function t = r2 as the time coordinate
rather than the radius function r itself. Moreover, we have introduced the functions α and ν by analogy with the T 2 case, so as
to ease the application of the method of the T 2 case to this class of spacetimes. See Appendix B for a description of the change
of coordinates from the usual parametrization to this one.
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2C. The Einstein–Vlasov system. Apart from the vacuum case, where we will set Tµν = 0 in (1), we
will couple the Einstein equations to the Vlasov matter model, which we present in this section.

Let P⊂TM denote the set of all future-directed timelike vectors of length −1. P is classically called
the mass shell. Let f denote a nonnegative function on the mass shell. The Vlasov equation for f is
derived from the condition that f be preserved along geodesics. In coordinates, we therefore have

pα∂xα f −0αβγ pβ pγ ∂pα f = 0, (8)

where pα denotes the momentum coordinates on the tangent bundle conjugate to xα.
The energy-momentum tensor is defined by

Tαβ(x)=
∫
π−1(x)

pα pβ f, (9)

where π : P→M is the natural projection from the mass shell to the spacetime and the integral is with
respect to the natural volume form on π−1(x).

2D. The classes of initial data. After this introduction to the symmetry classes and the matter fields,
we are ready to present the initial data sets that will be studied in this article. For convenience, we will
require that the initial data be smooth and, in the nonvacuum case, that the support of the Vlasov field
be compact. These assumptions may clearly be relaxed if necessary.10

Definition 1. A vacuum T 2-symmetric initial data set is a triplet (6, h, K ) such that

(1) 6 is a smooth differential 3-manifold with topology T 3 (in particular, 6 admits an effective action
of T 2),

(2) h is a smooth Riemannian metric on6 that is invariant under an effective action of the Lie group T 2,

(3) K is a smooth symmetric 2-tensor also invariant under the same T 2 action,

(4) (6, h, Kab) satisfies the vacuum constraint equations of general relativity.

We describe in Appendix A the constraint equations in the vacuum or in the presence of Vlasov matter
for the reader not familiar with them.

Definition 2. A T 2-symmetric initial data set with Vlasov matter is a quadruplet (6, h, K , f̂ ) such that

(1) conditions (1), (2) and (3) of the preceding definition hold,

(2) f̂ is a smooth, nonnegative function of compact support defined on T6 which is invariant under
the natural lift to T6 of the T 2 action,

(3) (6, h, Kab, f̂ ) satisfies the constraint equations of the Einstein–Vlasov system.

Let us also define the notion of polarized T 2-symmetric initial data and of Gowdy initial data:

Definition 3. A vacuum T 2-symmetric initial data set (6, h, K ) (respectively a T 2-symmetric initial
data set with Vlasov matter (6, h, K , f̂ )) is said to be polarized if there exist two Killing fields (X, Y )
which generate the T 2 action such that h(X, Y )= 0 and K (X, Y )= 0 on 6.

10For instance, we could have chosen the initial data to be compatible with the statement of Theorem 4.1 of [Dafermos and
Rendall 2006]. However, we decided to give preference to clarity and will therefore stick with compact data for the Vlasov
field.
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Definition 4. A vacuum T 2-symmetric initial data set (6, h, K ) (respectively a T 2-symmetric initial
data set with Vlasov matter) is said to be a Gowdy initial data set if there exist linearly independent,
commuting vector fields Z , X, Y on 6 such that X, Y are Killing fields which generate the T 2 action
and such that h(Z , X)= h(Z , Y )= K (Z , Y )= K (Z , X)= 0.

We define k =−1 surface-symmetric initial data with Vlasov matter as follows:

Definition 5. A k=−1 surface-symmetric initial data set with Vlasov matter is a quadruplet (6, h, K , f̂ )
such that

(1) 6 = S1
×S where S is a smooth compact surface,

(2) h is a smooth Riemannian doubly-warped product metric on 6 of the form a(θ) dθ2
+ b(θ)γS,

where γS is a metric of constant curvature −1,

(3) f̂ is a smooth, nonnegative function of compact support defined on T6 and invariant under the
natural lift of the local isometries of S to T6,

(4) (6, h, Kab, f̂ ) satisfies the constraint equations of the Einstein–Vlasov system.

3. The maximal Cauchy development

We will recall in this section the classical results concerning the existence and uniqueness of the maximal
Cauchy development to which we will refer often in the rest of this article. We will state the theorem in
the case of Vlasov matter. For the vacuum case, it suffices to replace all matter terms by zero.

Theorem. Let (6, h, K , f̂ ) be an initial data set for the Einstein–Vlasov system. There exists a triplet
(M, g, f ), called the maximal Cauchy development of (6, h, K , f̂ ), satisfying these conditions:

(1) (M, g) is a smooth globally hyperbolic spacetime and f is a smooth, nonnegative function of com-
pact support defined on the mass shell P.

(2) (M, g, f ) satisfies the Einstein–Vlasov system (1), (9), (8).

(3) There exists a smooth embedding φ : 6→ M such that φ(6) is a Cauchy surface for M and if h′,
K ′, f ′ denotes respectively the first and second fundamental form of φ(6) and the restriction of f
to the tangent bundle of φ(6) then φ∗(h′)= h, φ∗(K ′)= K , φ∗( f ′)= f̂ .

(4) If (M̄, ḡ, f̄ ) is another triplet satisfying (1), (2) and (3) and if φ̄ denotes the corresponding embed-
ding of6 in M̄ then there exists an smooth isometry ψ from (M̄, ḡ) onto a subset of (M, g) such that
ψ∗ f̄ = f and ψ(φ̄(6))= φ(6).

See [Fourès-Bruhat 1952; Choquet-Bruhat and Geroch 1969; Choquet-Bruhat 1970; 1971] for the
original proofs of these results.

4. Global areal foliations of T 2-symmetric or k =−1 surface-symmetric spacetimes

We present in this section certain previous results concerning areal foliations of T 2-symmetric or k=−1
surface-symmetric spacetimes. Let us first recall that symmetries of the initial data are transmitted to
the maximal Cauchy development. For the reader not familiar with these results, they are presented
in Appendix C. Thus, T 2-symmetric (respectively surface-symmetric) initial data lead to T 2-symmetric
(respectively surface-symmetric) spacetimes.
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From [Chruściel 1990; Berger et al. 1997; Andréasson et al. 2004; Clausen and Isenberg 2007] for
the T 2 case and from [Andréasson et al. 2003] for the hyperbolic case, we have:

Proposition 1. Let (M, g, f ) be the maximal Cauchy development of nonflat T 2-symmetric initial data
(respectively k = −1 surface-symmetric initial data) with 3 ≥ 0, either in the vacuum or with Vlasov
matter.

(1) (M, g) is T 2-symmetric (respectively k = −1 surface-symmetric) and f is invariant under the nat-
ural lift to T M of the T 2 action (respectively under the natural lift to T M of the local isometries of
S, with S as in Definition 5).

(2) (M, g) can be covered by areal coordinates (t, θ, x, y) where the metric takes the form (2) (respec-
tively (7)) and t ranges from t0 ≥ 0 to +∞.

(3) In the T 2 case, (M, g) is a polarized T 2-symmetric spacetime (respectively a T 3-Gowdy spacetime)
if and only if the initial data are polarized (respectively Gowdy).

We also have a continuation criterion, which follows from the standard local well-posedness theory
for the Einstein–Vlasov system as found in [Choquet-Bruhat 1970; 1971]:

Proposition 2. Let (M, g, f ) be a past development11 of T 2-symmetric initial data (respectively k =−1
surface-symmetric initial data) with 3 ≥ 0, either in the vacuum or with Vlasov matter and assume that
(M, g) can be covered by areal coordinates (t, θ, x, y), where t ranges from t f > 0 to ti , t f < ti and the
metric takes the form (2) (respectively (7)) . Assume that

(1) all metric functions and their derivatives admit a continuous extension to t = t f , and

(2) in the Vlasov case, f and all its derivatives admit a continuous extension to t = t f .

Then there exists a past development (M̃, g̃, f̃ ) of the initial data and an isometric embedding i of M into
M̃ satisfying i∗( f̃ )= f and such that i(M) 6= M̃.

5. The theorems

Theorem 1. Let (M, g, f ) be the maximal development of T 2-symmetric initial data with Vlasov matter
and 3 ≥ 0. Suppose that the Vlasov field f does not vanish identically. Then (M, g) admits a global
foliation by areal coordinates with the time coordinate t taking all values in (0,∞); that is, t0 = 0 in the
notation of Proposition 1.

Thus the presence of Vlasov matter forbids t0> 0. In the vacuum case, we know that nonflat solutions
with t0 > 0 exist in [Smulevici 2008, Appendix E], an indication that this case is more difficult.

Theorem 2. Let (M, g) be the maximal Cauchy development of vacuum T 2-symmetric initial data with
3 > 0 and suppose that the spacetime is not polarized. Then (M, g) admits a global foliation by areal
coordinates with the time coordinate t taking all values in (0,∞); that is, t0 = 0 in the notation of
Proposition 1.

The last theorem is the analogous of Theorem 1 in the hyperbolic symmetric case:

11Here and everywhere else in the paper, we will consider that, by definition, a development of an initial data set for the
Einstein equations is a globally hyperbolic spacetime that satisfies the Einstein equations and agrees with the given data initially
in the usual sense of general relativity.
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Theorem 3. Let (M, g, f ) be the maximal development of k = −1 surface-symmetric initial data with
Vlasov matter and 3 ≥ 0. Suppose that the Vlasov field f does not vanish identically. Then (M, g)
admits a global foliation by areal coordinates with the time coordinate t taking all values in (0,∞); that
is, t0 = 0 in the notation of Proposition 1.

Note that in the vacuum case, there exist solutions of the Einstein equations with hyperbolic symmetry
such that t0 > 0 [Rendall 1995]. Thus, the assumption on the Vlasov field is necessary.

6. Remarks on the strategy of the proofs

We will present here the main ideas of the proofs of the theorems. We will place particular emphasis on
the proof of Theorem 2 as it is the most difficult one. The reader might want to return to this section
while reading the proof of Theorem 2 in order to better follow the arguments.

The proofs of Theorems 1 and 3 are based on the strategies developed in [Isenberg and Weaver 2003;
Weaver 2004]. However, some crucial arguments of these previous works fail in the case of Theorem 2
and we have thus been forced to introduce a different approach, which we will present below.

In order to explain these differences and before presenting this new approach, let us first briefly revisit
some of the ideas of the proofs contained in [Isenberg and Weaver 2003] and [Weaver 2004] for T 2-
symmetric spacetimes with 3= 0, respectively in the vacuum and in the Vlasov case.

6A. Previous work. Let us thus assume that (M, g, f ) is a past development of T 2-symmetric initial
data, with 3= 0, in the vacuum or with Vlasov matter. Suppose that (M, g) is covered by areal coordi-
nates with t ∈ (t f , ti ], where t f > 0. In view of Proposition 2, in order to obtain a statement analogue to
that of Theorem 1, it is sufficient to prove that for all such (M, g), all metric functions, the Vlasov field
f and all their derivatives admit continuous extensions to t = t f .

The conformal coordinate system and the function α. Let us first recall from [Berger et al. 1997] that
another coordinate system may be introduced in (M, g), the so-called conformal coordinate system. In
this coordinate system, the metric takes the form

ds2
= e2(ν−U )(−dτ 2

+ dχ2)+ e2U (dx + Ady+ (G+ AH)dχ
)2
+ e−2U t2(dy+ H dχ)2. (10)

In the coordinate system (τ, χ, x, y), if one assumes that the area of the symmetry orbits t is uniformly
bounded from below by a strictly positive constant, one may obtain12 continuous extensions of all metric
functions, the Vlasov field and their derivatives [Berger et al. 1997]. Thus, it is clear that in order to
obtain the same statement in areal coordinates, the key point is to control the function α appearing in
(2), as well as its derivatives, since it is this function which dictates the change of coordinates from
conformal to areal coordinates. Moreover, it turns out that the function α is necessarily nondecreasing
in the past, and in fact increasing if K > 0 (i.e., the spacetime is not of T 3-Gowdy type). This implies
that, in essence, one only need prove that α is bounded above.

12The proof (in the vacuum case) is essentially based on energy and null cone estimates where the energies considered arose
naturally from the wave map background structure of the equations. On the other hand, these estimates and the results obtained
in conformal coordinates do not provide any information concerning the behavior of the function t , apart from what is already
contained in the statement of Proposition 1, see [Berger et al. 1997].
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The energy estimates. For this purpose, one introduces the energy density13

g =U 2
t +αU 2

θ +
e2U

4t2

(
A2

t +αA2
θ

)
(11)

and the energy integral

Eg =

∫
θ∈[0,1]

g
√
α
. (12)

This energy can easily be shown to be bounded from above.

The estimate on α. Moreover, one can obtain an estimate of the type:

αe2ν(t, θ)≤ C
Eg(ti )
Eg(t)

, (13)

for some positive constant C which depends only on the initial data and the value of t f >0. Thus, in order
to obtain an upper bound on αe2ν , it is sufficient to have a lower bound on Eg. In the vacuum case with
3= 0, this lower bound follows easily from the Einstein equations, as Eg is necessarily nondecreasing
in the past direction. From the bound on αe2ν , the upper bound on α follows easily by integration of
the evolution equation for α; see (106) with 3 = 0. The key points are thus the estimate (13) and the
monotonicity of Eg.

In the Vlasov case, the monotonicity of Eg is actually broken and thus one loses the easy upper bound
on αe2ν . In order to obtain a bound on α, one introduces another energy integral, which we shall call
here Eg, f , which can also be proven to be bounded from above. It turns out that Eg, f controls ρ, an
energy density associated with the energy-momentum tensor, and using the fact that f does not vanish
identically, Weaver [2004] proved that one can extract enough information from ρ to obtain the estimate

min
θ∈[0,1]

α(t, · ) < M, (14)

for some constant M > 0 . Thus, using the fact that f does not vanish, one obtains an estimate on the
function α. This estimate is not as strong as in the vacuum case but it turns out that, together with the
upper bound on Eg, this control on α is sufficient to derive pointwise estimates on g and bounds on the
support of f , from which it is easy to derive all the remaining estimates.

6B. The proofs of Theorem 1 and Theorem 3. Assume now that we are in the setting of Theorem 1,
where we focus on the T 2-symmetric case with Vlasov matter and 3 ≥ 0. In this case, as in the case
where 3 = 0, f 6= 0 discussed in Section 6A, we do not have monotonicity of Eg. However, all other
important monotonicity properties hold and the estimate concerning minθ∈[0,1] α(t, · ) still holds. This
implies that the proof in the Vlasov case with 3= 0 can be extended without too much difficulty to the
case where 3> 0. This is treated in detail in Section 7.

Remark 6B.1. In particular, we note that the assumption of the nonvanishing of the Vlasov field is
necessary only so as to establish the estimate (14). In other words, we have the following proposition,
which will be useful in the course of the proof of Theorem 2.

13In the Gowdy case, this energy quantity arises naturally from the wave map structure of the equations. For the T 2 case,
the vacuum Einstein equations may be regarded as the equations of a wave map problem with source, for which the natural
associated energy density is g.
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Proposition 3. Let (M, g, f ) be a development of T 2-symmetric initial data in the vacuum or with Vlasov
matter and with 3 ≥ 0. Assume that (M, g) admits a global areal foliation (t, θ, x, y) where t ranges
from t f > 0 to ti , t f < ti . Assume moreover that the estimate (14) holds. Then, all the metric functions,
the Vlasov field f and all their derivatives admits continuous extensions to t = t f , i.e the assumptions of
Proposition 2 are verified.

Let us also note that the important monotonicity properties used in the proof of Theorem 1 remain
valid in the case of hyperbolic symmetry. We will prove Theorem 3 by adapting the strategy of the proof
of Theorem 1 to the hyperbolic symmetric case. This is treated in detail in Section 9.

6C. The proof of Theorem 2. In the vacuum case with 3> 0, we lose again the monotonicity property
of Eg. Thus, one does not have a priori the lower bound on Eg required to apply (13). Moreover, we
cannot obtain an a priori estimate on minθ∈[0,1] α(t, · ) as in the Vlasov case as this required that certain
matter terms do not vanish. However, estimates similar to (13) hold and thus, we easily obtain that the
statement that α is bounded above is equivalent to the statement that Eg is bounded from below by a
strictly positive constant.

Different parametrizations for the orbits of symmetry and explicit solutions of the equations. The mono-
tonicity of Eg is linked with the homogeneity or inhomogeneity of the wave equation for the metric
function U defined in (2). When 3> 0, an extra term arises in the time derivative of Eg which has the
wrong sign; see (124). In fact, when both twists quantities vanish, i.e., in the T 3-Gowdy case (K = 0),
there is a way to recover the monotonicity argument. Indeed, one may apply a simple transformation
to the function U such that the wave equation for the resulting metric function P is homogeneous; see
(113) with K = 0. Using (U, A) or (P, A) corresponds to a different choice of parametrization for the
extrinsic geometry of the orbits of symmetry. The system of wave equations satisfied by (P, A) has a
similar structure to that of (U, A) and one may introduce an energy Eh associated with it, which plays
a role similar to that of Eg.

The interpretation of the transformation is as follows. In the case (K = 0,3 = 0), all flat Kasner
spacetimes corresponding to U = k ln t , A= constant are possible solutions of the equations. In the case
(K > 0,3= 0), the only Kasner spacetimes of the form U = k ln t , A= constant satisfying the Einstein
equations are those for which U = 0 and A = constant. Another characterization of these solutions is
that they correspond to Eg = 0. In the case K = 0, 3> 0, there can be naturally no flat Kasner solutions,
but there are plane symmetric solutions which are characterized by Eh = 0. We also remark that in both
cases, (K > 0,3= 0) and (K = 0,3 > 0), there are solutions, with respectively Eg = 0 or Eh = 0, for
which t0 > 0; see [Isenberg and Weaver 2003; Smulevici 2008, Appendix E].

The easy case (K = 0,3 > 0). In this case, as mentioned above, the system of wave equations for
(P, A) is homogeneous. Moreover, one can easily prove that Eh is nondecreasing in the past direction
(see Remark 8E.1). An estimate similar to (13) can be derived, from which we obtain the desired upper
bound on α under the assumption that Eh 6= 0 initially. This case can thus be treated separately and we
present it in Proposition 4 (see Section 8E).

The general case. The contradiction setting. When both K > 0 and 3 > 0, there is no easy way to
recover a monotonicity property on Eh or Eg and thus there are no a priori lower bounds on Eg or Eh .
We will prove Theorem 2 by recovering such a lower bound via other methods. The aim will therefore
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be to bound away from 0 the energy integrals Eh and Eg associated with the nonlinear system of wave
equations describing the motion of the orbits of symmetry. For this, we will proceed by contradiction,
assuming that t0 > 0 for the maximal Cauchy development.

This will allow us to obtain two important facts: α is uniformly blowing up (Section 8C) and the
energy integrals Eg and Eh tend to 0 as t → t0 (Section 8H). (The uniform blow up of α is in fact an
immediate consequence of the Remark 6B.1.)

Control on the spatial differences of some metric functions. We will use the uniform blow up of α and
the vanishing limit of Eh and Eg to obtain successively more and more control on the solutions and
improve our understanding of the nonlinear terms in the equations. First, the vanishing of Eh and Eg

in the limit t → t0 will imply a strong control on the spatial differences of some the metric functions
(Section 8I). In particular, control on maxθ∈[0,1] αeν −minθ∈[0,1] αeν and similar quantities will be used
extensively in the null cone estimates and the analysis of the characteristics which we will pursue later.

Some tools for the null cone estimates. In Sections 8O and 8P, we will derive null cone estimates. In
order to do so, it will be necessary to have at hand the following tools:

– an estimate on (∂/∂θ) (lnα) (Section 8J),

– estimates for the integrals of small powers of α (Section 8M), which will essentially be used to
control some error terms in the null cone estimates,

– a parametrization of the null rays in areal coordinates (Section 8K).

Moreover, to exploit these null cone estimates in the last step of the proof, we will need to control a
change of coordinates from the coordinates adapted to the null rays to the areal system of coordinates.
The required estimate is proved in Section 8L.

Finally, in order to prove the pointwise estimates from below of Section 8P, we will need to start with
large data. The analysis of the polarization energy, which we describe below, will enable us to exhibit
such large data.

The polarization energy E A. In Section 8L, we will focus our attention on the polarization energy E A of
the spacetime associated with the wave equation satisfied by the polarization function A defined in (2).
Since by definition, E A ≤ Eh , a lower bound on E A is sufficient to obtain a lower bound on Eh and close
the estimates. (Motivation for considering this energy comes from the fact that the evolution equation
for A stays homogeneous even with 3 > 0 and the simple remark that one of the common features of
all known cases with t0 > 0 is that all such spacetimes are polarized and thus have E A = 0.) From the
contradiction setting, it follows that E A→ 0 as t→ t0. Using the assumption E A > 0 and the vanishing
limit of E A, we will exhibit a sequence of points in the spacetime where the energy density h is of the
order of α.

The null cone estimates. These points will be used in Section 8P as large initial data for some null cone
estimates along the characterisitics of the spacetime. The aim of these null cone estimates will be to
prove that not only is h of order α at some points, but it is in fact blowing up at least like α1−ε along
certain characteristics. However, in order to control the spatial derivatives and the nonlinearity of the
equations, we will also need an estimate from above for h. Thus, we will first prove that h is blowing
up at most like α1+ε . To derive these pointwise estimates on h, we will use the tools developed in the
previous sections and apply null cone estimates similar to those we introduced in [Smulevici 2008].
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By a continuity argument, it will actually follow that h necessarily blows up along a whole family of
characteristics.

The contradiction. In the previous step, we have obtained the blow up of h as α1−ε along a strip of
characteristics. This can be integrated in space but if we want to relate the resulting integral to Eh ,
we need to control the difference between the integral of h over the spacelike foliation associated with
the conformal coordinate system and its integral over the spacelike foliations associated with the areal
coordinate system. Using the results of Section 8L, we will prove in Section 8Q that the two integrals
differ at most by a factor of αε . It follows that

Eh =

∫
[0,1]

h
√
α

dθ

is bounded from below by δminθ∈[0,1] α1/2−2ε for some δ > 0 and thus, in particular, does not vanish as
t goes to t0. This is a contradiction, which concludes the proof of Theorem 2.

7. Proof of Theorem 1

We will prove Theorem 1 in this section. As discussed above, the method will follow [Weaver 2004]. It
would be sufficient to check that the extra terms arising from the introduction of 3> 0 do not spoil any
of the monotonicity arguments and may be controlled when required, but in order to be self-contained,
we will provide a full proof. Moreover, some of the estimates given here will be useful later in order to
prove Theorem 2 in Section 8, in particular, to obtain the uniform blow up of α of Lemma 8.1. We start
by recalling the Einstein–Vlasov system for T 2-symmetric spacetimes in areal coordinates.

7A. Vlasov matter in T 2-symmetric spacetimes. Let (M, g, f ) be a past development of T 2-symmetric
initial data with Vlasov matter as described in Section 2D and assume that (t, θ, x, y) is a system of areal
coordinates such that the metric takes the form (2). Let vi , for i = 0, 1, 2, 3, denote the components of
the velocity vector in the untwisted set of 1-forms:

{dt, dθ, dx +Gdθ, dy+ Hdθ}. (15)

The dual basis is {
∂

∂t
,
∂

∂θ
−G

∂

∂x
− H

∂

∂y
,
∂

∂x
,
∂

∂y

}
(16)

In this new frame, the metric (2) and its inverse are given by

g̃i j =


−αe2(ν−U ) 0 0 0

0 e2(ν−U ) 0 0
0 0 e2U e2U A
0 0 e2U A e−2U t2

+ e2U A2

 , (17)

g̃i j
=


−α−1e−2(ν−U ) 0 0 0

0 e−2(ν−U ) 0 0
0 0 e−2U

+ e2U A2t−2
−e2U At−2

0 0 −e2U At−2 e2U t−2

 . (18)
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Note that, along a geodesic, the components v2 and v3 of the velocity vector are constant, since if we
denote the tangent vector to a geodesic by V , the geodesic and the Killing equations give

v2 = g
(

V, ∂
∂x

)
, (19)

∇V g
(

V, ∂
∂x

)
= g

(
∇V V, ∂

∂x

)
+ g

(
V,∇V

∂

∂x

)
= 0. (20)

We will parametrize the mass shell P by the coordinates (t, θ, x, y, v1, v2, v3), where by an abuse of
notation we denote the lift to P of the coordinates on M by the same symbols. The Vlasov field f can
then be identified with a function of (t, θ, x, y, v1, v2, v3) or, using the symmetry, with a function of
(t, θ, v1, v2, v3) only. We shall, abusing notation, use both definitions and always denote it by f .

With these definitions, the mass shell relation vµvµ = −1, which holds on the support of the Vlasov
field, is given by14

v0 =−

√
αe2(ν−U )+αv2

1 +αe2(ν−2U )v2
2 +αt−2e2ν(v3− Av2)2, (21)

and the Vlasov equation reads as

∂ f
∂t
=
∂v0

∂v1

∂ f
∂θ
−

(
∂v0

∂θ
+

√
αeν

t3 (K−AJ )(v3− Av2)+

√
αe2ν−4U

t
Jv2

)
∂ f
∂v1

. (22)

7B. The Einstein equations in areal coordinates. The Einstein equations (1) give rise to the following
system of equations in areal coordinates:

Constraint equations:

νt

t
=U 2

t +αU 2
θ +

e4U

4t2 (A
2
t +αA2

θ )+
αe2ν−4U

4t2 J 2
+
αe2ν(K−AJ )2

4t4

+αe2(ν−U )3+ 8π
√
α

t

∫
R3

f |v0| dv1 dv2 dv3, (23)

αt

α
=−

αe2ν−4U J 2

t
−
αe2ν(K−AJ )2

t3 − 4tαe2(ν−U )3

− 16πα3/2e2(ν−U )
∫

R3

f (1+ e−2Uv2
2 + e2U t−2(v3− Av2)

2)

|v0|
dv1 dv2 dv3, (24)

νθ

t
= 2UtUθ +

e4U

2t2 At Aθ −
αθ

2tα
− 8π

√
α

t

∫
R3

f v1 dv1 dv2 dv3. (25)

Evolution equations:

νt t −ανθθ =
αθνθ

2
+
αtνt

2α
−
α2
θ

4α
+
αθθ

2
−U 2

t +αU 2
θ +

e4U

4t2 (A
2
t −αA2

θ )

−
αe2ν−4U J 2

4t2 −
3αe2ν(K−AJ )2

4t4 +α3e2(ν−U )
− 8π

α3/2e2ν

t3

∫
R3

f (v3− Av2)
2

|v0|
dv1 dv2 dv3, (26)

14Note that v0 < 0 since v0 > 0.



206 JACQUES SMULEVICI

Ut t −αUθθ =−
Ut

t
+
αθUθ

2
+
αtUt

2α
+

e4U

2t2 (A
2
t −αA2

θ )

+α3e2(ν−U )
+
αe2ν−4U J 2

2t2 + 8π
α3/2e2(ν−U )

2t

∫
R3

f (1+ 2e−2Uv2
2)

|v0|
dv1 dv2 dv3, (27)

At t −αAθθ =
At

t
+
αθ Aθ

2
+
αt At

2α
− 4(AtUt −αAθUθ )

+
αe2ν−4U J (K−AJ )

t2 + 16π
α3/2e2ν−4U

t

∫
R3

f v2(v3− Av2)

|v0|
dv1 dv2 dv3. (28)

Auxiliary equations:

Jt =−16πα
∫

R3

f v1v2

|v0|
dv1 dv2 dv3, (29)

Jθ = 16π
∫

R3
f v2 dv1 dv2 dv3, (30)

Kt =−16πα
∫

R3

f v1v3

|v0|
dv1 dv2 dv3, (31)

Kθ = 16π
∫

R3
f v3 dv1 dv2 dv3. (32)

We will now proceed to the proof of Theorem 1.
In the rest of this section, (M, g, f ) will be a past development of T 2-symmetric initial data with

Vlasov matter and 3 ≥ 0. We will cover (M, g) by areal coordinates (t, θ, x, y), where the range of
the coordinates is (t f , ti ] × [0, 1]3 with 0 < t f < ti . The metric is then given by (2) where all functions
depend on t and θ and are periodic in θ with period 1. The Einstein–Vlasov system implies that the
system (23)–(32) completed by (22) holds for all (t, θ) ∈ (t f , ti ]×[0, 1]. Moreover, we will assume that
f does not vanish identically. From what has been said in Section 6, we will prove that for all such
(M, g, f ), the hypotheses of Proposition 2 are satisfied, from which Theorem 1 follows immediately.

First we recall some standard facts about the Vlasov field in such spacetimes.

7C. Conservation laws. From the conservation of the Vlasov field f along geodesics, if follows imme-
diately that f is bounded above by some constant F > 0:

f ≤ F. (33)

Since v2 and v3 are constant along geodesics, it follows that the support of f in v2 and v3 is conserved.
By compactness of the initial Cauchy surface, we therefore have an upper bound on the support of f in
v2 and v3 in (M, g). Let X be such an upper bound:

X = sup
{
max(|v2|, |v3|) : ∃(t, θ, v1) such that f (t, θ, v1, v2, v3) > 0

}
<∞. (34)

The particle current is given by

Nµ
=

√
α

t

∫
R3

f
|v0|

vµ dv1 dv2 dv3. (35)
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From the Vlasov equation it follows that Nµ is divergence free: ∇µNµ
= 0. We therefore have the

conservation law, for all t ,∫
[0,1]

N 0t
√
αe2(ν−U )dθ =

∫
[0,1]

(∫
R3

f dv1 dv2 dv3

)
dθ = Q, (36)

for some constant Q. And since, by assumption, the Vlasov field does not vanish identically, we have

Q > 0. (37)

7D. Lower bound on the mean value of |v1|. We now prove a lower bound on the mean value of |v1| for
the measure f dv dθ . This lower bound is the important estimate that takes advantage of the assumption
that f 6= 0. Coupled to the energy estimates derived in the next section, this estimate will give us uniform
control of min[0,1] α(t, · ); see Section 7H.

Lemma 7.1. There exists δ > 0 such that∫
[0,1]

∫
R3

f |v1| dv1 dv2 dv3dθ > δ (38)

for all t ∈ (t f , ti ].

Proof. Let

ε =
Q

16X2 F
,

so that Q− ε8X2 F = Q/2> 0. We have∫
[0,1]

∫
R3

f |v1| dv1 dv2 dv3 =

∫
[0,1]

∫
R2

(∫ ε

−ε

f |v1| dv1

)
dv2 dv3+

∫
[0,1]

∫
R2

(∫
|v1|>ε

f |v1| dv1

)
dv2 dv3

≥ ε

∫
[0,1]

∫
R2

(∫
|v1|>ε

f dv1

)
dv2 dv3 ≥ εQ/2. �

7E. Energy estimates. The following energy estimates take their origins in the underlying wave map
structure of the equations, visible in the vacuum case [Berger et al. 1997] and easily modifiable to suit
the Vlasov case.

Define the energy integral Eg,K ,3, f (t) by15

Eg,K ,3, f =

∫
[0,1]

νt
√
αt

dθ. (39)

From the constraint equation (23), it follows that

Eg,K ,3, f =

∫
[0,1]

1
√
α

(
U 2

t +αU 2
θ +

e4U

4t2 (A
2
t +αA2

θ )+
αe2ν−4U J 2

4t2

+
αe2ν(K−AJ )2

4t4 +αe2(ν−U )3+ 8π
√
α

t

∫
R3

f |v0| dv1 dv2 dv3

)
dθ. (40)

15The motivation for the notation Eg,K ,3, f is that this energy may be decomposed into four terms, containing respectively
g, K , 3 and f . Later, we will introduce several other energy integrals and the notation will follow the same pattern.
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Using the Einstein equations, we may compute the time derivative of Eg,K ,3, f :

d Eg,K ,3, f

dt
=−

∫
[0,1]

[
2
t

(
U 2

t
√
α
+

e4U

4t2

√
αA2

θ

)
+

√
αe2ν−4U J 2

2t3 +

√
αe2ν(K−AJ )2

t5

+ 8π
∫

R3

(
f |v0|

t2 +
αe2ν f (v3− Av2)

2

t4|v0|

)
dv1 dv2 dv3

]
dθ. (41)

Since the right-hand side is nonpositive, Eg,K ,3, f is nondecreasing when t is decreasing.16

Lemma 7.2. Eg,K ,3, f is bounded on (t f , ti ] and admits a continuous extension at t f .

Proof. From (39), (41) and the mass shell relation (21), we obtain

d Eg,K ,3, f

dt
≥−

4
t

Eg,K ,3, f , (42)

where the factor of 4 arises because of the terms containing (K−AJ )2. Applying Gronwall’s lemma and
using the lower bound t ≥ t f > 0, we then obtain a uniform bound on Eg,K , f . �

7F. Estimate for
√
αe2ν+bU . Here we exploit the monotonicity properties of the constraint equations.

Lemma 7.3. For any real number b,
√
αe2ν+bU (43)

is uniformly bounded on (t f , ti ]× [0, 1].

Proof. Using equations (23) and (24), we see that tb2/8√αe2ν+bU is decreasing with decreasing t :

∂t(tb2/8√αe2ν+bU )= b2/8tb2/8−1√αe2ν+bU
+ tb2/8 αt

2
√
α

e2ν+bU
+ tb2/8√αe2ν+bU (2νt + bUt)

= tb2/8√αe2ν+bU
(

2t
[(

Ut +
b
4t

)2
+αU 2

θ +
e4U

4t2 (A
2
t +αA2

θ )

]
+ 8π
√
α

∫
R3

f
(
|v0| +

αv2
1

|v0|

)
dv1 dv2 dv3

)
≥ 0. �

Thanks to the freedom in the choice of the Killing fields, we also have:

Lemma 7.4. For any positive real number r and any real number λ,

αr/2e2rν+λU A2 (44)

is bounded on (t f , ti ]× [0, 1].

Proof. Consider inverting the role of X and Y in the metric:

X̃ = Y, (45)

Ỹ =−X. (46)

16In contrast, Eg =
∫
[0,1]

1√
α

(
U2

t +αU2
θ +

e4U

4t2 (A
2
t +αA2

θ )
)

dθ is not necessarily monotonic.
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This is an SL(2,R) transformation and therefore (see Section 2A), the form of the metric is unchanged
if we relabel the metric functions as follows, using tilde notations for the new metric functions:

e2Ũ
= e2U A2

+ t2e−2U , (47)

e2Ũ Ã =−Ae2U , (48)

α̃ = α, (49)

α̃e2(ν̃−Ũ )
= αe2(ν−U ). (50)

Let q < r , using the previous equations, it follows that

α̃q/2e2q ν̃+2(1−q)Ũ
= αq/2e2qν+2(1−q)U A2

+αq/2t2e2qν−2(1+q)U (51)

Since the tilde metric functions satisfy the same equations with respect to the same t , the left-hand
side of (51) is bounded on (t f , ti ]×[0, 1] from Lemma 7.3. Since the second term on the right hand side
is positive, the first term is bounded. By Lemma 7.3,

α(r−q)/2e2(r−q)ν+(λ−2(1−q))U (52)

is bounded, and multiplying this by the first term on the right in (51), we obtain the desired estimate. �

The quantity
√
αeν will play an important role in the analysis. To simplify some of the computations,

let us define β by
eβ =
√
αeν . (53)

7G. Estimates for spatial derivatives integrals. From (25), we derive

βθ = 2t
(

UtUθ +
e4U

4t2 At Aθ

)
− 8π
√
α

∫
R3

f v1 dv1 dv2 dv3. (54)

It follows from this equation and the energy estimates obtained in Lemma 7.2 that we can uniformly
control the variation in θ of the metric functions. In other words:

Lemma 7.5. The integrals∫
[0,1]
|βθ | dθ,

∫
[0,1]
|Uθ | dθ,

∫
[0,1]

e2U
|Aθ | dθ,

∫
[0,1]
|Jθ | dθ,

∫
[0,1]
|Kθ | dθ

are uniformly bounded on (t f , ti ].

Proof. From (54), we obtain
|βθ |

t
≤

νt
√
αt

(55)

and by integration we obtain a bound on
∫
[0,1] |βθ | dθ in view of (39) and the bound on Eg,K ,3, f . The

bounds on
∫
[0,1] |Jθ | dθ and

∫
[0,1] |Kθ | dθ follow from the auxiliary equations (30), (32), and the con-

servation of the flux (36) together with (34). The bounds on the remaining quantities follow from the
definition of Eg,K , f and the monotonicity in t of α. �
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7H. Control of α along special curves. In this section, we obtain a bound on minθ∈[0,1] α(t, · ), using
the lower bound on the mean value of |v1|.

Lemma 7.6. minθ∈[0,1] α(t, · ) is uniformly bounded on (t f , ti ].

Proof. From the definition of Eg,K ,3, f , we have

8π
∫
[0,1]

∫
R3

f |v0| dv1 dv2 dv3 dθ ≤ t Eg,K ,3, f , (56)

and from the mass shell relation (21), we obtain∫
[0,1]

∫
R3

f
√
α|v1| dv1 dv2 dv3 dθ ≤

t Eg,K ,3, f

8π
, (57)

√
min
θ∈[0,1]

α(t, · )
∫
[0,1]

∫
R3

f |v1| dv1 dv2 dv3 dθ ≤
t Eg,K ,3, f

8π
, (58)

√
min
θ∈[0,1]

α(t, · )≤
t Eg,K ,3, f

8πδ
, (59)

where we have used the lower bound of Lemma 7.1 to obtain the last inequality. �

Remark 7H.1. This is the only step in the proof of Theorem 1 where we need the assumption that f
does not vanish. In particular, in the proof by contradiction of Theorem 2 given in Section 8, we will be
able to assume that the above lemma does not hold (see Section 8D).

Corollary 1. There exists θ̄ ∈ [0, 1] such that α(t, θ̄ ) is bounded on (t f , ti ].

Proof. Let M be a bound for min[0,1] α. Suppose that for every θ ∈ [0, 1], α(t, θ) is unbounded. By
assumption, for every θ , there exists a t∗(θ), for which α(t∗(θ), θ) > 2M and by continuity, there exists
an open interval Iθ = (θ − δθ , θ + δθ ) such that

α(t∗(θ), θ ′) > M for all θ ′ ∈ Iθ . (60)

Consider
⋃
θ∈[0,1] Iθ . This is an open cover of [0, 1]; by compactness, it has a finite subcover. Let

θ0, θ1, . . . , θn be such that [0, 1] =
⋃

0≤k≤n Iθk and let T = min0≤k≤n t∗(θk). Since α is increasing with
decreasing time, it follows that α(T, θ)>M for every θ ∈ [0, 1]which contradicts the definition of M . �

7I. Estimate for
√
αeν+bU .

Lemma 7.7. For any real number b,
√
αeν+bU

= eβ+bU is uniformly bounded on (t f , ti ]× [0, 1].

Proof. By Lemma 7.3 and Corollary 1, we have

e2β(t,θ̄ )+bU (t,θ̄ )
=

√
α(t, θ̄ )

√
α(t, θ̄ ) e2ν(t,θ̄ )+bU (t,θ̄ )

≤ B, (61)

for some constant B > 0. The uniform bound on eβ+bU then follows from Lemma 7.5, since we have

|β(t, θ̄ )−β(t, θ)| ≤ B ′, (62)

|U (t, θ̄ )−U (t, θ)| ≤ B ′, (63)

for all (t, θ) ∈ (t f , ti ]× [0, 1] and a fixed constant B ′ > 0, which implies

eβ(t,θ)+bU (t,θ)
≤ BeB ′+|b|B ′ . �



SYMMETRY ORBITS OF COSMOLOGICAL SPACETIMES WITH TOROIDAL OR HYPERBOLIC SYMMETRY 211

7J. Control of the polarization. Corollary 1 also implies a sharper estimate on the inner product of the
Killing fields:

Lemma 7.8. For any real numbers r and b, erβ+bU A is uniformly bounded on (t f , ti ]× [0, 1].

Proof. It follows from Corollary 1 and Lemma 7.4 that erβ+bU A is bounded on (t f , tI ]×{θ̄}. Furthermore,

erβ+bU A(t, θ)≤ erβ+bU A(t, θ̄ )+
∫ θ

θ̄

(
erβ+bU A(rβθ + bUθ )+ erβ+(b−2)U e2U Aθ

)
dθ ′. (64)

Using the bound on erβ+bU A(t, θ̄ ), we therefore obtain∣∣erβ+bU A(t, θ)
∣∣≤ B+

∣∣∣∣∫ θ

θ̄

erβ+bU
|A|(|rβθ | + |bUθ |) dθ

∣∣∣∣ . (65)

for some constant B > 0 and we can conclude using Gronwall’s inequality and Lemma 7.5. �

7K. Estimates for the time integrals of the twist quantities. To estimate the first derivatives of U and
A in the next section, we will need the following estimates for the time integrals of the twist quantities:

Lemma 7.9. The quantity ∫ ti

t
max
θ∈[0,1]

[e2β−4U J 2
](t ′, θ) dt ′

is uniformly bounded on (t f , ti ].

Proof. From Lemma 7.5, there exists a constant M such that

|J (t ′, θ)| ≤ M + |J (t ′, θ̄ )| and e2β−4U (t ′, θ)≤ e6M e2β−4U (t ′, θ̄ ). (66)

Thus, ∫ ti

t
max
θ∈[0,1]

[e2β−4U J 2
](t ′, θ) dt ′ ≤

∫ ti

t
e6M(e2β−4U (J 2

+ 2M |J | +M2)
)
(t ′, θ̄ ) dt ′ (67)

and using 2|J | ≤ J 2
+ 1 as well as Lemma 7.7, we obtain∫ ti

t
max
θ∈[0,1]

[e2β−4U J 2
](t ′, θ)dt ′ ≤ B+ B ′

∫ ti

t
[e2β−4U J 2

](t ′, θ̄ ) dt ′, (68)

for some constants B and B ′.
Since by integration of (24) we have∫ ti

t
[e2β−4U J 2

](t ′, θ̄ ) dt ′ ≤ ti ln
α(t, θ̄ )
α(ti , θ̄ )

, (69)

which is bounded from Corollary 1, the right-hand side of (68) is uniformly bounded. �

Similarly:

Lemma 7.10. The quantity ∫ ti

t
max
θ∈[0,1]

[e2β(K−AJ )2](t ′, θ) dt ′

is uniformly bounded on (t f , ti ].
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Proof. We first integrate the θ derivative of eβ(K−AJ ), using the auxiliary equations (32) and (30) to
replace the derivatives of Kθ and Jθ by matter terms:

eβ |K−AJ |(t, θ)

≤ eβ |K−AJ |(t, θ̄ )+
∣∣∣∣ ∫ θ

θ̄

(
eβ |K−AJ ||βθ | + eβ−2U

|J |e2U
|Aθ |

+ 16πeβ
∫

R3
f |v3| dv1 dv2 dv3+ 16πeβ A

∫
R3

f |v2| dv1 dv2 dv3

)
dθ ′
∣∣∣∣. (70)

Using Lemmas 7.5, 7.7 and 7.8, as well as the conservation law (36) and the uniform boundedness
(34) of the support of f in v3 and v2, we obtain

eβ |K−AJ |(t, θ)≤ eβ |K−AJ |(t, θ̄ )+ B
∣∣∣∣∫ θ

θ̄

eβ |K−AJ ||βθ | dθ ′
∣∣∣∣+C max

θ∈[0,1]
[eβ−2U

|J |(t, · )]+D, (71)

for some constants B, C and D. Applying Gronwall’s lemma, we obtain

eβ |K−AJ |(t, θ)≤
(
eβ |K−AJ |(t, θ̄ )+ B max

θ∈[0,1]
[eβ−2U

|J |(t, · )] +C
)(

1+ e|
∫ θ
θ̄
|βθ | dθ ′|

)
(72)

and therefore, using Lemma 7.5 again, we have

max
θ∈[0,1]

eβ |K−AJ |(t, · )≤ D
(
eβ |K−AJ |(t, θ̄ )+ B max

θ∈[0,1]
[eβ−2U

|J |(t, · )] +C
)
. (73)

We now conclude by integrating (24) and applying Lemma 7.9 to bound the term containing J . �

7L. Null cone estimates for the first derivatives of U and A coupled to an estimate for the support
of f . We will perform null cone energy estimates to bound the first derivatives of U and A. However,
to close the estimates we will also need to estimate the support of f .

Recall the definition of the energy density:

g =U 2
t +αU 2

θ +
e4U

4t2

(
A2

t +αA2
θ

)
.

Lemma 7.11. The function g is uniformly bounded on (t f , ti ] × [0, 1] and the support of f is uniformly
bounded on (t f , ti ]× [0, 1]×R3.

Proof. We define g× by

g× = 2
√
α

(
UtUθ +

e4U

4t2 At Aθ

)
. (74)

We have g± g× ≥ 0. Let ∂u = ∂t −
√
α∂θ and ∂v = ∂t +

√
α∂θ .

Using the Einstein equations, we can compute the null derivatives of g+ g× and g− g×:

∂u(g+g×)=−
2
t

(
U 2

t +
e4U

4t2 αA2
θ

)
+
αt

α
(g+ g×)−

g×

t

+2(Ut+
√
αUθ )

(
e2β−4U

2t2 J 2
+8π
√
αe2β−2U

2t

∫
R3

f (1+ 2e−2Uv2
2)

|v0|
dv1 dv2 dv3+e2β−2U3

)
+

e4U

2t2 (At+
√
αAθ )

(
e2β−4U

t2 J (K−AJ )+16π
√
α

e2β−4U

t

∫
R3

f v2(v3−Av2)

|v0|
dv1 dv2 dv3

)
,

(75)
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∂u(g−g×)=−
2
t

(
U 2

t +
e4U

4t2 αA2
θ

)
+
αt

α
(g− g×)+

g×

t

+2(Ut−
√
αUθ )

(
e2β−4U

2t2 J 2
+8π
√
αe2β−2U

2t

∫
R3

f (1+ 2e−2Uv2
2)

|v0|
dv1 dv2 dv3+e2β−2U3

)
+

e4U

2t2 (At−
√
αAθ )

(
e2β−4U

t2 J (K−AJ )+16π
√
α

e2β−4U

t

∫
R3

f v2(v3− Av2)

|v0|
dv1 dv2 dv3

)
.

(76)

Define T1 and T2 by

T1 =
e2β−4U

2t2 J 2
+ 8π

√
αe2β−2U

2t

∫
R3

f (1+ 2e−2Uv2
2)

|v0|
dv1 dv2 dv3+ e2β−2U3, (77)

T2 =
e2β−2U

t3 J (K−AJ )+ 16π
√
α

e2β−2U

t2

∫
R3

f v2(v3− Av2)

|v0|
dv1 dv2 dv3. (78)

T1 and T2 can be estimated using (24):

|T1| ≤

∣∣∣ αt

2tα

∣∣∣ , (79)

|T2| ≤

∣∣∣ αt

2α

∣∣∣ . (80)

We therefore obtain

|∂u(g+ g×)| ≤
∣∣∣αt

α

∣∣∣ (g
t
+

1
2t
+ 2g

)
+

3g
t
, (81)

|∂v(g− g×)| ≤
∣∣∣αt

α

∣∣∣ (g
t
+

1
2t
+ 2g

)
+

3g
t
. (82)

To perform null cone estimates, in view of the last two inequalities, we need to control the time integral
of αt/α, that is to say, we need to control lnα. Consider the right-hand side of (24). The time integral of
the two terms containing the twist quantities are bounded from Lemmas 7.9, 7.10 and the term containing
the cosmological constant is bounded from Lemma 7.7. Therefore to control |αt/α|, we only need to
control the last term, which is the term containing the Vlasov field. While we already have a bound on
the support of the Vlasov field in v2 and v3, we still cannot estimate the support of f in v1. Therefore,
the best we can obtain from (24) is an estimate for |αt/α| which depends on the support of f in v1 and
quantities which have been shown to be bounded. On the other hand, using the characteristic equations
associated with the Vlasov equation, i.e., using the geodesic equations, we can obtain a bound on the
support of v1 in terms of g and quantities which have been shown to be bounded. The strategy, which
was originally developed by Andréasson [1999], is therefore to combine the two. For this, we define the
functions

u1 =
√
αv1, (83)

ū1(t)= sup
{√
α|v1| : ∃(t ′, θ, v2, v3) ∈ [t, ti ]× [0, 1]×R2 such that f (t ′, θ, v1, v2, v3) 6= 0

}
, (84)

ψ(t)=max
(

sup
θ∈[0,1]

g(t, · )+ ū2
1(t), 2

)
. (85)
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We start by estimating
∣∣∣αt
α

∣∣∣=−αt
α

in terms of ū1:

−
αt

α
(t, θ)≤ C(t)+ B(t, θ), (86)

for some nonnegative function C(t) whose integral in time is bounded and where B(t, θ) is given by

B(t, θ)= 16πe2β−2U
∫

R3

f (1+ e−2Uv2
2 + t−2e2U (v3− Av2)

2)

|v0|
du1 dv2 dv3.

We have

B(t, θ)

≤ 16πe2β−2U
∫

R3

f (1+ e−2Uv2
2 + t−2e2U (v3− Av2)

2)

eβ−U
√

1+ e−2β+2U u2
1

du1 dv2 dv3

≤ 16πeβ−U F
(

1+ e−2U X2
+

e2U

t2 (X + |A|X)
2
)

4X2
∫ ū1

−ū1

du1√
1+ e−2β+2U u2

1

≤16πeβ−U F
(

1+e−2U X2
+

e2U

t2 (X+|A|X)
2
)

4X2
·2
(

eβ−U ln
(

ū1+
√

e2β−2U
+ ū1

2
)
+ e−1

)
. (87)

Therefore, using Lemmas 7.7 and 7.8, it follows from (86) that there exist a nonnegative function C(t)
whose integral in time is bounded and a constant D > 0 such that we have the estimate

−
αt

α
(t, θ)≤ C(t)+ D ln(1+ ū2

1). (88)

On the other hand, from the characteristic equation of the Vlasov equation (22), it follows that

du2
1

ds
=
αt

α
u2

1

+
2
√
αu1

v0

(
e2β−2U (βθ −Uθ )+ e2β−4U (βθ − 2Uθ )v

2
2 +

e2β

t2 (v3− Av2)
(
(v3− Av2)βθ − Aθv2

))
+

2e2βu1

t

(
(K−AJ )(v3− Av2)

t2 + e−4U Jv2

)
(89)

and therefore we have, by integration,

|u2
1(s)− u2

1(ti )| =
∣∣∣∣ ∫ s

ti

(
αt

α
u2

1+
2
√
αu1

v0

(
e2β−2U (βθ −Uθ )+ e2β−4U (βθ − 2Uθ )v

2
2

+
e2β

t2 (v3− Av2)
(
(v3− Av2)βθ − Aθv2

))
+

2e2βu1

t

(
(K−AJ )(v3− Av2)

t2 + e−4U Jv2

))
ds ′
∣∣∣∣. (90)

Let us estimate one by one the terms on the right-hand side.
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The first term can be estimated using (88) as follows.17 For s < ti , we have∣∣∣∣∫ s

ti

αt

α
u2

1ds ′
∣∣∣∣ ≤ ∣∣∣∣ ∫ s

ti

∣∣∣αt

α
ū2

1(s
′)

∣∣∣ ds ′
∣∣∣∣ ≤ ∣∣∣∣ ∫ s

ti

(
C(s)+ D ln(1+ ū2

1(s
′)
)

ū2
1(s
′) ds ′

∣∣∣∣, (91)

where C(s) is a nonnegative function whose integral is uniformly bounded and D is a nonnegative
constant.

To estimate the second term on the right-hand side of (90), we use (54) to obtain
√
α|βθ | ≤ Bg+ Dū2

1, (92)

for some constants B and D which depend on the bounds on t , f and the support of f in v2 and v3.
Moreover, from the definition of g, we have

√
α|Uθ | ≤

g
2
+

1
2
, (93)

√
α

e2U
|Aθ |
t
≤ 2g+ 1

2
. (94)

From the uniform bounds on e2β−2U, e2β A, and the support of f in v2 and v3, and from the estimate for
βθ , we have, using |u1| ≤ |v0|, that along a characteristic for which f does not uniformly vanish:∣∣∣∣ ∫ s

ti

2
√
αu1

v0

(
e2β−2U (βθ−Uθ )+e2β−4U (βθ−2Uθ )v

2
2+

e2β

t2 (v3− Av2)
(
(v3− Av2)βθ− Aθv2

))
ds ′
∣∣∣∣

≤ B+
∣∣∣∣ ∫ s

ti

(
Dg+ Eū2

1
)

ds ′
∣∣∣∣, (95)

for some constants B, D and E .
Consider the last term on the right-hand side of (90). We have∣∣∣∣ ∫ s

ti

2e2βu1

t3

(
(K−AJ )(v3− Av2)+ e−4U Jv2

)
ds ′
∣∣∣∣

≤

∣∣∣∣ ∫ s

ti

2ū1

t3
f

(
eβ max

θ∈[0,1]
(eβ |K−AJ |)(t, · )

∣∣X + |A|X ∣∣+ eβ−2U X max
θ∈[0,1]

(eβ−2U
|J |)(t, · )

)
ds ′
∣∣∣∣. (96)

Using Lemmas 7.7, 7.8, 7.9, 7.10 and the inequality 2a ≤ a2
+ 1 to replace ū1, max

θ∈[0,1]
(eβ |K−AJ |)(t, · )

and max
θ∈[0,1]

(eβ−2U
|J |)(t, · ) by their respective squares, we obtain∣∣∣∣ ∫ s

ti

2e2βu1

t3

(
(K−AJ )(v3− Av2)+ e−4U Jv2

)
ds ′
∣∣∣∣≤ B+

∣∣∣∣ ∫ s

ti
ū2

1 F(s) ds ′
∣∣∣∣, (97)

where B is a constant and F(s) is a nonnegative function whose integral is uniformly bounded. Using
(91), (95) and (97), we therefore obtain for ū1 the estimate

ū2
1(t)≤ B+

∫ s

ti

(
C(s)+ B ln(1+ ū2

1(s
′))
)

ū2
1ds ′+

∫ s

ti

(
Bg+ Bū2

1
)

ds ′+
∫ s

ti
ū2

1 F(s) ds ′. (98)

17Note the importance of the independence in θ of the right-hand side of (88) to perform the estimate along the
characteristics.
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where B is a nonnegative constant and C(s), F(s) are nonnegative function whose integrals are uniformly
bounded.

These estimates are sufficient to obtain an upper bound on ψ . We first use equations (81) and (82) to
do a null cone estimate for g(t, θ). For this let (t, θ) be in (t f , ti ] × [0, 1] and integrate (81) and (82)
along the integral curves of ∂u , ∂v ending at (t, θ). Adding the equations obtained, we have

2g(t, θ)≤ B+
∫

u

∣∣∣αt
α

∣∣∣ ((2g
t
+ 1+ 2g

)
+

3g
t

)
du′+

∫
v

∣∣∣αt
α

∣∣∣ ((2g
t
+ 1+ 2g

)
+

3g
t

)
dv′. (99)

where B is a constant which depends on the maximum of g on the initial hypersurface and is finite by
compactness. Using the estimate (88) and taking the maximum for θ in [0, 1], we obtain, for t ∈ (t f , ti ],

max
θ∈[0,1]

g(t, · )≤ B+
∫ ti

t

(
C(t ′)+ B ln(1+ ū2

1(t
′)
)

max
θ∈[0,1]

g(t ′, · ) dt ′, (100)

where B is a nonnegative constant and C(t) is a nonnegative function whose integral is uniformly
bounded. Combining this with (98), we derive for ψ the estimate

ψ(t)≤ B+
∫ ti

t
F(s) ln(ψ)(s)ψ(s) ds, (101)

where B is nonnegative constant and F(s) is a nonnegative function whose integral is uniformly bounded.
From the last line it follows that

Fψ lnψ
(

B+
∫ ti

t
F(s) ln(ψ)(s)ψ(s) ds

)−1(
ln
(

B+
∫ ti

t
F(s) ln(ψ)(s)ψ(s) ds

))−1

≤ F(s), (102)

and by integration we obtain
ψ(t)≤ Bexp

∫ ti
t F(s) ds . (103)

Since the integral is uniformly bounded, it follows that ψ is uniformly bounded. �

7M. Continuous extension of the metric functions. Now that g and the support of f have been proven
to be uniformly bounded, it follows easily that:

Lemma 7.12. The first derivatives of U , A, J , K , together with νt , αt are uniformly bounded on (t f , ti ]×
[0, 1] and U , A, ν, α, J , K admit continuous extension to t = t f .

7N. Estimates for the derivatives of f , νθ , αθ and higher order estimates. Such estimates follow by
standard methods, which can be found for instance in [Weaver 2004].

7O. The conclusion. Since all metric functions, the Vlasov field and all their derivatives have been
shown to be uniformly bounded, the assumptions of Proposition 2 have been retrieved. In particular, the
maximal Cauchy development cannot have t f > 0 which concludes the proof of Theorem 1.

8. Proof of Theorem 2

8A. The Einstein equations in areal coordinates for vacuum T 2-symmetric spacetimes. The Einstein
equations (1) for vacuum T 2-symmetric solutions reduce in areal coordinates to the following system of
equations:
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Constraint equations:

νt

t
=U 2

t +αU 2
θ +

e4U

4t2 (A
2
t +αA2

θ )+
αe2νK 2

4t4 +αe2(ν−U )3, (104)

νθ

t
= 2UtUθ +

e4U

2t2 At Aθ −
αθ

2tα
, (105)

αt

α
=−4tαe2(ν−U )3−

αe2νK 2

t3 . (106)

Evolution equations:

νt t −ανθθ =
αθνθ

2
+
αtνt

2α
−
α2
θ

4α
+
αθθ

2
−U 2

t +αU 2
θ +

e4U

4t2 (A
2
t − A2

θ )−
3αe2νK 2

4t4 +α3e2(ν−U ), (107)

Ut t −αUθθ =−
Ut

t
+
αθUθ

2
+
αtUt

2α
+

e4U

2t2 (A
2
t −αA2

θ )+α3e2(ν−U ), (108)

At t −αAθθ =
At

t
+
αθ Aθ

2
+
αt At

2α
− 4(AtUt −αAθUθ ). (109)

Auxiliary equations:

0= G t + AHt , (110)

0= Ht −

√
αe2νK

t3 . (111)

Note that the Killing fields have been chosen such that the twist quantity J vanishes and note that K is
a nonnegative constant (see Section 2A).

Let us define the following replacement for the function U :

P = 2U − ln t. (112)

We refer to the discussion on page 202 for the motivation for the introduction of the quantity P .
The evolution equation for U leads to the following equation for P:

Pt t −αPθθ =
(
−

1
t
+

1
2
αt

α

)
Pt +

αθ Pθ
2
+ e2P(A2

t −αA2
θ )−

1
2t4αe2νK 2. (113)

As mentioned on page 202, this equation is homogeneous in the Gowdy case K = 0, since there are no
terms containing 3 compared to (108). In the following, it will be useful to work both with P and U
and to use two energy densities, one associated with the system of wave equations for (U, A) and one
associated with the system of wave equations for (P, A).

8B. The universal cover of M/T 2. In Section 8K, we will study the characteristic equation which de-
fines null rays in areal coordinates. It will be easier to address this problem in the universal cover of
the quotient of the spacetime. For any T 2-symmetric spacetimes (M, g), we introduce Q = M/T 2, the
quotient of the spacetime by the orbits of symmetry, and then define Q̃ as the universal cover of Q. Let
π1 :M→ Q be the natural projection from M to Q.

Suppose (M, g) is foliated by areal coordinates with the metric taking the form (2). Let αQ be such
that α is the pull-back of αQ by π∗1 . We then define α̃ to be the lift to Q̃ of αQ . We may define similarly
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tilde functions for all metric functions, such as ν̃, Ũ , etc. Note that Q̃ has topology R×R and admits
areal coordinates (t̃, θ̃ ) ∈ (t f .ti ]×R and Lorentzian metric:

ds2
=−e2(ν̃−Ũ )(α̃dt̃2

− d θ̃2). (114)

Note also that all tilde functions ν̃, Ũ , etc. are periodic in θ with period 1 and that they satisfy the system
of equations (104)–(111) on (t f .ti ]×R.

In the following, we will often,18 by an abuse of notation,19 drop the tildes on functions defined on Q̃.

8C. The contradiction setting. As explained in Section 6, the proof will follow by contradiction. Let
us thus assume that (M, g) is the past maximal development of vacuum T 2-symmetric spacetimes with
3> 0 such that t0 > 0. By Proposition 1, there exist a global areal foliation where the metric takes the
form (2) and such that t lies in (t0, ti ]. Thus, there exists functions α, ν, U , A defined on (t0, ti ]× [0, 1]
which are periodic in θ with period 1, and a constant K such that α, ν, U , A and K satisfy the system of
equations (104), (109). Moreover, since the cases where 3= 0 have already been treated, and since the
cases where K = 0,3> 0 may be treated by similar methods as we explained in the previous section, we
will suppose that we are in the case where K > 0 and 3> 0. Finally, let us assume that the assumptions
of Theorem 1 hold, i.e., the spacetime is not polarized.

8D. Uniform blow up of α. The contradiction setting immediately implies the following:

Lemma 8.1. Under the assumptions of Section 8C, for all θ ∈ [0, 1], we have α(t, θ)→∞ as t → t0
and minθ∈[0,1] α(t, θ)→∞ as t→ t0.

Proof. Suppose the lemma does not hold. Because α is monotonic, it follows that minθ∈[0,1] α(t, θ) is
uniformly bounded, i.e., results similar to those of Section 7H hold. We may then apply similar estimates
as the estimates of sections 7I to 7N, replacing f by 0 everywhere. Indeed, the presence of the Vlasov
matter was necessary only so as to ensure that the content of Section 7H is valid. Proposition 2 then
applies, and thus (M, g) is not maximal, a contradiction. �

Remark 8D.1. Since the rest of the proof of Theorem 2 will rely on the assumptions of Section 8C, it
will be from now on assumed that they hold.

8E. The basic energy estimates. We will need to work with several energy densities and several energy
integrals. Let us thus define

g =U 2
t +αU 2

θ +
e4U

4t2

(
A2

t +αA2
θ

)
, (115)

h = P2
t +αP2

θ + e2P (A2
t +αA2

θ

)
. (116)

Eg(t)=
∫
[0,1]

g
√
α

dθ, (117)

Eh(t)=
∫
[0,1]

h
√
α

dθ, (118)

18That is to say, we shall use the same symbol for a function defined on M and for its associated tilde function.
19Note that strictly speaking, in the analysis of Section 7, all metric functions were also defined on Q rather than M since we

had considered them to be function of (t, θ). The same remark applies for the analysis carried in Section 9.
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Eh,K (t)= Eh(t)+
∫
[0,1]

√
αe2νK 2

t4 dθ, (119)

Eh,K ,3(t)= Eh(t)+
∫
[0,1]

(√
αe2νK 2

t4 + 43
√
αe2ν−P

t

)
dθ. (120)

Several computations will also be useful for the rest of the analysis. First, using the constraint equa-
tions (104) and (106), we have the identities

∂

∂t

(√
αe2ν−P

t

)
=

1
2
√
αe2ν−P

(
h−

1
t2

)
, (121)

∂

∂t

(√
αe2ν)

= 2t
√
αe2νg. (122)

Taking the time derivative of Eh and using the Einstein equations, we obtain

d Eh

dt
=−

2
t

∫
[0,1]

P2
t
√
α
+e2P√αA2

t −23
∫
[0,1]

√
αe2ν−P h−

2
t3

∫
[0,1]

√
αe2νK 2g+

1
2t5

∫
[0,1]

√
αe2νK 2

−
2
t

∫
[0,1]

√
αPθθ +

αθ

2
√
α

Pθ . (123)

The terms on the last line vanish thanks to the θ periodicity, so we obtain20

d Eh

dt
=−

2
t

∫
[0,1]

P2
t
√
α
+

e2P
√
α

A2
t − 23

∫
[0,1]

√
αe2ν−P h−

2
t3

∫
[0,1]

√
αe2νK 2g+

1
2t5

∫
[0,1]

√
αe2νK 2.

(124)
or, written only in terms of h and Pt ,

d Eh

dt
=−

2
t

∫
[0,1]

P2
t
√
α
+

e2P
√
α

A2
t −

∫
[0,1]

Pt
√
αt4αe2νK 2

+

∫
[0,1]

1
2
αt

α3/2 h. (125)

We see that the last term on the right-hand side of (124) is competing against the others.

Remark 8E.1. In the case where K = 0, the last term vanishes, thus, we obtain the desired monotonic-
ity21 on Eh and we could conclude as in [Isenberg and Weaver 2003]. Thus, we obtain:

Proposition 4. Let (M, g) be the maximal development of T 2-symmetric initial data in the vacuum with
3 ≥ 0 and K = 0. Suppose that Eh does not vanish identically. Then (M, g) admits a global foliation
by areal coordinates with the time coordinate t taking all values in (0,∞), i.e., t0 = 0 in the notation of
Proposition 1.

Unfortunately, in the general case, we lose this monotonicity and the analysis is, as we will see, more
complex.

20That the terms involving derivatives in θ add up to an exact derivative is due to the wave map background structure of the
equations. See [Berger et al. 1997].

21Note that the parallelism between the cases (K > 0,3 = 0) and (K = 0,3 > 0) does not extend beyond the issue of the
value of t0. Indeed, once we know that t0 = 0, the different powers of t for the terms containing 3 and K in (106) are likely to
yield different asymptotics for the solutions.
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We may also compute the time derivative of Eh,K and Eh,K ,3:

d Eh,K

dt
=−

2
t

∫
[0,1]

P2
t
√
α
+ e2P√αA2

t − 23
∫
[0,1]

√
αe2ν−P h−

7
2t5

∫
[0,1]

√
αe2νK 2, (126)

d Eh,K ,3

dt
=−

2
t

∫
S1[0,1]

P2
t
√
α
+ e2P√αA2

t −
7

2t5

∫
[0,1]

√
αe2νK 2

− 23
∫
[0,1]

√
αe2ν−P

t2 . (127)

We see in particular that Eh,K and Eh,K ,3 are nondecreasing with decreasing time.22

Lemma 8.2. Eg, Eh , Eh,K and Eh,K ,3 are uniformly bounded on (t0, ti ] and the last two quantities can
be continuously extended to t0.

Proof. From (127), we have
d Eh,K ,3

dt
≥−

7
2t

Eh,K ,3. (128)

By application of Gronwall’s lemma, therefore, Eh,K ,3 is bounded uniformly if t0 > 0. However, since

Eh ≤ Eh,K ≤ Eh,K ,3, (129)

we also obtain a uniform bound on Eh and Eh,K . Since Eh,K and Eh,K ,3 are monotonically increasing
they admit strictly positive limits at t = t0. A similar analysis implies the uniform bound on Eg. �

8F. Continuous extensions of the twist and cosmological energies. In order to extract some information
from the continuous extensions of Eh,K and Eh,K ,3, we will need the following:

Lemma 8.3. The functions
√
αe2ν and

√
αe2ν−P , and therefore also

√
αe2νK 2/t4 and 3

√
αe2ν−P/t ,

admit continuous extensions to t = t0 and are uniformly bounded in (t0, ti ]× [0, 1].

Proof. The derivatives with respect to t of
√
αe2ν and t−1/2√αe2ν−P are positive, as can be verified

by direction computation. Therefore, they are monotonically decreasing in the past direction and admit
continuous extensions to t = t0. Moreover, they are bounded by the maximum of their values on the
initial data surface, which is finite by compactness. �

Since
√
αe2ν and t−1/2√αe2ν−P are pointwise decreasing with t in the past direction and are positive,

their integrals over θ at fix t are positive functions which are decreasing in the past direction and therefore,
they admit a limit as t goes to t0. Thus:

Lemma 8.4. The integrals ∫
[0,1]

√
αe2νK 2

t4 dθ and
∫
[0,1]

3

√
αe2ν−P

t
dθ

admit continuous extensions to t = t0.

8G. Estimate for the spatial derivatives of β and β − P/2. We define β as in the Vlasov case by

e2β
= αe2ν . (130)

22Note that this monotonicity cannot be used as a replacement of the monotonicity of Eg or Eh , since no estimate similar to
(13) can hold when Eg is replaced by Eh,K or Eh,K ,3, as can be seen by studying homogeneous plane symmetric solutions.
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It follows as in Lemma 7.5 that βθ is bounded by g/
√
α:

|βθ | ≤ t
g
√
α
. (131)

By integration, we obtain:

Lemma 8.5. For all t ∈ (t0, ti ],

max
[0,1]

β(t, · )−min
[0,1]

β(t, · )≤ ti Eg. (132)

In particular, max[0,1] β(t, · )−min[0,1] β(t, · ) is uniformly bounded.

We may do the same analysis using h and P . First, we rewrite (105) as

βθ −
Pθ
2
=

t
2

(
Pt Pθ + e2P At Aθ

)
, (133)

from which we obtain that ∣∣∣∣βθ − Pθ
2

∣∣∣∣≤ t
4

h
√
α
. (134)

Therefore, using the bounds on Eh , we have:

Lemma 8.6. For all t ∈ (t0, ti ],

max
[0,1]

(2β − P)(t, · )−min
[0,1]

(2β − P)(t, · )≤
ti
2

Eh . (135)

In particular, max[0,1](2β − P)(t, · )−min[0,1](2β − P)(t, · ) is uniformly bounded.

8H. Limit of the gravitational energy of the orbits of symmetry.

Lemma 8.7. For all ε > 0 there exists tε > t0 such that either Eh(tε)≤ ε or Eg(tε)≤ ε.

Proof. Suppose the lemma does not hold. Then there exists an ε > 0 such that min(Eh, Eg) > ε for all
t > t0.

By integration of (124), we have, for all t ∈ (t0, ti ],∫ ti

t
23
∫
[0,1]

√
αe2ν−P h dθ dt ′+

∫ ti

t

2K 2

t3

√
αe2νgdθ dt ′ ≤ Eh(t)−Eh(ti )+

∫ ti

t

1
2t5

∫
[0,1]

√
αe2νK 2. (136)

Since all terms on the right-hand side are bounded by Lemmas 8.2 and 8.4, we have in particular, that,
there exits some constant D > 0 such that∫ ti

t
23

∫
[0,1]

√
αe2ν−P h dθ dt ≤ D. (137)

Using the control on the spatial derivatives of 2β − P obtained in Lemma 8.6, we obtain, for all (t, θ)
in (t0, ti ]× [0, 1], ∫ ti

t

∫
[0,1]

e2β−P h
√
α

dθ ds ≤ B, (138)∫ ti

t
min
θ ′∈[0,1]

e2β−P(s, · )Eh(s) ds ≤ B, (139)
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t
min
θ ′∈[0,1]

e2β−P(s, · ) ds ≤
B
ε
, (140)∫ ti

t
e2β−P(s, θ) ds ≤

B
ε
+ B ′(ti − t), (141)∫ ti

t
e2β−P(s, θ) ds ≤ B ′′, (142)

for some constants B > 0, B ′ > 0 and B ′′ > 0.
Similarly, one obtains from inequality (136) and Lemma 8.5 the existence of a constant B ′′′ > 0 such

that, for all (t, θ) ∈ (t0, ti ], ∫ ti

t
e2β(s, θ) ds ≤ B ′′′. (143)

It follows from (142) and (143) that the right-hand side of (106) is bounded and by integration, lnα
and therefore α are uniformly bounded above, which contradicts Lemma 8.1. �

We may now prove a stronger version of Lemma 8.7:

Lemma 8.8. Eh→ 0 as t→ 0 and Eg→ 0 as t→ 0.

Proof. We have Eh = Eh,K −
∫
[0,1](
√
αe2νK 2/t4) dθ . In view of Lemmas 8.2 and 8.4, both terms on the

right-hand side have a limit, thus Eh has a limit. Similarly, Eg has a limit. In view of the last lemma,
both limits cannot be strictly positive and therefore at least one of them has to be zero. Suppose for
instance, that Eh tends to 0 as t tends to t0. From the definition of h, g, P and U it follows that

g =
h
4
+

Pt

2t
+

1
4t2 ,

and therefore
g ≤

h
2
+

1
2t2 . (144)

Since on the other hand,
√
α tends to infinity uniformly in θ by Lemma 8.1, it follows from the last

inequality that Eg also tends to 0 as t tends to t0. The case where we know a priori that Eg tends to 0
and we need to deduce that Eh tends to 0 may be treated similarly. �

8I. Strong control on the spatial derivative of β. An immediate application of these limits allows an
improvement to Lemmas 8.5 and 8.6:

Lemma 8.9. lim
t→t0

(
max
[0,1]

β(t, · )−min
[0,1]

β(t, · )
)
= 0,

lim
t→t0

(
max
[0,1]

(2β − P)(t, · )−min
[0,1]

(2β − P)(t, · )
)
= 0. (145)

From this it follows that:

Lemma 8.10. For all ε > 0, there exists t ′ > t0 such that, for all t ∈ (t0, t ′],

max
θ∈[0,1]

e2β(t, · )≤ eε min
[0,1]

e2β(t, · ), (146)

max
θ∈[0,1]

e2β−P(t, · )≤ eε min
[0,1]

e2β−P(t, · ), (147)

max
θ∈[0,1]

(
−
αt

α
(t, · )

)
≤ eε min

θ∈[0,1]

(
−
αt

α
(t, · )

)
. (148)
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Proof. The first two inequalities follow directly from the last lemma. Next, write the Einstein equation
for α, (106), in terms of β and P:

αt

α
=−4e2β−P3−

e2βK 2

t3 . (149)

Now the last inequality of the lemma follows from the first two. �

Note that by integration, we could easily obtain from the last line that for all ε > 0, there exists t ′ > t0
and a constant C > 0 such that

max
θ∈[0,1]

α(t, · )≤ C min
θ∈[0,1]

α(t, · )1+ε for all t ∈ (t0, t ′]. (150)

Unfortunately, the exponent of the right-hand side is not 1 and this will not be sufficient for our analysis.
Thus, we need a stronger estimate than this one, which we provide in the next section.

8J. An estimate for (∂/∂θ) (lnα). The estimates on βθ and 2βθ − Pθ coming from the inequalities
(131) and (134) were based on previously known estimates for T 2-symmetric spacetimes written in areal
coordinates. Here, we will derive a stronger estimate from these inequalities, using the identities (122)
and (121) and Equation (106). The estimate that we obtain is the following:

Lemma 8.11. There exists a constant C > 0 such that, for all (t, θ) ∈ (t0, ti ]× [0, 1],∣∣∣∣ ∂∂θ (ln(α)) (t, θ)
∣∣∣∣≤ C. (151)

Proof. Multiplying (131) and (134) by e2β and e2β−P , we obtain

|βθ |e2β
≤ t

g
√
α

e2β
=

1
2
∂t
(√
αe2ν), (152)∣∣∣∣βθ − Pθ

2

∣∣∣∣ e2β−P
≤

t
4

h
√
α

e2β−P
=

t1/2

2
∂t
(
t−1/2√αe2ν−P), (153)

where we have used the identities (122) and (121) arising from the constraints to rewrite the right-hand
sides of the equations.

On the other end, from (106), we have

−
∂

∂t
lnα = 43e2β−P

+
K 2e2β

t3 . (154)

Thus, taking the θ derivative of the last equation, we obtain

−
∂

∂θ

(
∂

∂t
lnα

)
= 43(2βθ − Pθ )e2β−P

+ 2βθ
K 2e2β

t3 . (155)

We now integrate the last line and commute the θ and t partial derivatives in the integrand of the
left-hand side to obtain, for all (t, θ) ∈ (t0, ti ]× [0, 1],

∂θ lnα(t, θ)= ∂θ lnα(ti , θ)+
∫ ti

t
43(2βθ − Pθ )e2β−P(s, θ) ds+

∫ ti

t
2βθ

K 2e2β

t3 (s, θ) ds. (156)
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Using (152) and (153), we have

|∂θ lnα(t, θ)| ≤ sup
θ∈[0,1]

|∂θ lnα(ti , · )| +
∫ ti

t
43
∣∣(2βθ − Pθ )e2β−P

∣∣(s, θ) ds+
∫ ti

t

∣∣∣∣2βθ K 2e2β

t3

∣∣∣∣ (s, θ) ds,

≤ sup
θ∈[0,1]

|∂θ lnα(ti , · )| + 43t1/2
i

∫ ti

t
∂t
(
t−1/2√αe2ν−P)

+
K 2

t3
0

∫ ti

t
∂t(
√
αe2ν), (157)

and the lemma follows from the uniform bounds on
√
αe2ν and

√
αe2ν−P . �

By integration, we immediately obtain:

Corollary 2. There exists a constant C > 0 such that, for all t ∈ (t0, ti ], we have

max
θ∈[0,1]

α(t, θ)≤ C min
θ∈[0,1]

α(t, θ). (158)

Combining this with Lemma 8.5, we may obtain:

Corollary 3. There exist constants M1 and M2 such that for all (t, θ) ∈ (t0, ti ], we have

M1
√
α(t, θ)≥ e2β(t, θ)≥ M2

√
α(t, θ). (159)

Similarly, there exist constants M ′1 and M ′2 such that for all for all (t, θ) ∈ (t0, ti ], we have

M ′1
√
α(t, θ)≥ e2β−P(t, θ)≥ M ′2

√
α(t, θ). (160)

Proof. Given that Eh,K is nondecreasing in the past direction, that Eh tends to zero as t tends to t0 and
that K > 0, it follows that the limit of

∫
[0,1]
√
αe2νdθ is nonzero. This implies, using the monotonicity

of
√
αe2ν as a function of t and the monotone convergence theorem, that there exists a θ0 and a constant

M > 0 such that
√
αe2ν(t, θ0) ≥ M for all t ∈ (t0, ti ]. Let M ′ be an upper bound for

√
αe2ν(t, θ0). By

Lemma 8.5, there exits a constant M ′′ such that, for all (t, θ) ∈ (t0, ti ]× [0, 1],

eM ′′e2β(t, θ0)≥ e2β(t, θ)≥ e−M ′′e2β(t, θ0) (161)

and thus

M ′eM ′′√α(t, θ0)≥ e2β(t, θ)≥ Me−M ′′√α(t, θ0) (162)

Let M ′′′ be such that, for all (t, θ) ∈ t ∈ (ti , t0]× [0, 1],

eM ′′′√α(t, θ)≥
√
α(t, θ0)≥ e−M ′′′√α(t, θ). (163)

Then we have
M ′eM ′′′eM ′′√α(t, θ)≥ e2β(t, θ)≥ Me−M ′′′e−M ′′√α(t, θ) (164)

This proves the inequalities (159). The second set of inequalities can be treated similarly, using Eg and
another energy integral

Eg,3 =

∫
[0,1]

(
g
√
α
+αe2(ν−U )3

)
dθ, (165)

which may be easily proven to be nondecreasing in the past direction and uniformly bounded. �
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The aim of the next two sections will be to describe the characteristics curves and to establish several
estimates about their behavior for t close to t0. We will actually not need to analyze all null curves, but
only null curves orthogonal to the orbits of symmetry. Note that in the next sections, we will often, by
an abuse of notation, denote by the same name functions defined on M or Q together with their lifts to
Q̃, the universal cover of Q.

8K. An analysis of the characteristics in areal coordinates. Consider a null curve γ in M which is
orthogonal to the orbits of symmetry and let γ̃ be the lift to Q̃ of the projection to Q of γ . In null
coordinates as those used in [Smulevici 2008], γ is given by u = constant or v = constant. In areal
coordinates, we obtain γ by solving the characteristic equation

2′(s)=±
√
α(s,2(s)), (166)

with appropriate initial conditions. If 2(t) is a solution to the above equation, then γ is given in areal
coordinates by (t,2(t)).

By standard arguments, solutions of (166) exist and are smooth and unique on (t0, t] for any t ∈ (t0, ti ]
once initial conditions have been fixed.

Now let us consider the characteristics parallel to the constant v lines. They are parametrized by
(s,2(s, θ, t)), where 2(s, θ, t) satisfies

2(s, θ, t)= θ −
∫ s

t

√
α(s ′,2(s ′, θ, t))ds ′. (167)

Taking the θ derivative,

2θ (s, θ, t)= 1−
∫ s

t

1
2

(
αθ
√
α

) (
s ′,2(s ′, θ, t)

)
2θ (s ′, θ, t) ds ′. (168)

Solving this equation implicitly, we see that

2θ (s, θ, t)= exp
∫ t

s

1
2

(
αθ
√
α

)
(s ′,2(s, θ, t)) ds ′. (169)

We are naturally lead to estimate the integral on the right. This is the subject of the next section.

8L. Estimates for the integral along the characteristics of αθ/
√
α.

Lemma 8.12. For all ε > 0, there exists a t̄ > t0, such that for all t ′ ∈ (t0, t̄] there exists a negative
constant M1 and a positive constant M2 such that, for all (t, θ) ∈ (t0, t ′]× [0, 1],

M1− ε lnα(t,2(t, θ, t ′))≤
∫ t ′

t
−
αθ
√
α
(s,2(s, θ, t ′)) ds ≤ M2+ ε lnα(t,2(t, θ, t ′)). (170)

Proof. Let ε > 0 and let t̄ ∈ (t0, ti ] be such that Lemma 8.10 holds in the following way: for all
(t, θ, θ ′) ∈ (t0, t̄]× [0, 1]2,

−(1− ε)
αt

α
(t, θ ′) <−

αt

α
(t, θ) <−(1+ ε)

αt

α
(t, θ ′). (171)
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Fix t ′ ∈ (t0, t̄ ] and let 2(t, θ, t ′) be a characteristic such that

2(t, θ, t ′)= θ −
∫ t

t ′

√
α(s,2(s, θ, t ′)) ds. (172)

We have, for all (t, θ) ∈ (t0, t ′]× [0, 1],∫ t ′

t
−
αθ
√
α
(s,2(s, θ, t ′)) ds =

∫ t ′

t

(
αt

α
−
αθ
√
α
−
αt

α

)
(s,2(s, θ, t ′)) ds (173)

=

∫ t ′

t

d
ds

(
lnα(s,2(s, θ, t ′)

)
ds−

∫ t ′

t

αt

α
(s,2(s, θ, t ′)) ds. (174)

We now use (171) to estimate the second integral on the right-hand side. Let θ0 be in [0, 1]. Then

−

∫ t ′

t

αt

α
(s,2(s, θ, t ′)) ds ≥−(1− ε)

∫ t ′

t

αt

α
(s, θ0) ds, (175)

−

∫ t ′

t

αt

α
(s,2(s, θ, t ′)) ds ≥−(1− ε)

(
lnα(t ′, θ0)− ln(α(t, θ0))

)
. (176)

Using Corollary 2, there exists a constant M > 0 such that

−

∫ t ′

t

αt

α
(s,2(s, θ, t ′)) ds ≥−(1− ε)

(
lnα(t ′,2(t ′, θ, t ′))− lnα(t,2(t, θ, t ′))

)
−M. (177)

Similarly, we obtain

−

∫ t ′

t

αt

α
(s,2(s, θ, t ′)) ds ≤−(1+ ε)

(
lnα(t ′,2(t ′, θ, t ′))− lnα(t,2(t, θ, t ′))

)
+M. (178)

Thus we have, from (174) and (177):

lnα(t ′,2(t ′, θ, t ′))− lnα(t,2(t, θ, t ′))−(1−ε)
(

lnα(t ′,2(t ′, θ, t ′))− lnα(t,2(t, θ, t ′))
)
−M

≤

∫ t ′

t
−
αθ
√
α
(s,2(s, θ, t ′)) ds (179)

and similarly∫ t ′

t
−
αθ
√
α
(s,2(s, θ, t ′)) ds ≤ lnα(t ′,2(t ′, θ, t ′))− lnα(t,2(t, θ, t ′))

−(1+ ε)
(
lnα(t ′,2(t ′, θ, t ′))− lnα(t,2(t, θ, t ′))

)
+M. (180)

The lemma follows by simplifying the terms containing α(t,2(t, θ)) in (179) and (180). �

8M. Estimates for the integrals of small powers of α. It will be useful for the derivation of pointwise
energy estimates to have some control over the integral of α p for small enough p. We first need the
following result:

Lemma 8.13. There exists θ ∈ [0, 1], such that

lim
t→t0

√
αe2ν(t, θ) > 0. (181)
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Proof. Suppose that the lemma does not hold. Since
√
αe2ν(t, θ) is a decreasing function of t , it must

then tend to 0 as t tends to t0 for any θ . From the compactness of [0, 1] and using again the fact that
√
αe2ν is decreasing in t , it follows that

∫
[0,1]
√
αe2νdθ tends to 0 as t tends to t0. This contradicts the

facts that Eh,K tends to a strictly positive value by monotonicity and Eh has limit 0. �

Lemma 8.14. For all p < 1
2 , there exists a function B(t ′) such that B(t ′)→ 0 as t ′→ t0 and such that

for all (t, θ) ∈ (t0, t ′]× [0, 1], with t ′ > t0, we have∫ t ′

t
α p(s, θ) ds ≤ B(t ′). (182)

Proof. Let θ0 ∈ [0, 1] be such that the previous lemma holds, and thus such that
√
αe2ν( · , θ0) is bounded

from below by a strictly positive constant on (t0, t ′].
We then rewrite (106) as

−
( 1

2 − p
) αt

α3/2−p =
( 1

2 − p
)
α p f (t, θ0), (183)

where

f (t, θ0)= 43
√
αe2ν−P

+

√
αe2νK 2

t3

is a function bounded from below by a strictly positive constant. Integrating (183), we obtain∫ t ′

t

d
dt
(α p−1/2) ds =

∫ t ′

t

( 1
2 − p

)
α p f (s, θ0) ds. (184)

Using the lower bound on f (s, θ), we therefore obtain∫ t ′

t
α p(s, θ0) ds ≤

C
α1/2−p(t ′, θ0)

, (185)

for some constant C > 0. The lemma then follows by application of Corollary 2 of Section 8J and the
fact that limt ′→t0 α(t

′, θ0)=+∞. �

From (124), we have seen that Eh is a priori not monotonic. In the next section, we will analyze an
energy integral associated with the polarization function A. The advantage of this energy integral over
Eh is that, as the wave equation for A is homogeneous, we will be able to extract useful information
from the sign of d E A/dt .

8N. Analysis of the polarization energy. Define the energy associated with the wave equation for A as

E A =

∫
[0,1]

e2P
√
α

(
A2

t +αA2
θ

)
dθ. (186)

Since by definition E A ≤ Eh , we immediately obtain that E A→ 0, when t→ t0. The aim of this section
is to extract some information from this remark. Note that the wave equation for A, (109), may also be
written as

∂t

(
te2P At
√
α

)
− ∂θ

(
te2P√αAθ

)
= 0. (187)
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We first compute the time derivative of E A:

d E A

dt
=

∫
[0,1]

∂

∂t

(
e2P
√
α

A2
t

)
+
∂

∂t

(
e2P√αA2

θ

)
=

∫
[0,1]

At∂t

(
e2P
√
α

At

)
+ At t

e2P
√
α

At + A2
θ∂t(e2P√α)+ 2Aθ t Aθe2P√α

=

∫
[0,1]

At

(
∂θ (e2P√αAθ )−

e2P At

t
√
α

)
+

(
αAθθ +

(
−

1
t
+
αt

2α

)
At +

1
2αθ Aθ − 2(At Pt −αAθ Pθ )

)e2P
√
α

At

+ 2Pt e2P√αA2
θ +

αt

2
√
α

e2P A2
θ + 2Aθ t Aθe2P√α

=

∫
[0,1]
−

1
t

e2P A2
t

√
α
+ At∂θ

(
e2P√αAθ

)
+

e2P
√
α

AtαAθθ −
1
t

e2P A2
t

√
α
+
αt

2α
e2P A2

t
√
α
+

1
2αθ Aθ

e2P At
√
α

− 2A2
t Pt

e2P
√
α
+ 2αPθ Aθ

e2P At
√
α
+ 2Pt e2P√αA2

θ +
αt

2
√
α

e2P A2
θ + 2Aθ t Aθe2P√α,

=

∫
[0,1]
−2

e2P A2
t

√
α
+ 2∂θ (At e2P√αAθ )+

( αt

2α
− 2Pt

) e2P A2
t

√
α
+

( αt

2α
+ 2Pt

)
e2P√αA2

θ . (188)

Since the second term vanishes due to the periodicity, we obtain

d E A

dt
=

∫
[0,1]
−2

e2P A2
t

√
α
+

( αt

2α
− 2Pt

) e2P A2
t

√
α
+

( αt

2α
+ 2Pt

)
e2P√αA2

θ . (189)

Note that by assumption, the spacetime is not polarized and thus E A cannot identically vanish on any
Cauchy surface, in particular, on any surface of constant t . Now, if there exists t ′ ∈ (t0, ti ] such that, for
all (t, θ) ∈ (t0, t ′]×[0, 1], both (αt/2α)+ Pt and (αt/2α)− Pt tend to 0, it follows that E A is increasing
in the past direction, which contradicts the fact that E A→ 0 as t→ t0. We are led to the following:

Lemma 8.15. There exists a constant C > 0 and a sequence of points (tn, θn) in (t0, ti ] × [0, 1], with
tn→ t0, as n→+∞ such that |Pt |√

α
(tn, θn)≥ C.

Proof. As explained above, we have a sequence of points (tn, θn) such that |Pt |+αt/(2α)≥ 0; otherwise
E A is increasing for t close to t0. From Corollary 3 of Section 8J and (149), there exists a constant M > 0
such that, for all (t, θ) ∈ (t0, ti ]× [0, 1],

αt

α
(t, θ)≤−M

√
α(t, θ), (190)

from which we obtain (
|Pt | −

M
2
√
α
)
(tn, θn)≥ 0, (191)

which proves the lemma. �

The set of points we have just obtained will be used as initial data for some null cone estimates, where
the aim will be to estimate from below the energy density h. However, we will need to treat some of the
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nonlinear terms as error terms, and for this, it will be necessary to first control h from above, which is
the subject of the next section.

8O. Pointwise null cone energy estimates: control from above. We introduce the energy density:

h× = 2
√
αPt Pθ + 2e2P√αAt Aθ . (192)

Let us compute the sum and the difference of h and h×:

h+ h× = (Pt +
√
αPθ )2+ e2P(At +

√
αAθ )2, (193)

h− h× = (Pt −
√
αPθ )2+ e2P(At −

√
αAθ )2. (194)

Define

Du = ∂t −
√
α∂θ , (195)

Dv = ∂t +
√
α∂θ , (196)

Pu = Du P, Pv = DvP, (197)

Au = Du A, Av = DvA. (198)

With this notation, we have

h+ h× = P2
v + e2P A2

v, (199)

h− h× = P2
u + e2P A2

u . (200)

We may also rewrite the wave equations (113) and (109) for P and A as23

Du DvP =
αt

2α
Pv −

1
2t
(Pu + Pv)+ e2P Au Av −

1
2t4αe2νK 2, (201)

DvDu P =
αt

2α
Pu −

1
2t
(Pu + Pv)+ e2P Au Av −

1
2t4αe2νK 2, (202)

Du DvA =
αt

2α
Av −

1
2t
(Au + Av)− Au Pv − AvPu, (203)

DvDu A =
αt

2α
Au −

1
2t
(Au + Av)− Au Pv − AvPu . (204)

We have

Du(h+ h×)=
(
−

1
t
+
αt
α

)
(P2
v + e2P A2

v)−
1
t
(Pu Pv + e2P AvAu)−

Pv
t4 αe2νK 2, (205)

Dv(h− h×)=
(
−

1
t
+
αt
α

)
(P2

u + e2P A2
u)−

1
t
(Pu Pv + e2P AvAu)−

Pu
t4 αe2νK 2, (206)

or, equivalently,

Du(h+ h×)=
(
−

1
t
+
αt
α

)
(h+ h×)− 1

t
(Pu Pv + e2P AvAu)−

Pv
t4 αe2νK 2, (207)

Dv(h− h×)=
(
−

1
t
+
αt
α

)
(h− h×)− 1

t
(Pu Pv + e2P AvAu)−

Pu
t4 αe2νK 2. (208)

23Note that Du Dv = DvDu +
αt
√
α
∂θ .
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We will prove the next result using null cone estimates:

Lemma 8.16. For all ε > 0, there exists a constant B > 0, a t ′ > t0 and a θ0 ∈ [0, 1] such that, for all
t ′ ≥ t > t0,

sup
θ∈[0,1]

h(t, · )≤ Bα1+ε(t, θ0). (209)

Proof. Let t ∈ (t0, ti ] and let 2(s, θ, t) denote a solution of the characteristic equation with initial
conditions 2(t, θ, t)= θ such that (s,2(s, θ, t)) corresponds to a constant v line in null coordinates, as
introduced in Section 8K.

We have

∂

∂s

(
(h+ h×)(s,2(s, θ, t))

)
=
∂(h+ h×)

∂t
−
√
α
∂(h+ h×)

∂θ
= Du(h+ h×)(s,2(s, θ, t)) (210)

and therefore (207) can be rewritten as follows, for any t ′ > t0:

∂

∂s

(
(h+ h×)(s,2(s, θ, t)) exp

∫ t ′

s

(
−

1
s ′
+
αt
α

)
(s ′,2(s ′, θ, t)) ds ′

)
=

(
exp

∫ t ′

s

(
−

1
s ′
+
αt
α

)
(s ′,2(s ′, θ, t)) ds ′

)
φ(s,2(s, θ, t)), (211)

where

φ =−
1
s
(Pu Pv + e2P AvAu)−

Pv
s4 αe2νK 2.

Let t ′ ≥ t > t0 and integrate the last line between t ′ and t to obtain

(h+ h×)(t ′,2(t ′, θ, t))− (h+ h×)(t, θ) exp
∫ t ′

t

(
−

1
s ′
+
αt
α

)
(s ′,2(s ′, θ, t)) ds ′

=

∫ t ′

t

[(
exp

∫ t ′

s

(
−

1
s ′
+
αt
α

)
(s ′,2(s ′, θ, t)) ds ′

)
φ(s,2(s, θ, t))

]
ds. (212)

Let ε > 0 and fix a θ0 in [0, 1]. Assume t ′ is such that Lemma 8.10 holds in the following sense: for all
(t, θ) ∈ (t0, t ′]× [0, 1],

(1+ ε)
αt

α
(t, θ0)≤

αt

α
(t, θ)≤ (1− ε)

αt

α
(t, θ0), (213)

which implies the estimates

t
t ′

(
α(t ′, θ0)

α(t, θ0)

)1+ε

≤ exp
∫ t ′

t

(
−

1
s ′
+
αt

α

)
(s ′,2(s ′, θ, t)) ds ′ (214)

and

exp
∫ t ′

t

(
−

1
s ′
+
αt

α

)
(s ′,2(s ′, θ, t)) ds ′ ≤

t
t ′

(
α(t ′, θ0)

α(t, θ0)

)1−ε

. (215)

Define F(s, θ, t) by

F(s, θ, t)= (h+ h×)(s,2(s, θ, t))
s
t ′

(
α(t ′, θ0)

α(s, θ0)

)1+ε

. (216)
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Note that it follows from the definition of F(s, θ, t) that, for all t, t ′ ∈ (t0, ti ],

sup
θ∈[0,1]

F(s, θ, t)= sup
θ∈[0,1]

F(s, θ, t ′)

Thus, we may define Z(s) by
Z(s)= sup

θ∈[0,1]
F(s, θ, t).

From (212), (214) and (215), we have

F(t, θ, t)≤ F(t ′, θ, t)+
∫ t ′

t

s
t ′

(
α(t ′, θ0)

α(s, θ0)

)1−ε

|φ(s,2(s, θ, t))|ds. (217)

We will now estimate the second term on the right-hand side of the last inequality. First note that

|φ(s,2(s, θ, t))| =
∣∣∣∣−1

s
(Pu Pv + e2P AvAu)−

Pv
s4 αe2νK 2

∣∣∣∣ (218)

≤
h
s
+

√
h+ h×

e2βK 2

s4 . (219)

Thus(
α(t ′, θ0)

α(s, θ0)

)1−ε

|φ(s,2(s, θ))| ≤
(
α(t ′, θ0)

α(s, θ0)

)1−ε
1
2 h+

(
α(t ′, θ0)

α(s, θ0)

)1−ε√
h+ h×

e2βK 2

s4 . (220)

The second term on the right-hand side of this last line may then be rewritten in terms of F(s, θ, t):(
α(t ′, θ0)

α(s, θ0)

)1−ε√
h+ h×

e2βK 2

s4 =

(
α(t ′, θ0)

α(s, θ0)

)1/2−3ε/2 e2βK 2

s4

( t ′

s

)1/2√
F(s, θ, t). (221)

Moreover, from Lemmas 8.5 and 8.14 and Corollary 3, for ε small enough we have∫ t ′

t

(
α(t ′, θ0)

α(s, θ0)

)1/2−3ε/2 e2βK 2

s4

( t ′

s

)1/2
ds ≤

∫ t ′

t
Cα(3ε)/2(s, θ0) ds ≤ M, (222)

for some constant M > 0. We now use estimates of the type found in [Smulevici 2008]. Let tm be such
that Z(tm) is a maximum of Z on [t, t ′]. Note the trivial fact that sup[t,t ′] Z = Z(tm)= sup[tm ,t ′] Z .

It follows from (217), (220) and (222) that

F(tm, θ, tm)≤ F(t ′, θ, tm)+
√

Z(tm)M +
∫ t ′

tm

s
t ′

(
α(t ′, θ0)

α(s, θ0)

)1−ε h(s,2(s, θ, tm))
s

ds, (223)

for some constant M > 0. Note that F(t ′, θ, tm) is uniformly bounded since, by definition,

F(t ′, θ, tm)= (h+ h×)(t ′,2(t ′, θ, tm))≤ sup
θ∈[0,1]

(h+ h×)(t ′, · )≤ C (224)

for some constant C > 0. Thus we have, from (223),

F(tm, θ, tm)≤ C +
√

Z(tm)M +
∫ t ′

tm

s
t ′

(
α(t ′, θ0)

α(s, θ0)

)1−ε h(s,2(s, θ, tm))
s

ds, (225)
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and taking the supremum over θ , we obtain

Z(tm)≤ C +
√

Z(tm)M + D
∫ t ′

tm

(
α(t ′, θ0)

α(s, θ0)

)1−ε

sup
θ∈[0,1]

(h(s, · )) ds. (226)

We interpret the last line as an inequality for a second-order polynomial equation in
√

Z(tm). Thus
√

Z(tm) must lie between the roots of this polynomial, and we obtain easily that

Z(tm)≤ C ′+C ′
∫ t ′

tm

(
α(t ′, θ0)

α(s, θ0)

)1−ε

sup
θ∈[0,1]

(h(s, · )) ds, (227)

for some constant C ′ > 0. Since Z(t)≤ Z(tm) and since t ≤ tm , we have

Z(t)≤ C ′+C ′
∫ t ′

t

(
α(t ′, θ0)

α(s, θ0)

)1−ε

sup
θ∈[0,1]

(h(s, · )) ds, (228)

Thus, we have established that(
sup
θ∈[0,1]

(h+ h×)(t, · )
) t

t ′

(
α(t ′, θ0)

α(t, θ0)

)1+ε

≤ B+C
∫ t ′

t

(
α(t ′, θ0)

α(s, θ0)

)1−ε

sup
θ∈[0,1]

(h(s, · )) ds, (229)

for some constants B,C > 0. A similar estimate may be obtained using h− h× and (208). Adding the
estimate for h− h× to (229), we obtain easily that

(
sup
θ∈[0,1]

h(t, · )
) t

t ′

(
α(t ′, θ0)

α(t, θ0)

)1+ε

≤ B+C
∫ t ′

t

(
α(t ′, θ0)

α(t, θ0)

)1−ε

sup
θ∈[0,1]

(h(s, · )) ds.

Applying Gronwall’s lemma, together with Lemma 8.14, completes the proof. �

8P. Pointwise null cone energy estimates: control from below. With the control from above for h that
we have just obtained, we may now prove an estimate from below for h if we have appropriate initial data:

Lemma 8.17. Suppose that there exists a constant B > 0 and a sequence of points (tn, θn) with tn→ t0
as n→+∞, such that

|Pv|
√
α
(tn, θn) > B for all n.

For all ε > 0, there exists C > 0, t ′ > t0, θ ′ ∈ [0, 1] and an interval [θ ′− δ, θ ′+ δ] with δ > 0 such that,
for all (t, θ) ∈ (t0, t ′]× [θ ′− δ, θ ′+ δ],

h(t,2(t, θ, t ′))≥ Cα1−ε(t,2(t, θ, t ′)), (230)

where (s,2(s, θ, t ′)) denote the parametrizations of the null lines parallel to the constant v lines starting
at (t ′, θ) which were introduced in Section 8K.

Proof. Let ε > 0 and n0 ∈ N be such that Lemma 8.16 holds and Lemma 8.10 holds as in (213), with
t ′ replaced by tn0 in both lemmas. Let n ≥ n0. We will integrate (207) in a way similar to the proof of
the last lemma. Let us denote by 2n(t, θ) the null lines parallel to the constant v lines starting at (tn, θ),
i.e., 2n(t, θ)=2(t, θ, tn). Equation (207) can then be integrated as
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(h+ h×)(tn, θ)− (h+ h×)(t,2n(t, θ)) exp
∫ tn

t

(
−

1
s ′
+
αt
α

)
(s ′,2n(s ′, θ)) ds ′

=

∫ tn

t

((
exp

∫ tn

s

(
−

1
s ′
+
αt
α

)
(s ′,2n(s ′, θ)) ds ′

)
φ(s,2n(s, θ))

)
ds, (231)

where

φ =−
1
s
(Pu Pv + e2P AvAu)−

Pv
s4 αe2νK 2.

Fix θ0 ∈ [0, 1]. Since Lemma 8.10 holds in the sense of (213) for t ∈ (t0, tn], we have again the estimates

t
tn

(
α(tn, θ0)

α(t, θ0)

)1+ε

≤ exp
∫ tn

t

(
−1
s
+
αt
α

)
(s,2n(s, θ)) ds, (232)

exp
∫ tn

t

(
−1
s
+
αt
α

)
(s,2n(s, θ)) ds ≤

t
tn

(
α(tn, θ0)

α(t, θ0)

)1−ε

. (233)

Using this, we may estimate the last term on the right-hand side of (231):∫ tn

t

((
exp

∫ tn

s

(
−

1
s ′
+
αt
α

)
(s ′,2n(s ′, θ)) ds ′

)
φ(s,2n(s, θ))

)
ds

≤

∫ tn

t

t
tn

(
α(tn, θ0)

α(t, θ0)

)1−ε

|φ|(s,2n(s, θ)) ds

≤

∫ tn

t

t
tn

(
α(tn, θ0)

α(t, θ0)

)1−ε(h
s
+

√
h+ h×

e2βK 2

s4

)
ds.

(234)

We now use Lemma 8.14 and the estimates h+h×≤ 2h, h≤Cα1+ε ,
√

h≤
√

C
√
α1+ε , and e2β

≤C
√
α,

for some constant C > 0 independent of n, to obtain∫ tn

t

((
exp

∫ tn

s

(
−

1
s ′
+
αt
α

)
(s ′,2n(s ′, θ)) ds ′

)
φ(s,2n(s, θ))

)
ds ≤ α(tn, θ0)

1−ε
∫ tn

t
Cα2ε

≤ C ′nα(tn, θ0), (235)

where C ′n→ 0 as n→∞.
We obtain from (231) that

(h+ h×)(t,2n(t, θ))≥
(
(h+ h×)(tn, θ)−C ′n(t)α(tn, θ0)

)
exp

∫ tn

t

( 1
s ′
−
αt
α

)
(s ′,2n(s ′, θ)) ds ′, (236)

(h+ h×)(t,2n(t, θ))≥
(
(h+ h×)(tn, θ)−C ′n(t)α(tn, θ0)

) tn
t

(
α(t, θ0)

α(tn, θ0)

)1−ε

. (237)

By assumption, for all n ∈ N, we have

|Pv|
√
α
(tn, θn) > B,

and thus, from (199), (h + h×)(tn, θn)/α(tn, θn) ≥ A, for some A > 0. By application of Corollary 2,
we obtain (h+ h×)(tn, θn)/α(tn, θ0)≥ A′, for some constant A′ > 0. Thus, for all n ∈N, there exists an
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interval around θn , say [θn − δn, θn + δn] with δn > 0, such that, for all θ ∈ [θn − δn, θn + δn],

(h+ h×)(tn, θ)
α(tn, θ0)

≥
A′

2
. (238)

Let n1 be such that for all n ≥ n1 and all t ∈ (t0, tn], C ′n ≤ A′/4. Let n2 = max(n0, n1). Then we have,
from (237) and (238), for all (t, θ) ∈ (t0, tn2]× [θn2 − δn2, θn2 + δn2],

(h+ h×)(t,2n2(t, θ))≥
A′

4
α(tn2, θ0)

tn2

t

(
α(t, θ0)

α(tn2, θ0)

)1−ε

. (239)

Moreover, we have α(t,2n2(t, θ))≤ Mα(t, θ0) for some constant M > 0; thus we obtain

(h+ h×)(t,2n2(t, θ))≥
A′

4M1−ε α(tn2, θ0)
tn2

t0

(
α(t,2n2(t, θ))
α(tn2, θ0)

)1−ε

, (240)

which proves the lemma. �

Remark 8P.1. With the notation of Lemma 8.17, it is possible to choose t ′ so that t ′ ∈ (t0, t̄ ], where
t̄ is such that Lemma 8.12 holds. To see this, just replace in the above proof n0 by n′0 ≥ n0 such that
tn′0 ∈ (t0, t̄].

8Q. The contradiction. From Lemma 8.15, there exists a sequence of points (tn, θn) and a constant
A> 0 such that |Pt |√

α
(tn, θn)≥ A. Thus, without of generality, we may assume that there exists a sequence

of points (t ′n, θ
′
n) and a constant A> 0 such |Pv |√

α
(t ′n, θ

′
n)≥

A
2 , exchanging the role of u and v if necessary.

Therefore, Lemma 8.17 applies, and for all ε > 0, there exists a C > 0, a t ′ > t0, a θ ′ ∈ [0, 1] and an
interval [θ ′− δ, θ ′+ δ] with δ > 0 such that, for all (t, θ) ∈ (t0, t ′]× [θ ′− δ, θ ′+ δ],

h(t,2(t, θ, t ′))≥ Cα1−ε(t,2(t, θ, t ′)), (241)

where (s,2(s, θ, t ′)) denote the parametrizations of the null lines parallel to the constant v lines, starting
at (t ′, θ). Moreover, let us choose t ′ so that t ′ ∈ (t0, t̄], where t̄ is such that Lemma 8.12 holds, as in
Remark 8P.1.

Consider the integral in θ of h(t,2(t, θ, t ′)) and fix a θ0 ∈ [0, 1]. We have∫
[0,1]

h(t,2(t, θ, t ′)) dθ ≥ 2δCα1−ε(t, θ0), (242)

using Corollary 2. On the other hand, we have, by the change of variable θ ′ =2(t, θ, t ′),∫
[0,1]

h(t,2(t, θ, t ′)) dθ =
∫
[0,1]

h(t, θ ′)2−1
θ dθ ′. (243)

From (169), we therefore have∫
[0,1]

h(t,2(t, θ, t ′)) dθ =
∫
[0,1]

h(t, θ ′)
(

exp
∫ t

t ′

1
2

(
αθ
√
α

)
ds
)

dθ ′, (244)

where the integral in the exponential is taken along the characteristics.



SYMMETRY ORBITS OF COSMOLOGICAL SPACETIMES WITH TOROIDAL OR HYPERBOLIC SYMMETRY 235

Since Lemma 8.12 holds, we have

exp
∫ t

t ′

1
2

(
αθ
√
α

)
ds ≤ Mαε . (245)

Thus, we obtain ∫
[0,1]

h(t,2(t, θ, t ′)) dθ ≤
∫
[0,1]

hMαε(t, θ ′) dθ ′. (246)

Using again Corollary 2 and the boundedness of Eh =
∫
[0,1](h/

√
α)dθ , we see that the right-hand of

the last inequality is bounded by M ′α1/2+ε(t, θ0) for some constant M ′. Choosing ε small enough, this
contradicts (242) since α→∞ as t→ t0. Thus Theorem 2 is proved.24

9. Proof of Theorem 3

We will prove Theorem 3 in this section. For this, we will adapt the proof found by Isenberg and Weaver
[2003] to the case of k =−1 surface-symmetric spacetimes. To exploit their methods, we have rewritten
the metric in a form similar to the T 2 case (see (7) in Section 2B). In particular, the coordinate t used
in (7) denotes the square of the usual areal time used for these spacetimes, as found for instance in
[Tchapnda 2004].

To start, we recall the Einstein–Vlasov system for spacetimes with a hyperbolic surface of symmetry.

9A. Vlasov matter in k = −1 surface-symmetric spacetimes. Let (M, g, f ) be a past development
of k = −1 surface-symmetric initial data with Vlasov matter as described in Section 2D and assume
that (t, θ, x, y) is a system of areal coordinates such that the metric in M takes the form (7). Let vi ,
i = 0, 1, 2, 3 denotes the components of the velocity vector in the canonical basis of 1-forms associ-
ated with the coordinate system (t, θ, x, y). We will parametrize the mass shell P by the coordinates
(t, θ, x, y, v1, v2, v3), where by an abuse of notation, we denote the lift to P of the coordinates on M by
the same symbols. The Vlasov field f can be seen as a function of (t, θ, x, y, v1, v2, v3) or, using the
symmetry, as a function depending only on t , θ , w = (

√
t/eν)v1 and L = γ abvavb, and we will, by an

abuse of notation, use both definitions and denote it by f in either case.25

With these definitions, the mass shell relation vµvµ =−1 is given by

v0 =−

√
α

t
e2ν +αv2

1 +
αe2ν

t2 γ abvavb =−

√
αeν
√

t

√

1+w2+ L/t (247)

and the Vlasov equation for f (t, θ, w) reads as

2
√

t∂t f +
2
√

tαw√
1+w2+ L/t

∂θ f −
(
√

t(2νt−1/t)w+
(
νθ+

αθ

2α

)
2
√

tα
√

1+w2+ L/t
)
∂w f = 0. (248)

24We see that the margin of error is, up to ε, α1/2. This margin follows from our estimates because, up to αε , we have h∼ α
along certain characteristics. On the other hand, if we did not have this margin, i.e., if we had h ∼ α1/2, then it would follow
that for t ′ close enough to t0, (αt/2α)± Pt ≤ 0 for all θ ∈ [0, 1], and (189) would the imply that that E A is increasing the past.
This would contradict the fact that E A→ 0 as t→ t0.

25The indices on the velocities vi are raised or lowered using the metric (7), not using γab. This implies that if pa denotes
the canonical momentum associated with the coordinates system (t.θ.x .y), then L = t2γab pa pb.
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9B. The Einstein equations. The Einstein equations (1) reduce to the following system of equations:

Constraint equations:

νt =
1
4t
+αe2ν3−

kαe2ν

t
+ 8π
√
α

∫
R3

f |v0|γ
−1/2 dv1 dv2 dv3, (249)

αt

α
=−43αe2ν

+
4kαe2ν

t
− 16πα3/2e2ν

∫
R3

f (t−1
+ t−2)

|v0|
γ−1/2 dv1 dv2 dv3, (250)

νθ +
αθ

2α
=−8π

√
α

∫
R3

f v1γ
−1/2 dv1 dv2 dv3. (251)

Evolution equation:

νt t−ανθθ =
1
2
αθθ −

α2
θ

4α
+
νθαθ

2
−

1
4t2 +

αtνt

2α
+
αe2ν3

t
−4π

α3/2e2ν

t3

∫
R3

f L
|v0|

γ−1/2 dv1 dv2 dv3. (252)

Here k denotes the curvature of the surface of symmetry and will therefore be−1 in the case of hyperbolic
symmetry. γ denotes the determinant of the metric γab.

In the rest of this section, (M, g, f ) will be a past development of k = −1 surface-symmetric initial
data with Vlasov matter and 3 ≥ 0. We will cover (M, g) by areal coordinates (t, θ, x, y), where the
range of the coordinates (t, θ) is (t f , ti ]×[0, 1] with 0< t f < ti . The metric will be given by (7) with the
functions α and ν depending only on (t, θ) and being periodic in θ with period 1. The Einstein–Vlasov
system implies that the system (249)–(252) completed with (248) holds for all (t, θ) ∈ (t f , ti ] × [0, 1].
Moreover, we will assume that f does not vanish identically. Following what has been said in Section 6,
we will prove that for all such (M, g, f ), the hypotheses of Proposition 2 are satisfied, from which
Theorem 3 follows immediately.

First, we recall some properties of the Vlasov field for such spacetimes.

9C. Conservation laws. As in Section 7C, since f is conserved along geodesics, we have an immediate
upper bound on f :

f ≤ F, (253)

for some F > 0. Since by assumption, f has compact support, conservation of angular momentum along
geodesics implies an upper bound on the support of f in L; that is, we have

X = sup
L∈supp( f )

L <∞. (254)

The particle current is given by

Nµ
=

√
α

t

∫
R3

f
|v0|

vµγ−1/2 dv1 dv2 dv3. (255)

From the Vlasov equation it follows that Nµ is divergence free ∇µNµ
= 0 and therefore, we have the

conservation law,∫
[0,1]

N 0√αe2νdθ =
∫
[0,1]

(∫
R3

f γ−1/2 dv1 dv2 dv3

)
dθ = Q for all t, (256)

for some nonnegative constant Q. Moreover, since by assumption, the Vlasov field does not vanish
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identically, we have
Q > 0. (257)

9D. Lower bound on the mean value of |v1|. The proof of Lemma 7.1 is easily adapted to the present
setting to give:

Lemma 9.1. There exists δ > 0 such that, for all t ,∫
[0,1]

(∫
R3

f γ−1/2
|v1| dv1 dv2 dv3

)
dθ > δ. (258)

9E. Energy estimates. We define E(t) as the energy integral

E(t)=
∫
[0,1]

νt

t
√
α

dθ. (259)

Lemma 9.2. E admits a continuous extension to t f . In particular E is uniformly bounded on (t f , ti ].

Proof. As usual, we take the time derivative of E and use the Einstein equations and the periodicity to
simplify the resulting equations. It follows that

d E
dt
=−

∫
[0,1]

(
1

2t3√α
−

k
√
αe2ν

t3 + 8π
∫

R3

(
f |v0|

t2 +
αe2ν f L
2t4|v0|

)
γ−1/2 dv1 dv2 dv3

)
dθ. (260)

Since k = −1, we see that E is increasing with decreasing t . Moreover from the last equation, the
definition of E , and (249), it follows that

d E
dt
≥−

4E
t

(261)

and by integration of the last line, we obtain an upper bound for E on (t f , ti ]. �

9F. Estimate for
√
αe2ν .

Lemma 9.3.
√
αe2ν is uniformly bounded on (t f , ti ].

Proof. It follows from equations (249) and (250) that

∂t(
√
αe2ν)≥ 0. (262)

We will use this bound in order to estimate the terms containing αe2ν in the right-hand side of (250).
This will follow from the next two lemmas.

9G. Estimate for
∫
[0,1] |

(√
αeν
)
θ
| dθ . Let eβ =

√
αeν . Equation (251) can now be written as

βθ =−8π
√
α

∫
R3

f v1γ
−1/2 dv1 dv2 dv3. (263)

Lemma 9.4.
∫
[0,1] |βθ | dθ is bounded on (t f , ti ]. In particular, there exists a bound independent of

t ∈ (t f , ti ] on the difference between the maximum and the minimum of β(t, · ).
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Proof. From (263), we have

|βθ | ≤ 8π
√
α

∫
R3

f v1γ
−1/2 dv1 dv2 dv3 ≤ 8π

∫
R3

f v0γ
−1/2 dv1 dv2 dv3 ≤

νt
√
α
, (264)

where we have used the fact that
√
α|v1| ≤ v0 from the mass shell relation to obtain the second inequality

and (249) to obtain the third.
Dividing (264) by t and integrating νt/

√
α over [0, 1], we obtain a bound on

∫
[0,1] |βθ | dθ from the

bounds on t and E . �

9H. Control of α along special curves. Similar to Section 7H, we now prove:

Lemma 9.5. min[0,1] α(t, · ) is bounded on (t f , ti ].

Proof. From the definition of E and from (249),

8π
∫
[0,1]

∫
R3

f γ−1/2
|v0| dv1 dv2 dv3 dθ ≤ t E(t). (265)

Since
√
α|v1| ≤ v0, we obtain

min
[0,1]

(
√
α)

∫
[0,1]

∫
R3

f |v1|γ
−1/2 dv1 dv2 dv3 dθ ≤

t E(t)
8π
≤ A, (266)

for some constant A depending on the bound on E . However from Lemma 9.1, we have

δ ≤

∫
[0,1]

∫
R3

f |v1|
√
γ
−1 dv1 dv2 dv3, (267)

for some δ > 0. Therefore min[0,1](
√
α)≤ A/δ. �

This concludes the proof of Lemma 9.3. �

As in Corollary 1 of Section 7H, we obtain:

Corollary 4. There exists θ̄ such that α(t, θ̄ ) is bounded on (tp, ti ].

9I. Estimate for e2β .

Lemma 9.6. e2β
= αe2ν is uniformly bounded on (t f , ti ]× [0, 1].

Proof. This follows from Corollary 4 and Lemmas 9.3 and 9.4 by an argument similar to the one given
for the proof of Lemma 7.7. �

9J. Estimates for the support of f . Let

u1 =
√
αv1 =

√
αeν
√

t
w (268)

and define ū1 by

ū1(t)= sup
{
|u1| : ∃(θ, L) such that f

(
t, θ, u1
√
α
, L
)
6= 0

}
(269)

Lemma 9.7. ū1 is uniformly bounded on (t f , ti ].
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Proof. The characteristic equation for u1 associated with the Vlasov equation written (248) in terms of
the coordinates (t, θ, u1, L) gives

d(u2
1)

ds
=
αt

α
u2

1+
2
√
αu1

v0

e2β

t
βθ (1+ L/t). (270)

The transformation (268) from w to u1 will avoid the difficulty arising from the term containing βθ in
(248). Indeed, this term contains the factor

√
1+w2+ L/t , which depends in w in a not completely

trivial way. On the other hand, having v0 at the denominator of the last term in the right-hand side of
(270) will enable us to easily estimate this term.

Let us first estimate the factor αt/α appearing in the first term of the right-hand side of (270). From
(250) and the bounds on eβ obtained previously, we have, for appropriate constants C and A′,∣∣∣αt

α

∣∣∣≤ C + 16πα3/2e2ν
∫

R3

f
(
t−1
+ Lt−2

)
|v0|

γ−1/2 dv1 dv2 dv3

≤ C +C ′
√
α

∫ ū1

−ū1

∫ X

−X

f
(
t−1
+ Lt−2

)
|v0|

du1
√
α
π d L

≤ C +C ′′F
(

1
t f
+

X
t2
f

)∫ ū1

−ū1

du1

|v0|

≤ C + A
∫ ū1

−ū1

du1√
1+ te−2βu2

1

≤ C + A
[
eβ t−1/2 ln

(
u1+

√
e2β/t + u2

1

)]ū1

−ū1

≤ C + A′
(

ln
(

ū1+
√

e2β/t + ū2
1

)
+ e−1

)
. (271)

We now estimate the second term on the right-hand side of (270). First note that the mass shell relation
written in terms of u1 reads as

v0 =−

√
α

t
e2ν + u2

1+
αe2ν

t2 γ abvavb (272)

and thus, we have |u1|/|v0|< 1. Moreover, from (263), we have
√
αβθ ≤ 8π2 F Xū2

1. (273)

Integrating (270) and using the estimates (273) and (271), we obtain an inequality of the form

u2
1(t)≤ A+ B

∫ ti

t
u2

1(s) ln(1+ ū2
1)(s) ds+C

∫ ti

t
ū2

1(s) ds, (274)

for some positive constants A, B and C . It follows from the last line, as in (101)–(103), that ū1 is
uniformly bounded. �
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9K. Estimates for α, β, ν and βθ .

Lemma 9.8. α, β, ν and βθ are uniformly bounded on (t f , ti ]× [0, 1].

Proof. This follows easily from the Einstein equations since the right-hand sides of equations (249),
(250) and (251) contain only quantities that have been shown to be bounded. �

9L. Estimates for the derivatives of f , αθ , νθ and higher-order estimates. This follows by standard
arguments, which can be found for instance in [Weaver 2004].

9M. The conclusion. Since all metric functions, the Vlasov field and all their derivatives have been
shown to be uniformly bounded, the assumptions of Proposition 2 have been retrieved. In particular, the
maximal Cauchy development cannot have t0 > 0, which concludes the proof of Theorem 3.

10. Comments and open questions

10A. Weaver’s estimate for Vlasov matter. The result of Theorem 3 was obtained in [Rein 1996; Tchap-
nda 2004] under a small data assumption. The main difference in our analysis which enables us to remove
this smallness assumption, is to use, following [Weaver 2004], the presence of the Vlasov field to obtain
a lower bound on one of the matter terms (see Lemma 9.1). It would be interesting to see if this estimate
could be applied in other geometries and what would be the consequences.

Let us also note that if we couple the Einstein–Vlasov system to extra matter fields, a statement
analogous to Lemma 9.1 would certainly be true if the extra matter fields satisfy the strong energy
condition. For instance, the results of Theorems 1 and 3 can certainly be extended to include a massless
scalar field.

10B. Theorem 2 and the hierarchization of the equations. The proof of Theorem 2 is based on the
recovery of the lower bound on the energy quantities Eh and Eg. In the vacuum case, this lower bound is
obtained directly from the monotonicity of Eg. However, this monotonicity is unstable to any perturbation
in the setting of the problem, such as the introduction of matter or of a positive cosmological constant.

Our strategy has been to prove that, while Eh is not necessarily monotone, one can recover a mono-
tonicity for another energy, namely E A, which controls Eh from below and thus is sufficient to obtain
the required lower bound on Eh . Since E A is the energy associated with the wave equation for A only,
while Eh is associated for the system of equations for (U, A), this shows that, in the contradiction setting
that we have deployed, a certain hierarchy in the evolution equations appears, in the sense that one may
first focus on the evolution equation for A and extract information from it, which we then reintroduce in
the whole system.

Let us also note that not all estimates derived during the proof of Theorem 2 require the contradiction
setting of Section 8Q. In particular, in Section 8J, we have proven a new estimate for T 2-symmetric
spacetimes which might be useful in a further study of these solutions.

10C. Antitrapped initial data. One of the common features of T 2-symmetric and k = −1 surface-
symmetric spacetimes is the antitrapping of the orbits of symmetry. This property arises from the positiv-
ity of the Hawking mass (excluding the flat case) and the fact that the orbits of symmetry have nonpositive
curvature. The positivity of the Hawking mass is itself a consequence of the topology of Cauchy surfaces
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and of the Einstein equations, especially the Raychaudhuri equations. The proofs of the positivity of the
Hawking mass and of antitrapping for vacuum T 2 symmetry and for k≤ 0 surface-symmetric spacetimes
with Vlasov matter or with a massless scalar field were first obtained in [Chruściel 1990] and [Rendall
1995]. In [Rendall 1997], the results on T 2-symmetry were extended to the nonvacuum cases where local
T 2-symmetry only is assumed. In order to improve our understanding of the structure of cosmological
singularities, it would be interesting to try to generalize these results. One might ask for instance the
following question. Assume that 6 is a compact Cauchy surface of a given spacetime satisfying the
vacuum Einstein equations such that there exist a diffeomorphism φ between 6 and S1

×R where R is a
compact surface. Assume moreover that for every point θ ∈ S1, φ−1({θ}×R) has nonpositive curvature.
Is it then true that φ−1({θ}×R) is necessarily trapped or antitrapped?

10D. Strong cosmic censorship in polarized T 2-symmetric spacetimes. Theorems 1, 2 and 3 complete
our understanding of the value of t0 for T 2-symmetric and surface-symmetric spacetimes, as can be
observed in Table 2, and we should therefore focus our attention to the remaining, very difficult, open
problems presented in Table 1. One of the first questions to consider is that of strong cosmic censorship
for vacuum polarized T 2-symmetric spacetimes with 3 = 0. While it is likely that the dynamics of
these spacetimes are very different from those of general vacuum T 2-symmetric spacetimes, they are the
simplest examples of vacuum inhomogeneous cosmological models where, writing the Einstein equations
in areal coordinates, the constraint equations do not decouple from the evolution equations, as can be
seen by removing the terms involving A in (104)–(110).

10E. Future causal geodesic completeness of T 2-symmetric and k = −1 surface-symmetric space-
times. By the arguments of [Dafermos and Rendall 2005], (nonflat) T 2-symmetric and k =−1 surface-
symmetric spacetimes are future inextendible. In the Gowdy case, where a complete understanding of
the asymptotics has been obtained [Ringström 2004], and in the k = −1 surface-symmetric case with
either small data [Rein 2004] or 3> 0 [Tchapnda and Rendall 2003], future geodesic completeness has
also been proven. More generally, we have the following conjecture:

Conjecture 1. Let (M, g) be the maximal Cauchy development of T 2-symmetric or k = −1 surface-
symmetric initial data in the vacuum or with Vlasov matter and with 3 ≥ 0. Assume (M, g) is nonflat.
Denote by t the area of the orbits of symmetry and orient (M, g) by ∇t . Then (M, g) is future causally
complete.

10F. The past boundary of Q̃. One might also consider the following question about the structure of
singularities in T 2-symmetric or k =−1 surface-symmetric spacetimes. Let Q̃ be the universal cover of
the quotient by the group orbits of the maximal Cauchy development. It is possible to draw a Penrose
diagram of Q̃, by introducing bounded double null coordinates on Q̃ and then regarding Q̃ as a bounded
subset of R1+1. In the case of vacuum nonflat T 3-Gowdy initial data with 3= 0, it is then a well known
fact that its past boundary is spacelike with respect to the causality of R1+1 and thus the Penrose diagram
takes the following form:

Q̃
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On the other hand, for nongeneric vacuum T 2-symmetric spacetimes26 with t0 > 0, the past boundary is
null:

Q̃

It is natural to ask where the general case stands compared to these two particular cases, whether the
past boundary is spacelike, null or neither.

Appendix A. Initial data and constraint equations for the Einstein and Einstein–Vlasov systems

We present below the constraint equations of the Einstein–Vlasov system. To obtain the constraint
equations in the vacuum case, it suffices to replace all matter terms (i.e., all terms containing f̂ ) by zero.

Recall that a smooth initial data set for the Einstein–Vlasov system is a quadruplet (6, h, K , f̂ ) such
that:

(1) 6 is a smooth 3-dimensional manifold,

(2) h is a smooth Riemannian metric on 6,

(3) K is a smooth symmetric 2-tensor on 6,

(4) f̂ is a smooth function defined on the tangent bundle of 6,

(5) (6, h, K , f̂ ) satisfies the constraint equations

R(3)− Kab K ab
+ (tr K )2 = 16πρ+ 23, (275)

∇
(3)
a K a

b −∇
(3)
b (tr K )= 8π jb, (276)

where ∇(3) and R(3) denote the Levi-Civita and the Ricci curvature scalar of h and ρ and jb are
given by

ρ =

∫
R3

f̂ (1+ pa pa)
1/2√h dp1 dp2 dp3, (277)

ja =
∫

R3
f̂ pa
√

h dp1 dp2 dp3, (278)

where it has been assumed in the above definitions that, if π6 denotes the natural projection from
T6 to 6, then (p1, p2, p3) are global coordinates on π−1

6 (x) for any x ∈6.

26See the appendix of [Smulevici 2008], for instance.
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Appendix B. Surface-symmetric spacetimes in areal coordinates

We present in this appendix a change of coordinates and parametrization of the metric which brings the
metric (7) from the usual parametrization:

ds2
=−e2µ(r,θ)dr2

+ e2λ(r,θ)dθ2
+ r2γabdxadxb. (279)

We define the new time coordinate by t = r2. The metric now takes the form

ds2
=−

e2µ

4t
dt2
+ e2λdθ2

+ tγab dxa dxb. (280)

We can then define the functions α and ν by

e2λ
=

e2ν

t
, (281)

e2µ
= 4αe2ν . (282)

in order to obtain the metric in the form (7).

Appendix C. From symmetric initial data to symmetric spacetimes

We recall in this section that the symmetries of initial data are transmitted to the maximal Cauchy de-
velopment. For the proofs in the vacuum case and a more exhaustive treatment of these questions, we
refer the reader to the classical work of Chruściel [Chruściel 1991]. We will write the theorems in the
vacuum case for simplicity.

First, we recall that Killing data leads to Killing vector fields:

Proposition 5. Let (6, h, K ) be a vacuum initial data set for the Einstein equations. Assume that there
exists a smooth vector field Y such that

LY h = LY K = 0 (283)

Let (M, g) denote the maximal Cauchy development of (6, h, K ) as in the statement of the theorem of
Section 3 and let φ :6→M be the corresponding embedding. Then there exists a smooth vector field X
on M such that

LX g = 0, X |φ(6) = φ∗(Y ). (284)

Proposition 6. Let (6, h, K ) be a vacuum initial data set for the Einstein equations. Assume that there
exists a topological group G and a smooth action of G by isometries on (6, h, K ), that is, a map

φ : G×6→6, (q, p) 7→ φq(p) such that φ∗gh = h and φ∗g K = K . (285)

Let (M, g) denote the maximal Cauchy development of (6, h, K ) as in the statement of the theorem of
Section 3 and let i be the corresponding embedding of 6 in M. There exists an action ψ of G on M,

ψ : G×M→M, (q, p) 7→ ψq(p), (286)

such that, for all q ∈ G,
ψ∗q g = g, ψq ◦ i = i ◦φg. (287)
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