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PERIODIC SOLUTIONS OF NONLINEAR SCHRÖDINGER EQUATIONS:
A PARADIFFERENTIAL APPROACH

JEAN-MARC DELORT

This paper is devoted to the construction of periodic solutions of nonlinear Schrödinger equations on the
torus, for a large set of frequencies. Usual proofs of such results rely on the use of Nash–Moser methods.
Our approach avoids this, exploiting the possibility of reducing, through paradifferential conjugation, the
equation under study to an equivalent form for which periodic solutions may be constructed by a classical
iteration scheme.

Introduction

This paper is devoted to the existence of families of periodic solutions of Hamiltonian nonlinear
Schrödinger equations on the torus Td . Our goal is to show that such results may be proved without
using Nash–Moser methods, replacing them by a technically simpler conjugation idea.

We consider equations of type

.�i@t ��C�/uD �
@F

@ Nu
.!t;x;u; Nu; �/C �f .!t;x/;

where t 2R, x 2Td , F is a smooth function, vanishing at order 3 at .u; Nu/D 0, f is a smooth function
on R�Td , 2�-periodic in time, ! a frequency parameter, � a real parameter and � > 0 a small number.
One wants to show that for � small and ! in a Cantor set whose complement has small measure, the
equation has time periodic solutions.

Let us recall known results for that type of problems. The first periodic solutions for nonlinear wave
or Schrödinger equations were constructed in [Kuksin 1993; Wayne 1990], which deal with one space di-
mension, with x staying in a compact interval, and imposing on the extremities of this interval convenient
boundary conditions. Later on, Craig and Wayne [1993; 1994] treated the same problem for time-periodic
solutions defined on R�S1. Periodic solutions of nonlinear wave equations in higher space dimensions
(on R� Td , d � 2) were obtained in [Bourgain 1994]. These results concern nonlinearities which are
analytic. More recently, some work has been devoted to the same problem when the nonlinearity is a
smooth function: Berti and Bolle [2010] have proved in this setting existence of time-periodic solutions
for the nonlinear wave equation on R�Td . We refer also to the paper of Berti, Bolle and Procesi [Berti
et al. 2010], where the case of equations on Zoll manifolds is treated. Very recently, Berti and Procesi
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[2011] have studied the same problem, for wave or Schrödinger equations, on a homogeneous space. We
refer also to [Craig 2000; Kuksin 2000] for more references.

The proofs of all these results rely on the use of the Nash–Moser theorem, to overcome unavoidable
losses of derivatives coming from the small divisors appearing when inverting the linear part of the
equation. Our goal here is to show that one may construct periodic solutions of nonlinear Schrödinger
equations (for large sets of frequencies), using just a standard iterative scheme instead of the quadratic
scheme of the Nash–Moser method. This approach allows one to separate on the one hand the treatment
of losses of derivatives coming from small divisors, and on the other hand the question of convergence
of the sequence of approximations, while in a Nash–Moser scheme, both problems have to be treated at
the same time. The basic idea is inspired by our work in [Delort 2010] concerning linear Schrödinger
equations with smooth time dependent potential. It is shown in that paper that a linear equation of type
.i@t ��CV .t;x//uD 0 may be reduced by conjugation to an equation of type .i@t ��CVD/vDRv,
where R is a smoothing operator and VD a block diagonal operator of order zero. We aim at applying a
similar method when the linear potential V is replaced by a nonlinear one, so that, in the reduced equation,
the block-diagonal operator VD depends on v itself, and R sends essentially H s to H 2s�a (where a is a
fixed constant, and H s the Sobolev scale). It is pretty clear that such a reduced equation will be solvable
by a standard iterative scheme, even if the inversion of i@t ��CVD loses derivatives because of small
divisors, since such losses are recovered by the smoothing properties of R on the right side.

Before describing the different sections of the paper, let us give some more references and add some
comments. There are actually a few results concerning existence of periodic solutions which do not
appeal to Nash–Moser theorem. Bambusi and Paleari [2001; 2002] constructed such solutions without
making use of Nash–Moser or KAM methods, but only for a family of frequency parameters of measure
zero (instead of a set of parameters whose complement has small measure). Related results, concerning
the case of rational frequencies, may be found in [Berti 2007, Chapter 5]. Recently, Gentile and Procesi
[2009] found, for analytic nonlinearities, an alternative approach to Nash–Moser using expansions in
terms of Lindsted series.

Let us also mention that we restrict in this paper to one of the many variants that may be considered
when constructing periodic solutions. Most of the known results we cited so far concern the case of
periodic solutions of the nonlinear equation, whose frequency is close to the frequency of a periodic
solution of the linear equation obtained for � D 0. The problem may be written, using a Liapunov–
Schmidt decomposition, as a coupling between a non-resonant equation (the .P / equation) and a resonant
one (the .Q/ equation). In most works, the resonant equation is a finite-dimensional equation, while .P /
is infinite-dimensional. One uses Nash–Moser to solve .P /, getting a solution depending on finitely many
parameters. Plugging this solution in .Q/, one gets for these finitely many parameters an equation in
closed form, that may be solved using implicit functions-like theorems. Actually, Berti and Bolle [2006]
have shown that such a strategy may be also adapted to the case when .Q/ is completely resonant, i.e.,
infinite-dimensional.

Since our objective here is to show that one may avoid the use of Nash–Moser theorems, we lim-
ited ourselves to the forced oscillations equation written at the beginning of the introduction, which
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corresponds to a .P / equation for which there is no associated .Q/ equation. Berti and Bolle [2010]
have studied similar forced oscillations for the wave equation. It is very likely that our method could
be adapted to recover as well known results for resonant periodic Schrödinger equations, even if one
would have to write a detailed proof. In the same way, since the results in [Delort 2010] concerning the
Schrödinger equation hold not only on Td , but also on Zoll manifolds or on some surfaces of revolution,
we conjecture that the analogue of the main theorem of this paper extends to this setting, or even to the
case of a product of several Zoll manifolds.

Organization of the paper. Section 1 states the main theorem and introduces notation.
Section 2 is devoted to the paralinearization of the equation. After defining convenient classes of

paradifferential operators, we perform a first reduction, localizing the unknown of the problem close to
the characteristic variety of the linear Schrödinger operator. This is done using the standard implicit
function theorem. Next, we paralinearize the equation, reducing it to

.�i!@t ��CV /v DR.v/vC �f

where V is a paradifferential operator of order zero, depending on v, and R.v/ is a smoothing operator
(Actually, we shall have to consider a system in .v; Nv/ instead of a scalar equation). A consequence of
the fact that our starting equation is Hamiltonian will be that V is self-adjoint.

Section 3 is the heart of the paper. We construct a paradifferential conjugation of the preceding
equation to transform it into

.�i!@t ��CVD.w//w DR.w/wC �f

where R.w/ is still a smoothing operator, and VD is block diagonal relatively to an orthogonal decom-
position of L2.Td / in a sum of finite-dimensional subspaces introduced in [Bourgain 1999].

Section 4 is devoted to the construction of the solution to the block diagonal equation by a standard
iteration scheme. We first show that on each block �i!@t ��C VD.w/ is invertible for ! outside a
convenient small subset. This is done by the usual argument, exploiting that the !-derivative of the
eigenvalues of �i!@t �� is large. In order that the set of excluded parameters remain small, we have
to allow small divisors when inverting �i!@t ��C VD.w/. As the right-hand side of the equation
involves a smoothing operator R.w/, we may compensate the losses of derivatives coming from such
small divisors, and construct a sequence of approximations of the solution.

Let us conclude this introduction with a few words concerning the limitations of our method. First,
it does not seem that it could be adapted to find periodic solutions of nonlinear wave equations, as the
construction of Section 3 relies on a specific separation property for the eigenvalues of �� on Td . On
the other hand, it might be applied to equations where one has a nice separation of eigenvalues, like
KdV or one-dimensional water wave equations with surface tension. Second, we do not know if our
method could be modified to construct quasi-periodic solutions. Recall that such solutions have been
obtained for the equation set on an interval [Kuksin 1993; Kuksin 2000; Kuksin and Pöschel 1996]. The
case of solutions on S1 has been treated in [Bourgain 1994]. In higher dimensions, Bourgain [1998]
constructed such periodic solutions on T2. The case of general Td has been treated in [Bourgain 2005;
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Eliasson and Kuksin 2010]. One of the difficulties of the quasi-periodic case versus the periodic one
lies in the fact that, even close to the characteristic variety, time frequencies might be much larger than
space frequencies. In our proof below, the fact that these frequencies are of the same magnitude plays
an important role. We do not know whether the multiscale methods of Bourgain, Eliasson, and Kuksin
could be combined to the arguments we use in the periodic case to construct quasi-periodic solutions
without making appeal to a Newton scheme.

1. Periodic solutions of semi-linear Schrödinger equations

1.1. Statement of the main theorem. Let Td (d � 1) be the standard torus, S1 the unit circle. Consider
a C1 function

F W .t;x;u; Nu; �/ ����! F.t;x;u; Nu; �/

R�Td
�C2

� Œ0; 1�! R
(1.1.1)

which is 2�-periodic in t , and satisfies @˛u; NuF.t;x; 0; 0; �/� 0 for j˛j � 2. We study the equation

.Dt ��C�/uD �
@F

@ Nu
.!t;x;u; Nu; �/C �f .!t;x/ (1.1.2)

where� is the Laplace operator on Td , Dt D
1
i
@
@t

, � 2 Œ0; 1�, �2R, ! 2R�C, f is a smooth function on
R�Td , 2�-periodic in t , with values in C, and where we look for 2�

!
-periodic solutions of the equation

when � is small. Changing t to t=!, we have to find solutions on S1 �Td to the equivalent equation

.!Dt ��C�/uD �
@F

@ Nu
.t;x;u; Nu; �/C �f .t;x/ (1.1.3)

for small enough � and for ! outside a subset of small measure. To fix ideas, we shall take ! inside a
fixed compact subinterval of �0;C1Œ, say ! 2 Œ1; 2�.

Let us define the Sobolev space in which we shall look for solutions. If u 2 D0.S1 �Td /, we set for
.j ; n/ 2 Z�Zd

Ou.j ; n/D
1

.2�/
dC1

2

Z
S1�Td

e�itj�in�xu.t;x/ dt dx:

For s 2 R, define zHs.S1 �Td IC/ to be the space of those u 2 D0.S1 �Td / such that

kuk2
zHs

def
D

X
j2Z

X
n2Zd

.1Cjj jC jnj2/sj Ou.j ; n/j2 <C1: (1.1.4)

We shall use the similar notation zHs.S1 �Td IC2/, zHs.S1 �Td IR2/ for C2 or R2-valued functions.
Let us state our main theorem.

Theorem 1.1.1. Let � 2 R � Z�. There are s0 > 0; � > 0 and for any s � s0, any q0 > 0, there are
constants ı0 2 �0; 1�;B > 0 and for any f 2 zHsC�.S1 � Td IC/ with kf kzHsC� � q0, there is a subset
O� Œ1; 2�� �0; 1� such that:



PARADIFFERENTIAL APPROACH TO NONLINEAR SCHRÖDINGER EQUATIONS 643

� For any ı 2 �0; ı0� and � 2 Œ0; ı2�

measf! 2 Œ1; 2� W .!; �/ 2 Og � Bı: (1.1.5)

� For any ı 2 �0; ı0�, any � 2 Œ0; ı2�, and any ! 2 Œ1; 2� such that .!; �/ 62 O, (1.1.3) has a solution
u 2 zHs.S1 �Td IC/ satisfying kukzHs � B�ı�1.

Remark. As mentioned in the introduction, this theorem is a version, for Schrödinger equations, of
[Berti and Bolle 2010, Theorem 1.1], which concerns wave equations. Our point will be to give a proof
that does not appeal to Nash–Moser methods.

1.2. Spaces of functions and notations. For n2Zd , u2D0.Td /, we denote by…n the spectral projector

…nuD Ou.n/
ein�x

.2�/d=2
D

Z
Td

e�in�xu.x/
dx

.2�/d=2

ein�x

.2�/d=2
: (1.2.1)

When u.t;x/ is in D0.S1�Td /, we use the same notation, considering t as a parameter. We shall make
use of the following “separation property” result attributed by Bourgain to Granville and Spencer (see
[Bourgain 1999, Lemma 8.1]; for the proof see also [Bourgain 2005, Lemma 19.10]).

Lemma 1.2.1. For any ˇ 2 �0; 1
10
Œ, there are � 2 �0; ˇŒ, � > 0 and a partition .�˛/˛2A of Zd such that

jn� n0jC
ˇ̌
jnj2� jn0j2

ˇ̌
< � Cjnjˇ for all ˛ 2A; n 2�˛; n0 2�˛;

jn� n0jC
ˇ̌
jnj2� jn0j2

ˇ̌
> jnj� for all ˛; ˛0 2A .˛ ¤ ˛0/; n 2�˛; n0 2�˛0 :

(1.2.2)

For each ˛ 2 A, we choose some n.˛/ 2 �˛. There is a constant ‚0 > 0 such that, if we set
hni D .1Cjnj2/1=2 for n 2 Zd , then

‚�1
0 hn.˛/i � hni �‚0hn.˛/i (1.2.3)

for any ˛ 2A, any n 2�˛. It also follows from (1.2.2) that, for some uniform constant ‚1 > 0,

#�˛ �‚1hn.˛/i
ˇd : (1.2.4)

For any ˛ 2A, we set
z…˛ D

X
n2�˛

…n: (1.2.5)

We define a closed subspace Hs.S1 �Td IC/ of zHs.S1 �Td IC/ by

Hs.S1
�Td
IC/D

\
˛2A

˚
u 2 zHs.S1

�Td
IC/ W Ou.j ; n/D 0 for all n 2�˛ and all j such that

jj j>K0hn.˛/i
2 or jj j<K�1

0 hn.˛/i
2
	
; (1.2.6)

where K0 DK0.�/ will be chosen later on.
In other words, non vanishing modes .j ; n/ of an element u of Hs.S1 � Td IC/ have to satisfy

K�1
0
hn.˛/i2 � jj j � K0hn.˛/i

2 if n 2 �˛. This shows that the restriction to Hs of the zHs-norm
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given by (1.1.4) is equivalent to the square root ofX
j2Z

X
n2Zd

hni2s
j Ou.j ; n/j2 (1.2.7)

and to the square root of X
˛2A

hn.˛/i2s
k z…˛uk2

L2.S1�Td ;C/
: (1.2.8)

We use similar notation for spaces Hs.S1 �Td IC2/, Hs.S1 �Td IR2/, and so on.

2. Paralinearization of the equation

The goal of this section is to rewrite (1.1.3) as a paradifferential equation in the sense of [Bony 1981],
on spaces of form (1.2.6). We first define the classes of operators we shall use.

2.1. Spaces of operators. We fix from now on some real number �0 >
d
2
C1. If s 2R; q > 0, we denote

by Bq.H
s/ the open ball with center 0, radius q in Hs.S1 �Td IC/, Hs.S1 �Td IC2/,. . .

Definition 2.1.1. Let m2R, q > 0, N 2N, � 2R, � � �0C2N CdC1. One denotes by ‰m.N; �; q/

the space of maps U ! a.U / defined on the open ball of center 0, radius q in H� .S1 �Td IC2/, with
values in the space of linear maps from C1.S1�Td IC/ to D0.S1�Td IC/, such that, for any n; n0 2Zd ,
the map U ! …na.U /…n0 is smooth with values in L.H0.S1 � Td IC// and satisfies for any M 2 N

with d C 1 �M � � � �0 � 2N , any U 2 Bq.H
� /, any j 2 N, any W1; : : : ;Wj 2 H� .S1 � Td IC2/,

any n; n0 2 Zd ,

k…n.@
j
U

a.U / � .W1; : : : ;Wj //…n0kL.H0/

� C.1CjnjC jn0j/mhn� n0i�M
1
jn�n0j� 1

10
.jnjCjn0j/

jY
`D1

kW`kH�0C2NCM : (2.1.1)

Remarks. � In (2.1.1), the decay hn � n0i�M reflects the available x-smoothness of the symbol of
a pseudo-differential or paradifferential operator. This smoothness is controlled by the upper bound
� ��0�2N that we assume for M . The cut-off jn�n0j � 1

10
.jnjC jn0j/ means that we are considering

paradifferential operators. The integer N measures some loss of smoothness, relatively to the index � ,
that will appear in some expansions of operators.

� Definition 2.1.1 implies that if a 2‰m.N; �; q/, then @t Œa.U /� belongs to ‰m.N C 1; �; q/. Actually,
@ta.U /D @U a.U / � @tU , so (2.1.1) allows us to estimate…n.@

j
U
.@t Œa.U /�/ � .W1; : : : ;Wj //…n0


L.H0/

from k@tU kH�0C2NCM

Qj

`D1
kW`kH�0C2NCM , and by the definition (1.2.6) of Hs ,

k@tU kH�0C2NCM �K0kU kH�0C2.NC1/CM �K0kU kH�

if we assume M � � � 2.N C 1/� �0.

The definition implies boundedness properties for the operators.



PARADIFFERENTIAL APPROACH TO NONLINEAR SCHRÖDINGER EQUATIONS 645

Lemma 2.1.2. Let �;m;N; q be as in the definition. Assume that � � �0C 2N C d C 1. Then for any
U 2 Bq.H

� /, for any s 2 R, a.U / is a bounded operator from Hs.S1 � Td IC/ to Hs�m.S1 � Td IC/.
Moreover, U ! a.U / is a smooth map from Bq.H

� / to the space L.Hs;Hs�m/, and for any j 2 N,
there is C > 0, such that, for any U 2 Bq.H

� / and any W1; : : : ;Wj 2H� .S1 �Td IC/,

@j
U

a.U / � .W1; : : : ;Wj /


L.Hs ;Hs�m/
� C

jY
`D1

kW`kH�0C2NCdC1 : (2.1.2)

Proof. One has just to apply (2.1.1) with M D dC1 and use the fact that, by (1.2.7), kvk2Hs is equivalent
to
P

n2Zd hni2sk…nvk
2
L2 . �

We define a class of smoothing operators as well.

Definition 2.1.3. Let � 2 R, N 2 N, and � 2 N, with � � �0 C 2N C d C 1, q > 0, r 2 RC. One
denotes by Rr

�.N; �; q/ the space of smooth maps U ! R.U / defined on Bq.H
� /, with values in

L.Hs.S1�Td IC/;HsCr .S1�Td IC// for any s � �0C�, such that there is for any j , any s � �0C�,
a constant C > 0 with

@j
U

R.U / � .W1; : : : ;Wj /


L.Hs ;HsCr /
� C

jY
`D1

kW`kH� (2.1.3)

for any U 2 Bq.H
� /, W1; : : : ;Wj 2H� .

Remark. Lemma 2.1.2 shows that if r �0 and � ��0C2NCdC1, the space‰�r .N; �; q/ is contained
in Rr

0
.N; �; q/.

Proposition 2.1.4. (i) Let � � �0C 2N C d C 1, a 2‰m.N; �; q/. Then a� 2‰m.N; �; q/.

(ii) Let m1;m2 2 R. Assume � � �0C 2N C d C 1C .m1Cm2/C. Set

r D � � �0� 2N � .d C 1/� .m1Cm2/� 0: (2.1.4)

If a 2 ‰m1.N; �; q/ and b 2 ‰m2.N; �; q/, there are c 2 ‰m1Cm2.N; �; q/ and R 2 Rr
0
.N; �; q/

such that

a.U / ı b.U /D c.U /CR.U /: (2.1.5)

Proof. Part (i) follows immediately from the definition. For (ii), define

c.U /D
X

n

X
n0

…nŒa.U / ı b.U /�…n01jn�n0j� 1
10
.jnjCjn0j/:

To check that (2.1.1) is satisfied by c when j D 0 we write

k…nc.U /…n0kL.H0/ �

X
k

k…na.U /…kkL.H0/ k…kb.U /…n0kL.H0/
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for n; n0 with jn�n0j � 1
10
.jnjC jn0j/. Applying (2.1.1) to a; b with d C 1�M � � ��0� 2N , we get

the bound

C.1CjnjC jn0j/m1Cm2

X
k

hn� ki�M
hk � n0i�M

� C.1CjnjC jn0j/m1Cm2hn� n0i�M :

One estimates @j
U

c.U / in the same way.
The remainder R.U /D a.U / ı b.U /� c.U / will satisfy by definition of c:

k…nR.U /…n0kL.H0/ �

X
k

k…na.U /…kkL.H0/ k…kb.U /…n0kL.H0/1jn�n0j> 1
10
.jnjCjn0j/;

and so will be bounded using (2.1.1) for a; b by

C.1CjnjCjn0j/m1Cm2
P
k

hn�ki�M
hk�n0i�M

1
jk�nj� 1

10
.jnjCjkj/ 1jk�n0j� 1

10
.jn0jCjkj/ 1jn�n0j> 1

10
.jnjCjn0j/

for any M between d C 1 and � � �0 � 2N . Since on the summation, either jn � kj � 1
2
jn � n0j or

jn0� kj � 1
2
jn� n0j, and jn� n0j � 1

2
.jnjC jn0j/, we get the bound

k…nR.U /…n0kL.H0/ � C.1CjnjC jn0j/m1Cm2�M
1
jn�n0j� 1

2
.jnjCjn0j/

for any M between d C 1 and � � �0� 2N . Reasoning as in the proof of Lemma 2.1.2, we obtain that
R.U / sends Hs to HsCr for any s and r given by (2.1.4). The estimates of @j

U
R.U / � .W1; : : : ;Wj / are

obtained in the same way. �

In the rest of this paper, we shall use several variants of these classes. We shall denote by‰m
R .N; �; q/

the subspace of ‰m.N; �; q/ made of those operators a.U / sending real-valued functions to real-valued
functions, i.e., satisfying a.U / D a.U /. We define Rr

�;R.N; �; q/ from Rr
�.N; �; q/ analogously. We

denote by

‰m.N; �; q/˝M2.R/ and Rr
�.N; �; q/˝M2.R/

the space of 2� 2 matrices with entries in ‰m.N; �; q/ and in Rr
�.N; �; q/ respectively. We use similar

notation for ‰m
R .N; �; q/ and Rr

�;R.N; �; q/.
Finally, we shall consider operators a.U; !; �/, R.U; !; �/ depending on .!; �/ staying in a bounded

domain of R2. We say a.U; !; �/ is C 1 in .!; �/ if .!; �/!…na.U; !; �/…n0 is C 1 in .!; �/with values
in L.H0/ and if (2.1.1) is satisfied also by @!a; @�a. Likewise, R.U; !; �/ is C 1 if .!; �/!R.U; !; �/

is C 1 in .!; �/ with values in L.Hs;HsCr / and if (2.1.3) is satisfied by @!R; @�R.

2.2. Equivalent formulation of the equation. The goal of this subsection is to reduce (1.1.3) to an
equivalent equation for a new unknown belonging to the space Hs defined by (1.2.6) instead of zHs .
Recall that we fixed some �0 >

d
2
C 1.

For � 2R, we consider the space H� .S1�Td IR2/� zH� .S1�Td IR2/ and denote by F� .S1�Td IR2/

the orthogonal complement of the first space in the second one.
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Definition 2.2.1. Let � � �0. Denote by H�
1
;H�

2
any of the preceding spaces. Let X be an open subset

of H�
1

, k 2 Z. One denotes by ˆ1;k.X;H��k
2

/ the space of C1 maps G W X ! H��k
2

such that, for
any s � � and u 2X \Hs

1
:

� G.u/ 2Hs�k
2

.

� The linear map DG.u/2L.H�
1
;H��k

2
/ extends as an element of L.H� 0

1
;H� 0�k

2
/ for any � 02 Œ�s; s�.

Moreover, v!DG.v/ is smooth from X \Hs
1

to the preceding space.

� The bilinear map D2G.u/2L2.H
�
1
�H�

1
IH��k

2
/ extends as an element of L2.H

�1

1
�H�2

1
IH��3�k

2
/

for any triple f�1; �2; �3g D f�
0;�� 0;max.�0; �

0/g with � 0 2 Œ0; s�. Moreover, v ! D2G.v/ is
smooth from X \Hs

1
to the preceding space.

Let us give an example of an element of ˆ1;0.zH� ; zH� /. Consider F WS1�Td �R2!R2, a smooth
function satisfying F.t;x; 0/ � 0, @uF.t;x; 0/ � 0. By Lemma A.1 of the appendix, for � > d

2
C 1

and u 2 zH� .S1 �Td IR2/, we have F. � ;u/ 2 zH� .S1 �Td IR2/, and by Corollary A.2, u! F. � ;u/ is
smooth. If we define G.u/ D F. � ;u/, then DG.u/ � h D @uF. � ;u/h, which, by Lemma A.3, extends
as a linear map from zH� 0 to itself for any � 0 2 Œ�s; s�, when u 2 zHs and s > d

2
C 1. In the same

way, D2G.u/ � .h1; h2/D @
2
uF. � ;u/ � .h1; h2/ extends from zH�1 � zH�2 to zH��3 for �1; �2; �3 as in the

statement of the definition, by Lemma A.3.

Definition 2.2.2. Let � � �0, X an open subset of H�
1

, k 2 Z. One denotes by C1;k.X IR/ the space
of C 1 functions ˆ W X ! R, such that for any s � � and u 2 X \Hs

1
, we have rˆ.u/ 2 Hs�k

1
and

u!rˆ.u/ belongs to ˆ1;k.X;H��k
1

/.

If F WS1�Td�R2!R is a smooth function, with F.t;x; 0/� 0, @uF.t;x; 0/� 0, @2
uF.t;x; 0/� 0,

and if ˆ.u/ D
R

S1�Td F.t;x;u.t;x// dt dx, then rˆ.u/ D @uF. � ;u/ 2 zHs if u 2 zHs and s > d
2
C 1

(see Lemma A.1), and the example following Definition 2.2.1 shows that ˆ 2 C1;0.zH� ;R/ for � � �0.

Remark. In the sequel we shall have to consider elements G.u; !; �/,ˆ.u; !; �/ of the preceding spaces
depending on the real parameters .!; �/. We shall say that G; ˆ are C 1 in .!; �/ if the conditions of
Definition 2.2.1 (resp. Definition 2.2.2) are satisfied by G; @!G; @�G (resp. ˆ; @!ˆ; @�ˆ).

Lemma 2.2.3. Let � � �0, k 2 N, X an open subset of H�
1

, G 2ˆ1;�k.X;H�Ck
2

/, Y an open subset
of H�Ck

2
containing G.X /, ˆ 2 C1;k.Y;R/. Then ˆ ıG 2 C1;0.X;R/.

Proof. The assumption on G implies that for v 2X \Hs
1
, s � � and for � 0 with j� 0j � s,

DG.v/ 2 L.H� 0

1 ;H
� 0Ck
2

/� L.H� 0

1 ;H
� 0

2 /: (2.2.1)

Moreover, since rˆ 2 ˆ1;k.Y;H�
2
/, we have G.v/ 2 Y \HsCk

2
for v 2 X \Hs

1
, so rˆ.G.v// 2 Hs

2

and for any � 00 with j� 00j � sC k, .D.rˆ//.G.v// is in L.H� 00

2
;H� 00�k

2
/. In particular, for any � 0 with

j� 0j � s,
D.rˆ/.G.v// 2 L.H� 0Ck

2
;H� 0

2 /: (2.2.2)

We deduce from (2.2.1) that r.ˆıG/.v/D tDG.v/ � .rˆ/.G.v// belongs to Hs
1

when v 2X \Hs
1
. Let

us check that r.ˆ ıG/ belongs to ˆ1;0.X;H�
1
/. If u 2X \Hs

1
.s � �/ and h 2H� 0

1
with � 0 2 Œ�s; s�,
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we write

DŒr.ˆ ıG/.v/� � hD tDG.v/ �
�
.Drˆ/.G.v// �DG.v/ � h

�
C .D. tDG/.v/ � h/ � rˆ.G.v//: (2.2.3)

By (2.2.1) and (2.2.2), the first term on the right belongs to H� 0

1
. To check that the last term in (2.2.3)

belongs to the same space, we integrate it against h0 2H��
0

1
. We getZ

Œ.D.tDG/.v/ � h/ � rˆ.G.v//�h0 dt dx D

Z
.rˆ/.G.v//D2G.v/ � .h; h0/ dt dx: (2.2.4)

By Definition 2.2.1,
D2G.v/ � .h; h0/ 2H

�max.�0;�
0/Ck

2
�H

�max.�0;�
0/

2
:

Since rˆ.G.v// 2Hs
2
�H

max.�0;�
0/

2
, this shows that the right side of (2.2.4) defines a continuous linear

form in h0 2H��
0

1
.

We now study D2Œr.ˆ ıG/.v/� � .h1; h2/, with .h1; h2/ 2H�1

1
�H�2

1
. To prove that

D2Œr.ˆ ıG/.v/� � .h1; h2/ 2H��3

1
;

we compute, for h3 2H�3

1
,

D2

Z
r.ˆ ıG/.v/h3 dt dx DD2

Z
Œ.rˆ/.G.v//�ŒDG.v/ � h3� dt dx:

We get the following contributions (up to symmetries) for the action on .h1; h2/ 2H�1

1
�H�2

1
:Z

Œ.rˆ/.G.v//�ŒD3G.v/ � .h1; h2; h3/� dt dx; (2.2.5a)Z
ŒD..rˆ/.G.v/// � h1� ŒD

2G.v/ � .h2; h3/� dt dx; (2.2.5b)Z
Œ.Drˆ/.G.v// �D2G.v/ � .h1; h2/� ŒDG.v/ � h3� dt dx; (2.2.5c)Z
Œ.D2
rˆ/.G.v// � .DG.v/ � h1;DG.v/ � h2/� ŒDG.v/ � h3� dt dx: (2.2.5d)

In (2.2.5a), we may assume for instance h1 2H� 0

1
, h2 2H��

0

1
, h3 2H

max.�0;�
0/

1
. Since u!D2G.u/

is C 1 on X \ H
max.�0;�

0/
1

with values in L2.H
� 0

1
� H��

0

1
IH2
�max.�0;�

0/Ck/, the second factor in the
integrand belongs to H

�max.�0;�
0/Ck

2
, so may be integrated against rˆ.G.v// 2 Hs

2
� H

max.�0;�
0/

2
for

s � � 0 � 0 and s � � .
In (2.2.5b), D2G.v/ � .h2; h3/ 2H��1Ck

2
. On the other hand D..rˆ/.G.v/// �h1 is in H�1

2
by (2.2.1)

and (2.2.2), which allows one to integrate the product of the two factors.
In (2.2.5c), DG.v/ � h3 lies in H�3Ck

2
. The other factor is given by the action of .Drˆ/.G.v// on

D2G.v/ � .h1; h2/ 2H��3Ck
2

, whence again the wanted duality in the integral, using (2.2.2).
Finally, in (2.2.5d), we integrate DG.v/�h3 2H�3Ck

2
against the action of .D2rˆ/.G.v// on a couple

belonging to H�1Ck
2

�H�2Ck
2

�H�1

2
�H�2

2
. Since this vector is in H��3�k

2
by definition of C1;k.Y;R/,

we get the conclusion. �
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Let us write an equivalent form of (1.1.3) using the classes of functions above. Since the Hamiltonian
F in (1.1.2) is real-valued, we may write (1.1.3) as a 2� 2 system

.!Dt ��C�/uD �f .t;x/C �
@F

@ Nu
.t;x;u; Nu; �/;

.�!Dt ��C�/ NuD � Nf .t;x/C �
@F

@u
.t;x;u; Nu; �/:

(2.2.6)

We identify uD v1C iv2 with v D
�
v1
v2

�
and f D f1C if2 with f D

� f1

f2

�
. If we set

rF.v/D

�
@F=@v1

@F=@v2

�
and

L! D

�
��� �!@t

!@t ���

�
; (2.2.7)

Equation (2.2.6) is equivalent to

L!v D��f � �rvF.t;x; v/: (2.2.8)

Define, for v 2 zHs.S1 �Td IR2/,

ˆ1.v; f; !; �/D
1

2

Z
S1�Td

.L!v/v dt dxC �

Z
S1�Td

f .t;x/v.t;x/ dt dx (2.2.9)

and

ˆ2.v; �/D

Z
S1�Td

F.t;x; v.t;x/; �/ dt dx: (2.2.10)

Thenrˆ1.v/DL!vC�f , soˆ12C
1;2.zH��zH�;R/ if ���0, since, by the definition of zH� .S1�Td IR2/,

L! is bounded from zH� to zH��2. By the statement following Definition 2.2.2, ˆ2 2 C1;0.zH� ;R)
(� � �0). Moreover (2.2.8) may be written

rv Œˆ1.v; f; !; �/C �ˆ2.v; �/�D 0: (2.2.11)

Using the notation introduced at the bottom of page 646, we decompose any v 2 zHs.S1 � Td IR2/ as
v D v0C v00 on the decomposition

zHs.S1
�Td
IR2/DHs.S1

�Td
IR2/˚Fs.S1

�Td
IR2/:

We denote for q > 0 by Bq.zH
s/, Bq.H

s/, Bq.F
s/ the ball of center 0 and radius q in these spaces. By

(1.2.6), if v 2 Fs.S1 � Td IR2/, .j ; n/ 2 Z ��˛ � Z � Zd and Ov.j ; n/ ¤ 0, then jj j > K0hn.˛/i
2

or jj j < K�1
0
hn.˛/i2. Moreover, since � 2 R � Z�,

ˇ̌
jnj2 C �

ˇ̌
� c.�/hn.˛/i2 when n 2 �˛, for

some constant c.�/ > 0. If we fix K0 large enough, and use that ! stays in Œ1; 2�, we conclude that the
eigenvalues of L! satisfy the boundsˇ̌

!j Cjnj2C�
ˇ̌
� c.jj jC hn.˛/i2/ for j 2 Z; n 2�˛; ˛ 2A:
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This shows that the restriction of L! to FsC2 is an invertible operator from FsC2 to Fs (uniformly in
! 2 Œ1; 2�).

Let us reduce (2.2.11) to an equation on the space Hs.S1 �Td IR2/.

Proposition 2.2.4. Let � � �0; q > 0, f 0 2 Bq.H
� /. There are 0 2 �0; 1�,

� an element .v0; f 00/ !  2.v
0; f 00; !; �/ of C1;0.WqIR/, where Wq D Bq.H

� .S1 � Td IR2// �

Bq.F
� .S1 �Td IR2//, with C 1 dependence in .!; �/ 2 Œ1; 2�� Œ0; 0�, and

� an element .v0; f 00/!G.v0; f 00; !; �/ of ˆ1;�2.Wq;F
�C2/, with C 1 dependence in .!; �/,

such that, for any given subset A� Œ1; 2�� Œ0; 0�, the following two conditions are equivalent:

(i) The function v D .v0;G.v0; f 00; !; �// satisfies for any .!; �/ 2A

L!vC �f C �rvˆ2.v; �/D 0; (2.2.12)

where f D f 0Cf 00.

(ii) The function v0 satisfies for any .!; �/ 2A

L!v
0
C �f 0C �rv0 2.v

0; f 00; !; �/D 0: (2.2.13)

Proof. Write (2.2.12) as

L!v
0
C �f 0C �rv0ˆ2.v

0; v00; �/D 0; (2.2.14a)

L!v
00
C �f 00C �rv00ˆ2.v

0; v00; �/D 0: (2.2.14b)

We are looking for a solution of the second equation under the form v00 D ��L�1
! f 00C �w00. The new

unknown w00 satisfies
w00 D�L�1

! rv00ˆ2.v
0;��L�1

! f 00C �w00; �/: (2.2.15)

Let q0 > 0 be such that kL�1
! rv00ˆ2.v

0; h; �/kF�C2 � q0=2 for any .v0; h/ 2 Bq.H
� / �Bq.F

� /, any
� 2 Œ0; 1�, any ! 2 Œ1; 2�. The fixed point theorem with parameters shows that there is 0 2 �0; 1� such that
for any .v0; f 00/ 2 Wq , any � 2 Œ0; 0�, Equation (2.2.15) has a unique solution w00 2 Bq0

.F�C2/. We
denote this solution by G.v0; f 00; !; �/. This is a smooth function of .v0; f 00/2Wq , with C 1 dependence
in .!; �/. If moreover .v0; f 00/ 2 zHs for some s � � , it follows from (2.2.15) that w00 2FsC2 (using that
L�1
! gains two derivatives in the Fs scale). Let us show that G belongs to ˆ1;�2.Wq;F

�C2/. By the
definition of G

Dv0G.v
0; f 00; !; �/D�L�1

! .Id� �M 00.v0; f 00; !; �/L�1
! /�1M 0.v0; f 00; !; �/;

Df 00G.v
0; f 00; !; �/D �L�1

! .Id� �M 00.v0; f 00; !; �/L�1
! /�1M 00.v0; f 00; !; �/L�1

! ;
(2.2.16)

with
M 0.v0; f 00; !; �/D .Dv0rv00ˆ2/.v

0;��L�1
! f 00C �G; �/;

M 00.v0; f 00; !; �/D�.Dv00rv00ˆ2/.v
0;��L�1

! f 00C �G; �/:
(2.2.17)

Since ˆ2 2 C1;0.Wq;R/, when .v0; f 00/ 2Wq \
zHs for some s � � , one can extend M 00.v0; f 00; !; �/

into an element of L.F�
0

;F�
0

/ for any � 0 2 Œ�s; s�; similarly, M 0.v0; f 00; !; �/ extends as an element
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of L.H� 0 ;F�
0

/. We choose 0 small enough that for � 2 Œ0; 0�, �kM 00.v0; f 00; !; �/L�1
! kL.F� ;F� / is

smaller than 1
2

. Let us check that G satisfies the first condition in Definition 2.1.1. We may write the
first equation in (2.2.16) as

Dv0G.v
0; f 00; !; �/

D�

2N�1X
kD0

L�1
! .�M 00L�1

! /kM 0
�L�1

! .�M 00L�1
! /N .Id� �M 00L�1

! /�1.�M 00L�1
! /N M 0; (2.2.18)

and a similar formula holds for Df 00G. If N is chosen large enough relatively to s, and � 0 2 Œ�s; s�,
.�M 00L�1

! /N M 0 sends H� 0 to F� , over which .Id� �M 00L�1
! /�1 is bounded. Consequently, the last

contribution in (2.2.18) is in FsC2 � F�
0C2. The sum on the right side being bounded from H� 0 to

F�
0C2 for any � 0 2 Œ�s; s�, we get the same property for Dv0G. We argue in the same way for Df 00G.

To check the second condition in Definition 2.1.1, we compute from (2.2.16), for .h1; h2/ 2H�1 �H�2

D2
v0G.v

0; f 00; !; �/ � .h1; h2/D�L�1
! .Id� �M 00L�1

! /�1Œ.Dv0M
0
� h1/ � h2�

�L�1
! .Id� �M 00L�1

! /�1.�Dv0M
00L�1

! � h1/.Id� �M 00L�1
! /�1M 0

� h2:

If f�1; �2; �3g D f�
0;�� 0;max.�0; �

0/g, the assumption on ˆ2 implies that Dv0M
0 sends H�1 �H�2

to F��3 , and Dv0M
00 sends H�1 �F�2 to F��3 . Using expansions as in (2.2.18), we conclude that if

.h1; h2/ 2H�1 �H�2 , D2
v0G.v

0; f 00; !; �/ � .h1; h2/ 2F��3C2. One studies Dv0Df 00G and D2
f 00

G in the
same way. It is clear that DG;D2G are smooth in .v0; f 00/ 2 Wq \

zHs and have a C 1 dependence in
.!; �/; hence G 2ˆ1;�2.Wq;F

�C2/.
Let us obtain the equivalent form (2.2.13) of (2.2.12) or (2.2.11). By (2.2.9), (2.2.10)

ˆ1.v
0; v00; !; �/C �ˆ2.v

0; v00; �/D
1

2

Z
.L!v

0/v0 dt dxC �

Z
f 0v0 dt dx

C
1

2

Z
.L!v

00/v00 dt dxC �

Z
f 00v00 dt dxC �ˆ2.v

0; v00; �/:

We plug into this expression the solution v00 D��L�1
! f 00C �G.v0; f 00; !; �/ of (2.2.14b). We get after

simplification the function

‰.v0; f 00; !; �/D
1

2

Z
.L!v

0/v0 dt dxC�

Z
f 0v0 dt dx�

�2

2

Z
.L�1
! f 00/f 00 dt dxC� 2.v

0; f 00; !; �/;

where

 2.v
0; f 00; !; �/D

�

2

Z
G.L!G/ dt dxCˆ2.v

0;��L�1
! f 00C �G; �/: (2.2.19)

The integral in (2.2.19) is the composition of the function defined on F� by w00!
R
w00.L!w

00/ dt dx,
which is an element of C1;2.F� ;R/, with the map

.v0; f 00/!G.v0; f 00; !; �/;

zH�
! F�C2;

which is an element of ˆ1;�2.Wq;F
�C2/. By Lemma 2.2.3, we conclude that  2 2 C1;0.Wq;R/.
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Since G is defined as the critical point (up to an affine change of variables) of the map

v00! .ˆ1C �ˆ2/.v
0; v00; !; �/;

and since ‰ is the corresponding critical value, v0 solves (2.2.14a) if and only of rv0‰.v0; f 00; !; �/D 0.
This gives (2.2.13). �

We finish this subsection with a lemma that will be useful in the sequel. Let X be an open subset of
H�0.S1 �Td IR2/,  an element of C1;0.X IR/. For v 2X \HC1, w1; w2 2HC1, we set

L.vIw1; w2/DD2 .v/ � .w1; w2/: (2.2.20)

This is a continuous bilinear form in .w1; w2/2H0�H0, by the definition of C1;0.X IR/. By the Riesz
theorem, we write it

L.vIw1; w2/D

Z
S1�Td

.W .v/w1/w2 dt dx

for some symmetric H0-bounded operator W .v/. Since Definition 2.2.2 implies that v ! D2 .v/ is
a smooth map on X with values in the space of continuous bilinear forms on H0 �H0, we know that
v!W .v/ is smooth with values in L.H0;H0/. Thus we may write, for j D 1; : : : ; d ,

L.vI @xjw1; w2/CL.vIw1; @xjw2/D�

Z
S1�Td

..@xjW .v//w1/w2 dt dx

D�.@vL/.vIw1; w2/ � .@xj v/; (2.2.21)

for any v 2X \HC1 and w1; w2 2HC1.
We denote by CŒX˛I˛ 2Nd � the space of polynomials in indeterminates X˛, indexed by elements of

Nd . If X
k1
˛1
� � �X

k`
˛` is a monomial, its weight will be defined as k1j˛1j C � � � C k`j˛`j. The weight of

any polynomial is then defined in the natural way.

Lemma 2.2.5. For any N 2 N and ` 2 N, there is a polynomial Q`
N
2 CŒX˛I˛ 2 Nd �, of weight less

or equal to N , and for any q > 0 a constant C > 0 such that, for any v 2 Bq.H
�0/\HC1 \X , any

h1; : : : ; h` in HC1, any n; n0 2 Zd…n@
`
vW .v/ � .h1; : : : ; h`/…n0


L.H0/

� C hn� n0i�N
X

N0C���CN`DN

Q`
N0
..k@˛vkH�0 /˛/

Ỳ
`0D1

kh`0kH�0CN`0
: (2.2.22)

Proof. Since t…n D…�n, we may write, for any w1; w2 2HC1,

.nj � n0j /

Z
.…nW .v/…n0w1/w2 dt dx D .nj � n0j /L.vI…n0w1;…�nw2/

D i ŒL.vI @xj…n0w1;…�nw2/CL.vI…n0w1; @xj…�nw2/�

D�i.@vL/.vI…n0w1;…�nw2/ � .@xj v/;
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by (2.2.21). Iterating the computation, we get for

hn� n0iN
ˇ̌̌̌Z
.…nW .v/…n0w1/w2 dt dx

ˇ̌̌̌
an estimate in terms of quantitiesˇ̌

.@p
vL/.vI…n0w1;…�nw2/ � .@

˛1v; : : : ; @˛pv/
ˇ̌
;

with j˛1jC � � �C j p̨j �N . By the properties of L, this is bounded from above by

Ck…n0w1kL2k…�nw2kL2

pY
p0D1

k@˛p0vkH�0

when v stays in a fixed H�0-ball. This implies (2.2.22) for `D 0. The proof for general ` is similar, up
to notation. �

2.3. Reduction to a paradifferential equation. We want to construct, under the conditions of the state-
ment of Theorem 1.1.1, periodic solutions to (2.2.6). We have rewritten this equation under the real
form (2.2.8) (or (2.2.11)). By Proposition 2.2.4, if we find a periodic solution v0 for (2.2.13), we get a
periodic solution v for (2.2.12), which is a rewriting of (2.2.11). We are thus reduced to finding a solution
v0 2H� .S1 �Td IR2/ to (2.2.13). Since the force term f D f 0C f 00 will be fixed, we no longer write
the f 00 dependence in the function  2 defined in Proposition 2.2.4. Moreover, since, in the rest of the
paper, we will study only the equivalent formulation (2.2.13) of our initial problem, we drop the primes;
that is, we study

L!vC �f C �rv 2.v; !; �/D 0; (2.3.1)

where v 2Bq.H
� .S1�Td IR2//, f 2Hs.S1�Td IR2/,  2 is in C1;0.Bq.H

� /;R/ for some � 2 Œ�0; s�,
q > 0 and for � 2 Œ0; 0�, with 0 2 �0; 1� small enough. We shall use the equivalent norms (1.2.7) and
(1.2.8) on the spaces we consider.

Our objective in this subsection is to rewrite the nonlinearity in (2.3.1) using paradifferential operators.

Proposition 2.3.1. Let q > 0, � � �0C d C 1 be given. Set

r D � � �0� d � 1: (2.3.2)

There is a symmetric element zV 2‰0
R.0; �; q/˝M2.R/ and an element zR 2Rr

0;R
.0; �; q/˝M2.R/, with

C 1 dependence in .!; �/, such that, for any v 2 Bq.H
� /, � 2 Œ0; 0�, and ! 2 Œ1; 2�,

rv 2.v; !; �/D zV .v; !; �/vC zR.v; !; �/v: (2.3.3)

Let us comment about the interest of this decomposition of rv 2. It allows us to express the nonlin-
earity in (2.3.1) as the sum of a remainder and of the action of the paradifferential potential zV .v; !; �/
on v. In that way, the main contribution to the nonlinearity is expressed in terms of a class of operators
enjoying a nice calculus. This will be exploited below to perform a block diagonalization.
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We introduce some notation for the proof. For p 2 N, v 2H0.S1 �Td IR2/, we set

�0v D…0v; �pv D
X

n2Zd

2p�1�jnj<2p

…nv for p � 1;

S0v D 0; Spv D

p�1X
p0D0

�p0v D
X

n2Zd

jnj<2p�1

…nv for p � 1:

(2.3.4)

We also consider the frequency cut-offs defined for n; n0 2 Zd by

S.n; n0/D
X

jn00j�2.1Cmin.jnj;jn0j//

…n00 : (2.3.5)

Lemma 2.3.2. Let � � �0CdC1, q> 0. There is a map .v; !; �/!W .v; !; �/ defined for v 2Bq.H
� /,

�2 Œ0; 0�, ! 2 Œ1; 2�, with values in the space of bounded symmetric operators on H0.S1�Td IR2/, which
is C1 in v and has C 1 dependence in .!; �/, such that for any .v; !; �/

 2.v; !; �/D

Z
S1�Td

ŒW .v; !; �/v�v dt dx (2.3.6)

and such that the following estimate holds: For .`;N /2N�N, there are polynomials Q`
N
2CŒX˛I˛2N�,

of weight at most N , and there is for any M 2 N and ` 2 N a constant C , depending only on `; q;M ,
such that for any v 2 Bq.H

� /, any � 2 Œ0; 0�, any ! 2 Œ1; 2�, any .a0; a1/ 2 N2 with a0C a1 � 1, any
.h1; : : : ; h`/ 2 .H

� /`, and any n; n0 2 Zd ,…n@
a0
! @

a1
� D`

vW .v; !; �/ � .h1; : : : ; h`/…n0


L.H0/

� C hn� n0i�M
X

N0C���CN`DM

Q`
N0

�
.k@˛S.n; n0/vkH�0 /˛

� Ỳ
`0D1

kS.n; n0/h`0kH�0CN`0
: (2.3.7)

Proof. We do not write !; �, which play the role of parameters. Since  2 vanishes at order 3 at v D 0,
and Spv! v in H� when p!C1, we write

 2.v/D

C1X
p1D0

. 2.Sp1C1v/� 2.Sp1
v//D

C1X
p1D0

Z 1

0

.@ 2/.Sp1
vC �1�p1

v/ d�1 ��p1
v:

Repeating the process, we get

 2.v/D

C1X
p1D0

C1X
p2D0

Z 1

0

Z 1

0

.@2 2/.�p1;p2
.�1; �2/v/ d�2 � .�p2

.Sp1
C �1�p1

/v;�p1
v/ d�1;

where�p1;p2
.�1; �2/D

Q2
`D1.Sp`C�`�p`/. By the discussion before Lemma 2.2.5, there is a symmetric

operator zW .v/ satisfying (2.2.22), such that

@2 2.v/ � .w1; w2/D

Z
Œ zW .v/w1�w2 dt dx:
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We set

W .v/D
1

2

X
p1

X
p2

Z 1

0

Z 1

0

�p1
Œ zW .�p1;p2

.�1; �2/v/�p2
.Sp1
C �1�p1

/� d�1d�2

C
1

2

X
p1

X
p2

Z 1

0

Z 1

0

�p2
.Sp1
C �1�p1

/Œ zW .�p1;p2
.�1; �2/v/�p1

� d�1d�2: (2.3.8)

This is a symmetric operator. We apply (2.2.22) to zW . Because of the cut-offs in the argument of zW
in (2.3.8), we may write …nW .v/…n0 D …nW .S.n; n0/v/…n0 . Consequently, (2.2.22) implies (2.3.7).
Note that since � � �0C d C 1, we may take some integer M > d , such that �0CM � � , so that for
v; h`0 in H� , the right side of (2.3.7) is bounded from above by C hn� n0i�M . This shows that W .v/ is
indeed bounded on H0. �

Proof of Proposition 2.3.1. Let h1 be in HC1.S1 �Td IR2/ and write

D 2.v; !; �/ � h1 D 2

Z
S1�Td

.W .v; !; �/v/h1 dt dxC

Z
S1�Td

..DW .v; !; �/ � h1/v/v dt dx: (2.3.9)

Define
zV D 2

X
n;n0

1
jn�n0j� 1

10
.jnjCjn0j/…nW .v; !; �/…n0 :

In (2.3.7), we can bound k@˛S.n; n0/vkH�0 by CkvkH� when j˛j �M � � � �0, and we can control
kS.n; n0/h`0kH�0CN`0

by Ckh`0kH�0CM . We obtain that zV satisfies (2.1.1), and is thus an element of
‰0.0; �; q/. We show that the remaining terms in (2.3.9) give contributions to the last term in (2.3.3). Set

R1.v; !; �/D 2
X

n

X
n0

…nW .v; !; �/…n01jn�n0j> 1
10
.jnjCjn0j/:

We estimate …n@
a0
! @

a1
� @

`
vR1.v; !; �/ � .h1; : : : ; h`/…n0


L.H0/

(2.3.10)

using (2.3.7) with M > � � �0. Since kS.n; n0/wkH�0Cˇ � C.1C inf.jnj; jn0j//.ˇC�0��/CkwkH� , we
get for (2.3.10) the upper bound

C.1CjnjC jn0j/�M .1C inf.jnj; jn0j//MC�0��
Ỳ
`0D1

kh`0kH� :

Taking M large enough, we deduce the boundedness of R1.v; !; �/ and of its derivatives from Hs to
HsC.���0�d�1/, for any s � �0; thus R1 2Rr

0;R
.0; �; q/.

We treat next the last contribution to (2.3.9), defining an operator R2.v; !; �/ byZ
Œ.DW .v; !; �/ � h/v�w dt dx D

Z
ŒR2.v; !; �/w�h dt dx (2.3.11)
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for any h; w 2 HC1. On the left side, we decompose the last v as
P

n0…n0v and w as
P

n…nw. We
bound the modulus of (2.3.11) byX

n

X
n0

…nDW .v; !; �/ � h…n0


L.H0/
k…n0vkH0 k…nwkH0 : (2.3.12)

To show that R2.v; !; �/ is bounded from Hs to HsCr , we bound k…nwkH0 � cnhni
�skwkHs , for a

`2-sequence .cn/n and take h 2H�s�r . We use (2.3.7) with `D 1. We have the bound

Q1
N0

�
.k@˛S.n; n0/vkH�0 /˛

�
kS.n; n0/hkH�0CN1 � C.1C inf.jnj; jn0j//MCsCrC�0khkH�s�r

since v is bounded in H� . Consequently, the general term of (2.3.12) is smaller than

C hn� n0i�M .1C inf.jnj; jn0j//MCsCrC�0hni�scnkwkHskhkH�s�r hn0i��c0n0kvkH� (2.3.13)

for some `2-sequence .c0n0/n0 . Taking M D d C 1, and using the value (2.3.2) of r and s � 0, � � 0,
one checks that the sum in n; n0 of (2.3.13) converges. This shows the boundedness of R2.v; !; �/ from
Hs to HsCr . One treats in the same way @a0

! @
a1
� @

`
vR2.v; !; �/. Consequently R2 2 Rr

0;R
.0; �; q/. This

concludes the proof of the proposition. �

Let us conclude this section writing in complex coordinates the equation we are interested in. By
Proposition 2.3.1, Equation (2.3.1) may be written

L!vC �f C � zV .v; !; �/vC � zR.v; !; �/v D 0: (2.3.14)

We write v D
�
v1
v2

�
2 R2 and set uD v1C iv2, U D

�
u
Nu

�
, I 0 D

�
1 0
0 �1

�
.

Corollary 2.3.3. Let q > 0, � � �0 C d C 1, r given by (2.3.2). There is an element V .U; !; �/ in
‰0.0; �; q/˝M2.R/ with V .U; !; �/� D V .U; !; �/, there is R.U; !; �/ in Rr

0
.0; �; q/˝M2.R/ such

that (2.3.14) is equivalent to

Œ.!I 0Dt C .��C�/I/C �V .U; !; �/�U D �R.U; !; �/U C �f (2.3.15)

(where, abusing notation, we write f for
� f1Cif2

f1�if2

�
).

Proof. Write zV .v; !; �/ D . zVi;j .v; !; �//1�i;j�2, zR.v; !; �/ D . zRi;j .v; !; �//1�i;j�2 and note that
(2.3.14) implies

.!Dt ��C�/u

D �.f1C if2/� �V11.U; !; �/u� �V12.U; !; �/ NuC �R11.U; !; �/uC �R12.U; !; �/ Nu; (2.3.16)

where we have set

V11 D�
1
2
Œ zV11C

zV22C i. zV21�
zV12/�; V12 D�

1
2
Œ zV11�

zV22C i. zV21C
zV12/�;

R11 D
1
2
Œ zR11C

zR22C i. zR21�
zR12/�; R12 D

1
2
Œ zR11�

zR22C i. zR21C
zR12/�:

(2.3.17)

We define V21DV 12;V22DV 11;R21DR12;R22DR11, V D .Vij /1�i;j�2, RD .Rij /1�i;j�2. Since
t zV D zV and zV D zV , we see that V �DV and (2.3.16), (2.3.17) imply (2.3.15). This concludes the proof.

�
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3. Diagonalization of the problem

The goal of this section is to deduce from (2.3.15) a new equation where, up to remainders, V .U; !; �/

will be replaced by a block diagonal operator relatively to the decomposition H0 D
L
˛ Range. z…˛/

coming from (1.2.5). This is the key point that will allow us to avoid using Nash–Moser methods in the
construction of the solution performed in Section 4.

3.1. Spaces of diagonal and non diagonal operators.

Definition 3.1.1. Let � 2 R, N 2 N, � � �0C d C 1C 2N , m 2 R, q > 0.

(i) One denotes by †m.N; �; q/ the space ‰m.N; �; q/˝M2.R/. Abusing notation, we also write
Rr
�.N; �; q/ for Rr

�.N; �; q/˝M2.R/.

(ii) One denotes by †m
D .N; �; q/ the subspace of †m.N; �; q/ consisting of elements A.U; !; �/ D

.Aij .U; !; �//1�i;j�2 such that A12 DA21 D 0 and, for any ˛; ˛0 2A with ˛ ¤ ˛0,

z…˛A11.U; !; �/ z…˛0 � 0; z…˛A22.U; !; �/ z…˛0 � 0: (3.1.1)

(iii) One denotes by †m
ND.N; �; q/ the subspace of †m.N; �; q/ made up of elements A.U; !; �/ such

that, for any ˛ 2A,

z…˛A11.U; !; �/ z…˛ � 0; z…˛A22.U; !; �/ z…˛ � 0: (3.1.2)

Clearly, we get a direct sum decomposition †m.N; �; q/D†m
D .N; �; q/˚†

m
ND.N; �; q/.

Definition 3.1.2. Let � 2 �0; 1�.

(i) Lm
� .N; �; q/ denotes the subspace of †m��.N; �; q/ consisting of elements .Aij .U; !; �//1�i;j�2

that satisfy
A11;A22 2‰

m��.N; �; q/; A12;A21 2‰
m�2.N; �; q/: (3.1.3)

(ii) L0�
m.N; �; q/ denotes the subspace of †m��.N; �; q/ consisting of elements .Aij .U; !; �//1�i;j�2

that satisfy (3.1.3) and

A�11 D�A11; A�22 D�A22; A�12 DA21: (3.1.4)

Remark. It follows from the definition and from Proposition 2.1.4(ii) that, if A 2 Lm1
� .N; �; q/, B 2

Lm2
� .N; �; q/ with � � �0 C 2N C d C 1C .m1 Cm2 � 2�/C, then AB is the sum of an element of

L
m1Cm2��
� .N; �; q/ and an element of Rr

0
.N; �; q/ with

r D � � �0� .d C 1/�m1�m2C 2�� 2N:

Proposition 3.1.3. Let A.U; !; �/ be a self-adjoint element of †m
ND.N; �; q/. There exist B.U; !; �/ in

L0�
m.N; �; q/ and R.U; !; �/ in R

r.�;N /�m
0

.N; �; q/, with r.�;N /D �.� ��0�2N �d �1/, such that

B.U; !; �/�.���/C .���/B.U; !; �/DA.U; !; �/CR.U; !; �/ (3.1.5)

(where � is given by Lemma 1.2.1, for a given ˇ 2 �0; 1
10
Œ). Moreover Œ�;B� is in †m.N; �; q/.
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Proof. By assumption, we may write

A.U; !; �/D

�
a.U; !; �/ b.U; !; �/

b.U; !; �/� c.U; !; �/

�
;

with a� D a, c� D c, and z…˛a z…˛0 D 0D z…˛c z…˛0 if ˛; ˛0 2A with ˛ ¤ ˛0. Write aD a0C a00, with

a0 D
X
n;n0

1jn�n0j�c.jnjCjn0j/�…na…n0 ; a00 D
X
n;n0

1jn�n0j>c.jnjCjn0j/�…na…n0 ;

where c is a small positive constant. Applying (2.1.1) with M D � � �0� 2N � d � 1, we get

k…n@
j
U

a00.U /.W1; : : : ;Wj /…n0kL.H0/

� C.1CjnjC jn0j/m�r.�;N /
hn� n0i�d�1

1
jn�n0j� 1

10
.jnjCjn0j/

jY
`D1

kW`kH� ;

which implies a bound of type (2.1.3) for any s � �0, with r replaced by r.�;N /�m. Consequently, a00

gives a contribution to R in (3.1.5) and, changing notation, we may assume that aD a0. We do the same
for the c-contribution, so that we reduce ourselves to a; c verifying that

…na…n0 D 0 and …nc…n0 D 0 if jn� n0j> c.jnjC jn0j/�: (3.1.6)

We look for

B.U; !; �/D

�
a1.U; !; �/ b1.U; !; �/

b1.U; !; �/
� c1.U; !; �/

�
;

for some a1; b1; c1 satisfying a�
1
D �a1, c�

1
D �c1 such that A.U; !; �/ equals the left side of (3.1.5).

The latter may be written as�
Œ�; a1� .���/b1Cb1.���/

b�
1
.���/C.���/b�

1
Œ�; c1�

�
: (3.1.7)

Consequently, we have to solve the equations

Œ�; a1�D a; .���/b1C b1.���/D b; Œ�; c1�D c: (3.1.8)

The first of these is equivalent to

.jn0j2� jnj2/…na1…n0 D…na…n0 for any n; n0 2 Zd : (3.1.9)

Since A 2†m
ND.N; �; q/, Definition 3.1.1(ii) implies that the right side in (3.1.9) vanishes if n; n0 belong

to a same �˛ of the partition of Lemma 1.2.1. Consequently, we may define

a1.U; !; �/D
X
˛;˛02A
˛¤˛0

X
n2�˛

X
n02�;˛0

.jn0j2� jnj2/�1…na.U; !; �/…n0 : (3.1.10)

If we use the second lower bound in (1.2.2), Definition 2.1.1, and (3.1.6) with a small enough c > 0, we
see that a1 satisfies (2.1.1) with m replaced by m� �. Thus a1 2 ‰

m��.N; �; q/, and by (3.1.10) and
the fact that a� D a, we get a�

1
D�a1. The last equation (3.1.8) is solved in the same way.
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We are left with finding b1.U; !; �/. The equation giving it is equivalent to

�.jnj2Cjn0j2C 2�/…nb1…n0 D…nb…n0 : (3.1.11)

Since � 62Z� by assumption, we may always define b1 by division. Coming back to Definition 2.1.1, we
see that we get an element of ‰m�2.N; �; q/, which is moreover self-adjoint. This concludes the proof
since (3.1.7) shows that by construction Œ�; a1�; Œ�; c1� belong to ‰m.N; �; q/, and since �b1; b1� and
their adjoints are in ‰m.N; �; q/. �

3.2. Diagonalization theorem. The main result of this subsection is the following one, which gives a
reduction for the left side of (2.3.15).

Proposition 3.2.1. Let r be a given positive number and fix an integer N such that .N C 1/� � r C 2.
Let � 2 R satisfy

� � �0C 2.N C 1/C d C 1C r=�: (3.2.1)

Let q > 0 be given. One may find elements Qj .U; !; �/ in L
�j�
� .j ; �; q/, 0 � j � N , elements

VD;j .U; !; �/ in†�j�
D .j ; �; q/, 0� j �N �1, and an element R1.U; !; �/ in Rr

2
.N C 1; �; q/, with C 1

dependence in .!; �/, such that if one denotes

Q.U; !; �/D

NX
jD0

Qj .U; !; �/; VD.U; !; �/D

N�1X
jD0

VD;j .U; !; �/; I 0 D

�
1 0

0 �1

�
; (3.2.2)

one gets, for any U 2 Bq.H
� .S1 �Td IC2//,

.IdC �Q.U; !; �//�.!I 0Dt C .��C�/I C �V .U; !; �//.IdC �Q.U; !; �//

D !I 0Dt C .��C�/I C �VD.U; !; �/� �R1.U; !; �/: (3.2.3)

We shall prove Proposition 3.2.1 by constructing recursively Qj , 0� j �N so that Qj may be written
Qj DQ0j CQ00j with

Q0j 2 L0�
�j�.j ; �; q/; Œ�;Q0j � 2†

�j�.j ; �; q/; j D 0; : : : ;N;

Q00j 2 L�.jC1/�
� .j ; �; q/; Œ�;Q00j � 2†

�.jC1/�.j ; �; q/; j D 0; : : : ;N � 1;

Q00N D 0:

(3.2.4)

We compute first the left side of (3.2.3).

Proposition 3.2.2. Let r; �;N satisfy .N C 1/� � r C 2 and � � �0 C 2.N C 1/C d C 1C r . Let
Q.U; !; �/D

PN
jD0 Qj .U; !; �/ be given, with Qj DQ0j CQ00j satisfying (3.2.4).

� There are elements

Sj .U; !; �/ 2 L�.jC1/�
� .j ; �; q/; 0� j �N � 1; (3.2.5)

with Œ�;Sj �2†
�.jC1/�.j ; �; q/, and Sj depending only on Q0

`
(0� `� j ) and Q00

`
(0� `� j �1).
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� There are elements

Vj .U; !; �/ 2†
�j�.j ; �; q/; 0� j �N

with .Vj /
� D Vj , Vj depending only on Q` (`� j � 1).

� There is an element R 2Rr
2
.N C 1; �; q/ such that, if we set

V N .U; !; �/D

NX
jD0

Vj .U; !; �/; SN .U; !; �/D

N�1X
jD0

Sj .U; !; �/;

Q0 D

NX
jD0

Q0j ; Q00 D

NX
jD0

Q00j ;
zL! D !I 0Dt C .��C�/I;

then

.IdC �Q/�Œ zL! C �V �.IdC �Q/D zL! C �V N
C �Œ.SN /� zL! C zL!.S

N /�

C�ŒQ0�.��C�/C .��C�/Q0�C �ŒQ00� zL! C zL!Q00�C �R: (3.2.6)

Before starting the proof, we compute some commutators.

Lemma 3.2.3. (i) One can find Aj 2†
�j�.j � 1; �; q/ (1� j �N ) depending only on Q` (`� j �1)

and satisfying A�j D Aj , one can find Bj 2 L
�.jC1/�
� .j ; �; q/ (0 � j � N � 1) depending only

on Q0
`

(` � j ) and Q00
`

(` � j � 1) and satisfying Œ�;Bj � 2 †
�.jC1/�.j ; �; q/, and one can find

R 2Rr
2
.N C 1; �; q/, such that, if one sets AD

PN
jD1 Aj , B D

PN�1
jD0 Bj , then

ŒQ�; zL! �QCQ�Œ zL! ;Q�DACB� zL! C zL!BCR: (3.2.7)

(ii) One can find Aj as above .1 � j � N /, one can find Bj 2 L
�.jC1/�
� .j ; �; q/ .0 � j � N � 1/,

satisfying Œ�;Bj � 2†
�.jC1/�.j ; �; q/ and depending only on Q0

`
(`� j ) and Q00

`
(`� j � 1), and

one can find R 2Rr
2
.N C 1; �; q/ such that, with the same notation as in (i),

Q� zL!QDACB� zL! C zL!BCR: (3.2.8)

Proof. (i) Write

Œ zL! ;Q�D�Œ�;Q�C!ŒI
0Dt ;Q�D�Œ�;Q�C!I 0ŒDt ;Q�C!ŒI

0;Q�Dt

D�Œ�;Q�C!I 0ŒDt ;Q�C ŒI
0;Q�I 0.���/C ŒI 0;Q�I 0 zL! :

The left side of (3.2.7) may be written

�Q�Œ�;Q�C!Q�I 0ŒDt ;Q�CQ�ŒI 0;Q�I 0.���/�ŒQ�;��QC!ŒQ�;Dt �I
0QC.���/I 0ŒQ�;I 0�Q

CQ�ŒI 0;Q�I 0 zL! C zL!I 0ŒQ�;I 0�Q: (3.2.9)
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Denote by QA the first line of (3.2.9). Then QA is self-adjoint and may be written as
P2NC2

jD1
QAj , where

QAj is the sum of the following terms:X
j1Cj2Dj�1
0�j1;j2�N

�
� ŒQ�j1

; ��Qj2
�Q�j2

Œ�;Qj1
�
�

.j � 1/; (3.2.10)

!
X

j1Cj2Dj�2
0�j1;j2�N

�
Q�j1

I 0ŒDt ;Qj2
�C ŒQ�j2

;Dt �I
0Qj1

/
�

.j � 2/; (3.2.11)

X
j1Cj2Dj�1
0�j1;j2�N

�
Q�j1

ŒI 0;Qj2
�I 0.���/C .���/I 0ŒQ�j2

; I 0�Qj1

�
.j � 1/: (3.2.12)

Let us check that we may write QAj DAj CR1;j with Aj in †�j�.min.N C 1; j � 1/; �; q/ and R1;j in
Rr

0
.min.N C 1; j � 1/; �; q/. Since L

�j`�
� .j`; �; q/ � †

�.j`C1/�.j`; �; q/, it follows from (3.2.4) and
from (ii) of Proposition 2.1.4 that the general term in (3.2.10) may be written as a contribution to Aj

plus a remainder belonging to Rr1

0
.min.N; j � 1/; �; q/ with

r1 D � � �0� 2N � .d C 1/C .j1C j2C 1/� � r:

Moreover these contributions depend only on Q` (`� j � 1).
Consider the general term of (3.2.11). The second remark following Definition 2.1.1 implies that

ŒDt ;Qj2
� 2 †�.j2C1/�.j2C 1; �; q/. Consequently, using again (ii) of Proposition 2.1.4, we may write

(3.2.11) as a contribution to Aj , plus a remainder belonging to Rr1

0
.min.N C 1; j � 1/; �; q/, depending

only on Q` (`� j � 2).
Finally, consider (3.2.12). If C D .Cij .U; !; �//1�i;j�2 is an element of Lm

� .N; �; q/, it follows from
(3.1.3) that ŒI 0;C �D

�
0 2c12

�2c21 0

�
belongs to †m�2.N; �; q/. Hence, the first term in the sum (3.2.12)

is given by the composition of an element in †�.j1C1/�.j1; �; q/ and of an element in †�j2�.j2; �; q/.
By applying Proposition 2.1.4 once more, we may write this as a contribution to Aj plus a remainder in
Rr

0
.min.N; j � 1/; �; q/, depending only on Q` (`� j �1). The second term in the argument of the sum

(3.2.12) is treated in the same way. This shows that the sum of the first two lines in (3.2.9) contributes
to ACR on the right side of (3.2.7), since for j � N C 1, Aj is in †�.NC1/�.N C 1; �; q/, hence in
Rr

0
.N C 1; �; q/ by the inequality .N C 1/� � r and the remark after the statement of Definition 2.1.3.

Let us show that the last line in (3.2.9) contributes to B� zL!C zL!BCR in (3.2.7). We have seen above
that the fact that Q0j 2 L

�j�
� .j ; �; q/ implies ŒQ0j ; I

0� D
�

0 e1

e2 0

�
with e` 2 ‰

�j��2.j ; �; q/; similarly,
Q00j 2 L

�.jC1/�
� .j ; �; q/ implies ŒQ00j ; I

0�D
�

0 e1

e2 0

�
with e` 2‰

�.jC1/��2.j ; �; q/). We set

QBj D

X
j1Cj2Dj

0�j1;j2�N

I 0ŒQ0j1

�; I 0�Q0j2
C

X
j1Cj2Dj�1
0�j1;j2�N

I 0.ŒQ0j1

�; I 0�Q00j2
C ŒQ00j1

�; I 0�Q0j2
/C

X
j1Cj2Dj�2
0�j1;j2�N

I 0ŒQ00j1

�; I 0�Q00j2
:

Applying Proposition 2.1.4, we again have a decomposition QBj D Bj CRj , where Bj belongs to the
class L

�.jC1/�
� .min.N; j /; �; q/ (actually, Bj is in †�.jC1/��2.min.N; j /; �; q/) and Rj belongs to
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RrC2
0

.min.j ;N /; �; q/ because of (3.2.1). Moreover, Bj depends only on Q0
`

(`�j ) and Q00
`

(`�j�1),
and by construction, Œ�;Bj � 2 †

�.jC1/�.min.N; j /; �; q/. For j � N � 1, we get contributions to B

and R in (3.2.8), noting that Rj
zL! ; zL!Rj are in Rr

2
.N; �; q/. For j �N , Bj as well as Rj contribute

to the remainder in (3.2.7) since .N C 1/� � r . This concludes the proof of (i).

(ii) We write

Q� zL!QD 1
2
ŒQ�Q zL! C zL!Q�Q�C

1

2
ŒQ�Œ zL! ;Q�C ŒQ

�; zL! �Q�:

By (i), the last term may be written as a contribution to the right side of (3.2.8). Let us write the first
term on the right side under the form B� zL! C zL!BCR. We write Q�Q as the sum in j ofX

j1Cj2Dj
0�j1;j2�N

Q0j1

�Q0j2
C

X
j1Cj2Dj�1
0�j1;j2�N

.Q0j1

�Q00j2
CQ00j1

�Q0j2
/C

X
j1Cj2Dj�2
0�j1;j2�N

Q00j1

�Q00j2
:

By (3.2.4) and the remark following Definition 3.1.2, this expression may be written as Bj CRj , where
Bj 2 L

�.jC1/�
� .min.N; j /; �; q/ depends only on Q0

`
(` � j ) and Q00

`
(` � j � 1), ŒBj ; �� belongs to

†�.jC1/�.min.N; j /; �; q/, and Rj belongs to Rr2

0
.min.N; j /; �; q/, with

r2 D � � �0� .d C 1/C .j C 2/�� 2 min.j ;N /� r C 2:

We obtain contributions to the right side of (3.2.8) when j �N �1, and to the remainder R when j �N

since .N C 1/� � r C 2. This concludes the proof. �

Proof of Proposition 3.2.2. We write the left side of (3.2.6) as

zL! C �V .U; !; �/C �ŒQ
0�.��C�/C .��C�/Q0�C �ŒQ00� zL! C zL!Q00�

C�ŒQ0�I 0!Dt C!I 0DtQ
0�C �2Q� zL!QC �2ŒQ�V CVQ�C �3Q�VQ: (3.2.13)

The term V in (3.2.13) contributes to the V0 component of V N on the right side of (3.2.6). The first
two brackets in (3.2.13) give rise to the last two in (3.2.6). To study the contribution of Q� zL!Q, we
use (3.2.8). The Bj component of B on the right side of (3.2.8) contributes to the Sj component of
SN in (3.2.6). Let us study the third bracket in (3.2.13). By (3.2.4) and Definition 3.1.2, we may write
Q0

j�1
D
�

a b
b� c

�
with a; c 2 ‰�j�.j � 1; �; q/, b 2 ‰�.j�1/��2.j � 1; �; q/, a� D �a, and c� D �c.

This implies that

Q0j�1
�I 0Dt C I 0DtQ

0
j�1 D

�
ŒDt ; a� ŒDt ; b�

�ŒDt ; b
�� �ŒDt ; c�

�
is a self-adjoint operator belonging to †�j�.j ; �; q/, 1� j �N , by the second remark at the bottom of
page 644. We thus get a contribution to Vj in (3.2.6).

Finally, let us check that the last two terms in (3.2.13) may be written as contributions to V N and to
R on the right side of (3.2.6). Actually, we may write Q�V CVQC �Q�VQ as the sum in j of

Q0j�1
�V CVQ0j�1CQ00j�2

�V CVQ00j�2

C�
X

j1Cj2Dj�2

Q0j1

�VQ0j2
C �

X
j1Cj2Dj�3

.Q00j1

�VQ0j2
CQ0j1

�VQ00j2
/C �

X
j1Cj2Dj�4

Q00j1

�VQ00j2
: (3.2.14)
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Using that Q0j 2 †
�.jC1/�.j ; �; q/, Q00j 2 †

�.jC2/�.j ; �; q/, V 2 †0.0; �; q/, we write (3.2.14) as
VjCRj , where Vj depends only on Q0

`
(`�j�1) and Q00

`
(`�j�2) and is in†�j�.min.N; j � 1/; �; q/

and Rj 2Rr
0
.N; �; q/. This concludes the proof. �

Proof of Proposition 3.2.1. Let us construct recursively Q0j (0 � j � N ) and Q00j (0 � j � N� 1) so
that the right side of (3.2.6) may be written as the right side of (3.2.3). Assume that Q0; : : : ;Qj�1 have
been already determined in such a way that the right side of (3.2.6) may be written

zL! C �

j�1X
j 0D0

VD;j 0 C �

N�1X
j 0Dj

ŒS�j 0
zL! C zL!Sj 0 �C �

NX
j 0Dj

ŒQ0j 0
�.��C�/C .��C�/Q0j 0 �

C �

N�1X
j 0Dj

ŒQ00j 0
� zL! C zL!Q00j 0 �C �

NX
j 0Dj

Vj 0 C �R: (3.2.15)

Write Vj D
�

a b
b� c

�
with a; b; c 2‰�j�.j ; �; q/, a� D a, c� D c, and define

VD;j D
X
˛2A

z…˛
�

a 0
0 c

�
z…˛; VND;j D Vj �VD;j :

Then VD;j 2†
�j�
D .j ; �; q/, .VD;j /

�DVD;j and VND;j is in†�j�
ND .j ; �; q/, .VND;j /

�DVND;j . Moreover
VND;j depends only on Q` (` � j � 1). We apply Proposition 3.1.3 to find Q0j 2 L0�

�j�.j ; �; q/ and
Rj 2 R

r.�;j/Cj�
0

.j ; �; q/ such that Q0j
�.��C �/C .��C �/Q0j D VND;j CRj and Œ�;Q0j � is in

†�j�.j ; �; q/. The assumption (3.2.1) on � shows that Rj contributes to R1 in (3.2.3). Moreover
condition (3.2.4) is satisfied by Q0j , so that we have eliminated the j -th component in the fourth and
sixth terms of (3.2.15). To eliminate the j -th component of the third and fifth terms, we set Q00j D�Sj ,
j �N � 1, Q00

N
D 0. Then condition (3.2.4) is satisfied by Q00j , and the definition is consistent since Sj

depends only on Q0
`

(`� j ) and Q00
`

(`� j � 1). This concludes the proof. �

4. Iterative scheme

This section will be devoted to the proof of Theorem 1.1.1. We shall construct a solution to (2.3.15) —
which is equivalent to (1.1.3) — writing this equation under an equivalent form involving the right side
of (3.2.3). The first subsection will be devoted to the study of the restriction of the operator zL! C
�VD.U; !; �/ to the range of one of the projectors z…˛. We shall show that, for .!; �/ outside a subset of
small measure, this restriction is invertible. As usual in these problems, the inverse we construct loses
derivatives. This will not cause much trouble, since Proposition 3.2.1 allows us to write the equation
essentially under the form . zL!C �VD.U; !; �//W D �R1.U; !; �/W for a new unknown W . Since R1

is smoothing, it gains enough derivatives to compensate the losses coming from . zL!C�VD/
�1. Because

of that, we may construct the solution using a standard iterative scheme.

4.1. Lower bounds for eigenvalues. Let 0 2 �0; 1�; � 2 R;N 2 N; � 2 RC such that

� � �0C
�

�
C 2.N C 1/C d C 1:
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We denote by E� .�/ the space of functions from S1 �Td � Œ1; 2�� Œ0; 0� to C2,

.t;x; !; �/ ��! U.t;x; !; �/; (4.1.1)

which are continuous functions of ! with values in H� .S1�Td IC2/ and C 1 functions of ! with values
in H����2.S1 �Td IC2/, uniformly in � 2 Œ0; 0�. We set

kU kE� .�/ D sup
.!;�/2Œ1;2��Œ0;0�

kU. � ; !; �/kH� C sup
.!;�/2Œ1;2��Œ0;0�

k@!U. � ; !; �/kH����2 : (4.1.2)

If z…˛ is the projector of H0 given by (1.2.5), we set F˛ D Range. z…˛/, D˛ D dim F˛. By (1.2.4) and
(1.2.6), D˛ � C1hn.˛/i

ˇdC2 for some C1 > 0. We define for U 2 E� .�/, ! 2 Œ1; 2�, � 2 Œ0; 0�

A˛.!IU; �/D z…˛. zL! C �VD.U; !; �// z…˛: (4.1.3)

This is a self-adjoint operator on F˛, with C 1 dependence in !, since it follows from the expression
(3.2.2) of VD, condition (2.1.1) in the definition of ‰m.N; �; q/, the fact that @!U 2 H����2, and the
assumption made on � , that !! z…˛VD.U.t;x; !; �/; !; �/ z…˛ is C 1. The main result of this subsection
is the following:

Proposition 4.1.1. For any � 2 R�Z� and q > 0, there are 0 2 �0; 1�, C0 > 0, A0 �A a finite subset,
and for any U 2E� .�/ with kU kE� .�/ < q, any � 2 Œ0; 0�, any ˛ 2A, the eigenvalues of A˛ form a finite
family of C 1 real valued functions of !, depending on .U; �/,

!! �˛` .!IU; �/; 1� `�D˛ (4.1.4)

satisfying the following properties:

(i) For any ˛ 2A, any U;U 0 2H� with kU kH� < q, kU 0kH� < q, any ` 2 f1; : : : ;D˛g, any � 2 Œ0; 0�,
and any ! 2 Œ1; 2�, there is `0 2 f1; : : : ;D˛g such that

j�˛` .!IU; �/��
˛
`0.!IU

0; �/j � C0�kU �U 0kH� : (4.1.5)

(ii) For any a 2 A�A0, any U 2 E� .�/ with kU kE� .�/ < q, any � 2 Œ0; 0�, and any ` 2 f1; : : : ;D˛g,
either

C�1
0 hn.˛/i

2
�
@�˛
`

@!
.!IU; �/� C0hn.˛/i

2 for any ! in Œ1; 2� (4.1.6)

or

�C0hn.˛/i
2
�
@�˛
`

@!
.!IU; �/� �C�1

0 hn.˛/i
2 for any ! in Œ1; 2�: (4.1.7)

(iii) For ı 2 �0; 1�, � 2 Œ0; 0�, ˛ 2A, and U 2 E� .�/ with kU kE� .�/ < q, set

I.˛;U; �; ı/D f! 2 Œ1; 2� W 8` 2 f1; : : : ;D˛g; j�
˛
` .!IU; �/j � ıhn.˛/i

��
g: (4.1.8)

Then there is a constant E0, depending only on the dimension, such that for any ! 2 I.˛;U; �; ı/,
A˛.!IU; �/ is invertible and

kA˛.!IU; �/
�1
kL.H0/ �E0ı

�1
hn.˛/i� ; k@!A˛.!IU; �/

�1
kL.H0/ �E0ı

�2
hn.˛/i2�C2: (4.1.9)
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Proof. The proof of this result is quite classical, and may be found in the references given in the intro-
duction. For completeness, we give it in detail.

(i) By construction, A˛ is a self-adjoint operator, acting on a space of finite dimension D˛. Moreover,
A˛ is a C 1 function of ! if U 2 E� .�/. By a theorem of Rellich (see [Kato 1976, Theorem 6.8], for
instance), we know that we may index the eigenvalues of that matrix so that they are C 1 functions of !:
�˛
`
.!IU; �/, for 1� `�D˛. Moreover, if B and B0 are self-adjoint matrices of the same dimension, for

any eigenvalue �`.B/ of B there is an eigenvalue �`0.B0/ of B0 such that j�`.B/��`0.B0/j � kB�B0k.
Combining this with the fact that U ! A˛.!IU; �/ is lipschitz with values in L.H0/, with lipschitz
constant C�, we get (4.1.5).

(ii) Set

ƒ0
˙.˛/D f˙j!Cjnj2C� W j 2 N; n 2�˛;K

�1
0 hn.˛/i

2
� j �K0hn.˛/i

2
g;

so that the spectrum of z…˛ zL! z…˛ is ƒ0
C.˛/[ƒ

0
�.˛/. The difference between an eigenvalue in ƒ0

C.˛/,
parametrized by .j ; n/, and an eigenvalue in ƒ0

�.˛/, parametrized by .j 0; n0/ (j > 0; j 0 < 0) is bounded
from below by

!.j � j 0/Cjnj2� jn0j2 � 2K�1
0 hn.˛/i

2
� � �C hn.˛/iˇ;

by the first estimate (1.2.2), for some C > 0; ˇ 2 �0; 1
10
Œ. If we take the subset A0 large enough, we

get that when ˛ 2 A � A0, the difference between two such eigenvalues is bounded from below by
K�1

0
hn.˛/i2. Consequently, if 0� � < 0 small enough, the spectrum of A˛ may be split in two subsets

ƒC.˛/[ƒ�.˛/ whose distance is bounded from below by 1
2
K�1

0
hn.˛/i2. Let � be a contour in the

complex plane turning once around ƒ0
C.˛/, of length O.hn.˛/i2/, such that the distance between � and

the spectrum of zL˛! D z…˛ zL! z…˛ is bounded from below by chn.˛/i2, and such thatƒ0
�.˛/ is outside � .

If 0 is small enough, this contour satisfies the same conditions with ƒ0
˙
.˛/ replaced by ƒ˙.˛/ and

zL˛! replaced by A˛. The spectral projectors z…C˛ .!/ and z…C;0˛ associated to the eigenvalues ƒC.˛/ and
ƒ0
C.˛/ of A˛ and zL˛! , respectively, are given by

z…C˛ .!/D
1

2i�

Z
�

.�Id�A˛/
�1 d�; z…C;0˛ D

1

2i�

Z
�

.�Id� zL˛!/
�1 d�: (4.1.10)

Note that the second projector is just the orthogonal projector on

Vect fei.jtCn�x/
W n 2�˛;K

�1
0 hn.˛/i

2
� j �K0hn.˛/i

2
g;

so it is independent of !. Write

z…C˛ .!/�
z…C;0˛ D

1

2i�

Z
�

.�Id�A˛/
�1.A˛ � zL

˛
!/.�Id� zL˛!/

�1 d�: (4.1.11)

Using (4.1.3) and the definition of zL˛! we get

kA˛ � zL
˛
!kL.F˛/Ck@!.A˛ �

zL˛!/kL.F˛/ � C�; k@!A˛kL.F˛/Ck@!
zL˛!kL.F˛/ � C hn.˛/i2:



666 JEAN-MARC DELORT

Consequently (4.1.11) implies

k z…C˛ .!/�
z…C;0˛ kL.F˛/ � C�hn.˛/i�2;

k@! z…
C
˛ .!/kL.F˛/ D k@!.

z…C˛ .!/�
z…C;0˛ /kL.F˛/ � C�hn.˛/i�2:

Writing

z…C˛ .!/A˛
z…C˛ .!/D .

z…C˛ .!/�
z…C;0˛ /A˛ z…

C
˛ .!/C

z…C;0˛ .A˛ � zL
˛
!/
z…C˛ .!/

Cz…C;0˛
zL˛!.
z…C˛ .!/�

z…C;0˛ /C z…C;0˛
zL˛!
z…C;0˛

we obtain
k@! Œ z…

C
˛ .!/A˛

z…C˛ .!/�
z…C;0˛

zL˛!
z…C;0˛ �kL.F˛/ � C�: (4.1.12)

Let I be an interval contained in Œ1; 2� over which one of the eigenvalues �˛
`
.!IU; �/ of the matrix

z…C˛ .!/A˛.!IU; �/
z…C˛ .!/ has constant multiplicity m, and denote by P .!/ the associated spectral

projector. Then P .!/ is C 1 in ! 2 I and satisfies P .!/2 D P .!/, whence P .!/P 0.!/P .!/D 0. We
get therefore for

�˛` .!IU; �/D
1

m
trŒP .!/ z…C˛ .!/A˛.!IU; �/ z…

C
˛ .!/P .!/�

the equality

@!�
˛
` .!IU; �/D

1

m
trŒP .!/@!. z…C˛ .!/A˛.!IU; �/ z…

C
˛ .!//P .!/�:

By (4.1.12), we obtain

@!�
˛
` .!IU; �/D

1

m
trŒP .!/@!. z…C;0˛

zL˛!
z…C;0˛ /P .!/�CO.�/: (4.1.13)

Since z…C;0˛
zL˛!
z…
C;0
˛ is by definition of zL˛! a diagonal matrix with entries j! C jnj2 C �, n 2 �˛,

K�1
0
hn.˛/i2 � j �K0hn.˛/i

2, we see that (4.1.13) stays between K�1
0
hn.˛/i2�C� and K0hn.˛/i

2C

C�. This implies (4.1.6) if � 2 Œ0; 0� with 0 small enough. The case of eigenvalues corresponding to
ƒ�.˛/ is treated in a similar way, and gives (4.1.7).

(iii) The first estimate in (4.1.9) follows from the fact that the eigenvalues �˛
`
.!IU; �/ of A˛ satisfy the

lower bound given by the definition of (4.1.8). The second estimate is a consequence of the first one and
of the fact that k@!A˛.!IU; �/kL.H0/ � C hn.˛/i2 by definition of A˛. This concludes the proof. �

4.2. Iterative scheme. This subsection will be devoted to the proof of Theorem 1.1.1, constructing the
solution as the limit of an iterative scheme. We fix indices s; �;N; �; r; ı satisfying the inequalities:

� � �0C 2.N C 1/C d C 1C r=�; r D �;

.N C 1/� � r C 2; s � � C �C 2; ı 2 �0; ı0�;
(4.2.1)

where ı0 > 0 will be chosen small enough. We also assume that the parameter � is in R � Z�. We
shall solve (2.3.15) when its force term f is given in HsC�.S1 � Td IC2/. To achieve this goal, the
main task will be to construct a sequence .Gk ;Ok ;  k ;Uk ;Wk/, k � 0, where Gk ;Ok will be subsets of
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Œ1; 2�� Œ0; ı2�,  k will be a real valued function defined on Œ1; 2�� Œ0; ı2�, Uk ;Wk will be functions of
.t;x; !; �/ 2 S1 �Td � Œ1; 2�� Œ0; ı2� with values in C2. At order k D 0, we define

U0 DW0 D 0;

O0 D
˚
.!; �/ 2 Œ1; 2�� Œ0; 0� W 9˛ 2A0; 9` 2 f1; : : : ;D˛g with j�`˛.!I 0; �/j< 2ı

	
;

(4.2.2)

using the notation of Proposition 4.1.1. For any � 2 Œ0; 0�, we denote by O0;� the �-section of O0 and set

G0 D

�
.!; �/ 2 Œ1; 2�� Œ0; 0� W d.!;R�O0;�/�

ı

8C 0
0

�
;

where C 0
0
> 0 is a constant such that j@!�˛` .!I 0; �/j � C 0

0
for any ˛ 2 A0, any ` 2 f1; : : : ;D˛g, and

any .!; �/ 2 Œ1; 2�� Œ0; 0�. Then O0 is an open subset of Œ1; 2�� Œ0; 0� and for any � 2 Œ0; 0�, G0;� is a
closed subset of Œ1; 2�, contained in the open subset O0;�. By Urysohn’s lemma, we may for each fixed
� construct a C 1 function !!  0.!; �/, compactly supported in O0;�, equal to one on G0;�, such that
for any ! and � with 0 �  0.!; �/ � 1, we have j@! 0.!; �/j � C1ı

�1 for some uniform constant C1

depending only on C 0
0
.

We set
zSk D

X
˛2A

hn.˛/i<2k

z…˛; k � 1: (4.2.3)

Proposition 4.2.1. There are ı0 2 �0;
p
0�, positive constants C1;B1;B2 and, for any k � 1 and ı 2

�0; ı0�, a 5-uple .Gk ;Ok ;  k ;Uk ;Wk/ satisfying the following conditions:

� Ok D

�
.!; �/ 2 Œ1; 2�� Œ0; ı2� W

9˛ 2A�A0 and ` 2 f1; : : : ;D˛g such that

2k�1
�hn.˛/i<2k ; j�`˛.!IUk�1; �/j<2ı2�k�

�
;

Gk D

�
.!; �/ 2 Œ1; 2�� Œ0; ı2� W d.!;R�Ok;�/�

ı

8C0

2�k.�C2/

�
;

(4.2.4)

where C0 is the constant in (4.1.6), (4.1.7);

�  k W Œ1; 2�� Œ0; ı
2�! Œ0; 1� is supported in Ok ; equal to 1 on Gk ;

C 1 in !; and satisfies j@! k.!; �/j �
C1

ı
2k.�C2/ for all .!; �/I (4.2.5)

� for any � 2 Œ0; ı2�, the function .t;x; !/!Wk.t;x; !; �/ is a continuous function of ! with values in
Hs.S1 �Td IC2/, which is a C 1 function of ! with values in Hs���2.S1 �Td IC2/ satisfying

kWk. � ; !; �/kHs C ık@!Wk. � ; !; �/kHs���2 � B1

�

ı
I (4.2.6)

moreover, for any .!; �/ 2 Œ1; 2�� Œ0; ı2��
Sk

k0D0 Ok0 , Wk satisfies

. zL! C �VD.Uk�1; !; �//Wk D � zSk.IdC �Q.Uk�1; !; �//
�R.Uk�1; !; �/Uk�1

C � zSk ŒR1.Uk�1; !; �/Wk�1�C � zSk.IdC �Q.Uk�1; !; �//
�f; (4.2.7)

where R is defined by (2.3.15) and Q;VD;R1 are defined in (3.2.2), (3.2.3);
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� the function Uk is defined from Wk by

Uk.t;x; !; �/D .IdC �Q.Uk�1; !; �//Wk (4.2.8)

and it satisfies

kUk �Uk�1kH� � 2B2

�

ı
2�k� ; kUk. � ; !; �/kHs C ık@!Uk. � ; !; �/kHs���2 � B2

�

ı
I (4.2.9)

moreover,
kWk �Wk�1kH� � B2

�

ı
2�k� : (4.2.10)

Remark. Since we assume �� ı2, the second inequality in (4.2.9) implies, with the notation introduced
in (4.1.2), the uniform bound

kUkkE� .�/ < q (4.2.11)

for some q.

Let us write the equation for Uk following from (4.2.8) and (4.2.7). Because of the uniform estimate
(4.2.11) for Uk�1, if 0 � ı � ı0 with ı0 small enough, .IdC �Q.Uk�1; !; �//

� is invertible for any
.!; �/ 2 Œ1; 2�� Œ0; ı2�. If we write

. zL! C �V .Uk�1; !; �//Uk D . zL! C �V .Uk�1; !; �//.IdC �Q.Uk�1; !; �//Wk

and use (3.2.3) multiplied on the left by .IdC �Q.Uk�1; !; �/
�/�1 and (4.2.7), we get

. zL!C�V .Uk�1;!;�//UkD�.IdC�Q.Uk�1;!;�/
�/�1Œ zSk.IdC�Q.Uk�1;!;�/

�/R.Uk�1;!;�/Uk�1

C zSkR1.Uk�1;!;�/Wk�1C
zSk.IdC �Q.Uk�1;!;�/

�/f �R1.Uk�1;!;�/Wk � (4.2.12)

for any .!; �/ 2 Œ1; 2�� Œ0; ı2��
Sk

k0D0 Ok0 , ı 2 Œ0; ı0�.

Proof of Proposition 4.2.1. We assume that .Gk ;Ok ;  k ;Uk ;Wk/ have been constructed satisfying
(4.2.4) to (4.2.9), and shall construct these data at rank k C 1, if ı0 is small enough and the constants
C1;B1;B2 are large enough.

The sets OkC1;GkC1 are defined by (4.2.4) at rank k C 1 as soon as Uk is given. Then for fixed
�, GkC1;� is a compact subset of the open set OkC1;�, whose distance to the complement of OkC1;� is
bounded from below by ı

8C0
2�.kC1/.�C2/. We may construct by Urysohn’s lemma a function  kC1

satisfying (4.2.5) at rank k C 1. Let us construct WkC1 for .!; �/ 2 Œ1; 2�� Œ0; ı2��
SkC1

k0D0 Gk0 . Since
VD.Uk ; !; �/ is by construction a block-diagonal operator, we may write (4.2.7) at rank k C 1 as the
system of equations

. zL! C �VD.Uk ; !; �// z…˛WkC1 D � z…˛ zSkC1.IdC �Q.Uk ; !; �/
�/R.Uk ; !; �/Uk

C � z…˛ zSkC1R1.Uk ; !; �/Wk C � z…˛ zSkC1.IdC �Q.Uk ; !; �/
�/f (4.2.13)

for any ˛ 2A. If hn.˛/i� 2kC1, the right side of (4.2.13) vanishes by definition of zSkC1, so that we may
set in this case z…˛WkC1 D 0 by definition. Let us solve (4.2.13) for those ˛ satisfying hn.˛/i < 2kC1.
We shall apply Proposition 4.1.1, using the following lemma:
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Lemma 4.2.2. There is ı0 2 �0; 1�, depending only on the constants B1;B2, such that for any k � 0, any
k 0 2 f1; : : : ; kC 1g, any ı 2 Œ0; ı0�, any � 2 Œ0; ı2�, and any ˛ 2A�A0 with 2k0 � hn.˛/i< 2k0C1,

Œ1; 2��Gk0;� � I.˛;Uk ; �; ı/; (4.2.14)

where I. � / is defined by (4.1.8). The same conclusion holds when k 0 D 0, ˛ 2A0.

Proof. Consider first the case k 0 ¤ 0. Let ! 2 Œ1; 2� � Ok0;�. Take ` 2 f1; : : : ;D˛g. By (i) of
Proposition 4.1.1 applied to .U;U 0/D .Uk ;Uk0�1/, there is `0 2 f1; : : : ;D˛g such that

j�˛` .!IUk ; �/j � j�
˛
`0.!IUk0�1; �/j �C0�kUk �Uk0�1kH�� 2ı2�k0�

� 2C0B2

�2

ı

2�k0�

1� 2��
; (4.2.15)

where the second lower bound follows from the definition (4.2.4) of Ok0 and from (4.2.9). Since � � ı2,
we obtain the lower bound

j�˛` .!IUk ; �/j �
3

2
ı2�k0� (4.2.16)

if ! 2 Œ1; 2��Ok0;� and ı 2 Œ0; ı0� with ı0 small enough. If ! 2 Ok0;� �Gk0;�, we take Q! 2 Œ1; 2��Ok0;�

with j! � Q!j< ı
8C0

2�k0.�C2/. By (4.1.6), (4.1.7), we know that for any U 2 E� .�/ with kU kE� .�/ < q,
any ˛ 2A�A0, any ` 2 f1; : : : ;D˛g,

sup
!02Œ1;2�

j@!�
˛
` .!
0
IU; �/j � C0hn.˛/i

2:

Enlarging C0, we may assume that this inequality is also valid when ˛ 2A0. By condition (4.2.11), we
may apply it when U D Uk . Using (4.2.16), we get since 22k0 � hn.˛/i2 < 22.k0C1/

j�˛` .!IUk ; �/j � j�
˛
` . Q!IUk ; �/j �C0hn.˛/i

2
j! � Q!j � ı2�k0�

� ıhn.˛/i�� :

When k 0 D 0, we argue in the same way, taking in (4.2.15) Uk0�1 D 0. This shows that ! belongs to
I.˛;Uk ; �; ı/. �

To solve (4.2.13), we shall need, in addition to the preceding lemma, estimates for its right side. Set

HkC1.Uk ;Wk/D zSkC1.IdC �Q.Uk ; !; �/
�/R.Uk ; !; �/Uk

CzSkC1R1.Uk ; !; �/Wk C
zSkC1.IdC �Q.Uk ; !; �/

�/f: (4.2.17)

Lemma 4.2.3. There is a constant C > 0, depending on q in (4.2.11) but independent of k, such that for
any ! 2 Œ1; 2�, any � 2 Œ0; ı2�, and any ı 2 �0; ı0�,

kHkC1.Uk ;Wk/kHsC� � C ŒkUk. � ; !; �/kHs CkWk. � ; !; �/kHs �C .1CC�/kf kHsC� ; (4.2.18)

k@!HkC1.Uk ;Wk/kHs�2 � C ŒkUk. � ; !; �/kHs Ck@!Uk. � ; !; �/kHs���2

CkWk. � ; !; �/kHs Ck@!Wk. � ; !; �/kHs���2 C �kf kHs�2 �; (4.2.19)

kHkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/kH�C� � C ŒkUk �Uk�1kH� CkWk �Wk�1kH� �

C 2�k� ŒC.kUkkH�C� CkWkkH�C� /C .1CC�/kf kH�C2� �: (4.2.20)
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Proof. The operators R and R1 belong to Rr
2
.N C 1; �; q/ with r D �. By Definition 2.1.3, and because

of the assumption (4.2.1) on the indices, they are bounded from Hs to HsC� . Moreover, Q.Uk ; !; �/
�

is in ‰0.N; �; q/˝M2.R/, so is bounded on any Hs-space by Lemma 2.1.2. This gives (4.2.18).
To obtain (4.2.19), one has to study the boundedness properties of

@! ŒQ.Uk ; !; �/�D @U Q. � ; !; �/ � .@!Uk/C @!Q.Uk ; !; �/; (4.2.21a)

@! ŒR.Uk ; !; �/�D @U R. � ; !; �/ � .@!Uk/C @!R.Uk ; !; �/; (4.2.21b)

@! ŒR1.Uk ; !; �/�D @U R1. � ; !; �/ � .@!Uk/C @!R1.Uk ; !; �/: (4.2.21c)

By (2.1.2), the inequalities in (4.2.1), and the fact that, by (4.2.11), @!Uk is uniformly bounded in
Hs���2 � H� , we see that the operator in (4.2.21a) is bounded on any space Hs0 . By (2.1.3), and the
assumption s � � C �C 2 in (4.2.1), we see in the same way that (4.2.21b) and (4.2.21c) give bounded
operators from Hs���2 to Hs�2 and from Hs to HsC� . This gives estimate (4.2.19).

To prove (4.2.20), let us write the difference HkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/ from the quantities

. zSkC1�
zSk/.IdC �Q.Uk ; !; �/

�/R.Uk ; !; �/Uk ;

. zSkC1�
zSk/R1.Uk ; !; �/Wk ;

. zSkC1�
zSk/.IdC �Q.Uk ; !; �/

�/f;

9>=>; (4.2.22)

� zSk ŒQ.Uk ; !; �/
�
�Q.Uk�1; !; �/

��R.Uk ; !; �/Uk ;

zSk.IdC �Q.Uk�1; !; �/
�/ŒR.Uk ; !; �/�R.Uk�1; !; �/�Uk ;

zSk ŒR1.Uk ; !; �/�R1.Uk�1; !; �/�Wk ;

� zSk ŒQ.Uk ; !; �/
�
�Q.Uk�1; !; �/

��f;

9>>>>=>>>>; (4.2.23)

zSk.IdC �Q.Uk�1; !; �/
�/R.Uk�1; !; �/.Uk �Uk�1/;

zSkR1.Uk ; !; �/.Wk �Wk�1/:

)
(4.2.24)

By (4.2.6) and (4.2.9), Uk and Wk stay in a bounded subset of H� and R;R1 act from H�C� to H�C2� .
Using the cut-off zSkC1�

zSk , we see that the H�C� norm of (4.2.22) is bounded from above by the last
term in the right side of (4.2.20).

By (2.1.3), the L.H� ;H�C�/ operator norm of R.Uk ; !; �/�R.Uk�1; !; �/ and of R1.Uk ; !; �/�

R1.Uk�1; !; �/ is bounded from above by CkUk �Uk�1kH� . By (2.1.2), the L.H�C� ;H�C�/-norm of
Q.Uk ; !; �/

� �Q.Uk�1; !; �/
� is bounded by the same quantity. This shows that the H�C� norm of

(4.2.23) is bounded from above by the right side of (4.2.20).
Finally, (4.2.24) is trivially estimated. This concludes the proof. �

We continue with the proof of Proposition 4.2.1. We have seen that z…˛WkC1 is a solution to (4.2.13).
Let k 0 2 f1; : : : ; k C 1g and ˛ 2 A � A0 such that 2k0 � hn.˛/i < 2k0C1, or k 0 D 0; ˛ 2 A0. Let
! 2 Œ1; 2��Gk0;�. By Lemma 4.2.2 and Proposition 4.1.1, the operator A˛.!IUk ; �/ is invertible, ant its
inverse satisfies estimates (4.1.9). For such !, we may write (4.2.13) as

z…˛WkC1 D �A˛.!IUk ; �/
�1 z…˛HkC1.Uk ;Wk/: (4.2.25)
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Applying (4.1.9) we obtain, for any k 0 2 f1; : : : ; kC1g, any ˛ 2A�A0 with 2k0 � hn.˛/i< 2k0C1, and
any .!; �/ 2 Œ1; 2�� Œ0; ı2��Gk0 (and also any ˛ 2A0 and .!; �/ 2 Œ1; 2�� Œ0; ı2��G0), the bound

k z…˛WkC1. � ; !; �/kHs �E0

�

ı
k z…˛HkC1.Uk ;Wk/. � ; !; �/kHsC� : (4.2.26)

In the same way, one gets the estimate

k z…˛@!WkC1. � ; !; �/kHs���2

�E0

�

ı
k z…˛@!HkC1.Uk ;Wk/. � ; !; �/kHs�2 CE0

�

ı2
k z…˛HkC1.Uk ;Wk/. � ; !; �/kHsC� : (4.2.27)

We define WkC1.t;x; !; �/ for any value of .!; �/ in Œ1; 2�� Œ0; ı2� from (4.2.25) by setting

WkC1.t;x; !; �/D

kC1X
k0D1

X
˛2A�A0

2k0�hn.˛/i<2k0C1

.1� k0.!; �// z…˛WkC1.t;x; !; �/

C

X
˛2A0

.1� 0/.!; �/ z…˛WkC1.t;x; !; �/: (4.2.28)

Note that the right side is well defined since (4.2.25) determines z…˛WkC1. � ; !; �/ on the support of
1� k0 when .˛; k 0/ satisfy the conditions in the summation.

We combine (4.2.28), (4.2.26) and (4.2.18). Taking into account (4.2.6) and (4.2.9), we get

kWkC1. � ; !; �/kHs �E0

�

ı

�
C.B1CB2/

�

ı
Ckf kHsC� .1CC�/

�
: (4.2.29)

To bound the @!-derivative, we use that by (4.2.5)

k@! k0
z…˛WkC1kHs���2 �

C1

ı
k z…˛WkC1kHs

when 2k0 � hn.˛/i< 2k0C1, ˛ 2A�A0 if k 0¤ 0, and when ˛ 2A0 if k 0D 0. We apply this inequality
together with (4.2.28), (4.2.27), (4.2.18), (4.2.19) and the uniform bounds (4.2.6), (4.2.9), to get

k@!WkC1. � ; !; �/kHs���2 �E0

�

ı

�
C.B1CB2/

�

ı2
CC�kf kHs�2

�
CE0

�

ı2

�
C.B1CB2/

�

ı
C.1CC�/kf kHsC�

�
CE0C1

�

ı2

�
C.B1CB2/

�

ı
C.1CC�/kf kHsC�

�
: (4.2.30)

In (4.2.29) and (4.2.30), C depends on the a priori bound given by (4.2.11), while E0;C1 are uniform
constants. Consequently, if we take B1 large enough relatively to kf kHsC� , E0;C1 and then �� ı2� ı2

0
,

with ı0 small enough, we deduce from (4.2.29) and (4.2.30) that (4.2.6) holds at rank kC1. The second
estimate in (4.2.9) at rank kC1 follows, with for instance B2 D 2B1, if ı0 is small enough. We are left
with establishing the first estimate in (4.2.9) at rank kC 1 and (4.2.10).

First let us bound WkC1�Wk . By (4.2.25), for any k 0 2 f1; : : : ; kg, any .!; �/ 2 Œ1; 2�� Œ0; ı2��Gk0 ,
˛ 2A�A0, and any 2k0 � hn.˛/i< 2k0C1 (or any .!; �/ 2 Œ1; 2�� Œ0; ı2��G0 and ˛ 2A0), we have

. zL! C �VD.Uk ; !; �// z…˛WkC1 D � z…˛HkC1.Uk ;Wk/;

. zL! C �VD.Uk�1; !; �// z…˛Wk D � z…˛Hk.Uk�1;Wk�1/;
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whence the equation

. zL! C �VD.Uk ; !; �// z…˛.WkC1�Wk/D � z…˛ ŒVD.Uk�1; !; �/�VD.Uk ; !; �/�Wk

C � z…˛ ŒHkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/�: (4.2.31)

We make act A˛.!IUk ; �/
�1 on both sides as in (4.2.25). Applying inequality (4.1.9) we get

k z…˛.WkC1�Wk/kH� �
E0�

ı

�
k z…˛ ŒVD.Uk�1; !; �/�VD.Uk ; !; �/�WkkH�C�

Ck z…˛ ŒHkC1.Uk ;Wk/�Hk.Uk�1;Wk�1/�kH�C�
�
: (4.2.32)

This estimate holds outside Gk0 when k 0 ¤ 0, ˛ 2A�A0, 2k0 � hn.˛/i< 2k0C1, and outside G0 when
˛ 2A0. By (4.2.28), we may write

.WkC1�Wk/.t;x; !; �/D
X
˛2A0

.1� 0/ z…˛.WkC1�Wk/

C

kX
k0D1

X
˛2A�A0

2k0�hn.˛/i<2k0C1

.1� k0/ z…˛.WkC1�Wk/C
X

˛2A�A0

2kC1�hn.˛/i<2kC2

.1� kC1/ z…˛WkC1: (4.2.33)

The H� norm of the last term is bounded by C22�k.s��/kWkC1kHs � C2B1
�
ı
2�k.s��/ by (4.2.6), for

some universal constant C2. The H� -norm of the k 0-sum in (4.2.33) may be estimated using (4.2.32),
(4.2.20) and the bound

k.VD.Uk�1; !; �/�VD.Uk ; !; �//WkkH�C� � CkUk �Uk�1kH�kWkkHs

which follows from (2.1.2), and where we used s � � C �. Using the induction hypothesis (4.2.9),
(4.2.10), we get

kWkC1�WkkH�

�E0

�

ı

�
CB1

�

ı
2B2

�

ı
2�k�

C3CB2

�

ı
2�k�

CC 2�k�.B1CB2/
�

ı
C.1CC�/kf kH�C2�2�k�

�
CC2B1

�

ı
2�k.s��/: (4.2.34)

Since s��C�, we may take B1 large enough relatively to E0, kf kHsC� , and B2 large enough relatively
to C2;B1, and �=ı � ı � ı0 small enough, so that (4.2.34) is smaller than B2.�=ı/2

�.kC1/� , whence
(4.2.10) at rank kC 1. Writing

UkC1�Uk D .IdC �Q.Uk ; !; �//.WkC1�Wk/C �.Q.Uk ; !; �/�Q.Uk�1; !; �//Wk ;

we deduce from that the first inequality in (4.2.9) at rank kC 1, for small enough �. This concludes the
proof of the proposition. �

Proof of Theorem 1.1.1. By (4.2.9), the series
P
.Uk�Uk�1/ converges in H� .S1�Td IC2/ and its sum

U satisfies U 2Hs.S1 �Td IC2/ with

kU. � ; !; �/kHs C ık@!U. � ; !; �/kHs���2 � B2

�

ı
:
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We have to check that U gives a solution to our problem outside a set of parameters of small measure.
Let

.!; �/ 2 Œ1; 2�� Œ0; ı2��
1S

k0D0

Ok0

and ı 2 �0; ı0�. Then (4.2.12) is satisfied for any k. We make k ! C1. Since we have uniform Hs

bounds for Uk , Wk and H� convergence for these quantities, the limit U satisfies

. zL! C �V .U; !; �//U D �R.U; !; �/U C �f;

which is (2.3.15). We have seen that this equation is equivalent to (2.3.14), which is, by Proposition 2.3.1,
the same as (2.2.13). Since Proposition 2.2.4 shows that, up to a change of notation, this equation
is equivalent to the formulation (2.2.6) of (1.1.3), we obtain a solution satisfying the requirements of
Theorem 1.1.1. We still have to check that (1.1.5) holds with OD

S1
k0D0 Ok0 . According to (4.2.2), the

set O0 is included in the set of those .!; �/ such that there are .j ; n/ in a given finite subset of Z2 such
that

ˇ̌
j!C jnj2C�

ˇ̌
< 2ı. The !-measure of this set is O.ı/, ı! 0 (Note that since � 62 Z�, we may

always assume j ¤ 0). For k 0 > 0, Ok0 is the union for ˛ 2 A �A0 with 2k0�1 � hn.˛/i < 2k0 and
` 2 f1; : : : ;D˛g of the set of those .!; �/ satisfying

j�`˛.!IUk0�1; �/j< 2ı2�k0� :

By (4.1.6), (4.1.7) the !-measure of each of these sets in bounded by C hn.˛/i�2ı2�k0� �C 2�.k
0C2/�ı.

Since D˛ � C12k0.ˇdC2/ by (1.2.4), (1.2.6), we obtain for the measure of the �-section of O the bound

C

C1X
k0D0

2�.k
0C2/�Ck0.ˇdC2/Ck0dı:

If we take � > .ˇC 1/d C 2, we obtain the wanted O.ı/ bound. This concludes the proof. �

Appendix

We gather here some elementary results used throughout the paper.

Lemma A.1. Let s > d
2
C 1. Then zHs.S1 � Td IC/ � L1. Moreover, if F is a smooth function on

S1 � Td �C, satisfying F.t;x; 0/ � 0, there is some continuous function � ! C.�/ such that, for any
u 2 zHs , we have F. � ;u/ 2 zHs with the estimate

kF. � ;u/kzHs � C.kukL1/kukzHs :

Proof. Let ' 2 C1
0
.�0;C1Œ/ , ' � 0, ' � 1 on Œ1; 2� be such that

PC1
`D�1 '.2

�`�/ � 1 for � 2 R�C,
and define  .�/D

P0
�1 '.2

�`�/. Consider, for .j ; n/ 2 Z�Zd ,

ˆk.j ; n/D '.2
�2k.j 2

Cjnj4/1=2/; k � 1;

ˆ0.j ; n/D  ..j
2
Cjnj4/1=2/:

(A.1)
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Define for u 2 zH0 and k 2 N,

�kuD
X
j ;n

ˆk.j ; n/ Ou.j ; n/
ei.tjCk�n/

.2�/.dC1/=2
; Kk.t;x/D

1

.2�/dC1

X
j ;n

ˆk.j ; n/e
i.tjCk�n/: (A.2)

Then, for any N 2 N,

jKk.t;x/j � CN 22k.1Cd=2/.1C 22k
jeit
� 1jC 2k

jeix
� 1j/�N (A.3)

and u 2 zHs if and only if .2ksk�kukL2/k is in `2.
The first statement of the lemma follows from the inequality k�kukL1 � C 2k.1Cd=2/k�kukL2 ,

which is a consequence of (A.3) (for the kernel corresponding to an enlarged ˆk). To get the second
statement, we consider first the case of a function F that does not depend on .t;x/. We set Sk DP

k0�k�1�k0 when k � 1, S0 D 0 and write

F.u/D

C1X
kD0

.F.SkC1u/�F.Sku//D

C1X
kD0

mk.u/�ku

where mk.u/D
R 1

0 F 0.SkuC ��ku/ d� . It follows from the definition of Sk that this operator is given
by a convolution kernel obeying the same estimates as in (A.3). Consequently, for any .˛; ˇ/ 2N�Nd ,

k@˛t @
ˇ
xmk.u/kL1 � C 22k˛Ckjˇj (A.4)

with a constant depending only on kukL1 . One writes for some N0 2 N to be chosen

�j ŒF.u/�D

j�1�N0X
kD0

�j Œmk.u/�ku�C

C1X
kDj�N0

�j Œmk.u/�ku�: (A.5)

The L2-norm of the second sum is bounded by Ccj 2�jskukzHs for some sequence .cj /j in the unit ball
of `2, and some C depending only on kukL1 . If N0 is fixed large enough, because of the support
properties of the Fourier transforms,

�j Œmk.u/�ku�D�j

�
Œ.Id�Sj�N0

/mk.u/��ku
�

when k � j � 1�N0. We estimate the L2-norm of this quantity by

k.Id�Sj�N0
/mkkL1k�kukL2 (A.6)

and use that, for any N , we have k.Id�Sj�N0
/mkkL1�CN 2�4jN kPN mkkL1 where PD@2

tC�
2C1.

It follows from (A.4) that (A.6) is bounded from above by CN 2�4.j�k/N k�kukL2 , from which we
deduce that the L2-norm of the first sum in (A.5) is also smaller than C 2�jscjkukzHs . This concludes
the proof for functions F independent of .t;x/. In the general case, we note that since u is bounded, we
may always assume that F is compactly supported, and we write

F.t;x;u/D
1

2�

Z
R

F1.u; �/b.t;x; �/ d�;
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where F1.u; �/D eiu��1 and b.t;x; �/ is the Fourier transform of u!F.t;x;u/. Then it follows from
the preceding proof that F1.u; �/ is in zHs with a bound kF1.u; �/kzHs � C h�iN.s/, for some exponent
N.s/. Moreover, for any N , kb. � ; �/kzHs � CN h�i

�N . We get the conclusion by superposition. �

Corollary A.2. Let F W S1 �Td �C! C be a smooth function with F.t;x; 0/� 0. Then u! F. � ;u/

is a smooth map from zH� to itself , for any � > d
2
C 1.

Proof. We write

F.t;x;uC h/�F.t;x;u/� @uF.t;x;u/hD

Z 1

0

Z 1

0

.D2F /.t;x;uC �1�2h/�1 � h
2 d�1d�2

and we apply the lemma to D2F.t;x;u/�D2F.t;x; 0/. �

Lemma A.3. � Let s > d
2
C 1. If u 2 zHs and v 2 zH� 0 for some � 0 2 Œ�s; s�, then uv 2 zH� 0 .

� For any � 2 R and �0 >
d
2
C 1, zH� � zH�� � zH�max.�;�0/.
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