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SOBOLEV SPACE ESTIMATES FOR A CLASS OF BILINEAR
PSEUDODIFFERENTIAL OPERATORS LACKING SYMBOLIC CALCULUS

FRÉDÉRIC BERNICOT AND RODOLFO H. TORRES

The reappearance of what is sometimes called exotic behavior for linear and multilinear pseudodifferential
operators is investigated. The phenomenon is shown to be present in a recently introduced class of bilinear
pseudodifferential operators which can be seen as more general variable coefficient counterparts of the
bilinear Hilbert transform and other singular bilinear multipliers operators. We prove that such operators
are unbounded on products of Lebesgue spaces but bounded on spaces of smooth functions (this is the
exotic behavior referred to). In addition, by introducing a new way to approximate the product of two
functions, estimates on a new paramultiplication are obtained.

1. Introduction

An anomalous yet recurrent phenomenon. This article is a continuation of recent work devoted to the
development of a theory of bilinear and multilinear pseudodifferential operators which are the x-dependent
counterparts of the singular multipliers modeled by the bilinear Hilbert transform. In particular we will
further study the class of bilinear pseudodifferential operators BS0

1;1I�=4
and show that it has a sometimes

called exotic or forbidden behavior regarding boundedness on function spaces.
By a bilinear pseudodifferential operator we mean an operator, defined a priori on test functions, of the

form
T� .f;g/.x/D

Z
R2n

�.x; �; �/ yf .�/yg.�/eix�.�C�/ d� d�:

Two main types of x-dependent classes of symbols have been studied in the literature. One is the
Coifman–Meyer type BSm

�;ı
.Rn/, 0� ı � � � 1, m 2 R, of symbols satisfying estimates of the form

j@˛x@
ˇ

�
@��.x; �; �/j � C˛ˇ .1Cj�jC j�j/

mCıj˛j��.jˇjCj j/; (1-1)

for all multi-indices ˛; ˇ;  .
The other type corresponds to classes denoted by BSm

�;ıI �
.Rn/, 0� ı��� 1, m2R, ��=2<� ��=2,

and consisting of symbols satisfying

j@˛x@
ˇ

�
@��.x; �; �/j � C˛ˇ I� .1Cj�� tan.�/�j/mCıj˛j��.jˇjCj j/ (1-2)

(where for � D �=2 the estimates are interpreted to decay in terms of 1Cj�j only). Both types can be
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seen as bilinear analogs of the classical Hörmander classes Sm
�;ı
.Rn/ of linear pseudodifferential operators

T� .f /.x/D

Z
Rn

�.x; �/ yf .�/eix��d�;

with symbols satisfying
j@˛x@

ˇ

�
�.x; �/j � C˛ˇ.1Cj�j/

mCıj˛j��jˇj: (1-3)

As the name indicates, the first type of bilinear classes was introduced by Coifman and Meyer [1975;
1978a; 1978b] at least in the case mD 0, �D 1 and ıD 0. It is now well understood that the operators in
BS0

1;0
are examples of certain singular integrals and fit within the general multilinear Calderón–Zygmund

theory developed in [Grafakos and Torres 2002]; see also [Christ and Journé 1987; Kenig and Stein 1999].
For other values of the parameters, the classes BSm

�;ı
were studied in [Bényi 2003; Bényi and Torres

2003; 2004; Bényi et al. 2006; 2010].
The general classes BSm

�;ıI �
with x-dependent symbols were first introduced in [Bényi et al. 2006]. A

connection to the bilinear Hilbert transform and the work of Lacey and Thiele [1997; 1999] is given by
the study in the x-independent case of singular multipliers in one dimension satisfying

j@
ˇ

�
@��.�; �/j � Cˇ j�� tan.�/�j�jˇj�j j:

This type of multipliers was investigated in [Gilbert and Nahmod 2000; 2001; 2002; Muscalu et al. 2002].
We also recall that if for � in S0

1;0
.R/ we define

�.x; �; �/D �.x; � � �/; (1-4)

then � is in BS0
1;0I�=4

. These operators have a certain modulation invariance:

T� .e
iw�f; eiw�g/.x/D ei2wxT� .f;g/.x/

for all w 2 R. Such a T� fits then within the more general framework of modulation invariant bilinear
singular integrals of [Bényi et al. 2009]. Boundedness properties for symbols in the classes BS0

1;0I �
.R/,

not necessarily of the form (1-4), were obtained in [Bernicot 2008; 2010]. See [Torres 2009] for further
motivation and references.

In this article we want to discuss the reappearance of the exotic phenomenon for the parameters mD 0

and �D ıD 1. Namely, the unboundedness on Lp spaces of operators in BS0
1;0I �

, but their boundedness
on spaces of smooth functions.

In the linear case this phenomenon for S0
1;1

is by now well understood through works such as [Stein
1993; Meyer 1981a; Runst 1985; Bourdaud 1988; Hörmander 1988; Torres 1990]. It is intimately related
to the lack of calculus for the adjoints of operators in such class and, ultimately, this behavior has
been interpreted through the T .1/-Theorem of David and Journé [1984]. The class S0

1;1
is the largest

class of linear pseudodifferential operators with Calderón–Zygmund kernels but their exotic behavior
on Lp spaces is given by the fact that for T in the class S0

1;1
, the distribution T �.1/ is in general not

in BMO (though T .1/ is). Here T � is the formal transpose of T . Moreover, the boundedness of an
operator T in S0

1;1
on several other spaces of function is related to the action (properly defined) of T � on
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polynomials; see [Torres 1991] and the relation to the work of Hörmander [1989] found in [Torres 1990].
By comparison, the smaller classes S0

1;ı
with ı < 1 are closed by transposition and hence the operators in

such classes do satisfy the hypotheses of the T .1/-Theorem and are bounded on Lp for 1< p <1.
Likewise, in the bilinear case, the class BS0

1;1
is the largest class of pseudodifferential operators with

bilinear Calderón–Zygmund kernels. But again, T �1 and T �2, the two formal transposes of an operator
T in BS0

1;1
, may fail to satisfy the hypotheses of the T .1/-Theorem for bilinear Calderón–Zygmund

operators in [Grafakos and Torres 2002]. A symbolic calculus for the transposes hold in the smaller
classes BS0

1;ı
with ı < 1 [Bényi and Torres 2003; Bényi et al. 2010], rendering the boundedness of

operators in BS0
1;ı

. Though unbounded on product of Lp spaces, the class BS0
1;1

is still bounded on
product of Sobolev spaces [Bényi and Torres 2003]. For the Coifman–Meyer symbols there is then a
complete analogy with the linear situation.

For the newer more singular classes BS0
1;0I�

a symbolic calculus for the transposes was shown to exist
in [Bényi et al. 2006] and extended in [Bernicot 2010]. Hence, the boundedness on product of Lp spaces
of operators in such classes and of the form (1-4) can be easily obtained from the new T .1/-Theorem for
modulation invariant singular integrals in [Bényi et al. 2009]. The class BS0

1;0I�
also produced bounded

operators on Sobolev spaces of positive smoothness as shown in [Bernicot 2008]. All these developments
motivate us to look for exotic behavior in the larger classes BS0

1;1I�
.

New results. In this article, we show with an example that there exit modulation invariant operators in
the class BS0

1;1I�
that fail to be bounded on a product of Lp spaces (Proposition 2.1). This immediately

implies that an arbitrary operator T in BS0
1;1I�

may not have both T �1.1; 1/ and T �2.1; 1/ in BMO, as
defined in [Bényi et al. 2009]. It follows also that a symbolic calculus for the transposes in those classes
is not possible. Nevertheless, as the reader may expect after the above introduction, we shall show that
the classes are bounded on product of Sobolev spaces. For simplicity in the presentation we will only
consider the case BS0

1;1I�=4
. The corresponding results for other values of � in .��=2; �=2/ n f��=4g

(avoiding the degenerate directions) can be obtained in similar way.
In the case of modulation invariant operators, we obtained boundedness on product of Sobolev spaces

with positive smoothness (Theorem 3.1). Surprisingly if we do not assume modulation invariance we
can only obtain the corresponding result on Sobolev spaces of smoothness bigger than 1

2
(Theorem 3.3).

We do not know if the result is sharp, but a better result does not seem attainable with our techniques.
Table 1 summarizes the known results and the new ones and puts in evidence the parallel situation in
several classes of pseudodifferential operators.

As a byproduct of our results, we also improve on some known estimates on paramultiplication by
introducing a new way to approximate the pointwise product of two functions with errors better localized
in the frequency plane (see Section 4 for precise statements).

Further definitions and notation. We recall the maximal Hardy–Littlewood operator M defined for a
function f 2L1

loc.R/ by

M.f /.x/D sup
B ball
B3x

1

jBj

Z
B

jf .y/j dy:
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Class/symbol estimates Lebesgue spaces Sobolev spaces

(linear) S0
1;0

j@
ˇ
x@
˛
�
�.x; �/j � C˛ˇ.1Cj�j/

�j˛j

Lp!Lp

1< p <1

W s;p!W s;p

1< p <1; s > 0

(linear) S0
1;1

j@
ˇ
x@
˛
�
�.x; �/j � C˛ˇ.1Cj�j/

jˇj�j˛j unbounded
W s;p!W s;p

1< p <1; s > 0

(bilinear) BS0
1;0

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj�jC j�j/

�j˛j

Lp �Lq!Lt

1< p; q <1

1=pC 1=q D 1=t

W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;1

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj�jC j�j/

jˇj�j˛j unbounded
W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;0I�=4

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj� � �j/

�j˛j

Lp �Lq!Lt

1< p; q <1

1=pC 1=q D 1=t < 3
2

W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;1I�=4

j@
ˇ
x@
˛
�;�
�.x; � � �/j � C˛ˇ.1Cj� � �j/

jˇj�j˛j unbounded
W s;p �W s;q!W s;t

1< p; q; t <1; s > 0

1=pC 1=q D 1=t

(bilinear) BS0
1;1I�=4

j@
ˇ
x@
˛
�;�
�.x; �; �/j � C˛ˇ.1Cj� � �j/

jˇj�j˛j unbounded
W s;p �W s;q!W s;t

1< p; q; t <1; s > 1
2

1=pC 1=q D 1=t

Table 1. Summary of the boundedness properties of pseudodifferential operators on
Lebesgue and Sobolev spaces.

We write M 2 DM ıM for the composition of the maximal operator with itself.
For a function f in the Schwartz space S of smooth and rapidly decreasing functions, we will define

the Fourier transform by
yf .�/D

Z
R

f .x/e�ix�� dx:

With this definition, the inverse Fourier transform is given by f _.�/D .2�/�1 yf .��/. Both the Fourier
transform and its inverse can be extended as usual to the dual space of tempered distributions S0.

For a bounded symbol � , the bilinear operator

T� .f;g/.x/D

Z
eix.�C�/ yf .�/yg.�/�.x; �; �/ d� d�

is well defined and gives a bounded function for each pair of functions f , g in S. Moreover, for �
in BS0

1;1I�=4
, the operator T� clearly maps S � S into S0 continuously. This justifies many limiting

arguments and computations that we will perform without further comment.
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The formal transposes, T �1 and T �2, of an operator T W S�S! S0 are defined by

hT �1.h;g/; f i D hT .f;g/; hi D hT �2.f; h/;gi;

where h � ; � i is the usual pairing between distributions and test functions.
We will use the notation ‰2�k for the L1-normalized function 2k‰.2k � / and consider the Littlewood–

Paley characterization of Sobolev spaces W s;p, 1< p <1, s � 0. That is, for a function ‰ in S with
spectrum contained in f� W 2�1 � j�j � 2g and another function ˆ also in S and with spectrum included
in fj�j � 1g, and such that

ŷ .�/C
X
k�0

y‰.2�k�/D 1 (1-5)

for all � , we have

kf kW s;p � kˆ�f kLp C

�X
k�0

22ks
j‰2�k �f j2

�1=2
Lp

: (1-6)

Here k � kLp denotes the usual norm of the Lebesgue space Lp.R/. For s D 0, the norm k � kW 0;p is
equivalent to k � kLp . Also, by BMO we mean as usual the classical John–Nirenberg space of functions of
bounded mean oscillation.

By homogeneity considerations, we will investigate boundedness properties of the form

T WW s;p
�W s;q

!W s;t ; (1-7)

where the exponents satisfy 1� p; q; t �1 and the Hölder relation

1

p
C

1

q
D

1

t
: (1-8)

2. Unboundedness on Lebesgue spaces

We first show that for s D 0 the bound (1-7) may fail for BS0
1;1I�=4

.R/.

Proposition 2.1. There exists a symbol � 2 S0
1;1

such that the operator T� with symbol �.x; �; �/ D
�.x; � � �/ is in BS0

1;1I�=4
and is not bounded from Lp �Lq into Lt for any exponents p; q; t satisfying

(1-8).

Proof. As in [Bényi and Torres 2003], we adapt to the bilinear situation a by now classical counterexample
in the linear setting; see [Bourdaud 1988]. Let  be a function in S satisfying y � 0, y .�/¤ 0 only for
5
7
< j�j< 5

3
, and y .�/D 1 for 5

6
� j�j< 4

3
. Consider the symbol

�.x; �/D
X
j�4

e�i2jx y .2�j�/;

which is easily seen to be in S0
1;1

. Select another function  1 in S satisfying supp . y 1/ � Œ0;
1
3
� and

define

f D

mX
jD4

aj ei2jx 1.x/;
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for arbitrarily coefficients aj . For �.x; �; �/D �.x; �� �/, we have

T� .f;  1/.x/D
X

j ;k�4

ake�i2jx

Z
R2

eix.�C�/ y .2�j .�� �// y 1.� � 2k/ y 1.�/ d� d�: (2-1)

For each k, the integration at most takes place where 0� �� 1
3

and 2k � � � 2k C
1
3

, which implies

�2k
�

1
3
� �� � � 1

3
� 2k ;

and then for each j ,
�2k�j

�
1
3
2�j
� 2�j .�� �/� 1

3
2�j
� 2k�j : (2-2)

Note that since j ; k � 4, if k > j we have

1
3
2�j
� 2k�j < �5

3
;

while if k < j

�2k�j
�

1
3
2�j > �5

7
:

It follows from (2-2) that the only nonzero term in (2-1) is the one with j D k and also

y .2�j .�� �//D 1

where the integrand is not zero. We obtain

T� .f;  1/.x/D

mX
jD4

aj e�i2jxei2jx 2
1 .x/D

� mX
jD4

aj

�
 2

1 .x/:

If we assume that the operator T� is bounded from Lp �Lq into Lt , we could conclude then thatˇ̌̌̌ mX
jD4

aj

ˇ̌̌̌
. kf kLp .

� mX
jD4

jaj j
2

�1=2

; (2-3)

where the last inequality follows from the Littlewood–Paley square function characterization of the Lp

norm of f and the constants involved depend on  1 but are independent of m. Since the aj are arbitrary
(2-3) is not possible. �

3. Sobolev space estimates

We will show that the class BS0
1;1I�=4

produces bounded operators on product of Sobolev spaces. The
situations in the modulation invariant and the general case are slightly different.

The modulation invariant case. We first consider the case of bilinear operators obtained from linear
ones as in the previous section. That is, the symbol � takes the form

�.x; �; �/D �.x; � � �/;

where � belongs to the linear class S0
1;1

.



SOBOLEV SPACE ESTIMATES FOR BILINEAR PSEUDODIFFERENTIAL OPERATORS 557

Theorem 3.1. Let � be a linear symbol in S0
1;1

and consider the bilinear operator T� , where �.x; �; �/D
�.x; � � �/. If s > 0 and 1 < p; q; t <1 satisfy the Hölder relation (1-8), then T� is bounded from
W s;p �W s;q into W s;t .

Proof. We begin by recalling the Coifman–Meyer reduction for symbols in S0
1;1

, which is by now a
standard technique. (For details see [Coifman and Meyer 1978b, Chapter II, Section 9] for example.) The
symbol � can be decomposed into an absolutely convergent sum of reduced symbols of the form

�.x; �/D

1X
jD0

mj .2
j x/ y .2�j�/;

where  is a smooth function whose Fourier transform is supported on f� W 2�1 � j�j � 2g and fmj gj�0

is a uniformly bounded collection of C r .R/ functions where r can be taken arbitrarily large. Due to this
reduction, we need only to study a symbol of the form

�.x; �; �/D
X
j�0

mj .2
j x/ y .2�j .� � �// WD

X
j�0

�j .x; �; �/:

We use the notation of [Bourdaud 1988]. We expand mj into an inhomogeneous Littlewood–Paley
decomposition using (1-5) so that

mj D

X
k�0

mj ;k (3-1)

with the spectrum of mj ;k contained in the dyadic annulus f� W 2k�1 � j�j � 2kC1g for k � 1, and in the
ball f�; j�j � 2g for k D 0. Then we define for h� j the function nj ;h.x/ WDmj ;h�j .2

j x/. Due to the
regularity of the function mj , we have the following properties for h� j C 1:

supp ynj ;h � f� W 2h�1
� j�j � 2hC1

g (3-2)

and
knj ;hkL1 � Cr 2.j�h/r ; (3-3)

where, we mention again, the number r can be chosen as large as we want. For hD j we have

supp ynj ;j � f� W j�j � 2jC1
g (3-4)

and
knj ;jkL1 � Cr : (3-5)

Note also that

mj .2
j x/Dmj ;k.2

j x/C
X

h�jC1

mj ;h�j .2
j x/D nj ;j .x/C

X
h�jC1

nj ;h.x/: (3-6)

Writing Tj for the bilinear operator with symbol y .2�j .� � �//, we get

T� .f;g/.x/D
X
j�0

mj .2
j x/Tj .f;g/.x/:
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To study the norm of T� .f;g/ in the Sobolev space W s;t , and with the functions ‰ and ˆ as in (1-6),
we need to estimate terms of the form ˆ�T� .f;g/ and, say for k � 2� 0,

‰2�k �T� .f;g/ WD
X
j�0

‰2�k �
�
mj .2

j
� /Tj .f;g/

�
D Ik.f;g/C IIk.f;g/;

where

Ik.f;g/ WD

k�2X
jD0

‰2�k �
�
mj .2

j
� /Tj .f;g/

�
;

IIk.f;g/ WD
X

j�k�2

‰2�k �
�
mj .2

j
� /Tj .f;g/

�
:

We treat only Ik and IIk . The estimate for the other terms can be achieved with the same arguments
(they are actually easier). For notational convenience, we identify ‰2�k with the convolution operator it
defines (and similarly with other functions).

Estimate for I . We further decompose mj .2
j � / and Tj .f;g/. Using (3-1), (3-6), and (1-5) we have

mj .2
j x/Dˆ2�k .mj .2

j
� //.x/C

X
l�k

nj ;l.x/:

We also decompose Tj .f;g/.x/ as ˆ2�k

�
Tj .f;g/

�
.x/C

P
p�k

‰2�p

�
Tj .f;g/

�
.x/. Then

Ik.f;g/D

k�2X
jD0

‰2�k

�
ˆ2�k .mj .2

j
� //ˆ2�k .Tj .f;g//

�
C

k�2X
jD0

X
l�k

‰2�k

�
nj ;lˆ2�k .Tj .f;g//

�

C

k�2X
jD0

X
p�k

‰2�k

�
ˆ2�k .mj .2

j
� //‰2�p .Tj .f;g//

�
C

k�2X
jD0

X
l;p�k

‰2�k

�
nj ;l‰2�p .Tj .f;g//

�
:

(3-7)

Using the notation z� for a generic smooth function with bounded spectrum and z for a generic smooth
function with a spectrum contained in an annulus around 0, we claim that we can write Ik as a sum of
terms of three different form:

Ik.f;g/D
X

0�j�k�2

‰2�k .T�j .f;g//� .1/k C .2/k C .3/k ;

where
.1/k WD

X
j�k�2

‰2�k

�
nj ;k
z�2�k .Tj .f;g//

�
;

.2/k WD
X

j�k�2

‰2�k

�
z�2�k .mj .2

j
� // z 2�k .Tj .f;g//

�
;

.3/k WD
X
l�k

X
j�k�2

‰2�k

�
nj ;l
z 2�l .Tj .f;g//

�
:
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Let us explain this reduction. The first sum in (3-7) can be written as a finite linear combination of terms
taking the form .1/k and .2/k . Indeed, consider one of the general terms

‰2�k

�
ˆ2�k .mj .2

j
� //ˆ2�k .Tj .f;g//

�
:

Denote by � the frequency variable of mj .2
j � / and by � that of Tj .f;g/. We have a nonvanishing

contribution if
j�j � 2k ; j�j � 2k and j�C �j ' 2k ;

where we have used that the spectrum of the product is included in Minkowski sum of spectra. Con-
sequently, this is possible only if j�j ' 2k , which corresponds to .1/k (recall that nj ;l has spectrum in
fj�j � 2lg), or j�j ' 2k , which corresponds to .2/k .

Concerning the second sum in (3-7), it can also be reduced to the sum for l � k (as the other terms
vanish) and it is a finite sum of terms like .1/k . Similar reasoning for the third term in (3-7) gives that it
is controlled by .2/k . Finally, the general term in the fourth sum in (3-7) is nonzero if

2p
˙ 2l

� 2k :

But, since the inner double sum has l;p � k, the general term is nonzero only for l � p. We see then
that the double sum (over l and p) reduces to one sum over only one parameter. It follows that the fourth
sum in (3-7) is similar to .3/k .

We now study each of the model sums .1/k , .2/k , .3/k .

The sum with .1/k . We use the estimate (3-3) for nj ;k with r > s and Young’s inequality to obtain2ks.1/k


l2.k2N/
.
 X

jC2�k

2.j�k/r 2ksM
�
z�2�k .Tj .f;g//

�
l2.k2N/

.
 X

jC2�k

2js2.j�k/.r�s/M
�
z�2�k .Tj .f;g//

�
l2.k2N/

.
2jsM 2.Tj .f;g//


l2.j2N/

:

Therefore, k2ks.1/kkl2.k2N/


Lt .

k2jsM 2.Tj .f;g//kl2.j2N/


Lt (3-8)

and from the Fefferman–Stein vector-valued inequality [1971] for the maximal operator M , we deduce
that k2ks.1/kkl2.k2N/


Lt .

k2jsTj .f;g/kl2.j2N/


Lt :

We can use now a linearization argument. By writing rj .!/ for Rademacher functions (! 2 Œ0; 1�), we
know that (see, e.g., Appendix C in [Grafakos 2004]):k2ks.1/kkl2.k2N/


Lt .

P
j

2jsrj .!/Tj .f;g/


Lt .!2Œ0;1�/


Lt

:

By Fubini’s Theorem, we havek2ks.1/kkl2.k2N/


Lt
.
P

j

2jsrj .!/Tj .f;g/


Lt


Lt .!2Œ0;1�/

:
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Now for each ! 2 Œ0; 1�, the operator .f;g/!
P

j 2jsrj .!/Tj .f;g/ is the bilinear operator associated
to the symbol X

j

2jsrj .!/y‰.2
�j .� � �// 2 BS s

1;0I�=4:

It follows from [Bényi et al. 2006] and [Bernicot 2010] (since the symbol is x-independent) that these
bilinear operators are bounded from W s;p �W s;q into Lt (uniformly on ! 2 Œ0; 1�) and the proof in this
case is complete.

The sum with .2/k . This term is the most difficult to estimate. Using again the boundedness of the
functions mj in C r ,!L1, we can estimate

k2ks.2/kkl2.k2N/ .
 X

jC2�k

2ksM
�
z 2�k

�
Tj .f;g/

��
.x/


l2.k2N/

: (3-9)

We observe that

z 2�k

�
Tj .f;g/

�
.x/D

Z
z 2�k .x� z/

Z
y‰.2�j .� � �// yf .�/yg.�/eiz.�C�/ d� d� dz

D

Z
yz .2�k.�C �//y‰.2�j .� � �// yf .�/yg.�/eix.�C�/ d� d�:

We must have j�C�j � 2k and j� ��j � 2j . But we only have terms with 2j < 2k=4, so we deduce that
j�j � j�j � 2k . It follows that we can further localize in the frequency plane adding a new function  
(whose spectrum is contained in an annulus) such that

z 2�k .Tj .f;g//.x/D z 2�k

�
Tj . 2�kf; 2�k g/

�
.x/

Going back to (3-9) we obtain by the Cauchy–Schwartz inequality (there are k terms in the inner sum)

k2ks.2/kkl2.k2N/ .
2ksk1=2

M
�
z 2�k

�
Tj . 2�k .f /;  2�k .g//

��
l2.j2N/


l2.k2N/

:

We then obtain similarly as in the previous case

k2ks.2/kkl2.k2N/


Lt .


2ksk1=2

M 2
�
Tj . 2�k .f /;  2�k .g//

�
l2.j2N/


l2.k2N/


Lt

.

2ksk1=2

Tj . 2�k .f /;  2�k .g//


l2.j2N/


l2.k2N/


Lt

:

We linearize in j as before and use the fact that k1=2 . 2ks (as s > 0) to obtain

k2ks.2/kkl2.k/


Lt .


P

j

rj .!/Tj

�
2ks 2�k .f /; 2ks 2�k .g/

�
L1.!2Œ0;1�/


l2.k2N/


Lt

.

P

j

rj .!/Tj

�
2ks 2�k .f /; 2ks 2�k .g/

�
l2.k2N/


Lt


L1.!2Œ0;1�/

:



SOBOLEV SPACE ESTIMATES FOR BILINEAR PSEUDODIFFERENTIAL OPERATORS 561

For each ! 2 Œ0; 1�, we can invoke a vector-valued result for bilinear operators of [Grafakos and Martell
2004]. More precisely, as explained when we dealt with .1/k , for each ! 2 Œ0; 1� the bilinear operator
.f;g/!

P
j rj .!/Tj .2

ks 2�k .f /; 2ks 2�k .g// is bounded from Lp�Lq to Lt (since it is associated
to a symbol independent of x). Then, Theorem 9.1 in [Grafakos and Martell 2004] implies that the
operator admits an l2-valued bilinear extension, which yieldsk2ks.2/kkl2.k2N/


Lt
.
2ks 2�k .f /


l2.k2N/


Lp

2ks 2�k .g/


l2.k2N/


Lq


L1.!/

;

with estimates uniformly in ! 2 Œ0; 1�. This concludes the proof of the case .2/k .

The sum with .3/k . The analysis in this case is entirely analogous as the case .1/k and so we leave the
details to the reader.

Estimate for II. In this case, we decompose the term IIk.f;g/ with quantities appearing as a linear
combination of terms of the form

.1/k D
X

j�k�2

‰2�k

�
nj ;j
z�2�j .Tj .f;g//

�
or .2/k D

X
j�k�2

X
l�j

‰2�j
�
nj ;l.x/ z 2�l .Tj .f;g//

�
:

Indeed with a similar reasoning as before and since j �k�2, the general quantity in IIk has a nonvanishing
contribution only if the frequency variables of mj .2

j � / or Tj .f;g/ are contained in fj�j. 2j g (which
corresponds to .1/k) or if the two frequency variables are contained in fj�j ' 2lg for some l � j (which
corresponds to .2/k).

The study of .2/k is similar to the one of .1/k with the help of fast decays in l (see (3-3)), so we only
write the proof for .1/k . By the estimates on nj ;j , we havek2ks.1/kkl2.k2N/


Lt .


 X

j�k�2

2.k�j/s2jsM 2.Tj .f;g//


l2.k2N/


Lt

:

Using s > 0 and Young’s inequality for the l2-norm on k, we get the boundk2jsM 2.Tj .f;g//kl2.j2N/


Lt :

We have already studied such quantities in the first case — see (3-8) — and proved the appropriate bounds.
�

Remark 3.2. Since �.x; �; �/ D �.x; � � �/ is bounded, the function T� .1; 1/ (rigorously defined in
[Bényi et al. 2009]) is given by

T� .1; 1/D �. � ; 0; 0/ 2L1 � BMO:

If the transposes of T� are also given by symbols in the classes BS0
1;1I�

or even by some bounded
functions, then we can use the bilinear T .1/-Theorem of [Bényi et al. 2009] (since T� is modulation
invariant) to conclude that T is bounded on the product of Lebesgue spaces. The counterexample of
the previous section shows that this is not always the case, so the classes BS0

1;1I�
cannot be closed by

transposition. As mentioned in the introduction the smaller classes BS0
1;0I�

are.
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The general case. In this subsection, we consider general symbols in the class BS0
1;1I�=4

. We obtain a
slightly less general result than the one in the previous case.

Theorem 3.3. If � 2 BS1;1I�=4 and s > 1
2

, then the bilinear operator T� is bounded from W s;p �W s;q

into W s;t for all exponents 1< p; q; t <1 satisfying the Hölder condition (1-8).

Proof. We want to adapt the proof of Theorem 3.1. We briefly indicate the extra difficulties faced.

Reduction to elementary symbols. We first reduce the problem to the study of elementary symbols taking
the following form

�.x; �; �/D
X
j�0
l2Z

mj ;l.2
j x/y‰

�
2�j .� � �/

�
y‰
�
l C 2�j .�C �/

�
: (3-10)

Let us give a sketch of such a reduction. Multiplying the symbol � by

y‰
�
2�j .� � �/

�
y‰
�
l C 2�j .�C �/

�
;

we localize it in frequency to the domain˚
.�; �/ W j� � �j ' 2j and j�C �C l 2j

j ' 2j ;
	

which can be compared to a ball of radius 2j . This compactly supported symbols �j ;l satisfy

j@˛x@
ˇ

�;�
�j ;l.x; �; �/j � C˛ˇ2j.˛�ˇ/:

As usually, we decompose this symbol into a Fourier series, obtaining

�j ;l.x; �; �/D
X

a;b2Z2

a;b.x/e
i.a�Cb�/ y‰

�
2�j .� � �/

�
y‰
�
l C 2�j .�C �/

�
:

The modulation term ei.a�Cb�/ does not play a role, as it corresponds to translation in physical space
(which does not modify the Lebesgue norms), it remains for us to check that the coefficients a;b are
fast decreasing in .a; b/ and satisfies the desired smoothness in x. To do so, we remark that, for ˛ 2 N,
integration by parts yieldsˇ̌
@˛xa;b.2

�jx/
ˇ̌
. 2�j˛�2j

ˇ̌̌̌“
e�i.a�Cb�/@˛x�j ;l.2

�jx; �; �/ d� d�

ˇ̌̌̌
. 2�j˛�2j

�
1CjajC jbj

��M

ˇ̌̌̌“
e�i.a�Cb�/

�
1C@M

� C@
M
�

�
@˛x�j ;l.2

�jx; �; �/ d� d�

ˇ̌̌̌
.
�
1CjajC jbj

��M
;

where M is an integer that can be chosen as large as we wish. So we conclude that the functions
a;b.2

�j � / are uniformly bounded in C r (for r arbitrarily large) with fast decays in .a; b/. This operation
(expansion in Fourier series) allows us to reduce the study of � to reduced symbols taking the form (3-10).
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Study of elementary symbols. We adapt the proof of Theorem 3.1 and use the same notation. We have to
study the sum X

j�0
l2Z

mj ;l.2
j x/Tj ;l.f;g/; (3-11)

where Tj ;l is the bilinear operator associated to the x-independent symbol

y‰.2�j .� � �//y‰.l C 2�j .�C �//:

We can proceed as in the modulation invariant case and consider the different cases, eventually arriving to
the point where we need to linearize with respect to the parameter j . But now, we also have to linearize
according to the new parameter l . When we estimate the square function of Tj ;l , we have to study
‰2�k .Tj ;l.f;g// and we are interested only in the indices j ; l satisfying j�C �j � 2k with j� � �j � 2j

and j�C �C l 2j j � 2j . However, due to the use of the Cauchy–Schwartz inequality in l , we will have
an extra term bounded by 2.k�j/=2, which corresponds to the square root of the number of indices l

satisfying all these conditions. For the study of .1/k and .3/k there is no problem, since r can be chosen
satisfying r > sC 1

2
. However, for the study of .2/k we will need 2k.sC1=2/k1=2 � 2ks2ks and so we

need to assume that s > 1
2

. �

Remark 3.4. It is interesting to note that without the modulation invariance, an extra exponent 1
2

appears.
We do not know if our result is optimal or not. Moreover, unlike the modulation invariance case, we
also do not know whether a general operator T� with symbol � 2 BS1;1I�=4, and whose two adjoints
satisfy similar assumptions, is bounded on product of Lebesgue spaces. To address this question, it would
be interesting to obtained (if possible) a T .1/-Theorem as in [Bényi et al. 2009] but without assuming
modulation invariance.

4. An improvement on paramultiplication

In this section, we will use x-independent symbols in BS1;1I�=4 (and also in the smaller class BS1;0I�=4)
to describe a new paramultiplication operation. We will obtain an improvement over the classical
paramultiplication first studied in [Bony 1981] in the L2 setting and extended in [Meyer 1981a; 1981b] to
Lp norms. The classical paraproducts and their properties hold for multidimensional variables, however
our improvement works (at least at this moment) only in the one dimensional case.

We start with the classical definition.

Definition 4.1. Let f and b be two smooth functions and let ˆ and ‰ be as in (1-5) and (1-6). We
assume that for all � 2 supp ŷ and � 2 supp y‰ we have

j�j � 1
2
j�j:

Then paramultiplication by b is defined by

…b.f / WD
X
k2Z

ˆ2k .f /‰2k .b/:
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�

�

� D �

� D��

Figure 1. Support of the bilinear symbol associated to the paraproduct ….

The operator .b; f /!…b.f / can essentially be thought as a bilinear multiplier whose symbol is a
smooth decomposition of the characteristic function of the cone in Figure 1.

The following two propositions are well-known properties for paraproducts (see [Bony 1981, Theorems
2.1 and 2.5], for example, for the original results involving L2-Sobolev spaces and [Meyer 1981a; 1981b]
for extensions to other Sobolev spaces):

Proposition 4.2. For all s > 0 and p 2 .1;1/ the linear operator …b is bounded on the Sobolev space
W s;p, satisfies

k…bkW s;p!W s;p . kbkL1 ;

and the operation can be extended to an L1 function b.

The paramultiplication approximates pointwise multiplication in the following sense.

Proposition 4.3. Let 1< t <1 and s > 1=t . For f 2W s;t and g 2W s;t , we havefg�…f .g/�…g.f /


W 2s�1=t;t . kf kW s;t kgkW s;t :

The exponent of regularity 2s� 1
t

is bigger than s for ts > 1. This gain is very important. The result is
essentially due to the fact that, in frequency space, the error term has only a contribution from f and g

when
fj�j � j�jg ;

i.e., in a cone along the two main diagonals.

Using the new bilinear operators (whose singularities are localized on a line in the frequency plane), we
can define a new paramultiplication operation z… such that the error term will be concentrated in the
frequency plane exactly in a strip (of fixed width) around the two diagonals. In this way, we will be able
to get a better gain for the exponent of regularity.
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�

�

� D �

� D��

Figure 2. Support of the bilinear symbol associated to the new paraproduct z….

Definition 4.4. Let ‚ be a smooth function on R whose Fourier transform y‚ satisfies

! � 2 H) y‚.!/D 1 and �1< ! � 1 H) y‚.!/D 0:

Then we define, for b; f 2 S.R/, the improved paramultiplication by b (written z…b.f /) by

z…b.f /.x/D

Z
R2

eix.�C�/yb.�/ yf .�/
�
y‚.� � �/y‚.�C �/C y‚.�� �/y‚.�� � �/

�
d� d�: (4-1)

The new bilinear multiplier .b; f /! z…b.f / is associated to a bilinear symbol, corresponding to a
smooth version of the characteristic function of the region in Figure 2. We remark that this new region
approximates the domain f.�; �/; j�j � j�jg better than the region in Figure 1.

This new operation satisfies a similar property to the one in Proposition 4.2.

Proposition 4.5. Let s � 0 and let 1 < p; q; t <1 be exponents satisfying (1-8). For every � > 0 and
b 2W �;p.R/, the improved paramultiplication by b is well defined and produce a bounded operation from
W s;q to W s;t . In fact, there exists a constant C D C.s; �;p; q; t/ such that for all functions f 2W s;q , z…b.f /


W s;t
� CkbkW �;pkf kW s;q :

Moreover if s D 0, the exponent � D 0 is allowed.

Proof. The new paramultiplication is given by two terms, which can be studied by identical arguments.
We only deal with the first term but for simplicity in the notation we still write

z…f .b/.x/D

Z
R2

eix.�C�/yb.�/ yf .�/y‚.� � �/y‚.�C �/ d� d�:

We note that this function z…b.f / corresponds to the operator T� .b; f / associated to the bilinear symbol

�.�; �/D y‚.� � �/y‚.�C �/:

We need to show that T� is continuous from W �;p �W s;q to W s;r .
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The case s D 0. We compute the Fourier transform of T� .b; f /,

3T� .b; f /.!/D
Z
�C�D!

yb.�/ yf .�/y‚.� � �/y‚.�C �/ d� d�

D y‚.!/

Z
�C�D!

yb.�/ yf .�/y‚.� � �/ d� d�D y‚.!/3T� .b; f /.!/;

where � is given by �.�; �/ D y‚.� � �/. So in fact we can write T� .b; f / as the convolution product
between ‚ and T� .b; f /. Since the function ‚ in Definition 4.4 is smooth, the convolution operation by
‚ is bounded on Lt . We obtain also

kT� .b; f /kLt . kT� .b; f /kLt :

Now the bilinear operator T� is associated to the symbol � which satisfies the Hörmander multiplier
conditions related to the frequency line f� D �g. That is,ˇ̌

@˛� @
ˇ
��.�; �/

ˇ̌
. j� � �j�˛�ˇ

for all ˛ and ˇ. It follows from [Gilbert and Nahmod 2000] that this bilinear operator maps Lp �Lq to
Lt and we obtain the desired result

kT� .b; f /kLt . kbkLpkf kLq :

Note that for the case s D 0 no regularity on b is really needed.

The case s > 0. Let ˆ and ‰ be as in (1-5) and (1-6). We study first ˆ�T� .f;g/. We have

5ˆ�T� .b; f /.!/D ŷ .!/ y‚.!/3T� .b; f /.!/:
The spectral condition overˆ and‚ imply that !� 1. So for � and � (the frequency variables of b and f )
satisfying � � �� 1 and �C �D ! � 1, we deduce that either � is bounded or �� � �� 1. Therefore,
we can find a smooth function � and an other one z (whose spectrum is contained in an annulus around
0) such that

ˆ�T� .b; f /Dˆ�T� .b; � �f /C
X
l�0

ˆ�T�
�
z 2�l � b; z 2�l �f

�
:

Using 0< �, we get by the Cauchy–Schwartz inequalityˇ̌
ˆ�T� .b; f /

ˇ̌
�
ˇ̌
ˆ�T� .b; � �f /

ˇ̌
C

�X
l�0

22�l
ˇ̌
M
�
T� . z 2�l � b; z 2�l �f /

�ˇ̌2�1=2

: (4-2)

By the same reasoning for an integer k � 1, if � and � satisfy � � � C 1 and 1 < � C �D ! � 2k , we
deduce that either �� 2k or �� � �� 2k . So we can find a smooth function z (for convenience we
keep the same notation), whose spectrum is contained in an annulus around 0 such that for all integer k

large enough

‰2�k �T� .b; f /D‰2�k �T�
�
b; z 2�k �f

�
C

X
l�k

‰2�k �T�
�
z 2�l � b; z 2�l �f

�
:
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Using the same �, we get by the Minkowski and Cauchy–Schwartz inequalities�X
k

22ks
j‰2�k �T� .b; f /j

2

�1=2

.
�X

k

22ksM
�
T� .b; z 2�k �f /

�2�1=2

C

X
l�0

�X
k�l

22ks
ˇ̌̌
‰2�k �T� . z 2�l � b; z 2�l �f /

ˇ̌̌2�1=2

.
�X

k

22ksM
�
T� .b; z 2�k �f /

�2�1=2

C

X
l�0

2lsM
�
T� . z 2�l � b; z 2�l �f /

�
.
�X

k

22ksM
�
T� .b; z 2�k �f /

�2�1=2

C

�X
l�0

22l.sC�/
ˇ̌̌
M
�
T� . z 2�l � b; z 2�l �f /

�ˇ̌̌2�1=2

: (4-3)

From (4-2) and (4-3), using the Lq �Lt boundedness of T� .b; � / (proved in the first case), the vector-
valued Fefferman–Stein inequality, and its bilinear version [Grafakos and Martell 2004, Theorem 9.1],
we obtain the desired result:

kT� .b; f /kW s;t .
ˇ̌ˆ�T� .b; f /

ˇ̌
C

�X
k�0

22sk
ˇ̌
‰2�k �T� .b; f /

ˇ̌2�1=2
Lt

. kbkLp

 j� �f jC�X
k�0

22sk
ˇ̌
z 2�k �f

ˇ̌2�1=2
Lq

C

�X
l�0

22l�
ˇ̌
z 2�l � b

ˇ̌2�1=2
Lp

�X
k�0

22sk
ˇ̌
z 2�k �f

ˇ̌2�1=2
Lq

. kbkW �;pkf kW s;q : �

Remark 4.6. We note that our new bilinear operation needs an extra regularity assumption b 2W �;p to
keep the regularity of the function f (the case s > 0). This is due to the fact that the high frequencies of
b play a role in the high frequency of z…b.f / (which is natural) but in the low frequencies of z…b.f / too.
This last phenomenom does not appear in the classical paramultiplication operation. This point can be
observed in the Figures 1 and 2. Let ! be the frequency variable of the paraproduct. For small !, say
! ' 2, the contributions of b and f correspond to the intersection of the cone in Figures 1 and 2 and the
line f! D �C �g. In the first case (Figure 1) this intersection is bounded set, whereas in the second case
(Figure 2) it is not bounded and contains also high frequencies of b.

We now obtain an improvement on Proposition 4.3.

Proposition 4.7. Let t 2 .1;1/ and s � 1=t . If f 2W s;t and g 2W s;t , thenfg� z…f .g/� z…g.f /


W 2s;t . kf kW s;tkgkW s;t :

Remark 4.8. As already mentioned, in the classical paramultiplication calculus, the regularity result is
true for s � 1=t and the gain is only s� 1=t .
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Proof. Let us denote by D the difference operator

D.f;g/ WD fg� z…f .g/� z…g.f /:

It corresponds to the bilinear operator associated to the symbol � given by

�.�; �/ WD 1� y‚.�� �/y‚.�C �/� y‚.��C �/y‚.��� �/� y‚.� � �/y‚.�C �/� y‚.�� �/y‚.��� �/:

This symbol is supported in the complement of the cone drawn in Figure 2 and the one symmetric to it.
Consequently, it is supported in two strips (around the two diagonals)

supp.�/�
˚
.�; �/ W j� � �j � 3

	
[
˚
.�; �/ W j�C �j � 3

	
:

We can then reproduce a similar reasonning as used for Proposition 4.5. The symbol � can be decomposed
in two parts �1; �2; the first one supported in

˚
.�; �/ W j� C �j � 3

	
and the second one supported in˚

.�; �/ W j� � �j � 3
	
.

The bilinear multiplier associated to �1 has only low frequencies, hence

kT�1
.f;g/kW 2s;t . kT�1

.f;g/kLt :

Using Proposition 4.5 with exponents t;p; q 2 .1;1/ satisfying (1-8), it follows that

kT�1
.f;g/kW 2s;t . kf kLpkgkLq . kf kW s;tkgkW s;t ;

where we have used the Sobolev embeding W s;t �Lp since s � 1
t
> 1

t
�

1
p

(and similarly with q).
Concerning the second part �2, it is easy to check that, on its support, 1Cj�C �j, 1Cj�j and 1Cj�j

are comparable and in addition

max
˚
1Cj�C �j; 1Cj�j; 1Cj�j

	
�min

˚
1Cj�C �j; 1Cj�j; 1Cj�j

	
. 1: (4-4)

We claim that T�2
is bounded from Lt �Lt into Lt . Indeed, the symbol �2 is supported around the

diagonal � D � and it takes the form

�2.�; �/Dm.� � �/;

for a smooth function m supported on Œ�3; 3�. It follows that

T�2
.f;g/.x/D

Z
ym.y/f .x�y/g.xCy/ dy: (4-5)

Since m 2 S.R/ we have, in particular, that ym 2L1\L1, and using Minkowski’s inequality we easily
deduce that T�2

is bounded from L1 �L1 to L1 and from L1 �L1 to L1. By (complex) bilinear
interpolation, we conclude that T is bounded from Lt �Lt to Lt , for 1< t <1.

It remains to estimate T�2
in the Sobolev space. We let the reader verify that, as in similar previously

done computations (and using (4-4)), T�2
can be decomposed as

T�2
.f;g/D

X
k�0

‰2�k T�2
.‰1

2�kf;‰
2
2�k g/; (4-6)
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for some smooth frequency truncations ‰;‰1; ‰2. It follows that�X
k�0

2k4s
ˇ̌
‰2�k T�2

.‰1
2�kf;‰

2
2�k g/

ˇ̌2�1=2
Lt

.
�X

k�0

2k4s
ˇ̌
T�2

.‰1
2�kf;‰

2
2�k g/

ˇ̌2�1=2
Lt

.
�X

k�0

2ks
j‰1

2�kf j
2

�1=2
Lt

�X
k�0

2k2s
j‰2

2�k gj2
�1=2

Lt

. kf kW s;tkgkW s;t ;

where we have used the Lt boundedness of the operator T�2
and its l2-vector-valued extension (given

again by Theorem 9.1 of [Grafakos and Martell 2004]). �

Remark 4.9. The previous proof relies on the boundedness from Lt �Lt to Lt of T�2
. This property

does not hold in the classical paraproduct situation.
We have given a proof by interpolation, where the specific form of �2 plays an important role. We

would like to describe now a direct proof of the boundedness for the simpler case t D 2. The arguments
are based on the geometric fact that the symbol �2 is supported on a strip around the diagonal with
bounded width.

We can use in the L2 case a partition of frequencies given by �k a smooth truncation on the interval
Œk � 4; kC 4�:

2�k.f /.�/D �.� � k/ yf .�/;

where � is a smooth function, supported on Œ�4; 4� and equal to 1 on Œ�3; 3�. Then, by Plancherel’s
equality, we have

kT�2
.f;g/kL2 .

�X
k2Z

k�k.T�2
.f;g/k2

L2

�1=2

:

By (4-4), it follows that with other similar truncation operators �1 and �2,

kT�2
.f;g/kL2 .

�X
k2Z

�k.T�2
.�1

k.f /;�
2
k.g///

2

L2

�1=2

.
�X

k2Z

1j��kj�4

Z ˇ̌̌2�1
k
.f /.�/1�2

k
.g/.� � �/

ˇ̌̌
d�
2

L2

�1=2

.
�X

k2Z

2�1
k
.f /

2

L2

1�2
k
.g/
2

L2

�1=2

;

where we have used that each interval Œk�4; kC4� has bounded length. Since the collection of intervals
.Œk�4; kC4�/k2Z is a bounded covering, we can conclude the boundedness of T�2

from L2�L2 into L2.
(Note that the same argument does not apply in Lp.)
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Remark 4.10. Our new definition of paramultiplication is based on bilinear operators associated to
x-independent symbols of the class BS1;0I�=4. We could use the Sobolev boundedness (proved in the
first sections of the current paper) in order to define other kind of paramultiplications with an x-dependent
symbol but we will not carry here such analysis any further.
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