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In this paper we study a transport-diffusion model with some logarithmic dissipations. We look for two
kinds of estimates. The first is a maximum principle whose proof is based on Askey theorem concerning
characteristic functions and some tools from the theory of C0-semigroups. The second is a smoothing
effect based on some results from harmonic analysis and submarkovian operators. As an application we
prove the global well-posedness for the two-dimensional Euler–Boussinesq system where the dissipation
occurs only on the temperature equation and has the form |D|/logα(e4

+D), with α ∈ [0, 1
2 ]. This result

improves on an earlier critical dissipation condition (α = 0) needed for global well-posedness.
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1. Introduction

The first goal of this paper is to study some mathematical problems related to the following transport-
diffusion model with logarithmic dissipations:

∂tθ + v · ∇θ + κ
|D|β

logα(λ+|D|)
θ = 0, (t, x) ∈ R+×Rd ,

div v = 0,
θ|t=0 = θ0.

(1)

Here, the unknown is the scalar function θ , the velocity v is a time-dependent vector field with zero
divergence and θ0 is the initial datum. The parameters are κ ≥ 0, λ > 1 and α, β ∈ R. The operator
|D|β/logα(λ+ |D|) is defined through its Fourier transform:

F

(
|D|β

logα(λ+ |D|)
f
)
(ξ)=

|ξ |β

logα(λ+ |ξ |)
(F f )(ξ).

We will discuss along this paper some quantitative properties for this model; especially two kinds of
information will be established: maximum principle and some smoothing effects. We notice that the
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special case of (1) corresponding to α = 0 and β ∈ [0, 2] appears naturally in some fluid models like
quasigeostrophic equations or Boussinesq systems. In this context A. Córdoba and D. Córdoba [2004]
established a priori L p estimates: for p ∈ [1,∞] and t ≥ 0,

‖θ(t)‖L p ≤ ‖θ0‖L p . (2)

We remark also that the proof in the case p=+∞ can be obtained from the following representation
of the fractional Laplacian |D|β :

|D|β f (x)= cd

∫
Rd

f (x)− f (y)
|x − y|d+β

dy.

Indeed, one can check that if a continuous function reaches its maximum at a point x0, then |D|β f (x0)≥0
and hence we conclude as for the heat equation. Our first main result is a generalization of the result of
[Córdoba and Córdoba 2004] to (1).

Theorem 1.1. Let κ ≥ 0, d ∈ {2, 3}, β ∈ ]0, 1], α ≥ 0, λ≥ e(3+2α)/β and p ∈ [1,∞]. Then any smooth
solution of (1) satisfies

‖θ(t)‖L p ≤ ‖θ0‖L p .

Remark 1.2. The restriction on the parameter β is technical and we believe that the above theorem
remains true for β ∈ ]1, 2[ and α > 0.

We discuss the proof in the special case v ≡ 0. Equation (1) is reduced to the fractional heat equation

∂tθ + κ L θ = 0 with L :=
|D|β

logα(λ+ |D|)
·

The solution is explicitly given by the convolution formula

θ(t, x)= Kt ? θ0(x) with K̂t(ξ)= e−t |ξ |β/logα(λ+|ξ |).

We will show that the family (Kt)t≥0 is a convolution semigroup of probabilities, which means that L

is the generator of a Lévy semigroup. Consequently, this family is a C0-semigroup of contractions on
L p for every p ∈ [1,∞[. The important step in the proof is to get the positivity of the kernel Kt . For
this purpose we use Askey’s criterion for characteristic functions; see Theorem 3.4. The restrictions
on the dimension d and the values of β are due to the use of this criterion. Now to deal with the full
transport-diffusion equation (1) we use some results from the theory of C0-semigroups of contractions.

The second estimate that we intend to establish is a generalized Bernstein inequality. Before stating
the result we recall that for q ∈N the operator1q is the frequency localization around an annulus of size
2q ; see next section for more details.

Theorem 1.3. Let d∈{1, 2, 3}, β∈]0, 1], α≥0, λ≥e(3+2α)/β and p∈]1,∞[. For q ∈N and f ∈S(Rd),

2qβ(q + 1)−α‖1q f ‖p
L p ≤ C

∫
Rd

(
|D|β

logα(λ+ |D|)
1q f

)
|1q f |p−21q f dx,

where C is a constant depending on p, α, β and λ.

The proof relies on some tools from the theory of Lévy operators or more generally submarkovians
operators combined with some results from harmonic analysis.
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Remarks 1.4. (1) When α = 0 then the inequality above is valid for all β ∈ [0, 2]. The case β = 2 was
discussed in [Danchin 2001; Planchon 2000]. The remaining case β ∈ [0, 2[ was treated in [2007],
but only for p ≥ 2.

(2) The proof for the case p= 2 is an easy consequence of the Plancherel identity and does not require
any assumption on the parameters α, β and λ.

The second part of this paper is concerned with an application of Theorems 1.1 and 1.3 to the following
Boussinesq model with general dissipation

∂tv+ v · ∇v+∇π = θe2, (t, x) ∈ R+×R2,

∂tθ + v · ∇θ + κ L θ = 0,
div v = 0,
v|t=0 = v0, θ|t=0 = θ0.

(3)

Here, the velocity field v is given by v = (v1, v2), while the pressure π and the temperature θ are scalar
functions. The force term θe2 in the velocity equation, with e2 the vector (0, 1), models the effect of
gravity on the fluid motion. The operator L, whose form may vary, is used to take into account anomalous
diffusion in the fluid motion.

From a mathematical point of view, the question of global well-posedness for the inviscid model,
corresponding to κ=0, is extremely hard to deal with. We point out that the classical theory of symmetric
hyperbolic quasilinear systems can be applied to this system and thus we can get local well-posedness
for smooth initial data. The significant quantity that one needs to bound in order to get global existence
is the L∞-norm of the vorticity, defined by ω = curl v = ∂1v

2
− ∂2v

1. Now we observe from the first
equation of (3) that ω solves the equation

∂tω+ v · ∇ω = ∂1θ. (4)

The main difficulty encountered for global existence is due to the lack of strong dissipation in the temper-
ature equation: we don’t see how to estimate in a suitable way the quantity

∫ T
0 ‖∂1θ‖L∞ . However, the sit-

uation in the viscous case, κ >0 and L=−1, is well understood, and the question of global existence was
solved recently in a series of papers. Chae [2006] proved global existence and uniqueness for initial data
(v0, θ0)∈ H s

×H s , with s> 2; see also [Hou and Li 2005]. This result was improved in [Hmidi and Ker-
aani 2009] to initial data v0 ∈ B(2/p)+1

p,1 and θ0 ∈ B−1+(2/p)
p,1 ∩Lr , r > 2. The global existence of Yudovich

solutions for this system was treated in [Danchin and Paicu 2009]. The same authors [2008] constructed
global strong solutions for a dissipative term of the form ∂11θ instead of 1θ . In [Hmidi and Zerguine
2010; Hmidi et al. 2011] we try to understand the lower dissipation L=|D|α needed for global existence.
In the first of these papers we proved global well-posedness when α ∈ ]1, 2[. The proof relies on the fact
that the dissipation is sufficiently strong to counterbalance the possible amplification of the vorticity due
to ∂1θ . However the case α = 1 is not reached by this method, and this value of α is called critical, in
the sense that the dissipation and the amplification of the vorticity due to ∂1θ have the same order.

In [Hmidi et al. 2011] we proved there is some hidden structure leading to global existence in the
critical case. More precisely, we introduced the mixed quantity

0 = ω+Rθ, with R :=
∂1

|D|
;
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it satisfies the equation
∂t0+ v · ∇0 =−[R, v · ∇]θ.

As a matter of fact, the problem in the framework of Lebesgue spaces is reduced to estimating the
commutator between the advection v · ∇ and Riesz transform R, which is homogenous of degree zero.
Since Riesz transform is a Calderón–Zygmund operator, we can, using the smoothing effects for θ in
a suitable way, get a global estimate of ‖ω(t)‖L p . We can then use this information to control more
strong norms of the vorticity, like ‖ω(t)‖L∞ or ‖ω(t)‖B0

∞,1
. For more discussion about the global well-

posedness problem concerning other classes of Boussinesq systems we refer to [Hmidi et al. 2010; Miao
and Xue 2009].

Our goal here is to relax the critical dissipation needed for global well-posedness by some logarithmic
factor. More precisely, we will study the logarithmically critical Boussinesq model

∂tv+ v · ∇v+∇π = θe2,

∂tθ + v · ∇θ +
|D|

logα(λ+ |D|)
θ = 0,

div v = 0,

v|t=0 = v
0, θ|t=0 = θ

0.

(5)

Before stating our result we need some new definitions. We define the logarithmic Riesz transform
Rα by Rα = (∂1/|D|)logα(λ+ |D|). Next, for given α ∈ R we define the function spaces {Xp}1≤p≤∞ by

u ∈ Xp ⇐⇒ ‖u‖Xp := ‖u‖B0
∞,1∩L p +‖Rαu‖B0

∞,1∩L p <∞.

Our result reads as follows (see Section 2 for the definitions and the basic properties of Besov spaces).

Theorem 1.5. Let α ∈ [0, 1
2 ], λ ≥ e4 and p ∈ ]2,∞[. Let v0 ∈ B1

∞,1 ∩ Ẇ 1,p be a divergence-free vector
field of R2 and θ0 ∈ Xp. Then there exists a unique global solution (v, θ) to the system (5) with

v ∈ L∞loc(R+; B1
∞,1 ∩ Ẇ 1,p), θ ∈ L∞loc(R+;Xp)∩ L̃1

loc(R+; B1,−α
p,∞ ).

The proof shares the same ideas as the case α=0 treated in [Hmidi et al. 2011] but with more technical
difficulties. We define

Rα =
∂1

|D|
logα(λ+ |D|) and 0 = ω+Rαθ.

Then we get
∂t0+ v · ∇0 =−[Rα, v · ∇]θ.

To estimate the commutator in the framework of Lebesgue spaces we use the paradifferential calculus
combined with Theorems 1.1 and 1.3.

Remarks 1.6. (1) For global well-posedness for the generalized Navier–Stokes system in dimension
three, Tao [2009] proved that we can improve the dissipation |D|5/2 to

|D|5/2

log1/2(2+ |D|)
.
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(2) The space Xp is less regular than the space Bε
∞,1 ∩ Bεp,1, for all ε > 0. More precisely, we will see

in Corollary 4.3 that Bε
∞,1 ∩ Bεp,1 ↪→ Xp.

(3) If we take θ = 0 then the system (5) is reduced to the two-dimensional Euler system. It is well-
known that this system is globally well-posed in H s for s > 2. The main tool for global existence
is the BKM criterion [Beale et al. 1984] ensuring that the development of finite-time singularities
for Kato’s solutions is related to the blowup of the L∞ norm of the vorticity near maximal time
existence. Vishik [1998] extended the global existence of strong solutions to initial data belonging
to Besov spaces B1+2/p

p,1 . These spaces have the same scale as Lipschitz functions and in this sense
they are called critical and it is not at all clear whether BKM criterion can be used in this context.

(4) Since B1+2/r
r,1 ↪→ B1

∞,1∩ Ẇ 1,p for all r ∈ [1,+∞[ and p>max{r, 2}, the space of initial velocity in
our theorem contains all the critical spaces B1+2/p

p,1 except the biggest one, B1
∞,1. For the limiting

case we have been able to prove the global existence only under the extra assumption that ∇v0 ∈ L p

for some p ∈ ]2,∞[. The reason behind this extra assumption is that to obtain a global L∞ bound
for the vorticity we need first to establish an L p estimate for some p ∈ ]2,∞[ and it is not clear
how to get rid of this condition.

(5) Since ∇v ∈ L1
loc(R+; L

∞), we can propagate all the higher regularities, both critical (for example
v0 ∈ B1+2/p

p,1 with p <∞) and subcritical (for example v0 ∈ H s , with s > 2).

2. Notation and preliminaries

Throughout this paper we will use the following notation.

• For any positive A and B the notation A. B means that there exists a positive constant C such that
A ≤ C B.

• For any tempered distribution u, both û and Fu denote the Fourier transform of u.

• For every p ∈ [1,∞], we denote by ‖ · ‖L p the norm in the Lebesgue space L p.

• The norm in the mixed space time Lebesgue space L p([0, T ], Lr (Rd)) is denoted by ‖·‖L p
T Lr (with

the obvious generalization to ‖ · ‖L p
T X for any normed space X).

• For any pair of operators P and Q on some Banach space X, the commutator [P, Q] is given by
P Q− Q P .

• For p ∈ [1,∞], we denote by Ẇ 1,p the space of distributions u such that ∇u ∈ L p.

Functional spaces. We introduce the so-called Littlewood–Paley decomposition and the corresponding
cut-off operators. There exists radial positive functions χ ∈ D(Rd) and ϕ ∈ D(Rd

\{0}) such that:

(i) χ(ξ)+
∑
q≥0

ϕ(2−qξ)= 1 and suppχ ∩ suppϕ(2−q)=∅ for all q ≥ 1.

(ii) suppϕ(2− j
· )∩ suppϕ(2−k

· )=∅ if | j − k| ≥ 2.

For every v ∈ S′(Rd) we set

1−1v = χ(D)v, 1qv = ϕ(2−q D)v for q ∈ N, Sq =
q−1∑
j=−1

1 j for q ∈ N.
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The homogeneous operators are defined by

1̇qv = ϕ(2−qD)v and Ṡq =
∑

j≤q−1
1̇ j for q ∈ Z.

From [Bony 1981] we split the product uv into three parts:

uv = Tuv+ Tvu+ R(u, v),

with

Tuv =
∑
q

Sq−1u1qv and R(u, v)=
∑
q
1qu1̃qv, where 1̃q =

1∑
i=−1

1q+i .

For (p, r)∈[1,+∞]2 and s ∈R we define the inhomogeneous Besov space Bs
p,r as the set of tempered

distributions u such that
‖u‖Bs

p,r
:= (2qs

‖1qu‖L p)`r <+∞.

The homogeneous Besov space Ḃs
p,r is defined as the set of u ∈ S′(Rd) up to polynomials such that

‖u‖Ḃs
p,r
:= (2qs

‖1̇qu‖L p)`r (Z) <+∞.

For s, s ′ ∈ R and p, r ∈ [1,∞] we define the generalized Besov space Bs,s′
p,r as the set of tempered

distributions u such that
‖u‖Bs,s′

p,r
:= (2qs(|q| + 1)s

′

‖1qu‖L p)`r <∞.

Let T > 0 and ρ ≥ 1. We denote by LρT Bs,s′
p,r the space of distributions u such that

‖u‖LρT Bs,s′
p,r
:=
∥∥(2qs(|q| + 1)s

′

‖1qu‖L p)`r
∥∥

LρT
<+∞.

We say that u belongs to the space L̃ρT Bs,s′
p,r if

‖u‖L̃ρT Bs
p,r
:= (2qs(|q| + 1)s

′

‖1qu‖LρT L p)`r <+∞.

By a direct application of the Minkowski inequality, we have the following links between these spaces,
for ε > 0:

LρT Bs
p,r ↪→ L̃ρT Bs

p,r ↪→ LρT Bs−ε
p,r , if r ≥ ρ,

LρT Bs+ε
p,r ↪→ L̃ρT Bs

p,r ↪→ LρT Bs
p,r , if ρ ≥ r.

We will make frequent use of Bernstein inequalities (see [Chemin 1998], for instance).

Lemma 2.1. There exists a constant C such that, for q, k ∈ N, 1≤ a ≤ b and f ∈ La(Rd), we have

sup
|α|=k
‖∂αSq f ‖Lb ≤ Ck 2q(k+d(1/a−1/b))

‖Sq f ‖La

and

C−k2qk
‖1q f ‖La ≤ sup

|α|=k
‖∂α1q f ‖La ≤ Ck2qk

‖1q f ‖La .
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3. Maximum principle

Our task is to establish some useful estimates for the following equation generalizing (1):
∂tθ + v · ∇θ +

|D|β

logα(λ+ |D|)
θ = f,

div v = 0,

θ|t=0 = θ0.

(6)

Two special problems will be studied. One deals with L p estimates that give in particular Theorem 1.1.
The second consists in establishing some logarithmic estimates in Besov spaces with index regularity 0.

The first main result of this section generalizes Theorem 1.1:

Theorem 3.1. Let p ∈ [1,∞], β ∈ ]0, 1], α ≥ 0 and λ≥ e(3+2α)/β . Any smooth solution of (6) satisfies

‖θ(t)‖L p ≤ ‖θ0‖L p +

∫ t

0
‖ f (τ )‖L p dτ.

The proof is in two steps. The first is to check the result for the free fractional heat equation. More
precisely, we will establish that the semigroup etL, with

L :=
|D|β

logα(λ+ |D|)
,

is a contraction in Lebesgue spaces L p, for every p ∈ [1,∞[ of course under suitable conditions on the
parameters α, β, λ. This problem is reduced to showing that ‖Kt‖L1 ≤ 1. This is equivalent to Kt ∈ L1

and Kt ≥ 0. As we will see, to get the integrability of the kernel we do not need any restriction on the
value of our parameters. Nevertheless, the positivity of Kt requires some restrictions, which are detailed
in Theorem 3.1. The second step is to establish the L p estimate for the system (6) and for this purpose
we use some results about Lévy operators or, more generally, submarkovian operators.

Positive definite functions. As we will see, there is a strong connection between the positivity of the
kernel Kt introduced above and the notion of positive definite functions. We will first gather some
well-known properties about positive definite functions and recall some useful criteria for characteristic
functions. Then, as an application, we will show that the kernel Kt is positive under suitable conditions
on the parameters involved.

Definition 3.2. Let f : Rd
→ C be a complex-valued function. We say that f is positive definite if for

every integer n ∈ N∗ and every set of points {x j , j = 1, . . . , n} of Rd the matrix ( f (x j − xk))1≤ j,k≤n is
positive Hermitian, that is,

n∑
j,k=1

f (x j − xk)ξ j ξ̄k ≥ 0 for all ξ1, . . . , ξn ∈ C.

We will give some results about positive definite functions.

(1) From the definition, every positive definite function f satisfies

f (0)≥ 0, f (−x)= f (x), | f (x)| ≤ f (0).
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(2) Continuity of a positive definite function f at zero implies continuity everywhere. More precisely,

| f (x)− f (y)| ≤ 2 f (0)
(

f (0)− f (x − y)
)
.

(3) The sum of two positive definite functions is also positive definite and according to Schur’s lemma
the product of two positive definite functions is also positive definite and therefore the class of
positive definite functions is a convex cone closed under multiplication.

(4) Let µ be a finite positive measure. Its Fourier–Stieltjes transform is given by

µ̂(ξ)=

∫
Rd

e−i x ·ξdµ(x).

It is easy to see that µ̂ is a positive definite function. Indeed,

n∑
j,k=1

µ̂(x j − xk)ξ j ξ̄k =

∫
Rd

(
n∑

j,k=1
e−i x ·x j ξ j ei x ·xk ξ̄k

)
dµ(x)=

∫
Rd

∣∣∣∣ n∑
j=1

e−i x ·x j ξ j

∣∣∣∣2dµ(x)≥ 0.

The converse of (4) is due to Bochner; see for instance [Bochner 1959, Theorem 19].

Theorem 3.3 (Bochner’s theorem). Let f : Rd
→ C be a continuous positive definite function. Then f

is the Fourier transform of a finite positive Borel measure.

There are some criteria for radial functions to be positive definite. For example in dimension one
the celebrated criterion of Pólya [1949] states that if F : [0,+∞[ → R is continuous and convex with
F(0)= 1 and limr→+∞ F(r)= 0 then f (x)= F(|x |) is positive definite. This criterion was extended to
higher dimensions by numerous authors [Askey 1973; Gneiting 2001; Trigub 1989]. We mention only
one extension:

Theorem 3.4 (Askey). Let d ∈ N and let F : [0,+∞[→ R be a continuous function such that

(1) F(0)= 1,

(2) the function r 7→ (−1)d F (d)(r) exists and is convex on ]0,+∞[, and

(3) limr→+∞ F(r)= limr→+∞ F (d)(r)= 0.

Then for every k ∈ {1, 2, . . . , 2d + 1} the function x 7→ F(|x |) is the Fourier transform of a probability
measure on Rk .

Remark 3.5. As an application of Askey’s theorem we have that x 7→ e−t |x |β is positive definite for
all t > 0, β ∈ ]0, 1] and d ∈ N. Indeed, the function F(r) = e−trβ is completely monotone, that is,
(−1)k F (k)(r)≥ 0, for all r > 0, k ∈N. Although the case β ∈ ]1, 2] cannot be reached by this criterion,
the result is still true.

The perturbation of the function above by a logarithmic damping is also positive definite:

Proposition 3.6. Let α, t ∈ [0,+∞[× ]0,+∞[, β ∈ ]0, 1], λ≥ e(3+2α)/β , and define f : Rd
→ R by

f (x)= e−t |x |β/logα(λ+|x |).

Then f is a positive definite function for d ∈ {1, 2, 3}.
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Remarks 3.7. (1) It is possible that this result remains true for higher dimension d ≥ 4 but we will
avoid dealing with this more computational case. We also think that the radial function associated
to f is completely monotone.

(2) The lower bound of λ is not optimal by our method. In fact we can obtain more precise bounds, but
this seems to be irrelevant.

Proof. We write f (x)= F(|x |) with

F(r)= e−tφ(r) and φ(r)= rβ

logα(λ+r)
·

The function F is smooth on ]0,∞[ and assumptions (1) and (3) of Theorem 3.4 are satisfied. It follows
that the function f is positive definite for d ∈ {1, 2, 3} if

F (3)(r)≤ 0.

Easy computations give for r > 0,

F (3)(r)=
[
−t φ(3)(r)+ 3t2 φ′(r)φ(2)(r)− t3 (φ′(r))3

]
F(r).

We will prove that
φ′(r)≥ 0, φ(2)(r)≤ 0 and φ(3)(r)≥ 0.

This is sufficient to get F (3)(r)≤ 0, for all r > 0. The first derivative of φ is given by

φ′(r)= β rβ−1

logα(λ+r)
−

α rβ

(λ+r) logα+1(λ+r)

=
rβ−1

(λ+r) logα+1(λ+r)

(
βλ log(λ+ r)+ r(β log(λ+ r)−α)

)
.

We see that if λ satisfies
λ≥ eα/β (7)

then φ′(r)≥ 0. For the second derivative of φ we obtain

φ(2)(r)=−
β(1−β)rβ−2

logα(λ+ r)
−

2αβrβ−1

(λ+ r) log1+α(λ+ r)
+

αrβ

(λ+ r)2 logα+1(λ+ r)
+

α(α+ 1)rβ

(λ+ r)2 logα+2(λ+ r)

=
rβ−2

logα(λ+ r)

[
−β(1−β)−

2αβr
(λ+ r) log(λ+ r)

+
αr2

(λ+ r)2 log(λ+ r)
+

α(α+ 1)r2

(λ+ r)2 log2(λ+ r)

]
.

Since (r2)/(λ+ r)2 ≤ r/(λ+ r)≤ 1, we have

φ(2)(r)≤
rβ−2

logα(λ+ r)

[
(1−β)

(
−β +

2α
log(λ+ r)

)
−

αr
(λ+ r) log(λ+ r)

(
1−

α+ 1
log(λ+ r)

)]
≤

rβ−2

logα(λ+ r)

[
(1−β)

(
−β +

2α
log λ

)
−

αr
(λ+ r) log(λ+ r)

(
1−

α+ 1
log λ

)]
.

Now we choose λ such that

−β +
2α

log λ
≤ 0 and 1−

α+ 1
log λ

≥ 0,



256 TAOUFIK HMIDI

which is true whenever
λ≥max(e2α/β, eα+1). (8)

Under this assumption we get
φ(2)(r)≤ 0 for all r > 0.

Similarly we have
φ(3)(r)= I1+ I2+ I3+ I4,

with

I1 = α(α+ 1)rβ−1 log−α−3(λ+r)
(λ+r)2

(
3λβ log(λ+ r)+ r(3β log(λ+ r)− (2+α))

)
,

I2 = αrβ log−2−α(λ+r)
(λ+r)3

(
−3(1+α)+ (−3β2

+ 6β − 2) log(λ+ r)
)
,

I3 = αrβ−2 log−1−α(λ+r)
(λ+r)3

(
λβ(9− 6β)r + 3λ2β(1−β)

)
,

I4 = (2−β)(1−β)βrβ−3 log−α(λ+ r).

It is easy to see that I3 and I4 are nonnegative. On the other hand, I1+ I2 equals

3λβα(α+ 1)rβ−1 log−α−2(λ+r)
(λ+r)2

+αrβ log−2−α(λ+r)
(λ+r)3

[
−3(1+α)+ (α+1)(λ+ r)

(
3β− 2+α

log(λ+r)

)
+ (−3β2

+6β−2) log(λ+ r)
]
.

Since −3β2
+ 6β − 2≥−2 for β ∈ [0, 1], and since − log x

x
≥−

log λ
λ

for all x ≥ λ≥ e, we have

I1+ I2 ≥ α(α+ 1)rβ log−2−α(λ+r)
(λ+r)3

[
−3+ (λ+ r)

(
3β − 2+α

log λ
− 2 log(λ+r)

(α+1)(λ+r)

)]
≥ α(α+ 1)rβ log−2−α(λ+r)

(λ+r)2
[
3β − 3

λ
−

2+α
log λ

−
2 log λ
(α+1)λ

]
.

We can check that log λ≤ λ and log2 λ≤ λ, for all λ≥ e. Thus

I1+ I2 ≥ α(α+ 1)rβ log−2−α(λ+r)
(λ+r)2

[
3β − 1

log λ

(
5+α+ 2

α+1

)]
≥ α(α+ 1)rβ log−2−α(λ+r)

(λ+r)2
[
3β − 7+α

log λ

]
.

We choose λ such that
3β − 7+α

log λ
≥ 0.

It follows that I1+ I2 is nonnegative if
λ≥ e(7+α)/(3β).

A condition that implies this inequality and also (7) and (8) is

λ≥ e(3+2α)/β .
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Finally, we get: for all α ≥ 0, β ∈ ]0, 1], and λ≥ e(3+2α)/β ,

φ(3)(r)≥ 0 for all r > 0.

This achieves the proof. �

More precise information about the kernel Kt is listed now:

Lemma 3.8. Let λ≥ 2 and denote by Kt the element of S′(Rd) such that

K̂t(ξ)= e−t |ξ |β/logα(λ+|ξ |).

(1) For (t, α, β) ∈ ]0,∞[×R×]0,∞[ the function Kt belongs to ∈ L1
∩C0.

(2) For d ∈ {1, 2, 3}, (t, α, β) ∈ ]0,+∞[× [0,∞[× ]0, 1] and λ≥ e(3+2α)/β , we have

Kt(x)≥ 0 for all x ∈ R+ and ‖Kt‖L1 = 1.

Proof. (1) By definition we have

Kt(x)= (2π)−d
∫

Rd
e−t |ξ |β/logα(λ+|ξ |)ei x ·ξ dξ.

Let µ≥ 0. Integrating by parts we get

|x |µxd
j Kt(x)= (−2iπ)−d

∫
Rd
∂d
ξ j

(
e−t ((|ξ |β )/ logα(λ+|ξ |)))

|x |µei x ·ξdξ.

On the other hand we have
|x |µei x ·ξ

= |D|µei x ·ξ ,

where |D| is a fractional derivative on the variable ξ . Thus we get

|x |µxd
j Kt(x)= (−2iπ)−d

∫
Rd
|D|µ∂d

ξ j

(
e−t |ξ |β/logα(λ+|ξ |))ei x ·ξ dξ.

Now we use the following representation for |D|µ when µ ∈ ]0, 2]:

|D|µ f (x)= Cµ,d

∫
Rd

f (x)− f (x−y)
|y|d+µ

dy.

It follows that

|x |µ|xd
j Kt(x)| ≤ Cµ,d

∫
R2d

|K j (ξ)−K j (ξ−y)|
|y|d+µ

dy dξ

with
K j (ξ) := ∂

d
ξ j

(
e−t |ξ |β/logα(λ+|ξ |)).

Now we decompose the integral into two parts:∫
R2d

|K j (ξ)−K j (ξ−y)|
|y|d+µ

dy dξ =
∫
|y|≥ |ξ |2

|K j (ξ)−K j (ξ−y)|
|y|d+µ

dy dξ +
∫
|y|≤ |ξ |2

|K j (ξ)−K j (ξ−y)|
|y|d+µ

dy dξ

= I1+ I2.
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To estimate the first term we use the following estimate, which can be obtained by straightforward
computations:

|K j (ξ)| ≤ Ct,α,β
|ξ |β−d

logα(λ+ |ξ |)
e−t |ξ |β/logα(λ+|ξ |)

≤ Ct,α,β |ξ |
β−de−(t/2)|ξ |

β/logα(λ+|ξ |).

Hence we get, under the assumption µ ∈ ]0, β[,

I1 ≤ Ct,α,β

∫
|ξ |≤2|y|

1
|y|d+µ

(
|ξ |β−de−(t/2)|ξ |

β/logα(λ+|ξ |)
+ |ξ − y|β−de−(t/2)|ξ−y|β/logα(λ+|ξ−y|)) dξ dy

≤ Ct,α,β

∫
|ξ |≤3|y|

1
|y|d+µ

|ξ |β−de−(t/2)|ξ |
β/logα(λ+|ξ |)dξ dy ≤ Ct,α,β

∫
Rd

1
|ξ |d+µ−β

e−(t/2)|ξ |
β/logα(λ+|ξ |)dξ

≤ Ct,α,β .

To estimate the second term we use the mean-value theorem to write

|K j (ξ)−K j (ξ − y)| ≤ |y| sup
η∈[ξ−y,ξ ]

|∇K j (η)|;

we also have
|∇K j (η)| ≤ Ct,α,β |η|

β−d−1e−(t/2)|η|
β/logα(λ+|η|).

Since |y| ≤ 1
2 |ξ |, for η ∈ [ξ − y, ξ ] we have

1
2 |ξ | ≤ |η| ≤

5
2 |ξ |.

This yields
|K j (ξ)−K j (ξ − y)| ≤ Ct |y||ξ |β−d−1e−Ct |ξ |β/2 .

Therefore we find, for µ ∈ ]0, β[ ∩ ]0, 1[,

I2 ≤ Ct,α,β

∫
|y|≤(1/2)|ξ |

1
|y|d+µ−1 |ξ |

β−d−1e−Ct |ξ |β/2 dy dξ ≤ Ct,α,β

∫
R2
(1/|ξ |d+µ−β)e−Ct |ξ |β/2dξ

≤ Ct,α,β .

Finally we get
|x |µ|x j |

d
|Kt(x)| ≤ Ct,α,β for j = 1, . . . , d.

Since Kt ∈ C0, we have
(1+ |x |d+µ)|Kt(x)| ≤ Ct .

This proves that Kt ∈ L1(Rd).

(2) Using Theorem 3.4 and Proposition 3.6 we get Kt≥0. Since Kt ∈ L1, this implies ‖Kt‖L1= K̂t(0)=1.
�

Now set

L :=
|D|β

logα(λ+ |D|)
. (9)

We define the propagator e−tL by convolution:

e−tL f = Kt ? f.
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Corollary 3.9. Let α ≥ 0, β ∈ ]0, 1], λ≥ e(3+2α)/β and p ∈ [1,∞]. Then

‖e−tL f ‖L p ≤ ‖ f ‖L p for all f ∈ L p.

Proof. From the classical convolution inequalities combined with Lemma 3.8 we get

‖e−tL f ‖L p ≤ ‖Kt‖L1‖ f ‖L p ≤ ‖ f ‖L p . �

Structure of the semigroup (e−tL)t≥0 . We first recall the notions of C0-semigroup and submarkovian
generators.

Definition 3.10. Let X be a Banach space and (Tt)t≥0 a family of bounded operators from X into X .
This family is called a strongly continuous semigroup on X or a C0-semigroup if

(1) T0 = Id,

(2) Tt+s = Tt Ts for every t, s ≥ 0, and

(3) limt→0+ ‖Tt x − x‖ = 0 for every x ∈ X .

If in addition the semigroup satisfies the estimate ‖Tt‖L(X) ≤ 1, then it is called a C0-semigroup of
contractions.

For a given C0-semigroup of contractions (Tt)t≥0 we define its domain D(A) by

D(A) :=
{

f ∈ X : lim
t→0+

Tt f − f
t

exists in X
}

and we set
A f = lim

t→0+
Tt f − f

t
for f ∈ D(A).

It is well-known that the operator A is densely defined: its domain D(A) is dense in X .

Definition 3.11. Let X = L p(Rd), with p ∈ [1,∞[ and d ∈N∗. A C0-semigroup (Tt)t≥0 of contractions
on X is said a submarkovian semigroup if it satisfies these two conditions:

(1) If f ∈ X satisfies f (x)≥ 0 a.e., then Tt f (x)≥ 0 a.e. for every t ≥ 0.

(2) If f ∈ X satisfies | f | ≤ 1, then |Tt f | ≤ 1 for every t ≥ 0.

Define L p
+ := { f ∈ L p

; f (x)≥ 0, a.e.}. The next result is classical.

Theorem 3.12 (Beurling–Deny theorem). Let A be a nonnegative self-adjoint operator of L2. Then we
have equivalence between:

(1) f ∈ L2
+
⇒ e−t A f ∈ L2

+
for all t > 0.

(2) f ∈ D(A1/2) ⇒ | f | ∈ D(A1/2) and ‖A1/2
| f |‖L2 ≤ ‖A1/2 f ‖L2 .

Proposition 3.13. Let d ∈ {1, 2, 3}, p ∈ [1,∞[, α ≥ 0, β ∈ ]0, 1] and λ ≥ e(3+2α)/β . With L as in (9),
we have:

(1) The family (e−tL)t≥0 defines a C0-semigroup of contractions in L p(Rd).

(2) The family (e−tL)t≥0 defines a submarkovian semigroup in L p(Rd).

(3) The operator (e−tL)t≥0 satisfies the Beurling–Deny theorem described in Theorem 3.12.
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Proof. (1) For f ∈ L p we define the action of the semigroup on f

e−tL f (x)= Kt ? f (x),

where K̂t(ξ)= e−t |ξ |/logα(λ+|ξ |). From Corollary 3.9, the semigroup maps L p to itself if p ∈ [1,∞], and

‖Kt ? f ‖L p ≤ ‖ f ‖L p .

Conditions (1) and (2) of Definition 3.10 are easy to check. It remains to prove condition (3), concerning
the strong continuity of the semigroup. Since ‖Kt‖L1 = 1 and Kt ≥ 0, we have, for η > 0,

Kt ? f (x)− f (x)=
∫

Rd
Kt(y)( f (x − y)− f (x)) dy

=

∫
|y|≤η

Kt(y)( f (x − y)− f (x)) dy+
∫
|y|≥η

Kt(y)( f (x − y)− f (x)) dy

= I1(x)+ I2(x).

The first term is estimated as follows:

‖I1‖L p ≤

∫
|y|≤η

Kt(y)‖ f ( · −y)− f ( · )‖L p dy ≤ sup
|y|≤η
‖ f ( · −y)− f ( · )‖L p .

For the second term we write ‖I2‖L p ≤ 2‖ f ‖L p

∫
|y|≥η

Kt(y) dy. Combining these estimates we get

‖Kt ? f − f ‖L p ≤ sup
|y|≤η
‖ f ( · −y)− f ( · )‖L p + 2‖ f ‖L p

∫
|y|≥η

Kt(y) dy.

It is well known that for every p ∈ [1,∞[ we have

lim
η→0+

sup
|y|≤η
‖ f ( · −y)− f ( · )‖L p = 0.

Thus for a given ε > 0 we can find η > 0 small enough that

sup
|y|≤η
‖ f ( · −y)− f ( · )‖L p ≤ ε.

Now to conclude the proof it suffices to prove that

lim
t→0+

∫
|y|≥η

Kt(y) dy = 0.

This will follow from

Kt
t→0+
⇀ δ0.

To prove this last statement we write, for φ ∈ S,

〈Kt , φ〉 =
1

(2π)d
〈K̂t , φ̂〉 =

1
(2π)d

∫
Rd

e−t |ξ |α φ̂(ξ)dξ.

We can use now Lebesgue theorem and the inversion Fourier transform leading to

lim
t→0+
〈Kt , φ〉 =

1
(2π)d

∫
Rd
φ̂(ξ)dξ = φ(0).
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Finally we get that (Kt?)t≥0 defines a C0-semigroup of contractions for every p ∈ [1,∞[.

(2) From Definition 3.11 and the first part of Proposition 3.13 it remains to show that

– for f ∈ L p with f (x)≥ 0 a.e. we have e−tL f (x)≥ 0;

– for f ∈ L p with | f (x)| ≤ 1 a.e. we have |e−tL f (x)| ≤ 1.

This is a direct consequence of the explicit formula

e−tL f (x)= Kt ? f (x),

where according to Lemma 3.8 we have Kt ≥ 0 and ‖Kt‖L1 = 1.

(3) It is not hard to see that the operator |D|β/logα(λ+ |D|) is a nonnegative self-adjoint operator of L2.
This operator satisfies the first condition of Theorem 3.12 since the kernel Kt is positive. �

The following result gives in particular Theorem 3.1.

Proposition 3.14. Let A be a generator of a C0-semigroup of contractions.

(1) Let p ∈ [1,∞[ and u ∈ D(A). Then∫
R2

Au |u|p−1sign u dx ≤ 0.

(2) Let θ be a smooth solution of the equation

∂tθ + v · ∇θ − Aθ = f,

where v is a smooth vector field with zero divergence and f is a smooth function. Then

‖θ(t)‖L p ≤ ‖θ0‖L p +

∫ t

0
‖ f (τ )‖L p dτ for every p ∈ [1,∞].

Proof. (1) We introduce the operation [h, g] between two functions by

[h, g] = ‖g‖2−p
L p

∫
R2

h(x)|g(x)|p−1 sign g(x) dx .

Define the function ψ : [0,∞[→ R by

ψ(t)= [et Au, u].

We have ψ(0) = ‖u‖2L p . From the Hölder inequality and the fact that the operator et A is a contraction
on L p we get

ψ(t)≤ ‖et Au‖L p‖u‖L p ≤ ‖u‖2L p .

Thus we find ψ(t)≤ ψ(0), for all t ≥ 0. Therefore we get limt→0+
ψ(t)−ψ(0)

t
≤ 0. This gives∫

R2
Au(x)|u(x)|p−1 sign u(x) dx ≤ 0.
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(2) Let p ∈ [1,∞[. Multiplying the first equation in (6) by |θ |p−1 sign θ , integrating by parts and using
div v = 0 we get

1
p

d
dt
‖θ(t)‖p

L p +

∫
R2
|Aθ(x)θ(x)|p−1 sign θ(x)dx ≤ ‖ f (t)‖L p‖θ(t)‖p−1

L p .

Using Proposition 3.14 we find

1
p

d
dt
‖θ(t)‖p

L p ≤ ‖ f (t)‖L p‖θ(t)‖p−1
L p .

Simplifying, we get d
dt
‖θ(t)‖L p ≤ ‖ f (t)‖L p . Integrating in time we get for p ∈ [1,∞[

‖θ(t)‖L p ≤ ‖θ0‖L p .

Since the estimates are uniform on the parameter p, we can get the limit case p =+∞. �

Logarithmic estimate. In the last part of this section we show some logarithmic estimates generalizing
results in [Vishik 1998; Hmidi and Keraani 2009]. We recall the following result on the propagation of
Besov regularities.

Proposition 3.15. Let κ≥0 and let A be a C0 semigroup of contractions on Lm(Rd) for every m∈[1,∞[.
We assume that for every q ∈ N∪ {−1}, the operator 1q commutes with A on a dense subset of L p. Let
(p, r) ∈ [1,∞]2, s ∈ ]−1, 1[, and let θ be a smooth solution of

∂tθ + v · ∇θ − κAθ = f.

Then

‖θ‖L̃∞t Bs
p,r
. eCV (t)

(
‖θ0‖Bs

p,r
+

∫ t

0
e−CV (τ )

‖ f (τ )‖Bs
p,r

dτ
)
,

where V (t)= ‖∇v‖L1
t L∞ and C is a constant depending only on s and d.

Proof. We set θq :=1qθ . By localizing in frequency the equation of θ we get

∂tθq + v · ∇θq − κAθq =−[1q , v · ∇]θ + fq .

Using Proposition 3.14 we get

‖θq(t)‖L p ≤ ‖θq(0)‖L p +

∫ t

0

∥∥[1q , v · ∇]θ(τ )
∥∥

L p dτ +
∫ t

0
‖ fq(τ )‖L p dτ.

At the same time, we have the classical commutator estimate [Chemin 1998]:∥∥[1q , v · ∇]θ
∥∥

L p ≤ C2−qscq‖∇v‖L∞‖θ‖Bs
p,r
, ‖(cq)‖`r = 1.

Thus

‖θ(t)‖Bs
p,r
≤ ‖θ0‖Bs

p,r
+C

∫ t

0
‖∇v‖L∞‖θ‖Bs

p,r
+

∫ t

0
‖ f (τ )‖Bs

p,r
dτ.

It suffices now to use the Gronwall’s inequality. �

Now we will show that for the index regularity s = 0 we can obtain a better estimate with a linear
growth on the norm of the velocity.
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Proposition 3.16. Let v be a smooth divergence-free vector field on Rd . Let κ ≥ 0 and let A be a
generator of C0-semigroup of contractions on L p(Rd) for every p ∈ [1,∞[. We assume that for every
q ∈ N, the operators 1q and A commute on a dense subset of L p. Let θ be a smooth solution of

∂tθ + v · ∇θ − κAθ = f.

Then, for every p ∈ [1,∞],

‖θ‖L̃∞t B0
p,1
≤ C(‖θ0‖B0

p,1
+‖ f ‖L1

t B0
p,1
)

(
1+

∫ t

0
‖∇v(τ)‖L∞dτ

)
,

where the constant C does not depend on p or κ .

This was first proved in [Vishik 1998] for the case κ = 0 by using the special structure of the transport
equation. In [Hmidi and Keraani 2008] we generalized Vishik’s result for a transport-diffusion equation
where the dissipation term has the form −κ1θ . The method described in there can be easily adapted
here for our model.

Proof. Let q ∈ N∪ {−1} and denote by θq the unique global solution of the initial value problem{
∂tθq + v · ∇θq − κAθq =1q f,

θq |t=0 =1qθ
0.

(10)

Using Proposition 3.15 with s =± 1
2 we get

‖θq‖L̃∞t B±(1/2)p,∞
.
(
‖1qθ0‖B±(1/2)p,∞

+‖1q f ‖L1
t B±(1/2)p,∞

)
eCV (t),

where V (t)=‖∇v‖L1
t L∞ . Combining this with the definition of Besov spaces this yields, for j, q ≥−1,

‖1 jθq‖L∞t L p . 2−
1
2 | j−q|(

‖1qθ0‖L p +‖1q f ‖L1
t L p

)
eCV (t). (11)

By linearity and again the definition of Besov spaces we have

‖θ‖L̃∞t B0
p,1
≤

∑
| j−q|≥N

‖1 jθq‖L∞t L p +
∑

| j−q|<N
‖1 jθq‖L∞t L p , (12)

where N ∈ N is to be chosen later. To deal with the first sum we use (11):∑
| j−q|≥N

‖1 jθq‖L∞t L p .2−N/2 ∑
q≥−1

(
‖1qθ0‖L p+‖1q f ‖L1

t L p

)
eCV (t).2−N/2(

‖θ0
‖B0

p,1
+‖ f ‖L1

t B0
p,1

)
eCV (t).

We now turn to the second sum in the right-hand side of (12). It is clear that∑
| j−q|<N

‖1 jθq‖L∞t L p .
∑

| j−q|<N
‖θq‖L∞t L p .

Applying Proposition 3.14 to the system (10) yields ‖θq‖L∞t L p ≤ ‖1qθ0‖L p + ‖1q f ‖L1
t L p . It follows

that ∑
| j−q|<N

‖1 jθq‖L∞t L p . N
(
‖θ0
‖B0

p,1
+‖ f ‖L1

t B0
p,1

)
.

The outcome is that

‖θ‖L̃∞t B0
p,1
.
(
‖θ0
‖B0

p,1
+‖ f ‖L1

t B0
p,1

)
(2−N/2eCV (t)

+ N ).
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Choosing

N =
[

2CV (t)
log 2

]
+ 1,

we get the desired result. �

Combining Propositions 3.16 and 3.13 we get:

Corollary 3.17. Let v be a smooth divergence-free vector field on Rd , with d ∈ {2, 3}. Let κ, α ≥ 0,
β ∈ ]0, 1], λ≥ e(3+2α)/β , and p ∈ [1,∞]. Let θ be a smooth solution of

∂tθ + v · ∇θ + κ|D|β log−α(λ+ |D|)θ = f.

Then

‖θ‖L̃∞t B0
p,1
≤ C

(
‖θ0‖B0

p,1
+‖ f ‖L1

t B0
p,1

)(
1+

∫ t

0
‖∇v(τ)‖L∞dτ

)
,

where the constant C depends only on λ and α.

4. Proof of the generalized Bernstein inequality (Theorem 1.3)

We first extend the classical Bernstein inequality of Lemma 2.1 to more general operators:

Proposition 4.1. Let α∈R, β >0 and λ≥2. Then there exists a constant C such that for every f ∈S(Rd)

and for every q ≥−1 and p ∈ [1,∞] we have∥∥1q(L f )
∥∥

L p ≤ C2qβ(|q| + 1)−α‖1q f ‖L p ,

where L=
|D|β

logα(λ+|D|)
(as in (9)). Moreover,∥∥Sq(L f )

∥∥
L p ≤ C2qβ(|q| + 1)−α‖Sq f ‖L p .

Remark 4.2. The first result of Proposition 4.1 remains true for more general situation where q ∈N and
the operator |D|β is replaced by a(D), where a ∈ C∞(R\{0}) is a homogeneous distribution of order
β ∈ R satisfying

|∂
γ

ξ a(ξ)| ≤ C |ξ |β−|γ | for every γ ∈ Nd .

Proof of Proposition 4.1. Case q ∈ N. It is easy to see that

1q

(
|D|β

logα(λ+|D|)
f
)
= Kq ?1q f,

with

K̂q(ξ)=
φ̃(2−qξ)|ξ |β

logα(λ+ |ξ |)
,

for φ̃ a smooth function supported in the annulus
{ 1

4 ≤ |x | ≤ 3
}

and taking the value 1 on the support of
the function φ introduced in Section 2. By Fourier inversion and change of variables we get

Kq(x)= cd

∫
Rd

ei x ·ξ φ̃(2
−qξ)|ξ |β

logα(λ+ |ξ |)
dξ = cd2qβ2qd

∫
Rd

ei2q x ·ξ φ̃(ξ)|ξ |β

logα(λ+ 2q |ξ |)
dξ = cd2qβ2qd K̃q(2q x),
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with

K̃q(x)=
∫

Rd
ei x ·ξ φ̃(ξ)|ξ |β

logα(λ+ 2q |ξ |)
dξ.

Obviously we have
‖Kq‖L1 = cd2qβ

‖K̃q‖L1 .

Hence to prove Proposition 4.1 it suffices to establish

‖K̃q‖L1 ≤ C(q + 1)−α. (13)

From the definition of K̃q we see that

K̃q(x)=
∫

Rd
ei x ·ξ ψ̃(ξ)

logα(λ+ 2q |ξ |)
dξ,

where ψ̃ belongs to the Schwartz class and is supported in
{ 1

4 ≤ |x | ≤ 3
}
. Integrating by parts we get,

for j ∈ {1, 2, . . . , d},

xd+1
j K̃q(x)= (−i)d+1

∫
1
4≤|ξ |≤3

ei x ·ξ ∂d+1
ξ j

(
ψ̃(ξ)

logα(λ+ 2q |ξ |)

)
dξ.

Now we claim that ∣∣∣∣∂d+1
ξ j

(
ψ̃(ξ)

logα(λ+2q |ξ |)

)∣∣∣∣≤ Cλ,α,d
g(ξ)

logα(λ+2q)
,

where g ∈ S(Rd). This is an easy consequence of Leibniz formula and the fact that∣∣∣∣∂n
ξ j

(
1

logα(λ+2q |ξ |)

)∣∣∣∣≤ n∑
l,k=1

cl,k

(
2q

λ+2q |ξ |

)l
1

logα+k(λ+2q |ξ |)
≤

Cλ,α,n
logα(λ+ 2q)

for 1
4 ≤ |ξ | ≤ 2.

Thus we get for j ∈ {1, . . . , d}

|x j |
d+1
|K̃q(x)| ≤ C log−α(λ+ 2q) for x ∈ Rd .

It follows that
|x |d+1

|K̃q(x)| ≤ C log−α(λ+ 2q) for x ∈ Rd .

It is easy to see that K̃q is continuous and

|K̃q(x)| ≤ C log−α(λ+ 2q)

Consequently,
|K̃q(x)| ≤ C log−α(λ+ 2q)(1+ |x |)−d−1 for x ∈ Rd .

This yields ‖K̃q‖L1 ≤ C log−α(λ+ 2q)≤ C(q + 1)−α, which concludes the proof when q ∈ N.

Case q =−1. Here we can write the kernel K−1 as

K−1(x)=
∫

Rd
ei x ·ξ χ̃(ξ)|ξ |β

logα(λ+ |ξ |)
dξ =

∫
Rd

ei x ·ξχ1(ξ)dξ,
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where χ̃ is a smooth compactly supported function taking the value 1 on the support of the function χ
introduced in Section 2. The function χ1 is given by

χ1(ξ)=
χ̃(ξ)|ξ |β

logα(λ+ |ξ |)
.

We can see by means of easy computations that χ̃ is smooth outside zero and satisfies, for every γ ∈Nd ,

|∂
γ

ξ χ̃(ξ)| ≤ Cγ |ξ |β−|γ | for all ξ 6= 0.

Using the Mikhlin–Hörmander theorem we get

|K−1(x)| ≤ C |x |−d−β .

Since K−1 is continuous at zero we have

|K−1(x)| ≤ C(1+ |x |)−d−β .

This proves that K−1 ∈ L1.
To prove the second estimate we use the first result combined with the identity Sq+2Sq = Sq :

∥∥Sq(L f )
∥∥

L p ≤

q+1∑
j=−1

∥∥1 j (LSq f )
∥∥

L p ≤ C‖Sq f ‖L p

q+1∑
j=−1

2 jβ(| j | + 1)−α.

Since β > 0, this last series diverges and

q+1∑
j=−1

2 jβ(| j | + 1)−α ≤ C2qβ(|q| + 1)−α.

This can be deduced from the asymptotic behavior∫ x

1
eβt t−αdt ≈ 1

β
eβx x−α as x→+∞. �

As a consequence of Proposition 4.1 we get the following result, which describes the action of the
logarithmic Riesz transform

Rα =
∂1 logα(λ+ |D|)

|D|

on Besov spaces.

Corollary 4.3. Let α ∈ R, λ > 1 and p ∈ [1,∞]. The map

(Id−1−1)Rα : Bs,α
p,r → Bs

p,r

is continuous.
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The generalized Bernstein inequality. In this section we prove Theorem 1.3, which we restate here for
convenience:

Theorem 1.3. Let d ∈ {1, 2, 3}, β ∈ ]0, 1], α ≥ 0, λ≥ e(3+2α)/β and p > 1. For q ∈ N and f ∈ S(Rd),

2qβ(q + 1)−α‖1q f ‖p
L p ≤ C

∫
Rd

(
|D|β

logα(λ+ |D|)
1q f

)
|1q f |p−1 sign1q f dx .

where C depends on p, α, β and λ.

Some preliminary lemmas will be needed. The first is a Stroock–Varopoulos inequality for submarko-
vian operators. For the proof see [Liskevich et al. 1996; Liskevich and Semenov 1996].

Theorem 4.4. If p > 1 and A is a submarkovian generator, we have

4 p−1
p2

∥∥A1/2(| f |p/2 sign f )
∥∥2

L2 ≤

∫
Rd
(A f ) | f |p−1 sign f dx ≤ C p

∥∥A1/2(| f |p/2 sign f )
∥∥2

L2 .

The generator A satisfies the first Beurling–Deny condition

4 p−1
p2 ‖A1/2(| f |p/2)‖2L2 ≤

∫
Rd
(A f ) | f |p−1 sign f dx .

Combining this result with Proposition 3.13 we get:

Corollary 4.5. Let p > 1, β ∈ ]0, 1], α ≥ 0 and λ≥ e(3+2α)/β . Then

4
p− 1

p2

∥∥∥∥ |D|β/2

logα/2(λ+|D|)
(| f |p/2)

∥∥∥∥2

L2
≤

∫
Rd

(
|D|β

logα(λ+|D|)
f
)
| f |p−1 sign f dx .

We will make use of the following composition results:

Lemma 4.6. (1) Let µ≥ 1 and s ∈ [0, µ[ ∩ [0, 2[. Then∥∥| f |µ∥∥Bs
2,2
≤ C‖ f ‖Bs

2µ,2
‖ f ‖µ−1

B0
2µ,2

(2) Let µ ∈ ]0, 1], p, q ∈ [1,∞] and 0< s < 1+ 1
p

. Then∥∥| f |µ∥∥Bsµ
(p/µ),(q/µ)

≤ C‖ f ‖µBs
p,q
.

The first estimate is a particular case of a general result in [Chen et al. 2007]. The second was established
in [Sickel 1999]; see also [Kateb 2003, Theorem 1.4].

Next we recall the following result, proved in [Chen et al. 2007; Danchin 2001; Planchon 2000].

Proposition 4.7. Let d ≥ 1, β ∈ ]0, 2] and p ≥ 2. Then we have for q ∈ N and f ∈ S(Rd),

2qβ
‖1q f ‖p

L p ≤ C
∫

Rd
(|D|β1q f ) |1q f |p−1 sign1q f dx .

where C depends on p and β. For β = 2 we can extend the inequality above to p ∈ ]1,∞[.

Proof of Theorem 1.3. Using Corollary 4.5 it suffices to prove

C−12qβ(q + 1)−α‖1q f ‖p
L p ≤

∥∥∥∥ |D|β/2

logα/2(λ+|D|)
(|1q f |p/2)

∥∥∥∥2

L2
.
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We will use an idea from [Chen et al. 2007]. Let N ∈ N then we have∥∥|D|(| fq |
p/2)

∥∥
L2 ≤

∥∥SN |D|(| fq |
p/2)

∥∥
L2 +

∥∥(Id−SN )|D|(| fq |
p/2)

∥∥
L2 .

It is clear that for s ≥ 0 ∥∥(Id−SN )|D|(| fq |
p/2)

∥∥
L2 ≤ C2−Ns

‖| fq |
p/2
‖B1+s

2,2
. (14)

We have now to deal with fraction powers in Besov spaces. We will treat differently the cases p > 2
and p ≤ 2.

Case p > 2. Combining Lemma 4.6(1) with the Bernstein inequality we get, under the assumption that
0< s <min(p/2− 1, 2),

‖| fq |
p/2
‖B1+s

2,2
≤ C‖ fq‖

(p/2)−1
B0

p,2
‖ fq‖B1+s

p,2
≤ C2q(1+s)

‖ fq‖
p/2
L p .

Case 1< p ≤ 2. Using Lemma 4.6(2) and the Bernstein inequality we get, for 0< s < (p− 1)/2,

‖| fq |
p/2
‖B1+s

2,2
≤ C‖ fq‖

p/2
B(2+2s)/p

p,p
≤ C2q(1+s)

‖ fq‖
p/2
L p .

It follows from (14) and the previous inequalities that there exists sp > 0 such that for 0< s < sp∥∥(Id−SN )|D|(| fq |
p/2)

∥∥
L2 ≤ C2−Ns2q(1+s)

‖ fq‖
p/2
L p .

On the other hand Proposition 4.1 gives∥∥SN |D|(| fq |
p/2)

∥∥
L2 ≤

∥∥∥∥SN |D|1−β/2logα/2(λ+ |D|)
(

|D|β/2

logα/2(λ+|D|)
(| fq |

p/2)

)∥∥∥∥
L2

≤ C2N (1−β/2)Nα/2
∥∥∥∥ |D|β/2

logα/2(λ+|D|)
(| fq |

p/2)

∥∥∥∥
L2
.

Therefore we get

‖|D|(| fq |
p/2)‖L2 ≤ C2−Ns2q(1+s)

‖ fq‖
p/2
L p +C2N (1−β/2)Nα/2

∥∥∥∥ |D|β/2

logα/2(λ+|D|)
(| fq |

p/2)

∥∥∥∥
L2
.

According to Proposition 4.7 we have for p ∈ ]1,∞[,

C p2q
‖ fq‖

p/2
L p ≤ ‖|D|(| fq |

p/2)‖L2 .

Combining the last two estimates we get

2q
‖ fq‖

p/2
L p ≤ C2s(q−N ) 2q

‖ fq‖
p/2
L p +C2N (1−β/2)Nα/2

∥∥∥∥ |D|β/2

logα/2(λ+|D|)
(| fq |

p/2)

∥∥∥∥
L2
.

We take N = q + N0 such that C2−N0s
≤

1
2 . Then we get

‖ fq‖
p/2
L p ≤ C2−qβ/2(q + 1)α/2

∥∥∥∥ |D|β/2

logα/2(λ+|D|)
(| fq |

p/2)

∥∥∥∥
L2
.

This gives the desired result. �
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5. Commutator estimates

We will establish in this section some commutator estimates. The following result was proved in [Hmidi
et al. 2011].

Lemma 5.1. Given (p,m) ∈ [1,∞]2 such that p ≥ m′ with m′ the conjugate exponent of m. Let f, g, h
be functions such that ∇ f ∈ L p, g ∈ Lm and xh ∈ Lm′ . Then,

‖h ? ( f g)− f (h ? g)‖L p ≤ ‖xh‖Lm′‖∇ f ‖L p‖g‖Lm .

Lemma 5.2. Let (an)n∈Z be a sequence of strictly nonnegative real numbers such that

M :=max
(

sup
n∈Z

a−1
n
∑
j≤n

a j , sup
n∈Z

an
∑
j≥n

a−1
j

)
<∞.

For every p ∈ [1,∞], the linear operator T : `p
→ `p defined by

T ((bn)n∈Z)=
(∑

j≤n
a j a−1

n b j

)
n∈Z

is continuous and ‖T ‖L(`p) ≤ M.

Proof. By interpolation it suffices to prove the cases p = 1 and p =+∞. Let’s start with p = 1 and set
b= (bn)n∈Z. From the Fubini lemma and the hypothesis we have

‖T b‖`1 ≤
∑
n∈Z

∑
j≤n

a j a−1
n |b j | ≤

∑
j∈Z

|b j |a j
∑
n≥ j

a−1
n ≤ M‖b‖`1 .

For the case p =+∞, we write

‖T b‖`∞ ≤ sup
n∈Z

∑
j≤n

a j a−1
n |b j | ≤ ‖b‖`∞ sup

n∈Z

a−1
n
∑
j≤n

a j ≤ M‖b‖`∞ .

This completes the proof. �

The goal now is to study the commutation between the operators

Rα =
∂1
|D|

logα(λ+ |D|) and v · ∇.

Recall that Bs,s′
∞,2 is the space given by the set of tempered distributions u such that

‖u‖Bs,s′
∞,r
=
∥∥(2qs(|q| + 1)s

′

‖1qu‖L∞
)

q

∥∥
`r .

The main result of this section reads as follows.

Proposition 5.3. Let α ∈ R, λ > 1, and let v be a smooth divergence-free vector field and θ a smooth
scalar function.

(1) For every (p, r) ∈ [2,∞[× [1,∞] there exists a constant C = C(p, r) such that

‖[Rα, v · ∇]θ‖B0
p,r
≤ C‖∇v‖L p

(
‖θ‖B0,α

∞,r
+‖θ‖L p

)
.

(2) For every (r, ρ) ∈ [1,∞]× ]1,∞[ and ε > 0 there exists a constant C = C(r, ρ, ε) such that

‖[Rα, v · ∇]θ‖B0
∞,r
≤ C

(
‖ω‖L∞ +‖ω‖Lρ

)(
‖θ‖Bε∞,r +‖θ‖Lρ

)
.
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Proof. (1) We split the commutator into three parts according to Bony’s decomposition [1981]:

[Rα, v · ∇]θ =
∑

q∈N

[Rα, Sq−1v · ∇]1qθ +
∑

q∈N

[Rα,1qv · ∇]Sq−1θ +
∑

q≥−1
[Rα,1qv · ∇]1̃qθ

=
∑

q∈N

Iq +
∑

q∈N

IIq +
∑

q≥−1
IIIq = I+ II+ III.

We start with the estimate of the term I. It is easy to see that there exists ϕ̃ ∈S whose spectrum does not
meet the origin such that

Iq(x)= hq ? (Sq−1v · ∇1qθ)− Sq−1v · (hq ?∇1qθ),

where

ĥq(ξ)= i ϕ̃(2−qξ)
ξ1

|ξ |
logα(λ+ |ξ |).

Applying Lemma 5.1 with m =∞ we get

‖Iq‖L p . ‖xhq‖L1‖∇Sq−1v‖L p‖1q∇θ‖L∞ . 2q
‖xhq‖L1‖1qθ‖L∞‖∇v‖L p . (15)

We can easily check that

‖xhq‖L1 = 2−q
‖xh̃q‖L1 with ̂̃hq(ξ)= i ϕ̃(ξ)

ξ1

|ξ |
logα(λ+ 2q

|ξ |).

We can get, in a way similar to the proof of Proposition 4.1,

‖h̃q‖L1 ≤ C(1+ |q|)α.

Thus estimate (15) becomes

‖Iq‖L p ≤ C(1+ |q|)α‖1qθ‖L∞‖∇v‖L p .

Combined with the trivial fact
1 j

∑
q

Iq =
∑

| j−q|≤4
Iq ,

this yields

‖I‖B0
p,r
.
( ∑

q≥−1
‖Iq‖

r
L p

)1/r
. ‖∇v‖L p‖θ‖B0,α

∞,r
.

Let us move to the term II. As before we write

IIq(x)= hq ? (1qv · ∇Sq−1θ)−1qv · (hq ?∇Sq−1θ),

and then we obtain the estimate

‖IIq‖L p . 2−q(1+ |q|)α‖1q∇v‖L p‖Sq−1∇θ‖L∞ . ‖∇v‖L p
∑

j≤q−2

2 j (1+ | j |)−α

2q(1+ |q|)−α
((1+ | j |)α‖1 jθ‖L∞).

Combined with Lemma 5.2 this yields

‖II‖B0
p,r
. ‖∇v‖L p‖θ‖B0,α

∞,r
.

To deal with III, we use the fact that the divergence of 1qv vanishes to write
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III=
∑
q≥2

Rα div(1qv 1̃qθ)−
∑
q≥2

div(1qvRα1̃qθ)+
∑
q≤1
[Rα,1qv · ∇]1̃qθ = J1+ J2+ J3.

Using Remark 4.2 we get∥∥1 j Rα div(1qv 1̃qθ)
∥∥

L p . 2 j (1+ | j |)α‖1qv‖L p‖1̃qθ‖L∞;

and since q ≥ 2,∥∥1 j div(1qvRα1̃qθ)
∥∥

L p . 2 j
‖1qv‖L p‖Rα1̃qθ‖L∞ . 2 j (1+ |q|)α‖1qv‖L p‖1̃qθ‖L∞ .

Therefore we get

‖1 j (J1+ J2)‖L p .
∑

q∈N
q≥ j−4

2 j (1+ |q|)α‖1qv‖L p‖1̃qθ‖L∞ . ‖∇v‖L p
∑

q∈N
q≥ j−4

2 j−q(1+ |q|)α‖1qθ‖L∞,

where we have again used Bernstein inequality to get the last inequality. It suffices now to use Lemma 5.2:

‖J1+ J2‖B0
p,r
. ‖∇v‖L p‖θ‖B0,α

∞,r
.

For the term J3 we can write∑
−1≤q≤1

[Rα,1qv · ∇]1̃qθ(x)=
∑
q≤1
[div χ̃(D)Rα,1qv]1̃qθ(x),

where χ̃ belongs to D(Rd). From the proof of Proposition 4.1 we know that div χ̃(D)Rα is a convolution
operator with a kernel h̃ satisfying

|h̃(x)|. (1+ |x |)−d−1.

Thus
J3 =

∑
q≤1

h̃ ? (1qv · 1̃qθ)−1qv · (h̃ ? 1̃qθ).

Note that 1 j J3 = 0 for j ≥ 6; thus we just need to estimate the low frequencies of J3. Since xh̃ belongs
to L p′ for p′ > 1, we can use Lemma 5.1 with m = p ≥ 2 to obtain

‖1 j J3‖L p .
∑
q≤1
‖xh̃‖L p′‖1q∇v‖L p‖1̃qθ‖L p . ‖∇v‖L p

∑
−1≤q≤1

‖1qθ‖L p .

This yields
‖J3‖B0

p,r
. ‖∇v‖L p‖θ‖L p ,

completing the proof of the first part of Proposition 5.3.

(2) The second part can be done similarly, so we give a shorter proof. To estimate the terms I and II we
use two estimates: ‖1q∇u‖L∞ ≈ ‖1qω‖L∞ for all q ∈ N, and

‖∇Sq−1v‖L∞ . ‖∇1−1v‖L∞ +
q−2∑
j=0
‖1 j∇v‖L∞ . ‖ω‖Lρ + q‖ω‖L∞ .

Thus (15) becomes
‖Iq‖L∞ ≤ ‖ω‖L∞(1+ |q|)1+α‖1qθ‖L∞
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and by Corollary 4.3
‖I‖B0

∞,r
≤ ‖ω‖L∞‖θ‖B0,1+α

∞,r
≤ ‖ω‖L∞‖θ‖Bε∞,∞ .

The second term II is estimated as

‖II‖B0
∞,r
≤ ‖ω‖L∞‖θ‖B0,α

∞,r
≤ ‖ω‖L∞‖θ‖Bε∞,∞ .

For the remaining term the analysis is the same as before, except for J3, where we apply Lemma 5.1
with p =∞ and m = ρ, leading to

‖1 j J3‖L p .
∑
q≤1
‖xh̃‖Lρ′‖1q∇v‖L∞‖1̃qθ‖Lρ . ‖∇v‖Lρ

∑
−1≤q≤1

‖1qθ‖Lρ . ‖ω‖Lρ‖θ‖Lρ .

This ends the proof of the theorem. �

6. Smoothing effects

In this section we describe smoothing effects for the model (6), with zero source term f :{
∂tθ + v · ∇θ +Lθ = 0,

θ|t=0 = θ0.
(TD)

with
L :=

|D|β

logα(λ+ |D|)
and div v = 0.

Theorem 6.1. Let α ≥ 0, λ≥ e3+2α, d ∈ {2, 3}, β ∈ ]0, 1] and let v be a smooth divergence-free vector
field of Rd with vorticity ω. Then, for every p ∈ ]1,∞[, there exists a constant C such that

sup
q∈N

2qβ(1+ q)−α‖1qθ‖L1
t L p ≤ C‖θ0‖L p +C‖θ0‖L∞‖ω‖L1

t L p ,

for every smooth solution θ of (TD).

Remark 6.2. We give the proof in the case β = 1 for simplicity, but the result remains true for β ∈ ]0, 1[.

Proof of Theorem 6.1 in the case β = 1. We start by localizing the equation in frequencies. for q ≥ −1
we set θq :=1qθ. Then

∂tθq + v · ∇θq +
|D|

logα(λ+|D|)
θq =−[1q , v · ∇]θ.

Recall that θq is real function since the functions involved in the dyadic partition of the unity are radial.
Then multiplying the above equation by |θq |

p−2θq , integrating by parts and using Hölder inequalities we
get

1
p

d
dt
‖θq‖

p
L p +

∫
R2

(
|D|

logα(λ+|D|)
θq

)
|θq |

p−2θq dx ≤ ‖θq‖
p−1
L p ‖[1q , v · ∇]θ‖L p .

Using Theorem 1.3 we get for q ≥ 0

c2q(1+ q)−α‖θq‖
p
L p ≤

∫
R2

(
|D|

logα(λ+|D|)
θq

)
|θq |

p−2θqdx,
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where c depends on p. Inserting this estimate in the previous one we obtain

1
p

d
dt
‖θq‖

p
L p + c2q(1+ q)−α‖θq‖

p
L p . ‖θq‖

p−1
L p ‖[1q , v · ∇]θ‖L p .

Thus we find
d
dt
‖θq‖L p + c2q(1+ q)−α‖θq‖L p . ‖[1q , v · ∇]θ‖L p . (16)

To estimate the right side we will use the following result; see [Hmidi et al. 2011, Proposition 3.3].

‖[1q , v · ∇]θ‖L p . ‖∇v‖L p‖θ‖B0
∞,∞
.

Combined with (16) this lemma yields

d
dt
(ect2q (1+q)−α

‖θq(t)‖L p). ect2q (1+q)−α
‖∇v(t)‖L p‖θ(t)‖B0

∞,∞

. ect2q (1+q)−α
‖ω(t)‖L p‖θ0‖L∞ .

To get the last line, we have used the conservation of the L∞ norm of θ and the classical fact that

‖∇v‖L p . ‖ω‖L p for p ∈ ]1,+∞[.

Integrating the differential inequality we get for q ∈ N

‖θq(t)‖L p . ‖θ0
q‖L p e−ct2q (1+q)−α

+‖θ0‖L∞

∫ t

0
e−c(t−τ)2q (1+q)−α

‖ω(τ)‖L p dτ.

Integrating in time yields

2q(1+ q)−α‖θq‖L1
t L p . ‖θ0

q‖L p +‖θ0‖L∞

∫ t

0
‖ω(τ)‖L p dτ . ‖θ0‖L p +‖θ0‖L∞

∫ t

0
‖ω(τ)‖L p dτ,

which is the desired result. �

7. Proof of Theorem 1.5

Throughout this section we use the notation 8k to denote any function of the form

8k(t)= C0 exp(. . . exp︸ ︷︷ ︸
k times

(C0t) . . .),

where C0 depends on the relevant norms of the initial data and its value may vary from line to line up to
some absolute constants. We will make frequent and tacit use of the trivial inequalities∫ t

0
8k(τ ) dτ ≤8k(t) and exp

(∫ t

0
8k(τ ) dτ

)
≤8k+1(t).

The proof of Theorem 1.5 is done in several steps. We first give some a priori estimates for the
equations (5). Next we prove uniqueness. Finally, we discuss the construction of the solutions.
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A priori estimates. Theorem 1.5 deals with critical regularities and one needs to bound the Lipschitz
norm of the velocity in order to get the global persistence of the initial regularities. For this purpose we
will proceed in several steps: one of the main steps is to give an L∞-bound of the vorticity, but due to
technical difficulties related to Riesz transforms, this is not done directly. First we prove an L p-estimate
for the vorticity with 2< p <∞.

Proposition 7.1. Let α ∈ [0, 1
2 ], λ ≥ e3+2α and p ∈ ]2,∞[. Let (v, θ) be a solution of (5) with ω0

∈

L p, θ0 ∈ L p
∩ L∞ and Rαθ0 ∈ L p. Then, for every ε > 0,

‖ω(t)‖L p +‖θ‖L1
t B1−ε

p,1
≤82(t).

Proof. Applying the transform Rα to the temperature equation we get

∂t Rαθ + v · ∇Rαθ +
|D|

logα(λ+|D|)
Rαθ =−[Rα, v · ∇]θ. (17)

Since
|D|

logα(λ+ |D|)
Rα = ∂1, the function 0 := ω+Rαθ satisfies

∂t0+ v · ∇0 =−[Rα, v · ∇]θ. (18)

According to Proposition 5.3(1), applied with r = 2,

‖[Rα, v · ∇]θ‖B0
p,2
. ‖∇v‖L p(‖θ‖B0,α

∞,2
+‖θ‖L p).

Using the classical embedding B0
p,2 ↪→ L p which is true only for p ∈ [2,∞)

‖[Rα, v · ∇]θ‖L p ≤ ‖∇v‖L p(‖θ‖B0,α
∞,2
+‖θ‖L p).

Since div v = 0, the L p estimate applied to the transport equation (18) gives

‖0(t)‖L p ≤ ‖00
‖L p +

∫ t

0
‖[Rα, v · ∇]θ(τ )‖L p dτ.

Applying Theorem 3.1 to (17) yields

‖Rαθ(t)‖L p ≤ ‖Rαθ0‖L p +

∫ t

0
‖[Rα, v · ∇]θ(τ )‖L p dτ.

Set f (t) := ‖ω(t)‖L p +‖Rαθ(t)‖L p . From the previous estimates we get

f (t). ‖00‖L p +‖Rαθ0‖L p +

∫ t

0
‖∇v(τ)‖L p(‖θ(τ )‖B0,α

∞,2
+‖θ‖L p) dτ

. f (0)+
∫ t

0
f (τ )(‖θ(τ )‖B0,α

∞,2
+‖θ0‖L p) dτ.

Here we have used the Calderón–Zygmund estimate, to the effect that ‖∇v‖L p ≤C‖ω‖L p for p∈ (1,∞),
and also the estimate ‖θ(t)‖L p ≤ ‖θ0‖L p from Theorem 3.1.

According to Gronwall’s lemma we get

f (t). f (0)eC‖θ0‖L p t e
C‖θ‖

L1
t B0,α
∞,2 . (19)
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For N ∈ N, the Bernstein inequalities and Theorem 3.1 give

‖θ‖L1
t B0,α
∞,2
≤ t
∥∥∥( ∑

q<N
(1+ |q|)2α‖1qθ‖

2
L∞

)1/2∥∥∥
L∞t
+‖(Id− SN )θ‖L1

t B0,α
∞,1

. t‖θ‖L∞t,x N 1/2+α
+
∑

q≥N
(1+ |q|)α‖1qθ‖L1

t L∞

. t‖θ0‖L∞N 1/2+α
+
∑

q≥N
(1+ |q|)α‖1qθ‖L1

t L∞

. N 1/2+α
‖θ0‖L∞ t +

∑
q≥N

2q(2/p)(1+ |q|)α‖1qθ‖L1
t L p .

Using Theorem 6.1, we obtain for p > 2 and 0< ε < 1− 2/p∑
q≥N

(1+ |q|)α2q(2/p)
‖1qθ‖L1

t L p .
∑

q≥N
(1+ |q|)2α2q((2/p)−1)(

‖θ0‖L p +‖θ0‖L∞‖ω‖L1
t L p

)
.
∑

q≥N
2q((2/p)+ε−1)(

‖θ0‖L p +‖θ0‖L∞‖ω‖L1
t L p

)
. ‖θ0‖L p + 2N (−1+ε+2/p)

‖θ0‖L∞‖ω‖L1
t L p .

Consequently,

‖θ‖L1
t B0,α
∞,2
. N (1/2)+α

‖θ0‖L∞ t +‖θ0‖L p + 2N (−1+ε+2/p)
‖θ0‖L∞‖ω‖L1

t L p .

We choose

N =
[ log(e+‖ω‖L1

t L p)

(1− ε− 2/p) log 2

]
.

This yields

‖θ‖L1
t B0,α
∞,2
. ‖θ0‖L∞∩L p +‖θ0‖L∞ t log(1/2)+α

(
e+

∫ t

0
‖ω(τ)‖L p dτ

)
.

Combining this estimate with (19) we get

‖θ‖L1
t B0,α
∞,2
. ‖θ0‖L∞∩L p +‖θ0‖L∞ t log(1/2)+α

(
e+C f (0)eC‖θ0‖L p t e

C‖θ‖
L1

t B0,α
∞,2
)

≤ C0 log(1/2)+α(e+ f (0)) (1+ t (3/2)+α)+C‖θ0‖L∞ t‖θ‖(1/2)+α
L1

t B0,α
∞,2
, (20)

where C0 is a constant depending on ‖θ0‖L p∩L∞ .

Case 1: α < 1
2 .

Lemma 7.2. There exists a number C , depending only on α ∈ [0, 1[, such that if a, b > 0 and if x ∈ R+

is a solution of the inequality

x ≤ a+ bxα, (21)

then

x ≤ C(a+ b1/(1−α)).
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Proof. Set y = a−1x . Then (21) becomes

y ≤ 1+ baα−1 yα.

We will look for a number µ > 0 such that y ≤ eµ. It suffices to find µ such that

1+ baα−1eµα ≤ eµ.

In particular (since eµα > 1) we can take for µ the solution of

(1+ baα−1)eµα = eµ.

This gives eµ = (1+ baα−1)1/(1−α). Now recall that there is a constant C = Cα such that, for every
t, s ≥ 0,

(t + s)1/(1−α) ≤ C(t1/(1−α)
+ s1/(1−α)).

With this constant we have y ≤C(1+b1/(1−α)a−1), or equivalently x ≤C(a+b1/(1−α)), as required. �

Applying this lemma to (20) we get, for every t ∈ R+,

‖θ‖L1
t B0,α
∞,2
≤ C0(t3/2

+ t2/(1−2α))≤ C0(1+ t2/(1−2α))≤81(t). (22)

It follows from (19) that
f (t)≤ C0eC0t2/(1−2α)

≤82(t) (23)

Applying Theorem 6.1 and (23) we get, for every ε > 0 and q ∈ N,

2q(1+ |q|)−α‖1qθ‖L1
t L p ≤ C0eC0t2/(1−2α)

≤82(t).

Case 2: α = 1
2 . The estimate (20) becomes

‖θ‖L1
t B0,1/2
∞,2
≤ C0 log(e+ f (0))(1+ t2)+C‖θ0‖L∞ t‖θ‖L1

t B0,1/2
∞,2
,

with C0 depending on ‖θ0‖L p∩L∞ . Hence if we choose t small enough that

C‖θ0‖L∞ t = 1
2 , (24)

then
‖θ‖L1

t B0,α
∞,2
≤ C0 log(e+ f (0)).

From (19) we get that
f (t)≤ C0(e+ f (0))C0 .

Now let t be a given positive time and choose a partition (ti )N
i=1 of [0, t] such that

C‖θ0‖L∞(ti+1− ti )≈ 1
2 . (25)

Set ai :=

∫ ti+1

ti
‖θ(τ )‖B0,1/2

∞,2
dτ and bi = f (ti ). Computations similar to (20) yield

ai ≤ C0 log(e+ bi )(1+ (ti+1− ti )2)+C‖θ0‖L∞(ti+1− ti )ai .

Hence we get
ai ≤ C0 log(e+ bi ). (26)
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The analogous estimate to (19) is

bi+1 . bi eC(ti+1−ti )‖θ0‖L p eCai ≤ C0bi eCai . (27)

Combining (26) and (27) yields
bi+1 ≤ C0(e+ bi )

C0 .

By induction we can prove that for every i ∈ {1, . . . , N } we have bi ≤C0eexp C0i , and consequently, from
(26), ai ≤ C0eC0i . It follows that

‖θ‖L1
t B0,1/2
∞,2
=

N∑
i=1

ai ≤ C0eC0 N
≤ C0eC0t .

We have used in the last inequality the fact that N ≈ C0t , a consequence of (25). We have also obtained

f (t)≤ C0eexp C0t .

It is not hard to see that (24) implies

‖θ‖L1
t Bs

p,1
≤ ‖θ‖L̃1

t B1,−α
p,∞
≤82(t) for every s < 1. (28)

This ends the proof of Proposition 7.1. �

Remark 7.3. Combining (28) with the Bernstein inequalities and the fact that p > 2 yields

‖θ‖L1
t Bε
∞,1
≤82(t) for every ε < 1− 2

p
. (29)

We are now ready to prove an L∞-bound on the vorticity.

Proposition 7.4. Let α ∈ [0, 1
2 ], λ≥ e3+2α, p ∈ ]2,∞[, and let (v, θ) be a smooth solution of the system

(5) such that ω0, θ0,Rαθ0 ∈ L p
∩ L∞. Then we have

‖ω(t)‖L∞ +‖Rαθ(t)‖L∞ ≤83(t) (30)

and

‖v(t)‖L∞ ≤84(t). (31)

Proof of (30). By using the maximum principle for the transport equation (18), we get

‖0(t)‖L∞ ≤ ‖0
0
‖L∞ +

∫ t

0
‖[Rα, v · ∇]θ(τ )‖L∞ dτ.

Since the function Rαθ satisfies the equation(
∂t + v · ∇ + |D| log−α(λ+ |D|)

)
Rαθ =−[Rα, v · ∇]θ,

we get, using Theorem 3.1,

‖Rαθ(t)‖L∞ ≤ ‖Rαθ(t)‖L∞ +

∫ t

0
‖[Rα, v · ∇]θ(τ )‖L∞ dτ.
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Thus we obtain

‖0(t)‖L∞ +‖Rαθ(t)‖L∞ ≤ ‖0
0
‖L∞ +‖Rαθ0‖L∞ + 2

∫ t

0
‖[Rα, v · ∇]θ(τ )‖L∞dτ

≤ C0+

∫ t

0
‖[Rα, v · ∇]θ(τ )‖B0

∞,1
dτ.

It follows from Theorem 3.1, Proposition 5.3(2) and Proposition 7.1 that

‖ω(t)‖L∞ +‖Rαθ(t)‖L∞

. C0+

∫ t

0
‖ω(τ)‖L∞∩L p

(
‖θ(τ )‖Bε

∞,1
+‖θ(τ )‖L p

)
dτ

. C0+‖ω‖L∞t L p
(
‖θ‖L1

t Bε
∞,1
+ t‖θ0‖L p

)
+

∫ t

0
‖ω(τ)‖L∞

(
‖θ(τ )‖Bε

∞,1
+‖θ0‖L p

)
dτ.

Let 0< ε < 1− 2
p

. Using (29) we get

‖ω(t)‖L∞ +‖Rαθ(t)‖L∞ .82(t)+
∫ t

0
‖ω(τ)‖L∞(‖θ(τ )‖Bε

∞,1
+‖θ0‖L p) dτ.

Therefore we obtain by the Gronwall lemma and (29)

‖ω(t)‖L∞ +‖Rαθ(t)‖L∞ ≤83(t). �

Proof of (31). Let N ∈ N to be chosen later. Using the fact that ‖1̇qv‖L∞ ≈ 2−q
‖1̇qω‖L∞ , we get

‖v(t)‖L∞ ≤ ‖χ(2N
|D|)v(t)‖L∞ +

∑
q≥−N

2−q
‖1̇qω(t)‖L∞

≤ ‖χ(2N
|D|)v(t)‖L∞ + 2N

‖ω(t)‖L∞ .

Applying the frequency localizing operator to the velocity equation we get

χ(2N
|D|)v = χ(2N

|D|)v0+

∫ t

0
Pχ(2N

|D|)θ(τ ) dτ +
∫ t

0
Pχ(2N

|D|) div(v⊗ v)(τ ) dτ,

where P stands for Leray projector. From Lemma 2.1, a Calderón–Zygmund estimate and the uniform
boundedness of χ(2N

|D|) we get∫ t

0
‖χ(2N

|D|)Pθ(τ )‖L∞dτ . 2−N (2/p)
∫ t

0
‖θ(τ )‖L p dτ . t‖θ0‖L p .

Using Corollary 3.9(2) we find∫ t

0
‖Pχ(2N

|D|) div(v⊗ v)(τ )‖L∞dτ . 2N
∫ t

0
‖v(τ)‖2L∞dτ.

The outcome is

‖v(t)‖L∞ . ‖v0‖L∞+t‖θ0‖L p+2−N
∫ t

0
‖v(τ)‖2L∞dτ+2N

‖ω(t)‖L∞ . 2−N
∫ t

0
‖v(τ)‖2L∞dτ+2N83(t).
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Choosing judiciously N we find

‖v(t)‖L∞ ≤83(t)
(

1+
(∫ t

0
‖v(τ)‖2L∞dτ

)1/2)
.

From the Gronwall lemma we get ‖v(t)‖L∞ ≤84(t), as desired. �

Finally, we turn to a Lipschitz bound of the velocity.

Proposition 7.5. Let α ∈ [0, 1
2 ], λ≥ e3+2α, p ∈ ]2,∞[, and let (v, θ) be a smooth solution of the system

(5) with ω0, θ0,Rαθ0 ∈ B0
∞,1 ∩ L p. Then

‖Rαθ(t)‖B0
∞,1
+‖ω(t)‖B0

∞,1
+‖v(t)‖B1

∞,1
≤84(t).

Proof. Applying Corollary 3.17 to the equations (17) and (18), we obtain

‖0(t)‖B0
∞,1
+‖Rαθ(t)‖B0

∞,1
.
(
C0+

∥∥[Rα, v · ∇]θ
∥∥

L1
t B0
∞,1

)(
1+‖∇v‖L1

t L∞
)
. (32)

Thanks to Propositions 5.3, 7.4, 7.1 and Equation (29) we get∥∥[Rα, v · ∇]θ
∥∥

L1
t B0
∞,1
.
∫ t

0

(
‖ω(τ)‖L∞ +‖ω(τ)‖L p

)(
‖θ(τ )‖Bε

∞,1
+‖θ(τ )‖L p

)
dτ .83(t).

By easy computations we get

‖∇v‖L∞ ≤ ‖∇1−1v‖L∞ +
∑

q∈N

‖1q∇v‖L∞ . ‖ω‖L p +
∑

q∈N

‖1qω‖L∞

.82(t)+‖ω(t)‖B0
∞,1
. (33)

Putting together (32) and (33) leads to

‖ω(t)‖B0
∞,1
≤ ‖0(t)‖B0

∞,1
+‖Rαθ(t)‖B0

∞,1
≤83(t)

(
1+

∫ t

0
‖ω(τ)‖B0

∞,1
dτ
)
.

Thus we obtain from the Gronwall inequality

‖ω(t)‖B0
∞,1
+‖Rαθ(t)‖B0

∞,1
≤84(t). (34)

Coming back to (33) we get
‖∇v(t)‖L∞ ≤84(t).

Let us move to the estimate of v in the space B1
∞,1. By definition we have

‖v(t)‖B1
∞,1
. ‖v(t)‖L∞ +‖ω(t)‖B0

∞,1
.

Combined with (31) and (34) this yields

‖v(t)‖B1
∞,1
≤84(t).

The proof of Proposition 7.5 is now achieved, and with it the first step in the proof of Theorem 1.5,
according to outline on page 274. �
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Uniqueness. We will show that the Boussinesq system (5) has a unique solution in the function space

ET = (L∞T B0
∞,1 ∩ L1

T B1
∞,1)× (L

∞

T L p
∩ L̃1

T B1,−α
p,∞ ), 2< p <∞.

Let (v1, θ1) and (v2, θ2) be two solutions of (5) belonging to the space ET , and set

v = v2
− v1, θ = θ2

− θ1.

Then we get 
∂tv+ v

2
· ∇v =−∇π − v · ∇v1

+ θe2,

∂tθ + v
2
· ∇θ +

|D|
logα(λ+ |D|)

θ =−v · ∇θ1,

v|t=0 = v0, θ|t=0 = θ0.

According to Proposition 3.15 we have

‖v(t)‖B0
∞,1
≤ CeCV1(t)

(
‖v0‖B0

∞,1
+‖∇π‖L1

t B0
∞,1
+‖v · ∇v1

‖L1
t B0
∞,1
+‖θ‖L1

t B0
∞,1

)
,

with V1(t)= ‖∇v1
‖L1

t L∞ . Straightforward computations using the incompressibility of the flows gives

∇π =−∇1−1 div(v · ∇(v1
+ v2))+∇1−1∂2θ

= I+ II.

To estimate the term I we use the definition

‖I‖B0
∞,1
. ‖(∇1−1 div) div1−1(v⊗ (v

1
+ v2))‖L∞ +‖v · ∇(v

1
+ v2)‖B1

∞,1
.

From Proposition 3.1(2) of [Hmidi et al. 2011] and Besov embeddings we have

‖(∇1−1 div) div1−1(v⊗ (v
1
+ v2))‖L∞ . ‖v⊗ (v

1
+ v2)‖L∞ . ‖v‖B0

∞,1
‖v1
+ v2
‖B0
∞,1
.

Using the incompressibility of v and Bony’s decomposition one can easily obtain

‖v · ∇(v1
+ v2)‖B0

∞,1
. ‖v‖B0

∞,1
‖v1
+ v2
‖B1
∞,1
.

Putting together these estimates yields

‖I‖B0
∞,1
. ‖v‖B0

∞,1
‖v1
+ v2
‖B1
∞,1
. (35)

We now turn to the term II. By using Besov embeddings and a Calderón–Zygmund estimate we get

‖II‖B0
∞,1
. ‖∇1−1∂2θ‖B2/p

p,1
. ‖θ‖B2/p

p,1
.

Combining this estimate with (35) yields

‖v(t)‖B0
∞,1
. eCV (t)

(
‖v0‖B0

∞,1
+

∫ t

0
‖v(τ)‖B0

∞,1

(
1+‖(v1, v2)(τ )‖B1

∞,1

)
dτ
)
+ eCV (t)

‖θ‖L1
t B2/p

p,1
,

where V (t) := ‖(v1, v2)‖L1
t B1
∞,1

.
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Now we have to estimate ‖θ‖L1
t B2/p

p,1
. By applying 1q to the equation of θ and arguing similarly to the

proof of Theorem 6.1 we obtain for q ∈ N

‖θq(t)‖L p . e−ct2q (1+q)−α
‖θ0

q‖L p +

∫ t

0
e−c2q (1+q)−α(t−τ)

∥∥1q(v · ∇θ
1)(τ )

∥∥
L p dτ

+

∫ t

0
e−c2q (1+q)−α(t−τ)

∥∥[v2
· ∇,1q

]
θ(τ )

∥∥
L p dτ.

Remark, first, that an obvious Hölder inequality yields that for every ε ∈ [0, 1] there exists an absolute
constant C such that ∫ t

0
e−cτ2q (1+q)−αdτ ≤ Ct1−ε2−qε(1+ q)α ε for all t ≥ 0.

Using this fact and integrating in time we obtain

2q2/p
‖θq‖L1

t L p . (q + 1)α2q(−1+2/p)
‖θ0

q‖L p + Iq(t)+ IIq(t), (36)

where

Iq(t)= t1−ε(q + 1)αε2q(−ε+2/p)
∫ t

0
‖1q(v · ∇θ

1)(τ )‖L p dτ,

IIq(t)= t1−ε(q + 1)αε2q(−ε+2/p)
∫ t

0
‖[v2
· ∇,1q ]θ(τ )‖L p dτ.

Using Bony’s decomposition we get easily

‖1q(v · ∇θ
1)(t)‖L p . ‖v(t)‖L∞

∑
j≤q+2

2 j
‖1 jθ

1(t)‖L p + 2q
‖v(t)‖L∞

∑
j≥q−4

‖1 jθ
1(t)‖L p

. ‖v(t)‖L∞
∑

j≤q+2
(1+ | j |)α

(
2 j (1+ | j |)−α‖1 jθ

1(t)‖L p
)

+‖v(t)‖L∞
∑

j≥q−4
2q− j (1+ | j |)α

(
2 j (1+ | j |)−α‖1 jθ

1(t)‖L p
)
.

Integrating in time we get

Iq(t). t1−ε
‖v‖L∞t L∞2q((2/p)−ε)(q + 1)1+α(1+ε)‖θ1

‖L̃1
t B1,−α

p,∞

+ t1−ε
‖v‖L∞t L∞‖θ

1
‖L̃1

t B1,−α
p,∞

2q((2/p)+1−ε)(q + 1)α(1+ε)
∑

j≥q−4
2− j (1+ | j |)α

. t1−ε
‖v‖L∞t L∞2q((2/p)−ε)(q + 1)1+α(1+ε)‖θ1

‖L̃1
t B1,−α

p,∞
. (37)

To estimate the term IIq we use the following classical commutator (since 2
p
< 1) [Chemin 1998]:

‖[v2
· ∇,1q ]θ‖L p . 2−q(2/p)

‖∇v2
‖L∞‖θ‖B2/p

p,1
.

Thus we obtain

II q(t). t1−ε(q + 1)αε2−qε
‖∇v2

‖L∞t L∞‖θ‖L1
t B2/p

p,1
. (38)
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We choose ε ∈ ]0, 1[ such that 2
p
− ε < 0, which is possible since p > 2. Combining (36), (37) and

(38) we get

‖θ‖L1
t B2/p

p,1
. ‖θ0‖L p + t1−ε

‖v‖L∞t L∞‖θ
1
‖L̃1

t B1,−α
p,∞
+ t1−ε

‖∇v2
‖L∞t L∞‖θ‖L1

t B2/p
p,1
.

It follows that there exists a small δ > 0 such that for t ∈ [0, δ]

‖θ‖L1
t B2/p

p,1
. ‖θ0‖L p + t1−ε

‖v‖L∞t L∞‖θ
1
‖L̃1

t B1,−α
p,∞
.

Plugging this estimate into (36) we find

‖v‖L∞t B0
∞,1
. eCV (t)(

‖v0‖B0
∞,1
+‖θ0‖L p + t‖v‖L∞t B0

∞,1
+ tε‖v‖L∞t L∞‖θ

1
‖L̃1

t B1,−α
p,∞

)
.

If δ is sufficiently small then we get for t ∈ [0, δ]

‖v‖L∞t B0
∞,1
. ‖v0‖B0

∞,1
+‖θ0‖L p . (39)

This gives in turn
‖θ‖L1

t B2/p
p,1
. ‖v0‖B0

∞,1
+‖θ0‖L p . (40)

This gives in particular the uniqueness on [0, δ]. Iterating this argument yields the uniqueness in [0, T ].

Existence. We consider the system
∂tvn + vn · ∇vn +∇πn = θne2,

∂tθn + vn · ∇θn +
|D|

logα(λ+ |D|)
θn = 0,

div vn = 0,
vn |t=0 = Snv

0, θn |t=0 = Snθ
0.

(Bn)

By using the same method as [Hmidi and Keraani 2009] we can prove that this system has a unique
local smooth solution (vn, θn). The global existence of these solutions is governed by the following
criterion: we can push the construction beyond the time T if the quantity ‖∇vn‖L1

T L∞ is finite. Now from
the a priori estimates the Lipschitz norm cannot blow up in finite time and then the solution (vn, θn) is
globally defined. Once again from the a priori estimates we have for 2< p <∞:

‖vn‖L∞T B1
∞,1
+‖ωn‖L∞T L p +‖θn‖L∞T Xp ≤84(T ).

The space Xp was introduced before the statement of Theorem 1.5. It follows that up to an extraction
the sequence (vn, θn) is weakly convergent to (v, θ) belonging to L∞T B1

∞,1 × L∞T Xp, with ω ∈ L∞T L p.
For (n,m) ∈ N2 we set vn,m = vn − vm and θn,m = θn − θm then according to the estimate (39) and (40)
we get for T = δ,

‖vn,m‖L∞T B0
∞,1
+‖θn,m‖L1

T B2/p
p,1
. ‖Snv0− Smv0‖B0

∞,1
+‖Snθ0− Smθ0‖L p .

This shows that (vn, θn) is a Cauchy sequence in the Banach space L∞T B0
∞,1 × L1

T B2/p
p,1 and then it

converges strongly to (v, θ). This allows to pass to the limit in the system (Bn) and then we get that
(v, θ) is a solution of the Boussinesq system (5).
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