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SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR
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SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

We show scattering versus blow-up dichotomy below the ground state energy for the focusing nonlinear
Klein–Gordon equation, in the spirit of Kenig and Merle for the H 1 critical wave and Schrödinger
equations. Our result includes the H 1 critical case, where the threshold is given by the ground state for
the massless equation, and the 2D square-exponential case, where the mass for the ground state may be
modified, depending on the constant in the sharp Trudinger–Moser inequality. The main difficulty is the
lack of scaling invariance in both the linear and the nonlinear terms.
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1. Introduction

The problem and overview. We study global and asymptotic behavior of solutions in the energy space
for the nonlinear Klein–Gordon equation (NLKG):

Ru��uCu D f 0.u/; u W R1Cd
! R .d 2 N/; (1-1)

where f W R! R is a given function. Typical examples that we can treat are the power nonlinearities in
any dimension:

f .u/ D �jujpC2 .2? < pC 2 � 2?; � � 0/; (1-2)

where 2? and 2? respectively denote the L2 and H 1 critical powers

2? D 2C
4

d
; 2? D

(
2C

4

d�2
if d � 3;

1 if d � 2;
(1-3)
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Keywords: nonlinear Klein–Gordon equation, scattering theory, blow-up solution, ground state, Sobolev critical exponent,

Trudinger–Moser inequality.

405



406 SLIM IBRAHIM, NADER MASMOUDI AND KENJI NAKANISHI

and the square-exponential nonlinearity in two spatial dimensions:

f .u/ D �jujpe�juj
2

; .d D 2; p > 4; � � 0; � > 0/; (1-4)

which is related to the critical case for the Trudinger–Moser inequality. The equation conserves (at least
formally) the energy

E.uI t/ D E.u.t/; Pu.t// WD

Z
Rd

j Puj2Cjruj2Cjuj2

2
�f .u/ dx: (1-5)

The main goal in this paper is to give necessary and sufficient conditions for the solution u to scatter,
which means that u is asymptotic to some free solutions as t !˙1, under the condition that u has less
energy than the least energy static solution, namely the ground state. In the defocusing case, where f has
the opposite sign, one has the scattering result for all finite energy solutions, see [Brenner 1984; Ginibre
and Velo 1985a; Nakanishi 1999a; 1999b; 2001; Ibrahim et al. 2009]. In the focusing case, it turns out
that the solutions below the ground energy split into the scattering solutions and the blow-up solutions (in
both time directions in both cases). Such results have been recently established for many other equations
including the nonlinear wave equation (NLW), the nonlinear Schrödinger equation (NLS), the Yang–
Mills system and the wave maps, since Kenig-Merle’s [Kenig and Merle 2006] on NLS with the H 1

critical power (i.e. pC 2 D 2? in (1-2)); see [Akahori and Nawa 2010; Côte et al. 2008; Duyckaerts
et al. 2008; Kenig and Merle 2008; Killip et al. 2008; 2009; Krieger and Schlag 2009; Sterbenz and
Tataru 2010; Tao 2008a; 2008b; 2008c; 2009a; 2009b].

To be more precise, let us recall the result by Kenig and Merle for the critical nonlinear wave equation

Ru��u D f 0.u/; f .u/ D juj2
?

: (1-6)

Let E.0/.u/ be the conserved energy, and Q be a static solution with the least energy:

E.0/.u/ WD

Z
Rd

j Puj2Cjruj2

2
Cf .u/ dx; Q.x/ WD

"
1C

jxj2

d.d � 2/

#�.d�2/=2

: (1-7)

Kenig and Merle [2008] proved that every solution with E.0/.u/ < E.0/.Q/ scatters in the energy space
as t ! ˙1, provided that kru.0/kL2 < krQkL2 , and otherwise it blows up in finite time both for
t > 0 and for t < 0. The idea of their proof is to bring the concentration compactness argument into
the scattering problem by using space-time norms and the concept of a “critical element”, that is, the
minimal non-scattering solution.

The equations in those papers following Kenig and Merle have a common important property—the
scaling invariance. It is further shared with the solution space (either the energy space or L2, i.e. the
critical case), except for the NLS with a subcritical power [Duyckaerts et al. 2008; Akahori and Nawa
2010]. The scaling invariance brings significant difficulties for the analysis, but also a lot of algebraic or
geometric structures and simplifications. Hence it is a natural question what happens if the invariance is
broken in the linear and the nonlinear parts of the equation. This is the main technical challenge in this
paper.

The dichotomy into the global existence and the blow-up has been known long before the scattering
result of Kenig and Merle, under the name of “potential well”, defined by derivatives of the static energy
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functional. More precisely, Payne and Sattinger [1975] proved on bounded domains the dichotomy into
blow-up and global existence for solutions below the ground energy, by the sign of the functional

K1;0.u/ WD

Z
jruj2Cjuj2�uf 0.u/ dx: (1-8)

It is easy to observe that their argument applies to the whole space Rd as soon as one has the local
wellposedness in the energy space. Hence our primary task is to prove the scattering result in the region
of global existence. Then our first problem due to the inhomogeneity is that the above functional K1;0

is not suited for the scattering proof, though it is useful for the blow-up and global existence. More
specifically, we want to use the functional

Kd;�2.u/ WD

Z
2jruj2C d Œuf 0.u/� 2f .u/� dx; (1-9)

which is related to the virial identity. There is actually a one-parameter family of functionals, corre-
sponding to various scalings, each of which defines a splitting of the solutions below the ground energy
by its sign. For example, Shatah [1985] used another functional

K0;1.u/ WD

Z
d � 2

2
jruj2C

d

2
juj2� df .u/ dx; (1-10)

to prove the instability of the standing waves. Note that in his proof the instability is not given by blow-
up in the region K0;1.u/ < 0. More recently, Ohta and Todorova [2007] proved blow-up in the region
Kd;�2.u/ < 0, but they need radial symmetry for the powers p close to 2?.

The special feature of the critical wave Equation (1-6) is that those functionals are the same modulo
constant multiples, which is exactly due to the scaling invariance. For the NLS with a subcritical power
[Duyckaerts et al. 2008; Akahori and Nawa 2010], the functionals are different from each other, but the
situation is much better than NLKG, because they contain only two terms (without the L2 norm), the L2

is another conserved quantity, and the virial identity is used both for the blow-up and for the scattering,
while K1;0 is not so useful for NLS.

It turns out, however, that those algebraically different functionals for NLKG define the same splitting
below the threshold energy. This observation does not seem to be well recognized, but it is indeed crucial
for the proof of the dichotomy, since we need different functionals for the blow-up and for the scattering.

One interesting feature resulting from the breakdown of the scaling is that, for some nonlinearity,
the energy threshold is not given by the ground state of the original NLKG, but by that of a modified
equation. More precisely, for the H 1 critical power (p C 2 D 2?) in three dimensions or higher, the
threshold is given by that of the critical wave equation, or massless Klein–Gordon equation. This can be
expected because the concentration by the critical scaling makes the L2 norm vanish while preserving
other components, namely the massless energy. However the transition from the Klein–Gordon to the
wave requires some effort in the scattering proof.

We find another instance of mass modification, which is more surprising. That is in two dimensions
and for nonlinearities which grow slightly slower than the square exponential ejuj

2

, where the mass for
the threshold ground energy can change to any number between 0 and 1, depending on the constant
in the sharp (L2) Trudinger–Moser inequality. Thus we prove the existence of extremizers as well as
the ground states with mass less than or equal to the sharp constant, which also seems new for general
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nonlinearity on the whole plane. For the existence of the ground state on bounded domains, we refer to
[Figueiredo et al. 1995; Adimurthi 1990; Adimurthi and Struwe 2000]. One should be warned, however,
that the situation on the whole plane is different from that on disks, unlike the higher dimensional Sobolev
critical case, since here the concentration compactness has to be accompanied with a leak of L2 norm
to the spatial infinity. This will be discussed in [Ibrahim et al. 2011].

It is worth noting that the scattering result in the focusing exponential case is actually easier to
obtain than in the defocusing case, concerning the global Strichartz estimate. This is because the
(mass-modified) ground energy threshold implies that our solutions are in the subcritical regime for
the Trudinger–Moser inequality. Hence concentration of energy is a priori precluded, and so we do not
need the concentration radius or the localized Strichartz estimate used in [Ibrahim et al. 2009] on the
Trudinger–Moser threshold in the defocusing case. This is another striking difference from the power
case, where the analysis for the focusing case essentially contains that for the defocusing case.

Main result. To state the main results of this paper, we need to introduce some notation and assumptions
for the variational setting and the nonlinear setting of the problem.

Variational setting. To specify our class of solutions, we need the static energy

J.'/ WD
1

2

Z
Rd

Œjr'j2Cj'j2� dx�F.'/; F.'/ WD

Z
Rd

f .'/ dx; (1-11)

and its derivatives with respect to different scalings. In the critical and exponential cases, we also need
the energy with a modified mass c � 0,

J .c/.'/ D
1

2

Z
Rd

Œjr'j2C cj'j2� dx�F.'/: (1-12)

For any ˛; ˇ; � 2 R and ' W Rd ! R, we define the two-parameter rescaling family

'�˛;ˇ.x/ D e˛�'.e�ˇ�x/; (1-13)

and the differential operator L˛;ˇ acting on any functional S W H 1.Rd /! R by

L˛;ˇS.'/ D
d

d�

ˇ̌̌̌
�D0

S.'�˛;ˇ/: (1-14)

The scaling derivative of the static energy is denoted by

K˛;ˇ.'/ WD L˛;ˇJ.'/

D

Z
Rd

�
2˛C .d � 2/ˇ

2
jr'j2C

2˛C dˇ

2
j'j2�˛'f 0.'/� d f̌ .'/

�
dx;

K
.c/

˛;ˇ
.'/ WD L˛;ˇJ .c/.'/:

(1-15)

For each .˛; ˇ/ 2 R2 in the range

˛ � 0; 2˛C dˇ � 0; 2˛C .d � 2/ˇ � 0; .˛; ˇ/ 6D .0; 0/; (1-16)
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we consider the constrained minimization problem

m˛;ˇ D inffJ.'/ j ' 2 H 1.Rd /; ' 6D 0; K˛;ˇ.'/ D 0g: (1-17)

We will prove that it is attained, (after a modification of the mass in some cases), provided that .˛; ˇ/ is
in the above range (1-16). The condition on .˛; ˇ/ is also necessary in general (see Proposition A.1).

Our solutions start from the following subsets of the energy space:

KC˛;ˇ D
˚
.u0;u1/ 2 H 1.Rd /�L2.Rd / j E.u0;u1/ < m˛;ˇ; K˛;ˇ.u0/ � 0

	
;

K�˛;ˇ D
˚
.u0;u1/ 2 H 1.Rd /�L2.Rd / j E.u0;u1/ < m˛;ˇ; K˛;ˇ.u0/ < 0

	
:

(1-18)

Nonlinear setting. For the nonlinearity f , we consider the following three cases: the H 1 subcritical
(d � 1), the 2D exponential case, and the H 1 critical (d � 3) cases. First we assume that f W R! R is
C 2 and

f .0/ D f 0.0/ D f 00.0/ D 0: (1-19)

Secondly for the variational arguments, we need some monotonicity and convexity conditions. Let D

denote the linear operator defined by
Df .u/ WD uf 0.u/: (1-20)

We assume that f satisfies for some " > 0,

.D� 2?� "/f � 0; .D� 2/.D� 2?� "/f � 0; (1-21)

which implies in particular that

D2f � .2?C "/Df � .2?C "/
2f � 0: (1-22)

Finally we need regularity and growth conditions, which can differ for small juj and large juj. Fix a
cut-off function � 2 C1

0
.R/ satisfying �.r/ D 1 for jr j � 1 and �.r/ D 0 for jr j � 2, and set

�R.x/ WD �.jxj=R/; (1-23)

for arbitrary vector x and R > 0. Decompose the nonlinearity by

fS .u/ WD �1.u/f .u/; fL.u/ D f .u/�fS .u/: (1-24)

We assume that for some p1 > 2?� 2(
jf 00

S
.u/j. jujp1 .d � 4/;

jf 00
S
.u1/�f

00
S
.u2/j. ju1�u2j

p1 .d � 5/;
(1-25)

where we should choose p1 < 1 for d � 5.
For the behavior of f for large juj, we distinguish three cases:
(1) H 1 subcritical case: We assume that for some p2 < 2?� 28̂<̂

:
jf 00

L
.u/j. jujp2 .2 � d � 4/

jf 00
L
.u1/�f

00
L
.u2/j. .ju1jC ju2j/

p2�1ju1�u2j .d � 5 and p2 � 1/

jf 00
L
.u1/�f

00
L
.u2/j. ju1�u2j

p2 .d � 5 and p2 < 1/:

(1-26)
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We allow p2 D 2?�2 in some of the later arguments. There is no growth restriction for d D 1. A typical
example is

f .u/ D �1juj
q1 C � � ��k juj

qk ; (1-27)

where �j > 0 and 2? < qj < 2? for all j , which satisfies (1-26) as well as (1-19), (1-21) and (1-25).

(2) H 1 critical case. We assume
d � 3; f .u/ D juj2

?

=2?: (1-28)

In this case, we do not include lower powers in order to avoid their nontrivial effects in the variational
characterization. The absence of lower powers will only be used in Section 2. In particular the Strichartz
spaces we use in Section 4 can handle the sum of a critical power with a subcritical function.

(3) 2D exponential case: We assume that

d D 2;

9�0 � 0

�
8� > �0; limjuj!1 f 00L

.u/e��juj
2

D 0

8� < �0; limjuj!1 fL.u/e
��juj2 D1

�
and if �0 > 0 then lim

juj!1

fL.u/

DfL.u/
D 0:

(1-29)

Then we define C ?
TM by

C ?
TM.F / D sup

˚
2F.'/k'k�2

L2.R2/
j 0 6D ' 2 H 1.R2/; �0kr'k

2
L2.R2/

� 4�
	
: (1-30)

For example, all the conditions are satisfied by

f .u/ D e�0juj
2

� 1� �0juj
2
�

1
2
�2

0 juj
4 (1-31)

and by
f .u/ D jujpe�0juj

2C
 juj; (1-32)

where p > 4, �0 � 0, and max.�
; 0/� 1 (depending on �0.p � 4/). More specifically, it suffices to
have for all u 2 Œ0;1/ that

8�0u2
C 3
uC 2.p� 4/ > 0; (1-33)

since, putting g WD Df=f D 2�0u2C 
uCp, we have 2? D 4 and

.D� 2/.D� 4/f D Œ.g� 4/2CDgC 2.g� 4/�f;

DgC 2.g� 4/ D 8�0u2
C 3
uC 2.p� 4/ D 2Œg.3u=2/� 4��u2=2:

(1-34)

In addition, one can easily observe that C ?
TM.F /D1 if 
 � 0 and C ?

TM.F / <1 if 
 < 0, using Moser’s
sequence of functions for the former, and by the spherical symmetrization for the latter (compare [Moser
1971; Adachi and Tanaka 2000; Ruf 2005]).1

1Actually, the optimal (fastest) growth to have C?TM.F / <1 is given by

f .u/ � e�0juj
2

=juj2 .juj ! 1/; (1-35)

as shown in [Ibrahim et al. 2011]. The results in the present paper do not rely on this observation, though it seems to have its
own interest.
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In short, our assumption on f is that

.1-19/; .1-21/; .1-25/; and Œ.1-26/ or .1-28/ or .1-29/�: (1-36)

Then by Sobolev or Trudinger–Moser, we observe that F , L˛;ˇF and L2
˛;ˇF are continuous functionals

on H 1.Rd /.
Now we can state our main result. Denote the quadratic part of the energy (i.e., the linear energy) by

EQ.uI t/ D EQ.u.t/; Pu.t// WD

Z
Rd

j Puj2Cjruj2Cjuj2

2
dx: (1-37)

Theorem 1.1. Assume (1-36) for f . Then for all .˛; ˇ/ in (1-16), both m˛;ˇ and K˙˛;ˇ are independent
of .˛; ˇ/. Moreover (1-1) is locally wellposed in the energy space H 1 �L2, and

(1) If .u.0/; Pu.0// 2 K�˛;ˇ, then u extends neither for t ! 1 nor for t ! �1 as the unique strong
solution in H 1 �L2.

(2) If .u.0/; Pu.0// 2 KC˛;ˇ, then u scatters both in t ! ˙1 in the energy space. In other words, u is a
global solution and there are v˙ satisfying

Rv˙��v˙C v˙ D 0;

EQ.u� v˙; Pu� Pv˙/! 0 .t !˙1/:
(1-38)

The dichotomy of global existence versus blow-up in the subcritical case was essentially given in
[Payne and Sattinger 1975], using K1;0, on bounded domains. Hence our main contribution is the
scattering part, and the parameter independence of K˙˛;ˇ. The corresponding result in the defocusing
case (hence only the scattering) has been shown in [Brenner 1984; Ginibre and Velo 1985b] for the
subcritical f in three dimensions and higher, in [Nakanishi 1999b] in lower dimensions, in [Nakanishi
1999a] for the H 1 critical f , and in [Ibrahim et al. 2009] for the 2D exponential nonlinearity. The
massless H 1 critical case (the other powers cannot be controlled by the massless energy) was solved by
[Bahouri and Shatah 1998; Bahouri and Gérard 1999] for the defocusing f and by [Kenig and Merle
2008] for the focusing nonlinearity.

The parameter independence of m˛;ˇ seems to be known in the study of stability of standing waves,
but the authors could not find an available result as general as the above one. See [Ohta and Todorova
2007; Zhang 2002] for partial results. We quote a recent paper [Jeanjean and Le Coz 2009] for a pure
power nonlinearity, but unfortunately their range of .˛; ˇ/ was not correct (the condition ˛ � 0 was
overlooked; its necessity is shown by Proposition A.1).

The parameter independence of K˙˛;ˇ, on the other hand, does not seem to have got much attention
from the stability analysis, but it is essential in our proof of the scattering, since the monotonicity is
given for the blow-up and for the scattering in terms of different K˛;ˇ, respectively K1;0 and Kd;�2.

Thanks to the parameter independence, we may write

m D m˛;ˇ and K˙ D K˙˛;ˇ:

We will also show the following important properties of the energy threshold.
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Proposition 1.2. Let the assumptions be as in Theorem 1.1.

(1) In the subcritical case (1-26), the threshold energy m is attained by some Q 2H 1.Rd /, independent
of .˛; ˇ/, solving the static equation

��QCQ D f 0.Q/; (1-39)

with the least energy J.Q/ D m among the solutions in H 1.Rd /. In other words, m is attained by
the ground states.

(2) In the critical case (1-28), there is no minimizer for (1-17), but we have

m D J .0/.Q/; (1-40)

for a static solution Q 2 PH 1.Rd / of the massless equation

��Q D f 0.Q/; (1-41)

with the least massless energy J .0/. In other words, m equals the massless ground energy.

(3) In the exponential case (1-29), let

c WD min.1;C ?
TM.F //;

where C ?
TM.F / is as in (1-30). Then

m D J .c/.Q/; (1-42)

for a static solution Q 2 H 1.R2/ of the mass-modified equation

��QC cQ D f 0.Q/; (1-43)

with the least energy J .c/.Q/. Moreover we have

m � 2�=�0; (1-44)

where the equality holds if and only if C ?
TM.F / � 1, and m D m˛;ˇ is attained in (1-17) if and only

if C ?
TM.F / � 1.

Again this is well known in the subcritical case. Hence the main novelty is in the mass change in
the critical and exponential cases. Note that the ground state Q with a different mass c 2 Œ0; 1/ yields
standing wave solutions e˙it!Q.x/ with 1�!2 D c. But it is not a true obstruction for the scattering,
because its dynamical energy is above m, although m is the right threshold in the sense that for higher
energy level E > m the sets K˙ are no longer separated from each other, that is, @KC\ @K� 6D ∅.

Some notation. We recall some standard notation. F denotes the Fourier transform on Rd , and

hri WD
p

1�� D F�1
p

1Cj�j2 F: (1-45)
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Lp, H s , Bs
p;q and PBs

p;q respectively denote the Lebesgue, Sobolev, inhomogeneous and homogeneous
Besov spaces on Rd . For later use we recall the most used functionals K˛;ˇ and H˛;ˇ:

K1;0.'/ D

Z
Rd

�
jr'j2Cj'j2�'f 0.'/

�
dx;

K0;1.'/ D

Z
Rd

h
d�2

2
jr'j2C

d

2
j'j2� df .'/

i
dx; (1-46)

Kd;�2.'/ D

Z
Rd

�
2jr'j2� d.D� 2/f .'/

�
dx;

H1;0.'/ D
1

2

Z
Rd

Œ.D� 2/f .'/� dx;

H0;1.'/ D

Z
Rd

h
1

d
jr'j2

i
dx; (1-47)

Hd;�2.'/ D

Z
Rd

h
1

2
j'j2C

d

4
.D� 2�/f .'/

i
dx:

We give a table of notation on page 458.

2. Variational characterizations

In this section, we prove Proposition 1.2. In particular we prove the existence of ground states as
constrained minimizers, the .˛; ˇ/-independence of the splittings, together with various estimates for
solutions below the threshold by variational arguments, which will be used for the scattering and blowup.

Throughout this section, we assume that .˛; ˇ/ is in the range (1-16). For ease of presentation, we
often omit .˛; ˇ/ from the subscript. We associate with it the following two numbers:

N� D max.2˛C dˇ; 2˛C .d � 2/ˇ/; � D min.2˛C dˇ; 2˛C .d � 2/ˇ/; (2-1)

which come from the scaling exponents for PH 1 and L2 in (1-13). Notice that in the range (1-16), we
have N� > 0, � � 0, and that ˛ D �D 0 if and only if .d; ˛/D .2; 0/, which will often be an exceptional
case in the following arguments.

We decompose K˛;ˇ D L˛;ˇJ into the quadratic and the nonlinear parts:

K˛;ˇ D K
Q

˛;ˇ
CKN

˛;ˇ; K
Q

˛;ˇ
.'/ D L˛;ˇk'k

2
H 1=2; KN

˛;ˇ.'/ D �L˛;ˇF.'/: (2-2)

Then K
Q

˛;ˇ
.'�
˛;ˇ
/ is non-negative and non-decreasing with respect to � 2 R, and

lim
�!�1

K
Q

˛;ˇ
.'�˛;ˇ/ D 0; (2-3)

from its explicit form.

Energy landscape in various scales. First we investigate how J and its derivatives behave with respect
to the scaling '�

˛;ˇ
, in order to get m˛;ˇ as a minimax value. The results of this subsection are essentially

known, at least under more restrictions on the nonlinearity and .˛; ˇ/.
We start from the origin of the energy space.
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Lemma 2.1 (Positivity of K near 0). Assume that f satisfies (1-36), and that .˛; ˇ/ satisfies (1-16) and
.d; ˛/ 6D .2; 0/. Then for any bounded sequence 'n 2 H 1.Rd / n f0g such that K

Q

˛;ˇ
.'n/! 0, we have,

for large n,
K˛;ˇ.'n/ > 0: (2-4)

Note that if .d; ˛/ D .2; 0/ the conclusion is false, since in that case KQ.'�/ D edˇ�KQ.'/! 0 as
�! �1, but K.'�/ D edˇ�K.'/ can be negative.

Proof. First we consider the H 1 subcritical/critical cases. If d � 2 then

jDf .'/jC jf .'/j. j'jp1C2
Cj'jp2C2; (2-5)

for some 2? < p1C 2 < p2C 2 � 2?; hence, by the Gagliardo–Nirenberg inequality

k'k
q

L
q
x
. kr'kd.q=2�1/

L2
x

k'k
d�q.d�2/=2

L2
x

.2 � q � 2?/; (2-6)

we obtain
jF.'/jC jLF.'/j .

P
qDp1C2;p2C2

kr'k
d.q=2�1/

L2
x

k'k
d�q.d�2/=2

L2
x

: (2-7)

If d D 1 then we can dispose of fL by Sobolev H 1.R/ � L1.R/. Then we get

jF.'/jC jLF.'/j. kr'kp1=2C1

L2
x

k'k
p1=2C1

L2
x

C.k'kH 1/; (2-8)

for some function C determined by fL.
Hence if 2˛C .d � 2/ˇ > 0 then for any d we have

jKN .'/j D o.kr'k2
L2

x
/ D o.KQ.'//: (2-9)

Under the assumption, 2˛C .d � 2/ˇ D 0 is possible only for d D 1; then, using (2-8),

jKN .'/j D o.k'k2
L2

x
/ D o.KQ.'//: (2-10)

Finally we consider the 2D exponential case (1-29). Then we have

jDf .'/jC jf .'/j. j'jp.e�j'j2 � 1/; (2-11)

for some p > 2 and any � > �0. Since ˛ > 0, we have KQ.'n/& kr'nk
2
L2 ! 0, so it suffices to

consider ' 2 H 1 satisfying, for some q > 1 such that .4�p/q < 2,

q�kr'k2
L2 � 2�: (2-12)

Let q0 D q=.q � 1/ be the Hölder conjugate. Then by Hölder, Gagliardo–Nirenberg (2-6) and the
Trudinger–Moser inequality

kr'kL2.R2/ <
p

4� H)

Z
R2

.ej'j
2

� 1/ dx .
k'k2

L2.R2/

4� �kr'k2
L2.R2/

; (2-13)

we obtain
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jLF.'/jC jF.'/j. k'kp
Lpq0
keq�j'j2

� 1k
1=q

L1 . k'k
2=q0

L2 kr'k
p�2=q0

L2

�
k'k2

L2

4� � q�kr'k2
L2

�1=q

. k'k2
L2kr'k

p�2=q0

L2 :

(2-14)

Since p� 2=q0 > 2 by the choice of q, we get

jKN .'/j D o.kr'k2
L2/ D o.KQ.'//: (2-15)

Thus in all cases K.'/ � KQ.'/ > 0 when 0 < KQ.'/� 1. �
The following inequalities describe the graph of J , and will play the central role in the succeeding

arguments.

Lemma 2.2 (Mountain-pass structure). Assume that f satisfies (1-36) and .˛; ˇ/ satisfies (1-16). Then
for any ' 2 H 1.Rd / we have

.L˛;ˇ � N�/k'k
2
H 1 � �2jˇjmin.k'k2

L2 ; kr'k
2
L2/;

.L˛;ˇ � N�/F.'/ � ˛"F.'/;
(2-16)

where " > 0 is given in (1-21). Hence

. N��L˛;ˇ/J.'/ � ˛"F.'/Cjˇjmin.k'k2
L2 ; kr'k

2
L2/: (2-17)

Moreover we have

�.L˛;ˇ � N�/.L˛;ˇ ��/J.'/ D .L˛;ˇ � N�/.L˛;ˇ ��/F.'/ �
2˛"

d C 1
L˛;ˇF.'/ �

2˛" N�

d C 1
F.'/: (2-18)

Proof. First we observe that

.L� 2˛� .d � 2/ˇ/kr'k2
L2

x
D 0; .L� 2˛� dˇ/k'k2

L2
x
D 0; (2-19)

and for any functional S of the form S.'/ D
R

Rd s.'/ dx,

L˛;ˇS.'/ D

Z
Rd

Œ.˛DCˇd/s�.'/ dx; (2-20)

where Df .'/ D 'f 0.'/ as defined in (1-20). Using this, we obtain

.L� N�/k'k2
H 1 D �2jˇj �

(
kr'k2

L2 .ˇ � 0/;

k'k2
L2 .ˇ � 0/;

(2-21)

and also

LF.'/ D

Z
Œ˛.D� 2/C 2˛C dˇ�f .'/ dx D

Z
Œ.˛D� 2˛C 2ˇ/C 2˛C .d � 2/ˇ�f .'/ dx: (2-22)

Since

˛D� 2˛C 2ˇ D ˛.D� 2?/C
2

d
.2˛C dˇ/; (2-23)

using (1-21), we obtain
LF � . N�C˛"/F: (2-24)
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Using these computations, we have

�.L� N�/.L��/J.'/ D .L� N�/.L��/F.'/

D ˛

Z
.˛D� 2˛C 2ˇ/.D� 2/f .'/ dx

� ˛"

Z h
˛.D� 2/C

2

d
.2˛C dˇ/

i
f .'/ dx

�
2

d C 1
˛"LF.'/ �

2˛" N�

d C 1
F.'/;

(2-25)

where we used (2-23) and (1-21) in the first inequality, min.1; 2=d/ � 2=.d C 1/ in the second, and
(2-24) in the last. �

Using the inequalities above, we can replace the minimized quantity in (1-17) with a positive definite
one, while extending the minimizing region from “the mountain ridge” to “the mountain flank”. Let

H˛;ˇ WD .1�L˛;ˇ= N�/J: (2-26)

Then Lemma 2.2 implies that H˛;ˇ > 0 and

L˛;ˇH˛;ˇ D �.L��/.L� N�/J= N�C�.1�L= N�/J �
2˛"

d C 1
F C�H˛;ˇ � 0: (2-27)

We can rewrite the minimization problem (1-17) by using H :

Lemma 2.3 (Minimization of H ). Assume that f satisfies (1-36) and .˛; ˇ/ satisfies (1-16). Then m˛;ˇ

in (1-17) equals
m˛;ˇ D inffH˛;ˇ.'/ j ' 2 H 1.Rd /; ' 6D 0; K˛;ˇ.'/ � 0g: (2-28)

Proof. Let m0 denote the right side of (2-28). Then m � m0 is trivial because J D H if K D 0, so it
suffices to show m � m0. Take ' 2 H 1 such that K.'/ < 0.

If .d; ˛/ 6D .2; 0/, then from Lemma 2.1 together with (2-3), we deduce that

.d; ˛/ 6D .2; 0/; K.'/ < 0 H) 9� < 0; K.'�/ D 0; H.'�/ � H.'/; (2-29)

where the latter inequality follows from (2-27) since H.'�/ is nondecreasing in �. Hence m � m0.
If .d; ˛/ D .2; 0/, then we use another scaling �u with � 2 .0; 1/. We have KQ.�'/ D �2KQ.'/

and jKN .�'/j D o.�4/ by (2-7) or (2-14). Hence K.�'/ > 0 for small � > 0, and so we deduce

.d; ˛/ D .2; 0/; K.'/ < 0 H) 9� 2 .0; 1/; K.�'/ D 0; H.�'/ � H.'/; (2-30)

where the inequality follows from H.'/ D kr'k2
L2

x

=2 in this case. Hence m � m0. �

The ground state as common minimizer. Now we can prove the parameter independence of m˛;ˇ via
its characterization by the ground states. First we consider the H 1 subcritical case.

Lemma 2.4 (Ground state in the subcritical case). Assume that f satisfies (1-36) and (1-26), and that
.˛; ˇ/ satisfies (1-16). Then m˛;ˇ in (1-17) is positive and independent of .˛; ˇ/. Moreover m˛;ˇD J.Q/

for some Q 2 H 1.Rd / solving the static NLKG (1-39) with the minimal J.Q/ among the solutions in
H 1.Rd /.
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Proof. Let 'n 2 H 1 be a minimizing sequence for (2-28), namely K.'n/ � 0, 'n 6D 0 and H.'n/& m.
First we consider the case .d; ˛/ 6D .2; 0/. Let '�n be the Schwartz symmetrization of 'n, i.e. the radial

decreasing rearrangement. Since the symmetrization preserves the nonlinear parts and does not increase
the PH 1 part, we have '�n 6D 0, K.'�n / � K.'n/ � 0 and H.'n/ � H.'�n /! m. Then using (2-29), we
may replace it by symmetric  n 2 H 1 such that

 n 6D 0; K. n/ D 0; J. n/ D H. n/! m: (2-31)

If ˛ > 0, then (2-17) implies

. N�C˛"/J. n/ � ˛"k nk
2
H 1=2I (2-32)

hence  n is bounded in H 1.
If ˛ D 0 (and d > 2), then H. n/ D kr nk

2

L2
x

=d is bounded, and if k nkL2 !1, then by (2-7)

dˇk nk
2
L2 � 2KQ. n/ D �2KN . n/ � o.k nk

d�2?.d�2/=2

L2 /; (2-33)

but since d � 2?.d � 2/=2 < 2, this is a contradiction. Hence  n is bounded in H 1.
Since  n is bounded in H 1, after replacing with some appropriate subsequence, it converges to some

 weakly in H 1. By the radial symmetry, it also converges strongly in Lp for all 2 < p < 2?. Then in
the subcritical case (1-26), the nonlinear parts converge, and so K. / � 0 and H. / � m.

If  D 0, then K. n/ D 0 implies that KQ. n/ D �KN . n/ ! 0, and by Lemma 2.1 we have
K. n/ > 0 for large n, a contradiction. Hence  6D 0.

By (2-29), we may replace  by its rescaling, so that K. / D 0, J. / D H. / � m and  6D 0.
Then  is a minimizer and m D H. / > 0.

Since  is a minimizer for (1-17), there is a Lagrange multiplier � 2 R such that

J 0. / D �K0. /: (2-34)

Then denoting L D @� 
�
˛;ˇ
j�D0, we get

0 D K. / D LJ. / D hJ 0. / j L i D �hK0. / j L i D �L2J. /: (2-35)

By (2-18) and LJ. / D 0, we have

L2J. / � � N��J. /�
2˛" N�

d C 1
F. / < 0; (2-36)

since � > 0 or ˛ > 0.
Therefore � D 0 and  is a solution to (1-39). The minimality of J. / among the solutions is clear

from (1-17), since every solution Q in H 1 of (1-39) satisfies K.Q/ D hJ 0.Q/ j LQi D 0. This implies
that m˛;ˇ is independent of .˛; ˇ/.

In the exceptional case .d; ˛/ D .2; 0/, the above argument needs considerable modifications, due to
the scaling invariance

H.'/ D kr'k2
L2=2 D H.'�/; K.'�/ D edˇ�K.'/: (2-37)
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First, we should use (2-30) instead of (2-29) to get  n satisfying (2-31). Next, the invariance breaks the
H 1 boundedness of  n. But we are free to replace each  n by its rescaling so that k nkL2 D 1, without
losing its properties (2-31). Then

1 D k nk
2
L2 D 2F. n/! 2F. /;

which clearly implies that the limit  is nonzero. By (2-30), we may replace  by its constant multiple,
so that K. / D 0, J. / D H. / � m and  6D 0. Then  is a minimizer and m D H. / > 0.

Finally, the invariance gives us L2J. / D 0 and the Lagrange multiplier � may be nonzero. In this
case (2-34) is written

�� D .�dˇ� 1/Œ �f 0. /�: (2-38)

Since h�� j  iL2
x
> 0 and

h �f 0. / j  iL2
x
D K0;2=d . /�

Z
.D� 2/f . / dx < 0; (2-39)

we have .�dˇ� 1/ < 0. Hence there exists � > 0 such that  � solves the static NLKG (1-39), and it is
also a minimizer. �

H 1 critical case; massless threshold. In the H 1 critical case (1-28), we still have the .˛; ˇ/ indepen-
dence, but m˛;ˇ is equal to the massless energy of the massless ground state. This is a consequence of
the invariance of the massless energy with respect to the PH 1 scaling.

Lemma 2.5 (Ground state in H 1 critical case). Assume that f satisfies (1-28), and that .˛; ˇ/ satisfies
(1-16). Then m˛;ˇ in (1-17) is positive and independent of .˛; ˇ/. Moreover m˛;ˇ D J .0/.Q/ for some
Q 2 PH 1.Rd / solving the static massless NLKG (1-41), with the minimal J .0/.Q/ among the solutions
in PH 1.Rd /.

Proof. Let Hw and Kw be the massless versions of H and K, respectively. Then

m D mw
WD inf fHw.'/ j ' 2 H 1; Kw.'/ < 0g: (2-40)

Indeed, comparing this expression with (2-28), we easily get m � mw from Hw � H and Kw < K if
2˛Cdˇ > 0. If 2˛Cdˇ D 0, then we may replace K � 0 in (2-28) by K < 0, because for any nonzero
' 2 H 1 satisfying K.'/ � 0, we have by (2-18)

LK.'/ � N�K.'/�
2˛" N�

d C 1
F.'/ < 0; (2-41)

which implies that K.'�/ < 0 for all � > 0, and so the set K < 0 is dense in the minimization set of
(2-28). Hence m � mw in this case too.

To prove m � mw, let

'� D '�d=2�1;�1 (2-42)

denote the PH 1 invariant scaling. Then K.'�/ ! Kw.'/ and H.'�/ ! Hw.'/ as � ! 1. Hence if
Kw.'/ < 0 then K.'�/ < 0 for large �, and so m � mw.
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Due to the PH 1 scale invariance, Kw
˛;ˇ

for all .˛; ˇ/ are constant multiples of the same functional, and
Hw is independent of .˛; ˇ/, so is the minimization for mw. In fact we have

mw
D inffkr'k2

L2=d j ' 2 H 1; kr'k2
L2 < k'k

2?

L2? g: (2-43)

By homogeneity and the scaling ' 7! �', this is equal to

inf
06D'2H 1

1

d
kr'k2

L2

"
kr'k2

L2

k'k2
?

L2?

#d�2
2

D inf
06D'2H 1

1

d

�
kr'kL2

k'kL2?

�d

D
.C ?

S
/�d

d
; (2-44)

where C ?
S

denotes the best constant for the Sobolev inequality

k'kL2? � C ?
Skr'kL2 ; (2-45)

which is well known to be attained by the explicit Q 2 PH 1 given by

Q.x/ D

"
1C

jxj2

d.d � 2/

#�d�2
2

; (2-46)

which solves (1-41). �

Exponential case; mass-modified threshold. In the 2D exponential case (1-29), the conclusion is some-
what intermediate between the above two cases. If C ?

TM.F / � 1 then m˛;ˇ is achieved by a ground state,
but if C ?

TM.F / < 1 then we can still see m˛;ˇ as the energy of a ground state to an equation (1-43) where
the mass is changed to c D min.1;C ?

TM.F // 2 .0; 1/.

Lemma 2.6 (Ground state in the exponential case). Assume that f satisfies (1-36) and (1-29), and that
.˛; ˇ/ satisfies (1-16). Then m˛;ˇ in (1-17) is independent of .˛; ˇ/ and 0 < m˛;ˇ � 2�=�0, where the
second inequality is strict if and only if C ?

TM.F / > 1. Moreover m˛;ˇ D J .c/.Q/ with cDmin.1;C ?
TM.F //

for some Q 2 H 1.R2/ solving the modified static NLKG (1-43) with the minimal J .c/.Q/ among the
solutions in H 1.R2/.

For the proof, we prepare some notations and lemmas. For any functional G on H 1.R2/ and any
A > 0, we introduce the Trudinger–Moser ratio

C A
TM.G/ WD sup

˚
2G.'/k'k�2

L2 j 0 6D ' 2 H 1.R2/; kr'kL2 � A
	
; (2-47)

the Trudinger–Moser threshold on the PH 1 norm:

M.G/ WD supfA > 0 j C A
TM.G/ <1g; (2-48)

and the ratio on the threshold:
C ?

TM.G/ WD C
M.G/

TM .G/: (2-49)

The growth condition (1-29) together with (1-21) implies

M.L˛;ˇF / DM.F / D
p

4�=�0 (2-50)

for any .˛; ˇ/ satisfying (1-16), by the Trudinger–Moser inequality (2-13). Hence the definition of C ?
TM

just given is consistent with (1-30).
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For any functional G of the form G.'/ D
R

g.'/ dx, and for any sequence .'n/n2N 2 H 1.R2/N, we
define its concentration (at x D 0) conc G..'n/n2N/ by

conc G..'n/n2N/ WD lim
"!C0

lim
n!1

Z
jxj<"

g.'n/ dx: (2-51)

We will use the following compactness by dominated convergence.

Lemma 2.7. Let g; h W R! R be continuous functions satisfying

lim
u!˙1

jg.u/j

h.u/
D 0; lim

u!0

jg.u/j

juj2
D 0: (2-52)

Let 'n be a sequence of radial functions, weakly convergent to ' in H 1.R2/ such that fh.'n/gn is
bounded in L1.R2/. Then g.'n/! g.'/ strongly in L1.R2/.

Proof. By assumption (2-52), for any " > 0 there exist ı > 0 such that

juj > 1=.2ı/ or juj < 2ı H) jg.u/j < ".h.u/Cjuj2/: (2-53)

Then we have Z
j'nj>1=.2ı/ or j'nj<2ı

jg.'n/jdx. "
Z

h.'n/Cj'nj
2dx. ": (2-54)

The radial Sobolev inequality kr1=2'nkL1 . k'nk
1=2

L2 kr'nk
1=2

L2 implies that 'n.x/ are uniformly small
for large x. Then the weak convergence together with

'n.R1/�'n.R2/ D

Z R2

R1

@r'n.r/ dr (2-55)

implies that 'n.x/! '.x/ for x 6D 0. Then Fatou’s lemma impliesZ
j'j>1=.2ı/ or j'j<2ı

jg.'/jdx. "; (2-56)

and the dominated convergence theorem implies

kg.ı/.'n/�g.ı/.'/kL1 ! 0 .n!1/; (2-57)

where g.ı/ is defined by g.ı/.u/D .1��ı.u//�1=ı.u/g.u/ using the cut-off defined in (1-23). Combining
(2-54), (2-56) and (2-57), we deduce the desired convergence. �

Proof of Lemma 2.6. We start with the exceptional case .d; ˛/ D .2; 0/. First, let A > 0 and assume
C A

TM.F / > 1. Then there exists 0 6D ' 2H 1 such that kr'kL2 �A and F.'/ > k'k2
L2=2. For small " > 0

we have K0;1..1� "/'/ < 0, and hence m0;1 � kr.1� "/'nk
2
L2=2 < A2=2. Hence m0;1 �M.F /2=2.

Consider the case C ?
TM.F / > 1. Then by choosing A D M.F / in the above argument, we get

m0;1 < M.F /2=2. Now we take a minimizing sequence for m0;1. By the Schwartz symmetrization
and rescalings as in the proof of Lemma 2.4 for .d; ˛/ D .2; 0/, we get a sequence of radial functions
 n 2 H 1 such that

k nkL2 D 1; H0;1. n/! m0;1; K0;1. n/ D 1� 2F. n/ D 0; (2-58)
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and  n !  in H 1. Because of m0;1 < M.F /2=2, we can choose some � 2 .�0; 2�=m0;1/, so that
e�j nj

2

� 1 is bounded in L1 by the Trudinger–Moser inequality (2-13). Then we can use Lemma 2.7
with 'n WD  n, g WD f and h.u/ WD e�juj

2

� 1, which implies F. n/! F. /. Hence  attains m0;1.
After appropriate rescalings, we obtain a ground state Q, as in the proof of Lemma 2.4.

Next consider the case C ?
TM.F / � 1. Then for any  2 H 1 satisfying kr kL2 � M.F / we have

K0;1. / � 0. Hence

m0;1 D inffkr'k2
L2=2 j K0;1.'/ < 0g �M.F /2=2; (2-59)

and so m0;1 DM.F /2=2. Now we show that there exists ' 2 H 1 satisfying

kr'kL2 DM.F /; F.'/ D C ?
TM.F /=2; k'kL2 D 1: (2-60)

After rescaling this ', we obtain a ground state Q. However, due to the criticality, we have to approximate
the problem by a subcritical one, namely we first prove the existence of 'n 2 H 1 satisfying

kr'nkL2 �M.F /�
1

n
; F.'n/ D cn=2; k'nkL2 D 1 (2-61)

where cn WDC
M.F /� 1

n
TM .F /; then 0< cn%C ?

TM.F /� 1. Fix n� 1 and let 'k 2H 1.R2/ be a maximizing
sequence for cn (see (2-47)):

kr'k
kL2 �M.F /�

1

n
; F.'k/% cn=2; k'

k
kL2 D 1; (2-62)

where the L2 norm is normalized by the rescaling '�
0;1

. The Schwartz symmetrization enables us to
assume that 'k are radial functions, and convergent to some 'n weakly in H 1, by extracting a subse-
quence. Moreover, we have F.'k/! F.'n/ D cn=2, by Lemma 2.7 with g WD f and h D e�juj

2

� 1

for some � 2 .�0; 4�=.M.F /� 1=n/2/.
Thus 'n is a maximizer, which implies that k'nkL2 D 1 and

���'n D f
0.'n/� cn'n; (2-63)

for a Lagrange multiplier �.n/ 2 R. Multiplying it with 'n, we obtain

�kr'nk
2
L2 D

Z
Df .'n/ dx� cnk'nk

2
L2 D

Z
.D� 2/f .'n/ dx > 0; (2-64)

since .D� 2/f > 0. Hence � > 0, and so Qn.x/ WD 'n.�
1=2x/ 2 H 1 satisfies

krQnkL2 �M.F /�
1

n
; ��QnC cnQn D f

0.Qn/: (2-65)

Now consider the limit n!1. The equation for Qn implies that 0 D K
.cn/
0;1

.Qn/ D K
.cn/
1;�1

.Qn/, so

cnkQnk
2
L2 D 2F.Qn/; krQnk

2
L2 D 2

Z
.D� 2/f .Qn/ dx � 4F.Qn/; (2-66)

where the last inequality follows from .D � 4/f � 0. Since krQnkL2 is bounded and cn is positive
non-decreasing, we deduce that kQnkL2 and

R
Df .Qn/ dx are bounded as n ! 1. Hence we may
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extract a subsequence so that Qn converges to some Q weakly in H 1, and then apply Lemma 2.7 with
'n WD Qn, g D f 0 and h WD Df . Then f 0.Qn/! f 0.Q/ strongly in L1, and so Q solves

��QC cQ D f 0.Q/; c WD C ?
TM.F /: (2-67)

This implies that

K
.c/
0;1
.Q/ D hJ .c/

0
.Q/ j L0;1Qi D 0; (2-68)

namely 2F.Q/D ckQk2
L2 . Hence Q is a maximizer for C

M.F /
TM .F /with a non-zero Lagrange multiplier,

which implies that krQkL2 DM.F /. Thus J .c/.Q/DM.F /2=2 is unique for any solution Q of (2-67).
Next we consider m˛;ˇ with ˛ > 0. If m0;1 < M.F /2=2, then there exists a ground state Q, which

satisfies K˛;ˇ.Q/ D 0 for all .˛; ˇ/. Hence m˛;ˇ � J.Q/ D m0;1.
Otherwise, m0;1 DM.F /2=2DM.LF /2=2. For any A >M.LF /, there exists a sequence 'n 2H 1

satisfying

kr'nkL2 � A; k'nkL2 ! 0; LF.'n/!1: (2-69)

Since K.'/ D ˛kr'k2
L2 C .˛Cˇ/k'k

2
L2 �LF.'/ and ˛ > 0, we can replace each 'n with 'n.x=�n/

with some �n !C0, so that we have after the rescaling

kr'nkL2 � A; K.'n/ D 0; k'nkL2 ! 0: (2-70)

Hence

m˛;ˇ � lim
n!1

J.'n/ � A2=2;

and so m˛;ˇ �M.LF /2=2 D m0;1. Thus in both cases we have m˛;ˇ � m0;1 �M.F /2=2.
Now suppose that m˛;ˇ < m0;1 �M.F /2=2. As in the proof of Lemma 2.4 for .d; ˛/ 6D .2; 0/, we

may find a sequence of radial 'n 2 H 1 such that

K.'n/ D 0; H.'n/& m: (2-71)

Therefore there exists ' such that 'n ! ' weakly in H 1, and pointwise for x 6D 0.
Let  n D 'n�'. Then  n ! 0 weakly in H 1, and so

lim
n!1

KQ.'n/ D lim
n!1

KQ. n/CKQ.'/ D lim
n!1

LF.'n/ D conc LF..'n/n/CLF.'/; (2-72)

where the second identity is because K.'n/D 0, and the last one follows from 'n.x/! '.x/ for x 6D 0

and the radial Sobolev inequality kr1=2'nkL1 . k'nkH 1 . Since H.'/ � m by Fatou’s lemma, we have
K.'/ � 0, otherwise there would be some � < 0 such that K.'�/ D 0 and H.'�/ < H.'/ � m, a
contradiction. Thus KQ.'/ � LF.'/, and so from (2-72), we deduce

lim
n!1

KQ. n/ � conc LF..'n/n/: (2-73)

Since LF.'n/ is bounded by (2-72), Lemma 2.7 with hn WD .˛DCˇd/f implies that conc F..'n/n/D

0. Hence by (2-73) and .L� N�/F � 0, we get

lim
n!1

KQ. n/ � conc.L� N�/F..'n/n/ � lim
n!1

.L� N�/F.'n/: (2-74)
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On the other hand we have

m D lim
n!1

H.'n/ D lim
n!1

H Q. n/CH Q.'/C lim
n!1

.L� N�/F.'n/= N�; (2-75)

where H Q. / WD .1�L= N�/k k2
H 1=2 denotes the quadratic part of H . Combining the above two, and

discarding H Q.'/ � 0, we obtain

lim
n!1

k nk
2
H 1=2 � m < M.F /2=2 D 2�=�0: (2-76)

Hence applying Lemma 2.7 to 'n with h.u/ WD e�juj
2

�1 for some � 2 .�0; 2�=m/, we get LF.'n/!

LF.'/, and so ' is a minimizer for m˛;ˇ. Indeed, we have

e�j'nj
2

� 1 � eC�;�0 j'j
2

� 1C e�
0j nj

2

� 1 (2-77)

for some �0 2 .�; 2�=m/ and constant C�;�0 > 0. Hence h.'n/ is uniformly bounded in L1. Recall that
for a fixed ' 2 H 1, eC�;�0 j'j

2

� 1 2 L1.
Then as in the proof of Lemma 2.4, we obtain a ground state Q with J.Q/ D m˛;ˇ < m0;1, which is

a contradiction since K0;1.Q/ D 0. Hence m˛;ˇ D m0;1 for all .˛; ˇ/ in the range (1-16). �
Remark 2.8. In the above argument for .˛; ˇ/D .0; 1/ in the case C ?

TM.F / � 1, we used a priori bounds
on the ground state to get the compactness. For general sequences, we can have concentrating loss of
compactness on the kinetic threshold kr'kL2 DM.F / if and only if f satisfies

lim
juj!1

e��0juj
2

juj2f .u/ 2 .0;1/: (2-78)

Lemma 2.6 implies that the concentration requires more energy than the (mass-modified) ground state.
Similar phenomena have been observed in slightly different settings (either on a bounded domain or on the
H 1.R2/ threshold, where e�0juj

2

appears as the critical growth instead of e�0juj
2

=juj2, see [Carleson and
Chang 1986; Flucher 1992; Ruf 2005]). More details about this issue, including the above concentration
compactness, will be addressed in a forthcoming paper.

Parameter independence of the splitting. The .˛; ˇ/-independence of K˙˛;ˇ follows from that of m˛;ˇ

and contractivity of KC
˛;ˇ

.

Lemma 2.9 (Parameter independence of K˙). Assume that f satisfies (1-36), and that .˛; ˇ/ satisfies
(1-16). Then K˙˛;ˇ in (1-18) are independent of .˛; ˇ/.

Proof. Since m˛;ˇ is independent of .˛; ˇ/, we only need to see that the sign of K is independent under
the threshold m. Also, we may restrict to the first component. For any ı � 0, we define K˙ı˛;ˇ � H 1 by

KCı˛;ˇ D f' 2 H 1
j J.'/ < m� ı; K˛;ˇ.'/ � 0g;

K�ı˛;ˇ D f' 2 H 1
j J.'/ < m� ı; K˛;ˇ.'/ < 0g:

(2-79)

Then .u0;u1/ 2 K˙˛;ˇ if and only if u0 2 K˙ı˛;ˇ with ı D ku1k
2
L2=2. In addition, the disjoint union

KCı˛;ˇ [K�ı˛;ˇ is already independent of ˛ and ˇ. Hence it suffices to show the independence of KCı˛;ˇ.
First we consider the interior exponents satisfying 2˛C dˇ > 0 and 2˛C .d � 2/ˇ > 0. Then KCı˛;ˇ

is contracted to f0g by the rescaling ' 7! '� with 0 � �! �1. This is due to the following facts:
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(1) K.'�/ > 0 is preserved as long as J.'�/ < m, by the definition of m.

(2) J.'�/ does not increase as � decreases, as long as LJ.'�/ D K.'�/ > 0.

(3) '� ! 0 in H 1 as �! �1, since 2˛C dˇ > 0 and 2˛C .d � 2/ˇ > 0.

In particular, J cannot be negative on KC˛;ˇ , and so KCı˛;ˇ D ∅ for ı � m. For 0 � ı < m, both K˙ı˛;ˇ
are open in H 1. It follows for K�ı from the definition, and for KCı from the facts that J.'/ < m and
K.'/ D 0 imply ' D 0, and that a neighborhood of 0 is contained in KCı, which follows from (2-7),
(2-8) or (2-14). Then the above argument of the scaling contraction shows that KCı˛;ˇ is connected. Hence
each KCı˛;ˇ cannot be separated by KCı˛0;ˇ0 and K�ı˛0;ˇ0 with any other .˛0; ˇ0/ in the interior range. Since
KCı˛;ˇ \KCı˛0;ˇ0 contains 0, we conclude that KCı˛;ˇ D KCı˛0;ˇ0 .

Finally for .˛; ˇ/ on the boundary 2˛C dˇ D 0 or 2˛C .d � 2/ˇ D 0, take a sequence .˛n; ˇn/ in
the interior converging to .˛; ˇ/. Then K˛n;ˇn

! K˛;ˇ, and so

K˙ı˛;ˇ �
[
n

K˙ı˛n;ˇn
: (2-80)

Since the right side is independent of the parameter, so is the left. �

Variational estimates. We conclude this section with a few estimates on the energy-type functionals,
which will be important in the proof of the blow-up and the scattering. We start with the easy observation
that the free energy and the nonlinear energy are equivalent in the set KC.

Lemma 2.10 (Free energy equivalence in KC). Assume that f satisfies (1-36). Then for any .u0;u1/ 2

H 1.Rd /�L2.Rd / we have

K1;0.u0/ � 0 H)

(
J.u0/ � ku0k

2

H 1
x

=2 � .1C d=2/J.u0/;

E.u0;u1/ � EQ.u0;u1/ � .1C d=2/E.u0;u1/:
(2-81)

Proof. Since .D� 2� c/f .u/ � 0 with c WD 4=d > 0 by (1-21), we have for any .u0;u1/ 2 H 1�L2,

K1;0.u0/ D ku0k
2

H 1
x
� .2C c/F.u0/�

Z
.D� 2� c/f .u0/dx

� .2C c/J.u0/� cku0k
2

H 1
x
=2 D .2C c/E.u0;u1/� cEQ.u0;u1/�k Puk

2

L2
x
;

(2-82)

and hence we obtain the desired estimate. �

In the 2D exponential case, we have a sharper bound on the derivatives, which implies that KC is in
the subcritical regime for the Trudinger–Moser inequality.

Lemma 2.11 (Subcritical bound in KC in the 2D exponential case). Assume that f satisfies (1-36) and
(1-29). Then for any .u0;u1/ 2 KC we have

kru0k
2
L2 Cku1k

2
L2 < 2m �M.F /2 D 4�=�0: (2-83)

Proof. Since K0;1.u0/ � 0, we have

kru0k
2
L2 Cku1k

2
L2 � kru0k

2
L2 Cku1k

2
L2 CK0;1.u0/ D 2E.u0;u1/ < 2m: �
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The next estimate gives a lower bound on jKj under the threshold m, which will be important both
for the blow-up and for the scattering.

Lemma 2.12 (Uniform bounds on K). Assume that f satisfies (1-21), and that .˛; ˇ/ satisfies (1-16)
and .d; ˛/ 6D .2; 0/. Then there exists ı > 0 determined by .˛; ˇ/, d and " in (1-21), such that for any
' 2 H 1 with J.'/ < m we have

K˛;ˇ.'/ � min. N�.m�J.'//; ıK
Q

˛;ˇ
.'// or K˛;ˇ.'/ � � N�.m�J.'//: (2-84)

Note that if .d; ˛/ D .2; 0/ then the conclusion is false, since in that case

K.'�˛;ˇ/ D edˇ�K.'/! 0 as �! �1; (2-85)

while J.'�/ is away from m, since it is decreasing if K.'/ > 0 and J.'�/% H.'/ < m if K.'/ < 0.

Proof. We may assume ' 6D 0. Let j .�/ D J.'�/ and n.�/ D F.'�/, where '�
˛;ˇ
D '� is the rescaling

(1-13). Then j .0/ D J.'/ and j 0.0/ D K.'/, and (2-18) implies

j 00 � . N�C�/j 0� N��j �
2˛"

d C 1
n0: (2-86)

First we consider the case K.'/ < 0. By Lemma 2.1 together with (2-3), there exists �0 < 0 such
that j 0.�/ < 0 for �0 < � � 0 and j 0.�0/ D 0. For �0 � � � 0 we have from (2-16),

. N�C�/j 0� N��j � N�j 0: (2-87)

Inserting this in (2-86) and integrating it, we getZ 0

�0

j 00.�/ d� � N�

Z 0

�0

j 0.�/ d�; (2-88)

and hence
K.'/ D j 0.0/ � N�.j .0/� j .�0//: (2-89)

Since K.'�0/ D 0 and '�0 6D 0, we have j .�0/ D J.'�0/ � m. Thus we obtain

K.'/ � � N�.m�J.'//: (2-90)

Next we consider the case K.'/ > 0. If

.2 N�C�/K.'/ � N��J.'/C
2˛"

d C 1
LF.'/; (2-91)

then applying (2-81) to the first term on the right-hand side, and K D KQ�LF to the second one, we
get �

2 N�C�C
2˛"

d C 1

�
K.'/ �

N��

2C d
k'k2

H 1 C
2˛"

d C 1
KQ.'/; (2-92)

and so K.'/ � ıKQ.'/ for some ı > 0, since � > 0 or ˛ > 0. If (2-91) fails, then

.2 N�C�/j 0 < N��j C
2˛"

d C 1
n0; (2-93)
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at � D 0, and so from (2-86),
j 00 < � N�j 0: (2-94)

Now let � increase. As long as (2-93) holds and j 0 > 0, we have j 00 < 0 and so j 0 decreases and j

increases. Also by (2-18) and (2-16) we have

n00 � . N�C�/n0� N��n � N�n0 � N�2n > 0: (2-95)

Hence (2-93) is preserved until j 0 reaches 0. It does reach at finite �0 > 0, because the right-hand side
of (2-86) is negative and decreasing as long as j 0 > 0. Now integrating (2-94) we obtain

K.'/ D j 0.0/ � N�.j .�0/� j .0// � N�.m�J.'//; (2-96)

where we used that J.'�0/ � m which follows from K.'�0/ D 0 and '�0 6D 0. �

3. Blow-up

Here we prove the blow-up part of Theorem 1.1. The idea is essentially due to Payne and Sattinger
[1975], but we give a full proof for convenience. We will use that K� is stable under the flow.

Assume for a contradiction that a solution u exists for all t > 0. (The proof for t < 0 is the same.)
Let

y.t/ WD ku.t;x/k2
L2

x.Rd /
: (3-1)

Multiplying the equation with u, and using (2-82), we get

Ry D 2k Puk2
L2 � 2K1;0.u/ � .4C c/k Puk2

L2 � 2.2C c/E.u/C ckuk2
H 1 ; (3-2)

for some c > 0. Sine u.t/ 2 K�, Lemma 2.12 implies that there is some positive ı � �K1;0.u.t//. Thus
for all t > 0 we have

Ry.t/ � 2ı > 0; (3-3)

and so y.t/ D ku.t/k2
L2 !1 as t !1. Going back to (3-2), and using Schwarz, we deduce that for

large t

Ry � .4C c/k Puk2
L2 >

4C c

4

Py2

y
; (3-4)

therefore

.y�c=4/t t D �
c

4
y�c=4�2

�
y Ry �

4C c

4
Py2

�
< 0; (3-5)

which contradicts that y !1.

4. Global space-time norm

In this section we introduce Strichartz-type estimates and a perturbation lemma for global space-time
bounds of the solution.

The inhomogeneity of the Klein–Gordon equation makes the exponents a bit more complicated than
the case of wave or Schrödinger equation. In the H 1 critical case, we get another complication in higher
dimensions, due to the fact that we have to estimate the difference of solutions in some Sobolev (or
Besov) spaces with positive regularity but the nonlinearity is not twice differentiable.2 This is not a

2The problem is not in the local regularity of the nonlinearity (at u D 0), but rather in the global Hölder continuity for fL.
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problem in the subcritical case, where we are allowed to lose small regularity, so that we can estimate
the difference in some Lp spaces and then interpolate. This technical issue was solved in the pure
critical case in [Nakanishi 1999a] by using space-time norms with exponents away from the admissible
region for the standard Strichartz estimate, which was later called “exotic Strichartz estimates” in the
Schrödinger case [Tao and Visan 2005].

Here we have a further complication by the presence of lower powers, for which we need the exotic
Strichartz for the Klein–Gordon equation. Note that it is not a big trouble in the Schrödinger case (see
[Tao et al. 2007]), because the same Strichartz estimate is used both for higher and lower powers. In
the Klein–Gordon case, in contrast, we have to use different Strichartz norms, with better regularity for
higher powers and with better decay for lower powers. It is easy in the standard Strichartz estimate,
where we can freely mix different norms by the duality argument, but this does not work for the exotic
Strichartz estimate, which uses exponents away from the duality. Hence we are forced to use a common
exponent for different powers, which makes our estimates much more involved. In particular, when we
have both the H 1 critical and the L2 critical powers, we need three steps to close our estimates.

Reduction to a first-order equation. To simplify the notation, we rewrite NLKG as a first-order equation.
To any real-valued function u.t;x/, we associate a complex-valued3 function Eu.t;x/ thus:

Eu D hriu� i Pu; u D hri�1 Re Eu: (4-1)

This relation u$ Eu will be assumed for any space-time function u throughout this paper. The free and
nonlinear Klein–Gordon equations are given by

.�C 1/u D 0
�
equivalently; .i@t Chri/Eu D 0

�
;

.�C 1/u D f 0.u/
�
equivalently; .i@t Chri/Eu D f

0.hri�1 Re Eu/
�
;

(4-2)

and the free energy is given by EQ.u/ D kEuk2
L2

x

=2. We set

zE.'/ WD k'k2
L2

x
=2�F.hri�1 Re'/; zK˛;ˇ.'/ WD K

Q

˛;ˇ
.hri�1'/CKN

˛;ˇ.hri
�1 Re'/: (4-3)

Remark that
zE.Eu.t// D E.uI t/; zK.Eu.t// � K.u.t//; (4-4)

where the inequality is an equality if and only if Pu.t/ D 0. The invariant set KC D KC˛;ˇ for Eu is given
by

zKC WD f' 2 L2.Rd / j zE.'/ < m; K.Rehri�1'/ � 0g

D f' 2 L2.Rd / j zE.'/ < m; zK.'/ � 0g:
(4-5)

The second identity is proved as follows. Let ' 2 L2.Rd / satisfy zE.'/ < m and K.Rehri�1'/ < 0.
Let  1 D Rehri�1' and  2 D Imhri�1'. Then Lemma 2.12 implies that

K. 1/ � � N�.m�J. 1// < � N�k 2k
2

H 1
x
=2 � �KQ. 2/; (4-6)

3We do not need the complex structure; we use i purely for notational convenience, and could use vector notation instead,
especially if u is originally complex-valued. We chose the complex form rather than the vector one to avoid adding a subscript,
for this notation will be applied mostly to sequences.
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so zK.'/DK. 1/CKQ. 2/ < 0. Hence under the condition zE.'/ <m, the signs of K. 1/ and zK.'/
are the same, which proves (4-5).

Strichartz-type estimates and exponents. Here we recall the Strichartz estimate for the free Klein–
Gordon equation, introducing some notation for the space-time norms and special exponents.

With any triplet .b; c; �/ 2 Œ0; 1�2�R and any q 2 .0;1�, we associate the following Banach function
spaces on I �Rd for any interval I :

Œ.b; c; �/�q.I/ WD L
1=b
t .I IB�1=c;q.R

d //;

Œ.b; c; �/�0.I/ WD L
1=b
t .I IL1=c.Rd //;

Œ.b; c; �/��q.I/ WD L
1=b
t .I I PB�1=c;q.R

d //;

(4-7)

where Bs
p;q and PBs

p;q respectively denote the inhomogeneous and homogeneous Besov spaces, and the
following characteristic numbers with a parameter � 2 Œ0; 1�:

reg� .b; c; �/ WD � � .1� 2�=d/b� d.c � 1
2
/;

str� .b; c; �/ WD 2bC .d � 1C �/.c � 1
2
/;

dec� .b; c; �/ WD bC .d � 1C �/.c � 1
2
/:

(4-8)

The cases � D 0; 1 correspond respectively to the wave and the Klein–Gordon equations. reg� indicates
the regularity of the space, while str� and dec� indicate the space-time decay, corresponding respectively
to the Strichartz and the Lp �Lq decay estimates. We denote the regularity change and the duality in
H s�1=2 (here �1

2
takes account of one regularity gain in the wave equation) respectively by

.b; c; �/s WD .b; c; s/; .b; c; �/�.s/ WD .1� b; 1� c;�� C 2s� 1/: (4-9)

Given a real number s, we say that Z D .Z1;Z2;Z3/ is Strichartz s-admissible if for some � 2 Œ0; 1�
we have

0 � Z1 �
1
2
; 0 � Z2 <

1
2
; reg� .Z/ � s; str� .Z/ � 0: (4-10)

We avoid the endpoint Z2 D
1
2

to mix different � ’s. We now state the Strichartz estimates:

Lemma 4.1 (see [Brenner 1984; Ginibre and Velo 1985a; Machihara et al. 2002]). For any s 2 R, let Z

and T be s-admissible. Then for any space-time function u.t;x/, any interval I � R, and any t0 2 I ,
we have

kukŒZ �2.I /. ku.t0/kH s CkPu.t0/kH s�1 CkRu��uCukŒT �.s/�2.I /; (4-11)

where the implicit constant does not depend on I or t0.

The “exotic Strichartz estimate” is given for the Klein–Gordon equation by

Lemma 4.2. Let Z;T 2 R3 satisfy for some � 2 Œ0; 1�

reg� .Z/ � reg� .T /C 2; str� .Z/ � str� .T /� 2; 0 < Z1;T1 < 1;

dec� .Z/ < 0 < dec� .T /� 1; 0 <
1

2
�Z2;T2�

1

2
<

1

d�1C�
:

(4-12)
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Then, for any interval I � R, t0 2 I , and u.t;x/ satisfying u.t0/ D Pu.t0/ D 0,

kukŒZ �2.I /. k Ru��uCukŒT �2.I /: (4-13)

Proof. The wave case � D 0 was essentially proved in [Nakanishi 1999a, Lemma 7.4], where the
borderline case str0.Z/ D str0.T / � 2 was excluded for the real interpolation to improve the Besov
exponent 2. Here we discard that improvement, restoring the borderline case, which is needed for the
lower critical power p1 D 4=d .

The proof is rather immediate from the standard Strichartz estimate and the Lp decay estimate. Indeed,
if str� .Z/ D 0 D str� .T / � 2 and reg� .Z/ D reg� .T / C 2, then the above estimate is nothing but
Strichartz. If moreover Z2 C T2 D 1, then the estimate directly follows from the Lp decay and the
Hardy–Littlewood–Sobolev inequality



Z t

t0

hri
�1e˙i.t�s/hrih.s/ ds






ŒZ �2.I /

.




Z t

t0

jt � sj�2Z1kh.s/k
B

T3
1=T2;2

ds






L1=T1 .I /

. khkŒT �2.I /: (4-14)

This estimate can be translated in the time and the regularity exponents as

Z 7! Z0 D ZC .b; 0; s/; T 7! T 0 D T C .b; 0; s/ (4-15)

for any s 2 R and b 2 .�1=2; 1=2/, as long as 0 < Z0
1
;T 0

1
< 1. By the complex interpolation for those

estimates and the standard Strichartz estimate, we obtain the desired estimate in the case str� .Z/ D
str� .T /� 2 and reg� .Z/ D reg� .T /C 2. It is extended to the remaining cases (with inequality in these
relations) by the Sobolev embedding. �

The following interpolation is convenient for switching from some exponents to others:

Lemma 4.3. Let Z;A;B;C 2 Œ0; 1��R and � 2 Œ0; 1�. Assume that A1 < Z1 < B1 and that either

(1) min.str� .A/; str� .B/; str� .C // � str� .Z/ and min.reg� .A/; reg� .B// > reg� .Z/, or

(2) min.str� .A/; str� .B// > str� .Z/ and min.reg� .A/; reg� .B/; reg� .C // � reg� .Z/.

Then there exist ˛; ˇ; 
 2 .0; 1/ such that ˛ C ˇ C 
 D 1 and that, for all q 2 .0;1�, we have the
interpolation inequality

kukŒZ �q . kuk
˛
ŒA�1
kuk

ˇ

ŒB�1
kuk




ŒC �1
: (4-16)

Proof. Since A1 < Z1 < B1, for any 0 < �2 � 1 there exists �1 2 .0; 1/ such that

.1� �2/..1� �1/A1C �1B1/C �2C1 D Z1: (4-17)

Let zZ WD .1� �2/..1� �1/AC �1B/C �2C . Then from the assumption we have

str� . zZ/ � str� .Z/; reg� . zZ/ � reg� .Z/; (4-18)

which imply zZ2 �Z2 and zZ3�d zZ2 �Z3�dZ2, and so we have the Sobolev embedding Œ zZ�q � ŒZ�q .
In the first case, we have reg� . zZ/ > reg� .Z/ and so�

Œ ŒA�1; ŒB�1��1
; ŒC �1

�
�2
D Œ zZ�1 � ŒZ�q: (4-19)
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The desired inequality follows from that for the complex interpolation.
It remains to prove the result under condition (2). By the real interpolation in the Besov space in x

and Hölder in t , we have for all 0 < ı � 1,

kukŒZ �q . kuk
1=2

ŒZC�1
kuk

1=2

ŒZ��1
; Z˙ WD Z˙ ı.1; 0; 1� 2�=d/: (4-20)

Let 0 < "� 1 satisfy ".B1�A1/.1� �2/ D ı and

zZ˙ WD .1� �2/..1� �1� "/AC .�1˙ "/B/C �2C: (4-21)

Then from the assumption and the definition of Z˙ and ", we have

str� . zZ˙/ > str� .Z˙/; reg� . zZ˙/ � reg� .Z˙/ D reg� .Z/; (4-22)

when " > 0 is small. Hence we have the Sobolev embedding�
Œ ŒA�1; ŒB�1��1˙"; ŒC �1

�
�2
D Œ zZ˙�1 � ŒZ

˙�1; (4-23)

where the left-hand side is a nested complex interpolation space. Now the conclusion follows from the
interpolation inequality. �

Global perturbation of Strichartz norms. Now we fix a few particular exponents. Define H;W;K by

H WD
�
0;

1

2
; 1
�
; W WD

�
d�1

2.dC1/
;W1;

1

2

�
; K WD

�
d

2.dC2/
;K1;

1

2

�
: (4-24)

Then ŒH �2 D L1t H 1
x is the energy space, while W and K are 1-admissible, diagonal and boundary

exponents respectively for the wave (� D 0) and the Klein–Gordon (� D 1) equations:

1 D reg0.H / D reg1.H / D reg0.W / D reg1.K/;

0 D str0.H / D str1.H / D str0.W / D str1.K/:
(4-25)

Let eq.u/ denote the left-hand side of NLKG:

eq.u/ WD ut t ��uCu�f 0.u/: (4-26)

Recall the convention u$ Eu (page 427) to switch to first-order equations. We will treat the H 1 critical
case (1-28) together with the subcritical case. Since fS .u/ is for small juj and fL.u/ for large juj, we
may freely lower p1 in (1-25) and raise p2 in (1-26). Hence we assume (1-25) with

2?� 2 D
4

d
< p1 <

4.d C 1/

.d C 2/.d � 1/
; (4-27)

and we assume either d D 1, (1-29), or (1-26), with

4.d C 1/

d2� d � 1
< p2 � 2?� 2: (4-28)

Before the main perturbation lemma, we see that ŒH �2 \ ŒW �2 \ ŒK�2 is enough to bound the full
Strichartz norms of the solutions.
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Lemma 4.4. Assume that f satisfies (1-36). Let Z, T and U be 1-admissible. In the 2D exponential case
(1-29), let‚ 2 .0; 1/. Then there exist a constant C1 > 0 and a continuous function C2 W .0;1/! .0;1/

such that for any interval I , any t0 2 I and any w.t;x/, we have

kwkŒZ �2.I / � C1k Ew.t0/kL2
x
CC1keq.w/k.ŒT �.1/�2CŒU�.1/�2/.I /CC2.kwk.ŒH �2\ŒW �2\ŒK �2/.I //; (4-29)

provided, in the exponential case, that

sup
t2I

�0krwk
2

L2
x
� 4�‚: (4-30)

We remark that (4-30) is needed only in the exponential case.

Proof. We may assume ‚ > 1
2

without losing any generality. We introduce the new exponents M ] and
X by

M ]
WD

2

p2.d C 1/
.1; 1; 0/; X WD .�; 0; � � �2/; (4-31)

with some � 2 .0; 1=10/ satisfying ‚ < .1� �/2, where M ] is used only if d � 2 and X only in the
exponential case. In either case we have

0 > str0.M ]/; 0 > str0.X /; 1 � reg0.M ]/; 1 > reg0.X /; 0 < M
]
1
;X1 < W1: (4-32)

Hence by Lemma 4.3(1), we have

kwkŒM ]�2.I /
CkwkŒX �2.I /. kwk.ŒH �2\ŒW �2\ŒK �2/.I /: (4-33)

The Strichartz estimate gives

kwkŒZ �2.I /

. k Ew.t0/kL2
x
Ckeq.w/k.ŒT �.1/�2CŒU�.1/�2/.I /Ckf

0.w/k.ŒK�.1/�2CŒW �.1/�2CL1
t L2

x/.I /
: (4-34)

By the standard nonlinear estimate we have

kf 0S .w/kŒK�.1/�2.I /. kwkŒK �2.I /kwk
4=d

ŒK �0.I /
; (4-35)

and in the subcritical/critical cases

kf 0L.w/kŒW �.1/�2.I /. kwkŒW �2.I /kwk
p2

ŒM ]�0.I /
: (4-36)

In the exponential case, there are � > �0 and � > 0 such that

sup
t2I

�kwk2
H 1
�
� 4�‚0; (4-37)

where ‚0 WD 1C‚

2
< 1 and

k'kH 1
�
WD kr'k2

L2
x
C�k'k2

L2
x
: (4-38)

Then we have

kf 0L.w/kL2
x
. kjwj.e�jwj2 � 1/kL2

x
. kwkL1x ke

�jwj2
� 1k

1=2

L1
x

ke�jwj
2

k
1=2

L1x
; (4-39)
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where the second factor is bounded by Trudinger–Moser:

ke�jwj
2

� 1kL1
x
. kwk2

L2=.1�‚
0/; (4-40)

and the third factor is bounded by the following log-interpolation inequality [Ibrahim et al. 2007, Theorem
1.3]: for any ˛ 2 .0; 1/, � > 1=.2�˛/ and � > 0, there is C > 0 such that

k'k2
L1.R2/

� �k'k2
H 1
�.R2/

�
C C log.1Ck'kC˛.R2/=k'kH 1

�.R2//
�
; (4-41)

for any ' 2H 1\C ˛.R2/, where C ˛ DB˛1;1 denotes the Hölder space. Plugging this with ˛ WD ���2

into the exponential, we get

ke�jwj
2

kL1x .
�
1CkwkC˛x =kwkH 1

�

���kwk2
H 1
� .

�
1C �kwk2C˛x

=‚0
�2��‚0

; (4-42)

where � > 0 is chosen so that

1 < 2��˛; .2��‚0C 1/� D 1: (4-43)

Since fL vanishes for small juj, we may assume kwkC˛x & kwkL1x & 1. Hence

ke�jwj
2

kL1x . kwk
4��‚0

C˛x
D kwk

2.1=��1/

C˛x
; (4-44)

and plugging this into (4-39), we get

kf 0L.w/kL1
t L2

x
. kwk

L
1=�
t L1x

kwkL1t L2
x
kwk

1=��1

L
1=�
t C˛x

. kwk1=�
ŒX �2
kwkŒH �2 ; (4-45)

which concludes the proof. �
Lemma 4.5. Assume that f satisfies (1-36). Let Z, T , U and V be 1-admissible and reg0.V / D 1.
In the exponential case (1-29), let ‚ 2 .0; 1/. Then there are continuous functions "0;C0 W .0;1/

2 !

.0;1/ such that the following holds: Let I � R be an interval, t0 2 I and Eu; Ew 2 C.I IL2.Rd //. Let
E
0 D eihri.t�t0/.Eu� Ew/.t0/ and assume that for some A;B > 0 we have

kEukL1t .I IL
2
x/
Ck EwkL1t .I IL

2
x/
� A; (4-46)

kwkŒW �2.I /\ŒK �2.I / � B; (4-47)

k.eq.u/; eq.w//k.ŒT �.1/�2CŒU�.1/�2/.I /Ck
0kŒV �1.I / � "0.A;B/; (4-48)

and in the exponential case,

sup
t2I

�0 max.kruk2
L2

x
; krwk2

L2
x
/ � 4�‚: (4-49)

Then we have
kukŒZ �2.I / � C0.A;B/: (4-50)

Remark 4.6. (4-49) is needed only in the exponential case. The lemma remains valid in the lower critical
case p1 D 4=d D 2?� 2, if we assume in addition that

k
0kŒK �0.I / � "0.A;B/: (4-51)

We will indicate the necessary modifications in the proof.
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Proof of Lemma 4.5. We restrict p1;p2 as in (4-27) and (4-28), without losing any generality. In the
following, C. � ; : : : / denotes arbitrary positive constants which may depend continuously on the indicated
parameters. Let ı 2 .0; 1/ be a fixed small number, whose smallness will be specified by the following
arguments. Let

e WD eq.u/� eq.w/; 
 WD u�w: (4-52)

Then we have the equation for the difference

R
 ��
 C 
 D f 0.wC 
 /�f 0.w/� e; E
 .t0/ D E
0.t0/: (4-53)

First note that by Lemma 4.4, we have the full Strichartz norms on w.
Next we estimate the difference u�w in the easier case d � 4. We define new exponents S;L and a

space X by
ŒS �0 WD L

p1C1
t L2.p1C1/

x ; ŒL�0 WD L
p2C1
t L2.p2C1/

x ;

X WD

8̂<̂
:
ŒS �0 .d D 1/

ŒS �0\ ŒX �2 .1-29/;

ŒS �0\ ŒL�0 (otherwise).

(4-54)

Thanks to the restrictions (4-27) and (4-28), we have

0 > str1.S/; 0 > str0.L/; 1 > reg1.S/; 1 > reg0.L/: (4-55)

Hence by Lemma 4.3(2) with C WD V , we get for some �1; �2 2 .0; 1/,

k
0kX.I /.A1��1"
�1

0
CA1��2"

�2

0
: (4-56)

If p1 ! 4=d , then str0.S/! 0, and we would need the smallness in ŒK�0.I/.
Since w 2 X.I/ by Lemma 4.4, there exists a partition of the right half of I :

t0 < t1 < � � � < tn; Ij D .tj ; tjC1/; I \ .t0;1/ D .t0; tn/ (4-57)

such that n � C.A;B; ı/ and

kwkX.Ij / � ı .j D 0; : : : ; n� 1/: (4-58)

We omit the estimate on I \ .�1; t0/ since it is the same by symmetry.
Let 
j be the free solution defined by

E
j WD eihri.t�tj / E
 .tj /: (4-59)

Then the Strichartz estimate applied to the equations of 
 and 
jC1 implies

k
 � 
jkX.Ij /Ck
jC1� 
jkX.R/. kf 0.wC 
 /�f 0.w/kL1
t L2

x.Ij /
Ckek.ŒU�.1/�2CŒT �.1/�2/.Ij /: (4-60)

The nonlinear difference is estimated as follows. For smaller juj, we have by Hölder

kf 0S .wC 
 /�f
0

S .w/kL1
t L2

x
. k.w; 
 /kp1

ŒS �0
k
kŒS �0 ; (4-61)
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and for larger juj for d � 2 in the subcritical/critical cases,

kf 0L.wC 
 /�f
0

L.w/kL1
t L2

x
. k.w; 
 /kp2

ŒL�0
k
kŒL�0 : (4-62)

If d D 1, let C.�/ D supjuj�� jf
00

L
.u/j=jujp1 . Then we have

kf 0L.wC 
 /�f
0

L.w/kL1
t L2

x
.C.kwkL1t;x Ck
kL

1
t;x
/k.w; 
 /k

p1

ŒS �0
k
kŒS �0

.C.k.w; 
 /kL1t H 1
x
/k.w; 
 /k

p1

ŒS �0
k
kŒS �0 : (4-63)

In the exponential case, there exist � > �0 and �> 0 such that (4-37). Letw� DwC�
 D .1��/wC�u

for � 2 Œ0; 1�. Then we have
�kw�k

2

H 1
�
� 4�‚0;

where ‚0 D 1C‚

2
and H 1

� is defined in (4-38). In the same way as for (4-45), we obtain

kf 0L.wC
 /�f
0

L.w/kL1
t L2

x
�

Z 1

0

kf 00L .w� /
kL1
t L2

x
d� . sup

�2Œ0;1�

kw�kŒH �2 kw�k
1=��1

ŒX �2
k 
kŒX �2

.Ak.w; 
 /k
1=��1

ŒX �2
k 
kŒX �2 : (4-64)

Thus in all cases, assuming

k
kX.Ij / � ı � 1 .j D 0; : : : ; n� 1/; (4-65)

where the smallness depends on A (and ‚), we get

k
kX.Ij /Ck
jC1kX.tjC1;tn/ � Ck
jkX.tj ;tn/C "0; (4-66)

for some absolute constant C � 2. Then by (4-56) and iteration in j we get

k
kX.I /. .2C /n.A1��1"
�1

0
CA1��2"

�2

0
/ � C.A;B/."

�1

0
C "

�2

0
/: (4-67)

Choosing "0.A;B/ sufficiently small, we can make the last bound much smaller than ı, and thus the
assumption (4-65) is justified by continuity in t and induction on j . Then repeating the estimate (4-60)
once more, we can estimate the full Strichartz norms on 
 , which implies also the bound on u.

Next we estimate the difference u�w in the harder case d � 5, where we need the new exponents
zM , M , zN , N , R, Q, P , and Y defined by

M D
2

dC1

�
1

p2
.1C d; 0; 0/�

d�2

4
.d;�1; 0/

�
;

zN D
2

dC1

��
1

2
;
d�1

4
; 1

�
C

�
1�

d�2

4
p2

�
.�d; 1; 0/

�
;

zM DM C
2

p2.dC1/
.0; 1=d; 1/; N D zN �

2

dC1
.0; 1=d; 1/;

Q D
.1; 2; 2/

p1.dC1/
; P D

.4; d�1; 4/

2.dC1/
; Y D

.6; dC3; 4/

2.dC1/
;

R D

�
.dC4/

2.dC2/.p1C1/
;R1;

1

2

�
:

(4-68)
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In the case p2 > 1, we need another exponent

yM WD zM C
2.p2� 1/

p2.d C 1/
.0; 1=d; 1/; (4-69)

and if p2 � 1 then we put yM D zM . Note that p1 < 1 under (4-27) for d � 5. Then we have the sharp
Sobolev embedding

Œ yM �q � Œ zM �q � ŒM �q; Œ zN �q � ŒN �q; (4-70)

and nonlinear and interpolation relations

RCp1R0
D K�.1/; R D .1�˛/W C˛K; M ]

D .1�ˇ/W 0
CˇR0; (4-71)

for some ˛; ˇ 2 .0; 1/, thanks to (4-27) and (4-28). Y is a non-admissible exponent satisfying

Y D zN Cp2M D N Cp2
zM D P Cp1Q0

D P0
Cp1Q; (4-72)

where the second and the last identities follow from P3 D p1Q3, zN3 D p2
zM3, and the above sharp

embeddings. If p2 > 1, we have in addition

Y D N C yM C .p2� 1/M: (4-73)

These exponents satisfy (when d � 5)

1 D reg0. zN / D � reg0.Y / � reg0. yM /; 1 > reg1.Q/; reg1.P /;�reg1.Y /;

0 > str0. yM /; str0. zN /; str1.Q/; str1.P /;

str0. zN / � str0.Y /� 2; str1.P / D str1.Y /� 2;

0 � yM1; yM2;Q1;Q2;R1 <
1
2
; 1 < dec0.Y /; dec1.Y /;

Y2 <
1

2
C

1

d
; zN2 >

1

2
�

1

d�1
; P2 >

1

2
�

1

d
:

(4-74)

Moreover, reg0. yM / D 1 only if p2 D 2?� 2 D 4=.d � 2/. Lemma 4.3(1) implies that

kwk
.ŒQ�2p1

\Œ yM �2\Œ zM �2p2
/.I /
. kwk.ŒH �2\ŒK �2\ŒW �2/.I /.ACB: (4-75)

As before, we divide I \ .t0;1/ into t0 < � � � < tn, n � C.A;B/ such that

kwk
.ŒQ�2p1

\Œ yM �2\Œ zM �2p2
\ŒK �2\ŒW �2/.Ij /

� ı � 1 .j D 0; : : : ; n� 1/: (4-76)

We also introduce the following spaces:

Y0 WD ŒW �0\ ŒR�0; zY WD Œ zN �2\ ŒP �2; Y WD ŒW �2\ ŒK�2;

Y�0 WD ŒW
�.1/�0C ŒK

�.1/�0; Y� WD ŒW �.1/�2C ŒK
�.1/�2:

(4-77)

Our proof for d � 5 consists of three steps:

(1) We estimate 
 in Y0, assuming it is bounded in some norm similar to (4-76). Here we can use the
standard Strichartz because the estimates do not contain spatial derivative.

(2) We estimate 
 in zY, under the same assumption on 
 . Here we use the exotic Strichartz.
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(3) We estimate u in Y by using the bounds in Œ zN �2 \ ŒR�0. The assumption in the previous steps is
justified once we get a better bound.

Actually we could skip the first step, by using interpolation in the last step to bound ŒR�0 by the other
norms. However, if p1 D 4=d the lower critical power, then RDK and the first step becomes necessary.

Assuming that

k
k
.ŒQ�2p1

\Œ yM �2p2
\ŒR�0\ŒM ]�0/.Ij /

� ı .j D 0; : : : ; n� 1/; (4-78)

we have by Strichartz and Hölder (since W 0 and R0 are 1
2

-admissible)

k
�
jkY0.Ij /Ck
jC1�
jkY0.R/. kf
0.wC 
 /�f 0.w/kY�

0
.Ij /
CkekY�.Ij /

. k.w; 
 /kp1

ŒR�0.Ij /
k
kŒR�0.Ij /Ck.w; 
 /k

p2

ŒM ]�0.Ij /
k
kŒW �0.Ij /C "0

. ıp1k
kY0.Ij /C "0; (4-79)

where we used (4-76) and (4-78). By Lemma 4.3(2), we have

k
0kY0.I /.A1��3"
�3

0
CA1��4"

�4

0
; (4-80)

for some �3; �4 2 .0; 1/. Note that str1.R/! 0 as p1! 4=d , hence in the lower critical case we would
need 
0 to be small in ŒK�0. By the same argument as for (4-67), we obtain

k
kY0.I / � C.A;B/."
�3

0
C "

�4

0
/� ı: (4-81)

Next, still assuming (4-78), we have by the exotic Strichartz estimate,

k
�
jkzY.Ij /Ck
jC1�
jkzY.R/. kf
0.wC
 /�f 0.w/kŒY �2.Ij /CkekY�.Ij /; (4-82)

where the nonlinear difference is estimated by

kf 0L.wC 
 /�f
0

L.w/kŒY �2

. k.w; 
 /kp2

ŒM �0
k
k

Œ zN �2
Ck.w; 
 /k

p2

Œ zM �2p2

k
kŒN �0 Ck.w; 
 /k
p2�1

ŒM �0
k.w; 
 /k

Œ yM �2
k
kŒN �0 ; (4-83)

where the last term is for p2 > 1 while the second last is for p2 � 1, and similarly

kf 0S .wC 
 /�f
0

S .w/kŒY �2 . k.w; 
 /k
p1

ŒQ�0
k
kŒP �2 Ck.w; 
 /k

p1

ŒQ�2p1

k
kŒP �0 : (4-84)

Thus we obtain
k
 � 
jkzY.Ij /Ck
jC1� 
jkzY.R/. ı

p1k
kzY.Ij /C "0; (4-85)

where we used (4-76), (4-78), and the following embeddings in x

ŒQ�2p1
� ŒQ�0; ŒP �2 � ŒP �0; Œ yM �2C Œ zM �2p2

� ŒM �0; Œ zN �2 � ŒN �0: (4-86)

By Lemma 4.3 and Strichartz, we have

k
0kŒ zN �2.I /
. k
0k

1��5

ŒH �2.I /\ŒW �2.I /
k
0k

�5

ŒM �0.I /
.A1��5"

�5

0
;

k
0kŒP �2.I /. k
0k
1��6

ŒH �2.I /\ŒK �2.I /
k
0k

�6

ŒM �0.I /
.A1��6"

�6

0
;

(4-87)
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for some �5; �6 2 .0; 1/. Note that str1.P / is away from 0 as p1 ! 4=d , and so �5; �6 are uniformly
bounded from below. Thus by the same argument as for (4-67),

k
kzY.I / � C.A;B/."
�5

0
C "

�6

0
/� ı: (4-88)

Hence under the assumption (4-78) we have obtained

k
k
ŒW �0.I /\ŒR�0.I /\Œ zN �2.I /\ŒP �2.I /

.C.A;B/
6P

kD3

"
�k

0
� ı: (4-89)

Finally by Strichartz, (4-76) and (4-78), we have

kukY.Ij /. kEu.tj /kL2
x
Ckeq.u/Cf 0.u/kY�.Ij /

.AC "0Ckuk
p1

ŒR�0.Ij /
kukŒR�2.Ij /Ckuk

p2

ŒM ]�0.Ij /
kukŒW �2.Ij /

.AC "0C ı
p1kukY.Ij /:

(4-90)

Hence we obtain
kukY.Ij /.AC "0; (4-91)

and so
kukY.I /. n.AC "0/ � C.A;B/; (4-92)

which is extended to the full Strichartz norms by Lemma 4.4.
It remains to justify (4-78). By Lemma 4.3(2), we have

k
k
ŒQ�2p1

\Œ yM �2\Œ zM �2p2

.
P

kD7;8

k
k
1��k

ŒH �2\ŒK �2\ŒW �2
k
k

�k

ŒP �2\Œ zN �2
; (4-93)

for some �7; �8 2 .0; 1/. If p1 D 4=d , then we need to add ŒK�0 to the last factor.
In either case, by (4-91), (4-76), (4-89), and (4-71), we obtain

k
k
.ŒQ�2p1

\Œ yM �2\Œ zM �2p2
\ŒR�0\ŒM ]�0/.Ij /

.C.A;B/"�0; (4-94)

for some � 2 .0; 1/. By choosing "0.A;B/ sufficiently small, the last bound can be made much smaller
than ı. Then the assumption (4-78) is justified by continuity in t and induction in j . Thus we have
obtained the desired estimates. �

5. Profile decomposition

In this section, following Bahouri, Gérard, Kenig, and Merle, we investigate behavior of general se-
quences of solutions, by asymptotic expansion into a series of transformation sequences of fixed space-
time functions, called profiles. This is the fundamental part for the construction of a critical element in
the next section.

Linear profile decomposition. Here we give the Klein–Gordon version of Bahouri and Gérard’s profile
decomposition for the massless free wave equation. The only essential difference is that the massive
equation does not commute with the scaling transforms, but the proof goes almost the same.

For simple presentation, we introduce some notation. For any triple .t}
~
;x}
~
; h}
~
/ 2 R1Cd � .0;1/

with arbitrary suffix ~ and }, let �}
~

, T }
~

and hri}
~

respectively denote the scaled time shift, the unitary
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and the self-adjoint operators in L2.Rd /, defined by

�}
~
D �

t}
~

h}
~

; T }
~
'.x/ D .h}

~
/�d=2'

�
x�x}

~

h}
~

�
; hri}

~
D

q
��C .h}

~
/2: (5-1)

We denote by MC the set of Fourier multipliers on Rd :

MC D
˚
F�1
Q�F j Q� 2 C.Rd / and Q�.x/ has a finite limit as jxj ! 1

	
: (5-2)

(Practically we need only 1 and jrjhri�1 in MC). Also recall the correspondence u $ Eu defined on
page 427.

Lemma 5.1 (Linear profile decomposition). Let Evn D eihrit Evn.0/ be a sequence of free Klein–Gordon
solutions with bounded L2

x norm. Then, possibly after replacing it with some subsequence, there exist
K 2 f0; 1; 2 : : : ;1g and, for each integer j 2 Œ0;K/, 'j 2 L2.Rd / and f.tj

n ;x
j
n ; h

j
n/gn2N � R�Rd �

.0; 1� satisfying the following. Define Evj
n and Ewk

n for each j < k � K by

Evj
n D eihri.t�t

j
n /T j

n '
j ; Evn D

k�1P
jD0

Evj
n C Ew

k
n : (5-3)

Then
lim

k!K
lim

n!1
k Ewk

nkL1t .RIB
�d=2
1;1.Rd //

D 0; (5-4)

and for any Fourier multiplier � 2 MC, any l < j < k � K and any t 2 R,

lim
n!1

j log.hl
n=hj

n/jC
jt l

n� t
j
n jC jx

l
n�x

j
n j

hl
n

D1; (5-5)

lim
n!1

h�Evl
n.t/ j �Ev

j
n .t/iL2

x
D 0 D lim

n!1
h�Evj

n .t/ j � Ew
k
n .t/iL2

x
: (5-6)

Moreover, each sequence fhj
ngn2N either goes to 0 or is identically 1 for all n.

We call such a sequence fEvj
ngn2N a free concentrating wave for each j , and Ewk

n the remainder. We
say that f.tj

n ;x
j
n ; h

j
n/gn and f.tk

n ;x
k
n ; h

k
n/g are orthogonal when (5-5) holds. Note that (5-6) implies

lim
n!1

h
kEvn.t/k

2

L2
x
�
P

j<k

kEvj
n .t/k

2

L2
x
�k Ewk

nk
2

L2
x

i
D 0: (5-7)

We remark that the case h
j
n !1 is excluded by the presence of the mass, or more precisely by the use

of inhomogeneous Besov norm for the remainder.

Proof. We introduce a Littlewood–Paley decomposition for the Besov norm. Let ƒ0.x/ 2 S.Rd / such
that its Fourier transform zƒ0.�/ D 1 for j�j � 1 and zƒ0.�/ D 0 for j�j � 2. Then we define ƒk.x/ for
any k 2 N and ƒ.0/.x/ by the Fourier transforms

zƒk.�/ D zƒ0.2
�k�/� zƒ0.2

�kC1�/; zƒ.0/ D zƒ0.�/� zƒ0.2�/: (5-8)

Let

� WD lim
n!1

kEvnkL1t B
�d=2
1;1
� lim

n!1
sup

t2R; x2Rd ; k�0

2�kd=2
jƒk � Evn.t;x/j: (5-9)
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If � D 0, we are done with K D 0. Otherwise, there exists a sequence .tn;xn; kn/ such that for large n

2�knd=2
jƒkn

� Evn.tn;xn/j � �=2: (5-10)

Now we define hn and  n by
hn D 2�kn ; Evn.tn;x/ D Tn n: (5-11)

Since  n is bounded in L2
x , it converges weakly to some  in L2

x , up to an extraction of a subsequence.
Moreover,

2�knd=2
jƒkn

� Evn.tn;xn/j D

�
jƒ0 � n.0/j .kn D 0/;

jƒ.0/ � n.0/j .kn � 1/;
(5-12)

and hence by the weak convergence and by Schwarz

k kL2
x
& jhƒ0 j  ijC jhƒ.0/ j  ij � �=2: (5-13)

If hn! 0, then we put .t0
n ;x

0
n ; h

0
n/D .tn;xn; hn/ and '0 D . Otherwise, we may assume, by extracting

a subsequence, that hn converges to some h1 > 0, and we put

.t0
n ;x

0
n ; h

0
n/ D .tn;xn; 1/; '0

D h
�d=2
1  .x=h1/: (5-14)

Then we have Tn �T 0
n '

0 ! 0 strongly in L2
x . Now we define Ev0

n and Ew1
n by

Ev0
n D eihri.t�t0

n/T 0
n '

0; Ew1
n D Evn� Ev

0
n: (5-15)

Then .T 0
n /
�1 Ew1

n.t
0
n /D .T

0
n /
�1Tn n�'

0! 0 weakly in L2, and �T 0
n D T 0

n �
0
n, where �0

n denotes the
Fourier multiplier whose symbol is the rescaling of �’s, that is Q�.�=h0

n/. By the definition of MC, the
symbol of �0

n converges, including the case h0
n ! 0, so �0

n converges strongly in L2.Rd / to some �0
1.

Hence
h�Ev0

n.t
0
n / j � Ew

1
n.t

0
n /iL2

x
D h�0

n'
0
j �0

n.T
0
n /
�1
Ew1

n.t
0
n /iL2

x
! 0: (5-16)

The left-hand side is preserved in t , hence the above holds at any t . This is the decomposition for k D 1.
Next we apply the same procedure to the sequence Ew1

n in place of Evn. Then either the Besov norm
goes to 0 and K D 1, or otherwise we find the next concentrating wave Ev1

n and the remainder Ew2
n , such

that for some .t1
n ;x

1
n ; h

1
n/ and '1 2 L2.Rd /,

Ew1
n D Ev

1
nC Ew

2
n; Ev1

n D eihri.t�t1
n/T 1

n '
1; h�Ev1

n.t/ j � Ew
2
n.t/iL2

x
! 0; (5-17)

.T 1
n /
�1 Ew2

n.t
1
n /! 0 weakly in L2

x as n!1, and

lim
n!1

k Ew1
nkL1t B

�d=2
1;1
. k'1

kL2 : (5-18)

Iterating the procedure, we obtain the desired decomposition. L2 orthogonality implies k'kkL2
x
! 0

as k !1, and then (5-18) (for general k) gives the decay of the remainder in the Besov norm.
It remains to prove the orthogonality (5-5) as well as (5-6). First we have

h�Evl
n.0/ j �Ev

j
n .0/i D he

�ihrit l
nT l

n�
l
n'

l
j e�ihrit

j
n T j

n �
j
n'

j
i D hSj ;l

n �l
n'

l
j �j

n'
j
i; (5-19)
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where Q�l
n D Q�.�=hl

n/ as before, and S
j ;l
n is defined by

Sj ;l
n WD .T j

n /
�1eihri.t

j
n�t l

n/T l
n D e�ihri

j
nt
j ;l
n .T j

n /
�1T l

n D e�ihri
j
nt
j ;l
n T j ;l

n ; (5-20)

with the sequence
.tj ;l

n ;xj ;l
n ; hj ;l

n / WD .t l
n� tj

n ;x
l
n�xj

n ; h
l
n/=hj

n: (5-21)

Using the last formula in (5-20), (5-5), and the uniform time decay of eihri
j
nt W S! S0, it is easy to see

that S
j ;l
n ! 0 weakly on L2

x as n ! 1 for all j < l . Since Q�l
n D Q�.�=hl

n/ and Q�j
n are convergent,

(5-19) also tends to 0. Then we have also

h�Evj
n .t/ j � Ew

k
n .t/iL2

x
D

D
�Evj

n .t/ j � Ew
jC1
n .t/�

k�1P
mDjC1

�Evm
n .t/

E
L2

x

! 0I (5-22)

thus we obtain (5-6). Now suppose that (5-5) fails. Then there exists a minimal .l; j / breaking (5-5),
with respect to the natural order

.l1; j1/ � .l2; j2/ () l1 � l2 and j1 � j2: (5-23)

By extracting a subsequence, we may assume that hl
n! hl

1, log.hl
n=h

j
n/, .t l

n�t
j
n /=hl

n and .xl
n�x

j
n /=hl

n

all converge. Now we inspect

.T l
n /
�1
EwlC1

n .t l
n/ D

jP
mDlC1

S l;m
n 'm

CS l;j
n .T j

n /
�1
EwjC1

n .tj
n /: (5-24)

where S
l;j
n converges strongly to a unitary operator, due to the convergence of .t l;j

n ;x
l;j
n ; h

l;j
n / and hl

n.
Since S

l;m
n ! 0 for m < j and .T j

n /
�1 Ew

jC1
n .t

j
n /! 0 weakly in L2

x , we deduce from the weak limit
of (5-24) that 'k D 0, a contradiction. This proves the orthogonality (5-5). �

Those free concentrating waves with scaling going to 0 are vanishing in any Besov space with less
regularity. Hence in the subcritical case, we may freeze the scaling to 1 by regarding them as a part of
remainder. Hence:

Corollary 5.2. Let Evn be a sequence of free Klein–Gordon solutions with bounded L2
x norm. Then,

after replacing it with some subsequence, there exist K 2 f0; 1; 2 : : : ;1g and data 'j 2 L2.Rd / and
f.t

j
n ;x

j
n /gn2N � R � Rd , for each integer j 2 Œ0;K/, satisfying the following. Define Evj

n and Ewk
n for

each j < k � K by

Evj
n D eihri.t�t

j
n /'j .x�xj

n /; Evn D

k�1P
jD0

Evj
n C Ew

k
n : (5-25)

Then, for any s < �d=2, we have

lim
k!K

lim
n!1

k Ewk
nkL1.RIBs

1;1
.Rd // D 0; (5-26)

and for any � 2 MC, any l < j < k � K and any t 2 R,

lim
n!1

h�Evl
n j �Ev

j
n i

2

L2
x
D 0 D lim

n!1
h�Evj

n j � Ew
k
n iL2

x
; (5-27)

lim
n!1

jtj
n � tk

n jC jx
j
n �xk

n j D 1: (5-28)
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Orthogonality holds also for the nonlinear energy, which implies that the decomposition is closed
in zKC. Recall the vector notation for the energy (page 427). We will use the following estimates for
1 < p <1:

kŒjrj� hrin�'kLp
x
. hnkhr=hni

�1'kLp
x
;

kŒjrj�1
� hri

�1
n �'kLp

x
. khr=hni

�2
jrj
�1'kLp

x
I

(5-29)

they hold uniformly for 0 < hn � 1, by Mihlin’s theorem on Fourier multipliers.

Lemma 5.3. Assume that f satisfies (1-36). Let Evn be a sequence of free Klein–Gordon solutions satisfy-
ing Evn.0/ 2 zK

C and limn!1
zE.Evn.0// <m. Let EvnD

P
j<k Ev

j
nC Ew

k
n be the linear profile decomposition

given by Lemma 5.1. Except for the H 1 critical case (1-28), it may be given by Corollary 5.2 too. Then
we have Evj

n .0/ 2 zK
C for large n and all j < K, and

lim
k!K

lim
n!1

ˇ̌̌
zE.Evn.0//�

P
j<k

zE.Evj
n .0//�

zE. Ewk
n .0//

ˇ̌̌
D 0: (5-30)

Moreover we have for all j < K

0 � lim
n!1

zE.Evj
n .0// � lim

n!1
zE.Evj

n .0// � lim
n!1

zE.Evn.0//; (5-31)

where the last inequality becomes an equality only if K D 1 and Ew1
n ! 0 in L1t L2

x .

Proof. First we see that in the exponential case (1-29), all the profiles and remainders are in the subcritical
regime. Since Evn.0/ 2 zK

C, Lemma 2.11 implies

krhri
�1 Re Evn.0/k

2

L2
x
Ck Im Evn.0/k

2

L2
x
< 2m � 4�=�0: (5-32)

For any .�0; : : : ; �k/ 2 C1Ck satisfying k�kL1 D maxj j�j j � 1, let

v�n D
P

j<k

�jv
j
n C �kw

k
n : (5-33)

Choosing � D jrjhri�1 2 MC in (5-27), we get

lim
n!1

sup
t2R

krv�nk
2

L2
x
� lim

n!1
krhri

�1
Evnk

2

L2
x
DWM < 4�=�0: (5-34)

Hence there exist � > �0 and q 2 .1; 2/ such that q�M < 4� .
Now we start proving (5-30) in all the cases. Since the linear version of (5-30) is given by Lemma 5.1,

it suffices to show orthogonality in F , i.e.

lim
k!K

lim
n!1

ˇ̌̌
F.vn.0//�

P
j<k

F.vj
n .0//�F.wk

n .0//
ˇ̌̌
D 0: (5-35)

For this we may neglect wk
n , because by the decay in B

1�d=2
1;1 and interpolation with the H 1 bound we

have
lim

k!K
lim

n!1
kwk

n .0/kLp
x
D 0 .2 < p � 2?/: (5-36)

In the exponential case, we deal with wk
n as follows. Let v<kC�

n D vn� .1��/w
k
n for 0 � � � 1. Using
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the Hölder and Trudinger–Moser inequalities, we get

jF.vn/�F.v<k
n /j �

Z 1

0

Z
jf 0.v<kC�

n /wk
n jdxd� �

Z 1

0

d�keq�jv
<kC�
n j2

� 1k
1=q

L1
x

kwk
nkLq0

x

�

Z 1

0

d�

�kv<kC�
n k2

L2
x

4� � q�M

�1=q

kwk
nkLq0

x
: (5-37)

In the subcritical and exponential cases, it suffices to have the decay in Bs
1;1

for all s < 1�d=2, which
is given by Corollary 5.2. Thus in any case we are allowed to replace vn.0/ by v<k

n .0/ in (5-35).
Next we may discard those j for which �j

n D �t
j
n =h

j
n ! ˙1, since for any p 2 .2; 2?� satisfying

1=p D 1=2� s=d with s 2 .0; 1�, we have

kvj
n .0/kLp

x
. ke�ihri

j
n�
j
n jrj

�s'j
kLp

x
! 0 .n!1/; (5-38)

by the decay of eihri
j
nt in S ! Lp as jt j ! 1, which is uniform in n, and the Sobolev embedding

PH s
x � L

p
x .

So extracting a subsequence, we may assume that �j
n has a finite limit �j

1 for all j . Let

 j
WD Re e�ihri

j
1�

j
1'j

2 L2
x.R

d /: (5-39)

Then vj
n .0/� hri

�1T
j
n  

j ! 0 strongly in H 1
x , thus (5-35) has been reduced toˇ̌̌̌

F
�P

j<k

hri
�1T j

n  
j
�
�
P

j<k

F.hri�1T j
n  

j /

ˇ̌̌̌
! 0: (5-40)

In the subcritical and exponential cases, if h
j
n! 0 then hri�1T

j
n  

j ! 0 strongly in L
p
x for 2 � p <

2?, so it can be neglected. Hence we may assume that h
j
n � 1. Then each T

j
n hri

�1 j is getting away
from the others as n!1, and (5-40) follows.

In the critical case, if h
j
n ! 0 then we have by (5-29),

khri
�1T j

n  
j
� hj

nT j
n jrj

�1 j
k

L2?
x
. khr=hj

ni
�2
jrj
�1 j

k
L2?

x
! 0: (5-41)

Hence we may replace hri�1T
j
n  

j in (5-40) by h
j
nT

j
n
O j for some O j 2 L2? , including the case

h
j
n � 1. Then we may further replace each O j by

L j
n .x/ WD

O j .x/�

�
0 if there is l < j s.t. hl

n < h
j
n and .x�x

j ;l
n /=h

j ;l
n 2 supp O l ;

1 otherwise;
(5-42)

where .xj ;l
n ; h

j ;l
n / is defined in (5-21), because (5-5) after the above reduction implies either h

j ;l
n ! 0 or

jx
j ;l
n j !1, and so L j ! O j at almost every x 2 Rd as n!1, and strongly in L2?

x by the dominated
convergence theorem. Now the decomposition is trivial

F
�P

j<k

hj
nT j

n
L j

n

�
D
P

j<k

F.hj
nT j

n
L j

n /; (5-43)

by the support property of L j
n . Thus we have obtained (5-35) and (5-30).
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By exactly the same argument, we obtain also

lim
k!K

lim
n!1

ˇ̌̌
zK˛;ˇ.Evn.0//�

P
j<k

zK˛;ˇ.Ev
j
n .0//�

zK˛;ˇ. Ew
k
n .0//

ˇ̌̌
D 0: (5-44)

The remaining conclusions follow from the next lemma. �

Lemma 5.4 (Decomposition in QKC). Assume f satisfies (1-36). Let k 2 N and '0; : : : ; 'k 2 H 1.Rd /.
Assume that

zE
� kP

jD0

'j

�
� m� ı; zK˛;ˇ

� kP
jD0

'j

�
� �";

zE
� kP

jD0

'j

�
�

kP
jD0

zE.'j /� "; zK˛;ˇ

� kP
jD0

'j

�
�

kP
jD0

zK˛;ˇ.'j /C ";

(5-45)

for some .˛; ˇ/ in (1-16) and some ı; " > 0 satisfying ".1C2= N�/ < ı. Then Q'j 2
zKC for all j D 0; : : : ; k,

i.e. 0 � zE.'j / < m and zK˛;ˇ.'j / � 0 for all .˛; ˇ/ in (1-16).

Proof. Let  j D Rehri�1'j and suppose that zK.'l/ < 0 for some l . Then K. l/ � zK.'l/ < 0 and so
H. l/ � m. Since H is non-negative,

m �
kP

jD0

H. j / �
kP

jD0

ŒH. j /CH Q.Imhri�1'j /� D
kP

jD0

Œ zE.'j /� zK.'j /= N��

� zE
� kP

jD0

'j

�
� zK

� kP
jD0

'j

�
= N�C ".1C 1= N�/ < m; (5-46)

where H Q denotes the quadratic part of H . Hence K. j / � 0 for all j , and so

zE.'j / � J. j / D H. j /CK. j /= N� � 0: �

Nonlinear profile decomposition. The next step is to construct a similar decomposition for the nonlinear
solutions with the same initial data.

First we construct a nonlinear profile corresponding to a free concentrating wave. Let Evn be a free
concentrating wave for a sequence .tn;xn; hn/ 2 R�Rd � .0; 1�,

.i@t Chri/Evn D 0; Evn.tn/ D Tn ;  .x/ 2 L2; (5-47)

satisfying Evn.0/ 2 zK
C. Here we use Lemma 5.1 only in the H 1 critical case, and Corollary 5.2 in the

subcritical and exponential cases. Hence hn! 0 can happen only in the critical case, otherwise hn � 1.
Let un be the nonlinear solution with the same initial data

.i@t Chri/Eun D f
0.un/; Eun.0/ D Evn.0/ 2 zK

C; (5-48)

which may be local in time. Next we define EVn and EUn by undoing the transforms

Evn D Tn
EVn..t � tn/=hn/; Eun D Tn

EUn..t � tn/=hn/: (5-49)
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Then they satisfy the rescaled equations

EVn D eithrin ; EUn D
EVn� i

Z t

�n

ei.t�s/hrinf 0.Rehri�1
n
EUn/ ds; (5-50)

where �n D �tn=hn. Extracting a subsequence, we may assume convergence:

hn ! h1 2 Œ0; 1�; �n ! �1 2 Œ�1;1�: (5-51)

Then the limit equations are naturally given by

EV1 D eithri1 ; EU1 D EV1� i

Z t

�1

ei.t�s/hri1f 0. yU1/ ds; (5-52)

where yU1 is defined by

yU1 WD Rehri�1
1
EU1 D

�
Rehri�1 EU1 .h1 D 1/;

Re jrj�1 EU1 .h1 D 0/:
(5-53)

The unique existence of a local solution EU1 around t D �1 is known in all cases, including h1 D 0

and �1 D ˙1 (the latter corresponding to the existence of the wave operators), by using the standard
iteration with the Strichartz estimate. In the exponential case, it requires that EU1 is in the subcritical
regime in the Trudinger–Moser inequality. It is guaranteed by Lemma 5.3, because EV1.t/ 2 zKC for t

close to �1, and so EU1.t/ 2 zKC for all t in its existence interval.
EU1 on the maximal existence interval is called the nonlinear profile associated with the free concen-

trating wave Evn. The nonlinear concentrating wave Eu.n/ associated with Evn is defined by

Eu.n/ D Tn
EU1..t � tn/=hn/: (5-54)

If h1 D 1 then u.n/ solves NLKG. If h1 D 0 then it solves

.@2
t ��C 1/u.n/ D .i@t Chri/Eu.n/ D .hri� jrj/Eu.n/Cf

0.jrj�1
hriu.n//: (5-55)

The existence time of u.n/ may be finite and even go to 0, but at least we have

kEun.0/� Eu.n/.0/kL2
x
D k EVn.�n/� EU1.�n/kL2

x

� k EVn.�n/� EV1.�n/kL2
x
Ck EV1.�n/� EU1.�n/kL2

x
! 0: (5-56)

Let un be a sequence of (local) solutions of NLKG in KC around t D 0, and let vn be the sequence
of the free solutions with the same initial data. We consider the linear profile decomposition given by
Lemma 5.1 or 5.2:

Evn D

k�1P
jD0

Evj
n C Ew

k
n ; Evj

n D eihri.t�t
j
n /T j

n '
j : (5-57)

With each free concentrating wave fEvj
ngn2N, we associate the nonlinear concentrating wave fEuj

.n/
gn2N.

A nonlinear profile decomposition of un is given by

Eu<k
.n/ WD

k�1P
jD0

Eu
j

.n/
: (5-58)



SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR KLEIN–GORDON EQUATION 445

We are going to prove that Eu<k
.n/

is a good approximation for Eun, provided that each nonlinear profile
has finite global Strichartz norm (in Lemma 5.6). Now we define the Strichartz norms for the profile
decomposition, using the notation from page 428. Let ST and ST � be the function spaces on R1Cd

defined by
ST D ŒW �2\ ŒK�2; ST � D ŒW �.1/�2C ŒK

�.1/�2CL1
t L2

x; (5-59)

where the exponents W and K as well as their duals are as defined in (4-24) and (4-9). The Strichartz
norm for the nonlinear profile depends on the scaling h}1 for any suffix }:

ST }1 WD

�
ŒW �2\ ŒK�2 .h}1 D 1/;

ŒW ��
2

.h}1 D 0/:
(5-60)

In other words, we take the scaling invariant part if h}n ! C0, which can happen only in the H 1

critical case. The following estimate will be convenient in treating the concentrating case: For any
S 2 Œ0; 1�� Œ0; 1

2
�� Œ0; 1� we have

ku.n/kŒS �2.R/. .hn/
1�reg0.S/

k yU1kŒS ��
2
.R/; (5-61)

where yU1 is as defined in (5-53). Indeed, using PB0
p;2
�Lp with p D 1=S2 � 2 in the lower frequencies,

we have

ku.n/kŒS �2 . kjrj
�S3hri

S3u.n/kŒS ��
2

� .hn/
1�reg0.S/

kRe jrj�S3hri
S3�1
n

EU
j
1kŒS ��

2
. .hn/

1�reg0.S/
k yU

j
1kŒS ��

2
: (5-62)

Concerning the orthogonality in the Strichartz norms, we have:

Lemma 5.5. Assume that f satisfies (1-36). Suppose that in the nonlinear profile decomposition (5-58)
we have

k yU
j
1kST

j
1.R/

Ck EU
j
1kL1t L2

x.R/
<1 (5-63)

for each j < K. Then, for any finite interval I , any j < K and any k � K, we have

lim
n!1

ku
j

.n/
kST .I /. k yU j

1kST
j
1.R/

; (5-64)

lim
n!1

ku<k
.n/k

2
ST .I /. lim

n!1

P
j<k

ku
j

.n/
k

2
ST .I /; (5-65)

where the implicit constants do not depend on I , j or k. We also have

lim
n!1




f 0.u<k
.n//�

P
j<k

f 0
�
.hri

j
1/
�1
hriu

j

.n/

�



ST �.I /

D 0: (5-66)

Proof. First note that if h
j
1 D 1 then u

j

.n/
is just a sequence of space-time translations of yU j

1. In
particular, (5-64) is trivial in that case.

Next we prove (5-64) in the case h
j
1 D 0, which is only in the H 1 critical case. For the moment we

drop the superscript j . For the ŒW �2 part, (5-61) gives us

ku.n/kŒW �2.I /. k yU1kŒW ��
2
.R/ D k

yU1kST
j
1.R/

: (5-67)
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For the ŒK�2 part, let V be the following interpolation between H and W

V WD
1

d C 2
H C

d C 1

d C 2
W D KC

.�1; 0; 1/

2.d C 2/
: (5-68)

Then using Hölder in t and (5-61) together with reg0.K/ D .d C 1/=.d C 2/, we get

ku.n/kŒK �2.I /. ku.n/kŒV 1
2 �2.I /

jI j
1

2.dC2/ . .hn/
1

2.dC2/ k yU1kŒV ��
2
.R/jI j

1
2.dC2/ ! 0; (5-69)

as n!1. Thus we have proved (5-64).
Next we prove (5-65) in the subcritical and exponential cases. Define yU j

1;R, u
j

.n/;R
for R� 1 and

u<k
.n/;R

by

yU
j
1;R D �R.t;x/

yU
j
1; u

j

.n/;R
D T j

n
yU

j
1;R.t � tj

n /; u<k
.n/;R D

P
j<k

u
j

.n/;R
; (5-70)

where �
R

is the cut-off defined in (1-23). Then we have

ku<k
.n/ �u<k

.n/;RkST .R/ �
P

j<k

k.1��R.t;x//
yU

j
1kST .R/ ! 0; .R!C0/ (5-71)

so we may replace u<k
.n/

by u<k
.n/;R

. Let ıl
m denote the difference operator

ıl
m'.x/ D '.x� 2�mel/�'.x/; (5-72)

where el denotes the l-th unit vector in Rd . Each Besov norm in ST is equivalent to

dP
lD1




P
j<k

2smıl
mu

j

.n/;R





L

p
t `

2
m�0

L
q
x

C




P
j<k

u
j

.n/;R





L

p
t L

q
x

; (5-73)

where .1=p; 1=q; s/ DW or K. (5-28) implies that each supp u
j

.n/;R
is away from the others at least by

distance 2 for large n, and then supp ıl
mu

j

.n/;R
are also disjoint for j < k at each l;m. Hence the first

norm in (5-73) equals

k2smıl
mu

j

.n/;R
kLp

t `
2
m�0

L
q
x`

2
j<k
� k2smıl

mu
j

.n/;R
k`2
j<k

L
p
t `

2
m�0

L
q
x
. kuj

.n/;R
k`2
j<k

L
p
t Bs

q;2
; (5-74)

where the first inequality is by Minkowski. Thus we have obtained (5-65) in the subcritical and expo-
nential cases.

Next we prove (5-65) in the H 1 critical case. For the nonlinear concentrating waves with h
j
1 D 1,

the above argument works. For those with h
j
1 D 0, the K component is vanishing by (5-69). Hence it

suffices to estimate ŒW �2 in the case all h
j
n tend to 0 as j !1. Using that W3 D

1
2
2 .0; 1/, we have

u<k

.n/




ŒW �2.R/

.


jrj�1

hriu<k
.n/




ŒW ��

2
.R/
D


Re jrj�1

Eu<k
.n/




ŒW ��

2
.R/
�




 P
j<k

Luj ;l
n;m





L

p
t `

2
m2ZL

q
x

; (5-75)

where we have put .1=p; 1=q; s/ D W and

Luj ;l
n;m WD 2smıl

mhj
nT j

n
yU

j
1..t � tj

n /=hj
n/; (5-76)
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where ıl
m is the difference operator defined in (5-72). For R� 1, let

Luj ;l
n;m;R.t;x/ WD

�
�

h
j
nR
.t � t

j
n ;x�x

j
n / Lu

j ;l
n;m.t;x/ .jm� log2 h

j
nj � R/

0 .jm� log2 h
j
nj > R/;

(5-77)

where �� is as in (1-23). Then by the same computation as for (5-61), we have

k Luj ;l
n;m� Lu

j ;l
n;m;RkLp

t `
2
m2ZL

q
x
. k2smıl

m
yU

j
1kLp

t `
2
mL

q
x.jt jCjmjCjxj>R/ ! 0; (5-78)

as R ! 1 uniformly in n. Hence we may replace Luj ;l
n;m by Luj ;l

n;m;R in (5-75). The orthogonality (5-5)
implies that fsupp.t;m;x/ Lu

j ;l
n;m;Rgj<k becomes mutually disjoint for large n. Then arguing as in (5-74),

we obtain (5-65).
To prove (5-66) in the subcritical and exponential cases is easier than (5-65), because after the smooth

cut-off, we have for large n

f 0.u<k
.n/;R/ D

P
j<k

f 0.u
j

.n/;R
/: (5-79)

Note that the u
j

.n/
2 ST implies that the full Strichartz norms are finite by Lemma 4.4. The error for

f 0.u<k
.n/
/ coming from the cut-off is small in ST � by (4-61)–(4-64) if d � 4. When d � 5, the difference

estimates in the proof of Lemma 4.5 are not sufficient because they control only the exotic norm Y . In
order to estimate the difference in the admissible dual norm ST �.I/, we introduce the new exponents

H" WD

�
"2;

1�"

2
; 0
�
; W" WD W �p2".d;�1; 0/; M ]

" WDM ]
C ".d;�1; 0/; (5-80)

where W and M ] were defined in (4-24) and (4-31), and " 2 .0;p1/ is fixed small enough to have

str0.H"/; str0.M ]
" /; str0.W"/ < 0; reg0.H"/ < 1;

reg0.W"/ D reg0.W / D 1; reg0.M ]
" / D reg0.M ]/ � 1;

W"Cp2M ]
" D W Cp2M ]

D W �.1/:

(5-81)

Then we have, for any u and v,

kf 0S .u/�f
0

S .v/kL1
t L2

x.I /
. jI j1�"2

ku� vkŒH"�0.I /

�
kukL1t L2

x.I /
CkvkL1t L2

x.I /

�"
; (5-82)

because jf 0
S
.u/�f 0

S
.v/j. ju� vj.jujC jvj/". For large u, we have if p2 � 1,

kf 0L.u/�f
0

L.v/kŒW �.1/�2

. kukp2

ŒM
]
" �0
ku� vkŒW"�2 Cku� vkŒM ]

" �0

�
kuk

ŒM
]
" �0
Ckvk

ŒM
]
" �0

�p2�1
kvkŒW"�2 ; (5-83)

and if p2 < 1,

kf 0L.u/�f
0

L.v/kŒW �.1/" �2
. kukp2

ŒM
]
" �0
ku� vkŒW"�2 Cku� vk

p2

ŒM
]
" �0
kvkŒW"�2 : (5-84)

The latter estimate is not Lipschitz in u� v, but suffices for our purpose here.4 Thus we obtain (5-66)
in the subcritical and exponential cases.

4The situation is different from the long-time iteration in the previous section, where we needed the exotic Strichartz estimate
in order to get the Lipschitz estimate for the iteration along the numerous time intervals.
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It remains to prove (5-66) in the H 1 critical case, where we need further cut-off to get a disjoint sum.
First we see that each u

j

.n/
in u<k

.n/
may be replaced with

u
j

hni
WD .hri

j
1/
�1
hriu

j

.n/
D hj

nT j
n
yU

j
1..t � tj

n /=hj
n/: (5-85)

For the moment we drop the superscript j . Let p2 D 4=.d �2/ and h1 D 0. If d � 4, then we have by
using (4-62) and (5-29)

kf 0.u.n//�f
0.uhni/kL1

t L2
x.R/
. kuhnikp2

ŒL�0.R/
ku.n/�uhnikŒL�0.R/

�k yU1k
p2

ŒL�0.R/



Œjrjhri�1
n � 1� yU1




ŒL�0.R/

. k yU1kp2

ŒL�0.R/
khr=hni

�2 yU1kŒL�0.R/ ! 0; (5-86)

since yU1 2 ŒH ��
2
\ ŒW ��

2
� ŒL�0 by the homogeneous version of Lemma 4.3(1).

If d � 5, we introduce a new exponent

G WD
d � 2

d C 2

�
1

d C 1
;

d C 3

2.d C 1/
; 0

�
: (5-87)

Then reg0.G/ D 1, str0.G/ < 0 and

.2?� 1/G D W �.1/�
.1; 0; 1/

2
: (5-88)

Hence

kf 0.u.n//�f
0.uhni/kŒW �.1/�2.I /

. kf 0.u.n//�f 0.uhni/kŒW �.1/��
2
.R/CjI j

1=2
kf 0.u.n//�f

0.uhni/kŒ.2?�1/G�0.I /; (5-89)

where the first term on the right is dominated by (the homogeneous version of (5-83)–(5-84))

kuhnik
p2

ŒM
]
" �0.R/

ku.n/�uhnikŒW"��2.R/
Cku.n/�uhnik

�

ŒM
]
" �0.R/

k.uhni;u.n//k
p2��

ŒW"�
�
2
.R/

. k yU1kp2

ŒM
]
" �0.R/

khr=hni
�2 yU1kŒW"��2.R/

Ckhr=hni
�2 yU1k

�

ŒM
]
" �0.R/

k yU1k
p2��

ŒW"�
�
2
.R/
; (5-90)

where � WD min.p2; 1/. The right-hand side goes to 0, since yU1 2 ŒH ��
2
\ ŒW"�

�
2
� ŒM

]
" �0 by the

homogeneous version of Lemma 4.3(1). Similarly, the last term in (5-89) is bounded by

kuhnik
p2

ŒG�0.R/
ku.n/�uhnikŒG�0.R/ � k

yU1k
p2

ŒG�0.R/
khr=hni

�2 yU1kŒG�0.R/ ! 0: (5-91)

Thus it suffices to show 


f 0�P
j<k

u
j

hni

�
�
P

j<k

f 0.u
j

hni
/





ST �.I /
! 0: (5-92)

Now we define yU j
n;R for any R� 1 by

yU j
n;R.t;x/ D �R.t;x/

yU
j
1.t;x/

Q
f.1��

h
j ;l
n R

/.t � tj ;l
n ;x�xj ;l

n / j 1 � l < k; hl
nR < hj

ng; (5-93)

where �
R

and .tj ;l
n ;x

j ;l
n ; h

j ;l
n / are as defined respectively in (1-23) and (5-21). Then yU j

n;R is uniformly
bounded in ŒH ��

2
.R/\ ŒW ��

2
.R/, and

yU j
n;R ! �R

yU
j
1 in ŒM ]�0.R/ as n!1,
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because either h
j ;l
n ! 0 or jtj ;l

n j C jx
j ;l
n j ! 1 by the orthogonality (5-5). Then by the homogeneous

version of Lemma 4.3(2), it converges also in ŒL�0.R/ (if d � 4), ŒW"�
�
2
.R/ and ŒM ]

" �0.R/. Moreover,
we have �

R
yU

j
1 !

yU
j
1 as R!1 in the same spaces.

Hence we may replace u
j

hni
by

u
j

hni;R
WD hj

nT j
n
yU j

n;R..t � tj
n /=hj

n/;

and then we get the desired result, since fsupp.t;x/ u
j

hni;R
gj<k are mutually disjoint for large n, and so

f 0
�P

j<k

u
j

hni;R

�
D
P

j<k

f 0.u
j

hni;R
/; (5-94)

which concludes the proof of (5-66). �

The next lemma is the conclusion of this section.

Lemma 5.6. Assume that f satisfies (1-36). Let un be a sequence of local solutions of NLKG around
t D 0 in KC satisfying limn!1E.un/ < m. Suppose that in its nonlinear profile decomposition (5-58),
every nonlinear profile EU j

1 has finite global Strichartz and energy norms, i.e.

k yU
j
1kST

j
1.R/

Ck EU
j
1kL1t L2

x.R/
<1: (5-95)

Then un is bounded for large n in the Strichartz and the energy norms, i.e.

lim
n!1

kunkST .R/CkEunkL1t L2
x.R/

<1: (5-96)

Proof. We will apply the perturbation lemma to u<k
.n/
Cwk

n as an approximate solution. First observe that

kEun.0/� Eu
<k
.n/.0/�w

k
n .0/kL2

x
�
P

j<k

kEvj
n .0/� Eu

j

.n/
.0/kL2

x
D o.1/ (5-97)

and
kEun.0/k

2
L2 D kEvnk

2

L2
x
�
P

j<k

kEvj
nk

2

L2
x
C o.1/ D

P
j<k

kEu
j

.n/
.0/k2

L2
x
C o.1/; (5-98)

where o.1/! 0 as n!1. Hence except for a finite set J � N, the energy of u
j

.n/
with j 62 J is smaller

than the iteration threshold, which implies

ku
j

.n/
kST .R/. kEuj

.n/
.0/kL2

x
.j 62 J /: (5-99)

Combining (5-65), (5-64), (5-99) and (5-98), we obtain, for any finite interval I ,

sup
k

lim
n!1

ku<k
.n/k

2
ST .I /.

P
j2J

k yU
j
1k

2

ST
j
1

C lim
n!1

kEun.0/k
2

L2
x
<1: (5-100)

The equation of u<k
.n/

is given by

eq.u<k
.n// D

P
j<k

�
hri� hri

j
1

�
Eu

j

.n/
Cf 0

�
u<k
.n/

�
�
P

j<k

f 0
�
u

j

hni

�
; (5-101)
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where u
j

hni
D .hri

j
1/
�1hriu

j

.n/
as before. The nonlinear part goes to 0 by (5-66), while the linear part

vanishes if h
j
1 D 1, and is dominated if h

j
1 D 0 by

k.hri� jrj/Eu
j

.n/
kL1

t L2
x.I /
. jI j khri�1

Eu
j

.n/
kL1t L2

x.R/

� jI j khr=hj
ni
�1 EU

j
1kL1t L2

x.R/
! 0 .n!1/; (5-102)

by continuity in t for bounded t , and by the scattering of yU j
1 for jt j ! 1, which follows from

k yU
j
1kŒW ��

2
.R/ <1. Hence Lemma 4.4 gives for any 1-admissible Z

sup
k

lim
n!1

ku<k
.n/kŒZ �2.R/ <1: (5-103)

On the other hand, by Lemma 4.3 we can extend the smallness of wk
n from L1t Bs

1;1 to the other
spaces that we need for the nonlinear difference estimates, those being ŒS �0, ŒL�0, ŒX �2, ŒH"�0, ŒM ]

" �0,
and ŒW"�2, depending on d and f . In addition, in the exponential case (1-29), Lemmas 5.3 and 2.11
imply that u<k

.n/
and wk

n are both in the subcritical regime for the Trudinger–Moser inequality. Putting
them together with the above bounds on u<k

.n/
in the nonlinear difference estimates (4-61)–(4-64) or

(5-82)–(5-84), we get

lim
k!K

lim
n!1

kf 0.u<k
.n/ Cw

k
n /�f

0.u<k
.n//kST �.I / D 0; (5-104)

and so
lim

k!K
lim

n!1
keq.u<k

.n/ Cw
k
n /kST �.I / D 0: (5-105)

Hence for k sufficiently close to K and n large enough, the true solution un and the approximate
solution u<k

.n/
Cwk

n satisfy all the assumptions of the perturbation Lemma 4.5. Hence un is bounded in
global Strichartz norms for large n. �

6. Extraction of a critical element

In this section, we prove that if uniform global Strichartz bound fails strictly below the variational thresh-
old m, then we have a global solution in KC with infinite Strichartz norm and with the minimal energy,
which is called a critical element.

Let E? be the threshold for the uniform Strichartz bound. More precisely,

E?
WD supfA > 0 j S.A/ <1g; (6-1)

where S.A/ denotes the supremum of kukST .I / for any strong solution u in KC on any interval I

satisfying E.u/ � A.
The small energy scattering tells us E? > 0, and the presence of the ground state tells us E? � m, at

least in the subcritical case, and also in the other cases if we allow complex-valued solutions, because the
stationary solutions with different masses yield standing wave solutions of the original NLKG. Anyway,
we are going to prove E? � m by contradiction.

We remark that there is an alternative threshold:

E?
FS WD sup

�
A > 0

ˇ̌̌̌
if u is a solution in KC of NLKG
with E.u/�A, then kukST .R/<1

�
: (6-2)
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Obviously E? � E?
FS

. Kenig and Merle [2008] chose this definition. The advantage of using E? is
that E? � m implies uniform bound on the global Strichartz norms below m, which is very important
in applications where we want to perturb the equation.

The next lemma is the conclusion of this section.

Lemma 6.1. Assume that f satisfies (1-36), and let un be a sequence of solutions of NLKG in KC on
In � R satisfying

E.un/! E? < m; kunkST .In/ !1 .n!1/: (6-3)

Then there exists a global solution u� of NLKG in KC satisfying

E.u�/ D E?; ku�kST .R/ D1: (6-4)

In addition, there are a sequence .tn;xn/ 2 R�Rd and ' 2 L2.Rd / such that along some subsequence,

kEun.0;x/� e�ihritn'.x�xn/kL2
x
! 0: (6-5)

We call such a global solution u� a critical element. Observe that by the definition of E?, we can find
such a sequence un, once we have E? < m.

Proof. We can translate un in t so that 0 2 In for all n. Then we consider the linear and nonlinear
profile decompositions of un, using Lemma 5.1 in the H 1 critical case (1-28) and Corollary 5.2 in the
subcritical and exponential cases.

eihrit
Eun.0/ D

P
j<k

Evj
n C Ew

k
n ; Evj

n D eihri.t�t
j
n /T j

n '
j ;

u<k
.n/ D

P
j<k

u
j

.n/
; Eu

j

.n/
D T j

n
EU

j
1..t � tj

n /=hj
n/;

kEvj
n .0/� Eu

j

.n/
.0/kL2

x
! 0 .n!1/:

(6-6)

Lemma 5.6 precludes that all the nonlinear profiles EU j
1 have finite global Strichartz norm. On the other

hand, every solution of NLKG in KC with energy less than E? has global finite Strichartz norm by the
definition of E?. Hence by Lemma 5.3 we deduce that there is only one profile i.e. K D 1, and moreover

zE.Eu0
.n// D E?; Eu0

.n/.0/ 2
zKC; k yU 0

1kST 0
1.R/

D1; lim
n!1

k Ew1
nkL1t L2

x
D 0: (6-7)

If h0
n ! 0 in the critical case, then yU 0

1 D jrj
�1 Re EU 0

1 solves the massless equation

.@2
t ��/

yU 0
1 D f

0. yU 0
1/; (6-8)

and satisfies

E0. yU 0
1/ D E? < m D J .0/.Q/; Kw. yU 0

1.0// � 0; k yU 0
1kŒW ��

2
D1; (6-9)

where Q is the massless ground state and Kw is the massless version of K. However, there is no such
solution, by [Kenig and Merle 2008].5 Hence h0

n � 1 in all cases, and we obtain (6-5).

5That reference is restricted to the dimensions d � 5 for simplicity of the perturbation argument, but the elimination of
critical elements works in any higher dimensions.
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Hence h0
n � 1 in all cases, and we obtain (6-5).

It remains to prove that yU 0
1 D hri

�1 Re EU 0
1 is a global solution. Suppose not. Then we can choose

a sequence tn 2 R approaching the maximal existence time. Since the sequence of solutions yU 0
1.tC tn/

satisfies the assumption of this lemma, we may apply the above argument to it. In particular, from (6-5)
we obtain

k EU 0
1.tn/� e�ihrit 0n .x�x0n/kL2

x
! 0; (6-10)

for some  2 L2
x and another sequence .t 0n;x

0
n/ 2 R�Rd . Let Ev WD eihrit . Since it is a free solution,

for any " > 0 there is ı > 0 such that for any interval I satisfying jI j � 2ı, we have khri�1EvkST .I / � ",
where ST D ŒW �2\ ŒK�2 as in (5-59). Then (6-10) implies that

lim
n!1

khri
�1eihrit EU 0

1.tn/kST .�ı;ı/ � ": (6-11)

If " > 0 is small enough, this implies that the solution yU 0
1 exists on .tn � ı; tn C ı/, by the iteration

argument, for large n. This contradicts the choice of tn. Hence yU 0
1 is global and so a critical element. �

7. Extinction of the critical element

In this section, we prove that the critical element can not exist by deriving a contradiction from a few
properties of it. The main idea follows [Kenig and Merle 2006; 2008]. Let uc be a critical element given
by Lemma 6.1. Since NLKG is symmetric in t , we may assume that kuckST .0;1/ D 1. We call such
u a forward critical element. Note that since the critical element is in KC, we have EQ.uI t/ � E.u/

uniformly, by Lemma 2.10.

Compactness. First we show that the trajectory of a forward critical element is precompact for positive
time in the energy space modulo spatial translations.

Lemma 7.1. Assume that f satisfies (1-36), and let uc be a forward critical element. Then there exists
c W .0;1/! Rd such that the set

f.u; Pu/.t;x� c.t// j 0 < t <1g (7-1)

is precompact in H 1.Rd /�L2.Rd /.

Proof. The proof in [Kenig and Merle 2008] can be adapted verbatim, but we give a sketch for the sake
of completeness. Recall the convention u$ Eu defined on page 427.

It suffices to prove precompactness of fEu.tn/g in L2
x for any t1; t2; � � � > 0. If tn converges, then it

is trivial from the continuity in t . Hence we may assume that tn ! 1. Applying Lemma 6.1 to the
sequence of solutions u.t C tn/, we get another sequence .t 0n;x

0
n/ 2 R1Cd and ' 2 L2 such that

Eu.tn;x/� e�ihrit 0n'.x�x0n/! 0 in L2
x .n!1/: (7-2)

If t 0n ! �1, then we have

keihrit
Eu.tn/kST .0;1/ D ke

ihrit'kST .�t 0n;1/
C o.1/! 0; (7-3)

so that we can solve NLKG of u for t > tn with large n globally by iteration with small Strichartz norms,
contradicting its forward criticality.
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If t 0n !C1, then we have

keihrit
Eu.tn/kST .�1;0/ D ke

ihrit'kST .�1;�t 0n/
C o.1/! 0; (7-4)

so that we can solve NLKG of u for t < tn with large n with diminishing Strichartz norms, which implies
u D 0 by taking the limit, a contradiction.

Thus t 0n is precompact, so is Eu.tn;xCx0n/ in L2
x by (7-2). �

As a consequence, the energy of u stays within a fixed radius for all positive time, modulo arbitrarily
small rest. More precisely, we define the exterior energy by

ER;c.uI t/ D

Z
jx�cj�R

jut j
2
Cjruj2Cjuj2Cjf .u/jC juf 0.u/jdx; (7-5)

for any R > 0 and c 2 Rd . Then we have

Corollary 7.2. Let u be a forward critical element. Then for any " > 0, there exist R0."/ > 0 and
c.t/ W .0;1/! Rd such that at any t > 0 we have

ER0;c.t/.uI t/ � "E.u/: (7-6)

Zero momentum and non-propagation. Next we observe that the critical element can not move with
any positive speed in the sense of energy. For that we first need to see that the (conserved) momentum

P .u/ WD

Z
Rd

utrudx 2 Rd (7-7)

is zero for any critical element u.

Lemma 7.3. For any critical element u, we have P .u/ D 0.

Proof. For j D 1; : : : ; d and � 2 R, we define the operator L�j of Lorentz transformation:

L�j u.x0; : : : ;xd / D u.y0; : : : ;yd /;

y0 D x0 cosh�Cxj sinh�; yj D x0 sinh�Cxj cosh�; yk D xk .k 6D 0; j /:
(7-8)

Then L˛j L
ˇ
j D L

˛Cˇ
j . Since @�y0 D yj and @�yj D y0, we have

@�L�j u D L�j Œ.xj@t C t@j /u�: (7-9)

Also we have

@tL
�
j D L�j .s@t C c@j /; @t tL

�
j D L�j .s

2@t t C 2sc@tj C c2@jj /;

@j L�j D L�j .c@t C s@j /; @jj L�j D L�j .c
2@t t C 2sc@tj C s2@jj /;

(7-10)

where s WD sinh� and c WD cosh�. In particular Œ@2
t ��;L

�
j � D 0, and so L�j maps global solutions to

themselves. For the space-time norm, we have“
L�j v dt dxj D

“
v

ˇ̌̌̌�
c s

s c

�ˇ̌̌̌
dt dxj D

“
v dt dxj I (7-11)
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hence L�j preserves all L
p
t;x.R

1Cd / norm. For any solution u, we have

@0
�E.L�j u/ D hut j @

0
�@tL

�
j uiC hru j @0

�rL�j uiC hu�f 0.u/ j @0
�L�j ui

D hut j xj ut t C tutj Cuj iC huk j xj ukt C tukj C ıkj ut iC hu�f
0.u/ j xj ut C tuj i

D hxj ut j �uiC 2hut j uj i � hxj ukt j uki D hut j uj i D P .u/; (7-12)

where @0
�
WD @�j�D0. If Pj .u/ 6D 0 for some j , then we obtain another global solution L�j u, which

has smaller energy and infinite Strichartz norm. It also belongs to KC, by continuity. More precisely,
the continuity of L�j u in � in the energy space easily follows from the local wellposedness if u has
compactly supported initial data. Then the original solution is approximated by smooth cut-off using the
finite propagation property. Thus we obtain another critical element with less energy, a contradiction.
Hence P .u/ D 0. �

Next we see stillness of critical elements in terms of the energy propagation. For any R> 0, we define
the localized center of energy XR.t/ 2 Rd by

XR.uI t/ WD

Z
�R.x/xe.u/.t;x/ dx; (7-13)

where �
R

is as defined in (1-23), and e.u/ denote the energy density of u, namely

e.u/ D .jut j
2
Cjruj2Cjuj2/=2�f .u/: (7-14)

From the energy identity Pe.u/ D r � .utru/, we get for any solution u

d

dt
XR.uI t/ D �dP .u/C

Z
Œd.1��R.x//C .r@r /�R.x/�utru: (7-15)

If u is a critical element, the first term disappears by the above lemma, so we haveˇ̌̌̌
d

dt
XR.uI t/

ˇ̌̌̌
.ER;0.uI t/: (7-16)

Moreover, since u is in KC, by Lemma 2.12 there exists ı0 2 .0; 1/ such that

K1;0.u.t// � ı0ku.t/k
2
H 1 for all t 2 R: (7-17)

Lemma 7.4. Let u be a forward critical element, and let R0."/ > 0, c.t/ 2 Rd and ı0 > 0 be as in (7-6)
and (7-17). If 0 < "� ı0 and R� R0."/ then we have

jc.t/� c.0/j � R�R0."/; (7-18)

for 0 < t < t0 till some t0& ı0R=".

Proof. By translation in x, we may assume that c.0/D 0. Let t0 be the final time for the above property

t0 D infft > 0 j jc.t/j � R�R0g: (7-19)
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Then the finite speed of propagation implies that t0 > 0. For any 0 < t < t0 we have jc.t/j � R�R0,
hence by (7-6) we have ER;0 � "E.u/, and so by (7-16) we getˇ̌̌̌

d

dt
XR.uI t/

ˇ̌̌̌
. "E.u/: (7-20)

Next we expand it around c:

c.t/ �XR.uI t/ D jc.t/j
2

Z
�R.x/e.u/ dxC

Z
�R.x/c � .x� c/e.u/ dx; (7-21)

where the first term on the right is bounded from below by

E.u/�

Z
.1��R.x//e.u/ dx � k Pu.t/k2

L2
x
=2CK1;0.u.t//�CER;0.t/

� ı0E.u/�C "E.u/& ı0E.u/; (7-22)

since " � ı0. The second term of (7-21) is dominated by splitting the integral into jx � cj � R0 and
jx � cj � R0. In the interior it is bounded by using the energy bound, and in the exterior it is bounded
by using (7-6). Thus we obtainˇ̌̌̌Z

�R.x/c � .x� c/e.u/ dx

ˇ̌̌̌
. .R0CR"/E.u/jcj: (7-23)

In the same way we have jXR.uI 0/j. .R0CR"/E.u/, since c.0/ D 0. Thus we get

ı0E.u/jc.t/j. .R0CR"C "t/E.u/; (7-24)

and sending t ! t0, we get ı0R. "t0. �

Dispersion and contradiction. Finally we use the localized virial identity to see dispersion of the critical
element, which will contradict the above non-propagation property. For any R > 0, we define the
localized virial VR.uI t/ 2 R by

VR.uI t/ WD h�R.x/ut j .x � r Cr �x/ui; (7-25)

where �
R

is as defined in (1-23). Then we have for any solution u,

d

dt
VR.uI t/ D �

Z
�R.x/Œ2jruj2� d.D� 2/f .u/�C

d

2
juj2��R.x/ dx

�

Z
r@r�R.x/

�
jut j

2
C 2jur j

2
� jruj2� juj2C 2f .u/

�
dx

� �Kd;�2.u.t//CCER;0.uI t/: (7-26)

If u is a critical element, then u 2 KC and hence by Lemma 2.12, there exists ı2 2 .0; 1/ such that

Kd;�2.u.t// � ı2kru.t/k2
L2

x
(7-27)

for all t > 0. Thus we obtain, integrating in t ,

VR.uI t0/ � VR.uI 0/� ı2

Z t0

0

kru.t/k2
L2

x
dt CC "E.u/t0: (7-28)
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Now by the compactness Lemma 7.1, we have:

Lemma 7.5. Let u be a forward critical element. Then for any " > 0 there exists C > 0 such that

ku.t/k2
L2

x
� Ckru.t/k2

L2
x
C "k Pu.t/k2

L2
x
; (7-29)

for all t > 0.

Proof. Otherwise there exists a sequence tn > 0 such that

ku.tn/k
2

L2
x
> nkru.tn/k

2

L2
x
C "k Pu.tn/k

2

L2
x
: (7-30)

Since u is L2
x bounded, it follows that kru.tn/kL2

x
! 0. Then Lemma 7.1 implies that, after passing to

a subsequence, u.tn/! 0 strongly in H 1
x , then the above inequality implies that Pu.tn/! 0 too. Hence

EQ.uI tn/! 0, which contradicts the energy equivalence, Lemma 2.10. �

Multiplying the equation with u, and then applying the above lemma with " D 1
4

, we obtain

@t hu j Pui D

Z
Rd

j Puj2� jruj2� juj2CDf .u/ dx �

Z
Rd

j Puj2=2Cjuj2�C jruj2dx; (7-31)

with some C > 0. Hence Z t0

0

k Puk2
L2

x
Ckuk2

L2
x
dt .E.u/C

Z t0

0

kruk2
L2

x
dt; (7-32)

and so

t0E.u/ �

Z t0

0

EQ.uI t/ dt .E.u/C

Z t0

0

kruk2
L2

x
dt: (7-33)

Now we choose positive " � ı2ı0 and R � R0."/. Then by Lemma 7.4 there exists t0 � ı0R="

such that ER;0.uI t/ � "E.u/ for 0 < t < t0. Then from (7-28) and (7-33), we have

�VR.uI t0/CVR.uI 0/& Œı2t0�C "t0�C �E.u/& ı2t0E.u/ �
ı2ı0R

"
E.u/; (7-34)

while the left-hand side is dominated by RE.u/— a contradiction when "=ı2ı0 is small enough. �

Appendix: The range of scaling exponents

In Section 2, we have shown that m˛;ˇ in (1-17) is positive and achieved (after modification of the mass
in the critical and exponential cases) if .˛; ˇ/ satisfies (1-16). Here we see that it is also necessary,
modulo the obvious symmetry .˛; ˇ/ ! .�˛;�ˇ/. For simplicity, we consider only the pure power
nonlinearity.

Proposition A.1. Assume that neither .˛; ˇ/ 2 R2 nor .�˛;�ˇ/ satisfies (1-16). There exists q 2

.2?; 2
?/ such that m˛;ˇ D �1 for f .'/ D j'jq .

Proof. By symmetry with respect to .˛; ˇ/! .�˛;�ˇ/, we may assume that ˇ > 0 and N�D 2˛Cdˇ > 0.
First we consider the case ˛ < 0 and � > 0, which implies that d � 2. Let .2?; 2?/ 3 q D 2C p,

then we have
˛pC N� � d�=.d � 2/ > 0: (A-1)
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Decompose K.'/ by setting

K D K1CK2; K1.'/ D �
kr'k2

L2

2
; K2.'/ D N�

k'k2
L2

2
� .˛pC N�/F.'/: (A-2)

Suppose that 0 6D ' 2 H 1.Rd / satisfies K2.'/ D 0. If there is no such ', then K is positive definite
and the minimization set in (1-17) becomes empty. Let 1 < � ! 1C 0. Then

0 > K2.�'/! K2.'/ D 0; K1.�'/! K1.'/ > 0: (A-3)

Now let �.�/ > 0 solve

0 D K.�'.x=�// D �d�2K1.�'/C�
dK2.�'/I (A-4)

in other words �.�/ D Œ�K2.�'/=K1.�'/�
1=2. Then �.�/!1 as � ! 1C 0 due to (A-3). Since

N�J. / D K. /Cˇkr k2
L2 C˛pF. /; (A-5)

we obtain
N�J.�'.x=�// D ˇ�2�d�2

kr'k2
L2 C˛p�

dF.�'/! �1; (A-6)

which implies that m D �1.
Next, if N� D 0 > ˛, which implies d � 2, then for any nonzero ' 2 H 1.Rd / satisfying K.'/ D 0

we have
K.'.x=�// D �dK.'/ D 0; (A-7)

and similarly as above,
J.'.x=�// D O.��d /!1 as �!1:

Finally consider the case � < 0 < N�. Then ˛pC 2ˇ D 0 has a solution p 2 .4=d; 2? � 2/. Since
˛pC N� D ˛pC 2ˇC�, there exists p 2 .4=d; 2?� 2/ such that

˛pC N� < 0 < ˛pC 2ˇ: (A-8)

Then KN .'/ D �.˛pC N�/F.'/ is positive and so for any ' 2 H 1.Rd /, K.�'/ � 0 if � � 1. Since
the kinetic term in K is negative, there exists �.�/ 2 Rd such that K.ei�x�'/ D 0. Since

��J. / D �K. /C 2ˇ
k'k2

L2

2
� .˛pC 2ˇ/F. /; (A-9)

we obtain

��J.ei�x�'/ D 2ˇ�2
k'k2

L2

2
� .˛pC 2ˇ/F.� /! �1; (A-10)

which implies that m D �1. �
The above proof shows that if ˛ < 0 and � � 0 then m D �1 for all q 2 .2; 2?�. The choice of q

was needed only in the other region.
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Table of Notation
Notation applies to any s 2 R, � � 0, .˛; ˇ/ 2 R2, j ; k 2 Z, Z 2 R3, I � R, '; 2 H 1.Rd /,

u 2 Ct .H
1
x .R

d //, any suffix };~, any sequence 'n 2 H 1.Rd /, and any functional G on H 1.Rd /.

d 2 N, 2?; 2
? > 0: space dimension and critical powers (1-3)

Dimension and scaling
˛; ˇ 2 R, N� � � � 0: scaling exponents and their functions (2-1)
'�
˛;ˇ

, L˛;ˇG: rescaled family and scaling derivative (1-13) (1-14)
(subscript }˛;ˇ and ~˛;ˇ are often written as } and ~)

1st order representation Eu $ u: linked with each other by (4-1)

F.'/; f .s/ � 0: nonlinear energy and its density (1-11)
Nonlinearity fS .s/; fL.s/ � 0: small and large parts of f (1-24)

p1;p2 > 0, �0 � 0: leading powers of fS and fL (1-25) (1-26) (1-29)

J.'/;J .�/.'/ 2 R: static energy, with mass change (1-11) (1-12)
K˛;ˇ.'/;K

.c/

˛;ˇ
.'/ 2 R, H˛;ˇ.'/ � 0: derivatives of J (1-15) (2-26)

K
Q

˛;ˇ
.'/;KN

˛;ˇ
.'/ 2 R: quadratic and nonlinear parts of K (2-2)

Functionals
E.uI t/;E.';  /; e.u/ 2 R: total energy and its density (1-5) (7-14)
EQ.uI t/;EQ.';  / � 0: linear energy (1-37)
zE.'/; zK˛;ˇ.'/ 2 R: vector versions of E and K (4-3)
P .uI t/;ER;c.uI t/ 2 R: momentum and exterior energy (7-7) (7-5)
XR.uI t/;VR.uI t/ 2 R: localized energy center and virial (7-13) (7-25)

m˛;ˇ;E
? � 0: static and scattering energy thresholds (1-17) (6-1)

K˙˛;ˇ , zKC
˛;ˇ

: splitting below the threshold (1-18) (4-5)
Variational splittings C �

TM.G/;C
?
TM.G/ 2 Œ0;1�: Trudinger–Moser ratio (2-47) (2-49)

M.G/ 2 Œ0;1�: Trudinger–Moser threshold on PH 1 (2-48)
conc G..'n/n/ 2 R: concentration at x D 0 (2-51)

ŒZ��.I/; ŒZ�0.I/; ŒZ�
�
�.I/: Lebesgue–Besov spaces on I �Rd (4-7)

Zs;Z�.s/ 2 R3: regularity change and dual of exponents (4-9)
reg� .Z/; str� .Z/; dec� .Z/ 2 R: regularity and decay indexes (4-8)
H;W;K;M ];V 2 R3: exponents for d 2 N (4-24) (4-31) (5-68)

Function spaces X;S;L 2 R3: exponents for d � 4 (4-31) (4-54)
and exponents zM ;M; yM ; zN ;N;Q;P;Y;R;G 2 R3: exponents for d � 5 (4-68) (4-69) (5-87)

H";W";M
]
" 2 R3: exponents for d � 5 (5-81)

H 1
� , MC: H 1.R2/ and a set of Fourier multipliers on Rd (4-38) (5-2)

X, Y, Y0, zY, Y�
0
, Y�: Strichartz-type spaces (4-54) (4-77)

ST .I/;ST �.I/;ST }1.I/: Strichartz-type spaces on I �Rd (5-59) (5-60)

.t}
~
;x}
~
; h}
~
/ 2 R1Cd � Œ0; 1�: time-space-scale shift parameter page 438


}
~
D �t}

~
=h}
~
2 R: rescaled time shift

h}1 2 f0; 1g,

}
1 2 Œ�1;1�: limit of h}n and 
}n

Profile decomposition
T }
~
'; hri~}': operators dependent on .x}

~
; h}
~
/ (5-1)

.t
jl
n ;x

jl
n ; h

jl
n /, S

jl
n u: relative shift and transform (5-21) (5-20)

�}
~
2 R, �}1 2 Œ�1;1�: scaled time shift and its limit (5-1)

EU}1, yU}1, : nonlinear profiles (scaled limit) (5-52) (5-53)
Eu

j

.n/
, Eu<k
.n/

: nonlinear profiles (in original scales) (5-54) (5-58)
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