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A REMARK ON BARELY Ḣ sp-SUPERCRITICAL WAVE EQUATIONS

TRISTAN ROY

We prove that a good Ḣ sp critical theory for the 3D wave equation ∂t t u − 4u = −|u|p−1u can be
extended to prove global well-posedness of smooth solutions of at least one 3D barely Ḣ sp -supercritical
wave equation ∂t t u −4u = −|u|p−1ug(|u|), with g growing slowly to infinity, provided that a Kenig-
Merle type condition is satisfied. This result is related to those obtained by Tao and the author for the
particular case sp = 1, showing global regularity for g growing logarithmically with radial data and for
g growing doubly logarithmically with general data.

1. Introduction

For fixed p > 3, let H̃ 2
:= Ḣ 2(R3)∩ Ḣ sp(R3) and H̃ 1

:= Ḣ 1(R3)∩ Ḣ sp−1(R3), where sp :=
3
2
−

2
p−1

.
We consider the wave equation 

∂t t u−4u =−|u|p−1ug(|u|),
u(0) := u0 ∈ H̃ 2,

∂t u(0) := u1 ∈ H̃ 1,

(1-1)

where u : R×R3
→ C is a complex-valued scalar field and g is a smooth, real-valued positive function

defined on the set of nonnegative numbers and satisfying

0≤ g′(x).
1
x
. (1-2)

This condition says that g grows more slowly than any positive power of u.
We shall see that (1-1) has many connections with the defocusing power-type wave equation

∂t t u−4u =−|u|p−1u,
u(0) := u0 ∈ Ḣ sp(R3),

∂t u(0) := u1 ∈ Ḣ sp−1(R3).

(1-3)

It is known that if u satisfies (1-3), then uλ defined by

uλ(t, x) :=
1

λ2/(p−1) u
( t
λ
,

x
λ

)
, (1-4)

satisfies the same equation, but with data

uλ(0, x)=
1

λ2/(p−1) u0

( x
λ

)
and ∂t uλ(0, x)=

1
λ2/(p−1)+1 u1

( x
λ

)
.
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Notice that (1-3) is Ḣ sp(R3) critical, which means that the Ḣ sp(R3)× Ḣ sp−1(R3)-norm of (u(0), ∂t u(0))
is invariant under the scaling defined above.

We recall the local existence theory. From [Ginibre and Velo 1989; Lindblad and Sogge 1995], we
know that there exists a positive constant δ := δ

(
‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3)

)
> 0 and a time of local

existence Tl > 0 such that if∥∥∥∥cos (t D)u0+
sin (t D)

D

∥∥∥∥
L2(p−1)

t L2(p−1)
x ([0,Tl ]×R3)

≤ δ (1-5)

then there exists a unique solution (u, ∂t u) in

C
(
[0, Tl], Ḣ sp(R3)

)
∩L2(p−1)

t L2(p−1)
x ([0, Tl]×R3)∩D

1
2−sp L4

t L4
x([0, Tl]×R3)×C

(
[0, Tl], Ḣ sp−1(R3)

)
of (1-3)1 in the integral equation sense, i.e., u satisfies the Duhamel formula

u(t) := cos (t D)u0+
sin (t D)

D
u1−

∫ t

0

sin (t − t ′)D
D

(
|u|p−1u

)
(t ′) dt ′. (1-6)

It follows that we can define a maximal time interval of existence Imax = (−T−, T+). Moreover,

‖u‖L2(p−1)
t L2(p−1)

x (J ) <∞, ‖D
sp−

1
2 u‖L4

t L4
x (J )

<∞, and ‖(u, ∂t u)‖L∞t Ḣ sp×L∞t Ḣ sp−1(J ) <∞

for any compact subinterval J ⊂ Imax. See [Kenig and Merle 2006] or [Tao 2006a] for more explanations.
Now we turn to the global well-posedness theory of “(1-3)”. In view of the local well-posedness

theory, one can prove (see [Kenig and Merle 2011] and references), after some effort, that it is enough
to find a finite upper bound of ‖u‖L2(p−1)

t L2(p−1)
x (I×R3)

on arbitrary long time intervals I , and, if this is the
case, then the solution scatters to a solution of the linear wave equation. No blow-up has been observed
for (1-3). Therefore it is believed that the following scattering conjecture is true:

Conjecture 1.1 (scattering conjecture). Assume that u is the solution of (1-3) with data (u0, u1) ∈

Ḣ sp(R3)× Ḣ sp−1(R3). Then u exists for all time t and there exists C1 :=C1
(
‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3)

)
such that

‖u‖L2(p−1)
t L2(p−1)

x (R×R3)
≤ C1. (1-7)

The case sp = 1 (equivalently, p = 5) is particular. Indeed the solution

(u, ∂t u) ∈ C
(
[0, Tl], Ḣ 1(R3)

)
×C

(
[0, Tl], L2(R3)

)
satisfies the conservation of the energy E(t) defined by

E(t) :=
1
2

∫
R3
|∂t u(t, x)|2 dx +

1
2

∫
R3
|∇u(t, x)|2 dx +

1
6

∫
R3
|u|6(t, x) dx . (1-8)

1The L2(p−1)
t L2(p−1)

x (R× R3)-norm of u is invariant under the scaling (1-4). The choice of the space L2(p−1)
t L2(p−1)

x
in which we place the solution u is not unique. There exists an infinite number of spaces of the form Lq

t Lr
x scale invariant in

which we can establish a local well-posedness theory.
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In other words, E(t) = E(0). This is why this equation is often called energy-critical: the exponent
sp = 1 corresponds precisely to the minimal regularity required for (1-8) to be defined. The global well-
posedness of (1-8) in the energy class and in higher regularity spaces is now understood. Rauch [1981]
proved the global existence of smooth solutions of this equation with small data. Struwe [1988] showed
that the result still holds for large data but with the additional assumption of spherical symmetry of the
data. The general case (large data, no symmetry assumption) was finally settled by Grillakis [1990; 1992].
Shatah and Struwe [1994] and independently Kapitanski [1994] proved global existence of solutions in
the energy class. Bahouri and Gérard [1999] reproved this result by using a compactness method and
results from Bahouri and Shatah [1998]. In particular, they showed that the L2(5−1)

t L2(5−1)
x (R×R3)-norm

of the solution is bounded by an unspecified finite quantity. Lately Tao [2006b] found an exponential
tower type bound of this norm. All these proofs of global existence of solutions of the energy-critical
wave equation have as a common key point the conservation of energy, which leads, in particular, to the
control of the Ḣ 1

× L2-norm of the solution (∂t u(t), u(t)).
If sp < 1, or equivalently, p < 5, we are in the energy-subcritical equation. The scattering conjecture

is an open problem. Nevertheless, some partial results are known if we consider the same problem (1-3),
but with data (u0, u1) ∈ H s

×H s−1, sp < s. More precisely, it is proved in [Kenig et al. 2000; Gallagher
and Planchon 2003; Bahouri and Chemin 2006; Roy 2007; Roy 2009a] that there exists s0 := s0(p) such
that sp < s0 < 1 and such that (1-3) is globally well-posed in H s

× H s−1, for s > s0.
If sp > 1, or, equivalently, p > 5, we are in the energy-supercritical regime. The global behavior of

the solution is, in this regime, very poorly understood. Indeed, following the theory of the energy-critical
wave equation, the first step would be to prove that the Ḣ sp× Ḣ sp−1-norm of the solution is bounded for
all time by a finite quantity depending only on the Ḣ sp × Ḣ sp−1-norm of the initial data. Unfortunately,
the control of this norm is a very challenging problem, since there are no known conservation laws in
high regularity Sobolev spaces. Kenig and Merle [2011] recently proved, at least for radial data, that this
step would be the last, by using their concentration compactness/rigidity theorem method [Kenig and
Merle 2006]. More precisely, they showed that if supt∈Imax

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3) <∞, then
Conjecture 1.1 is true.

As mentioned before, the energy supercritical regime is almost terra incognita. Nevertheless, Tao
[2007] observed that the technology used to prove global well-posedness of smooth solutions of (1-3)
can be extended, after some effort, to some equations of the type (1-1), with p= 5 and radial data. More
precisely, he proved global regularity of (1-1) with g(x) := log (2+ x2). This phenomenon, in fact, does
not depend on the symmetry of the data: it was proved in [Roy 2009b] that there exists a unique global
smooth solution of (1-1) with g(x) := logc log (10+ x2) and 0< c < 8

225 .
Equations of the type (1-1) are called barely Ḣ sp -supercritical wave equations. Indeed, the condition

(1-2) basically says that for every ε > 0, there exist two constants c1 := c1(p) and c2 := c2(p, ε) such
that

c1(p)≤ g(|u|)≤ c2(p, ε)|u|ε for |u| large. (1-9)

Since the critical exponent of the equation ∂t t u−4u=−|u|p−1+εu is sp+ε = sp+O(ε), the nonlinearity
of (1-1) is barely Ḣ sp -supercritical.
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The goal of this paper is to check that this phenomenon, observed for sp=1, still holds for other values
of sp. The standard local well-posedness theory shows us that it is enough to control the pointwise-in-
time H̃ 2

× H̃ 1-norm of the solution. In this paper, we will use an alternative local well-posedness theory.
We shall prove:

Proposition 1.2 (local existence for barely Ḣ sp -supercritical wave equation). Assume that g satisfies
(1-2) and

g′′(x)= O
(

1
x2

)
. (1-10)

Let M be such that ‖(u0, u1)‖H̃2×H̃1 ≤M. Then there exists δ := δ(M) > 0 small such that, if Tl satisfies∥∥∥∥cos (t D)u0+
sin t D

D
u1

∥∥∥∥
L2(p−1)

t L2(p−1)
x ([0,Tl ]×R3)

≤ δ, (1-11)

then there exists a unique (u, ∂t u) in

C
(
[0, Tl], H̃ 2)

∩L2(p−1)
t L2(p−1)

x
(
[0, Tl]

)
∩D

1
2−sp L4

t L4
x
(
[0, Tl]

)
∩D

1
2−2L4

t L4
x
(
[0, Tl]

)
×C

(
[0, Tl], H̃ 1)

that solves (1-1) in the integral equation sense; i.e., u satisfies the Duhamel formula

u(t) := cos (t D)u0+
sin t D

D
u1−

∫ t

0

sin(t − t ′)D
D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′. (1-12)

Notice the many similarities between Proposition 1.2 and the local well-posedness theory for (1-3).
This allows us to define a maximum time interval of existence Imax,g = [−T−,g, T+,g] such that, for

any compact subinterval J ⊂ Imax,g, the quantities

‖u‖L2(p−1)
t L2(p−1)

x (J ), ‖D
sp−

1
2 u‖L4

t L4
x (J )

, ‖D2− 1
2 u‖L4

t L4
x (J )

, ‖(u, ∂t u)‖L∞t H̃2(J )×L∞t H̃1(J )

are all finite. Again, see [Kenig and Merle 2006] or [Tao 2006a] for more explanations.
Now we set up the problem. In view of the comments above for sp = 1, we need to make two assump-

tions. First we will work with a “good” Ḣ sp(R3) theory: therefore we will assume that Conjecture 1.1
is true. Then, we also would like to work with Ḣ sp(R3)× Ḣ sp−1(R3) bounded solutions (u(t), ∂t u(t));
more precisely, we will assume this:

Condition 1.3 (of Kenig–Merle type). Let g be a function that satisfies (1-2) and that is constant for x
large. Then there exists C2 := C2

(
‖(u0, u1)‖H̃2×H̃1, g

)
such that

sup
t∈Imax,g

‖ (u(t), ∂t u(t)) ‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ C2. (1-13)

Remark 1.4. In the particular case sp = 1, it is not difficult to see that Condition 1.3 is satisfied. Indeed,
u satisfies the energy conservation law

Eb(t) :=
1
2

∫
R3

(
∂t u(t, x)

)2 dx + 1
2

∫
R3
|∇u(t, x)|2 dx +

∫
R3

F(u(t, x), ū(t, x)) dx, (1-14)
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with

F(z, z̄)= |z|5+1
∫ 1

0
t5 Re (g(t |z|)) dt = |z|5+1

∫ 1

0
t5 g(t |z|) dt. (1-15)

Since g is bounded, we have |F(z, z̄)| . |z|6. By using the Sobolev embeddings ‖u0‖L6
x
. ‖u0‖H̃2

and ‖u(t)‖L6
x
. ‖u(t)‖H̃2 , we easily conclude that Condition 1.3 holds. The energy conservation law

was often in [Tao 2007; Roy 2009b].

Here is the main result of this paper:

Theorem 1.5. Let p be fixed.

(1) There exists a function g̃ satisfying (1-2) and

lim
x→∞

g̃(x)=∞ (1-16)

and such that the solution of (1-1) (with g := g̃) exists for all time, provided that the scattering
conjecture and Condition 1.3 are satisfied.

(2) There exists a function f depending on T and ‖(u0, u1)‖H̃2×H̃1 such that

‖u‖L∞t H̃2([−T,T ])+‖∂t u‖L∞t H̃1([−T,T ]) ≤ f
(
T, ‖(u0, u1‖)H̃2×H̃1

)
. (1-17)

Theorem 1.5 shows that a “good” Ḣ sp(R3) theory for (1-3) can be extended, at least, to one barely
Ḣ sp(R3)-supercritical equation, with g̃ going to infinity.

Remark 1.6. Apart from its dependence on p, the function g̃ is universal: it does not depend on an
upper bound of the initial data. Moreover, g̃ is unbounded: it goes to infinity with as x .

Remark 1.7. In fact, Theorem 1.5 holds for a weaker version of Condition 1.3: there exists a function
C2 such that for all subinterval I ⊂ Imax,g

sup
t∈I

∥∥(u(t), ∂t u(t))
∥∥

Ḣ sp (R3)×Ḣ sp−1(R3)
≤ C2, (1-18)

with C2 :=C2
(
‖(u0, u1)‖H̃2×H̃1, g, |I |

)
. See the proof of Theorem 1.5 and, in particular, (5-21), (5-33)

and (5-48).

We recall some basic properties and estimates. If t0 ∈ [t1, t2], if F ∈ L q̃
t L r̃

x([t1, t2]) and if (u, ∂t u) ∈
C
(
[t1, t2], Ḣ m(R3)

)
×C

(
[t1, t2], Ḣ m−1(R3)

)
satisfy

u(t) : cos (t D)u0+
sin t D

D
u1−

∫ t

t0

sin (t − t ′)D
D

F(t ′) dt ′, (1-19)

with data (u(t0), ∂t u(t0)) ∈ Ḣ m(R3)× Ḣ m−1(R3), then we have the Strichartz estimates [Ginibre and
Velo 1995; Lindblad and Sogge 1995]

‖u‖Lq
t Lr

x ([t1, t2])+‖u‖L∞t Ḣm(R3)([t1, t2])+‖∂t u‖L∞t Ḣm−1(R3)([t1, t2])

. ‖(u(t0), ∂t u(t0))‖Ḣm(R3)×Ḣm−1(R3)+‖F‖L q̃
t L r̃

x ([t1, t2])
. (1-20)
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Here (q, r) is m-wave admissible, i.e.,

(q, r) ∈ (2,∞]× [2,∞] and 1
q
+

3
r
=

3
2
−m; (1-21)

moreover,
1
q
+

3
r
=

1
q̃
+

3
r̃
− 2. (1-22)

We set some notation that will appear throughout the paper.
We write A . B if there exists a universal nonnegative constant C ′ > 0 such that A ≤ C ′B. The

notation A = O(B) means A . B. More generally, we write A .a1,...,an B if there exists a nonnegative
constant C ′ = C(a1, . . . , an) such that A ≤ C ′B. We say that C ′′ is the constant determined by . in
A.a1,...,an B if C ′′ is the smallest possible C ′ such that A ≤ C ′B. We write A�a1,...,an B if there exists
a universal small nonnegative constant c= c(a1, . . . , an) such that A≤ cB. Following [Kenig and Merle
2011], we define, on an interval I ,

‖u‖S(I ) := ‖u‖L2(p−1)
t L2(p−1)

x (I ), ‖u‖W (I ) := ‖u‖L4
t L4

x (I )
, ‖u‖W̃ (I ) := ‖u‖

L
4
3
t L

4
3
x (I )

. (1-23)

We also define the quantity

Q(I, u) := ‖Dsp−
1
2 u‖W (I )+‖D2− 1

2 u‖W (I )+‖u‖L∞t H̃2(I )+‖∂t u‖L∞t H̃1(I ) (1-24)

Let X be a Banach space and r ≥ 0. Then

B(X, r) := { f ∈ X : ‖ f ‖X ≤ r} (1-25)

We recall also the well-known Sobolev embeddings. We have

‖h‖L∞(R3) . ‖h‖H̃2, (1-26)

‖h‖S(I ) . ‖Dsp−
1
2 h‖

L2(p−1)
t L

6(p−1)
2p−3

x (I )
. (1-27)

We shall combine (1-27) with the Strichartz estimates, since
(
2(p− 1), 6(p−1)

2p−3

)
is 1

2 - wave admissible.
We also recall some Leibnitz rules [Christ and Weinstein 1991; Kenig et al. 1993]. We have

‖DαF(u)‖Lq
t Lr

x (I )
. ‖F ′(u)‖L

q1
t L

r1
x (I )
‖Dαu‖L

q2
t L

r2
x (I )

, (1-28)

with α > 0, r , r1, r2 lying in [1,∞], 1
q =

1
q1
+

1
q2

, and 1
r =

1
r1
+

1
r2

.
The Leibnitz rule for products is

‖Dα(uv)‖Lq
t Lr

x (I )
. ‖Dαu‖L

q1
t L

r1
x (I )
‖v‖L

q2
t L

r2
x (I )
+‖Dαu‖L

q3
t L

r3
x (I )
‖v‖L

q4
t L

r4
x (I )

, (1-29)

with α > 0, r , r1, r2 lying in [1,∞], 1
q =

1
q1
+

1
q2

, 1
q =

1
q3
+

1
q4

, 1
r =

1
r1
+

1
r2

, and 1
r =

1
r3
+

1
r4

.
If F ∈ C2, we can write

F(x)− F(y)=
∫ 1

0
F ′
(
t x + (1− t)y

)
(x − y) dt. (1-30)
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By using (1-28) and (1-29) the Leibnitz rule for differences can be formulated as

‖Dα(F(u)− F(v))‖Lq
t Lr

x (I )
. sup

t∈[0,1]
‖F ′(tu+ (1− t)v)‖L

q1
t L

r1
x (I )
‖Dα(u− v)‖L

q2
t L

r2
x (I )

+ sup
t∈[0,1]

‖F ′′(tu+ (1− t)v)‖
L

q′1
t L

r ′1
x (I )

(
‖Dαu‖

L
q′2
t L

r ′2
x (I )
+‖Dαv‖

L
q′2
t L

r ′2
x (I )

)
‖u− v‖

L
q′3
t L

r ′3
x (I )

, (1-31)

with α>0, r1, r2, r ′1, r ′2, r ′3 lying in [1, ∞], 1
q =

1
q1
+

1
q2

, 1
r =

1
r1
+

1
r2

, 1
q =

1
q ′1
+

1
q ′2
+

1
q ′3

, and 1
r =

1
r ′1
+

1
r ′2
+

1
r ′3

.

We shall apply these formulas to several formulas of F(u), and, in particular, to F(u) := |u|p−1ug(|u|).
Notice that, by (1-2) and (1-10), we have F ′(x) ∼ |x |p−1g(|x |) and F ′′(x) ∼ |x |p−2g(|x |). Notice also
that, by (1-2) again, we have, for t ∈ [0, 1],

g (|t x + (1− t)y|)≤ g (2 max (|x |, |y|))≤ g
(
max (|x |, |y|)+ log 2

)
. g(|x |)+ g(|y|). (1-32)

This will allow us to estimate easily

sup
t∈[0,1]

‖F ′(tu+ (1− t)v)‖L
q1
t L

r1
x (I )

and sup
t∈[0,1]

‖F ′′(tu+ (1− t)v)‖L
q1
t L

r1
x (I )

.

Now we explain the main ideas of this paper. We shall prove, in Section 3, that very many values
functions g, a special property for the solution of (1-1) holds.

Proposition 1.8 (control of S(I )-norm and of norm of initial data imply control of L∞t H̃ 2(I )×L∞t H̃ 1(I )
norm). Let I be a compact subinterval of Imax,g (so ‖u‖S(I ) <∞) and assume that 0 ∈ I . Assume that g
satisfies (1-2), (1-10) and2 ∫

∞

1

1
yg2(y)

dy =∞. (1-33)

Let A ≥ 0 such that ‖(u0, u1)‖H̃2×H̃1 ≤ A. Let u be the solution of (1-1). There exists a constant C > 0
such that

‖(u, ∂t u)‖L∞t H̃2(I )×L∞t H̃1(I ) ≤ (2C)N A, (1-34)

with N := N (I ), such that ∫ (2C)N A

2C A

1
yg2(y)

dy�‖u‖2(p−1)
S(I ) . (1-35)

Moreover we shall give a criterion of global well-posedness (proved in Section 4):

Proposition 1.9 (criterion of global well-posedness). Assume that |Imax,g|<∞. Assume that g satisfies
(1-2), (1-10) and (1-33). Then

‖u‖S(Imax,g) =∞. (1-36)

The first step is to prove global well-posedness of (1-1), with g := g1 a nondecreasing function that is
constant for x large (say x ≥ C ′1, with C ′1 to be determined). By Proposition 1.9, it is enough to find an
upper bound of the S([−T, T ])-norm of the solution u[1] for T arbitrarily large. This can indeed be done,
by proving that g1 can be considered as a subcritical perturbation of the nonlinearity. In other words,
g1(|u|)|u|p−1u will play the same role as that of |u|p−1u(1−|u|−α) for some α>0. Once we have noticed

2Condition (1-33) basically says that g grows slowly on average.
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that this comparison is possible, we shall estimate the relevant norms (in particular, ‖u[1]‖S([−T,T ]))) using
perturbation theory, Conjecture 1.1 and Condition 1.3, in the spirit of [Zhang 2006]. We expect to find
a bound of the form

‖u[1]‖S([−T,T ]) ≤ C3
(
‖(u0, u1)‖H̃2×H̃1, T

)
, (1-37)

with C3 increasing as T or ‖(u0, u1)‖H̃2×H̃1 grows. Notice that if we restrict [−T, T ] to the interval
[−1, 1] and if the H̃ 2

× H̃ 1-norm of the initial data (u0, u1) is bounded by 1, then we can prove, using
(1-37), (1-26) and Proposition 1.8, that the L∞t L∞x ([−T, T ])-norm of the solution u[1] is bounded by
a constant (denoted by C1) on [−1, 1]. Therefore, if h is a smooth extension of g1 outside [0,C1],
and if u is the solution of (1-1) (with g := h), we expect to prove that u = u[1] on [−1, 1] and for data
‖(u0, u1)‖H̃2×H̃1 ≤ 1. This implies in particular, by (1-37), that we have a finite upper bound ‖u‖S([−1,1]).

We are not done yet. There are two problems. First, g1 does not go to infinity. Second, we only
control ‖u‖S([−1,1]) for data ‖(u0, u1)‖H̃2×H̃1 ≤ 1: we would like to control ‖u‖S(R) for arbitrary data.
In order to overcome these difficulties we iterate the procedure described above. More precisely, given a
function gi−1 that is constant for x ≥Ci−1 and such that u[i−1], a solution of (1-1) with g= gi−1, satisfies
‖u[i−1]‖S([−(i−1),i−1]) <∞, we construct a function gi that

• is an extension of gi−1 outside [0,Ci−1], and

• is increasing and constant (say equal to i + 1) for x ≥ C ′i , with C ′i to be determined.

Again, we shall prove that the gi may be regarded as a subcritical perturbation of the nonlinearity
(i+1)|u|p−1u. This allow us to control ‖u[i]‖S([−i,i]), by using perturbation theory, Conjecture 1.1, and
Condition 1.3. Using Proposition 1.8 and (1-26), we can find a finite upper bound for ‖u[i]‖L∞t L∞x ([−i,i]).
We assign the value of this upper bound to Ci . To conclude the argument we let g̃ = limi→∞ gi . Given
T > 0, we can find a j such that [−T, T ] ⊂ [− j, j] and ‖(u0, u1)‖H̃2×H̃1 ≤ j . We prove that u = u

[ j] on
[− j, j], where u is a solution of (1-1) with g := g̃. Since we have a finite upper bound of ‖u

[ j]‖S([− j, j]),
we also control ‖u‖S([− j, j]) and ‖u‖S([−T,T ]). Theorem 1.5 follows from Proposition 1.9.

2. Proof of Proposition 1.2

In this section we prove Proposition 1.2 for barely Ḣ sp(R3)-supercritical wave equations (1-1). The
proof is based upon standard arguments. Here we have chosen to modify an argument in [Kenig and
Merle 2011].

For δ, Tl , C , M to be chosen and such that (1-11) holds we define

B1 := B
(
C([0, Tl], H̃ 2)∩ D

1
2−sp W ([0, Tl])∩ D

1
2−2W ([0, Tl]), 2C M

)
,

B2 := B
(
S([0, Tl]), 2δ

)
,

B ′ := B
(
C([0, Tl], H̃ 1), 2C M

)
,

(2-1)

and

X :=
{
(u, ∂t u) : u ∈ B1 ∩ B2, ∂t u ∈ B ′

}
. (2-2)
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Let

9(u, ∂t u) :=

 cos (t D)u0+
sin (t D)

D
u1−

∫ t

0

sin (t − t ′)D
D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′

−D sin (t D)u0+ cos (t D)u1−

∫ t

0
cos (t−t ′)D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′

 . (2-3)

9 maps X to X. Indeed, in view of (1-11), (1-20), and the fractional Leibnitz rule (1-28) applied to
α ∈

{
sp −

1
2 , 2− 1

2

}
and

F(u) := |u|p−1ug(|u|)

and by applying the multipliers D2− 1
2 and Dsp−

1
2 to the Strichartz estimates with m = 1

2 , we have

Q([0, Tl])

.
∥∥(u0, u1)

∥∥
H̃2(R3)×H̃1(R3)

+
∥∥Dsp−

1
2
(
|u|p−1ug(|u|)

)∥∥
W̃ ([0,Tl ])

+
∥∥D2− 1

2
(
|u|p−1ug(|u|)

)∥∥
W̃ ([0,Tl ])

≤ C M +C
(
‖Dsp−

1
2 u‖W ([0,Tl ])+‖D

2− 1
2 u‖W ([0,Tl ])

)
‖u‖p−1

S([0,Tl ])
g(‖u‖L∞t L∞x ([0,Tl ]))

≤ C M + (2δ)p−1C(2C M)g(2C M) (2-4)

for some C > 0 and

‖u‖S([0,Tl ])− δ .
∥∥Dsp−

1
2
(
|u|p−1ug(|u|)

)∥∥
W̃ ([0,Tl ])

. ‖u‖p−1
S([0,Tl ])

‖Dsp−
1
2 u‖W ([0,Tl ]) g(‖u‖L∞t L∞x ([0,Tl ])). (2δ)

p−1(2C M)g(2C M). (2-5)

Choosing δ = δ(M) > 0 small enough we see that 9(X)⊂ X .

9 is a contraction. Indeed we have

‖9(u)−9(v)‖X

.
∥∥Dsp−

1
2 (|u|p−1ug(|u|)−|v|p−1vg(|v|))

∥∥
W̃ ([0,Tl ])

+
∥∥D2− 1

2 (|u|p−1ug(|u|)−|v|p−1vg(|v|))
∥∥

W̃ ([0,Tl ])

.
(
g(‖u‖L∞t L∞x ([0,Tl ]))+ g(‖v‖L∞t L∞x ([0,Tl ]))

)
×

((
‖u‖p−1

S([0,Tl ])
+‖v‖

p−1
S([0,Tl ])

)(
‖Dsp−

1
2 (u− v)‖W ([0,Tl ])+‖D

2− 1
2 (u− v)‖W ([0,Tl ])

)
+
(
‖u‖p−2

S([0,Tl ])
+‖v‖

p−2
S([0,Tl ])

)
‖u− v‖S([0,Tl ])

×
(
‖Dsp−

1
2 u‖W ([0,Tl ])+‖D

2− 1
2 u‖W ([0,Tl ])+‖D

sp−
1
2 v‖W ([0,Tl ])+‖D

2− 1
2 v‖W ([0,Tl ])

))
.
(
g(2C M)(2δ)p−1

+ (2δ)p−2(2C M)
)
‖u− v‖X . (2-6)

In these computations, we applied the Leibnitz rule for differences to α ∈
{
sp −

1
2 , 2− 1

2

}
and

F(u) := |u|p−1ug(|u|).

Therefore, if δ = δ(M) > 0 is small enough, 9 is a contraction.
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3. Proof of Proposition 1.8

To show Proposition 1.8, it is enough to prove that Q(I ) <∞. Without loss of generality we can assume
that A� 1. Then we divide I into subintervals (Ii )1≤i≤N such that

‖u‖S(Ii ) =
η

g1/(p−1)((2C)i A)
(3-1)

for some C & 1 and η > 0 constants to be chosen later, except maybe the last one. Notice that such a
partition always exists since by (1-33) we get, for N := N (I ) large enough,

N∑
i=1

1
g2((2C)i A)

≥

∫ N

1

1
g2((2C)x A)

dx &
∫ (2C)N A

2C A

1
yg2(y)

dy�‖u‖2(p−1)
S(I ) . (3-2)

We get, by a similar reasoning as used in Section 2

Q(I1, u). ‖(u0, u1)‖H̃2(R3)×H̃1(R3)+
∥∥Dsp−

1
2
(
|u|p−1ug(|u|)

)∥∥
W̃ (I1)
+
∥∥D2− 1

2
(
|u|p−1ug(|u|)

)∥∥
W̃ (I1)

. A+
(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)

)
‖u‖p−1

S(I1)
g(‖u‖L∞t L∞x (I1))

. A+‖u‖p−1
S(I1)

Q(I1, u)g(Q(I1, u)). (3-3)

We choose C to be equal to the constant determined by . in (3-3). Without loss of generality we can
assume that C > 1. By a continuity argument, iteration on i , we get, for η� 1, (1-34).

4. Proof of Proposition 1.9

To prove Proposition 1.9, we argue as follows: by time reversal symmetry it is enough to prove that
T+,g < ∞. If ‖u‖S(Imax,g) < ∞ then we have Q([0, T+,g], u) < ∞: this follows by slightly adapting
the proof of Proposition 1.8. Consequently, by the dominated convergence theorem, there would exist a
sequence tn→ T+,g such that ‖u‖S([tn,T+,g])� δ and ‖Dsp−

1
2 u‖W ([tn,T+,g])� δ if n is large enough, with

δ defined in Proposition 1.2. But, by (1-19) and (1-20),

‖ cos ((t − tn)D)u(tn)+
sin (t − tn)D

D
u1‖S([tn,T+,g])

. ‖u‖S([tn,T+,g])+‖u‖
p−1
S([tn,T+,g])‖D

sp−
1
2 u‖W ([tn,T+,g])g(Q([0, T+,g, u]))� δ, (4-1)

and consequently, by continuity, there would exist T̃ > T+,g such that∥∥∥∥cos ((t − tn)D)u(tn)+
sin (t − tn)D

D
∂t u(tn)

∥∥∥∥
S([tn,T̃ ])

≤ δ, (4-2)

which would contradict the definition of T+,g.

Remark 4.1. Notice that if we have the stronger bound ‖u‖S(Imax,g)≤C with C :=C
(
‖(u0, u1)‖H̃2×H̃1

)
<

∞, then not only Imax,g = (−∞,+∞) but also u scatters as t → ±∞. Indeed, by Proposition 1.9,
Imax,g=R. Then by time reversal symmetry it is enough to assume that t→∞. Let v(t) := (u(t), ∂t u(t)).
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We are looking for v+,0 :=
(
u+,0, u+,1

)
such that∥∥v(t)− K (t)v+,0

∥∥
H̃2×H̃1 → 0 (4-3)

as t→∞. Here

K (t) :=
(

cos t D (sin t D)/D
−D sin t D cos t D

)
(4-4)

We have

K−1(t)=
(

cos t D −(sin t D)/D
D sin t D cos t D

)
. (4-5)

Notice that K−1(t) and K (t) are bounded in H̃ 2
× H̃ 1. Therefore it is enough to prove that K−1(t)v(t)

has a limit as t→∞. But since K−1(t)v(t)= (u0, u1)− K−1(t) (unl(t), ∂t unl(t))— where

unl(t) := −
∫ t

0

sin (t − t ′)D
D

(
|u(t ′)|p−1u(t ′)g(|u(t ′)|)

)
dt ′

denotes the nonlinear part of the solution (1-12) — it suffices to prove that K−1(t) (unl(t), ∂t unl(t)) has
a limit. But∥∥K−1(t1)unl(t1)− K−1(t2)unl(t2)

∥∥
H̃2×H̃1

.
∥∥(unl, ∂t unl)

∥∥
L∞t H̃2([t1,t2])×L∞t H̃1([t1,t2])

.
(∥∥Dsp−

1
2 (|u|p−1ug(|u|))‖W̃ ([t1,t2])+‖D

2− 1
2 (|u|p−1ug(|u|))

∥∥
W̃ ([t1,t2])

)
.
(∥∥Dsp−

1
2 u‖W ([t1,t2])+‖D

2− 1
2 u
∥∥

W ([t1,t2])

)
‖u‖p−1

S([t1,t2])g
(
‖u‖L∞t L∞x (R)

)
.

(4-6)

It remains to prove that Q(R)<∞ in order to conclude that the Cauchy criterion is satisfied, which would
imply scattering. This follows from ‖u‖S(R)<∞ and a slight modification of the proof of Proposition 1.8.

5. Construction of the function g

In this section we prove Theorem 1.5. Let

Up(i) :=
{
(T, (u0, u1)) : 0≤ T ≤ i, ‖(u0, u1)‖H̃2×H̃1 ≤ i

}
(5-1)

As i ranges over {1, 2, . . . } we construct, for each set Up(i), a function gi satisfying (1-2) and (1-10).
Moreover it is constant for large values of |x |. The function gi+1 depends on gi ; the construction of gi

is made by induction on i . More precisely:

Lemma 5.1. Let A � 1. There exist two sequences of numbers {Ci }i≥0, {C ′i }i≥0 and a sequence of
functions {gi }i≥0 such that, for all (T, (u0, u1)) ∈ Up(i), we have

• g0 := 1, C0 := 0, C ′0 = 0;

• {Ci }i≥0 and {C ′i }i≥0 are positive, nondecreasing, and satisfy

ACi−1 < C ′i < ACi (5-2)
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for i ≥ 1 and
Ci ≥ i; (5-3)

• gi is smooth, nondecreasing, and satisfies (1-2), (1-10),∫ C ′i

1

1
tg2

i (t)
dt→∞ as i→∞, (5-4)

and

gi (|x |)=
{

gi−1(|x |) if |x | ≤ ACi−1,

i + 1 if |x | ≥ C ′i ;
(5-5)

• the solution u[i] of the wave equation
∂t t u[i]−4u[i] =−|u[i]|p−1u[i]gi (|u[i]|),
u[i](0)= u0 ∈ H̃ 2,

∂t u[i](0)= u1 ∈ H̃ 1
(5-6)

satisfies
max

(
‖u[i]‖S([−i,i]),

∥∥(u[i], ∂t u[i])
∥∥

L∞t H̃2([−T,T ])×L∞t H̃1([−T,T ])

)
≤ Ci . (5-7)

We postpone the proof until page 212. Assume the lemma is true and let g̃ = limi→∞ gi . Clearly
g̃ is smooth; it satisfies (1-2) and (1-10). It also goes to infinity. Moreover let u be the solution of
(1-1) with g := g̃. We want to prove that the solution u exists for all time. Let T0 ≥ 0 be a fixed time.
Let j := j (T0, ‖u0‖H̃2, ‖u1‖H̃1) > 0 be the smallest positive integer such that [−T0, T0] ⊂ [− j, j] and
‖(u0, u1)‖H̃2×H̃1 ≤ j . We claim that

‖(u, ∂t u)‖L∞t H̃2([−T0,T0])×L∞t H̃1([−T0,T0])
≤ C j and ‖u‖S([−T0,T0]) ≤ C j .

Indeed, let

F j :=
{
t ∈ [0, j] : ‖(u, ∂t u)‖L∞t H̃2([−t,t])×L∞t H̃1([−t,t]) ≤ C j and ‖u‖S([−t,t]) ≤ C j

}
. (5-8)

We must show that F j coincides with [0, j]. Certainly F j is nonempty, since it contains 0; see (5-3).

F j is closed. Indeed, let t̃ ∈ F j . There exists a sequence (tn)n≥1 in [0, j] such that tn→ t̃ , ‖u‖S([−tn,tn])≤

C j , and ‖(u, ∂t u)‖L∞t H̃2([−tn,tn])×L∞t H̃1([−tn,tn]) ≤ C j . It is enough to prove that ‖u‖S([−t̃,t̃]) is finite and
then apply dominated convergence. There are two cases:

• If card{tn : tn ≤ t̃}<∞, there exists n0 large enough such that tn ≥ t̃ for n ≥ n0 and

‖u‖S([−t̃,t̃]) ≤ ‖u‖S([−tn,tn]) <∞. (5-9)

• If card{tn : tn ≤ t̃} =∞, we can assume by passing to a subsequence that tn ≤ t̃ . Let n0 ≥ 1 be fixed.
Since∥∥∥∥cos (t − tn0)Du(tn0)+

sin (t−tn0)D
D

∂t u(tn0)

∥∥∥∥
S([tn0 ,t̃])

.
∥∥(u(tn0), ∂t u(tn0))

∥∥
H̃2×H̃1 . C j , (5-10)

we conclude from the dominated convergence theorem that there is n1 := n1(n0) large enough that

‖ cos (t − tn0)Du(tn0)+
sin (t − tn0)D

D
∂t u(tn0)‖S([tn1 ,t̃])

≤ δ, (5-11)
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with δ := δ(C j ) defined in Proposition 1.2. Therefore, by Proposition 1.2, we have ‖u‖S([tn1 ,t̃])
<∞.

Similarly, ‖u‖S([−t̃,−tn1 ])
<∞. Combining these inequalities with ‖u‖S([−tn1 ,tn1 ])

≤C j , we eventually
get ‖u‖S([−t̃,t̃]) <∞, as desired.

F j is open. Indeed, let t̄ ∈ F j . By Proposition 1.2 there exists α>0 such that if t ∈ (t̄−α, t̄+α)∩[0, j] then
[−t, t] ⊂ Imax,g̃ and ‖u‖L∞t L∞x ([−t,t]). ‖u‖L∞t H̃2([−t,t]).C j . Also, by (5-7), [−t, t] ⊂ Imax,g j . In view of
these remarks, we conclude, after slightly adapting the proof of Proposition 1.8, that Q([−t, t], u). j 1
and Q([−t, t], u

[ j]). j 1. We divide [−t, t] into a finite number of subintervals (Ii )i≤k = ([ai , bi ])1≤i≤k

that satisfy, for η� 1 to be defined later, the following properties:

(1) 1≤ i ≤ k: ‖u
[ j]‖S(Ii )≤η, ‖u‖S(Ii )≤η, ‖Dsp−

1
2 u
[ j]‖W (Ii )≤η, ‖Dsp−

1
2 u‖W (Ii )≤η, ‖D2− 1

2 u‖W (Ii )≤η,

and ‖D2− 1
2 u
[ j]‖W (Ii ) ≤ η.

(2) 1 ≤ i < k: ‖u
[ j]‖S(Ii ) = η or ‖u‖S(Ii ) = η or ‖Dsp−

1
2 u
[ j]‖W (Ii ) = η or ‖Dsp−

1
2 u‖W (Ii ) = η or

‖D2− 1
2 u‖W (Ii ) = η, or ‖D2− 1

2 u
[ j]‖W (Ii ) = η.

Notice that, by (1-2), we have

‖g j (|u|)− g j (|u[ j]|)‖L∞t L∞x (Ii ) . ‖u− u
[ j]‖L∞t L∞x (Ii ) . ‖u− u

[ j]‖L∞t H̃2(Ii )
. (5-12)

Consider w = u− u
[ j]. Applying the Leibnitz rules (1-28), (1-31), and (1-29), together with (5-12), we

have

Q(I1, w)

.
∥∥Dsp−

1
2 (|u|p−1u(g̃− g j )(|u|))

∥∥
W̃ (I1)
+
∥∥D2− 1

2 (|u|p−1u(g̃− g j )(|u|))
∥∥

W̃ (I1)

+
∥∥Dsp−

1
2 (|u|p−1u− |u

[ j]|
p−1u

[ j])g j (|u|)
∥∥

W̃ (I1)
+
∥∥D2− 1

2 (|u|p−1u− |u
[ j]|

p−1u
[ j])g j (|u|)

∥∥
W̃ (I1)

+
∥∥Dsp−

1
2 (|u

[ j]|
p−1u

[ j](g j (|u|)−g j (|u[ j]|)))
∥∥

W̃ (I1)
+
∥∥D2− 1

2 (|u
[ j]|

p−1u
[ j](g j (|u|)−g j (|u[ j]|)))

∥∥
W̃ (I1)

. (g̃− g j )(‖u‖L∞t H̃2(I1)
)
(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)

)
‖u‖p−1

S(I1)

+ g j
(
‖u‖L∞t H̃2(I1)

)((
‖u
[ j]‖

p−1
S(I1)
+‖u‖p−1

S(I1)

)(
‖Dsp−

1
2w‖W (I1)+‖D

2− 1
2w‖W (I1)

)
+
(
‖u
[ j]‖

p−2
S(I1)
+‖u‖p−2

S(I1)

)
‖w‖S(I1)

×
(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)+‖D

sp−
1
2 u
[ j]‖W (I1)+‖D

2− 1
2 u
[ j]‖W (I1)

))
+‖g′j (|u|)‖L∞t L∞x (I1)

(
‖Dsp−

1
2 u‖W (I1)+‖D

2− 1
2 u‖W (I1)

)(
‖u‖p−2

S(I1)
+‖u

[ j]‖
p−2
S(I1)

)
‖w‖S(I1)

+
∥∥g j (|u|)− g j (|u[ j]|)

∥∥
L∞t L∞x (I1)

‖Dsp−
1
2 u
[ j]‖W (I1) ‖u[ j]‖

p−1
S(I1)

+‖u
[ j]‖

p−1
S(I1)
‖u
[ j]‖L∞t H̃2(I1)

(
‖w‖L∞t H̃2(I1)

(
‖Dsp−

1
2 u‖W (I1)+‖D

sp−
1
2 u
[ j]‖W (I1)

)
+‖Dsp−

1
2w‖W (I1)

)
. g j (C j )η

p−1 Q(I1, w)+ η
p−1 Q(I1, w)+ η

p Q(I1, w)+C jη
p−1(ηQ(I1, w)+ Q(I1, w)

)
, (5-13)

since, by choosing A large enough and by the construction of g̃, we have

(g̃− g j )(‖u‖L∞t H̃2(I1)
)= 0. (5-14)
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We conclude via a continuity argument that Q(I1, w)=0, so u=u
[ j] on I1. In particular, u(b1)=u

[ j](b1).
By iteration on i , it is not difficult to see that u = u

[ j] on [−t, t]. Hence (t̄ −α, t̄ +α)∩ [0, j] ⊂ F j , by
(5-7). Thus F j is open.

The upshot is that F j = [0, j], so ‖u‖S([−T0,T0]) ≤ C j . This proves global well-posedness. Moreover,
since j depends on T0 and ‖(u0, u1)‖H̃2×H̃1 , we get (1-17).

Proof of Lemma 5.1. The proof extends to the end of the paper. We must establish a priori bounds.

Step 1: Construction of g1.
Basically, g1 is a nonnegative function that increases and is equal to 2 for x large. Recall that [−T, T ]⊂
[−1, 1] and ‖(u0, u1)‖H̃2×H̃1 ≤ 1. Let I ⊂ [−T, T ].

Observe that the point (∞−, 3+) :=
( 3+ε
ε
, 3+ ε

)
with ε� 1 is 1

2 -wave admissible.
We would like to chop I (satisfying ‖ · ‖L∞t L3

x (I ) <∞) into subintervals I j such that ‖ · ‖L∞t L3
x (I j ) is as

small as wanted. Unfortunately this is impossible because the L∞t -norm is pathological. Instead we will
apply this process to ‖ · ‖L∞−t L3+

x
. This creates slight variations almost everywhere in the process of the

construction of gi . Details with respect to these slight perturbations have been omitted for the sake of
readability: they are left to the reader, who should ignore the + and − signs at the first reading.

We define

X (I ) := D
1
2−sp L∞−t L3+

x (I )∩ D
1
2−sp W (I )∩ S(I )∩ L∞t Ḣ sp(I )× L∞t Ḣ sp−1(I ). (5-15)

Let g1 be a smooth function, defined on the set of nonnegative real numbers, nondecreasing, and such
that h1 := g1 − 2 satisfies the following properties: h1(0) = −1, h is nondecreasing, and h1(x) = 0 if
|x | ≥ 1. It is not difficult to see that (1-2) and (1-10) are satisfied.

Observe that
|h1(x)|.

1

|x |
p−1

2 −
(5-16)

and
|h′1(x)|.

1

|x |
p+1

2 −
. (5-17)

Let u[1] and v[1] be solutions to the equations
∂t t u[1]−4u[1] =−|u[1]|p−1u[1]g1(|u[1]|),
u[1](0)= u0 ∈ H̃ 2,

∂t u[1](0)= u1 ∈ H̃ 1
(5-18)

and 
∂t tv[1]−4v[1] =−2

∣∣v[1]∣∣p−1
v[1],

v[1](0)= u0,

∂tv[1](0)= u1.

(5-19)

Step 1a. We claim that ‖v[1]‖X (R) <∞. Indeed, since we assumed that Conjecture 1.1 is true, we can
divide R into subintervals (I j = [t j , t j+1])1≤ j≤l such that

‖v[1]‖S(I j ) = η and ‖v[1]‖S(Il ) ≤ η,
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with η� 1. Then

‖v[1]‖X (I j+1) .
∥∥(v[1](t j ), ∂tv[1](t j ))

∥∥
Ḣ sp (R3)×Ḣ sp−1(R3)

+
∥∥Dsp−

1
2 (|v[1]|

p−1v[1])
∥∥

W̃ (I j+1)

.
∥∥(v[1](t j ), ∂tv[1](t j ))

∥∥
Ḣ sp (R3)×Ḣ sp−1(R3)

+
∥∥Dsp−

1
2 v[1]

∥∥
W (I j+1)

‖v[1]‖
p−1
S(I j+1)

. ‖v[1]‖X (I j )+ η
p−1
‖v[1]‖X (I j+1). (5-20)

Notice that l . 1: this follows from Conjecture 1.1, Condition 1.3 and the inequality

‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ sup
t∈Imax,g1

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ C2
(
‖(u0, u1)‖H̃2×H̃1

)
. 1, (5-21)

following from Condition 1.3 and the assumption ‖(u0, u1)‖H̃2×H̃1 ≤ 1. (At this stage, we only need
to know that ‖(u0, u1)‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ ‖(u0, u1)‖H̃2×H̃1 ≤ 1 and apply Conjecture 1.1. Therefore
the introduction of supt∈Imax,g1

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3) in (5-21) is redundant. This is done on
purpose. Indeed, we will use Condition 1.3 in other parts of the argument: see (5-33).)

Now by a standard continuity argument and iteration on j we have

‖v[1]‖X (R) . 1 (5-22)

Step 1b. We control ‖u[1] − v[1]‖X ([−t̃,t̃]), for t̃ � 1 to be chosen later. By time reversal symmetry it is
enough to control ‖u[1]− v[1]‖X ([0,t̃]). To this end we consider w[1] := u[1]− v[1]. We get

∂t tw[1]−4w[1] =−|w[1]+ v[1]|
p−1(v[1]+w[1])g1(v[1]+w[1])+ 2|v[1]|p−1v[1].

Let η′� 1. By (5-22), we can divide [0, t̃] into subintervals (Jk = [t ′k, t ′k+1])1≤k≤m that satisfy

‖Dsp−
1
2 v[1]‖L∞−t L3+

x (Jk)
= η′ or ‖Dsp−

1
2 v[1]‖W (Jk) = η

′ for 1≤ k < m, (5-23)

‖Dsp−
1
2 v[1]‖W (Jk) ≤ η

′ and ‖Dsp−
1
2 v[1]‖L∞−t L3+

x (Jk)
≤ η′ for 1≤ k ≤ m. (5-24)

We have

‖w[1]‖X (Jk+1) .
∥∥(w[1](t ′k), ∂tw[1](t ′k)

)∥∥
Ḣ sp (R3)×Ḣ sp−1(R3)

+ A1+ A2,

where

A1 := ‖Dsp−
1
2
(
2|v[1]|p−1v[1]− 2|v[1]+w[1]|p−1(v[1]+w[1])

)
‖W̃ (Jk+1)

,

A2 := ‖Dsp−
1
2
(
h1(|v[1]+w[1]|)|v[1]+w[1]|

p−1(v[1]+w[1])
)∥∥

L1
t L

3
2
x (Jk+1)

.
(5-25)
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By the fractional Leibnitz rule applied to q(x) := |x |p−1xh(x), (5-16), (5-17), Sobolev embedding and
Hölder in time we have

A2 .
∥∥|v[1]+w[1]| p−1

2 +
∥∥

L1+
t L3−

x (Jk+1)

∥∥Dsp−
1
2 (v[1]+w[1])

∥∥
L∞−t L3+

x (Jk+1)

. ‖v[1]+w[1]‖
p−1

2 +

L
p−1

2 +
t L

3(p−1)+
2

x (Jk+1)

∥∥Dsp−
1
2 (v[1]+w[1])

∥∥
L∞−t L3+

x (Jk+1)

. t̃
∥∥Dsp−

1
2 (v[1]+w[1])

∥∥ p+1
2 +

L∞−t L3+
x (Jk+1)

. t̃(η′)
p+1

2 ++ t̃
∥∥Dsp−

1
2w[1]

∥∥ p+1
2 +

L∞−t L3+
x (Jk+1)

. t̃(η′)
p+1

2 ++ t̃ ‖w[1]‖
p+1

2 +

X (Jk+1)
. (5-26)

For A1 we follow [Kenig and Merle 2011, p. 9]:

A1 .
(
‖v[1]‖

p−1
S(Jk+1)

+
∥∥w[1]‖p−1

S(Jk+1)

)∥∥Dsp−
1
2w[1]‖W (Jk+1)

+
(∥∥v[1]‖p−2

S(Jk+1)
+‖w[1]

∥∥p−2
S(Jk+1)

)(∥∥Dsp−
1
2 v[1]

∥∥
W (Jk+1)

+
∥∥Dsp−

1
2w[1]

∥∥
W (Jk+1)

)
‖w[1]‖S(Jk+1)

. (η′)p−1
‖w[1]‖X (Jk+1)+‖w[1]‖

p
X (Jk+1)

+ (η′)p−2
‖w[1]‖

2
X (Jk+1)

+ η′‖w[1]‖
p−1
X (Jk+1)

. (5-27)

This follows from (1-31) and (1-27). Therefore we have

‖w[1]‖X (Jk+1) . ‖w[1]‖X (Jk)+ (η
′)

p+1
2 + t̃ + t̃ ‖w[1]‖

p+1
2 +

X (Jk+1)

+ (η′)p−1
‖w[1]‖X (Jk+1)+‖w[1]‖

p
X (Jk+1)

+ (η′)p−2
‖w[1]‖

2
Y (Jk+1)

+ η′‖w[1]‖
p−1
X (Jk+1)

. (5-28)

Let C be the constant determined by (5-28). By induction, we have

‖w[1]‖X (Jk) ≤ (2C)k t̃, (5-29)

provided that for 1≤ k ≤ m− 1 we have

C(η′)
p+1

2 t̃ � C(2C)k t̃,

Ct̃
(
(2C)k t̃

) p+1
2 +� (2C)k t̃,

C(η′)p−1(2C)k+1 t̃ � C(2C)k t̃,

C
(
(2C)k t̃

)p
� C(2C)k t̃,

C(η′)p−2 ((2C)k+1 t̃
)2
� C(2C)k t̃,

η′
(
(2C)k+1 t̃

)p−1
� C(2C)k .

(5-30)

These inequalities are satisfied if η′� 1 and

t̃ � 1 (5-31)

since k ≤ m− 1 and, by (5-22), m . 1. We conclude that

‖w[1]‖X ([0,t̃]) . 1. (5-32)
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Step 1c. We control ‖u[1]‖X ([−T,T ]). By time reversal symmetry, it is enough to control ‖u[1]‖X ([0,T ]).
Recall that T ≤1. We chop T ≤1 into subintervals (Jk′=[ak′, bk′])1≤k′≤l ′ such that |Jk′ |= t̃ for 1≤ k ′< l ′

and |Jl ′ | ≤ t̃ . Notice that, by Condition 1.3, we have

‖(u(ak′), ∂t u(ak′))‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ sup
t∈Imax,g1

‖(u(t), ∂t u(t))‖Ḣ sp (R3)×Ḣ sp−1(R3)

≤ C2
(
‖(u0, u1)‖H̃2×H̃1

)
. 1, (5-33)

taking advantage of the assumption ‖(u0, u1)‖H̃2×H̃1 ≤ 1. For each k ′ let v[1,k′] be the solution of
∂t tv[1,k′]−4v[1,k′] =−|v[1,k′]|

p−1v[1,k′],

v[1,k′](ak′)= u[1](ak′),

∂tv[1,k′](ak′)= ∂t u[1](ak′);

(5-34)

in particular, v[1,k′] = v[1]. By slightly modifying the proof of Step 1b and letting v[1,k′] play the role of
v[1], this leads, by (5-33), to

‖v[1,k′]‖X (R) . 1 (5-35)

and
‖w[1,k′]‖X (Jk′ )

. 1, (5-36)

with w[1,k′] := u[1]− v[1,k′]. Therefore ‖u[1]‖X (Jk′ )
. 1, and summing over Jk′ we have

‖u[1]‖X ([0,T ]) . 1. (5-37)

Step 1d. We control ‖(u[1], ∂t u[1])‖L∞t H̃2([−1,1])×L∞t H̃1([−1,1]) and ‖u[1]‖S([−1,1]). We get from (5-37)

‖u[1]‖S([−1,1]) . 1. (5-38)

To conclude Step 1: By Proposition 1.8 and (5-38) we have

‖(u[1], ∂t u[1])‖L∞t H̃2([−1,1])×L∞t H̃1([−1,1]) . 1. (5-39)

Therefore
max

(
‖u[1]‖S([−1,1]), ‖(u[1], ∂t u[1])‖L∞t H̃2([−1,1])×L∞t H̃1([−1,1])

)
. 1. (5-40)

We let C ′1 in the statement of Lemma 5.1 be equal to 1. We can assume without the loss of generality
that the constant implicit in . in (5-40) is larger than 1; let C1 in the statement of Lemma 5.1 be this
constant. Then C ′1 and C1 satisfy (5-2) and (5-3).

Step 2: Construction of gi from gi−1.
Recall that [−T, T ] ⊂ [−i, i] and ‖(u0, u1)‖H̃2×H̃1 ≤ i . In view of (5-5) it is enough to construct gi

for |x |> ACi−1. It is clear that, by choosing C ′i large enough, we can construct find a function g̃i defined
on [ACi−1, C ′i ] such that gi , defined by

gi (x) :=


gi−1(x) if |x | ≤ ACi−1,

g̃i (x) if C ′i ≥ |x | ≥ ACi−1,

i + 1 if |x | ≥ C ′i

(5-41)
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is smooth and slowly increasing; also it satisfies (1-2), (1-10), and∫ C ′i

ACi−1

1
yg2

i (y)
dy ≥ i. (5-42)

It remains to determine Ci in the statement of Lemma 5.1. To do that we slightly modify the reasoning
in Step 1.

We sketch the argument. Let hi (x) := gi (x)− (i+1). Then hi (x)= 0 if |x |> C ′i . It is not difficult to
see that

|hi (x)|.i
1

|x |
p−1

2 +
, (5-43)

|h′i (x)|.i
1

|x |
p+1

2 +
. (5-44)

Let u[i] and v[i] be the solutions of the equations
∂t t u[i]−4u[i] =−|u[i]|p−1u[i]gi (|u[i]|),
u[i](0) := u0,

∂t u[i](0) := u1

(5-45)

and 
∂t tv[i]−4v[i] =−(i + 1)|v[i]|p−1v[i],

v[i](0) := u0,

∂tv[i](0) := u1

(5-46)

Step 2a. We have
‖v[i]‖X (R) .i 1, (5-47)

by adapting the proof of Step 1a. Notice, in particular, that we can use Conjecture 1.1 and control
‖v[i]‖S(R) since w[i] := (i + 1)

1
p−1 v[i] satisfies ∂t tw[i]−4w[i] =−|w[i]|

p−1w[i].

Step 2b. We have ‖u[i]− v[i]‖X ([0,t̃]) .i 1 for t̃ �i 1, by adapting the proof of Step 1b. The dependance
on i basically comes from (5-43), (5-44) and (5-46).

Step 2c. We prove that ‖u[i]‖X ([−T,T ]) .i,p 1. By time reversal symmetry, it is enough to control
‖u[i]‖X ([0,T ]). Recall that T ≤ i . We chop [0, T ] into subintervals (Jk′ = [ak′, bk′])1≤k′≤l ′ such that
|Jk′ | = t̃ for 1 ≤ k ′ < l ′ and |Jl ′ | ≤ t̃ (with t̃ defined in Step 2b). By Condition 1.3 and the assumption
‖(u0, u1)‖H̃2×H̃1 ≤ i , we have

‖(u[i](ak′), ∂t u[i](ak′))‖Ḣ sp (R3)×Ḣ sp−1(R3) ≤ sup
t∈Imax,gi

∥∥(u[i](t), ∂t u[i](t))
∥∥

Ḣ sp (R3)×Ḣ sp−1(R3)
.i 1. (5-48)

We introduce 
∂t tv[i,k′]−4v[i,k′] =−(i + 1)|v[i,k′]|p−1v[i,k′],

v[i,k′](ak′)= u[i](ak′),

∂tv[i,k′](ak′)= ∂t u[i](ak′)

(5-49)
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and, by using (5-48), we can prove that

‖u[i]‖S([−i,i]) .i 1. (5-50)

Step 2d. By using Proposition 1.8 and (5-50) we get

max
(
‖u[i]‖S([−i,i]), ‖(u[i], ∂t u[i])‖L∞t H̃2([−i,i])×L∞t H̃1([−i,i])

)
.i 1. (5-51)

We can assume without loss of generality that the constant implicit in . is larger than i and C ′i . Let Ci

be this constant; (5-2) and (5-3) are satisfied.
This concludes Step 2, and the proof of Lemma 5.1. �
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