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SHARP GEOMETRIC UPPER BOUNDS ON RESONANCES FOR SURFACES
WITH HYPERBOLIC ENDS

DAVID BORTHWICK

We establish a sharp geometric constant for the upper bound on the resonance counting function for
surfaces with hyperbolic ends. An arbitrary metric is allowed within some compact core, and the ends
may be of hyperbolic planar, funnel, or cusp type. The constant in the upper bound depends only on the
volume of the core and the length parameters associated to the funnel or hyperbolic planar ends. Our
estimate is sharp in that it reproduces the exact asymptotic constant in the case of finite-area surfaces
with hyperbolic cusp ends, and also in the case of funnel ends with Dirichlet boundary conditions.

1. Introduction

For a compact Riemannian surface, the Weyl law shows that the asymptotic distribution of eigenval-
ues is determined by global geometric quantities. In the compact hyperbolic case, Weyl asymptotics
follow easily from the Selberg trace formula; see, e.g, [McKean 1972], This approach extends also
to noncompact hyperbolic surfaces of finite area [Venkov 1990]. Some reinterpretation of the spectral
counting is needed for the noncompact case, however. One can either supplement the counting function
for the discrete spectrum by a term related to the scattering phase, or else use the counting function for
resonances instead of eigenvalues. Weyl asymptotics, in this extended sense, were established for general
finite-area surfaces with hyperbolic cusp ends by Müller [1992] and Parnovski [1995].

For infinite-area surfaces with hyperbolic ends, the discrete spectrum is finite and possibly empty, and
therefore plays no role in the spectral asymptotics. One could look for analogies to the finite-area results
in the asymptotics of either the scattering phase or the resonance counting function. For the scattering
phase of a surface with hyperbolic ends, Weyl asymptotics were proven by Guillopé and Zworski [1997].
One does not necessarily expect a corresponding result to hold for the resonance counting function — see
e.g., [Guillopé and Zworski 1997, Remark 1.6] — but neither can we rule out the possibility at this point.
Understanding the role that global geometric properties play in the distribution of resonances remains a
compelling problem.

In the context of infinite-area hyperbolic surfaces, only the order of growth of the resonance counting
function is currently well understood. Guillopé and Zworski [1995; 1997] showed the resonance counting
function for infinite-area surfaces with hyperbolic ends satisfies Ng(t)� t2 (with the caveat that the lower
bound is proportional to the 0-volume, which might be zero in exceptional cases). These results have been
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extended to higher-dimensional manifolds with hyperbolic ends in [Borthwick 2008]. Unfortunately,
the methods used in these proofs yield only an ineffective constant for the upper bound, with no clear
geometric content. Moreover, the derivation of the lower bound depends explicitly on the upper bound,
so the geometric dependence of the lower bound is likewise undetermined.

In this paper we present a geometric constant for the upper bound on the resonance counting function
for infinite-area surfaces with hyperbolic ends. This constant is sharp in the sense that it agrees with the
exact asymptotics in the cases of finite area surfaces or truncated funnels. Our approach is inspired by
Stefanov’s recent paper [2006] on compactly supported perturbations of the Laplacian on Rn for n odd,
and similar techniques were applied to compactly supported perturbations of Hn+1 in [Borthwick 2010].

We can state the cleanest result for a hyperbolic surface (X, g)∼=H2/0. Let Rg denote the associated
resonance set (poles of the meromorphic continuation of (1g − s(1− s))−1), with counting function

Ng(t) := #
{
ζ ∈Rg : |ζ −

1
2 | ≤ t

}
.

The sharp version of our bound involves a regularization of the counting function,

Ñg(a) :=
∫ a

0

2(Ng(t)− Ng(0))
t2 dt. (1-1)

This type of regularization is standard in the theory of zeros of entire functions, and there is a natural
connection to the asymptotics of Ng(t),

Ñg(a)∼ Ba2
⇐⇒ Ng(t)∼ Bt2

;

see [Stefanov 2006, Lemma 1]. If we have only the upper bound on Ñg, then we lose some sharpness in
the estimate of Ng:

Ñg(a)≤ Ba2
H⇒ Ng(t)≤ eBt2.

Theorem 1.1. Suppose (X, g) is a smooth geometrically finite hyperbolic surface with χ(X) < 0. Let
`1, . . . , `nf denote the diameters of the geodesic boundaries of the funnels of X. The regularized counting
function for the resonances of 1g satisfies

Ñg(a)
a2 ≤ |χ(X)| +

nf∑
j=1

` j

4
+ o(1). (1-2)

We can see that this result is sharp in two extreme cases. For a finite-area hyperbolic surface (that is, with
nf= 0), our upper bound agrees with the known asymptotic Ng(t)/t2

∼|χ(X)|. On the other hand, for an
isolated hyperbolic funnel F` of boundary length `, under Dirichlet boundary conditions, the resonances
form a half lattice. It is easy to see that NF`(t)/t2

∼ `/4, so the funnel portion of (1-2) is also sharp.
The restriction to χ(X) < 0 in Theorem 1.1 leaves out just a few cases. The complete (smooth)

hyperbolic surfaces for which χ(X) ≥ 0 are the hyperbolic plane H2, the hyperbolic cylinder C` :=
H2/〈z 7→ e`z〉, and the parabolic cylinder C∞ := H2/〈z 7→ z + 1〉. Resonance sets can be computed
explicitly in these cases (see [Borthwick 2007, Sections 4–5]), and exact asymptotics for the counting
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function are easily obtained:

NH2(t)∼ t2, NC`(t)∼
1
2`t

2, NC∞(t)= 1.

If we interpret C` as the union of 2 funnel ends, then (1-2) would also give a sharp estimate for this case.
Using Theorem 1.1 in conjunction with the argument of Guillopé and Zworski [1997] for the lower

bound, we can deduce the following:

Corollary 1.2. For k ∈ N there exists a constant ck such that for any geometrically finite hyperbolic
surface (X, g) with χ(X) < 0,

Ng(t)
t2 ≥ ck |χ(X)|

(
1+ 1
|χ(X)|

nf∑
j=1

` j

4

)−2/k
for t ≥ 1.

The constant ck obtained in this way (see Section 4 for the derivation) is rather ineffective; the point here
is just that there exists a lower bound that depends only on χ(X) and {` j }.

We will obtain Theorem 1.1 as a consequence of a somewhat more general estimate. Consider a
smooth Riemannian surface (X, g), possibly with boundary, that has finitely many ends that are assumed
to be of hyperbolic planar, funnel, or cusp type. That is, X admits the decomposition

X = K t Y1 t · · · t Ynf tCnf+1 t · · · tCnf+nc (1-3)

illustrated in Figure 1, where the core K is a smooth compact manifold with boundary. The metric in K
is arbitrary. The Y j are infinite-area ends: either hyperbolic planar,

Y j ∼= [b j ,∞)× S1, g|Y j = dr2
+ sinh2 r dθ2, where b j > 0, (1-4)

or hyperbolic funnels,

Y j ∼= [b j ,∞)× S1, g|Y j = dr2
+ `2

j cosh2 r
dθ2

(2π)2
, where b j ≥ 0 and ` j > 0. (1-5)

The C j are hyperbolic cusps,

C j ∼= [b j ,∞)× S1, g|C j = dr2
+ e−2r dθ2

(2π)2
, where b j ≥ 0. (1-6)

The finite-area portion of X consisting of the core plus the cusps is denoted by

Xc := K tCnf+1 t · · · tCnf+nc . (1-7)

Any geometrically finite hyperbolic surface, with the exception of the parabolic cylinder C∞, admits
a decomposition of the form (1-3). In such surfaces, aside from H2 itself, only funnel or cusp ends can
occur.

We let 1g denote the positive Laplacian on (X, g). In general we may consider the operator

P :=1g + V,
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Figure 1. Surface X with boundary and hyperbolic ends.

where V ∈ C∞0 (X) with supp(V ) ⊂ K . We denote by RP the resonance set associated to P . These
resonances are the poles of the analytically continued resolvent

RP(s) := (P − s(1− s))−1,

counted according to multiplicity. The associated resonance counting function is

NP(t) := #
{
ζ ∈RP : |ζ −

1
2 | ≤ t

}
.

Our context is essentially that of Guillopé and Zworski [1995; 1997], and so we already know that
NP(t) � t2 (see Section 2 for details). It is thus natural to define the regularized counting function
ÑP(a) just as in (1-1).

Before stating the upper bound, we introduce the asymptotic constants associated to the resonance
count for isolated hyperbolic planar or funnel ends.

Theorem 1.3. For a hyperbolic planar or funnel end Y ∼= [b,∞)× S1, with metric as in (1-4) or (1-5),
the resonance counting function for the Laplacian with Dirichlet boundary conditions at r = b satisfies
an asymptotic as t→∞,

NY (t)∼ A(Y )t2.

We will write these constants A(Y ) explicitly in a moment. First let us state our main result.

Theorem 1.4. For (X, g) a surface with hyperbolic ends as in (1-3) and V ∈ C∞0 (X), the regularized
counting function for P =1g + V satisfies

ÑP(a)
a2 ≤

1
2π

vol
(
Xc, g

)
+

nf∑
j=1

A(Y j )+ o(1), (1-8)

where Xc is the subset (1-7).

If (X, g) is a finite-area surface with hyperbolic cusp ends (and arbitrary metric in the interior),
Parnovski [1995] proved that

Ng(t)∼
1

2π
vol(X, g)t2.
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This shows that Theorem 1.4 is sharp in the case nf = 0. It also suggests an intriguing interpretation
of the constants appearing in (1-8). Suppose we split X into a disjoint union Xc ∪ Y1 ∪ · · · ∪ Ynf at the
boundary of Xc and impose Dirichlet boundary conditions at the newly created boundaries. The constant
on the right side of (1-8) is the sum of the asymptotic constants for the resonance counting function of
the resulting components.

To obtain Theorem 1.1 from Theorem 1.4, we take the Y j to be standard funnels with boundaries at
b j = 0, in which case A(Y j ) = ` j/4. And under the assumptions that Xc has geodesic boundary and
hyperbolic interior, the Gauss–Bonnet theorem gives vol(Xc, g)=−2πχ(X).

As in Corollary 1.2, combining Theorem 1.4 with the Guillopé–Zworski argument gives a lower
bound on NP(t) with a constant that depends only on 0-vol(X, g) and the end parameters ` j and b j for
j = 1, . . . , nf, assuming that 0-vol(X, g) 6= 0.

The asymptotic constants A(Y ) appearing in Theorem 1.3 have a somewhat complicated form. Con-
sider first a model funnel end F`,r0 defined by

F`,r0
∼= [r0,∞)× S1 and ds2

= dr2
+ `2 cosh2 r dθ2

(2π)2
. (1-9)

The case r0 = 0, a standard funnel with geodesic boundary, is simply denoted by F`. The resonance set
for the Laplacian on F`,r0 with Dirichlet boundary conditions at r = r0 is denoted RF`,r0

.
In Section 7 we will show that for r0 ≥ 0,

A(F`,r0)=−
`

2π
sinh r0+

4
π

∫ π/2

0

∫
∞

0

[I (xeiθ , `, r0)]+

x3 dx dθ, (1-10)

where [ · ]+ denotes the positive part and, with ω := 2π/`,

I (α, `, r) := Re
(

2α log
(
α sinh r +

√
ω2+α2 cosh2 r

√
ω2+α2

))
+ω arg

(√
ω2+α2 cosh2 r − iω sinh r√
ω2+α2 cosh2 r + iω sinh r

)
+π(Imα−ω). (1-11)

(We will use the principal branch of log in all such formulas.) The integral in (1-10) is explicitly com-
putable in the case r0 = 0, since I (xeiθ , `, 0) = π(x sin θ −ω). In this case we recover the asymptotic
constant for the standard funnel, A(F`)= `/4.

It is interesting to compare the resonance sets of truncated funnels F`,r0 with r0 > 0 to extended
funnels with r0 < 0. The two cases are quite different in terms of the classical dynamics; an extended
funnel contains a trapped geodesic, while truncated funnels are nontrapping. Because of this change
in dynamics, we expect the distribution of resonances near the critical line to change dramatically as
r0 switches from positive to negative. Figure 2 illustrates these differences. In the nontrapping case at
left, the distance from the resonances to the critical line increases logarithmically as Im s→∞. For the
trapping case at right, the distance decreases exponentially. These behaviors are consistent with results
on resonance-free regions for asymptotically hyperbolic manifolds by Guillarmou [2005].
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Figure 2. Resonance sets of the funnel F`,r0 with different boundary locations r0, shown
for `= 2π .

Of course, the asymptotics of the global counting function NP(t) are not expected to be sensitive to
the dynamics. Indeed, we will show in Section 8 that the formula (1-10) for the asymptotic constant of
NF`,r0

(t) remains valid for r0 < 0. This exact asymptotic can be compared to the upper bound obtained
for the extended funnel from Theorem 1.4, which is

ÑF`,r0
(a)

a2 ≤−
`

2π
sinh r0+

`

4
for r0 ≤ 0. (1-12)

Figure 3 illustrates the difference between the upper bound (1-12) and the sharp asymptotic in this
situation. Given this discrepancy, one might think that the bound in Theorem 1.4 could be improved
by moving the boundary of K further into the interior of the surface (that is, by allowing b j < 0 in the
definition (1-5)). Unfortunately, for reasons that we will explain in Section 4, it does not seem possible
to obtain any improvement this way.

In the hyperbolic planar case, the model problem for Y j is scattering by a spherical obstacle in H2, that
is, on the exterior Dirichlet domain �r0 := {r ≥ r0} ⊂ H2. The resonance asymptotics for this spherical
obstacles in Hn+1 were worked out in Borthwick [2010, Theorem 1.2]. In two dimensions the result is

A(�r0)= 2− cosh r0+
4
π

∫ π/2

0

∫
∞

0

[H(xeiθ , r0)]+

x3 dx dθ, (1-13)

where

H(α, r) := Re

(
2α log

(
α cosh r +

√
1+α2 sinh2 r

√
α2− 1

))
+ log

∣∣∣∣∣cosh r −
√

1+α2 sinh2 r

cosh r +
√

1+α2 sinh2 r

∣∣∣∣∣. (1-14)
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Figure 3. The exact asymptotic constant for F`,r as a function of boundary location r ,
shown for `= 2π . The dotted line shows the bound from Theorem 1.4.

The paper is organized as follows. The basic material on the resolvent and resonances of the operator
P is reviewed in Section 2. In Section 3 we present the factorization formula for the relative scattering
determinant and show that this leads to Weyl asymptotics for the scattering phase and a counting formula
for resonances based on contour integration. The growth estimates on the scattering determinant and the
resulting proof of Theorem 1.4 are given in Section 4, assuming certain estimates to be developed in
later sections. The derivation of Corollary 1.2 is also given in Section 4. In Section 5, we develop
the asymptotic analysis of Dirichlet eigenmodes on hyperbolic funnels. These asymptotics are applied
in Section 6 to prove the Poisson operator estimates needed for Section 4. Finally, in Section 7 and
Section 8 we establish the exact asymptotic constant (1-10) for the truncated and extended funnel cases,
respectively, and prove the funnel part of Theorem 1.3 in particular.

2. Resonances

The context introduced in Section 1 differs from that of Guillopé and Zworski [1995; 1997] in two
relatively minor ways: Hyperbolic planar ends are allowed in addition to funnels, and a compactly
supported potential V is possibly added to 1g. The latter addition really is trivial, but the inclusion of
hyperbolic planar ends requires a few extra estimates on model terms. In this section we will briefly
review the theory [Guillopé and Zworski 1995; 1997], in order to explain those additional estimates.

To define resonances we need analytic continuation of the resolvent, RP(s) := (P−s(1−s))−1, from
its original domain Re s> 1

2 . Each end Y j is isometric to a portion of either H or the model funnel F` j , and
we can use this identification to pullback model resolvents R0

Y j
(s). After appropriate cutoffs are applied,

we can treat these model terms as operators on X , whose kernels have support only in the corresponding
ends Y j . Similarly, we define R0

C j
(s) by pullback from the model cusp. Suppose that χ j

k ∈ C∞(X) are
cutoff functions for j = 1, . . . , nf+ nc and k = 0, 1, 2, such that

χ
j

k =


0 for r ≥ k+ 1 in end j,
1 for r ≤ k in end j,
1 outside of end j.

We also set χk :=
∏

j χ
j

k .
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For some s0 with Re s0 sufficiently large, so that RP(s0) is defined, we set

M(s) := χ2 RP(s0)χ1+

nf∑
j=1

(1−χ j
0 )R

0
Y j
(s)(1−χ j

1 )+

nf+nc∑
j=nf+1

(1−χ j
0 )R

0
C j
(s)(1−χ j

1 ).

This parametrix satisfies

(P − s(1− s))M(s)= I − L(s),

where

L(s) := −[1g, χ2]RP(s0)χ1+ (s(1− s)− s0(1− s0))χ2 RP(s0)χ1

+

nf∑
j=1

[1g, χ
j

0 ]R
0
Y j
(s)(1−χ j

1 )+

nf+nc∑
j=nf+1

[1g, χ
j

0 ]R
0
C j
(s)(1−χ j

1 ).

There are two differences here from the construction of [Guillopé and Zworski 1995]. First of all, some
of our model terms R0

Y j
(s) will be copies of RH(s) instead of the funnel resolvent. Second, we follow

the treatment in [Borthwick 2007] in using the model resolvent for a full cusp, rather than modifying the
original Hilbert space.

Let ρ ∈ C∞(X) be proportional to e−r in the ends Y j and C j , with respect to the coordinate systems
given in (1-4)–(1-6). The operator L(s) is compact on ρN L2(X, dg) for Re s > 1

2 − N and defines a
meromorphic family with poles of finite rank. (The structure of the kernel of R0

Y j
(s) at infinity is the same

whether Y j is a funnel or hyperbolic planar, so this part of the argument is unaffected by the addition of
hyperbolic planar ends.)

By choosing s and s0 appropriately we can insure that I − L(s) is invertible at some s, and then the
analytic Fredholm yields

RP(s)= M(s)(I − L(s))−1. (2-1)

This proves the following result, a slight generalization of [Guillopé and Zworski 1995, Theorem 1]:

Theorem 2.1 (Guillopé and Zworski). The formula (2-1) defines a meromorphic extension of RP(s) to
a bounded operator on ρN L2(X, dg) for Re s > 1

2 − N , with poles of finite rank.

Meromorphic continuation allows us to define RP as the set of poles of RP(s), listed according to
multiplicities given by

m P(ζ ) := rank Resζ RP(s).

The same parametrix construction also leads to an estimate of the order of growth of the resonance
counting function. The following is a slight generalization of [Guillopé and Zworski 1995, Theorem 2]:

Theorem 2.2 (Guillopé and Zworski). The resonance counting function satisfies a bound

NP(t)= O(t2).
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Our version requires just a few additional estimates. To obtain this bound on the counting function,
Guillopé and Zworski [1995] introduced a Fredholm determinant

D(s) := det(I − L3(s)3), where L3(s) := L(s)χ3.

Using the relation
RP(s)χ3 = M(s)χ3(I + L3(s)+ L3(s)2)(I − L3(s)3)−1,

and a result of Vodev [1994, Appendix], they showed that RP is included in the union of the set of poles
of D(s) with 3 copies of the union of the sets of poles of M(s) and L3(s).

The only change that the inclusion of hyperbolic planar ends requires in this argument is that for
each hyperbolic planar end we include a copy of RH among the possible poles of M(s) and L3(s). Since
NH(t)= O(t2), just as for funnels, the problem reduces as in [Guillopé and Zworski 1995] to an estimate
of the growth of D(s). Through Weyl’s inequality, the estimate of D(s) is broken up into estimates on
the singular values of various model terms. We must check that the relevant estimates are satisfied by
the hyperbolic planar model terms.

There are three estimates to consider. The first concerns the resolvent RH(s). If Q1 and Q2 are
compactly supported differential operators of orders q1 and q2, with disjoint supports, then for ε > 0,

‖Q1 RH(s)Q2‖ ≤ C(q j , ε)〈s〉q1+q2 for Re s > ε, (2-2)

and
‖Q1 RH(s)Q2‖ ≤ C(q j , ε)〈s〉q1+q2−1 for Re s > 1

2 + ε. (2-3)

To prove either of these, one can simply use the explicit formula

RH(s; z, z′)= 1
4π

∫ 1

0

(t (1− t))s−1

(t + sinh2 d(z, z′))s
dt,

and repeat the argument from [Guillopé and Zworski 1995, Lemma 3.2].
The next estimate is for the Poisson kernel EH(s). In the Poincaré ball model B, this kernel is given

by

EB(s; z, θ)=
1

4π
0(s)2

0(2s)
(1− |z|2)s

|eiθ − z|2s for z ∈ B, θ ∈ R/(2πZ).

Given a compact set K ⊂ B and ε > 0, we have∣∣∂k
θ EB(s; z, θ)

∣∣≤ C(K , ε)kk! ec〈s〉 for z ∈ K , k ∈ N. (2-4)

This is not difficult to prove directly by induction, or one can use an analyticity argument as in [Guillopé
and Zworski 1995, Lemma 3.1].

Finally, we must estimate the scattering matrix SH(s). We can write this explicitly in terms of Fourier
modes,

SH(s)=
∑
k∈Z

[SH(s)]keik(θ−θ ′), where [SH(s)]k = 21−2s 0(
1
2 − s)

0(s− 1
2)

0(s+ |k|)
0(1− s+ |k|)
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Using Stirling’s formula, it is easy to use this expression for the eigenvalues to estimate the singular
values of SH(s). Assuming that Re s < 1

2 − ε and dist(s,−N0) > η, we have

µ j (SH(s))≤ exp(C(η) 〈s〉+Re(1− 2s) log(〈s〉/j)). (2-5)

This is the analog of [Guillopé and Zworski 1997, Lemma 4.2].
With these model estimates in place, one can simply apply Guillopé and Zworski’s original argument

(treating the cusp contributions as in [Borthwick 2007, Section 9.4]) to prove that

|g(s)D(s)| ≤ eC〈s〉2,

where g(s) is a entire function of order 2 and finite type, with zeros derived from RH and the model
resolvent sets for the funnels and cusps. This yields the proof of Theorem 2.2.

3. Relative scattering determinant

To define scattering matrices, we will fix a function ρ ∈ C∞(X) that serves as a boundary defining
function for a suitable compactification of X . We start with smooth positive functions ρf, ρc satisfying

ρf =

{
2e−r in each Y j ,

1 in each C j
and ρc =

{
1 in each Y j ,

e−r in each C j .

Then we set ρ = ρfρc for the global boundary defining function.
The ends Y j are conformally compact, and we distinguish between the internal boundary ∂Y j , and

the boundary at infinity ∂∞Y j induced by the conformal compactification. The funnel ends Y j come
equipped with a length parameter ` j , the length of the closed geodesic bounding the finite end. If we
assign length ` j = 2π to a hyperbolic planar end, for consistency, then the metric induced by ρ2g on the
boundary of Y j at infinity gives an isometry

∂∞Y j ∼= R/` j Z.

The cusp ends can be compactified naturally by lifting to H and invoking the Riemann-sphere topology,
as described in [Borthwick 2007, Section 6.1]. The resulting boundary ∂∞C j consists of a single point.

Despite the discrepancy in dimensions, it will be convenient to group all of the infinite boundaries
together as

∂∞X := ∂∞Y1 ∪ · · · ∪ ∂∞Ynf ∪ ∂∞Cnf+1 ∪ · · · ∪ ∂∞Cnf+nc .

Then we have
C∞(∂∞X) := C∞(R/`1Z)⊕ · · ·⊕C∞(R/`nfZ)⊕Cnc,

and similarly for L2(∂∞X).
In Section 2, R0

Y j
(s) denoted the pullback of the model resolvent in the parametrix construction.

Carrying on with this notation, we also define the model Poisson operators

E0
Y j
(s) : C∞(∂∞Y j )→ L2(Y j ),
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and scattering matrices
S0

Y j
(s) : C∞(∂∞Y j )→ C∞(∂∞Y j ).

Similarly, for the cusp ends we have the Poisson kernels

E0
C j
(s) : C→ L2(C j ).

There is no analog of the model scattering matrix for a cusp; see [Borthwick 2007, Section 7.5] for an
explanation of this.

The scattering matrix SP(s) is defined as a map on C∞(∂∞X), which we can write as

SP(s)=
(

Sff(s) Sfc(s)
Scf(s) Scc(s)

)
, (3-1)

where the blocks are split between the “funnel-type” ends Y j and the cusps C j . The block Sff(s) is a ma-
trix of pseudodifferential operators; all other blocks have finite rank. To define a scattering determinant,
we normalize using the background operator

S0(s)=
(

S0
Y (s) 0
0 I

)
, where S0

Y (s)= S0
Y1
(s)⊕ · · ·⊕ S0

Ynf
(s).

The relative scattering determinant is then defined by

τ(s)= det SP(s)S0(s)−1. (3-2)

The poles of the background scattering matrix S0(s) define a background resonance set

R0 =

nf⋃
j=1

{
RF` j

for a funnel end,

RH for a hyperbolic planar end.
(3-3)

For ∗ = 0 or P let H∗(s) denote the Hadamard product over R∗,

H∗(s) :=
∏
ζ∈R∗

(1− s/ζ )e s/ζ+s2/(2ζ 2).

Theorem 2.2 implies that the product for HP(s) converges, and for H0(s) this is clear from the definition
of R0.

Proposition 3.1. For P =1g + V , the relative scattering determinant admits a factorization

τ(s)= eq(s) HP(1− s)
HP(s)

H0(s)
H0(1− s)

,

where q(s) is a polynomial of degree at most 2.

Proof. If the ends Y j are all hyperbolic funnels, then Guillopé and Zworski [1997, Proposition 3.7] proved
the factorization formula of with q(s) a polynomial of degree at most 4. The first part of the proof, the
characterization of the divisor of τ(s) obtained in [Guillopé and Zworski 1997, Proposition 2.14], remains
valid if hyperbolic planar ends are included.
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To extend the more difficult part of the argument, which is the estimate that shows q(s) is polynomial,
we require only the extra estimates on model terms given in (2-2), (2-3), (2-4), and (2-5). With these
estimates one can easily extend the proof of [Guillopé and Zworski 1997, Proposition 3.7]. We refer the
reader also to [Borthwick 2007, Section 10.5], for an expository treatment of these details.

To see that the maximal order of q(s) is 2, we could prove an estimate analogous to [Borthwick 2008,
Lemma 5.2]. However, we will be proving a sharper version of this estimate later in this paper. From
(4-12) in the proof of Theorem 4.1, it will follow that for some sequence ai →∞,

log|τ(s)| ≤ O(a2
i ) for |s− 1

2 | = ai , |arg(s− 1
2)| ≤

1
2π − δ.

Because the Hadamard products H∗(s) have order 2, this implies a bound |q(s)|=O(|s|2+ε) in the sector
|arg(s− 1

2)| ≤
1
2π−δ. Hence q(s) has degree at most 2, since it is already known to be polynomial. (The

derivations leading to (4-12) require only that q(s) is polynomial, so this argument is not circular.) �

To apply the factorization of τ(s) to resonance counting we introduce the relative scattering phase
of P , defined as

σ(ξ) :=
i

2π
log τ(1

2 + iξ), (3-4)

with branches of the log chosen so that σ(ξ) is continuous and σ(0)= 0. By the properties of the relative
scattering matrix, σ(ξ) is real and σ(−ξ)=−σ(ξ).

To state the relative counting formula, we let N0 denote the counting function associated to R0,

N0(t) := #
{
ζ ∈R0 : |ζ −

1
2 | ≤ t

}
,

and Ñ0(a) the corresponding regularized counting function.

Corollary 3.2. As a→∞,

ÑP(a)− Ñ0(a)= 4
∫ a

0

σ(t)
t

dt + 2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ + O(log a). (3-5)

The proof is by contour integration of τ ′/τ(s) around a half-circle centered at s = 1
2 . See [Borthwick

2010, Proposition 3.2] for the details of the derivation of (3-5) from Proposition 3.1. This is the analog
of a formula developed by Froese [1998] for Schrödinger operators in the Euclidean setting.

The other consequence we need from Proposition 3.1 is essentially also already proven. To analyze the
first term on the right side of (3-5), we will invoke the Weyl-type asymptotics satisfied by the scattering
phase:

Theorem 3.3 (Guillopé and Zworski). As ξ →+∞,

σ(ξ)=
( 1

4π
0-vol(X, g)−

nhp

2

)
ξ 2
−

nc

π
ξ log ξ + O(ξ),

where nhp denotes the number of the Y j that are hyperbolic planar.

For surfaces with hyperbolic funnel or cusp ends, this result was established by Guillopé and Zworski
[1997, Theorem 1.5]. As in the other cases discussed above, the modifications needed to adapt the proof
to our slightly more general setting are fairly simple. The first point is that the addition of a compactly
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supported potential V does not change the argument at all, since it does not affect the leading term in
the wave trace asymptotics as derived in [Guillopé and Zworski 1997, Lemma 6.2]. The second issue
is that we allow hyperbolic planar ends in addition to funnels. However, for |t | < ` the restriction to
the diagonal of the wave kernel on a model funnel F` is identical to that of H2. This is the content of
[Guillopé and Zworski 1997, Equation (6.1)]. So hyperbolic planar ends may also be included without
modifying the argument. Such ends do affect the final calculation, however, because 0-vol(H2) = −2π
whereas the model funnels had 0-vol(F`)= 0. This difference accounts for the nhp term.

4. Scattering determinant asymptotics

To state the asymptotic estimate for the scattering determinant contribution to the resonance counting
formula (3-5), we introduce the following constants. If Y j is a funnel with parameters ` j , b j , then we set

B(Y j ) :=
4
π

∫ π/2

0

∫
∞

0

[I (xeiθ , ` j , b j )]+

x3 dx dθ −
` j

4
,

where I (α, `, r) was defined in (1-11). If Y j is a hyperbolic planar end with parameter b j , then

B(Y j ) :=
4
π

∫ π/2

0

∫
∞

0

[H(xeiθ , b j )]+

x3 dx dθ,

where H(α, `, r) was defined in (1-14). The cusps do not contribute to the asymptotics of τ(s) to leading
order, so we make no analogous definition for C j .

Theorem 4.1. For (X, g) a surface with hyperbolic ends as in (1-3), there exists an unbounded set
3⊂ [1,∞) such that

2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ ≤
nf∑

j=1

B(Y j )a2
+ o(a2) for all a ∈3.

Before undertaking the proof of Theorem 4.1, we will show how this theorem leads to the proof of
the main result stated in Section 1:

Proof of Theorem 1.4. Starting from the counting formula from Corollary 3.2, we apply Theorem 3.3 to
the scattering phase term and Theorem 4.1 to the scattering determinant contribution. This yields

ÑP(a)≤ Ñ0(a)+
1

2π
0-vol(X, g)a2

+

nf∑
j=1

B(Y j )a2
+ o(a2), (4-1)

as a→∞. From the explicit definition (3-3) of R0, we see that

N0(t)
t2 ∼

nf∑
j=1

{
1 for a hyperbolic planar end,
` j/4 for a funnel end,
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and so Ñ0(a) satisfies the same asymptotic. Also, we have

0-vol(X, g)= vol(Xc, g)+
nf∑

j=1

0-vol(Y j , g).

The 0-volumes of the Y j are easily computed. For a hyperbolic planar end,

0-vol(Y j , g)= 2π FP
ε→0

∫ log(2/ε)

b j

sinh r dr =−2π cosh b j ,

and for a funnel end,

0-vol(Y j , g)= ` j FP
ε→0

∫ log(2/ε)

b j

cosh r dr =−` j sinh b j .

By the formulas (1-13) and (1-10) for A(Y j ), we see that (4-1) is equivalent to the claimed estimate. �

The derivation of Theorem 1.1 from Theorem 1.4 was already explained in Section 1. To prove
Corollary 1.2 we simply recall a few details of the proof of the lower bound in Guillopé and Zworski
[1997, Theorem 1.3]. For a test function φ ∈ C∞0 (R+) with φ ≥ 0 and φ(1) > 0, we have estimates

|φ̂(ξ)| ≤ Ck(1+ |ξ |)−k−2 for k ∈ N and Im ξ ≤ 0.

Pairing the distributional Poisson formula [Guillopé and Zworski 1997, Theorem 5.7] with λφ(λ · ) yields

|0-vol(X, g)| λ2
≤ Ck

∫
∞

0
(1+ r)−k−3 NP(λr) dr.

If we have NP(t)≤ At2 for t ≥ 1, then splitting the integral at a gives

|0-vol(X, g)| λ2
≤ Ck

(
N (λa)+ Aλ2a−k).

Setting t = λa, we have
N (t)≥

(
ck |0-vol(X, g)| a−2

− Aa−2−k) t2,

and optimizing with respect to a then yields

N (t)≥ ck |0-vol(X, g)|1+k/2 A−k/2.

Corollary 1.2 is then proven by substituting the constant obtained in Theorem 1.1 for A.
The rest of this section is devoted to the proof of Theorem 4.1. To produce a formula convenient for

estimation, we introduce cutoff functions as follows. Fix some η ∈ (0, 1). For j = 1, . . . , nf + nc and
k = 1, 2, we define χ j

k ∈ C∞(X) so that χ j
k = 1 outside the j-th end (Y j or C j ), and inside the j-th end

we have

χ
j

k =

{
0 for r ≥ b j + (k+ 1)η,
1 for r ≤ b j + kη.

(4-2)

Note that χ j
2 = 1 on the support of χ j

1 , as illustrated in Figure 4.
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1

r
η

b j

χ
j

1
χ

j
2

Figure 4. The cutoff functions χ j
k in the j-th end.

Proposition 4.2. With cutoffs defined as in (4-2), we have

SX (s)S0(s)−1
= I + Q(s),

where the components of Q(s), in terms of the block decomposition introduced in (3-1), are

Qff
i j (s)= (2s− 1)E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(1− s),

Qcf
i j (s)= (2s− 1)E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(1− s),

Qfc
i j (s)=−(2s− 1)E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1C j , χ

j
1 ]E

0
C j
(s),

Qcf
i j (s)=−(2s− 1)E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1C j , χ

j
1 ]E

0
C j
(s),

Proof. One can characterize the scattering matrix SX (s) through the boundary behavior of solutions of
(1g − s(1− s))u = 0. For ψ ∈ C∞(∂∞X) and Re s ≥ 1

2 , with s 6= N/2, there is a unique generalized
eigenfunction u ∈ C∞(X) with the asymptotic behavior

u ∼ ρ1−s
f ρ−s

c ψ + ρs
f ρ

s−1
c SX (s)ψ. (4-3)

For hyperbolic surfaces with cusps, a proof is given in Borthwick [2007, Proposition 7.13]. The essential
analysis takes place in the ends, so including smooth metric or potential perturbations within K requires
only trivial modifications to the proof. Likewise, hyperbolic planar ends may be included without much
change to the argument.

Suppose f j ∈C∞(∂∞Y j ). Then we can use the model Poisson kernel E0
Y j
(s) to create a partial solution

(1−χ j
1 )E

0
Y j
(s) f j supported in Y j . As ρ→ 0 in Y j , this function has the asymptotic behavior

(1−χ j
1 )E

0
Y j
(s) f j ∼

1
2s−1

(ρ1−s
f f j + ρ

s
f S0

Y j
(s) f j ). (4-4)

To create a full solution, we will take the ansatz

u = (1−χ j
1 )E

0
Y j
(s) f j + u′

and then solve (1g − s(1− s))u = 0 for u′ by applying the resolvent. The result is

u′ = RP(s)[1Y j , χ
j

1 ]E
0
Y j
(s) f j .
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In the end Yi , we can use the fact that (1−χ i
2)[1Y j , χ

j
1 ] = 0 to deduce

(1Yi − s(1− s))(1−χ i
2)u
′
=−[1Yi , χ

i
2]u
′,

and hence that
(1−χ i

2)u
′
=−R0

Yi
(s)[1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j .

This gives the asymptotic behavior in Yi :

u′ ∼−ρs
f E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j . (4-5)

By comparing the asymptotics (4-4) and (4-5) to the general form (4-3), we see that

Sff
i j (s)= δi j S0

Y j
(s)− (2s− 1)E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s)

We then obtain Qff
i j (s) by noting that

E0
Y j
(s)S0

Y j
(s)−1

=−E0
Y j
(1− s).

To find Qcf
i j (s) we use the same setup starting from f j ∈C∞(∂∞Y j ), but then analyze u′ by restricting

to the cusp end Ci . This yields

(1−χ i
2)u
′
=−R0

Ci
(s)[1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j .

The asymptotic behavior in Ci is given by

(1−χ i
2)u
′
∼−ρs−1 E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s) f j ,

so that
Scf

i j (s)=−(2s− 1)E0
Ci
(s)t [1Ci , χ

i
2]RP(s)[1Y j , χ

j
1 ]E

0
Y j
(s).

Next take a j ∈ C∞(∂∞C j ) = C. Since E0
C j
(s; r) = ρ−s

c /(2s − 1), our ansatz for a generalized
eigenfunction satisfying (4-3) starts from

(1−χ j
1 )E

0
C j
(s)a j ∼

1
2s−1

ρ−s
c a j .

The corresponding generalized eigenfunction is

u = (1−χ j
1 )E

0
C j
(s)a j + u′, where u′ = RP(s)[1C∞, χ

j
1 ]E

0
C j
(s)a j .

arguing as above, we find that

u′ ∼−ρs
f E0

Yi
(s)t [1Yi , χ

i
2]RP(s)[1C∞, χ

j
1 ]E

0
C j
(s)a j

in the funnel Yi , and

u′ ∼−ρ1−s
c E0

Ci
(s)t [1Ci , χ

i
2]RP(s)[1C j , χ

j
1 ]E

0
C j
(s)a j

in the cusp Ci . We can then read off the matrix elements, Sfc
i j (s) and Scc

i j (s), as above. �
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In conjunction with the cutoffs defined in (4-2), we introduce projections 1 j
k on L2(X, dg), where

1
j
k f =

{
f for r ∈ [b j + kη, b j + (k+ 1)η] in end j,
0 otherwise.

(4-6)

As with the cutoffs, these projections depend on b j and also on the choice of η > 0. We then introduce
operators on L2(X, dg) given by

G j (s) := (2s− 1)1 j
1 E0

Y j
(1− s)E0

Y j
(s)t1 j

2 for j = 1, . . . , nf, (4-7)

G j (s) := −(2s− 1)1 j
1 E0

C j
(s)E0

C j
(s)t1 j

2 for j = nf+ 1, . . . , nf+ nc. (4-8)

Proposition 4.3. The relative scattering phase is bounded by

log|τ(s)| ≤
nf+nc∑

j=1

log det(I +C(η, ε)|G j (s)|)

for Re s ≥ 1
2 with dist(s(1− s), σ (P))≥ ε.

Proof. In the formula for the relative scattering matrix given in Proposition 4.2, we can write Q(s) as
the composition of three operators,

Q(s) : L2(∂∞X)
Q3
−→ L2(X, dg)

Q2
−→ L2(X, dg)

Q1
−→ L2(∂∞X),

where

Q1 :=

nf∑
j=1

E0
Y j
(s)t1 j

2 +

nf+nc∑
j=nf+1

E0
C j
(s)t1 j

2, Q2 :=

nf+nc∑
i, j=1

[1g, χ
i
2]RP(s)[1g, χ

j
1 ],

Q3
∣∣

L2(∂∞Y j )
:= 1

j
1 E0

Y j
(1− s), Q3

∣∣
L2(∂∞C j )

:= 1
j
1 E0

C j
(s).

By the cyclicity of the trace,

τ(s)= det(I + Q(s))= det(I + Q2 ◦ Q3 ◦ Q1).

Under the assumptions Re s ≥ 1
2 with dist(s(1− s), σ (P)) ≥ ε, we can apply the spectral theorem and

standard elliptic estimates to prove that ‖Q2‖ ≤ C(η, ε). By the Weyl estimate this then gives

|τ(s)| ≤
∞∏
j=1

(1+C(η, ε)µ j (Q3 ◦ Q1))= det(1+C(η, ε)|Q3 ◦ Q1|)

The result follows immediately from

Q3 ◦ Q1 = G1⊕ · · ·⊕Gnf+nc,

where the G j (s) are given by (4-7) and (4-8). �

The right side of the estimate from Proposition 4.3 is always positive. It is therefore impossible to
obtain a sharp estimate by this approach in cases where the leading asymptotic behavior of log|τ(s)| is
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negative. The extended funnel, whose resonance asymptotics are studied in Section 8, gives an example
of this situation.

Proof of Theorem 4.1. Let R0 be the background resonance set as defined in (3-3). To avoid poles, we
will restrict our attention to radii in the set

3 :=
{
a ≥ 1 : dist

(
{|s− 1

2 | = a},R0 ∪RP
)
≥ a−3}.

Since N0(t) and NP(t) are O(t2), the density of 3 in [1, r) approaches 1 as r→∞.
If we assume that 0≤ θ ≤ π/2− εa−2, then s = 1

2 + aeiθ will satisfy the hypothesis that

dist(s(1− s), σ (P))≥ ε

for Proposition 4.3. We also assume a ∈ 3 throughout this argument. If Y j is a funnel end, then
Proposition 6.3 gives

log det(I +C(η, ε)|G j (
1
2 + aeiθ )|)≤ κ j (θ, b j + 4η)a2

+C(η, ε, b j )a log a, (4-9)

where

κ j (θ, r) := 2
∫
∞

0

[I (xeiθ , ` j , r)]+
x3 dx − 1

2` j sin2 θ,

If Y j is hyperbolic planar, the corresponding estimate follows from [Borthwick 2010, Proposition 5.4],
with

κ j (θ, r) := 2
∫
∞

0

[H(xeiθ , r)]+
x3 dx,

(A slight modification of the original proof is required, replacing the assumption a ∈N with an estimate
based on dist( 1

2 − aeiθ ,−N).)
For a cusp end C j , it is easy to estimate directly since

E0
C j
(s)= esr

2s−1
,

which gives

G j (s; r, θ, r ′, θ ′)=−
1

2s−1
1 j,1(r)es(r+r ′)

1 j,2(r ′).

This operator has rank one, so that

det(I + c|G j (s)|)= 1+ cµ1(G j (s)),

where the sole singular value is given by

µ1(G j (s))=
1

|2s−1|

(∫ b j+2η

b j+η

e2r Re se−r dr
)1/2(∫ b j+3η

b j+2η
e2r Re se−r dr

)1/2
.

Hence we have
det(I + c|G j (

1
2 + aeiθ )|)≤ 1+ c

2a
e2a(b j+3η).
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For a sufficiently large,

log det(I +C(η, ε)|G j (
1
2 + aeiθ )|)≤ C(η, ε, b j )a for all |θ | ≤ π/2. (4-10)

From (4-9) and (4-10) we conclude that

log|τ( 1
2 + aeiθ )|

a2 ≤

nf∑
j=1

κ j (θ, b j + 4η)+C(η, ε, b j )a−1 log a (4-11)

for a ∈3 and 0≤ θ ≤π/2−εa−2. Since the κ j (θ, r) are uniformly continuous on [0, π/2]×[b j , b j+1],
we can take η→ 0 in (4-11), to obtain

log|τ(1
2 + aeiθ )|

a2 ≤

nf∑
j=1

κ j (θ, b j )+ o(a2), (4-12)

uniformly for 0≤ θ ≤ π/2− εa−2.
By integrating the estimate (4-12) over θ , we obtain

2
π

∫ π/2−εa−2

0
log|τ( 1

2 + aeiθ )| dθ ≤
nf∑

j=1

B(Y j )a2
+ o(a2).

It remains to fill in the small gap where |θ | is close to π/2. The factorization given by Proposition 3.1,
together with the minimum modulus theorem [Boas 1954, Theorem 3.7.4], implies that for any η > 0,

|τ( 1
2 + aeiθ )| ≤ Cη exp(a2+η), (4-13)

provided a ∈3. (This was the reason that RP was included in the definition of 3.) Thus,

2
π

∫ π/2

π/2−εa−2
log|τ( 1

2 + aeiθ )| dθ = O(aηε),

and so this term can be absorbed into the o(a2) error. �

To conclude this section, we’ll derive some uniform upper and lower bounds on the growth of τ(s)
for s ∈ C, refining the estimates that one could obtain directly from Proposition 3.1. These will prove
useful in Section 7 and Section 8, in particular.

Lemma 4.4. Let Q denote the joint set of zeros and poles of τ( 1
2 + z) and τ(1

2 − i z). Assuming |z| ≥ 1
and dist(z,Q) > |z|−β with β > 2, we have

−c(β)|z|2 ≤ log|τ( 1
2 + z)| ≤ C(β)|z|2.

Proof. Since τ(1
2 − z)= 1/τ( 1

2 + z) and τ(1
2 + z̄)= τ( 1

2 + z), it suffices to prove the bounds for z in the
first quadrant.

For Re z ≥ δ with δ > 0, the upper bound is given in (4-11). As long as δ < 1, the function τ(s) is
analytic in the strip Re z ∈ [0, δ]. And since log|τ(1

2 + z)| = 1 for Re z = 0, the bound log|τ(1
2 + z)| =

O(|z|2) extends to the strip Re z ∈ [0, δ] by (4-13) and the Phragmén–Lindelöf theorem.
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To prove the lower bound, consider the Hadamard products appearing in the factorization of τ(s) given
in Proposition 3.1. These products are of order 2 but not finite type, so applying the minimum modulus
theorem directly would give − log|τ(1

2 + z)| = O(|z|2+η), away from the zeros. However, Lindelöf’s
theorem (see e.g., [Boas 1954, Theorem 2.10.1]) shows that products of the form H∗( 1

2 + z)H∗( 1
2 ± i z)

are of finite type. In other words,

log|H∗(1
2 + z)H∗(1

2 ± i z)| ≤ C |z|2,

as |z| → ∞. Using these estimates, and their implications via the minimum modulus theorem, we can
prove a lower bound

log|τ(1
2 + z)| ≥ −c(β)|z|2− log|τ(1

2 ± i z)|, (4-14)

provided 1
2+z and 1

2± i z stay at least a distance |z|−β away from the sets 1−RF`,r0
and RF` , with β > 2.

Assuming arg z ∈ [0, π/2], we already know log|τ(1
2 − i z)| ≤ C(β)|z|2 from above, provided 1

2 − i z
stays at least a distance |z|−β away from the sets RF`,r0

and 1−RF` . The lower bound in the first quadrant
then follows from (4-14). �

5. Funnel eigenmodes

Let F` be a hyperbolic funnel of diameter `. In geodesic coordinates (r, θ) ∈ R+ × S1, defined with
respect to the closed geodesic neck, the metric is

g0 = dr2
+ cosh2 r dθ2

ω2 , where ω := 2π
`
. (5-1)

The Laplacian is given by

1F` =−∂
2
r − tanh r ∂r −

ω2

cosh2 r
∂2
θ . (5-2)

In this section we will consider asymptotic properties of the Fourier modes of generalized eigenfunctions
of 1F` .

The restriction of eigenvalue equation (1F` − s(1− s))u = 0 to the k-th Fourier mode, u =w(r)eikθ ,
yields the equation

−∂2
r w− tanh r ∂rw+

(
k2ω2

cosh2 r
− s(1− s)

)
w = 0. (5-3)

This is essentially a hypergeometric equation. With respect to the symmetry r 7→ −r , we have an even
solution,

w+k (s; r) := (cosh r)iωkF(1
2(s+ iωk), 1

2(1− s+ iωk); 1
2 ;− sinh2 r), (5-4)

and an odd solution,

w−k (s; r) := sinh r(cosh r)iωkF( 1
2(1+ s+ iωk), 1

2(2− s+ iωk); 3
2 ;− sinh2 r). (5-5)

(We follow Olver’s convention in using F(a, b; c; z) := F(a, b; c; z)/0(c), where F(a, b; c; z) is the
standard Gauss hypergeometric function.)
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By symmetry, we can and will assume that k ≥ 0. If we substitute w = (cosh r)−1/2U and introduce
the parameter α defined by s = 1

2 + kα, the coefficient equation (5-3) becomes

∂2
r U = (k2 f + g)U, (5-6)

where

f := ω
2
+α2 cosh2 r
cosh2 r

and g := 1
4 cosh2 r

.

This equation has turning points when α=±iω/ cosh r . We will restrict our attention to argα ∈ [0, 1
2π ],

so that we only consider the upper turning point. The Liouville transformation involves a new variable
ζ defined by integrating √

ζ dζ :=
√

f dr, (5-7)

on a contour that starts from the upper turning point. Integrating (5-7) yields

(2/3)ζ 3/2
= φ, (5-8)

where φ(α, r), the integral of
√

f dr from the turning point, is given explicitly by

φ(α, r) := α log

(
α sinh r +

√
ω2+α2 cosh2 r

√
ω2+α2

)

+
iω
2

log

(√
ω2+α2 cosh2 r − iω sinh r√
ω2+α2 cosh2 r + iω sinh r

)
+φ0(α) (5-9)

for α 6= iω, where
φ0(α)= φ(α; 0)=− 1

2π(iα+ω). (5-10)

By continuity, the definition of φ extends to α = iω, with

φ(iω, r)= iω log cosh r.

To complete the Liouville transformation, we set W = ( f/ζ )1/4U , so that (5-6) becomes an approxi-
mate Airy equation,

∂2
ζ W = (k2ζ +ψ)W, (5-11)

with the extra term given by

ψ =
ζ

4 f 2 ∂
2
r f −

5ζ
16 f 3 (∂r f )2+

ζg
f
+

5
16ζ 2 . (5-12)

The solutions of (5-11) are of the form

Wσ := Ai(k2/3e2π iσ/3ζ )+ hσ (k, α, r), (5-13)

where σ = 0 or ±1, and the error term satisfies the differential equation

∂2
ζ hσ − k2ζhσ = (hσ +Ai(k2/3e2π iσ/3ζ ))ψ. (5-14)
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Using methods from Olver [1974] we can control this error term.

Lemma 5.1. The error equation (5-14) admits solutions that satisfy limr→∞ hσ (r)= 0 and

|hσ | ≤ Ck−1
|α|−2/3(1+ |kφ|1/6)−1e(−1)σ+1k Reφ,

with C independent of r , k and α.

We will defer the rather technical proof of Lemma 5.1 to the end of this section, in order to concentrate
on the implications of (5-13). The asymptotics of the Airy function are well known; see for example
[Olver 1974, Section 11.8]. Uniformly for |arg z|< π − ε, we have

Ai(z)= 1
2π1/2 z−1/4 exp(− 2

3 z3/2)(1+ O(|z|−3/2)). (5-15)

And uniformly for |arg z| ≥ 1
3π + ε,

Ai(z)= 1
π1/2 (−z)−1/4 cos( 2

3(−z)3/2− 1
4π)(1+ O(|z|−3/2)). (5-16)

These asymptotics make it convenient to introduce a pair of solutions of the eigenvalue equation (5-3)
defined by

wσ = 2π1/2eiπσ/6k1/6ζ 1/4(ω2
+α2 cosh2 r)−1/4Wσ , (5-17)

where Wσ is the ansatz (5-13) for σ = 0 or 1.

Proposition 5.2. Consider the solutions of the equation

(1F` −
1
4 − k2α2)eikθwσ (r)= 0

given by (5-17) with σ = 0 or 1. Assuming k ≥ 1 and argα ∈ [0, 1
2π − ε], we have asymptotics

wσ = (ω
2
+α2 cosh2 r)−1/4 exp

(
(−1)σ+1kφ

)(
1+ O(|kα|−1)

)
, (5-18)

with constants that depend only on ε. In addition, for argα ∈ [0, π/2] and |kα| sufficiently large, we
have the upper bounds

|wσ | ≤ Ck1/6 exp((−1)σ+1k Reφ), (5-19)

and the lower bound
|w0| ≥ ce−k Reφ. (5-20)

Proof. The assumption that argα ∈ [0, π/2− ε] implies that arg ζ ∈ [−2π/3, π/3− ε], so that (5-15)
applies to both w0 and w1 in this case. It also implies that |φ| ≥ c(ε)(|α| + 1), so that the error
term O(|w|−3/2) from (5-15) becomes O(|kα|−1) when applied to |w| = k2/3

|ζ |. In combination with
Lemma 5.1, this proves (5-18), and also (5-19) and (5-20) in the case where argα is bounded away from
π/2.

If argα ∈ [π/2− ε, π/2], then (5-15) and (5-16), together with Lemma 5.1, give the estimates

|k1/6ζ 1/4Wσ | ≤ C exp
(
(−1)σ+1k Reφ

)
, (5-21)
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and
|k1/6ζ 1/4W0| ≥ ce−k Reφ, (5-22)

If |ω2
+ α2 cosh2 r | ≥ 1, which bounds φ away from 0, then this gives (5-19) immediately. This leaves

the case |ω2
+ α2 cosh2 r | ≤ 1, which puts φ close to zero. In this case, ζ � (ω2

+ α2 cosh2 r), so that
wσ � k1/6Wσ . Then if |kφ| ≥ 1 we can derive the estimates from (5-21) and (5-22), while for |kφ| ≤ 1
we simply note that Wσ is bounded and nonzero near the origin. �

Another detail we will need later is the asymptotic behavior of wσ as r→∞.

Lemma 5.3. For Reα ≥ 0, as r→∞,

w0 ∼ α
−1/2e−k(φ0(α)+γ (α))ρ1/2+kα,

and
w1 ∼ α

−1/2ek(φ0(α)+γ (α))(ρ1/2−kα
+ iρ1/2+kα)

where ρ := 2e−r , and

γ (α) := α log 2α
√
ω2+α2

+
iω
2

log α−iω
α+iω

. (5-23)

Proof. The results follow immediately from (5-15) and (5-16), in combination with the asymptotic

φ(α; r)= αr +φ0(α)+α log α
√
ω2+α2

+
iω
2

log α−iω
α+iω

+ O(r−1), (5-24)

as r→∞. �

We conclude the section with the proof of the error estimate that is the basis of Proposition 5.2 and
Lemma 5.3.

Proof of Lemma 5.1. The cases of different σ are all very similar, so we consider only σ = 0. In this
case combining the boundary condition with variation of parameters allows us to transform (5-14) into
an integral equation:

h0(k, α, r)=
2πe−iπ/6

k2/3

∫
∞

r
K0(r, r ′)ψ(r ′)

(
h0(k, α, r ′)+Ai(k2/3ζ(r ′))

) f (r ′)1/2

ζ(r ′)1/2
dr ′,

where

K0(r, r ′) := Ai(k2/3ζ(r ′))Ai(k2/3e−2π i/3ζ(r))−Ai(k2/3e−2π i/3ζ(r ′))Ai(k2/3ζ(r)).

Then, using the method of successive approximations as in [Olver 1974, Theorem 6.10.2], together with
the bounds on the Airy function and its derivatives developed in [Olver 1974, Section 11.8], we obtain
the bound

|h0| ≤ Ce−k Reφ(1+ k1/6
|ζ |1/4)−1(eck−19(r)

− 1), (5-25)

where

9(r) :=
∫
∞

r
|ψ f 1/2ζ−1/2

|dr ′. (5-26)
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From (5-12), we compute

ψ f 1/2ζ−1/2
=

(
α4 cosh2 r + 4α2ω2 sinh2 r −ω4

4(ω2+α2 cosh2 r)5/2

)
ζ 1/2 cosh r +

5
16
(ω2
+α2 cosh2 r)1/2

ζ 5/2 cosh r
. (5-27)

The estimate must be broken into various regions. Fix some c > 0.

Case 1. Assume |α| ≥ 1 and |ω2
+α2 cosh2(r)| ≥ c. Under these conditions, we can estimate

|φ| � |α|(r + 1).

Then from (5-27), we find

|ψ f 1/2ζ−1/2
| ≤ C1|α|

−2/3e−2r (r + 1)1/3+C2|α|
−2/3(r + 1)−5/3.

We easily conclude that for |α| ≥ 1,∫
|ω2+α2 cosh2(r)|≥c

|ψ f 1/2ζ−1/2
|dr = O(|α|−2/3). (5-28)

Case 2. Assume |α|≤ 1 and |ω2
+α2 cosh2(r)|≥ c. The behavior of φ is now slightly more complicated,

depending on the size of r relative to |α|,

|φ| �

{
|α| + e−r for |α| sinh r ≤ 1,
|α|(r + log|α|) for |α| sinh r ≥ 1.

In this case, we estimate (5-27) by

|ψ f 1/2ζ−1/2
| ≤

{
C1(|α| + e−r )1/3er

+C2e−r (|α| + e−r )−5/3 for |α| sinh r ≤ 1,
C1(1+ |α|er )−3

|α|1/3(r + log|α|)1/3er
+C2|α|

−5/2r−5/3e−r for |α| sinh r ≥ 1.

It is then straightforward to bound, for |α| ≤ 1,∫
|ω2+α2 cosh2(r)|≥c

|ψ f 1/2ζ−1/2
|dr = O(|α|−2/3). (5-29)

Case 3. Assume |ω2
+ α2 cosh2(r)| ≤ c. In this case we are near the turning point, where φ and ζ are

small. Since |ω2
+ α2 cosh2(r)| ≤ c implies |α|2 ≤ ω2

+ c, we are only concerned with small |α| here.
We proceed as in [Borthwick 2010, Appendix]. In the coordinate z = sinh r , the turning point occurs at

z0 =

√
−1− ω

2

α2 .

Set

p(z) :=
( f

z− z0

)1/2
=
α
√

z+ z0
√

z2+ 1
. (5-30)

Because |ω2
+α2 cosh2(r)| = |α2(z2

− z2
0)|, the assumption |ω2

+α2 cosh2(r)| ≤ c implies

z � z0 � |α|
−1, (5-31)
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with constants that depend only on c. This makes it easy to estimate

|∂k
z p(z)| � |α|3/2+k, (5-32)

with constants that depend only on c and k. If we define

q(z) :=
φ

(z− z0)3/2
,

then by writing

q(z)=
∫ 1

0
t1/2 p(z0+ t (z− z0))√

((1− t)z0+ t z)2+ 1
dt,

we can deduce from (5-32) that
|∂k

z q(z)| � |α|5/2+k . (5-33)

To apply these estimates, we note that f/ζ = p2( 3
2q)−2/3. We can use this identification to apply the

bounds (5-32) and (5-33) to the formula (5-31) for ψ , obtaining

|ψ f 1/2ζ−1/2
| � |α|−2/3 for |ω2

+α2 cosh2(r)| ≤ c.

The bound ∫
|ω2+α2 cosh2(r)|≤c

|ψ f 1/2ζ−1/2
|dr = O(|α|−2/3), (5-34)

follows immediately, since the range of integration for r is O(1).
Combining the bounds (5-28), (5-29), and (5-34) gives

8(0)= O(|α|−2/3),

and the claimed estimate follows from (5-25). �

6. Funnel determinant estimates

For the model funnel F`, fix r0 ≥ 0 and for some η > 0 set

rk = r0+ kη.

Let 1k denote the multiplication operator for the characteristic function of the interval r ∈ [rk, rk+1]

in L2(F`). The operator G j (s) defined in (4-7) can be represented in the model funnel case by

G(s) := (2s− 1)11 EF`(1− s)EF`(s)
t
12 (6-1)

Our goal in this section is to prove the sharp bound on log det(1 + c|G(s)|) used in the proof of
Theorem 4.1.

To proceed we must analyze the Fourier decomposition of EF`(s). Because of the circular symmetry,
the Poisson kernel on F` admits a diagonal expansion into Fourier modes:

EF`(s; r, θ, θ
′)=

1
`

∑
k∈Z

ak(s; r)eik(θ−θ ′) (6-2)
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The coefficients ak(s; r) satisfy (5-3) with the boundary condition ak(s; 0)= 0, so we must have

ak(s; r)= ck(s)w−k (s; r), (6-3)

where w−k is the odd solution (5-5). To compute the normalization constant ck(s), we use the fact that

(2s− 1)ak(s; r)∼ ρ1−s
+ [SF`(s)]kρ

s as ρ→ 0, (6-4)

where [SF`(s)]k is the k-th matrix element of the scattering matrix S`(s). Applying the appropriate
Kummer identity [Olver 1974, Equation (5.10.16)] to the hypergeometric function in (5-5) gives

ak(s; r)∼ ck(s)
(
0(1

2 − s)βk(2− s)ρs
+0(s− 1

2)βk(1+ s)ρ1−s),
where

βk(s) :=
1

0(1
2(s+ikω)))0(1

2(s−ikω)))
. (6-5)

By comparing this asymptotic to (6-4), we can read off the coefficient

ck(s)=
2s− 1

0(s− 1
2)βk(1+ s)

,

as well as the scattering matrix element

[SF`(s)]k =
0( 1

2 − s)βk(2− s)

0(s− 1
2)βk(1+ s)

. (6-6)

For future reference we note also that

ak(1− s; r)=−
ak(s; r)
[SF`(s)]k

. (6-7)

and
ak(s; r)= a−k(s; r) (6-8)

We can express the singular values of G(s) in terms of the coefficients ak(s; r). Up to reordering,
these singular values are given by

λk(s) := |2s− 1|
(∫ r2

r1

|ak(1− s; r)|2 cosh r dr
)1/2(∫ r3

r2

|ak(s; r)|2 cosh r dr
)1/2

for k ∈ Z. (6-9)

To prove this, we note that λk(s)2 is the eigenvalue of G∗G(s) corresponding to the eigenfunction
χ[r2,r3](r)ak(s; r)e−ikθ . Also, it is easy to see from (6-1) and (6-2) that these are the only nonzero
eigenvalues.

Using (6-7) to replace ak(1− s) by ak(s), and assuming η ≤ 1, we can estimate

λk(
1
2 + kα)≤

∣∣2kαak(
1
2 + kα; r3)

2
[SF`(

1
2 − kα)]k cosh r3

∣∣. (6-10)

We will first estimate the various components. Recall that the matrix elements of SF`(s) were expressed
in terms of the function βk defined in (6-5).
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Lemma 6.1. For k > 0 and argα ∈ [0, 1
2π ], if we assume dist(kα,N0)≥ δ then we have

log
∣∣[SF`(

1
2 − kα)]k

∣∣≥ 2k Re γ + 2k[Reφ0]−−C(δ),

where γ (α) was defined in (5-23). If instead we assume that dist(1
2 − kα,RF`)≤ |kα|

−β , then

log
∣∣[SF`(

1
2 − kα)]k

∣∣≤ 2k Re γ + 2k[Reφ0]−+C(β) log|kα|.

Proof. Consider the matrix element (6-6). For Reα ≥ 0, we can apply Stirling’s formula directly to
obtain

log0(kα)βk(
3
2 + kα)= kγ (α)− 1

2 logπk2α
√
ω2+α2+ O(|kα|−1),

To estimate the other term, we must avoid zeros and poles. For Re z ≤ 0, applying Stirling via the
reflection formula gives

log|0(z)| ≤ Re
(
(z− 1

2) log(−z)− z
)
−π |Im z| + log(1+ dist(z,−N0)

−1)+ O(1),

and
log|0(z)| ≥ Re

(
(z− 1

2) log(−z)− z
)
−π |Im z| + O(1).

If we assume that dist(kα,N0)≥ δ, then we obtain the upper bound

log
∣∣0(−kα)βk(

3
2 − kα)

∣∣≤−k Re γ (α)− 2k[Reφ0]−−
1
2 log k2α

√
ω2+α2+C(δ).

For a lower bound, we need to assume that dist(kα,RF`)≥ |kα|
−β , and then we find that

log
∣∣0(−kα)βk(

3
2 − kα)

∣∣≥−k Re γ (α)− 2k[Reφ0]−−
1
2 log k2α

√
ω2+α2−C(β) log|kα|. �

Lemma 6.2. Assuming that Reα ≥ 0, k > 0, and dist( 1
2 − kα,RF`)≤ |kα|

−β , we have

log λk(
1
2 + kα)≤ 2k Reφ(α; r3)− 2k[Reφ0(α)]++ O(log |kα|).

Proof. By conjugation we can assume argα ∈ [0, 1
2π ]. Then ak(

1
2 + kα; r) can be expressed in terms of

the solutions wσ from Proposition 5.2. To satisfy the Dirichlet boundary condition, it must be a constant
multiple of w0(0)w1(r)−w1(0)w0(r). Lemma 5.3 gives the asymptotic behavior of this expression as
r→∞, allowing us to deduce the constant. After comparing to (6-4), we find that

ak(
1
2 + kα; r)= 1

2kw0(0)
α−1/2e−k(φ0(α)+γ (α))

(
w0(0)w1(r)−w1(0)w0(r)

)
(6-11)

The estimate ∣∣ak(
1
2 + kα; r)

∣∣≤ Ck1/6ek Re(φ(α,r)−φ0(α)−γ (α)), (6-12)

for |kα| sufficiently large, then follows immediately from (5-19) and (5-20). The result now follows from
applying Lemma 6.1 and (6-12) in (6-10). �

Proposition 6.3. Assuming that η≤ 1, 0≤ θ ≤ π/2, and dist( 1
2−aeiθ ,RF`)≥ a−β for some fixed β > 1,

we have
log det

(
I + c|G(1

2 + aeiθ )|
)
≤ κ(θ, r4)a2

+C(c, r0, β)a log a,
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iω

iω
cosh2 r

Reφ0 > 0

Reφ > 0> Reφ0

Reφ < 0
α = %(θ)eiθ

Figure 5. Positive and negative regions for Reφ(α; r) and Reφ0(α), shown for r = 1.

where

κ(θ, r)= 2
∫
∞

0

[I (xeiθ , `, r)]+
x3 dx − 1

2` sin2 θ, (6-13)

with I (xeiθ , `, r) := 2 Reφ(xeiθ
; r), which agrees with the definition (1-11).

Proof. We start from the expression for the determinant in terms of the singular values,

det(I + c|G(1
2 + aeiθ )|)=

∏
k∈Z

(1+ cλk(
1
2 + aeiθ )).

By the conjugation symmetry, we can assume θ ∈ [0, 1
2π ]. Let %(θ) be the implicit solution of the

equation Reφ(%(θ)eiθ , r3)= 0, as illustrated in Figure 5.
Note that Reφ0(xeiθ )= 0 in a neighborhood of x = %(θ). For some δ > 0, we subdivide the sum in

log det
(
I + c|G( 1

2 + aeiθ )|
)
= 2

∞∑
k=1

log(1+ cλk(
1
2 + ai eiθ ))+ O(a log a)

at values where ai/k = %(θ) and (1− δ)%(θ). The dominant part of the sum is

6+ :=
∑

1≤k≤a/%(θ)

log(1+ cλk(
1
2 + aeiθ )).

Assuming that a ∈ {ai }, Lemma 6.2 gives the bound

6+ ≤
∑

1≤k≤a/%(θ)

2k
(
Reφ(aeiθ/k; r3)− [Reφ0(aeiθ/k)]+

)
+C(c, r0, β)a log a.

Because the summand is a decreasing function of k, we may estimate the sum by the integral

6+ ≤

∫ a/%(θ)

0
2k
(
Reφ(aeiθ/k; r3)− [Reφ0(aeiθ/k)]+

)
+C(c, r0, β)a log a
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Substituting x = a/k gives∫ a/%(θ)

0
2k Reφ(aeiθ/k; r3) dk = 2a2

∫
∞

%(θ)

Reφ(xeiθ
; r3)

x3 dx .

We can also compute that∫ a/%(θ)

0
2k[Reφ0(aeiθ/k)]+ dk = πa2

∫
∞

ω/ sin(θ)

x sin θ −ω
x3 dx =

πa2

2ω
sin θ.

Comparing to (6-13), we conclude that

6+ ≤ κ(θ, r3)a2
+C(c, r0, β)a log a.

The middle term is given by

60 :=
∑

a/%(θ)≤k≤a/(1−δ)%(θ)

log(1+ cλk(
1
2 + aeiθ )),

Since I (α, `, r3)= O(δ) for k in this range, the same integral estimate used for 6+ gives

|60| ≤ C(c, r0, β)δa2
+C(c, r0, β)a log a.

Finally, we set

6− :=
∑

k≥a/(1−δ)%(θ)

log(1+ cλk(
1
2 + aeiθ )).

For k in this range, I (α, `, r3)≤−Cδ and we can estimate

|6−| ≤ C(c, r0, β, δ)e−ca for some c > 0.

Adding together the estimates for 6+, 60, and 6− gives

log det
(
I +C |G( 1

2 + aeiθ )|
)
≤ κ(θ, r3)a2

+C(c, r0, β)(δa2
+ a log a)+C(c, r0, β, δ)e−ca

We can absorb the δa2 term into the first term by replacing r3 by r4, assuming that η = O(δ), since
κ(θ, · ) is strictly increasing. This yields the claimed estimate. �

7. Resonance asymptotics for truncated funnels

Inside the model funnel F`, with metric given by (5-1), we let F`,r0 denote the truncated region {r ≥
r0}, with the Laplacian defined by imposing Dirichlet boundary conditions at r = r0. To compute the
associated scattering matrix elements exactly, we consider the solutions of the Fourier mode equation
(5-3) given by (5-4) and (5-5). To impose the boundary condition at r = r0, we set

uk(s; r) := w+k (s; r0)w
−

k (s; r)−w
−

k (s; r0)w
+

k (s; r). (7-1)
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The scattering matrix element may be obtained from the asymptotics of uk(s; r) as r →∞ be noting
that for any generalized eigenmode we have

uk(s; r)∼ ck,s(ρ
1−s
+ [SF`,r0

(s)]kρs) (7-2)

as r→∞, where ρ := 2e−r as before. The solutions w±k have leading asymptotics,

w+k (s; r)∼ 0(s−
1
2)βk(s)ρ1−s

+0( 1
2 − s)βk(1− s)ρs,

w−k (s; r)∼ 0(s−
1
2)βk(1+ s)ρ1−s

+0( 1
2 − s)βk(2− s)ρs

(7-3)

as r→∞, where βk(s) was defined in (6-5).
If we set

fk(s; r) := 0(s− 1
2)
(
βk(1+ s)w+k (s; r)−βk(s)w−k (s; r)

)
, (7-4)

Then from (7-2) we can read off that

[SF`,r0
(s)]k =

fk(1− s; r0)

fk(s; r0)
. (7-5)

The k-th Fourier mode thus contributes scattering poles at the values of s for which

βk(1+ s)w+k (s; r0)−βk(s)w−k (s; r0)= 0.

This function can be written in terms of a single normalized hypergeometric function, via the standard
identities, yielding

RF`,r0
=

⋃
k∈Z

{
s : F( 1

2(1+ s+ iωk), 1
2(s+ iωk); 1

2 + s;− sinh−2 r0)= 0
}
.

A sample resonance counting function is shown in Figure 6.

Theorem 7.1. For the truncated funnel with Dirichlet boundary conditions,

NF`.r0
(t)∼ A(F`.r0)t

2,

where A(F`.r0) is given by (1-10).

In conjunction with [Borthwick 2010, Theorem 1.2] for the hyperbolic planar case, this will complete
the proof of Theorem 1.3. Before giving the proof, we need some estimates of scattering matrix elements.

Lemma 7.2. Assuming that argα ∈ [0, π/2− ε] with dist(kα,N0)≥ η, we can have

log
∣∣∣∣ [SF`,r0

(1
2 + kα)]k

[SF`(
1
2 + kα)]k

− 1
∣∣∣∣≥ 2k(Reφ(α; r0)− [Reφ0(α)]+)−C(η)

for |kα| sufficiently large.
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NF`,r0
(t)

2 4 6 8 10

90

200

300

Figure 6. The resonance counting function for F`,r0 , shown for `= 2π and r0 = 1.

Proof. To estimate [SF`,r0
(s)]k , as given in (7-5), we must connect fk to the solutions wσ introduced in

(5-17). Since fk(
1
2+kα; r) is recessive as r→∞, this solution must be proportional to w0. From (7-3),

we can use the reflection formula for the gamma function to see that

fk(
1
2 + kα; r)∼

ρs

πkα
as r→∞.

By comparing this to the asymptotic from Lemma 5.3, we find that

fk(
1
2 + kα; r)= A+0 w0(r). (7-6)

where
A+0 :=

1
πk
√
α

ek(φ0+γ ).

We may also express fk(
1
2 − kα; r) in terms of the wσ ,

fk(
1
2 − kα; r)= A−0 w0(r)+ A−1 w1(r), (7-7)

for some coefficients A−0 and A−1 that are independent of r but do depend on k and α. By (7-3),

fk(
1
2 − kα; r)∼−

ρ1−s

πkα
,

and so by Lemma 5.3 we have

A−1 =−π
−1k−1α−1/2e−k(φ0+γ ). (7-8)

The other coefficient can then be computed by comparing values at r = 0,

A−0 =
1

w0(0)
(

fk(
1
2 − kα; 0)− A−1 w1(0)

)
. (7-9)

Using (7-6) to relate w0(0) to fk(
1
2 + kα; 0), we can then deduce that

[SF`,r (
1
2 + kα)]k = [SF`(

1
2 + kα)]k − e−2k(φ0+γ )

(
w1(r)
w0(r)

−
w1(0)
w0(0)

)
. (7-10)
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4

−10

Reφ((1
2 − s)/k; r0)= 0

Figure 7. Using the equation Reφ= 0 to locate the resonances of F`,r0 occurring in the
k = 7 Fourier mode, shown for `= 2π and r0 = 1.

Hence
[SF`,r (

1
2 + kα)]k

[SF`(
1
2 + kα)]k

− 1=−e−2k(φ0+γ )

(
w1(r)
w0(r)

−
w1(0)
w0(0)

)
[SF`(

1
2 − kα)]k (7-11)

For argα ∈ [0, π/2− ε], we deduce from (5-18) (using also the fact that Re(φ−φ0) > c(ε, r)) that(
w1(r)
w0(r)

−
w1(0)
w0(0)

)
= e2kφ(1+ O(|kα|−1)). (7-12)

The result then follows from (7-11) and the lower bound on [SF`(
1
2 − kα)]k provided by Lemma 6.1. �

The estimates in Lemma 7.2 give approximate locations for the resonances in RF`,r0
arising from

the k-th Fourier mode. The zeros of (7-10) correspond to resonances at s = 1
2 − kα. This requires a

cancellation between the two terms on the right side of (7-10). If Reφ > 0, then the second term is larger
by approximately e2kφ and cancellation only occurs near the poles of [SF`(s)]k ; this explains the poles of
[SF`,r0

(s)]k on the negative real axis. For Reφ= 0, the two terms in (7-10) have the same magnitude; the
resonances off the real axis in RF`,r0

thus occur near the line Reφ((1
2−s)/k; r0)= 0 (and its conjugate).

Figure 7 illustrates this phenomenon. For Reφ < 0, the first term in (7-10) is always larger than the
second and no zeros occur.

Since [SF`,r (
1
2 + kα)]k may indeed have zeros near the line Reφ = 0, proving a lower bound is more

delicate in this region. By focusing on a relatively narrow strip, we can settle for a cruder estimate on
the matrix elements in the vicinity of the zeros.

Lemma 7.3. For k ≥ 0 and Re s ≥ 1
2 and assuming dist(1− s,RF`)≥ |s|

−β with β > 2,

log
∣∣∣∣ [SF`,r0

(s)]k
[SF`(s)]k

∣∣∣∣≤ C(r0, β)(k+ |s|) log|s|.

If dist(1− s,RF`,r0
)≥ |s|−β with β > 2, then we have

log
∣∣∣∣ [SF`,r0

(s)]k
[SF`(s)]k

∣∣∣∣≥−c(r0, β)(k+ |s|) log|s|.
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Proof. From (7-4), we note that fk(s; r0)/0(s− 1
2) is an entire function of s. By Stirling’s formula and

the estimate (5-19), we can estimate its growth for large |s| and k 6= 0 by

log
∣∣∣∣ fk(s; r0)

0(s− 1
2)

∣∣∣∣≤ C(r0)(k+ |s|) log|s|),

where C is independent of k. The same estimate holds for k=0, by the classical asymptotics of the hyper-
geometric function due to Watson [Erdélyi et al. 1953, Section 2.3.2]. Assuming that dist(s,RF`,r0

) ≥

|s|−β , where β > 2, the minimum modulus theorem gives

log
∣∣∣∣ fk(s; r0)

0(s− 1
2)

∣∣∣∣≥−c(r0, β)(k+ |s|) log|s| for large |s|.

The results follow from applying these estimates to

[SF`,r0
(s)]k

[SF`(s)]k
=

fk(1− s; r0)

fk(s; r0)

fk(s; 0)
fk(1− s; 0)

. �

Proof of Theorem 7.1. We note that

NF`(t)∼
1
4`t

2 and 0-vol(F`,r0)=−` sinh r0.

By Corollary 3.2 and Theorem 4.1, the claimed asymptotic will be proved if we can show that there
exists an unbounded set 3⊂ [1,∞) such that

2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ ≥ 4a2

π

∫ π/2

0

∫
∞

0

[I (xeiθ , `, r0)]+

x3 dx − 1
4`a

2
− o(a2) (7-13)

for all a ∈3. We take

3 :=
{
a ≥ 1 : dist

(
{|s− 1

2 | = a}, RF` ∪RF`,r0
∪N0

)
≥ a−3}. (7-14)

Using the symmetry of coefficients under k→−k, and estimating the k = 0 term by Lemma 7.3, we
have

log
∣∣τ(1

2 + aeiθ )
∣∣= 2

∞∑
k=1

log
∣∣∣∣ [SF`,r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣+ O(a log a). (7-15)

Define %(θ) by Reφ(%(θ)eiθ , r0) = 0, as in the proof of Proposition 6.3, and assume for now that
θ ≤ 1

2π−ε. For δ > 0, we will split the sum (7-15) at a/k = %(θ)(1±a−1/2). Let 6+ denote the portion
of the sum with a/k ≥ %(θ)(1+ a−1/2). Under this condition, we want to derive a lower bound from
Lemma 7.2 using the inequality

log|1+ λ| ≥ log|λ| − log 2 for |λ| ≥ 2.

For a sufficiently large, we will have Reφ(xeiθ , r0)≥ ca−1/2 for x ≥%(θ)(1+a−1/2). Thus, for k≥ c
√

a
we can deduce from Lemma 7.2 that

log
∣∣∣∣ [SF`,r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣≥ 2k
(
Reφ(aeiθ/k; r3)− [Reφ0(aeiθ/k)]+

)
+ O(1).
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Arguing as in the proof of Proposition 6.3, we can then obtain

∑
c
√

a≤k≤a/(%(θ)(1+a−1/2))

log
∣∣∣∣ [SF`,r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣
≥ 2a2

∫ C
√

a

%(θ)(1+a−1/2)

Reφ(xeiθ , r0)− [Reφ0(xeiθ )]+

x3 dx − O(a log a).

For k ≤ c
√

a, Lemma 7.3 gives the estimate

∑
1≤k≤c

√
a

log
∣∣∣∣ [SF`,r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣≥−O(a3/2 log a).

On the other hand, since |Reφ(α, r)| = O(|α|) for large |α|, we also have

2a2
∫
∞

C
√

a

Reφ(xeiθ , r0)− [Reφ0(xeiθ )]+

x3 dx = O(a3/2).

We can also estimate

2a2
∫ %(θ)(1+a−1/2)

%(θ)

Reφ(xeiθ , r0)− [Reφ0(xeiθ )]+

x3 dx = O(a3/2)

since Reφ(α, `, r0) is O(δ) in the range of integration. In combination, these estimates give

6+ ≥ 2a2
∫
∞

%(θ)

Reφ(xeiθ , r0)

x3 dx −
πa2

2ω
sin2 θ − O(a3/2 log a) for a ∈3. (7-16)

Let 60 denote the portion of the sum in (7-15) for which %(θ)(1− a−1/2) < a/k < %(θ)(1+ a−1/2).
Since there are O(a1/2) values of k in this range, Lemma 7.3 gives the estimate

60 ≥−O(a3/2 log a). (7-17)

Finally, we have 6−, defined as the portion of (7-15) with a/k ≤ %(θ)(1− a−1/2). Now we wish to
apply Lemma 7.2 using

log|1+ λ| ≥ −|λ| log 4 for |λ| ≤ 1
2 .

Note that I (xeiθ , `, r0) ≤ −ca−1/2 for x ≤ %(θ)(1− a−1/2) and a sufficiently large, and that k ≥ ca in
the range of 6−. Thus for large a Lemma 7.2 yields

log
∣∣∣∣ [SF`,r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣≥−O(e−cka−1/2
),

within the scope of 6−. We conclude that

6− ≥−O(e−ca1/2
). (7-18)
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Applying the estimates (7-16), (7-17), and (7-18) to the sum (7-15) now proves the lower bound

2
π

∫ π/2−ε

0
log|τ( 1

2+aeiθ )| dθ≥
4a2

π

∫ π/2−ε

0

∫
∞

0

[2 Reφ(xeiθ , r0)]+

x3 dx−
2a2

ω

∫ π/2−ε

0
sin2 θ dθ−o(a2),

For the missing sectors, we appeal to Lemma 4.4 to see that

2
π

∫ π/2

π/2−ε
log|τ(1

2 + aeiθ )| dθ ≥−cεa2.

We can thus take ε→ 0 to complete the proof of (7-13). �

Remark. In the proof of (1-13) given in [Borthwick 2010, Theorem 1.2], the 6− term was estimated
incorrectly. This term is not necessarily positive, so the upper bound O(e−ca) does not imply a corre-
sponding lower bound. Instead, one needs to argue as in the derivation of (7-18) above. The estimates
needed for the correct argument were given in [Borthwick 2010, Equations (6.8)–(6.10)].

8. Resonance asymptotics for extended funnels

Using the same notation as in Section 7, we now consider F`,−r0 , defined as the subset r ≥ −r0 in
a hyperbolic cylinder of diameter `, where r0 ≥ 0. The metric and Laplacian are still given by (5-1)
and (5-2), so that the scattering matrix elements are easily computed in terms of hypergeometric functions
as before.

With reference to the even/odd solutions w±k defined in (5-4) and (5-5), a solution uk(s; r) to the k-th
eigenmode equation (5-3) satisfying uk(s;−r0)= 0 can be written

uk(s; r)= w+k (s; r0)w
−

k (s; r)+w
−

k (s; r0)w
+(s; r),

where w±k (s; r) are the even/odd hypergeometric solutions defined in (5-4) and (5-5). Using the asymp-
totic expansions (7-3) as r→∞, we can read off the scattering matrix elements

[SF`,−r0
(s)]k =

0( 1
2 − s)

0(s− 1
2)

βk(2− s)w+k (s; r0)+βk(1− s)w−k (s; r0)

βk(1+ s)w+k (s; r0)+βk(s)w−k (s; r0)
, (8-1)

where βk(s) was defined in (6-5).
This shows in particular that

RF`,−r0
=

⋃
k∈Z

{
s : βk(1+ s)w+k (s; r0)+βk(s)w−k (s; r0)= 0

}
.

Theorem 8.1. For the extended funnel with Dirichlet boundary conditions imposed at r =−r0, for r0≥0,
we have

NF`,−r0
(t)∼ A(F`,−r0)t

2,

where

A(F`,−r0)=
`

2π
sinh r0+

4
π

∫ π/2

0

∫
∞

0

[I (xeiθ , `,−r0)]+

x3 dx dθ, (8-2)

and I (α, `, r) was defined in (1-11).
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Proof. Since NF`(t) ∼
1
4`t

2 and 0-vol(F`,−r0) = ` sinh r0, Theorem 8.1 will follow from Corollary 3.2
and Theorem 3.3, once we establish

2
π

∫ π/2

0
log|τ(1

2 + aeiθ )| dθ = 4a2

π

∫ π/2

0

∫
∞

0

[I (xeiθ , `,−r0)]+

x3 dx dθ − 1
4`a

2
− o(a2), (8-3)

where 3 is defined again by (7-14).
As in the proof of Theorem 7.1, we start with the Fourier decomposition of the scattering matrices

and use Lemma 7.3 to estimate the k = 0 term, leaving

log|τ(1
2 + aeiθ )| = 2

∞∑
k=1

log
∣∣∣∣ [SF`,−r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣+ O(a log a). (8-4)

If we define
gk(s; r) := 0(s− 1

2)
(
βk(1+ s)w+k (s; r)+βk(s)w−k (s; r)

)
,

then by (8-1),
[SF`,−r0

( 1
2 + aeiθ )]k = gk(

1
2 − aeiθ )/gk(

1
2 + aeiθ ).

Assuming k > 0, we set kα = aeiθ . Since gk(s; · ) solves (5-3), for Reα ≥ 0, we can write

gk(
1
2 ± kα; r)= B±0 w0(r)+ B±1 w1(r),

where wσ are the solutions given in (5-17).
As r→∞, the coefficient of ρ1−s in the expansion of gk(

1
2 + kα; r) is

20(kα)2βk(
1
2 + kα)βk(

3
2 + kα)= 1

πkα

(
1−

coshπkω
sinπkα

)
[SF`(

1
2 − kα)]k . (8-5)

The coefficient of ρ1−s in gk(
1
2 − kα; r) is

0(kα)0(−kα)
(
βk(

1
2 + kα)βk(

3
2 − kα)+βk(

1
2 − kα)βk(

3
2 + kα)

)
=−

1
πkα

coshπkω
sinπkα

. (8-6)

Comparing these to the asymptotics for wσ , as given in Lemma 5.3, we see that

B+1 =
e−k(φ0+γ )

πk
√
α

(
1−

coshπkω
sinπkα

)
[SF`(

1
2 − kα)]k, (8-7)

and

B−1 =−
e−k(φ0+γ )

πk
√
α

coshπkω
sinπkα

(8-8)

We then find the B0 coefficients by evaluating at r = 0,

B±0 =
1

w0(0)
(
gk(

1
2 ± kα; 0)− B±1 w1(0)

)
. (8-9)

Since fk and gk agree at r = 0, (7-6) shows that

w0(0)= A+0 gk(
1
2 + kα; 0), where A+0 :=

1
πk
√
α

ek(φ0+γ ).



SHARP GEOMETRIC UPPER BOUNDS ON RESONANCES FOR SURFACES WITH HYPERBOLIC ENDS 549

iω

Reφ0 < 0

0< Reφ0 < Re(φ−φ0)

Reφ0 > Re(φ−φ0)

α = %1(θ)eiθ

α = %2(θ)eiθ

Figure 8. Positive and negative regions for Re(φ(α; r)−φ0(α)), shown for r = 1.

Combining these formulas gives

gk(
1
2 + kα; r)= A+0 w0(r)+ B+1

(
w1(r)−

w1(0)
w0(0)

w0(r)
)
, (8-10)

and

gk(
1
2 − kα; r)= [SF`(

1
2 + kα)]k A+0 w0(r)+ B−1

(
w1(r)−

w1(0)
w0(0)

w0(r)
)
. (8-11)

The asymptotic analysis of (8-10) is straightforward. The B+1 w1(r) term always dominates for |kα|
large and argα ∈ [0, π/2− ε], by Proposition 5.2. By applying Stirling’s formula to (8-5) we find that

gk(
1
2 + kα; r)= 1

πk
√
α
(ω2
+α2 cosh2 r)−1/4ek(φ−φ0+γ )(1+ O(|kα|−1). (8-12)

The analysis of (8-11) more complicated. This term has both zeros and poles, and different terms can
dominate for α in different regions. For α = xeiθ , the borders between these regions will be denoted
x = % j (θ) for j = 1, 2, where

Reφ0(%1(θ)eiθ )= 0 and Re
(
φ(%2(θ)eiθ

; r)− 2φ0(%2(θ)eiθ
; r)
)
= 0.

For the first curve we can be explicit, with %1(θ)= ω csc θ .
Consider first the portion of the sum (8-4) with a/k ≥ %2(θ). In this region, Reφ0 > Re(φ−φ0) and

the first term in (8-11) dominates the asymptotics. In this case, provided |kα| ∈3,

log|gk(
1
2 − kα; r)| = k Re(−φ+φ0− γ )+ O(log|kα|).

For k ≤ a/%2(θ), we thus have

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣=−2k Re
(
φ
(aeiθ

k
; r0

)
−φ0

(aeiθ

k

))
+ O(log a).
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This gives the estimate∑
1≤k≤a/%2(θ)

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣= a2
∫
∞

%2(θ)

2 Re[φ0(xeiθ )−φ(xeiθ
; r0)]

x3 dx + O(a log a). (8-13)

The region %1(θ) < a/k < %2(θ) corresponds to 0 < Reφ0 < Re(φ− φ0). In this case, the B−1 w1(r)
term dominates the asymptotics of (8-11), and we have

log|gk(
1
2 − kα; r)| = k Re(φ− 3φ0− γ )+ O(log|kα|).

Using this along with (8-12) gives

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣=−2k Reφ0(aeiθ/k)+ O(log a) for k ≤ a/%2(θ).

We conclude that∑
a/%2(θ)≤k≤a/%1(θ)

log
∣∣∣∣ [SF`,−r0

(1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣=−a2
∫
∞

%2(θ)

2 Reφ0(xeiθ )

x3 dx + O(a log a). (8-14)

The terms with Reφ0 ≤ 0 make only lower order contributions. First of all, we can prove a general
estimate,

log
∣∣∣∣ [SF`,−r0

(s)]k
[SF`(s)]k

∣∣∣∣= O((k+ |s|) log|s|),

just as in Lemma 7.3, to show that∑
%1(θ)(1−a−1/2)≤a/k≤%1(θ)

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣= O(a3/2 log a). (8-15)

For the remaining terms, we use (8-10) and (8-11) to write

[SF`,−r (
1
2 + kα)]k

[SF`(
1
2 + kα)]k

= 1+
e−k(φ0+γ )

πk
√
α

[SF`(
1
2 − kα)]k

gk(
1
2 + kα; r)

(
w1(r)−

w1(0)
w0(0)

w0(r)
)
.

This gives the estimate

log
∣∣∣∣ [SF`,−r (

1
2 + kα)]k

[SF`(
1
2 + kα)]k

− 1
∣∣∣∣≤ 2k Reφ0(α)+ O(log|kα|).

For a sufficiently large, this gives∑
a/k≤%1(θ)(1−a−1/2)

log
∣∣∣∣ [SF`,−r0

( 1
2 + aeiθ )]k

[SF`(
1
2 + aeiθ )]k

∣∣∣∣= O(e−c
√

a). (8-16)

The estimates (8-14)–(8-16) cover all terms in the sum (8-4), and together yield

log|τ(1
2 + aeiθ )| = 2a2

∫
∞

%2(θ)

2 Re(2φ0(xeiθ )−φ(xeiθ
; r0))

x3 dx − πa2

ω
sin2 θ + O(a log a)
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for a ∈3 and 0≤ θ ≤ π/2− ε.
We now integrate over θ ∈ [0, 1

2π − ε] and use Lemma 4.4 to control the limit ε→ 0, as in the proof
of Theorem 7.1. This yields

2
π

∫ π/2

0
log|τ( 1

2 + aeiθ )| dθ =
4a2

π

∫ π/2

0

∫
∞

%2(θ)

2 Re(2φ0(xeiθ )−φ(xeiθ
; r0))

x3 dx dθ − 1
4`a

2
− o(a2).

To complete the proof of (8-3), recall the definition of φ(α; r) as the integral of
√

f dr in (5-7). Since
the function f occurring there is an even function of r , the function φ−φ0 will be odd in r . (This is not
readily apparent from the definition (5-9).) This parity implies that

I (α, `,−r0)= 2 Re(2φ0(α)−φ(α; r0)). �
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