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ON TRIANGLES DETERMINED BY SUBSETS OF THE EUCLIDEAN PLANE,
THE ASSOCIATED BILINEAR OPERATORS

AND APPLICATIONS TO DISCRETE GEOMETRY

ALLAN GREENLEAF AND ALEX IOSEVICH

We prove that if the Hausdorff dimension of a compact set E ⊂ R2 is greater than 7
4 , then the set of

three-point configurations determined by E has positive three-dimensional measure. We establish this by
showing that a natural measure on the set of such configurations has Radon–Nikodym derivative in L∞ if
dimH(E) > 7

4 , and the index 7
4 in this last result cannot, in general, be improved. This problem naturally

leads to the study of a bilinear convolution operator,

B( f, g)(x)=
∫∫

f (x − u) g(x − v) d K (u, v),

where K is surface measure on the set {(u, v) ∈ R2
×R2

: |u| = |v| = |u− v| = 1}, and we prove a scale
of estimates that includes B : L2

−1/2(R
2)× L2(R2)→ L1(R2) on positive functions.

As an application of our main result, it follows that for finite sets of cardinality n and belonging to a
natural class of discrete sets in the plane, the maximum number of times a given three-point configuration
arises is O(n

9
7+ε) (up to congruence), improving upon the known bound of O(n

4
3 ) in this context.

1. Introduction

The classical Falconer distance conjecture says that if a compact set E ⊂ Rd , d ≥ 2, has Hausdorff
dimension dimH(E) > d

2 , then the one-dimensional Lebesgue measure L1(1(E)) of its distance set,

1(E) := {|x − y| ∈ R : x, y ∈ E},

is positive. Here and throughout, | · | denotes the Euclidean distance. A beautiful example due to Falconer,
based on the integer lattice, shows that the exponent d/2 is best possible. The best results currently known,
culminating almost three decades of efforts by Falconer [1985b], Mattila [1987], Bourgain [1994] and
others, are due to Wolff [1999] for d = 2 and Erdoǧan [2005] for d ≥ 3. They prove that L1(1(E)) > 0 if

dimH(E) >
d
2
+

1
3
.

Since two-point configurations are equivalent, up to Euclidean motions of Rd , precisely if the cor-
responding distances are the same, one may think of the Falconer conjecture as stating that the set of
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two-point configurations determined by a compact E of sufficiently high Hausdorff dimension has positive
measure. A natural extension of the Falconer problem is this:

Question. For N ≥ 3, how great does the Hausdorff dimension of a compact set need to be in order to
ensure that the set of N-point configurations it determines is of positive measure?

To make this more precise, define the space of (k+ 1)-point configurations in E or the quotient space
of (possibly degenerate) k-simplices with vertices in E , modulo Euclidean motions, as

Tk(E) := Ek+1/∼ ,

where Ek+1
= E × E × · · ·× E (k+ 1 times) and the congruence relation

(x1, x2, . . . , xk+1)∼ (y1, y2, . . . , yk+1)

holds if and only if there exists an element R of the orthogonal group O(d) and a translation τ ∈ Rd such
that

y j
= τ + R(x j ), 1≤ j ≤ k+ 1.

Observe that we may identify Tk(E) as a subset of R(
k+1

2 ) since rigid motions may be encoded by
fixing distances, and this induces

(k+1
2

)
-dimensional Lebesgue measure on Tk(E). The problem under

consideration was first taken up in [Erdoǧan et al. 2011], where it was shown that

if dimH(E) >
d+k+1

2
, then L(

k+1
2 )(Tk(E)) > 0.

Unfortunately, these results do not give a nontrivial exponent for what are arguably the most natural
cases, namely three-point configurations in R2, four-point configurations in R3 and, more generally,
(d + 1)-point configurations (generically spanning d-dimensional simplices) in Rd . (Nor does it yield
results for (d − 1)-simplices.) Here, we partially fill this gap by establishing a nontrivial exponent for
three-point configurations in the plane.

As for counterexamples, it is easy to see that L(
k+1

2 )(Tk(E))>0 does not hold if the Hausdorff dimension
of E is less than or equal to d − 1; to see this, just take E to be a subset of a (d − 1)-dimensional plane.
We do not currently know if more restrictive conditions exist in this context. However, more restrictive
counterexamples do exist if we consider the following related question. For any symmetric matrix t ={ti j }

with zeros on the diagonal, let

Sk
t (E)=

{
(x1, . . . , xk+1) ∈ Ek+1

: |x i
− x j
| = ti j ,∀i, j

}
.

Conditions under which

dimM(S
k
t (E))≤ (k+ 1) dimH(E)−

(k+1
2

)
= (k+ 1)

(
dimH(E)−

k
2

)
, (1-1)

where dimM denotes the Minkowski dimension, are analyzed in [Eswarathasan et al. 2011] in the case
k = 1 in a rather general setting and in [Erdoǧan et al. ≥ 2012] in the case k > 1. (See [Falconer 1985a;
Mattila 1995] for background on dimH, dimM and connections with harmonic analysis.)
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The estimate (1-1) follows easily if one can show that

(µ×µ× · · ·×µ)
{
(x1, . . . , xk+1) : ti j ≤ |x i

− x j
| ≤ ti j + ε,∀i, j

}
. ε(

k+1
2 ) as ε↘ 0, (1-2)

where µ is a Frostman measure (defined in (2-1) below) on E , under the assumption that dimH(E) > s0

for some threshold s0 < d. This is shown in [Erdoǧan et al. ≥ 2012] under the assumption that the
Hausdorff dimension of E is greater than (k/k+ 1)d + k/2, but observe that this only yields a nontrivial
exponent (less than d) if

(k
2

)
< d and, in particular, does not cover the important case of k = d .

Our main result is the following:

Theorem 1.1. Let E ⊂ [0, 1]2 be compact and µ a Frostman measure on E.

(i) If dimH(E) > 7
4 , then estimate (1-2) holds with d = k = 2.

(ii) If dimH(E) > 7
4 , then L3(T2(E)) > 0.

The proof that part (i) of Theorem 1.1 implies part (ii) is presented in Section 2 below; part (i) is then
proved by analysis of a bilinear operator (or trilinear form) in Sections 2, 3, and 4.

We observe that the result in part (i) is sharp in the following sense. Define a measure ν on T2(E) by
the relation∫

f (t12, t13, t23) dν(t12, t13, t23)=

∫∫∫
f
(
|x1
−x2
|, |x1
−x3
|, |x2
−x3
|
)

dµ(x1) dµ(x2) dµ(x3), (1-3)

where µ is any Frostman measure on E . We shall prove that the Radon–Nikodym derivative dν/dt ∈ L∞,
which is just a rephrasing of the statement that (1-2) holds for d = k = 2, if the Hausdorff dimension of
E is greater than 7

4 . On the other hand, we also use a variant of an example from [Mattila 1987] to show
that if s < 7

4 , then dν/dt need not be, in general, in L∞, in the sense that for every s < 7
4 there exists a

set E of Hausdorff dimension s and a Frostman measure µ supported on E such that dν/dt 6∈ L∞. (This
issue is taken up in Section 5.) Thus, in order to try to improve part (ii) of the theorem, i.e., to prove that
L3(T2(E)) > 0 if dimH(E)= s0 for some s0 ≤

7
4 , it would be reasonable to try to obtain an L p, rather

than an L∞ bound on the measure ν defined by (1-3). We hope to address this in a subsequent paper.
Theorem 1.1 may be viewed as a local version of the following theorem due to Furstenberg, Katznelson

and Weiss; see also [Bourgain 1986; Ziegler 2006] for subsequent results along these lines.

Theorem 1.2 [Furstenberg et al. 1990]. Let E ⊂R2 be of positive upper Lebesgue density in the sense that

lim sup
R→∞

Ld
{E∩[−R, R]2}
(2R)2

> 0,

where L2 denotes 2-dimensional Lebesgue measure. For δ > 0, let Eδ denote the δ-neighborhood of E.
Then, given vectors u, v in R2, there exists l0 such that for any l > l0 and δ > 0, there exist x, y, z ∈ Eδ
forming a triangle congruent to {0, lu, lv}, where 0 denotes the origin in R2.

We note in passing that it is generally believed that the conclusion of Theorem 1.2 still holds if the δ-
neighborhood of E is replaced by E under an additional assumption that the triangles under consideration
are nondegenerate. For degenerate triangles, i.e., allowing line segments, the necessity of considering the
δ-neighborhood of E was established by Bourgain (see [Furstenberg et al. 1990]).
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In contrast to Theorem 1.2, we are able in the local version to go beyond subsets of the plane of positive
Lebesgue measure, and we do not need to allow for dilations of the triangles. On the other hand, we only
obtain a positive Lebesgue measure’s worth of the possible three-point configurations, not all of them.

It is also not difficult to show (see Section 2) that if the estimate (1-2) holds under the assumption that
dimH(E) > s0, then L(

k+1
2 )(Tk(E)) > 0 for these sets. In [Erdoǧan et al. ≥ 2012], a number of estimates

of the type (1-2) are proved but, as we note above, do not cover the cases k = d or k = d − 1.

A combinatorial perspective. Finite configuration problems have their roots in geometric combinatorics.
For example, the Falconer distance problem is a continuous analog of the celebrated Erdős distance
problem; see [Solymosi and Tóth 2001; Katz and Tardos 2004; Brass et al. 2005; Székely 1997] and the
references therein. The discrete precursor of the problem discussed in this paper is the following question
posed in [Erdős and Purdy 1971] (see also [Brass et al. 2005; Erdős and Purdy 1975; 1976; 1977; 1978;
1995]):

Question. What is the maximum number of mutually congruent k-simplices with vertices from among a
set of n points in Rd?

In Section 6 we shall see that Theorem 1.1 (ii) implies that for a large class of finite sets P of
cardinality n in R2, namely those that are s-adaptable, the maximum number of mutually congruent
triangles determined by points of P is O(n

9
7+ε).

For explicit quantitative connections between discrete and continuous finite configuration problems in
other contexts, see, for example, [Hofmann and Iosevich 2005; Iosevich and Łaba 2005; Iosevich et al.
2007].

Notation. Throughout the paper, X . Y means that there exists C > 0 such that X ≤ CY , and X ≈ Y
means that X . Y and Y . X . We also define X / Y as follows. If X and Y are quantities that depend on
a large parameter N , then X / Y means that for every ε > 0 there exists Cε > 0 such that X ≤ CεN εY ,
while if X and Y depend on a small parameter δ, then X / Y means that for every ε > 0 there exists
Cε > 0 such that X ≤ Cεδ−εY as δ tends to 0.

2. Reduction of the proof to the estimation of a trilinear form

We shall work exclusively with Frostman measures. Recall that a probability measure µ on a compact set
E ⊂ Rd is a Frostman measure if, for any ball Bδ of radius δ,

µ(Bδ)/ δs, (2-1)

where s = dimH(E). For discussion and proof of the existence of such measures see, e.g., [Mattila 1995].
Let µ be a Frostman measure on E . Cover T2(E) by cubes of the form

(t l
12− εl, t l

12+ εl)× (t l
13− εl, t l

13+ εl)× (t l
23− εl, t l

23+ εl).

It follows that

1= (µ×µ×µ){E×E×E} ≤
∑

l

(µ×µ×µ)
{
(x1, x2, x3) : t l

i j−εl ≤ |x i
−x j
| ≤ t l

i j+εl,∀i, j
}
. (2-2)
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Suppose that we could show that this expression is .
∑
ε3

l . It would then follow, by definition of sets
of measure 0, that the three dimensional Lebesgue measure of T2(E) is positive.

In light of (2-1), to establish the positive measure of T2(E) we may assume that ti j ≥ c > 0. To see
this, observe that if each ti j is ≤ r , then fixing x1 results in x2 and x3 being contained in a ball of radius r
centered at x1. It follows that

(µ×µ×µ){E × E × E} ≤
∑

l

(µ×µ×µ)
{
(x1, x2, x3) : t l

i j − εl ≤ |x i
− x j
| ≤ t l

i j + εl,∀i, j
}
≤ Cr2s,

and taking r to be small enough, this expression is ≤ 1
10 . This means that in place of equality on the

left-hand side of (2-2), we have an inequality with 1 replaced by 9
10 , and the rest of the argument goes

through as before.
Therefore, the proof of Theorem 1.1 (i) is reduced to proving the trilinear estimate

3εt (µ,µ,µ) :=

∫∫∫
σ εt12
(x1
− x2) σ εt13

(x1
− x3) σ εt23

(x2
− x3) dµ(x1) dµ(x2) dµ(x3). 1. (2-3)

Here, t = (t12, t13, t23), σr is arc length measure on the circle of radius r in R2 and σ εr = σr ∗ ρε , where
ρε(x)= ε−2ρ(x/ε) is an approximate identity with ρ ∈ C∞0 ({|x | ≤ 1}), ρ ≥ 0,

∫
ρ(x) dx = 1. Note that

the right-hand side is 1 instead of ε3 because the characteristic function of the annulus of radius ti j and
thickness ε, divided by ε, is dominated by σ εti j

. We now turn to the proof of (2-3).

3. Reducing the trilinear form estimate to a bilinear operator estimate

Define trilinear forms

3εt ( f1, f2, f3) :=

∫∫∫
σ εt12
(x1
−x2) σ εt13

(x1
−x3) σ εt23

(x2
−x3) f1(x1) f2(x2) f3(x3) dx1 dx2 dx3, (3-1)

and consider 3εt (µ
δ
−α, µ, µ

δ
α), where

µα(x) :=
2(2−α)/2

0(α/2)
(µ ∗ | · |−2+α)(x), (3-2)

initially defined for Reα > 0, is extended to the complex plane by analytic continuation, and

µδ(x) := µ ∗ ρδ(x),

and ρδ(x)= δ−2ρ(x/δ) is an approximate identity as above. Observe that µ̂δα(ξ)= Cαµ̂(ξ)ρ̂(δξ)|ξ |−α,
where

Cα =
2π ·2α/2

0((2−α)/2)
. (3-3)

(See [Gelfand and Shilov 1958] for relevant calculations.) This shows, in view of Plancherel, that µδα is
an L2(R2) function with bounds depending on δ. Moreover, since we have compact support, this shows
that one has a trivial finite upper bound on the trilinear form with constants depending on δ. Taking the
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modulus in (3-2), we see that

|µδα(x)| ≤
∣∣∣∣2(2−α)/20(α/2)

∣∣∣∣(µδ ∗ | · |−2+Reα)(x)= 2(2−Reα)/20(Reα/2)
|0(α/2)|

µδReα(x)

and note that the right-hand side is nonnegative.
Now define

F(α) :=3εt (µ
δ
−α, µ, µ

δ
α)= 〈B(µ

δ
−α, µ

δ), µδα〉, (3-4)

where 〈 · , · 〉 is the L2(R2) inner product and B is the bilinear operator given by the relation

Bε( f, g)(x) :=
∫∫

f (x − u) g(x − v) σ εa (u) σ
ε
b (v) σ

ε(u− v) du dv. (3-5)

Here, for simplicity we have rescaled one side of the triangle to have unit length; the other two, a, b . 1,
are bounded away from 0.

Our main bilinear estimate is the following, which is proved in Section 4.

Theorem 3.1. Let Bε be defined as above and suppose that f, g ≥ 0. Then

‖Bε( f, g)‖L1(R2) . ‖ f ‖L2
−β1

(R2) · ‖g‖L2
−β2

(R2) if β1+β2 =
1
2 , β1, β2 ≥ 0, (3-6)

with constants independent of ε.

Using (3-6), we see that, with F(α) defined as in (3-4), we have

|F(α)| . 〈Bε(µδ
−Re(α), µ

δ), µδRe(α)〉 ≤ ‖B
ε(µδ
−Reα)‖L1(R2)

· ‖µδReα‖L∞(R2), (3-7)

where the . symbol includes factors of the gamma functions.

Lemma 3.2. Suppose that µ is a Frostman measure on a set of Hausdorff dimension > 7
4 . Then

‖µδα‖∞ / 1 if Reα = 1
4 .

To prove the lemma, observe that if Reα = 1
4 ,

µδα(x)≤
∫
|x − y|−2+ 1

4 dµδ(y)≈
∑

m

2m(2− 1
4 )

∫
|x−y|≈2−m

dµδ(y).
∑

m

2m(2− 1
4 )2−ms,

and this is / 1 since µ is a Frostman measure on a set of Hausdorff dimension > 7
4 . Substituting this into

(3-7) and applying (3-6) with β1 =
3
8 , β2 =

1
8 , we see that if Reα = 1

4 ,

|F(α)| ≤ ‖Bε(µδ
−1/4, µ

δ)‖
L1(R2)

. ‖µδ
−1/4‖L2

−3/8(R
2)
· ‖µδ‖L2

−1/8(R
2). (3-8)

A straightforward calculation using the definition of µδα from above shows that the square of either of the
terms in (3-8) is bounded by ∫∫

|x − y|−
7
4 dµ(x) dµ(y),

which is the energy integral of µ of order 7
4 . This integral is bounded since the Hausdorff dimension of E

is greater than 7
4 and µ is a Frostman measure; see, e.g., [Falconer 1985a; Mattila 1995].
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By symmetry, the same bound holds when Reα = −1
4 because we can reverse the roles of dµ(x1)

and dµ(x3). When −1
4 < Reα < 1

4 , we use the fact that |F(α)| is bounded from above with constants
depending on δ as we noted in the beginning of this section. By the three lines lemma (see the version
in Hirschman [1953]), for example) we conclude that, 3εt (µ,µ,µ). 1, which completes the proof of
Theorem 1.1, conditional on Theorem 3.1, which we now prove.

4. Estimating the bilinear operator

Since we are assuming f, g ≥ 0, we have

‖Bε( f, g)‖L1(R2) =

∫∫∫
f (x − u) g(x − v) K ε(u, v) du dv dx, (4-1)

where
K ε(u, v)= σ εa (u) σ

ε
b (v) σ

ε(u− v);

recall that we scaled one of the sigmas to the unit radius. Let ψ ∈ C∞0 ({|x | ≤ 2}), ψ ≥ 0, ψ ≡ 1 on
{|x | ≤ 1}. Then it suffices to estimate∫∫∫

f (x − u) g(x − v) K ε(u, v) du dv ψ(x/R) dx

with bounds independent of R ≥ 1. Using Fourier inversion, the expression (4-1) equals

R2
∫∫

f̂ (ξ) ĝ(η) K̂ ε(ξ, η) ψ̂(R(ξ + η)) dξ dη. (4-2)

Lemma 4.1. Let K (u, v)= K 0(u, v), interpreted in the sense of distributions. We have

K̂ (ξ, η)=
∑
±

σ̂ (U±a,b(ξ, η)), (4-3)

where
U±a,b : R

4
→ R2

are defined by

U±a,b(ξ, η)=
(

aξ1+ bη1γa,b± bη2

√
1− γ 2

a,b, aξ2− bη1

√
1− γ 2

a,b∓ bγa,bη2

)
(4-4)

with γa,b = (a2
+ b2
− 1)/(2ab). Consequently, using stationary phase, we see that∣∣K̂ ε(ξ, η) ψ̂(R(ξ + η))

∣∣. (1+ |ξ | + |η|)−
1
2 (4-5)

uniformly for R ≥ 1.

Recalling that, by the method of stationary phase (see, e.g., [Sogge 1993; Stein 1993]),

|̂σ(ξ)|. (1+ |ξ |)−
1
2 ,

one sees that (4-5) will immediately follow from (4-3) and (4-4).
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To prove the lemma, parametrize the Cartesian product of two circles as

{(a cos θ, a sin θ, b cosφ, b sinφ)}.

The restriction imposed by σ(u− v) says that

dist
(
(a cos θ, a sin θ), (b cosφ, b sinφ)

)
= 1,

which implies via standard trigonometric identities that

cos(θ −φ)=
a2
+ b2
− 1

2ab
=: γa,b

and thus θ −φ =±θa,b := cos−1(γa,b). It follows that

K̂ (ξ, η)=
∫ 2π

0
exp

(
2π i(a cos(θ)ξ1+ a sin(θ)ξ2+ b cos(θ + θa,b)η1+ b sin(θ + θa,b)η2)

)
dθ

= σ̂ (Ua,b(ξ, η)),

as claimed. This proves (4-3). The estimate (4-5) follows in the same way since σ εa (x)= σa ∗ ρε(x).
Using Lemma 4.1, Cauchy–Schwarz, and the assumption β1+ β2 =

1
2 , β1, β2 ≥ 0, we estimate the

square of (4-2) by∫ ∣∣ f̂ (ξ)
∣∣2{R2

∫ ∣∣K̂ ε(ξ,η)
∣∣4β1

∣∣ψ̂(R(ξ+η))∣∣ dη
}

dξ
∫ ∣∣ĝ(η)∣∣2{R2

∫ ∣∣K̂ ε(ξ,η)
∣∣4β2

∣∣ψ̂(R(ξ+η))∣∣ dξ
}

dη

.
∫ ∣∣ f̂ (ξ)

∣∣2(1+ |ξ |)−2β1 dξ
∫ ∣∣ĝ(η)∣∣2(1+ |η|)−2β2 dη

= ‖ f ‖2L2
−β1

(R2)
· ‖g‖2L2

−β2
(R2)

,

as desired, completing the proof of Theorem 3.1 and thus the proof of Theorem 1.1.

5. Sharpness of the trilinear estimate (2-3)

To understand the extent to which this result is sharp, we use a variant of the construction obtained for
the case k = 1, d = 2 in [Mattila 1987]. See [Iosevich and Senger 2010; Erdoǧan et al. ≥ 2012], where
this issue is studied comprehensively. Let Cα denote the standard α-dimensional Cantor set contained in
the interval [0, 1]. Let

Fα = (Cα − 1)∪ (Cα + 1),

and let µ denote the natural measure on this set. Let E = Fα × Fβ . Observe that we can a fit a
√
ε by ε

rectangle in the annulus {x : 1≤ |x | ≤ 1+ ε} near (0,±1) and also near (±1, 0).
Fix x and observe that

(µ×µ)
{
(y, z) : 1≤ |x−z| ≤ 1+ε; 1≤ |x− y| ≤ 1+ε;

√
2≤ |y−z| ≤

√
2+ε

}
≈ εα/2+β ·εα+β = ε

3
2α+2β .
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Integrating in x , we see that

(µ×µ×µ)
{
(x, y, z) : 1≤ |x − z| ≤ 1+ ε; 1≤ |x − y| ≤ 1+ ε;

√
2≤ |y− z| ≤

√
2+ ε

}
& ε

3
2α+2β .

We need this quantity to be . ε3, which leads to the equation

3
2α+ 2β ≥ 3.

Choosing α = 1 and β = 3
4 shows that the inequality (2-3) does not in general hold if s < 7

4 . It is
important to note that this does not prove that L3(T2(E)) > 0 does not in general hold if s < 7

4 .
We stress that the calculation above pertains to the trilinear expression (2-3). We do not know of any

example that shows that L3(T2(E)) is not in general positive if the Hausdorff dimension of E is greater
than one. The discrepancy here is not particularly surprising because it already takes place in the study of
distance sets. For example, as we point out in the introduction, it is known that if the Hausdorff dimension
of E ⊂ R2 is ≤ 1, then it is not in general true that L1(1(E)) > 0. A result due to Wolff [1999] says that
if the Hausdorff dimension of E is greater than 4

3 , then L1(1(E)) > 0. On the other hand, an example
due to Mattila [1987] shows that if the Hausdorff dimension of E is less than 3

2 and µ is a Frostman
measure on E , then

lim sup
ε→0

ε−1(µ×µ)
{
(x, y) ∈ E × E : 1≤ |x − y| ≤ 1+ ε

}
=∞. (5-1)

We note that (5-1) is the analogue of (1-3). It says that the distance measure, defined by∫
f (t) dν(t)=

∫∫
f (|x − y|) dµ(x) dµ(y),

has Radon–Nikodym derivative which is not in L∞.

6. Application to discrete geometry

Definition 6.1. Let P be a set of n points contained in [0, 1]2. Define the measure

dµs
P(x)= n−1

· nd/s
·

∑
p∈P

χB p
n−1/s

(x) dx, (6-1)

where χ
B p

n−1/s
(x) is the characteristic function of the ball of radius n−1/s centered at p. We say that P is

s-adaptable [Iosevich et al. 2007] if

Is(µP)=

∫∫
|x − y|−s dµs

P(x) dµs
P(y) <∞.

This is equivalent to the statement

n−2
∑

p 6=p′∈P

|p− p′|−s . 1. (6-2)

To understand this condition in clearer geometric terms, suppose that P comes from a 1-separated set
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A, scaled down by its diameter. Then the condition (6-2) takes the form

n−2
∑

a 6=a′∈A

|a− a′|−s . (diameter(A))−s . (6-3)

This says P is s-adaptable if it is a scaled 1-separated set where the expected value of the distance between
two points raised to the power −s is comparable to the value of the diameter raised to the power of −s.
This basically means that for the set to be s-adaptable, clustering is not allowed to be too severe.

To put it in more technical terms, s-adaptability means that a discrete point set P can be thickened into a
set which is uniformly s-dimensional in the sense that its energy integral of order s is finite. Unfortunately,
it is shown in [Iosevich et al. 2007] that there exist finite point sets which are not s-adaptable for certain
ranges of the parameter s. The point is that the notion of Hausdorff dimension is much more subtle
than the simple “size” estimate. However, many natural classes of sets are s-adaptable. For example,
homogeneous sets studied by Solymosi and Vu [2004] and others are s-adaptable for all 0< s < d . See
also [Iosevich et al. 2009], where s-adaptability of homogeneous sets is used to extract discrete incidence
theorems from Fourier-type bounds.

Before we state the discrete result that follows from Theorem 1.1, let us briefly review what is known.
If P is set of n points in [0, 1]2, let u2,2(n) denote the number of times a fixed triangle can arise among
points of P . It is not hard to see that

u2,2(n)= O(n
4
3 ). (6-4)

This follows easily from the fact that a single distance cannot arise more than O(n
4
3 ) times, which, in

turn, follows from the celebrated Szemerédi–Trotter incidence theorem. See [Brass et al. 2005] and the
references therein. By the pigeonhole principle, one can conclude that

#T2(P)& n3

n4/3 = n
5
3 . (6-5)

However, it is not difficult to see that one can do quite a bit better as far as the lower bound on #T2(P)
is concerned. It is shown in [Brass et al. 2005, p. 263] that

#T2(P)& n · #{|x − y| : x, y ∈ P}.

Guth and Katz [2011] have recently settled the Erdős distance conjecture, proving that

#{|x − y| : x, y ∈ P}& n
log n

,

and it follows that

#T2(P)& n2

log n
,

which, up to logarithmic factors, is the optimal bound. However, Theorem 1.1 does allow us to obtain an
upper bound on u2,2 for s-adaptable sets that is better than the one in (6-4). Before we state the main
result of this section, we need the following definition.
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Definition 6.2. Let P be a subset of [0, 1]2 consisting of n points. Let δ > 0 and define

uδ2,2(n)= #
{
(x1, x2, x3) ∈ P × P × P : ti j − δ ≤ |x i

− x j
| ≤ ti j + δ

}
,

where the dependence on t = {ti j } is suppressed.

Observe that obtaining an upper bound for uδ2,2(n) with arbitrary ti j immediately implies the same
upper bound on u2,2(n) defined above. The main result of this section is the following.

Corollary 6.3. Suppose P ⊂ [0, 1]2 is s-adaptable for s = 7
4 +a for every sufficiently small a > 0. Then

for every b > 0, there exists Cb > 0 such that

un−
4
7−b

2,2 (n)≤ Cbn
9
7+b. (6-6)

The proof follows from Theorem 1.1 in the following way. Let E denote the support of dµs
P , defined

as in (6-1) above. We know that if s > 7
4 , then

(µs
P ×µ

s
P ×µ

s
P)
{
(x1, x2, x3) : ti j ≤ |x i

− x j
| ≤ ti j + ε

}
. ε3. (6-7)

Taking ε = n−1/s , we see that the left-hand side is

≈ n−3
· un−1/s

2,2 (n),

and we conclude that
un−1/s

2,2 (n). n3−3/s,

which yields the desired result since s = 7
4 + a.

As we note above, this result is stronger than the previously known u2,2(n). n
4
3 . However, our result

holds under an additional restriction that P is s-adaptable. We hope to address this issue in a subsequent
paper.
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