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THE CAUCHY PROBLEM FOR THE BENJAMIN–ONO EQUATION IN L2

REVISITED

LUC MOLINET AND DIDIER PILOD

Ionescu and Kenig proved that the Cauchy problem associated with the Benjamin–Ono equation is globally
well posed in L2(R). In this paper we give a simpler proof of Ionescu and Kenig’s result, which moreover
provides stronger uniqueness results. In particular, we prove unconditional well-posedness in H s(R) for
s > 1

4 . Note that our approach also permits us to simplify the proof of the global well-posedness in L2(T)

and yields unconditional well-posedness in H
1
2 (T).

1. Introduction

The Benjamin–Ono equation is one of the fundamental equations describing the evolution of weakly
nonlinear internal long waves. It has been derived by Benjamin [1967] as an approximate model for
long-crested unidirectional waves at the interface of a two-layer system of incompressible inviscid fluids,
one being infinitely deep. In nondimensional variables, the initial value problem (IVP) associated with
the Benjamin–Ono equation (BO) is {

∂t u+H ∂2
x u = u ∂x u,

u(x, 0)= u0(x),
(1-1)

where x ∈R or T, t ∈R, u is a real-valued function, and H is the Hilbert transform, defined on the line by

H f (x)= p.v. 1
π

∫
R

f (y)
x−y

dy. (1-2)

The Benjamin–Ono equation is, at least formally, completely integrable [Fokas and Ablowitz 1983] and
thus possesses an infinite number of conservation laws. For example, the momentum and the energy,
respectively given by

M(u)=
∫

u2 dx and E(u)= 1
2

∫ ∣∣D 1
2
x u
∣∣2 dx + 1

6

∫
u3 dx, (1-3)

are conserved by the flow of (1-1).
The IVP associated with the Benjamin–Ono equation presents interesting mathematical difficulties and

has been extensively studied in recent years. In the continuous case, well-posedness in H s(R) for s > 3
2

was proved by Iório [1986] by using purely hyperbolic energy methods (see also [Abdelouhab et al. 1989]
for global well-posedness in the same range of s). Then Ponce [1991] derived a local smoothing effect
associated with the dispersive part of the equation, which, combined with compactness methods, enables
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us to reach s = 3
2 . This technique was refined by Koch and Tzvetkov [2003] and Kenig and Koenig

[2003], who reached s > 5
4 and s > 9

8 , respectively. On the other hand, Molinet, Saut, and Tzvetkov
[Molinet et al. 2001] proved that the flow map associated with BO, when it exists, fails to be C2 in any
Sobolev space H s(R), s ∈ R. This result is based on the fact that the dispersive smoothing effects of the
linear part of BO are not strong enough to control the low-high frequency interactions appearing in the
nonlinearity of (1-1). It was improved by Koch and Tzvetkov [2005], who showed that the flow map fails
even to be uniformly continuous in H s(R) for s > 0 (see [Biagioni and Linares 2001] for the same result
in the case s <− 1

2 ). As the consequence of those results, one cannot solve the Cauchy problem for the
Benjamin–Ono equation by a Picard iterative method implemented on the integral equation associated
with (1-1) for initial data in the Sobolev space H s(R), s ∈ R. In particular, the methods introduced by
Bourgain [1993b] and Kenig, Ponce, and Vega [Kenig et al. 1993; 1996] for the Korteweg–de Vries
equation do not apply directly to the Benjamin–Ono equation.

Therefore, the problem of obtaining well-posedness in less regular Sobolev spaces turns out to be
far from trivial. Due to the conservations laws (1-3), L2(R) and H

1
2 (R) are two natural spaces where

well-posedness is expected. In this direction, a decisive breakthrough was achieved by Tao [2004]. By
combining a complex variant of the Cole–Hopf transform (which linearizes the Burgers equation) with
Strichartz estimates, he proved well-posedness in H 1(R). More precisely, to obtain estimates at the
H 1-level, he introduced the new unknown

w = ∂x P+hi
(
e−

i
2 F), (1-4)

where F is some spatial primitive of u and P+hi denotes the projection on high positive frequencies. Then
w satisfies an equation of the form

∂tw− i ∂2
xw =−∂x P+hi (∂

−1
x wP− ∂x u)+ negligible terms. (1-5)

Observe that, thanks to the frequency projections, the nonlinear term appearing in the right-hand side of
(1-5) does not exhibit any low-high frequency interaction terms. Finally, to invert this gauge transformation,
one gets an equation of the form

u = 2ie
i
2 Fw+ negligible terms. (1-6)

Very recently, Burq and Planchon [2008] and Ionescu and Kenig [2007] were able to use Tao’s ideas
in the context of Bourgain’s spaces to prove well-posedness for the Benjamin–Ono equation in H s(R) for
s > 1

4 and s ≥ 0, respectively. The main difficulty arising here is that Bourgain’s spaces do not enjoy
an algebra property so that one is losing regularity when estimating u in terms of w via Equation (1-6).
Burq and Planchon first paralinearized the equation and then used a localized version of the gauge
transformation on the worst nonlinear term. On the other hand, Ionescu and Kenig decomposed the
solution in two parts: the first one is the smooth solution of BO evolving from the low-frequency part of
the initial data while the second one solves a dispersive system renormalized by a gauge transformation
involving the first part. The authors were then able to solve the system via a fixed-point argument in a
dyadic version of Bourgain’s spaces (already used in the context of wave maps [Tataru 1998]) with a
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special structure in low frequencies. We observe that their result only ensures the uniqueness in the class
of limits of smooth solutions while Burq and Planchon obtained a stronger uniqueness result. Indeed,
by applying their approach to the equation satisfied by the difference of two solutions, they succeed in
proving that the flow map associated with BO is Lipschitz in a weaker topology when the initial data
belongs to H s(R), s > 1

4 .
In the periodic setting, Molinet [2007; 2008] proved well-posedness in H s(T) for s ≥ 1

2 and s ≥ 0,
successively. (This last result is proven to be sharp in [Molinet 2009].) Once again, these works combined
Tao’s gauge transformation with estimates in Bourgain’s spaces. It should be pointed out that in the periodic
case, one can assume that u has mean value zero to define a primitive. Then it is easy to check by the mean-
value theorem that the gauge transformation in (1-4) is Lipschitz from L2 into L∞. This property, which
is not true on the real line, is crucial to prove the uniqueness and the Lipschitz property of the flow map.

The aim of this paper is to give a simpler proof of Ionescu and Kenig’s result, which also provides
a stronger uniqueness result for the solutions at the L2 level. It is worth noticing that to reach L2 in
[Ionescu and Kenig 2007] and [Molinet 2008], the authors replaced u in (1-4) by the formula given in
(1-6). The benefit of this substitution is that then u no longer appears in (1-4). On the other hand, it
introduces new technical difficulties in handling the multiplication by e∓i F/2 in Bourgain spaces. Here
we are able to avoid this substitution, which will simplify the proof. Our main result is the following:

Theorem 1.1. Let s ≥ 0 be given.
Existence: For all u0 ∈ H s(R) and all T > 0, there exists a solution

u ∈ C([0, T ]; H s(R))∩ X s−1,1
T ∩ L4

T W s,4
x (1-7)

of (1-1) such that
w = ∂x P+hi (e−

i
2 F[u]) ∈ Y s

T , (1-8)

where F[u] is some primitive of u defined in (3-2).
Uniqueness: This solution is unique in the following classes:1

(i) u ∈ L∞
(
]0, T [; L2(R)

)
∩ L4

(
]0, T [×R

)
and w ∈ X0, 1

2
T ,

(ii) u ∈ L∞
(
]0, T [; H s(R)

)
∩ L4

T W s,4
x whenever s > 0,

(iii) u ∈ L∞
(
]0, T [; H s(R)

)
whenever s > 1

4 .

Moreover, u ∈ Cb(R; L2(R)), and the flow-map data solution u0 7→ u is continuous from H s(R) into
C([0, T ]; H s(R)).

Note that H s(R) above denotes the space of all real-valued functions with the usual norm, and X s,b
T

and Y s
T are Bourgain spaces defined in Section 2B while the primitive F[u] of u is defined in Section 3A.

Remark 1.2. Since the function spaces in the uniqueness class (i) are reflexive and since ∂x P+hi (e−
i
2 F[un])

converges to ∂x P+hi (e−
i
2 F[u]) in L∞(]−T, T [; L2(R)) when un converges to u in L∞(]−T, T [; L2(R)),

our result clearly implies the uniqueness in the class of L∞(]− T, T [; L2(R))-limits of smooth solutions.

1Note that according to the equation, the time derivative of a solution in these classes belongs to L∞(−T, T ; H−2), and thus
such a solution has to belong to C(−T, T ; H−2).
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Remark 1.3. For s > 0 we get a uniqueness class without any conditions on w (see [Burq and Planchon
2008] for the case s > 1

4 ).

Remark 1.4. According to (iii) we get unconditional well-posedness in H s(R) for s> 1
4 . Such a result was

first proven, in a much less direct way, in [Burq and Planchon 2006] for s ≥ 1
2 . It implies in particular the

uniqueness of the (energy) weak solutions that belong to L∞(R; H
1
2 (R)). These solutions are constructed

by regularizing the equation and passing to the limit as the regularizing coefficient goes to 0 (taking into
account some energy estimate for the regularizing equation related to the energy conservation of (1-1)).

Our proof also combines Tao’s ideas with the use of Bourgain’s spaces. Actually, it closely follows the
strategy introduced by the first author in [Molinet 2007]. The main new ingredient is a bilinear estimate
for the nonlinear term appearing in (1-5), which allows us to recover one derivative at the L2 level. It
is interesting to note that, at the H s level with s > 0, this estimate follows from the Cauchy–Schwarz
method introduced by Kenig, Ponce, and Vega [Kenig et al. 1996] (see the Appendix for the use of
this method in some region of integration). To reach L2, one of the main difficulties is that we cannot
substitute the Fourier transform of u by its modulus in the bilinear estimate since we are not able to
prove that F−1(|û|) belongs to L4

x,t but only that u belongs to L4
x,t . To overcome this difficulty we use

a Littlewood–Paley decomposition of the functions and carefully divide the domain of integration into
suitable disjoint subdomains.

To obtain our uniqueness result, following the same method as in the periodic setting, we derive a
Lipschitz bound for the gauge transformation from some affine subspaces of L2(R) into L∞(R). Recall
that this is clearly not possible for general initial data since it would imply the uniform continuity of the
flow map. The main idea is to notice that such a Lipschitz bound holds for solutions emanating from
initial data having the same low frequency part, and this is sufficient for our purpose.

Let us point out some applications. First our uniqueness result allows us to simplify the proof of the
continuity of the flow map associated with the Benjamin–Ono equation for the weak topology of L2(R).
This result was recently proved by Cui and Kenig [2010].

It is also interesting to observe that the method of proof used here still works in the periodic setting,
and thus, we reobtain the well-posedness result [Molinet 2008] in a simpler way. Moreover, as in the
continuous case, we prove new uniqueness results (see Theorem 7.1). In particular, we get unconditional
well-posedness in H s(T) as soon as s ≥ 1

2 .
Finally, we believe that this technique may be useful for other nonlinear dispersive equations presenting

the same kind of difficulties as the Benjamin–Ono equation. For example, consider the higher-order
Benjamin–Ono equation

∂tv− bH ∂2
x v+ a ∂3

x v = cv ∂xv− d ∂x(vH ∂xv+H(v ∂xv)), (1-9)

where x , t ∈ R, v is a real-valued function, a ∈ R, and b, c, and d are positive constants. The equation
above corresponds to a second-order approximation model of the same phenomena described by the
Benjamin–Ono equation. It was derived by Craig, Guyenne, and Kalisch [2005] using a Hamiltonian
perturbation theory and possesses an energy at the H 1 level. As for the Benjamin–Ono equation, the flow
map associated with (1-9) fails to be smooth in any Sobolev space H s(R), s ∈ R [Pilod 2008]. Recently,
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the Cauchy problem associated with (1-9) was proved to be well posed in H 2(R) [Linares et al. 2011]. In
a forthcoming paper, the authors will show that it is actually well posed in the energy space H 1(R).

This paper is organized as follows: in the next section, we introduce the notations, define the function
spaces, and recall some classical linear estimates. Section 3 is devoted to the key nonlinear estimates,
which are used in Section 4 to prove the main part of Theorem 1.1 while the assertions (ii) and (iii) are
proved in Section 5. In Section 6, we give a simple proof of the continuity of the flow map for the weak
L2(R) topology whereas Section 7 is devoted to some comments and new results in the periodic case.
Finally, in the Appendix we prove the bilinear estimate used in Section 5.

2. Notation, function spaces, and preliminary estimates

2A. Notation. For any positive numbers a and b, the notation a . b means that there exists a positive
constant c such that a ≤ cb. We also write a ∼ b when a . b and b . a. Moreover, if α ∈ R, α+ and α−
will denote a number slightly greater and lesser than α, respectively.

For u = u(x, t) ∈ S(R2), Fu = û will denote its space-time Fourier transform whereas Fx u = (u)∧x

and Ft u = (u)∧t will denote its Fourier transform in space and time, respectively. For s ∈ R, we define
the Bessel and Riesz potentials of order −s, J s

x and Ds
x , by

J s
x u = F−1

x (1+ |ξ |2)
s
2 Fx u and Ds

x u = F−1
x (|ξ |sFx u).

Throughout the paper, we fix a cutoff function η such that

η ∈ C∞0 (R), 0≤ η ≤ 1, η|[−1,1] = 1, supp(η)⊂ [−2, 2].

We define

φ(ξ) := η(ξ)− η(2ξ) and φ2l (ξ) := φ(2−lξ).

Summations over capitalized variables such as N are presumed to be dyadic with N ≥ 1; i.e., these
variables range over numbers of the form 2n , n ∈ Z+. Then we have∑

N

φN (ξ)= 1− η(2ξ) ∀ξ 6= 0 and supp(φN )⊂ {
1
2 N ≤ |ξ | ≤ 2N }.

Let us define the Littlewood–Paley multipliers by

PN u = F−1
x (φN Fx u) and P≥N :=

∑
K≥N

PK .

We also define the operators Phi , PHI , Plo, and PLO by

Phi =
∑
N≥2

PN , PHI =
∑
N≥8

PN , Plo = 1− Phi , and PLO = 1− PHI .

Let P+ and P− denote the projections on the positive and the negative Fourier frequencies, respectively.
Then

P±u = F−1
x (χR±

Fx u),
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and we also define P±hi = P±Phi , P±HI = P±PHI , P±lo = P±Plo, and P±LO = P±PLO. Observe that Phi ,
PHI , Plo, and PLO are bounded operators on L p(R) for 1≤ p ≤∞ while P± is only bounded on L p(R)

for 1< p <∞. We also note that
H=−i P++ i P−.

Finally, we denote by U ( · ) the free group associated with the linearized Benjamin–Ono equation,
which is to say,

Fx(U (t) f )(ξ)= e−i t |ξ |ξFx f (ξ).

2B. Function spaces. For 1 ≤ p ≤∞, L p(R) is the usual Lebesgue space with the norm ‖ · ‖L p , and
for s ∈ R, the real-valued Sobolev spaces H s(R) and W s,p(R) denote the spaces of all real-valued
functions with the usual norms

‖ f ‖H s = ‖J su‖L2 and ‖ f ‖W s,p = ‖J s
x f ‖L p .

For 1< p <∞, we define the space L̃ p as

‖ f ‖L̃ p = ‖Plo f ‖L p +

(∑
N

‖PN f ‖2L p

)1
2

.

Observe that when p≥2, the Littlewood–Paley theorem on the square function and Minkowski’s inequality
imply that the injection L̃ p ↪→ L p is continuous. Moreover, if u = u(x, t) is a real-valued function
defined for x ∈ R and t in the time interval [0, T ] with T > 0, B is one of the spaces defined above,
and 1≤ p ≤∞, we will define the mixed space-time spaces L p

T Bx and L p
t Bx by the norms

‖u‖L p
T Bx
=

(∫ T

0
‖u( · , t)‖p

B dt
)1

p

and ‖u‖L p
t Bx
=

(∫
R

‖u( · , t)‖p
B dt

)1
p

,

respectively.
For s, b ∈ R, we introduce the Bourgain spaces X s,b and Z s,b related to the Benjamin–Ono equation

as the completion of the Schwartz space S(R2) under the norms

‖u‖X s,b =

(∫
R2
〈τ + |ξ |ξ〉2b

〈ξ〉2s
|̂u(ξ, τ )|2 dξ dτ

)1
2

, (2-1)

‖u‖Z s,b =

(∫
R

(∫
R

〈τ + |ξ |ξ〉b〈ξ〉s |̂u(ξ, τ )| dτ
)2

dξ
)1

2

, (2-2)

‖u‖Z̃ s,b = ‖Plou‖Z s,b +

(∑
N

‖PN u‖2Z s,b

)1
2

, (2-3)

‖u‖Y s = ‖u‖
X s, 1

2
+‖u‖Z̃ s,0, (2-4)

where 〈x〉 := 1+ |x |. We will also use the localized (in time) version of these spaces. Let T > 0 be a
positive time and ‖ · ‖B = ‖ · ‖X s,b , ‖ · ‖Z̃ s,b , or ‖ · ‖Y s . If u : R×[0, T ] → C, then

‖u‖BT := inf{ ‖ũ‖B | ũ : R×R→ C, ũ|R×[0,T ] = u }.
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We recall that

Y s
T ↪→ Z s,0

T ↪→ C([0, T ]; H s(R)).

2C. Linear estimates. In this subsection, we recall some linear estimates in Bourgain’s spaces that will
be needed later. The first ones are well known (see [Ginibre et al. 1997], for example).

Lemma 2.1 (homogeneous linear estimate). Let s ∈ R. Then

‖η(t)U (t) f ‖Y s . ‖ f ‖H s . (2-5)

Lemma 2.2 (nonhomogeneous linear estimate). Let s ∈ R. Then, for any 0< δ < 1
2 ,∥∥∥∥η(t) ∫ t

0
U (t − t ′) g(t ′) dt ′

∥∥∥∥
X s, 1

2+δ
. ‖g‖

X s,− 1
2+δ

(2-6)

and ∥∥∥∥η(t) ∫ t

0
U (t − t ′) g(t ′) dt ′

∥∥∥∥
Y s
. ‖g‖

X s,− 1
2
+‖g‖Z̃ s,−1 . (2-7)

Proof. Lemmas 2.1 and 2.2 follow directly from the classical linear estimates for X s,b and Z s,b together
with the fact that

‖u‖X s,b ∼ ‖Plou‖X s,b +

(∑
N

‖PN u‖2X s,b

)1
2

. �

Lemma 2.3. For any T > 0, s ∈ R and for all −1
2 < b′ ≤ b < 1

2 ,

‖u‖X s,b′
T
. T b−b′

‖u‖X s,b
T
. (2-8)

The following Bourgain–Strichartz estimates will also be useful:

Lemma 2.4. It holds that

‖u‖L4
x,t
. ‖u‖L̃4

x,t
. ‖u‖

X0, 3
8
, (2-9)

and for any T > 0 and 3
8 ≤ b ≤ 1

2 ,

‖u‖L4
x,T
. T b− 3

8 ‖u‖X0,b
T
. (2-10)

Proof. Estimate (2-9) follows directly by applying the estimate

‖u‖L4
x,t
. ‖u‖

X0, 3
8
,

proved in the appendix of [Molinet 2007], to each dyadic block on the left-hand side of (2-9).
To prove (2-10), we choose an extension ũ ∈ X0,b of u such that ‖ũ‖X0,b ≤ 2‖u‖X0,b

T
. Therefore, it

follows from (2-8) and (2-9) that

‖u‖L4
x,T
≤ ‖ũ‖L4

x,t
. ‖ũ‖

X0, 3
8
. T b− 3

8 ‖u‖X0,b
T
. �
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2D. Fractional Leibniz rules. First we state the classical fractional Leibniz rule estimate derived by
Kenig, Ponce, and Vega (see Theorems A.8 and A.12 in [Kenig et al. 1993]).

Proposition 2.5. Let 0 < α < 1, p, p1, p2 ∈ (1,+∞) with 1
p1
+

1
p2
=

1
p , and α1, α2 ∈ [0, α] with

α = α1+α2. Then

‖Dα
x ( f g)− f Dα

x g− gDα
x f ‖L p . ‖Dα1

x g‖L p1 ‖Dα2
x f ‖L p2 . (2-11)

Moreover, for α1 = 0, the value p1 =+∞ is allowed.

The next estimate is a frequency-localized version of estimate (2-11) in the same spirit as Lemma 3.2
in [Tao 2004]. It allows sharing most of the fractional derivative in the first term on the right-hand side
of (2-12).

Lemma 2.6. Let α ≥ 0 and 1< q <∞. Then

‖Dα
x P+( f P− ∂x g)‖Lq . ‖Dα1

x f ‖Lq1 ‖Dα2
x g‖Lq2 (2-12)

with 1< qi <∞, 1
q1
+

1
q2
=

1
q , and α1 ≥ α, α2 ≥ 0, and α1+α2 = 1+α.

Proof. See Lemma 3.2 in [Molinet 2007]. �

Finally, we derive an estimate to handle the multiplication by a term of the form e±
i
2 F , where F is a

real-valued function, in fractional Sobolev spaces.

Lemma 2.7. Let 2 ≤ q <∞ and 0 ≤ α ≤ 1
q . Consider F1 and F2, two real-valued functions such that

u j = ∂x F j belongs to L2(R) for j = 1, 2. Then∥∥Jαx
(
e±

i
2 F1 g

)∥∥
Lq . (1+‖u1‖L2)‖Jαx g‖Lq , (2-13)

and∥∥Jαx
(
(e±

i
2 F1 − e±

i
2 F2)g

)∥∥
Lq .

(
‖u1− u2‖L2 +‖e±

i
2 F1 − e±

i
2 F2‖L∞(1+‖u1‖L2)

)
‖Jαx g‖Lq . (2-14)

Proof. In the case α = 0, we deduce from Hölder’s inequality that∥∥e±
i
2 F1 g

∥∥
Lq ≤ ‖g‖Lq (2-15)

since F1 is real-valued. Therefore, we assume that 0<α≤ 1
q , and it is enough to bound ‖Dα

x (e
±

i
2 F1 g)‖Lq .

First we observe that∥∥Dα
x
(
e±

i
2 F1 g

)∥∥
Lq ≤

∥∥Dα
x
(
Ploe±

i
2 F1 g

)∥∥
Lq +

∥∥Dα
x
(
Phi e±

i
2 F1 g

)∥∥
Lq . (2-16)

Estimate (2-11) and Bernstein’s inequality imply that∥∥Dα
x
(
Ploe±

i
2 F1 g

)∥∥
Lq .

∥∥Ploe±
i
2 F1
∥∥

L∞ ‖D
α
x g‖Lq +

∥∥Dα
x Ploe±

i
2 F1
∥∥

L∞ ‖g‖Lq . ‖Jαx g‖Lq . (2-17)

On the other hand, by using estimate (2-11) again, we get that∥∥Dα
x
(
Phi e±

i
2 F1 g

)∥∥
Lq .

∥∥Phi e±
i
2 F1
∥∥

L∞ ‖D
α
x g‖Lq +‖g‖Lq1

∥∥Dα
x Phi e±

i
2 F1
∥∥

Lq2

with 1
q1
=

1
q −α and 1

q2
= α, so 1

q1
+

1
q2
=

1
q . Then it follows from the real-valuedness of F1, the equality
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∂x F1 = u1, and the Sobolev embedding that∥∥Dα
x
(
Phi e±

i
2 F1 g

)∥∥
Lq . ‖Dα

x g‖Lq +‖Jαx g‖Lq
∥∥D

α+ 1
2

x Phi e±
i
2 F1
∥∥

L2

. ‖Jαx g‖Lq
(
1+

∥∥∂x e±
i
2 F1
∥∥

L2

)
. ‖Jαx g‖Lq (1+‖u1‖L2). (2-18)

The proof of estimate (2-13) is concluded gathering (2-15)–(2-18).
Estimate (2-14) can be obtained exactly in the same way, using that∥∥∂x

(
e±

i
2 F1 − e±

i
2 F2
)∥∥

L2 . ‖u1− u2‖L2 +
∥∥e±

i
2 F1 − e±

i
2 F2
∥∥

L∞ ‖u1‖L2 . (2-19)

This completes the proof. �

3. A priori estimates in H s(R) for s ≥ 0

In this section we will derive a priori estimates on a solution u to (1-1) at the H s-level for s ≥ 0. First,
following Tao [2004], we perform a nonlinear transformation on the equation to weaken the high-low
frequency interaction in the nonlinearity. Furthermore, since we want to reach L2, we will need to use
Bourgain spaces. This requires a new bilinear estimate, which we derive in Section 3B.

3A. The gauge transformation. Let u be a solution to the equation in (1-1). First we construct a spatial
primitive F = F[u] of u (i.e., ∂x F = u) that satisfies the equation

∂t F =−H ∂2
x F + 1

2(∂x F)2. (3-1)

Note that these two properties defined F up to a constant. In order to construct F for u with low regularity,
we use the construction of Burq and Planchon [2008]. Consider ψ ∈ C∞0 (R) such that

∫
R
ψ(y) dy = 1

and define

F(x, t)=
∫

R

ψ(y)
(∫ x

y
u(z, t) dz

)
dy+G(t) (3-2)

as a mean of antiderivatives of u. Obviously, ∂x F = u and

∂t F(x, t)=
∫

R

ψ(y)
(∫ x

y
∂t u(z, t) dz

)
dy+G ′(t)

=

∫
R

ψ(y)
(∫ x

y

(
−H ∂2

z u(z, t)+ 1
2 ∂z(u(z, t)2)

)
dz
)

dy+G ′(t)

=−H ∂x u(x, t)+ 1
2 u(x, t)2+

∫
R

(
Hψ ′(y) u(y, t)−ψ(y)1

2 u(y, t)2
)

dy+G ′(t).

Therefore, we choose G as

G(t)=
∫ t

0

∫
R

(
−Hψ ′(y) u(y, s)+ψ(y) 1

2 u(y, s)2
)

dy ds
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to ensure that (3-1) is satisfied. Observe that this construction makes sense for u ∈ L2
loc(R

2). Next, we
introduce the new unknown

W = P+hi
(
e−

i
2 F) and w = ∂x W =− 1

2 i P+hi
(
e−

i
2 F u

)
. (3-3)

Then it follows from (3-1) and the identity H=−i(P+− P−) that

∂t W +H ∂2
x W = ∂t W − i ∂2

x W =− 1
2 i P+hi

(
e−

i
2 F (∂t F − i ∂2

x F − 1
2(∂x F)2)

)
=−P+hi (W P− ∂x u)− P+hi

(
Ploe−

i
2 F P− ∂x u

)
since the term −P+hi (P−hi e−

i
2 F P− ∂x u) cancels due to the frequency localization. Thus, it follows from

differentiating that

∂tw− i ∂2
xw =−∂x P+hi (W P− ∂x u)− ∂x P+hi

(
Ploe−

i
2 F P− ∂x u

)
. (3-4)

On the other hand, one can write u as

u = Fx = e
i
2 F e−

i
2 F Fx = 2ie

i
2 F∂x

(
e−

i
2 F)
= 2ie

i
2 Fw− e

i
2 F Plo

(
e−

i
2 F u

)
− e

i
2 F P−hi

(
e−

i
2 F u

)
(3-5)

so that it follows from the frequency localization

P+HIu = 2i P+HI
(
e

i
2 Fw

)
− P+HI

(
P+hi e

i
2 F Plo(e−

i
2 F u)

)
+ 2i P+HI

(
P+HIe

i
2 F ∂x P−hi e−

i
2 F). (3-6)

Remark 3.1. Note that the use of P+HI allows us to replace e
i
2 F by P+hi e

i
2 F in the second term on the

right-hand side of (3-6). This fact will be useful to obtain at least a quadratic term in ‖u‖L∞T L2
x

on the
right-hand side of estimate (3-8) in Proposition 3.2.

Then we have the following a priori estimates for u in terms of w:

Proposition 3.2. Let 0≤ s≤1, 0< T ≤1, 0≤ θ ≤1, and u be a solution to (1-1) in the time interval [0, T ].
Then

‖u‖X s−θ,θ
T
. ‖u‖L∞T H s

x
+‖u‖L4

T,x
‖J s

x u‖L4
T,x
. (3-7)

Moreover, if 0≤ s ≤ 1
4 , we have

‖J s
x u‖L p

T Lq
x
. ‖u0‖L2 +

(
1+‖u‖L∞T L2

x

)(
‖w‖Y s

T
+‖u‖2L∞T L2

x

)
(3-8)

for (p, q)= (∞, 2) or (4, 4).

Remark 3.3. One can rewrite (3-8) in a convenient form for s ≥ 1
4 ; see [Molinet 2007].

Proof. We begin with the proof of estimate (3-7) and construct a suitable extension in time ũ of u. First
we consider v(t) = U (−t) u(t) on the time interval [0, T ] and extend v on [−2, 2] by setting ∂tv = 0
on [−2, 2] \ [0, T ]. Then it is pretty clear that

‖∂tv‖L2
[−2,2]H

r
x
= ‖∂tv‖L2

T H r
x

and ‖v‖L2
[−2,2]H

r
x
. ‖v‖L∞T H r

x

for all r ∈ R. Now we define ũ(x, t)= η(t)U (t) v(t). Obviously,

‖ũ‖X s−1,1 . ‖∂tv‖L2
[−2,2]H

s−1
x
+‖v‖L2

[−2,2]H
s−1
x
. ‖∂tv‖L2

T H s−1
x
+‖v‖L∞T H s−1

x
(3-9)
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and

‖ũ‖X s,0 . ‖v‖L2
[−2,2]H

s
x
. ‖v‖L∞T H s

x
= ‖u‖L∞T H s

x
. (3-10)

Interpolating between (3-9) and (3-10) and using the identity

∂tv =H ∂2
x U (−t) u+U (−t) ∂t u =U (−t)[H ∂2

x u+ ∂t u],

we then deduce that

‖ũ‖X s−θ,θ . ‖∂t u+H ∂2
x u‖L2

T H s−1
x
+‖u‖L∞T H s

x
(3-11)

for all 0≤ θ ≤ 1. Therefore, the fact that u is a solution to (1-1) and the fractional Leibniz rule [Kenig
et al. 1993] yield

‖ũ‖X s−θ,θ . ‖u‖L∞T H s
x
+‖u‖L4

x,T
‖J s

x u‖L4
x,T
,

which concludes the proof of (3-7) since ũ extends u outside of [0, T ].
Next, we turn to the proof of (3-8). Let 0 ≤ T ≤ 1, 0 ≤ s ≤ 1

4 , (p, q)= (∞, 2) or (4, 4), and u be a
smooth solution to the equation in (1-1). Since u is real-valued, it that holds P−u = P+u so that

‖J s
x u‖L p

T Lq
x
. ‖PLOu‖L p

T Lq
x
+‖Ds

x P
+HIu‖L p

T Lq
x
. (3-12)

To estimate the second term on the right-hand side of (3-12), we use (3-6) to deduce that

‖Ds
x P
+HIu‖L p

T Lq
x
.
∥∥Ds

x P+HI
(
e

i
2 Fw

)∥∥
L p

T Lq
x
+
∥∥Ds

x P+HI
(
P+hi e

i
2 F Plo(e−

i
2 F u)

)∥∥
L p

T Lq
x

+
∥∥Ds

x P+HI
(
P+HIe

i
2 F∂x P−hi e−

i
2 F)∥∥

L p
T Lq

x

=: I + II+ III.

Estimates (2-10) and (2-13) yield

I . (1+‖u‖L∞T L2
x
)‖J s

xw‖L p
T Lq

x
. (1+‖u‖L∞T L2

x
)‖w‖Y s

T
. (3-13)

On the other hand, the fractional Leibniz rule (Proposition 2.5), Hölder’s inequality in time, and the
Sobolev embedding imply that

II .
∥∥Ds

x P+hi e
i
2 F
∥∥

L p
T Lq

x

∥∥P+lo
(
ue−

i
2 F)∥∥

L∞T,x
+
∥∥P+hi e

i
2 F
∥∥

L∞T,x

∥∥Ds
x P+lo

(
ue−

i
2 F)∥∥

L p
T Lq

x

.
∥∥∂x P+hi e

i
2 F
∥∥

L p
T L2

x

∥∥P+lo
(
ue−

i
2 F)∥∥

L∞T L2
x
. T

1
p ‖u‖2L∞T L2

x
. (3-14)

Finally, estimate (2-12) with α1 = α2 = (1+ s)/2 and q1 = q2 = q, Hölder’s inequality in time, and the
Sobolev embedding lead to

III .
∥∥D(1+s)/2

x P+HIe
i
2 F
∥∥

L2p
T L2q

x

∥∥D(1+s)/2
x P−hi e−

i
2 F
∥∥

L2p
T L2q

x

. T
1
p
∥∥D

1+ s
2−

1
2q

x P+HIe
i
2 F
∥∥

L∞T L2
x

∥∥D
1+ s

2−
1

2q
x P−hi e−

i
2 F
∥∥

L∞T L2
x

. T
1
p
∥∥∂x P+HIe

i
2 F
∥∥

L∞T L2
x

∥∥∂x P−hi e−
i
2 F
∥∥

L∞T L2
x
. T

1
p ‖u‖2L∞T L2

x
, (3-15)
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since 0≤ s ≤ 1
q . Therefore, we deduce by gathering (3-13)–(3-15) that

‖Ds
x P
+HIu‖L p

T Lq
x
.
(
1+‖u‖L∞T L2

x

)(
‖w‖Y s

T
+ T

1
p ‖u‖2L∞T L2

x

)
. (3-16)

Next we turn to the first term on the right-hand side of (3-12) and consider the integral equation
satisfied by PLOu,

PLOu =U (t)PLOu0+

∫ t

0
U (t − τ) PLO ∂x(u2)(τ ) dτ. (3-17)

First observe that
‖PLOu‖L p

T Lq
x
. T

1
p ‖PLOu‖L∞T L2

x
.

Then we deduce from (3-17), using the fact that U is a unitary group in L2 and Bernstein’s inequality, that

‖PLOu‖L p
T Lq

x
. T

1
p ‖u0‖L2

x
+ T 1+ 1

p ‖∂x PLO(u2)‖L∞T L2
x

. T
1
p ‖u0‖L2

x
+ T 1+ 1

p ‖PLO(u2)‖L∞T L1
x

. ‖u0‖L2
x
+‖u‖2L∞T L2

x
, (3-18)

since 0≤ T ≤ 1.
Thus, estimate (3-8) follows combining (3-12), (3-16), and (3-18). This concludes the proof of

Proposition 3.2. �

3B. Bilinear estimates. The aim of this subsection is to derive the following estimate of ‖w‖Y s
T
:

Proposition 3.4. Let 0< T ≤ 1, 0≤ s ≤ 1
2 , and u be a solution to (1-1) on the time interval [0, T ]. Then

‖w‖Y s
T
. (1+‖u0‖L2)‖u0‖H s +‖u‖2L4

x,T
+‖w‖

X
s, 1

2
T

(
‖u‖L∞T L2

x
+‖u‖L4

x,T
+‖u‖X−1,1

T

)
. (3-19)

The main tools to prove Proposition 3.4 are the following crucial bilinear estimates:

Proposition 3.5. For any s ≥ 0, we have∥∥∂x P+hi (∂
−1
x wP− ∂x u)

∥∥
X s,− 1

2
. ‖w‖

X s, 1
2

(
‖u‖L2

x,t
+‖u‖L4

x,t
+‖u‖X−1,1

)
(3-20)

and ∥∥∂x P+hi (∂
−1
x wP− ∂x u)

∥∥
Z̃ s,−1 . ‖w‖X s, 1

2

(
‖u‖L2

x,t
+‖u‖L4

x,t
+‖u‖X−1,1

)
. (3-21)

Remark 3.6. Note that ∂−1
x w is well defined since w is localized in high frequencies.

Proof. We will only give the proof in the case of s = 0 since the case s > 0 can be deduced by using
similar arguments. By duality, to prove (3-20) is equivalent to prove that

|I |. ‖h‖L2
x,t
‖w‖

X0, 1
2

(
‖u‖L2

x,t
+‖u‖L4

x,t
+‖u‖X−1,1

)
, (3-22)

where

I =
∫

D

ξ

〈σ〉1/2
ĥ(ξ, τ ) ξ−1

1 ŵ(ξ1, τ1) ξ2 û(ξ2, τ2) dν, (3-23)

dν = dξ dξ1 dτ dτ1, ξ2 = ξ − ξ1, τ2 = τ − τ1, σi = τi + ξi |ξi |, i = 1, 2, (3-24)
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and

D=
{
(ξ, ξ1, τ, τ1) ∈ R4 ∣∣ ξ ≥ 1, ξ1 ≥ 1, ξ2 ≤ 0

}
. (3-25)

Observe that we always have in D that

ξ1 ≥ ξ ≥ 1 and ξ1 ≥ |ξ2|. (3-26)

In the case where |ξ2| ≤ 1, we have by using Hölder’s inequality and estimate (2-9) that

|I |.
∫

R4

|̂h|
〈σ〉1/2

|ŵ(ξ1, τ1)| |̂u(ξ2, τ2)| dν.
∥∥∥( |̂h|
〈σ〉1/2

)∨∥∥∥
L4

x,t

‖(|ŵ|)∨‖L4
x,t
‖u‖L2

x,t
.‖h‖L2

x,t
‖w‖

X
3
8
‖u‖L2

x,t
.

From now on we will assume that |ξ2| ≥ 1 in D.
By using a dyadic decomposition in space-frequency for the functions h, w, and u, one can rewrite I as

I =
∑

N ,N1,N2

IN ,N1,N2 (3-27)

with

IN ,N1,N2 :=

∫
D

ξ

〈σ〉1/2
P̂N h(ξ, τ ) ξ−1

1 P̂N1w(ξ1, τ1) ξ2 P̂N2u(ξ2, τ2) dν

and the dyadic numbers N , N1, and N2 ranging from 1 to +∞. Moreover, the resonance identity

σ1+ σ2− σ = ξ
2
1 + (ξ − ξ1)|ξ − ξ1| − ξ

2
=−2ξξ2 (3-28)

holds in D. Therefore, to calculate IN ,N1,N2 , we split the integration domain D into the disjoint regions

AN ,N2 =
{
(ξ, ξ1, τ, τ1) ∈ D

∣∣ |σ | ≥ 1
6 N N2

}
,

BN ,N2 =
{
(ξ, ξ1, τ, τ1) ∈ D

∣∣ |σ |< 1
6 N N2, |σ1| ≥

1
6 N N2

}
,

CN ,N2 =
{
(ξ, ξ1, τ, τ1) ∈ D

∣∣ |σ |< 1
6 N N2, |σ1|<

1
6 N N2, |σ2| ≥

1
6 N N2

}
,

and denote by I
AN ,N2
N ,N1,N2

, I
BN ,N2
N ,N1,N2

, and I
CN ,N2
N ,N1,N2

the restriction of IN ,N1,N2 to each of these regions. Then it
follows that

IN ,N1,N2 = I
AN ,N2
N ,N1,N2

+ I
BN ,N2
N ,N1,N2

+ I
CN ,N2
N ,N1,N2

,

and thus

|I | ≤ |IA| + |IB| + |IC|, (3-29)

where

IA :=

∑
N ,N1,N2

I
AN ,N2
N ,N1,N2

, IB :=

∑
N ,N1,N2

I
BN ,N2
N ,N1,N2

, IC :=

∑
N ,N1,N2

I
CN ,N2
N ,N1,N2

.
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Therefore, it suffices to bound |IA|, |IB|, and |IC|. Note that one of the two following cases holds:

(1) high-low interaction: N1 ∼ N and N2 ≤ N1,

(2) high-high interaction: N1 ∼ N2 and N ≤ N1.

Estimate for |IA|. In the first case, we observe from the Cauchy–Schwarz inequality that

|IA| ∼

∣∣∣∣ ∫
R2

ĥ
∑
N1

ln N1
ln 2∑
j=0

φN1ξ〈σ 〉
−

1
2χ
{|σ |≥ 1

6 N1
22− j }

F
(
P+(∂−1

x PN1wP− ∂x P2− j N1u)
)

dξ dτ
∣∣∣∣

. ‖ĥ‖L2
ξ,τ

∥∥∥∥∑
N1

∑
j≥0

N1(N 2
1 2− j )−

1
2φN1

∣∣F(P+(∂−1
x PN1wP− ∂x P2− j N1u)

)∣∣∥∥∥∥
L2
ξ,τ

.

Then the Plancherel identity and the triangular inequality imply that

|IA|. ‖h‖L2
x,t

∑
j≥0

(∑
N1

2 j
∥∥PN1(∂

−1
x PN1wP− ∂x P2− j N1u)

∥∥2
L2

x,t

)1
2

.

By using the Hölder and Bernstein inequalities, we deduce that

|IA|. ‖h‖L2
x,t

∑
j≥0

(∑
N1

2− j
‖PN1w‖

2
L4

x,t
‖P2− j N1u‖2L4

x,t

)1
2

. ‖h‖L2
x,t

(∑
N

‖PN1w‖
2
L4

x,t

)1
2

‖u‖L4
x,t
. (3-30)

In the second case, it follows using the same strategy as in the first case that

|IA|. ‖h‖L2
x,t

∑
j≥0

(∑
N1

(2− j N1)
2(2− j N1 N1)

−1∥∥P2− j N1(∂
−1
x PN1wP− ∂x PN1u)

∥∥2
L2

x,t

)1
2

,

which implies using the Hölder and Bernstein inequalities that

|IA|. ‖h‖L2
x,t

∑
j≥0

(∑
N1

2− j
‖PN1w‖

2
L4

x,t
‖PN1u‖2L4

x,t

)1
2

. ‖h‖L2
x,t

(∑
N1

‖PN1w‖
2
L4

x,t

)1
2

‖u‖L4
x,t
. (3-31)

Therefore, we deduce by gathering (3-30)–(3-31) and using estimate (2-9) that

|IA| ≤ ‖h‖L2
x,t
‖w‖

X0, 3
8
‖u‖L4

x,t
. (3-32)

Estimate for |IB|. By again using the triangular and the Cauchy–Schwarz inequalities, we have in the first
case that

|IB| ≤ ‖w‖X0, 1
2

∑
j≥0

(∑
N1

N−2
1 (N12− j N1)

−1
∥∥∥PN1

(
∂x P+hi PN1

( ĥ
〈σ〉1/2

)∨
P+ ∂x P2− j N1 ũ

)∥∥∥2

L2
x,t

)1
2

,
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where ũ(x, t)= u(−x,−t). Thus, it follows from the Bernstein and Hölder inequalities that

|IB|. ‖w‖X0, 1
2

∑
j≥0

(∑
N1

2− j
∥∥∥PN1

( ĥ
〈σ〉1/2

)∨∥∥∥2

L4
x,t

‖P2− j N1u‖2L4
x,t

)1
2

. ‖w‖
X0, 1

2

(∑
N1

∥∥∥PN1

( ĥ
〈σ〉1/2

)∨∥∥∥2

L4
x,t

)1
2

‖u‖L4
x,t
. (3-33)

In the second case, we bound |IB| by

∣∣IB

∣∣≤ ‖w‖
X0, 1

2

∑
j≥0

(∑
N1

N−2
1 (2− j N1 N1)

−1
∥∥∥PN1

(
∂x P+hi P2− j N1

( ĥ
〈σ〉1/2

)∨
P+ ∂x PN1 ũ

)∥∥∥2

L2
x,t

)1
2

so that

|IB|. ‖w‖X0, 1
2

∑
j≥0

(∑
N1

2− j
∥∥∥P2− j N1 P+hi

( ĥ
〈σ〉1/2

)∨∥∥∥2

L4
x,t

‖PN1u‖2L4
x,t

)1
2

. ‖w‖
X0, 1

2

∑
j≥0

2−
j
2

(∑
N1

∥∥∥P2− j N1 P+hi

( ĥ
〈σ〉1/2

)∨∥∥∥2

L4
x,t

)1
2

‖u‖L4
x,t

. ‖w‖
X0, 1

2

(∑
N1

∥∥∥PN1

( ĥ
〈σ〉1/2

)∨∥∥∥2

L4
x,t

)1
2

‖u‖L4
x,t
. (3-34)

In conclusion, we obtain by gathering (3-33)–(3-34) and using estimate (2-9) that

|IB| ≤ ‖h‖L2
x,t
‖w‖

X0, 1
2
‖u‖L4

x,t
. (3-35)

Estimate for |IC|. First observe that

|IC|.
∫

C̃

|ξ |

〈σ〉1/2
|̂h(ξ, τ )| |ξ1|

−1
|ŵ(ξ1, τ1)|

|ξ2|
2

〈σ2〉

〈σ2〉

|ξ2|
|̂u(ξ2, τ2)| dν, (3-36)

where

C̃=

{
(ξ, ξ1, τ, τ1) ∈ D

∣∣∣∣ (ξ, ξ1, τ, τ1) ∈
⋃

N ,N2

CN ,N2

}
.

Since |σ2|> |σ | and |σ2|> |σ1| in C̃, it follows from (3-28) that |σ2|& |ξξ2|. Then

|ξξ−1
1 ξ 2

2 〈σ2〉
−1
|. 1 (3-37)

holds in C̃ so that, using Hölder’s inequality and estimate (2-9), we deduce

|IC|.
∫

C̃

|̂h(ξ, τ )|
〈σ〉1/2

|ŵ(ξ1, τ1)|
〈σ2〉

|ξ2|
|̂u(ξ2, τ2)| dν

.
∥∥∥( |̂h|
〈σ〉1/2

)∨∥∥∥
L4

x,t

‖(|ŵ|)∨‖L4
x,t
‖u‖X−1,1 . ‖h‖L2

x,t
‖w‖

X0, 3
8
‖u‖X−1,1 . (3-38)
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Therefore, estimates (3-29), (3-32), (3-35), and (3-38) imply estimate (3-22), which concludes the
proof of estimate (3-20).

To prove estimate (3-21), we also proceed by duality. Then it is sufficient to show that

|J |.
(∑

N

‖gN‖
2
L2
ξ L∞τ

)1
2

‖w‖
X0, 1

2

(
‖u‖L2

x,t
+‖u‖L4

x,t
+‖u‖X−1,1

)
, (3-39)

where
J =

∑
N

∫
D

ξ

〈σ 〉
gN (ξ, τ ) φN (ξ) ξ

−1
1 ŵ(ξ1, τ1) ξ2 û(ξ2, τ2) dν,

and dν and D are defined in (3-24) and (3-25). As in the case of I , we can also assume that |ξ2| ≥ 1. By
using dyadic decompositions as in (3-27), J can be rewritten as

J =
∑

N ,N1,N2

JN ,N1,N2,

where
JN ,N1,N2 :=

∫
D

ξ

〈σ 〉
φN (ξ)gN (ξ, τ ) ξ

−1
1 P̂N1w(ξ1, τ1) ξ2 P̂N2u(ξ2, τ2) dν,

and the dyadic numbers N , N1, and N2 range from 1 to +∞. Moreover, we will denote by J
AN ,N2
N ,N1,N2

,
J

BN ,N2
N ,N1,N2

, and J
CN ,N2
N ,N1,N2

the restriction of JN ,N1,N2 to the regions AN ,N2 , BN ,N2 , and CN ,N2 defined in
(3-28). Then it follows that

|J | ≤ |JA| + |JB| + |JC|, (3-40)

where
JA :=

∑
N ,N1,N2

J
AN ,N2
N ,N1,N2

, JB :=

∑
N ,N1,N2

J
BN ,N2
N ,N1,N2

, JC :=

∑
N ,N1,N2

J
CN ,N2
N ,N1,N2

so that it suffices to estimate |JA|, |JB|, and |JC|.
Estimate for |JA|. To estimate |JA|, we divide each region AN ,N2 into disjoint subregions

A
q
N ,N2
=
{
(ξ, ξ1, τ, τ1) ∈AN ,N2

∣∣ 2q−3 N N2 ≤ |σ |< 2q−2 N N2
}

for q ∈ Z+. Thus, if J
A

q
N ,N2

N ,N1,N2
denotes the restriction of J

AN ,N2
N ,N1,N2

to each of these regions, we have

JA =

∑
q≥0

∑
N ,N1,N2

J
A

q
N ,N2

N ,N1,N2
.

In the case of high-low interactions, we deduce by using the Plancherel identity and the Cauchy–Schwarz
and Minkowski inequalities that

|JA| ≤

∑
q≥0

∑
N1

∑
N2≤N1

‖gN1χ{|σ |∼2q N1 N2}
‖L2

ξ,τ
× (2q N1 N2)

−1 N1‖∂
−1
x PN1wP− ∂x PN2u‖L2

x,t
.

Moreover, we get from Hölder’s inequality

‖gN1χ{|σ |∼2q N1 N2}
‖L2

ξ,τ
. (2q N N2)

1
2 ‖gN1‖L2

ξ L∞τ
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so that the Cauchy–Schwarz inequality yields

|JA|.
∑
N1

∑
N2≤N1

(N2 N−1
1 )

1
2 ‖gN1‖L2

ξ L∞τ
‖PN1w‖L4

x,t
‖PN2u‖L4

x,t

. ‖u‖L4
x,t

∑
N1

‖gN1‖L2
ξ L∞τ
‖PN1w‖L4

x,t
.

(∑
N1

‖gN1‖
2
L2
ξ L∞τ

)1
2

‖w‖L̃4
x,t
‖u‖L4

x,t
. (3-41)

In the high-high interaction case, it follows from the Minkowski and Cauchy–Schwarz inequalities that

|JA| ≤

∑
q≥0

∑
N1

∑
N≤N1

‖gNχ{|σ |∼2q N N1}
‖L2

ξ,τ
× (2q N N1)

−1 N‖∂−1
x PN1wP−∂x PN1u‖L2

x,t
.

Moreover, we deduce from Hölder’s inequality that

‖gNχ{|σ |∼2q N N1}
‖L2

ξ,τ
. (2q N N1)

1
2 ‖gN‖L2

ξ L∞τ
.

Then the Cauchy–Schwarz inequality implies that

|JA|.
∑
j≥0

∑
N1

(N−1
1 2− j N1)

1
2 ‖g2− j N1‖L2

ξ L∞τ
‖PN1w‖L4

x,t
‖PN1u‖L4

x,t

.
∑
j≥0

2−
j
2

(∑
N1

‖g2− j N1‖
2
L2
ξ L∞τ

)1
2
(∑

N1

‖PN1w‖
2
L4

x,t

)1
2

‖u‖L4
x,t

.

(∑
N1

‖gN1‖
2
L2
ξ L∞τ

)1
2

‖w‖L̃4
x,t
‖u‖L4

x,t
. (3-42)

Then estimates (2-9), (3-41), and (3-42) yield

|JA|.

(∑
N

‖gN‖
2
L2
ξ L∞τ

)1
2

‖w‖
X0, 3

8
‖u‖L4

x,t
. (3-43)

Estimate for |JB| and |JC|. Arguing as in the proof of (3-20), it is deduced that

|JB| + |JC|.

(∥∥∥( g
〈σ 〉

)∨∥∥∥
L̃4

x,t

+

∥∥∥( |g|
〈σ 〉

)∨∥∥∥
L̃4

x,t

)
‖w‖

X0, 1
2

(
‖u‖L4

x,t
+‖u‖X−1,1

)
,

where g =
∑

N φN gN . Moreover, estimate (2-9) and Hölder’s inequality imply

∥∥∥( g
〈σ 〉

)∨∥∥∥
L̃4

x,t

+

∥∥∥( |g|
〈σ 〉

)∨∥∥∥
L̃4

x,t

.

∥∥∥∥〈σ 〉− 5
8
∑

N

φN gN

∥∥∥∥
L2
ξ,τ

.

(∑
N

∥∥〈σ 〉− 5
8 gN

∥∥2
L2
ξ,τ

)1
2

.

(∑
N

‖gN‖
2
L2
ξ L∞τ

)1
2

so that

|JB| + |JC|.

(∑
N

‖gN‖
2
L2
ξ L∞τ

)1
2

‖w‖
X0, 1

2

(
‖u‖L4

x,t
+‖u‖X−1,1

)
. (3-44)

Finally (3-40), (3-43), and (3-44) imply (3-39), which concludes the proof of estimate (3-21). �
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Lemma 3.7. Let 0 < T ≤ 1, s ≥ 0, u1, u2 ∈ L∞(R; L2(R)) ∩ L4(R2) be supported in the time inter-
val [−2T, 2T ], and F1, F2 be some spatial primitives of u1 and u2, respectively. Then∥∥∂x P+hi

(
Ploe−

i
2 F1 P− ∂x u1

)∥∥
Z̃ s,−1 +

∥∥∂x P+hi
(
Ploe−

i
2 F1 P− ∂x u1

)∥∥
X s,− 1

2
. ‖u1‖

2
L4

x,t
, (3-45)

and∥∥∂x P+hi
(
Plo
(
e−

i
2 F1 − e−

i
2 F2
)
P− ∂x u2

)∥∥
Z̃ s,−1 +

∥∥∂x P+hi
(
Plo
(
e−

i
2 F1 − e−

i
2 F2
)
P− ∂x u2

)∥∥
X s,− 1

2

.
(
‖u1− u2‖L∞t L2

x
+‖e−

i
2 F1 − e−

i
2 F2‖L∞x,t ‖u2‖L∞t L2

x

)
‖u2‖L4

x,t
. (3-46)

Proof. We deduce from the Cauchy–Schwarz inequality, the Sobolev embedding ‖ f ‖H−1/2+ε
t

. ‖ f ‖L1+ε′
t

with 1+ ε′ = 1/(1− ε), and the Minkowski inequality that

‖ f ‖Z̃ s,−1 +‖ f ‖
X s,− 1

2
. ‖ f ‖

X s,− 1
2+ε
=

∥∥∥∥∥(J s
x U (−t) f )∧x (ξ)

∥∥
H
−

1
2+ε

t

∥∥∥
L2
ξ

.
∥∥∥∥∥(J s

x U (−t) f )∧x (ξ)
∥∥

L1+ε′
t

∥∥∥
L2
ξ

. ‖ f ‖L1+ε′
t H s

x
. (3-47)

On the other hand, it follows from the frequency localization that

∂x P+hi
(
Ploe−

i
2 F P− ∂x u

)
= ∂x P+LO

(
Ploe−

i
2 F P−LO ∂x u

)
.

Therefore, by using (3-47), Bernstein’s inequalities, and estimate (2-12), we can bound the left-hand side
of (3-45) by ∥∥P+LO

(
Ploe−

i
2 F P−LO ∂x u

)∥∥
L1+ε′

t L2
x
. T γ

∥∥∂x e−
i
2 F
∥∥

L4
x,t
‖u‖L4

x,t
(3-48)

with 1
γ
=

1
2 − ε

′, which concludes the proof of estimate (3-45), recalling that ∂x F = u and 0 < T ≤ 1.
Estimate (3-46) can be proved exactly as above by recalling (2-19). �

Proof of Proposition 3.4. Let 0 ≤ s ≤ 1
2 , 0 < T ≤ 1, and ũ and w̃ be extensions of u and w such that

‖ũ‖X−1,1 ≤ 2‖u‖X−1,1
T

and ‖w̃‖X s,1/2 ≤ 2‖w‖X s,1/2
T

. By the Duhamel principle, the integral formulation
associated with (3-4) reads

w(t)= η(t)U (t) w(0)− η(t)
∫ t

0
U (t − t ′) ∂x P+hi

(
ηT ∂

−1
x w̃P−(ηT ∂x u)

)
(t ′) dt ′

− η(t)
∫ t

0
U (t − t ′) ∂x P+hi

(
Plo
(
ηT e−

i
2 F̃)P−(ηT ∂x ũ)

)
(t ′) dt ′

for 0< t ≤ T ≤ 1. Therefore, we deduce gathering estimates (2-5), (2-7), (3-20), (3-21), and (3-45) that

‖w‖Y s
T
. ‖w(0)‖H s +‖u‖2L4

x,T
+‖w‖

X
s, 1

2
T

(
‖u‖L∞T L2

x
+‖u‖L4

x,T
+‖u‖X−1,1

T

)
.

This concludes the proof of estimate (3-19) since

‖w(0)‖H s .
∥∥J s

x
(
e−

i
2 F( · ,0)u0

)∥∥
L2 . (1+‖u0‖L2)‖u0‖H s (3-49)

follows from estimate (2-13) and the fact that 0≤ s ≤ 1
2 . �
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4. Proof of Theorem 1.1

First, we can always assume that we deal with data having small L2(R)-norm. Indeed, if u is a solution
to the IVP (1-1) on the time interval [0, T ], then for every 0< λ <∞, uλ(x, t)= λu(λx, λ2t) is also a
solution to the equation in (1-1) on the time interval [0, λ−2T ] with initial data u0,λ= λu0(λ, · ). For ε > 0
let us denote by Bε the ball of L2(R) centered at the origin with radius ε. Since ‖uλ( · 0)‖L2 = λ1/2

‖u0‖L2 ,
we see that we can force u0,λ to belong to Bε by choosing λ ∼ min(ε2

‖u0‖
−2
L2 , 1). Therefore, the

existence and uniqueness of a solution of (1-1) on the time interval [0, 1] for small L2(R) initial data
will ensure the existence of a unique solution u to (1-1) for arbitrary large L2(R) initial data on the time
interval T ∼ λ2

∼ min(‖u0‖
−4
L2 , 1). Using the conservation of the L2(R)-norm, this will lead to global

well-posedness in L2(R).

4A. Uniform bound for small initial data. First we begin by deriving a priori estimates on smooth
solutions associated with initial data u0 ∈ H∞(R) that are small in L2(R). It is known from the classical
well-posedness theory [Iório 1986] that such initial data gives rise to a global solution u ∈ C(R; H∞(R))
to the Cauchy problem (1-1). Setting 0< T ≤ 1,

N s
T (u) :=max

(
‖u‖L∞T H s

x
, ‖J s

x u‖L4
x,T
, ‖w‖

X
s, 1

2
T

)
, (4-1)

and it follows from the smoothness of u that T 7→N s
T (u) is continuous and nondecreasing on R∗

+
. Moreover,

from (3-4), the linear estimate (2-7), (3-49), and (3-7), we infer that limT→0+ N s
T (u). (1+‖u0‖L2)‖u0‖H s .

On the other hand, combining (3-7)–(3-8) and (3-19) and the conservation of the L2-norm, we infer that

N 0
T (u). (1+‖u0‖L2)‖u0‖L2 +

(
N 0

T (u)
)2
+
(
N 0

T (u)
)3
.

By continuity, this ensures there exist ε0 > 0 and C0 > 0 such that N 0
1 (u)≤ C0ε given ‖u0‖L2 ≤ ε ≤ ε0.

Finally, again using (3-7)–(3-8) and (3-19), this leads to N s
1(u). ‖u0‖H s given ‖u0‖L2 ≤ ε ≤ ε0.

4B. Lipschitz bound for initial data having the same low-frequency part. To prove the uniqueness as
well as the continuity of the solution, we will derive a Lipschitz bound on the solution map on some affine
subspaces of H s(R) with values in L∞T H s(R). We know from [Koch and Tzvetkov 2003] that such a
Lipschitz bound does not exist in general in H s(R). Here we will restrict ourselves to solutions emanating
from initial data having the same low-frequency part. This is clearly sufficient to get uniqueness, and
it will turn out to be sufficient to get the continuity of the solution as well as the continuity of the flow
map. Let ϕ1, ϕ2 ∈ Bε ∩ H s(R), s ≥ 0, such that PLOϕ1 = PLOϕ2, and let u1, u2 be two solutions to (1-1)
emanating from ϕ1 and ϕ2, respectively, that satisfy (7-1) on the time interval [0, T ], 0 < T < 1. We
also assume that the primitives F1 := F[u1] and F2 := F[u2] of u1 and u2, respectively, are such that
the associated gauge functions W1, w1 and W2, w2, respectively, constructed in Section 3A, satisfy (7-2).
Finally, we assume that

N 0
T (ui )≤ C0ε ≤ C0ε0. (4-2)
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First, by construction, we observe that since F(x)− F(y)=
∫ y

x u(z) dz,

PLO

∫ x

y
u dz = PLO(F(x)− F(y))= PLO F(x)− F(y)

holds. On the other hand, since PLO and ∂x do commute, we have ∂x PLO F = PLOu and, by integrating,∫ x
y PLOu dz = PLO F(x)− PLO F(y). Gathering these two identities, we get∫ x

y
PLOu dz− PLO

∫ x

y
u dz = F(y)− PLO F(y)= PHI F(y),

which leads to

Plo

∫ x

y
u dz = Plo

∫ x

y
PLOu dz.

We thus infer that

Plo(F1− F2)(x, 0)=
∫

R

ψ(y)Plo

∫ x

y
(u1− u2)(z, 0) dz dy

=

∫
R

ψ(y)Plo

∫ x

y
PLO(ϕ1(z)−ϕ2(z)) dz dy = 0. (4-3)

Then we set v = u1− u2, Z =W1−W2, and z = w1−w2. Obviously, z satisfies

∂t z− i ∂2
x z =−∂x P+hi (W1 P− ∂xv)− ∂x P+hi (Z P− ∂x u2)

− ∂x P+hi
(
Ploe−

i
2 F1 P− ∂xv

)
− ∂x P+hi

(
Plo
(
e−

i
2 F1 − e−

i
2 F2
)
P− ∂x u2

)
. (4-4)

Thus, by gathering estimates (2-7), (3-20), (3-21), (3-45), and (3-46), we deduce that

‖z‖Y s
1
. ‖z(0)‖H s +‖w1‖

X
s, 1

2
1

(
‖v‖X−1,1

1
+‖v‖L4

x,1
+‖v‖L∞1 L2

x

)
+‖v‖2L4

x,1

+‖z‖
X

s, 1
2

1

(
‖u2‖X−1,1

1
+‖u2‖L4

x,1
+‖u2‖L∞1 L2

x

)
+
(
‖v‖L∞1 L2

x
+
∥∥e−

i
2 F1 − e−

i
2 F2
∥∥

L∞x,1

)
‖u2‖L4

x,1
,

which, recalling (4-1) and (4-2), implies that

‖z‖Y s
1
. ‖z(0)‖H s + ε

(
‖v‖X−1,1

1
+‖v‖L4

x,1
+‖v‖L∞1 L2

x

)
+ ε

∥∥e−
i
2 F1 − e−

i
2 F2
∥∥

L∞x,1
, (4-5)

where, by the mean-value theorem,

‖z(0)‖H s . ‖ϕ1−ϕ2‖H s
(
1+‖ϕ1‖H s +‖ϕ2‖L2

)
+
∥∥e−

i
2 F1(0)− e−

i
2 F2(0)

∥∥
L∞ ‖ϕ1‖H s (1+‖ϕ1‖L2)

. ‖ϕ1−ϕ2‖H s +‖F1(0)− F2(0)‖L∞ . (4-6)

On the other hand, the equation for v = u1− u2 reads

∂tv+H ∂2
x v =

1
2∂x((u1+ u2)v)

so that it is deduced from (3-11), (4-1), and the fractional Leibniz rule that

‖v‖X−1,1
1
. ‖∂tv+H ∂2

x v‖L2
1 H−1

x
+‖v‖L∞T L2

x
. ε‖v‖L4

x,1
+‖v‖L∞1 L2

x
. (4-7)
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Next, proceeding as in (3-6), we infer that

P
+HIv = 2i P+HI

(
e

i
2 F1 z

)
+ 2i P+HI

((
e

i
2 F1 − e

i
2 F2
)
w2
)

+ 2i P+HI
(
P+hi e

i
2 F1∂x P+lo

(
e−

i
2 F1 − e−

i
2 F2
))

+ 2i P+HI
(
P+hi

(
e

i
2 F1 − e

i
2 F2
)
∂x P+loe−

i
2 F2
)

+ 2i P+HI
(
P+HIe

i
2 F1∂x P−

(
e−

i
2 F1 − e−

i
2 F2
))

+ 2i P+HI
(
P+HI

(
e

i
2 F1 − e

i
2 F2
)
∂x P−e−

i
2 F2
)
.

Thus, we deduce using estimates (2-14) and (2-19) and arguing as in the proof of Proposition 3.2 that

‖J s
x v‖L p

1 Lq
x
.
(
‖u1‖L∞1 L2

x
+‖u2‖L∞1 L2

x

)
‖v‖L∞1 L2

x
+ (1+‖u1‖L∞1 L2

x
)‖z‖Y s

1

+
(
‖v‖L∞1 L2

x
+
∥∥e

i
2 F1 − e

i
2 F2
∥∥

L∞x,1
(1+‖u1‖L∞1 L2

x
)
)
‖w2‖Y s

1

+‖u1‖L∞1 L2
x

(
‖v‖L∞1 L2

x
+
∥∥e−

i
2 F1 − e−

i
2 F2
∥∥

L∞x,1
‖u1‖L∞1 L2

x

)
+‖u2‖L∞1 L2

x

(
‖v‖L∞1 L2

x
+
∥∥e

i
2 F1 − e

i
2 F2
∥∥

L∞x,1
‖u1‖L∞1 L2

x

)
for (p, q)= (∞, 2) or (p, q)= (4, 4), which, recalling (4-2), implies that

‖J s
x v‖L∞1 L2

x
+‖J s

x v‖L4
x,1
. ‖z‖Y s

1
+ ε

∥∥e−
i
2 F1 − e−

i
2 F2
∥∥

L∞x,1
+ ε

∥∥e
i
2 F1 − e

i
2 F2
∥∥

L∞x,1
. (4-8)

Finally, we use the mean-value theorem to get the bound

‖e±
i
2 F1 − e±

i
2 F2‖L∞x,1 . ‖F1− F2‖L∞x,1 . (4-9)

The following crucial lemma gives an estimate for the right-hand side of (4-9):

Lemma 4.1. It holds that
‖F1(0)− F2(0)‖L∞ . ‖ϕ1−ϕ2‖L2 (4-10)

and
‖F1− F2‖L∞x,1 . ‖v‖L∞1 L2

x
. (4-11)

Proof. Equation (4-10) clearly follows from (4-3) together with Bernstein’s inequality. To prove (4-11),
we set G = F1− F2, Glo = PloG, and Ghi = Phi G. Then

‖G‖L∞x,1 ≤ ‖Glo‖L∞x,1 +‖Ghi‖L∞x,1 . (4-12)

Observe, from the Duhamel principle and (4-3), that Glo satisfies

Glo =
1
2

∫ t

0
U (t − τ) Plo((u1+ u2)v)(τ ) dτ.

Therefore, using Bernstein and Hölder’s inequalities, it follows that

‖Glo‖L∞x,1 . ‖(u1+ u2)v‖L∞1 L1
x
.
(
‖u1‖L∞1 L2

x
+‖u2‖L∞1 L2

x

)
‖v‖L∞1 L2

x
. (4-13)
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On the other hand, Bernstein’s inequality ensures that

‖Ghi‖L∞x,1 . ‖∂x Ghi‖L∞1 L2
x
. ‖v‖L∞1 L2

x
(4-14)

since ∂x G = v. The proof of Lemma 4.1 is concluded gathering (4-2) and (4-12)–(4-14). �

Finally, estimates (4-5)–(4-11) lead to

‖z‖Y s
1
+‖v‖X s−1,1

1
+‖v‖L∞1 H s

x
+‖J s

x v‖L4
x,1
. ‖ϕ1−ϕ2‖H s +ε

(
‖z‖Y s

1
+‖v‖X s−1,1

1
+‖v‖L∞1 H s

x
+‖J s

x v‖L4
x,1

)
.

Therefore, we conclude that there exists 0< ε1 ≤ ε0 such that

‖z‖Y s
1
+‖v‖X s−1,1

1
+‖v‖L∞1 H s

x
+‖J s

x v‖L4
x,1
. ‖ϕ1−ϕ2‖H s , (4-15)

provided u1 and u2 satisfy (4-2) with 0< ε ≤ ε1.

4C. Well-posedness. Let u0 ∈ Bε1 ∩ H s(R), and consider the sequence of initial data {u j
0} ⊂ H∞(R),

defined by

u j
0 = F−1

x
(
χ|[− j, j]Fx u0

)
for all j ≥ 20. (4-16)

Clearly {u j
0} converges to u0 in H s(R). By the classical well-posedness theory, the associated sequence of

solutions {u j
} is a subset of C([0, 1]; H∞(R)), and according to Section 4A, it satisfies N s

1(u
j )≤ C0ε1.

Moreover, since PLOu j
0 = PLOu0 for all j ≥ 20, it follows from the preceding subsection that

‖u j
− u j ′
‖L∞1 H s

x
+‖u j

− u j ′
‖L4

1W s,4
x
+‖w j

−w j ′
‖X0, 1

21
. ‖u j

0 − u j ′

0 ‖H s
x
. (4-17)

Therefore, the sequence {u j
} converges strongly in L∞1 H s(R)∩ L4

1W s,4
x to some function

u ∈ C
(
[0, 1]; H s(R)

)
,

and {w j } j≥4 converges strongly to some function w in X s,1/2
1 . Thanks to these strong convergences, it is

easy to check that u is a solution to (1-1) emanating from u0 and that w = ∂x P+hi (e−
i
2 F[u]). Moreover,

from the conservation of the L2(R)-norm, u ∈ Cb(R; L2(R))∩C(R; H s(R)).
Now let ũ be another solution of (1-1) on [0, T ] emanating from u0 belonging to the same class of

regularity as u. By again using the scaling argument we can always assume that ‖ũ‖L∞T L2
x
+‖ũ‖L4

x,T
≤C0ε1.

Moreover, setting w̃ := P+hi (e−i F[ũ]), by the Lebesgue monotone convergence theorem, there exists N > 0
such that ‖P≥N w̃‖X0,1/2

T
≤ C0ε1/2. On the other hand, using Lemmas 2.1–2.2, it is easy to check that∥∥(1− P≥N )w̃

∥∥
X

0, 1
2

T

. ‖u0‖L2 + N T
1
4 ‖ũ‖L4

x,T
‖w̃‖L4

x,T
+‖ũ‖2L4

x,T

. ‖u0‖L2 + N T
1
4 ‖w̃‖X0, 1

2T
‖ũ‖L4

x,T
+‖ũ‖2L4

x,T
.

Therefore, for T > 0 small enough, we can require that ũ satisfies the smallness condition (4-2) with ε1,
and thus by (4-15), ũ ≡ u on [0, T ]. This proves the uniqueness result for initial data belonging to Bε1 .
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Next we turn to the continuity of the flow map. Fix u0 ∈ Bε1 and λ > 0 and consider the emanating
solution u ∈ C([0, 1]; H s(R)). We will prove that if v0 ∈ Bε1 satisfies ‖u0− v0‖H s ≤ δ, where δ will be
fixed later, then the solution v emanating from v0 satisfies

‖u− v‖L∞1 H s
x
≤ λ. (4-18)

For j ≥ 1, let u j
0 and v j

0 be constructed as in (4-16), and denote by u j and v j the solutions emanating
from u j

0 and v j
0 . Then it follows from the triangular inequality that

‖u− v‖L∞1 H s
x
≤ ‖u− u j

‖L∞1 H s
x
+‖u j

− v j
‖L∞1 H s

x
+‖v− v j

‖L∞1 H s
x
. (4-19)

First, according to (4-17), we can choose j0 large enough so that

‖u− u j0‖L∞1 H s
x
+‖v− v j0‖L∞1 H s

x
≤

2
3λ.

Second, from the definition of u j
0 and v j

0 in (4-16), we infer that

‖u j
0 − v

j
0‖H3 ≤ j3−s

‖u0− v0‖H s ≤ j3−sδ.

Therefore, by using the continuity of the flow map for smooth initial data, we can choose δ > 0 such that

‖u j0 − v j0‖L∞1 H s
x
≤
λ

3
.

This concludes the proof of Theorem 1.1.

5. Improvement of the uniqueness result for s > 0

Now we prove that uniqueness holds for initial data u0 ∈ H s(R), s > 0, in the class u ∈ L∞T H s
x ∩ L4

T W s,4
x .

The great interest of this result is that we no longer assume any condition on the gauge transform of
u. Moreover, when s > 1

4 , the Sobolev embedding L∞T H s
x ↪→ L4

T W 0+,4
x ensures that uniqueness holds

in L∞T H s
x , and thus, the Benjamin–Ono equation is unconditionally well posed in H s(R) for s > 1

4 .
According to the uniqueness result (i) of Theorem 1.1, it suffices to prove that for any solution u

to (1-1) that belongs to L∞T H s
x ∩ L4

T W s,4
x , the associated gauge function w = ∂x Phi (e−

i
2 F[u]) belongs

to X0, 1
2

T . The proof is based on the following bilinear estimate that is shown in the Appendix:

Proposition 5.1. Let s > 0. Then there exist 0< δ < s/10 and θ ∈ (1
2 , 1), let us say θ = 1

2 + δ, such that

‖P+hi (W P− ∂x u)‖
X

1
2 ,−

1
2+2δ . ‖W‖X

1
2 ,

1
2+δ

(
‖J su‖L2

x,t
+‖J su‖L4

x,t
+‖u‖X s−θ,θ

)
. (5-1)

First note that by the same scaling argument as in Section 4C, for any given ε > 0, we can always assume
that ‖J su‖L∞T L2

x
+‖J su‖L4

T x
≤ ε, and by (3-7) it follows that ‖u‖X s−θ,θ

T
. ε for 0≤ θ ≤ 1.

Since u ∈ L∞([0, T ]; H s(R))∩ L4
T W s,4

x and satisfies (1-1), it follows that ut ∈ L∞([0, T ]; H s−2(R)).
Therefore, F := F[u] ∈ L∞([0, T ]; H s+1

loc ), and ∂t F ∈ L∞([0, T ]; H s−1
loc ). It ensures that

W := Phi
(
e−

i
2 F)
∈ L∞

(
[0, T ]; H s+1(R)

)
∩ L4

T W s+1,4
x ↪→ X1,0

T , (5-2)
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e−
i
2 F
∈ L∞([0, T ]; H s+1

loc ), and the following calculations are thus justified:

∂t W = ∂t P+
(
e−

i
2 F)
=−

1
2 i Phi (Ft e−

i
2 F )

=−
1
2 i Phi

(
e−

i
2 F (−HFxx +

1
2 F2

x )
)
,

∂xx W = ∂xx Phi
(
e−

i
2 F)
= Phi

(
e−

i
2 F (− 1

4 F2
x −

i
2 Fxx)

)
.

It follows that W satisfies, at least in a distributional sense,

{
∂t W − i ∂2

x W =−P+hi (W P−∂x u)− P+hi
(
Ploe−

i
2 F P− ∂x u

)
W ( · , 0)= P+hi

(
e−

i
2 F[u0]

)
.

(5-3)

From (5-2) and Lemma 2.6, we thus deduce that W ∈ X s,1
T so that, by interpolation with (5-2), W ∈ X

1
2 ,

1
2+

T .
But since u is given in L∞T H s

x ∩L4
T W s,4

x ∩X s−θ,θ
T , considering (2-6), the bilinear estimate (5-1), and (3-48),

we infer that there exists only one solution to (5-3) in X
1
2 ,

1
2+

T . Hence, w = ∂x W belongs to X−
1
2 ,

1
2+T and

is the unique solution to (3-4) in X−
1
2 ,

1
2+T emanating from the initial data w0 = ∂x Phi (e−

i
2 F[u0]) ∈ L2(R).

On the other hand, according to Proposition 3.4, one can construct a solution to (3-4) emanating from w0

and belonging to Y s
T by using a Picard iterative scheme. Moreover, using (1-1) and Lemma 2.6 we can

easily check that this solution belongs to X−1,1
T and thus by interpolation to X s−, 1

2+
T ↪→ X−

1
2 ,

1
2+T . This

ensures that w = ∂x Phi (e−i F/2) belongs to Y s
T ↪→ X0, 1

2
T , which concludes the proof.

6. Continuity of the flow map for the weak L2-topology

In [Cui and Kenig 2010] it is proven that, for any t ≥ 0, the flow map u0 7→ u(t) associated with the
Benjamin–Ono equation is continuous from L2(R) equipped with the weak topology into itself. In this
section, we explain how the uniqueness part of Theorem 1.1 enables us to simplify the proof of this result
by following the approach developed in [Goubet and Molinet 2009].

Let {u0,n}n ⊂ L2(R) be a sequence of initial data that converges weakly to u0 in L2(R), and let u be the
solution emanating from u0 given by Theorem 1.1. From the Banach–Steinhaus theorem, we know that
{u0,n}n is bounded in L2(R), and from Theorem 1.1 we know that {u0,n}n gives rise to a sequence {un}n

of solutions to (1-1) bounded in C([0, 1]; L2(R))∩ L4(]0, 1[×R) with an associated sequence of gauge
functions {wn}n bounded in X0, 1

2
1 . Therefore, there exist v∈ L∞(]0, 1[; L2(R))∩X−1,1

1 ∩L4(]0, 1[×R) and
z ∈ X0, 1

2
1 such that, up to the extraction of a subsequence, {un}n converges to v weakly in L4(]0, 1[×R)

and weakly star in L∞(]0, 1[ × R), and {wn}n converges to z weakly in X0, 1
2

1 . We now need some
compactness on {un}n to ensure that z is the gauge transform of v. In this direction, we first notice,
since {wn}n is bounded in X0, 1

2
1 and by using the Kato’s smoothing effect injected in Bourgain’s spaces

framework, that {D1/4
x wn}n is bounded in L4

x L2
1. Let ηR( · ) := η( · /R). Using (3-6) and Lemma 2.6 we
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infer that∥∥D
1
4
x P
+HIun

∥∥
L2(]0,1[×]−R,R[).

∥∥D
1
4
x P+HI

(
e

i
2 F[un]wnηR

)∥∥
L2

1,x
+
∥∥D

1
4
x P+HI

(
P
+hi e

i
2 F[un] ∂xPloe−

i
2 F[un]

)∥∥
L2

1,x

+
∥∥D

1
4
x P+HI

(
P
+HIe

i
2 F[un] ∂x P

−hi e
−

i
2 F[un]

)∥∥
L2

1,x

.
∥∥D

1
4
x (wnηR)

∥∥
L2

x L2
1
+
∥∥D

1
4
x ei F[un]

∥∥
L8

1,x
‖wn‖

L
8
3
1,x

+‖un‖
2
L4

1,x
.

But clearly ∥∥D
1
4
x (wnηR)

∥∥
L2

x L2
1
. C(R)

(∥∥D
1
4
x wn

∥∥
L4

x L2
1
+‖wn‖L2

1,x

)
,

and by interpolation ‖D1/4
x ei F[un]‖L8

1,x
.‖un‖

3/4
L2

1,x
. Therefore, recalling that the un are real-valued functions,

it follows that {un}n is bounded in L2
1 H 1/4(] − R, R[).

Since, according to Equation (1-1), {∂t un}n is bounded in L2
1 H−2

x , Aubin–Lions compactness theorem
and standard diagonal extraction arguments ensure that there exists an increasing sequence of integers {nk}k

such that unk → v a.e. in ]0, 1[ × R and u2
nk
⇀ v2 in L2(]0, 1[ × R). In view of our construction

of the primitive F[un] of un (see Section 3A), it is then easy to check that F[unk ] converges to the
primitive F[v] of v a.e. in ]0, 1[×R. This ensures that P+hi (e−

i
2 F[unk ]) converges weakly to P+hi (e−

i
2 F[v])

in L2(]0, 1[×R), and thus, z is the gauge transform of v. Passing to the limit in the equation, we conclude
that v satisfies (1-1) and belongs to the class of uniqueness of Theorem 1.1.

Moreover, setting ( · , · ) for the L2
x scalar product, by (1-1) and the bounds above, it is easy to check

that for any smooth space function φ with compact support, the family {t 7→ (unk (t), φ)} is uniformly
equicontinuous on [0, 1]. Ascoli’s theorem then ensures that (unk ( · ), φ) converges to (v( · ), φ) uniformly
on [0, 1], and thus, v(0) = u0. By uniqueness, it follows that v ≡ u, which ensures that the whole
sequence {un} converges to v in the sense above and not only a subsequence. Finally, from the above
convergence result, it follows that un(t) ⇀ u(t) in L2

x for all t ∈ [0, 1]. �

7. The periodic case

In this section, we explain how the bilinear estimate proved in Proposition 3.5 can lead to a great
simplification of the global well-posedness result in L2(T) derived in [Molinet 2008] and to new uniqueness
results in H s(T), where T = R/2πZ. With the notations of [Molinet 2007], these new results lead to the
following global well-posedness theorem:

Theorem 7.1. Let s ≥ 0 be given. For all u0 ∈ H s(T) and all T > 0, there exists a solution

u ∈ C
(
[0, T ]; H s(T)

)
∩ X s−1,1

T ∩ L4
T W s,4(T) (7-1)

of (1-1) such that
w = ∂x P+hi

(
e−

i
2 ∂
−1
x ũ)
∈ Y s

T , (7-2)

where

ũ := u
(

t, x − t
∫
− u0

)
−

∫
− u0 and ∂̂−1

x :=
1
iξ
, ξ ∈ Z∗.
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This solution is unique in the following classes:

(i) u ∈ L∞
(
]0, T [; L2(T)

)
∩ L4

(
]0, T [×T

)
and w ∈ X0, 1

2
T ,

(ii) u ∈ L∞
(
]0, T [; H

1
4 (T)

)
∩ L4

T W
1
4 ,4(T) whenever s ≥ 1

4 ,

(iii) u ∈ L∞
(
]0, T [; H

1
2 (T)

)
whenever s ≥ 1

2 .

Moreover, u ∈ Cb(R; L2(T)), and the flow map data-solution u0 7→ u is continuous from H s(T)

into C([0, T ]; H s(T)).

Sketch of the proof. In the periodic case, following [Molinet 2007], the gauge transform is defined as
follows: let u be a smooth 2π -periodic solution of BO with initial data u0. In the sequel, we will assume
that u(t) has mean value zero for all time. Otherwise, we perform the change of unknowns

ũ(t, x) := u
(

t, x − t
∫
− u0

)
−

∫
− u0, (7-3)

where
∫
− u0 :=

1
2π

∫
T

u0 is the mean value of u0. It is easy to see that ũ satisfies BO with u0−
∫
− u0 as

initial data, and since
∫
− ũ is preserved by the flow of BO, ũ(t) has mean value zero for all time. We take

for the primitive of u the unique periodic, zero mean value primitive of u defined by

F̂(0)= 0 and F̂(ξ)= 1
iξ

û(ξ), ξ ∈ Z∗.

The gauge transform is then defined by

W := P+(e−i F/2). (7-4)

Since F satisfies

Ft +HFxx =
1
2 F2

x −
1
2

∫
− F2

x =
1
2 F2

x −
1
2 P0(F2

x ),

we finally obtain that w :=Wx =−
1
2 i P+hi (e−i F/2 Fx)=−

1
2 i P+(e−i F/2u) satisfies

wt − iwxx =−∂x Phi
[
e−i F/2(P−(Fxx)−

i
4

P0(F2
x )
)]

=−∂x P+hi
(
W P−(ux)

)
+

i
4

P0(F2
x )w. (7-5)

Clearly the second term is harmless, and the first one has exactly the same structure as the one that we
estimated in Proposition 3.5. Carefully following the proof of this proposition, it is not too hard to check
that it also holds in the periodic case independent of the period λ≥ 1. Note in particular that (2-9) also
holds with L4

x,t and X0, 3
8 respectively replaced by L4

t,λ and X
0, 3

8
λ , λ≥ 1, where the subscript λ denotes

spaces of functions with space variable on the torus R/2πλZ (see [Bourgain 1993a] and also [Molinet
2007]). This leads to a great simplification of the proof the global well-posedness in L2(T) proved in
[Molinet 2008].

Now to derive the new uniqueness result we proceed exactly as in Section 5 except that Proposition 5.1
does not hold on the torus. Actually, on the torus it should be replaced by the following:
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Proposition 7.2. For s ≥ 1
4 and all λ≥ 1, we have

‖P+hi (W P− ∂x u)‖
X

s+ 1
2 ,−

1
2

λ

. ‖W‖
X

s+ 1
2 ,

1
2

λ

(
‖J s

x u‖L2
T,λ
+‖J s

x u‖L4
T,λ
+‖u‖X s−1,1

λ

)
. (7-6)

Going back to the proof of the bilinear estimate, it is easy to be convinced that the above estimate
works at the level s = 0+ in the regions A and B (see the proof of Proposition 5.1), whereas in the region
C we are clearly in trouble. Indeed, when s = 0, (3-37) must then be replaced by∣∣k 1

2 k
−

1
2

1 k2
2〈σ2〉

−1∣∣∼ ∣∣k− 1
2 k
−

1
2

1 k2
∣∣,

which cannot be bounded when |k2| � k. On the other hand, at the level s = 1
4 it becomes∣∣k 3

4 k
−

3
4

1 k
7
4
2 〈σ2〉

−1∣∣∼ ∣∣k− 1
4 k
−

3
4

1 k
3
4
2

∣∣. k−
1
4 . 1,

which yields the result.
With Proposition 7.2 in hand, exactly the same procedure as in Section 5 leads to the uniqueness

result in the class u ∈ L∞T H
1
4 (T) ∩ L4

T W
1
4 ,4(T) and by Sobolev embedding to the uniqueness in the

class u ∈ L∞T H
1
2 (T), i.e., unconditional uniqueness in H

1
2 (T). As in the real line case, it proves the

uniqueness of the (energy) weak solutions that belong to L∞(R; H
1
2 (T)).

Appendix

Proof of Proposition 5.1. We will need the following calculus lemma stated in [Ginibre et al. 1997].

Lemma A.3. Let 0< a− ≤ a+ such that a−+ a+ > 1
2 . Then for all µ ∈ R,∫

R

〈y〉−2a−〈y−µ〉−2a+ dy . 〈µ〉−s, (A-1)

where s = 2a− if a+ > 1
2 , s = 2a−− ε if a+ = 1

2 , and s = 2(a++ a−)− 1 if a+ < 1
2 , and let ε denote any

small positive number.

The proof of Proposition 5.1 closely follows the one of Proposition 3.5 except in the region σ2-dominant
where we use the approach developed in [Kenig et al. 1996]. Recalling the notation used in (3-24)–(3-25),
we need to prove that

|K |. ‖h‖L2
x,t
‖ f ‖L2

x,t

(
‖u‖L2

x,t
+‖u‖L4

x,t
+‖u‖X−θ,θ

)
, (A-2)

where

K =
∫

D

〈ξ〉
1
2

〈σ 〉
1
2−2δ

ĥ(ξ, τ ) 〈ξ1〉
−

1
2

〈σ1〉
1
2+δ

f̂ (ξ1, τ1) ξ2〈ξ2〉
−s û(ξ2, τ2) dν. (A-3)

For the same reason as in the proof of Proposition 3.5, we can assume that |ξ2| ≤ 1. By using a
Littlewood–Paley decomposition on h, f , and u, K can be rewritten as

K =
∑

N ,N1,N2

KN ,N1,N2, (A-4)
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with

KN ,N1,N2 :=

∫
D

〈ξ〉
1
2

〈σ 〉
1
2−2δ

P̂N h(ξ, τ ) 〈ξ1〉
−

1
2

〈σ1〉
1
2+δ

P̂N1 f (ξ1, τ1) ξ2〈ξ2〉
−s P̂N2u(ξ2, τ2) dν

and the dyadic numbers N , N1, and N2 ranging from 1 to +∞. Moreover, we will denote by K
AN ,N2
N ,N1,N2

,
K

BN ,N2
N ,N1,N2

, and K
CN ,N2
N ,N1,N2

the restriction of KN ,N1,N2 to the regions AN ,N2 , BN ,N2 , and CN ,N2 defined in
(3-28). Then it follows that

|K | ≤ |KA| + |KB| + |KC|, (A-5)

where

KA :=

∑
N ,N1,N2

J
AN ,N2
N ,N1,N2

, KB :=

∑
N ,N1,N2

K
BN ,N2
N ,N1,N2

, and KC :=

∑
N ,N1,N2

J
CN ,N2
N ,N1,N2

so that it suffices to estimate |KA|, |KB|, and |KC|. Recall that due to the structure of D, one of the
following case must hold:

(1) high-low interaction: N1 ∼ N and N2 ≤ N1,

(2) high-high interaction: N1 ∼ N2 and N ≤ N1.

Estimate for |KA|. In the first case, it follows from the triangular inequality, Plancherel’s identity, and
Hölder’s inequality that

|KA|. ‖h‖L2
x,t

∑
N1

∑
N2≤N1

N
1
2

1

(N1 N2)
1
2−2δ

∥∥∥∥PN1

(
J
−

1
2

x PN1

( f̂
〈σ1〉

1
2+δ

)∨
P− ∂x J−s

x PN2u
)∥∥∥∥

L2
x,t

. ‖h‖L2
x,t

∑
N1

∑
N2≤N1

N
1
2−s+2δ

2

(N1)
1
2−2δ

∥∥∥PN1

( f̂
〈σ1〉

1
2+δ

)∨∥∥∥
L4

x,t

‖PN2u‖L4
x,t

. ‖h‖L2
x,t
‖u‖L4

x,t

∑
N1

N 4δ−s
1

∥∥∥PN1

( f̂
〈σ1〉

1
2+δ

)∨∥∥∥
L4

x,t

.

Then it is deduced from the Cauchy–Schwarz inequality in N1 that

|KA|. ‖h‖L2
x,t

(∑
N1

∥∥∥PN1

( f̂
〈σ1〉

1
2+δ

)∨∥∥∥2

L4
x,t

)1
2

‖u‖L4
x,t

(A-6)

since s > 10δ. On the other, estimate (A-6) also holds in the case of high-high interaction by arguing
exactly as in (3-31) so that estimate (2-9) yields

|KA|. ‖h‖L2
x,t
‖ f ‖L2

x,t
‖u‖L4

x,t
. (A-7)

Estimate for |KB|. The estimate

|KB|. ‖h‖L2
x,t
‖ f ‖L2

x,t
‖u‖L4

x,t
(A-8)

follows by the same argument as in (A-6).
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Estimate for |KC|. First observe that

|KC|.
∫

C̃

|ξ |
1
2

〈σ 〉
1
2−2δ
|̂h(ξ, τ )| |ξ1|

−
1
2

〈σ1〉
1
2+δ
| f̂ (ξ1, τ1)|

|ξ2|
(1+θ−s)

〈σ2〉θ
〈σ2〉

θ

|ξ2|θ
|̂u(ξ2, τ2)| dν, (A-9)

where

C̃=

{
(ξ, ξ1, τ, τ1) ∈ D

∣∣∣∣ (ξ, ξ1, τ, τ1) ∈
⋃

N ,N2

CN ,N2

}
.

Since |σ2| > |σ | and |σ2| > |σ1| in C̃, (3-28) implies that |σ2| & |ξξ2|. Applying the Cauchy–Schwarz
inequality twice, we deduce that

|KC|. sup
ξ2,τ2

(
L C̃(ξ2, τ2)

) 1
2 ‖ f ‖L2

ξ,τ
‖g‖L2

ξ,τ
‖h‖L2

ξ,τ
,

where

L C̃(ξ2, τ2)=
|ξ2|

2+2(θ−s)

〈σ2〉2θ

∫
C(ξ2,τ2)

|ξ ||ξ1|
−1

〈σ 〉1−4δ〈σ1〉1+2δ dξ1 dτ1

and

C̃(ξ2, τ2)= { (ξ1, τ1) ∈ R2
| (ξ, ξ1, τ, τ1) ∈ C }.

Thus, to prove that

|KC|. ‖h‖L2
x,t
‖ f ‖L2

x,t
‖u‖X−θ,θ , (A-10)

it is enough to prove that L C̃(ξ2, τ2). 1 for all (ξ2, τ2) ∈ R2. We deduce from (A-1) and (3-28) that

L C̃(ξ2, τ2).
|ξ2|

2+2(θ−s)

〈σ2〉1+2δ

∫
ξ1

|ξ | |ξ1|
−1

〈σ2+2ξξ2〉1−4δ dξ1

since θ = 1+ δ. To integrate with respect to ξ1, we change variables

µ2 = σ2+ 2ξξ2 so that dµ2 = 2ξ2 dξ1 and |µ2| ≤ 4|σ2|.

Moreover, (3-26) and (3-28) imply that

|ξ | |ξ1|
−1
|ξ2|

1+2(θ−s)

|ξ1|2
≤ |ξξ2|

1
2+θ−s . |σ1|

1
2+θ−s

in C̃. Then

L C̃(ξ2, τ2).
|ξ2|

1+2(θ−s)

〈σ2〉1+2δ

∫ 4|σ2|

0

|ξ | |ξ1|
−1

〈µ2〉1−4δ dµ2 .
〈σ2〉

1
2+θ−s+4δ

〈σ2〉1+2δ . 〈σ2〉
3δ−s . 1

since s− 3δ > 0.
Finally, we conclude the proof of Proposition 5.1 by gathering (A-2), (A-5), (A-7), (A-8), and (A-10).
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