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We consider a generalized Ricci flow with a given (not necessarily closed) three-form and establish
higher-derivative estimates for compact manifolds. As an application, we prove the compactness theorem
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1. Introduction

Throughout this paper manifolds always mean smooth and closed (compact and without boundary)
manifolds. Let Mtet(M ) denote the space of smooth metrics on a manifold M, and C°° (M) the set of
all smooth functions on M. We denote by C the universal constants depending only on the dimension of
M, which may take different values at different places.

An important and natural problem in differential geometry is to find a canonical metric on a given
manifold. A classical example is the uniformization theorem (e.g., [Chow and Knopf 2004]), which says
that every smooth surface admits a unique conformal metric of constant curvature. To generalize to higher
dimensional manifolds, Hamilton [1982] introduced a system of equations

0gij
o
now called the Ricci flow, an analogue of the heat equation for metrics.

= —2Rij, (1-1)

There are two ways to understand the Ricci flow: one way comes from the two-dimensional sigma
model (see [Bakas 2007]), while another comes from Perelman’s energy functional [Perelman 2002]
defined by

F(g, f)= /M (R + |Vf|2) e~ ldvy, (g, f) €Met(M) x C®(M), (1-2)
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where R, V, and dVy, is the scalar curvature, Levi-Civita connection, and volume form of g, respectively.
He showed that the Ricci flow is the gradient flow of (1-2) and the functional % is monotonic along this
gradient flow. Precisely, under the following system

0gij af : ’
Y — _9JR;;, -~ =—R-—A \Y 1-
9 ijs 9 f +| fI , ( 3)
we have 4
—d[%(g, f)=2/ \R,-,~+V,~V,~f}2e—fdvgzo. (1-4)

Perelman’s energy functional plays an essential role in determining the structures of singularities of the
Ricci flow and then the proof of Poincaré conjecture and Thurston’s generalization conjecture; for more
details we refer readers to [Cao and Zhu 2006; Chow et al. 2006; 2007; 2008; 2010; Kleiner and Lott
2008; Morgan and Tian 2007; Perelman 2002].

Ricci flow coupled with a one-form or a two-form. 1f we consider the two-dimensional nonlinear sigma
model [Bakas 2007; Oliynyk et al. 2006], then we obtain a generalized Ricci flow that is the Ricci flow
coupled with the evolution equation for a two-form. This flow can be also obtained from the point of
view of Perelman-type energy functional.

Denoting by s4? (M) the space of p-forms on M, we consider the energy functional

FD - Met(M) x A2(M) x C®°(M) — R

defined by
508 /)= [ (R+19F = d51HP) e Ve, (1-5)
where H = dB. As showed in [Oliynyk et al. 2006], the gradient flow of F(!) satisfies
% = —2R;; —2V;V; [+ L H* Hjpy, (1-6)
aft"" = 3V H" i —3H Vi /. (1-7)
%=—R—Af+%|H|2, (1-8)
and under a family of diffeomorphisms the system (1-6)—(1-8) is equivalent to
8§;" — 2Ry + L H* Hp, (1-9)
affj =3V HY )., (1-10)
f 2, 12
= R-ASH VI H (1-11)
Using the adjoint operator d*, Equation (1-10) can be written as
By _ (@), (1-12)

ot
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and therefore (because of H = dB)

oH
o
where Ayp, = —(dd™* + d*d) denotes the Hodge—Laplace operator.
The flow (1-9)—(1-10) can be interpreted as the connection Ricci flow [Streets 2008]. If we replace
H =dBby F =dA, i.e., replace a two-form by a one-form, then the flow (1-6)—(1-7) or (1-9)—(1-10) is
exactly the Ricci Yang-Mills flow studied by Streets [2007] and Young [2008].

:—dd*HzAHLH, (1']3)

Ricci flow coupled with a one-form and a two-form. There is another generalized Ricci flow which
connects to Thurston’s conjecture —roughly stating that a three-dimensional manifold with a given
topology has a canonical decomposition into simple three-dimensional manifolds, each of which admits
one, and only one, of eight homogeneous geometries: S3, the round three-sphere; R?, the Euclidean
space; H3, the standard hyperbolic space; S2 x R; H? x R; Nil, the three-dimensional nilpotent Heisenberg
group; SI(Z, R); Sol, the three -dimensional solvable Lie group. The proof of Thurston’s conjecture can
be found in [Cao and Zhu 2006; Kleiner and Lott 2008; Morgan and Tian 2007; Perelman 2002].

To better understanding Thurston’s conjecture, Gegenberg and Kunstatter [2004] proposed a generalized
flow by considering the modified 3D stringy theory. This flow is the Ricci flow coupled with evolution
equations for a one-form and a two-form. As in (1-5), we define an energy functional

FO  Met(M) x A (M) x A2(M) x C®(M) — R
by
@(2)(g,A,B,f):/ (R+|Vf|2—ﬁ|H|2—%|F|2) e dv,. (1-14)
M

where H = dB, and F = dA. In [He et al. 2008], the authors showed that the gradient flow of g
satisfies

% = —2R;j —2V;V; [+ L H* Hypy + 2FF Fy, (1-15)

a;,- =2V;F/;—2F/;V; [, (1-16)

ag;j =3V H;j —3H*;;V f, (1-17)

L N (1-18)

and under a family of diffeomorphisms the system (1-15)—(1-18) is equivalent to

ag’;" = —2Rij + L H* Hypg + 2FF Fyy., (1-19)

W av (1-20)

9Bij _ 3V HK (1-21)

dt
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0 :
a—];:—R—Af+|Vf|2+%|H|2+|F|2. (1-22)
Using again the adjoint operator d*, we have
oF oH
— = A F., — = Ay H. 1-23
Yy HL 5 HL (1-23)

The flow (1-19)—(1-21) clearly contains the Ricci flow, the flow (1-9)—(1-10) or the connection Ricci
flow, and the Ricci Yang—Mills flow; we expect this flow can give another proof of the Poincaré conjecture
and Thurston’s generalization conjecture, with less analysis on singularities.

Main results. For convenience, we refer to GRF the generalized Ricci flow and RF(A, B) the Ricci flow
coupled with a one-form A and a two-form B.

Let (M, g) denote an n-dimensional closed Riemannian manifold with a three-form H = {H;j}. In
the first part of this paper we consider the following GRF on M :

0

o8 (X, 1) = —2Rij (x,1) + T Hio (o, 0) Hi% (x, 1), (1-24)
0

gH(x, 1) = AHL,g(x,t)H(x,t), H(x,0)=H(x), g(x,0)=g(x). (1-25)

It is clearly from (1-9) and (1-13) that the gradient flow of the energy functional FW s a special case
of (1-24)—(1-25). The corresponding case that H is closed is called the refined generalized Ricci flow
(RGRF):

d 1
=81 (x.1) = =2Rij (x.0) + 5 Higeg (x. ) Hj ¥ (. 1), (1-26)
0
EH(X’[) =_dd;(x,[)H(xat)9 H(X,O) = H(X), g(xao):g(x) (1_27)
Here d;(x n is the dual operator of d with respect to the metric g(x, t).

Lemma 1.1. Under RGRF, H(x,t) is closed if the initial value H(x) is closed.

Proof. Since the exterior derivative d is independent of the metric, we have

0 0
B_ZdH(x’ 1) = dEH(x’ t)=d(=ddy H(x,1))=0.

sodH(x,t) =dH(x) =0. O

The closedness of H is very important and has physical interpretation [Bakas 2007; Oliynyk et al.
2006]. Streets [2008] considered the connection Ricci flow in which H is the geometric torsion of
connection.

Proposition 1.2. If (g(x,t), H(x,t)) is a solution of RGRF and the initial value H(x) is closed, then it
is also a solution of GRF.

Proof. From Lemma 1.1 and the assumption we know that H(x,¢) are all closed. Hence

AHL,g(x,t)H(x,l) - _dd;(x’t)H(x,t) I:l
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For GREF, a basic and natural question is the existence. The short-time existence for RGRF has been
established in [He et al. 2008], where the authors have already showed the short-time existence for
RF(A, B) obviously including RGRF. In this paper, we prove the short- time existence for RGF.

Theorem 1.3. There is a unique solution to GRF for a short time. More precisely, let (M, g;j(x)) be an
n-dimensional closed Riemannian manifold with a three-form H = {H;jy }, then there exists a constant
T = T (n) > 0 depending only on n such that the evolution system

0
581 (% 1) = =2Rij (x. 1) + 387 (x.0)g" (x. 1) Hype (. 1) Hypg (x.1),

0
EH(-X?Z):AHL,g(X,I)H(xvt)7 H(X,O)ZH(.X), g(xso):g(x)s

has a unique solution (g;j(x,t), H;ji(x,1)) for a short time 0 <t < T.

After establishing the local existence, we are able to prove the higher derivatives estimates for GRF.
Precisely, we have the following

Theorem 1.4. Suppose that (g(x,t), H(x,t)) is a solution to GRF on a closed manifold M"™ and K is
an arbitrary given positive constant. Then for each a > 0 and each integer m > 1 there exists a constant
Cy, depending on m, n, max{«a, 1}, and K such that if

IRm(x, g,y = K, [HX)|gx) = K

forall x € M andt €0, a/ K], then

Cm

—1
|vm Rm(x, t)|g(x,t) + |va(xv t)|g(x,t) = W

(1-28)
forallx e M andt € (0,a/K].

As an application, we can prove the compactness theorem for GRF.

Theorem 1.5 (compactness for GRF). Let {(My, gi(¢), Hi(t), Ox)}ren be a sequence of complete
pointed solutions to GRF for t € [a, w) 3 0 such that:

(1) There is a constant Cy < 0o independent of k such that

Sup }ngk(xat) gi(x,10) = Co, sup |Hk(x’a)|gk(x,a) = CO'
(x,1) € M x(er,0) xEMjy,

(ii) There exists a constant 1y > 0 satisfies
injg, (0)(Ok) = to-
Then there exists a subsequence { ji }ren Such that
(Mj,., gji. (1), Hj, (1), Oj,.) > (Moo, go0(1), Hoo (1), Ooo),

converges to a complete pointed solution (Moo, 800 (1), Hoo(2), Oco), t € [, w) to GRF as k — oo.
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In the second part of this paper, we consider the Ricci flow coupled with a one-form and a two-form.
This flow is the gradient flow of %) and takes the form

d
o8 (%.0) = —2Rij + TH (x 0 Hjgg (x. 1) + 2FF (x 1) Fie (x. 1), (1-29)
9 .
5, Ai(x 1) =2V; Fli(x,0), Ai(x,0)=A4;(x), gij(x,0) = gij(x), (1-30)
d
o Bij(x,0) =3V H ;j (x.0), Bij(x,0) = Byj (x). (1-31)

Here A ={A;} and B = {B;;} is a one-form and a two-form on M, respectively, and F = dA, H = dB.
For this flow, we can also prove the short-time existence, higher derivative estimates, and the compactness
theorem.

The rest of this paper is organized as follows. In Section 2, we prove the short-time existence and
uniqueness of the GRF for any given three-form H. In Section 3, we compute the evolution equations for
the Levi-Civita connections, Riemann, Ricci, and scalar curvatures of a solution to the GRF. In Section 4,
we establish higher derivative estimates for GRF, called Bernstein—Bando—Shi (BBS) derivative estimates
(e.g., [Cao and Zhu 2006; Chow and Knopf 2004; Chow et al. 2007; 2008; 2010; Morgan and Tian
2007; Shi 1989]). In Section 5, we prove the compactness theorem for GRF by using BBS estimates. In
Section 6, based on the work of [He et al. 2008], the similar results are established for RF(A4, B).

2. Short-time existence of GRF

In this section we establish the short-time existence for GRF. Our method is standard: we use the DeTurck
trick in Ricci flow to prove its short-time existence. We assume that M is an n-dimensional closed
Riemannian manifold with metric

d5? = g;j(x) dx" dx’ (2-1)

and with Riemannian curvature tensor {ié,- jkey. We also assume that H= {FI,- jk ) 1s a fixed three-form
on M. In the following we put

hij = Hye Hi**. (2-2)
Suppose the metrics
ds? = 18i;(x,t) dx" dx’ (2-3)
are the solutions of!
J . ~ ~ ~ ~
2-8ij(x,1) = =2Rij(x.1) + hij(x.1), gij(x,0) = gij(x) (2-4)

ot
for a short time 0 <¢ < T'. Consider a family of smooth diffeomorphisms ¢; : M — M (0 <t <T) of
M. Let
ds? = @¥ds?, 0<t<T (2-5)

n the following computations we don’t need to use the evolution equation for H (x, ¢), hence we only consider the evolution
equation for metrics.
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be the pull-back metrics of d52. For coordinates system x = {x!,...,x"} on M, let
dst2 = gij(x,1) dx’ dx’ (2-6)
and
yo) = @r(x) = (), (D) (2-7)
Then we have wo
iy (v.0) = 2 2 (1), (2-8)
By the assumption g,g(x, ¢) are the solutions of
2 Gupv.0) = ~2Rap(x.1) +Ryp(r.0). Buplr.0) = Bap(x). 9
We use R;j, ﬁij, Rij; Flj, Fl’;, Fl]j, V, @, 6; hij,}?ij,ﬁ,-j to denote the Ricci curvatures, Christoffel

symbols, covariant derivatives, and products of the three-form H with respect to g;;, g;j. gi; respectively.
Then

9 ay* ayP [0 9 [9y*\ oyP % 9 [0
—gij(x, 1) = A ( —8ap (), )) Fp (L) yga,e(y,) y-—~(y)ga/3(y,t)

at axi dxJ \ ot ar ) oxJ dxt dxJ \ ot

From (2-9) we have

3 gaﬂ ayy
and
3 _ 0 ayP 3y 9P ~
8Zglj(x 1) = 8 T ) oz,B( Il Whaﬂ(y,t)
dy® ayP 0Zap 0yY D (ay )ayﬂ 0.0 + y® 9 (ayﬁ) 0. 0).
oxi axJ 9yr o oxi \ar ) oxd SV T i oy o ) BB
Since 5
ay“ 8y ay® dyP ~
Rij(.) = 252 Rap(0.). g (x.t) = S g (1),
using [Shi 1989, §2, (29)], we obtain
3 dy? dxk dy® dx
atgz;(x 1) = =2R;j(x,t) + hjj(x, 1) + V; (Way_agjk)+v ( 5 agzk) (2-10)
According to DeTurck trick, we define y(x,t) = ¢;(x) by the equation
ey
5 = 5w Ty = TG (.0 =x* (2-11)
then (2-10) becomes
d ~
—8ij(x,1) = =2R;j(x,t) + hij(x,t) + V;V; + V; Vi, gij(x,0) = gij(x), (2-12)

dt
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where
Vi = qug? (U5, —T},). 2-13)

Lemma 2.1. The evolution equation (2-12) is a strictly parabolic system. Moreover,

9 - - o o
—8ij = 8"PVaVpgij — %P 2ip®" Riugp — 8*P 2jpZ" Ringp

at
+ %gaﬂgpq (ﬁigpa : 6quﬂ + 26&'1) : 6qgiﬁ - 26Olgjp : 6/3giq - 2§jgpa : 6ﬁgiq - 2§igpa : 6;%’jq)

+ %gaﬂgquiaijﬂq-

Proof. It is an immediate consequence of Lemma 2.1 of [Shi 1989]. O

Now we can prove the short-time existence of GRF.

Theorem 2.2. There is a unique solution to GRF for a short time. More precisely, let (M, g;j(x)) be an
n-dimensional closed Riemannian manifold with a three-form H = { H;j }, then there exists a constant
T = T'(n) > 0 depending only on n such that the evolution system

0
o 81 (% 1) = =2Rij (x. 1) + 387 (x.0)g" (x. 1) Hyp (x. 1) Hjpg (x..1),

0
EH('X?t):AHL,g(.X,[)H(xst)7 H(X,O)ZH(X), g(xso):g(x)s

has a unique solution (g;j(x,t), H;ji(x,1)) for a short time 0 <t < T.

Proof. We proved that the first evolution equation is strictly parabolic by Lemma 2.1. Form the Ricci
identity, we have Ay, g(x,r)H = Ayp,g(x,r) H + Rm* H which is also strictly parabolic. Hence from
the standard theory of parabolic systems, the evolution system has a unique solution. O

3. Evolution of curvatures

The evolution equation for the Riemann curvature tensors to the usual Ricci flow (e.g., [Cao and Zhu
2006; Chow and Knopf 2004; Chow et al. 2007, 2008; 2010; Hamilton 1982; Morgan and Tian 2007; Shi
1989]) is given by

0

ERijkE = ARjjke + Vijke (3-1)

where
Vijke = 2(Bijxe — Bijex — Bigjk + Bikje) — 871 (Rpjke Ryt + RipkeRgj + Rijpe Ryk + RijipRye).

and B;jre = gP" g9 Rpiqj Ry ks¢. From this we can easily deduce the evolution equation for the Riemann
curvature tensors to GRF.
Let v;; (x, 7) be any symmetric 2-tensor, we consider the flow

0
ggij(x’[) = v;j(x,1). (3-2)



GENERALIZED RICCI FLOW, I 755

Applying a formula in [Chow and Knopf 2004] to our case v;j := —2R;;j + %hij with h;; = Hik@l‘ljke,
we obtain

d
—Rijre = —%(—2VinRjg + %V,'thjg +2ViVyRjp — %Vnghjk

" + 2V Vi Rig — 3V Vihig — 2V Vi Ry + 1V Vihi)
+ %gpq [Rijkp (—2Rq¢ + %hqﬁ) + Rijpe(—2Rgi + %hqk)]
=ViVikRjy —ViViRjx —ViViRig + Vi Vi Rij — g (RijkpRge + Rijpe Ryk)
+ 5 (=ViVikhje + ViVehjg 4+ Vi Vihig = ViVehik) + 5877 (Rijkphge + Rijpehqr)
= AR;jke + 2 (Bijke — Bijok — Bitjk + Bikjt)
— 2P (Rpjke Ryt + RipkeRgj + Rijpe Ryk + Rijrp Rygo)
+ 5 (=ViVihje + ViVehjg + Vi Vihig = ViVehix) + 87 (Rijkphge + Rijpehqr) -
Proposition 3.1. For GRF we have
%Rijké = ARjjre +2 (Bijke — Bijex — Bivjk + Bikje)
— P9 (Rpjke Ryt + RipkeRgj + Rijpe Ry + Rijrp Rye)
+ 3(=ViVihje + ViVehjk + ViVihig = ViVihiy) + 1877 (Rijkphge + Rijpehgr) -
In particular:
Corollary 3.2. For GRF we have

2

0 ) ;

ngzARm—l-Rm*Rm—l—H*H*Rm—l— E VIH«V>7'H. (3-3)
i=0

Proof. From Proposition 3.1, we obtain
0
5Rm= ARm+Rm*Rm+V?h +h+Rm.

On the other hand, 7 = H % H and
V2h=V(V(HxH))=V(VH+H)=V?H+«+H+VHx*VH.

Combining these terms, we obtain the result. O

Proposition 3.3. For GRF we have

0
ERik = ARik + 2(Rpiqk» qu) - 2<Rpia Rpk) + %[(hgq, Riékq) + (Rip, hkp)]

+ H=ViVi [ H1? + g7 ViVihji + g7V Vichig — My ].
Proof. Since

d ., 0 .
gRik = gJKERiij + 2gjpgeqRijk€qu
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and
g7 hij = g Hipg H; " = g" g" g% Hipq Hjrs = |H |,

it follows that
g/ =ViVichjg + ViVehjic + Vi Vichic = ViVehii + g7 hqe Rijip + 87 hgic Rijpe]
= —ViVi|HP? + g7ViVhji + 875V Vichig — Mg + g7 g7 hgo Rijip + 79h gk Rip.
From these identities, we get the result. O
As a consequence, we obtain the evolution equation for scalar curvature.

Proposition 3.4. For GRF we have

0 . ik j
ER = AR+ 2|Ric |2— %A|H|2 + %(hij, Rij) + %g’kgfev,-vjhke.

Proof. From the usual evolution equation for scalar curvature under the Ricci flow, we have

3 , )
—R=AR+2Ric|®+ 1g™(heg, Ritkg) + (Rip, hip)]

. + LR (Vi Vi [ H? + g7 ViVihji + g7V Vichig — Ay
= AR +2|Ric|® + L (hij. Rij) + 3(Rip. hip)
— S AIH? + 58T ViVhji + 18787V Vichie — { AlHP.
Simplifying the terms, we obtain the required result. O

4. Derivative estimates

In this section we are going to prove BBS estimates. At first we review several basic identities of
commutators [A, V] and [d/0d7, V]. If A = A(¢) is a t-dependency tensor, and dg;;j /0t = v;j, then
applying the well-known formulas stated in [Chow and Knopf 2004] on GRF we have

0 0
EVRmzngm+Rm*V(Rm+H*H)
= V(ARm+Rm+Rm+Hx H+«Rm+V?H+H+VH+VH)+Rm*VRm +H*VH+Rm
=A(VRm)+ Y V'Rm«V/Rm+ )Y  VH«V/H«VKRm+ ) VHxV/H.
i+j=0 i+j+k=0 i+j=0+2 4-1)
More generally:

Proposition 4.1. For GRF and any nonnegative integer £ we have

9 . . . . . .
Ev‘f Rm=A(V‘Rm)+ Y V'Rm*V/Rm+ » VH+xV/HxV¥Rm+ Y  VHxV/H.
i+j=¢ i+j+k=t i+j=L+2 4-2)
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Proof. For £ = 1, this is (4-1). Suppose (4-2) holds for 1,...,£. By induction on £, for £ 4+ 1 we have

ivf-l-l Rm

ot
_ 9 V(V* Rm)
ot

0
= vg(vl Rm) + V¢ Rm *V(Rm +H * H)
-V [A(vﬁ Rm)+ Y VIRm*V/Rm+ > VH«V/HxVFRm+ > V"H*VJ’H]
i+j=t i+j+k=¢ i+j=0+2
+ V! Rm*VRm +H * VH % V! Rm
= A(VeJrl Rm) + VRm *VERm + Rm V! Rm
+ Z (Vi+1 Rm *V/ Rm +V/ Rm xV/ 1 Rm)
it+j=t
+ Y (VT'H «VIH « VERm +VH « VIT H % VA Rm +V'H % V/H % VE+! Rm)
i+j+k=t
+ Y (VT'H«V/H+V'H«V/T'H)+ H+VHxV'Rm.
i+j=t+2
Simplifying these terms, we obtain the required result. O

As an immediate consequence, we have an evolution inequality for |V!Rm |2.

Corollary 4.2. For GRF and any nonnegative integer £ we have

9 . _
5|v€Rm|25A|V’Rm|2—2|v‘f+1Rm|2+c > IVIRm|-|V/ Rm|-|V!Rm]|
i+j=t
+C > |VH|-|V/H|-|[V*Rm|-|[V'Rm |+ C ) |V'H|.|V/H|-|V'Rm]|, (4-3)
i+j+k=¢L i+j=0+2

where C represents universal constants depending only on the dimension of M .

Next we derive the evolution equations for the covariant derivatives of H.

Proposition 4.3. For GRF and any positive integer £ we have

9 . . . .
8—fo =AV'H)+ > VIH«V/Rm+ Y VHxV/HxV*H. (4-4)
! i+j=¢L i+j+k=L

Proof. From the Bochner formula, the evolution equation for H can be rewritten as

9
o = AH +RmxH. (4-5)
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For £ = 1, we have

%VH:V%H+H*V(Rm+H*H)
=V(AH+Rm«H)+ H«VRm+H «H+«VH
=V(AH)+ HxVRm+VH«Rm+H*xHx*xVH
=A(VH)+VRm*xH+VH«*Rm+H*x Hx*VH.

Using (4-2) and the same argument, we can prove the evolution equation for higher covariant derivatives.
|

Similarly, we have an evolution inequality for |V H|?.
Corollary 4.4. For GRF and for any positive integer [ we have
d
E'VIHF < A|VKH|2 _9 |Vf+1H|2
+C > |VH|-|V/Rm|- [V H|+C Y |V'H|-|V/H|-|V*H|-|V'H|. (4-6)
i+j=t i+j+k=¢
while

9
E|H|25A|H|2—2|VH|2+C-|Rm|-|H|2. (4-7)

Theorem 4.5. Suppose that (g(x,t), H(x,t)) is a solution to GRF on a closed manifold M" for a short
time 0 <t < T and Ky, K, are arbitrary given nonnegative constants. Then there exists a constant Cy
depending only on n such that if

|Rm(x»t)|g(x,t) < Kj, |H(x)|g(x) <K
forall x € M andt €0, T], then
|H (X, 0)|g () < KoK (4-8)
forallx €e M andt €0, T).

Proof. Since

0
EIHI2 < AH|> + CyRm|-|H|> < A|H|* + C, K, | H|%,

using the maximum principle, we obtain u(z) < u(0)e<" K1 where u(r) = |H|*. |

The main result in this section is the following estimates for higher derivatives of Riemann curvature
tensors and three-forms. Some special cases were proved in [Streets 2007; 2008; Young 2008].

Theorem 4.6. Suppose that (g(x,t), H(x,t)) is a solution to GRF on a compact manifold M"™ and K is
an arbitrary given positive constant. Then for each o > 0 and each integer m > 1 there exists a constant
Cy, depending on m, n, max{«a, 1}, and K such that if

|Rm(x»t)|g(x,t) <K, |H(x)|g(x) <K
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forall x e M andt €0,/ K], then

Cm

—1
|Vm Rm(x, t)|g(x,t) + |va(x’ t)|g(x,t) = W

(4-9)
forallx e M andt € (0,a/K].

Proof. In the following computations we always let C be any constants depending on n, m, max{c, 1},and
K, which may take different values at different places. From the evolution equations and Theorem 4.5,
we have

%|Rm|2 <ARm|?=2|VRm|* +C +C|V?*H|+C|VH|?,
%lle <A|H|*-2|VH]*>+C,
%wm2 <A|VH|*-2|V?H|? +C|VRm|-|VH|+ C|VH|?.
Consider the function u = ¢|VH|? + y|H|?> + t|Rm |2. Directly computing, we obtain
%u < Au—2t|V2H|* + Ct|V?H| 4 (C =2y)|VH|> + C +Cy —2t|VRm|?> + Ct-|VRm|-|VH|
<Au+2(C—y)-|[VH>+C(1+7).

If we choose y = C, then %u < Au+ C which implies that u < Ce€" since 1(0) < C. With this estimate
we are able to bound the first covariant derivative of Rm and the second covariant derivative of H. In
order to control the term |V Rm |2, we should use the evolution equations of | H|?, |V H|? and |V2H|? to
cancel with the bad terms, i.e., V2 Rm |, |V2H|?, and |V3H |2, in the evolution equation of |V Rm |?:

9
—|VRm|?
azl m |

C
pYEs

C

<A|VRm|>*-2|V?Rm|?>+C|VRm >+ 7z

IVRm|+C-|VRm|-|V3H|+ ——|V2H|-|VRm]|,

C

d
§|V2H|2 <A|V?H|?-2|V3H|>*+C-|V?*Rm |-|V?H |+ 7

C
|VRm |~|V2H|+C|V2H|2+7|V2H|.
As above, we define

u:=t*(|V*H|?> + [VRm |*) + 1B(|[VH|* + Rm|?) + y|H|?,

du

and therefore, o < Au + C. Motivated by cases for m = 1 and m = 2, for general m, we can define a

function

m—1
we=1"(V"HP? + V"' Rm |*) + > Bir' (V'H|> + |V~ Rm *) + y | H|?,

i=1

where f; and y are positive constants determined later. In the following, we always assume m > 3.
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— 1. For such i, from Corollary 4.4, we

) . C;
Suppose that |Vi=!Rm | + |[VI H| < /Z,fOI‘l =1,2,....m

have
d . . : Lo . .
—|VIH]> < AV'H? =2|VTTH? + C Y |V/H|-|V'™/ Rm|- |V'H|
j=0 iiej
+C Y > IV/H| |V H| | VEH - [VH]
j=04£=0
i i
. . . Ci Ci_i_y C
SAlV’H|2—2|V’+1H|2+C-|V’H|Z f jjﬂ +C- |V’H|ZZ_J.%.I_IZ
Jj=0 3 j=0¢=01 2

<A|VIH|> =2 |VITTH|? + I+I|V’H|+ |V’H|
t
Similarly, from Corollary 4.2 we also have
9 . . = o ‘
— V' Rm > < AV 'Rm|? = 2|V Rm|* + C Y [V/ Rm|[|[V'"'"/ Rm ||V~ Rm|

ot =
i—1i—1—j
+C > V/H| VT g ] VERm - [V Rm|
j=0 £=0
i+1
+C > |V/H|- [V H|. |V Rm|
j=0
<AIVIT'Rm[2=2|V'Rm >+ C - |V~ 1Rm|Z e iz
P

i—1i—1—j
. C;i Ci_1—j—¢ C
i—1 J i J {+1
+C-|V'7 ' Rm| E v
j=0 t t 2

L =l=j=£
{=0 12 2
Ci Ciy1—j ; C;
1 i+1—j +1 i
+C-|VIT'Rm| ZT Sy c Vit
j=112 2 12
i—1 2 i 2 4 i-1R Ci Gi+ C, i—1
<AV Rm[* =2V Rm | + - - |V |—|— |V H|+ —|V'" Rm]|.
rz l
The evolution inequality for u is now given by
ou m-1 . . .
o = mt" N (VPH? 4+ |V Rm P + ) it T (VI H?R + VT Rm|?)
i=1

9 9 N 9y 9
m{ - m 2 . m—lR 2 4l . leZ _VI—IR 2 '—HZ.
+ (mw H[* + = [V"" Rm| +l§ﬂ,t 5 | VHI? + o [V Rm[? ) 4y o | H]
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It’s easy to see that the second term is bounded by

but this bound depends on ¢ and approaches to infinity when ¢ goes to zero. Hence we use the last

second term to control this bad term. The evolution inequality for the third term is the combination of the
inequalities

3
at m

< AIVTHP? =2|V" T H|? + C Y " |V'H|- [V" 7 Rm|- |V"H]

i:() m m_i . . . .
+CY D |V/H| |V HI|VIH] - [V H]
i=0j=0
G C
< AIV"H|? =2|V"t H> + C|V"H|* + C-|[V" Rm |- |V"H| + — |[V"H| + — |[V"H|
t 2 t2

and

m—1
%wm—l Rm|* < A|[V"7'Rm[*=2|V"Rm[*+C )Y [V'Rm|- [V ' Rm|-|V""! Rm|
m—1m—1—i =0
+C > > |VH|- V"' H| |V Rm |- V" Rm|
i=0 j=0
m+1
+C Y |VH[- V" H]- |V Rm|
i=0

C
<AIV" 'Rm|* =2 |V"Rm [*+ C|V"'Rm |* + — - [V"H|-|[V""! Rm |
12
m+1 m—1 Cm m—1 Cm m—1
+ CIV" T H||V" ' Rm |+ — V"7 Rm |+ — V"7 Rm|.
12

t 2

Therefore we have
m—1

a_Lzl <mt" N(VTH? + V" Rm|?) + ) it T (VHP + VT Rm|?)
i=1

C
+ 1™ (A|V'”H|2 —2|V"H )2 4 —_|V™H|+ C|V™H|?

m+1
2

+ C|V™Rm]|-|V"™H|+ A|V™ ! Rm |?

— 2|V"Rm > + — V" 'Rm |+ C|V"'Rm|?

t 2

C
+ m|V’”H|-|V’"_1Rm|+C|V’”+1H|-|V”’_1Rm|)
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(G ;
+ Zﬂ,-t ( oIV 1Rm|+A|V’H|2 2|V’+1H|2
i=1 t
+A|VITIRm|? +

t+1

|V’H|—|— |V’+1H| 2|viRm|2)
t

+y(A|H]? =2|VH|? +C)

< Au—=2"|V"TLH?? 4 Cm VT | )V Rm |
m_2 . . .
—2t"M|V"Rm |? + Ct™|V™ Rm |- |[V" H| + Z(i + DBip 1t (VT H|? + |V Rm |?)
m—1 i=0
—23 B! (V' H> + |V' Rm |*) =2y |[VH|* + yC

i=1
+ CmTYVMHPE 4 Cm VT Rm 2 4 e T |VPH| 4 Ce T [V R |
+Ctm—z|va|-|vm—1Rm|+Ct’"|vm+1H|-|vm—1Rm|

+ Zﬂ,czz VI H |+ Zﬂ,c, T (VH + ]9 Rm)).
i=1 i=1

Choosing

. A
(l+1)ﬂl+1=ﬂlv ﬂl=ﬁ’ 1207

where A is constant which is determined later, and noting that

m—1

m—1 m—1
> BCH PV H < 5 ) pil VITTHE + 5 ) BiCE

i=1 i=1 i=1

and

Zﬁ,c, 2 (IVH| + |V Rm)
i=1
m—2 )
<B1C1(VH|+Rm|)+ > Bip1Cigr22(\V T H| + |V Rm])
i=1
m—2
<BiCi(IVH|+ Rm|) + ) ,31'+1Ci+1(

i=1

¢ |VIT H2 44|V Rm |2 4 ,Bi+lci+1)
2Bi+1Ciy1/Bi Bi

m—2 2

C:
< BV A+ R+ LT (9 1P 9 R+ T —’*jg. .
1

1—1 i=1
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we obtain

)

54 = Au—=2"\N" T H?2 4 cm| VL] |V Rm |
—2t™|V™"Rm |* + Ct™|V™H|- V™ Rm | + Ct" 1\ V"H|? + Ct™ ' |V" ! Rm|?
+Ce" 2|V H|- [V Rm | + Bo(|V H|? + [Rm |2)

m—1 m—2
— S B (VT HR + [VIRm ) + Y Bt (VI HP2 4|V Rm )
i=1 i=1
+ 3Bmrt" T [VH|? + B1C1|VH| = 2y|VH|* + C + Cy
< Au+ Cm NV Rm |2 4 Cemm Y \VPHECH 2 (IVH I 4 [V Rm ?) + oV H?
+B1CIVH| =2y |VH|> + C + Cy — 381" |V"H|? = By t™ V" Rm |?
< Au+ 3(CVT+C =)™ (V"I Rm | + |[V"H|?)
+ (Bo+ B1C1 —2y)|[VH> + C + Cy + B1 Cy.
When we chose A and y sufficiently large, we obtain %—L; < Au + C, which implies that #(¢) < C since
u(0) is bounded. O
Finally we give an estimate that plays a crucial role in the next section.
Corollary 4.7. Let (g(x,t), H(x,t)) be a solution of the generalized Ricci flow on a closed manifold M .
If there are B > 0 and K > 0 such that
|[Rm(x, t)|g(x,t) <K, |H(x)|g(x) <K
forallx e M andt €0, T], where T > /K, then there exists for each m € N a constant Cy, depending
onm,n,min{f, 1}, and K such that
|Vm_1 Rm(x’ t)|g(x,t) + |va(x» t)|g(x,t) = Cme/2
forallx € M andt € [min{B, 1}/ K, T].

Proof. The proof is the same as in [Chow et al. 2007]; we just copy it here. Let 81 := min{g, 1}. For any

fixed point to € [81 /K, T] we set Ty :=to— B1/K. For i :==t — Ty we let (g(7), H()) be the solution
of the system
g —_ - 0H _ —
5= —Ric+1h S =AwgH. 30)=g(Ty). HO)=HTy).

The uniqueness of solution implies that g(7) = g(f + To) = g(¢) for 7 € [0, 81/ K]. By the assumption
we have

Rm(x, )|z < K. [HX)|ge) < K
forall x € M and f €0, 81/ K]. Applying Theorem 4.5 with « = 1, we have
Cm

= m—1=— =m
V" Rm(x, Dgery T IV HXDlgx ) < /2
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for all x € M and 7 € (0, B;/K]. We have i/2 > g™/?2=m/2Kk=m/2 i f ¢ [8, /2K, B,/ K]. Taking
t = B1/K, we obtain
2m/2€me/2

m/2
1

for all x € M. Since ty € [/ K, T| was arbitrary, the result follows. |

[V RM(X, 10) g (xt0) + IVH (X, 10) g (e t0) <

5. Compactness theorem

In this section we prove the compactness theorem for our generalized Ricci flow. We follow [Hamilton
1995] on the compactness theorem for the usual Ricci flow.

We review several definitions from [Chow et al. 2007]. Throughout this section, all Riemannian
manifolds are smooth manifolds of dimensions 7. The covariant derivative with respect to a metric g will
be denoted by 8V.

Definition 5.1. Let K C M be a compact set and let {gx } xen, €00, and g be Riemannian metrics on M .
For p € {0} UN we say that g; converges in C? to goo uniformly on K with respect to g if for every
€ > 0 there exists kg = ko(€) > 0 such that for k > ky,

gk — goollcr;k,g := sup sup [EV(gx — goo)(X)|g <e. (5-1)

0<a=<pxek

Since we consider a compact set, the choice of background metric g does not change the convergence.
Hence we may choose g = goo.

Definition 5.2. Suppose {Uj }xen is an exhaustion? of a smooth manifold M by open sets and g are
Riemannian metrics on Uy. We say that (Uy, gr) converges in C® to (M, g~o) uniformly on compact
sets in M if for any compact set K C M and any p > 0 there exists ko = ko (K, p) such that {gy }x>x,
converges in C? to goo uniformly on K.

A pointed Riemannian manifold is a 3-tuple (M, g, O), where (M, g) is a Riemannian manifold and
O € M is a basepoint. If the metric g is complete, the 3-tuple is called a complete pointed Riemannian
manifold. We say (M, g(t), H(t), O),t € (o, w), is a pointed solution to the generalized Ricci flow if
(M, g(t), H(t)) is a solution to the generalized Ricci flow.

The so-called Cheeger—Gromov convergence in C° is defined as follows:

Definition 5.3. A given sequence {(My, gk, Ok ) }xen of complete pointed Riemannian manifolds con-
verges to a complete pointed Riemannian manifold (Mo, €00, Oco) if there exist

(1) an exhaustion {Uy }ren Of Moo by open sets with O, € Uy, and
(ii) a sequence of diffeomorphisms @y : Moo > Uy — Vi := Oy (Up) C My, with 4 (0s) = O,

such that (Ug, @} (gk|y;)) converges in C* to (Moo, goo) uniformly on compact sets in Moo.

2If for any compact set K C M there exists k¢ € N such that Uy D K for all k > kg
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The corresponding convergence for the generalized Ricci flow is similar to the convergence for the
usual Ricci flow introduced by Hamilton [1995].

Definition 5.4. A given sequence {(My, gi(¢), Hy(¢), Ok )}ren of complete pointed solutions to the
GRF converges to a complete pointed solution to the GRF

(Moo, 8oo(1), Hxo (1), Oco), 1 € (a, w),
if there exist
(1) an exhaustion {Uy }xen of Moo by open sets with O € Uy,
(ii) a sequence of diffeomorphisms @y : Moo 3 Uy — Vi := O (Up) C My, with 4 (0s) = O,
such that (Ug x (o, w), @y (gk () + dr?, Oy (Hy (1)|,)) converges in C to
(Moo X (@, @), goo(t) + dt?, Hoo(1))
uniformly on compact sets in My, X (@, ). Here we denote by dt? the standard metric on (o, w).

Let inj, (O) be the injectivity radius of the metric g at the point O. The following compactness theorem
is due to Cheeger and Gromov.

Theorem 5.5 (compactness for metrics). Let {(My, gk, Or)}ken be a sequence of complete pointed
Riemannian manifolds satisfying these conditions:

(i) Forall p > 0and k € N, there is a sequence of constants C, < 00 independent of k such that
¥« VP Rm(gx) g = Cp
on My.
(i1) There exists some constant 1y > 0 such that
injg, (O%) = 1o
forall k € N,

Then there exists a subsequence { ji {ken such that {(Mj, , gj., Oj,. )} ken converges to a complete pointed

Riemannaian manifold (ML, g0, Oxo) as k — oo.
As a consequence of Theorem 5.5, we state our compactness theorem for GRF.

Theorem 5.6 (compactness for GRF). Let {( My, g (t), Hi(t), Ox)}ken be a sequence of complete
pointed solutions to GRF for t € [, w) 3 0 satisfying these conditions:

(1) There is a constant Cy < oo independent of k such that

Sup |Rm(gk(x7 t))|gk(x,t) 5 COv Sup |Hk(x7 a)|gk(x’a) S CO
(x,0)eMj x(a,0) xeM;,

(i) There exists a constant 1y > 0 satisfying

injg, (0)(Ok) = to-
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Then there exists a subsequence { ji }ren such that

(Mjj,., gjx. (1), Hjy (1), Oj) = (Moo, 8oo (1), Hoo (1), Oco),
converges to a complete pointed solution (Moo, €00(t), Hxo (1), Oxo), t € [, w), to GRF as k — oc.

To prove Theorem 5.6 we extend a lemma for Ricci flow to GRF. After establishing this lemma, the
proof of Theorem 5.6 is similar to that of Theorem 3.10 in [Chow et al. 2007].

Lemma 5.7. Let (M, g) be a Riemannian manifold with a background metric g, let K be a compact
subset of M, and let (g (x,t), Hi(x,t)) be a collection of solutions to the generalized Ricci flow defined
on neighborhoods of K X [B, V], where ty € [B, V] is a fixed time. Suppose that:

(1) The metrics gy (x, ty) are all uniformly equivalent to g(x) on K, i.e.,forall V € Ty M, k,and x € K,
CTlg()(V.V) = gk(x.10)(V. V) = Cg(x)(V. V),

where C < o0 is a constant independent of V., k, and x.

(ii) The covariant derivatives of the metrics gi (x, to) with respect to the metric g(x) are all uniformly
bounded on K, i.e., forall k and p > 1,

|EV2 gh(x,10) g (x) + 1§ VP Hi (X, 10) g x) < Cp

where C, < 00 is a sequence of constants independent of k.

(iii) The covariant derivatives of the curvature tensors Rm(gy (x,t)) and of the forms Hy(x,t) are
uniformly bounded with respect to the metric gi(x,t) on K x B, V], i.e., for all k and p > 0,

8-V P Rm(gx (%, )l gye ety + 1E¥VPHR (X, D gy (x.0) < Cp
where Cl', is a sequence of constants independent of k.

Then the metrics gy (x, t) are uniformly equivalent to g(x) on K X[, V], i.e.,
B(1,10)”' g()(V, V) = gk (x,)(V, V) < B(1,10)g(x)(V, V),

where B(t,ty) = CeSolt—tol (here the constant C(; may not be equal to the previous one), and the time-
derivatives and covariant derivatives of the metrics gy (x,t) with respect to the metric g(x) are uniformly
bounded on K x [B, V], i.e., for each (p, q) there is a constant Cp, 4 independent of k such that

99

ﬁgvpgk(&l)

g(x)

g(x)
forall k.

Proof. We use [Chow et al. 2007, Lemma 3.13]: Suppose that the metrics g; and g, are equivalent, i.e.,
C~'g; < g, < Cgy. Then for any (p, q)-tensor T we have |T'|g, < CPTD/2|T|, . We denote by
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the tensor /;; 1= gkpgla H;y1 Hjpg. In the following we denote by C a constant depending only on 7, j,
and v, which may take different values at different places. For any tangent vector V' € Tx M we have

2 (e 0V, V) = ~2Ric(ge (v, 0)(V. V) + Y (v, )V, V),

and therefore

—2Ric(gr(x, ) (V. V) + iy (x.0)(V, V)
gr(x,0)(V. V)

< Co+ ClH(x. D2 (e

<Cj+CCcy=:C,

9
gloggk(x,l)(V, V)‘ =

since

Integrating on both sides, we have

_ I
Clty —to] 2[
fo

and hence we conclude that

dt > ,
gr(x,10)(V,V)

9
—loggr(x,0)(V,V)

131 9
—1 Hwy,vV)de) = |1
- [ eV vyar] = fog

0

e~ lg (x 1) (V. V) = grbr, ) (V. V) = eIl gye (v 1) (V. V).
From the assumption (i), it immediately deduces from above that
ClemCln=lg(e)(V, V) = gilx, 11)(V, V) = CeCM =0l g(x)(V, V).

Since #; was arbitrary, the first part is proved. From the definition (or see [Chow et al. 2007, p. 134, (37)]),
we have

(81)° B Va(gr)be + ¥ Va(gr)ac — 4 Ve(gr)ab) = 2(5* gy —2(5 Ty,
Thus |84 (x,1) — 8T (x)|g(x) < C1¥Vgr(x.1)|g, (x)- On the other hand,
EVa(gr)be = (8r)ebl(** T)ge — (BT)ge] + (8k)ecl(*¥ gy — (ET)gp),
it follows that |8V gy (x,1)|g, (x,r) < C|8<T'(x,1) —8T'(X)|g, (x,r) and therefore
8V g, is equivalent to $k" — &8 = 8k — 8V, (5-2)

The evolution equation for 8T is

0
57 Dy = —(21) (5" V)a(Ric(gx)pa + (54 V)p (Ric(gx))aa

— (8 V)4 (Ric(gr))ap] + (21 V)alhi)pa + E5 Vo (hi)aa — V) a(hi)as]-
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Since 8T does not depend on ¢, it follows from the assumptions that

<C
8k
< CCy+CI¥*V Hy|g, - |Hklg, = Cj.

%(gkr_gr)

8k V(Ric(gg)) |gk + CI8%V (hy) g,

Integrating on both sides,

Cilti —to| = > |#¥T(11) =¥ lg, = 1¥¥T (1) — ¥ Tlg -

8k

5]
/ D F Ty -5y dr
fo ot

Hence we obtain

8T (1) = 8T g, < Cilty —to] + [¥*T (t) — 5T |g,
< Cilty —to| + C18Vgr (to) gy
< C{lt =10 + CI¥Vgr(to)lg
< C{lt —to] + Cy.

The equivalency of metrics tells us that

EVer()lg < B(t.10)* ¥ Ver(0)lg, = B(t,10)*'*-C|*¥ T (1) =*T g,
< B(t,10)**(C{lt = to] + ).
Since |t —fo| < ¥ — B, it follows that [V g (1)|g =< 51,0 for some constant 51,0. But g and gy are

equivalent, we have
|Hi(1)|g < C|Hi(t)|g, <CC{ = Cip.

From the assumptions, we also have
€V Hy lg < |(8V — K V) Hy + 85V Hy |,
< CI¥Vgklg - |Hlg + C|¥*V Hi g,
< CCII + Cél,Oél,O = 5270.

Moreover,

d
—gVHk = gV(Agk H; +Rm(gy) * Hy)

ot
= (gV — 8k V)Agk Hi + ngAgk Hy + LAV} Rm(gy) * Hi + Rm(gy) * gVHk
where Ag, is the Laplace operator associated to gx. Hence

9
_gVH
dt k

g
< CIEVgilg | Ag Hilgy + CI#V Mgy Hylg + CI¥VRM(gh)lg - | Hilg + CRm(gi)lg ¥V Hylg

=Cy,1.
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For higher derivatives we claim that
[£VP Ric(gi)lg < Cp VP gile + Cp's [EVPgile +16V2 7 Hylg < Cpo. (5-3)

for all p > 1, where C)), C,”, and ép,o are constants independent of k. For p = 1, we have proved the
second inequality, so we suffice to prove the first one with p = 1. Indeed,

[V Ric(ge)lg = C|(¥V — V) Ric(gr) +  V Ric(gi) g
< C|¥T —#+T|g - Ric(gi )|, + C |V Ric(ge)lg,
< ClEVagile +C}.

Suppose the claim holds for all p < N (N > 2), we shall show that it also holds for p = N. From

N

Z gy N—i (BV — 8KV)8k vi—1 Ric(gy) + gy N Ric(gy)

i=1

N

<y ‘ng—i(gv —86V)E VT Ric(gy)| + |#* VY Ric(gy)lq
g

i=1

18V Ric(gx)le =

g

we estimate each term. For i = 1, by induction and the assumptions we have

EVN1(8V — 8k V) Ric(gx) g

< C|EVN~1(#Vg, -Ric(gp))lg
N-—1

3 (Nj—l)gvzv—l—j (!Vgx) -4V’ (Ric(gx))
4

<C

j=0
N-1
N-1

T EVY T gl BV Rie(gi) e

A
a
ing
—~

- O

j=

IA
a
z

N_l . .
(77 ) €1V e+ CEVN T g

N
Il
S

=

N—-1 "~ " N—j
Y (V7)o COEVY T gl

IA

-
Il
)

N—-1
= C(N = 1)(CCro+ CIEVN grlg +C 3 (
j=1

N-1

j )(C,{'éj,o +C/")Cn—j0

<CNIEVN gilg + CN.
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For i > 2, we have
}gVN_i(gV _gkv)gkvi—l RiC(gk)}g <C |gVN_i(ngk L8ryi—l Ric(gk))‘g

N—i
N—i . , . .
<0 Y (VT ETN I g 1989 Ric(g)

If j =0, then
|gkvz IRIC(gk)lg < C1H llgvl lgklg C/// < Cl/ 151 1,0 + C///
Suppose in the following that j > 1. Hence

£V -8V~ Rie(gy)|, = [((FV —#4V) + £6V)/ .86V ~T Ric(gy) |,

C

M~

A

() 1V gil - 8974171 Rie(ge)
l

Il
<)

M~

A

C (]Z)C],()(C]{,_]_H'_lcj—l-i-i—l,o +C )

I

Il
<)

where we make use of (5-2) from first line to second line. Combining these inequalities, we get
VN Ric(gi)lg < Cy 18V gilg + Cx.
Similarly, we have
EVNhilg < CRIEVN grle + CX -

Since %gk = —2Ric(gy) + %hk, it follows that

o £V g = £V (—2Rie(gi) + 1),

2
+[EvN

g

. 1
= 81FVN Ric(gi)lg + 1FV Vel + £V il

0 0
prinh A 5V e

2 2
gk|g§ gk|g

< (14 18(CR)HIEVN gi|2 + 18(C)>.

Integrating the above inequality, we get [V gy |y < C ~,0 and therefore |& VN hy| g = C N+1,0- We have
proved lemma for ¢ = 0. When g > 1, then

q—1

34 9 , .
8zqgvpgk (1) = gV?P Py (—2Ric(gr (1) + 5h(1)).

Using the evolution equations for Rm(gg (¢)) and /4 (¢), combining the induction to ¢ and using the above
method, we have

97 9 gyr gypr—1
eV gk(t)‘ +)a[q Vel (z)‘ <Cpy O
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6. Generalization

In this section, we generalize the main results in Sections 4 and 5 to a kind of generalized Ricci flow for
which local existence has been established [He et al. 2008].

Let (M, g;j(x)) be an n-dimensional closed Riemannian manifold and let A = {4;} and B = {B;;}
denote a one-form and a two-form respectively. Set ' = dA and H = dB. The authors in [He et al.
2008] proved that there exists a constant 7" > 0 such that the evolution equations

d
—gij(x.1) = =2Rij(x.1) + Thij(x,0) + 2 fix(x. 1), gij(x,0) = gij (x),

ot
9
EA,-(x, 1) =—2Vi F5(x,1),  Ai(x,0) = A;(x),
9
o Bij(x.0) =3VieH ;i (x,0), Bij(x,0) = By ()

has a unique smooth solution on m x [0, T"), where h;; = Hik]ijl and f;;j = Fiijk. We call it
RF(A, B). According to the definition of the adjoint operator d*, we have

(d*F); =2V Fi*,  (d*H)ij = =3V HY;, (6-1)
and hence
%F(x,l) = —dd;(x’t)F = ApLg(x,nF = AF +RmxF, (6-2)
%H(x,t) = —dd;(x,t)H = AnLg(x,)H = AH +Rmx*H. (6-3)
They also derived the evolution equations of curvatures:
0

ERiij = ARjjre +2(Bijre — Bijek — Bigjk + Bikje)

— 8P4 (RpjkeRgi + RipkeRgj + Rijpe Rk + RijkpRye)

+ 5[ ViVe(Hypg Hi?) = ViVi(Hj pg HeP?) = Vi Vi (Hypg Hi??) + V; Vi (Hipg He )|
+ 28" (Hypg HP Rijso + Hypg Hy 9 R;jis)

+ ViV (Fx? Fjp) = ViVi(FjP Fyp) = ViV (Fx P Fip) + Vi Vi (Fi P Fyp)

+ & (Fr? FrpRijse + Fr? Fep Rijks)-

Under our notation, it can be rewritten as

9 . . . . . .
5Rm:ARm+ Z Vi Rm *V/ Rm + Z ViH «VIH + Z ViFxV/F

i+j=0 i+j=04+2 i+j=04+2
+ Z VIH % V/H % V¥ Rm + Z NWVIF+V/F«VKRm. (6-4)
i+j+k=0 i+j+k=0

As before, we have:
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Proposition 6.1. For RF(A, B) and any nonnegative integer { we have

P . . . . . .
gveRm:A(VlRm)—i— > VIRm#V/Rm+ Y VHxV/H+ > VIFxV/F

i+j=¢ i+j=0+2 i+j=0+2
+ Y VHxVH«VERm+ ) VIF«V/F+V*Rm. (65
i+j+k=L i+j+k=¢t

In particular,

9 . )
gwl Rm[> < A[V/Rm[>=2|V**'Rm >+ C )" |V'Rm|-|V/ Rm|-|V¢Rm]|

i+j=t
+C > |VH|-|VH|-|[V'Rm|+C Y |VF|-|V/F|-|V'Rm|
i+j=L{+2 i+j=L+2
+C Y |VH|-|V/H|-[VKRm ||V Rm|+C " |VF|-|V/F|-|[VFRm|-|V‘Rm|.
i+j+k=¢ i+j+k={

Since %F = AF +Rm % F it follows that
d

0
EVFzVEF+F*V(Rm+H*H+F*F)
=VAF+Rm*xF)+ F«xVRm+FxH+«VH+ FxFxVF

=A(VF)+ VRm*xF +RmxVF+ FxHxVH+ FxFxVF.

It can be expressed as

P . .
5 VF=AVF) + Y VFxV/Rm

i+j=1 1-1 1—i
+ Z ViF*VjF*VkF+Z ZViF*VjH*Vl_i_jH.
itjtk=1 i=0 j=0

More generally, we can show:

Proposition 6.2. For RF(A4, B) and any positive integer £ we have

EVKF:A(VKF)qL Y VIFxV/Rm
dt i+j=¢ -1 £—i
+ Y VIFxVIF«VAF Y Y VIF«VIH«V T H,
i+j+k=t i=0 j=0

In particular,

9 . .
gwﬁmz <AVEFP 2|V FR4C Y |VIF| |V Rm|-|[VEF|

Nl
i+ (—10—i

+C Y \VFVIF|VREVIF 4 C YOS VI [VIHT VT HIL|VEF
i+j+k=¢ i=0j=0
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Similarly, we obtain:

Proposition 6.3. For RF(A4, B) and any positive integer [ we have

- ¢ i j
= VOH = A(V'H) + > VH*V/Rm

i+j=t . . ant o S . o
4+ Z ViH xV/H « VKH + Z ZV’H*VJF* vi-i-i
i+j+k=t i=0 j=0

In particular,

d . .
E|V5H|2§A|V€H|2—2|V“1H|2+C > IVIH|-|V/Rm|- |V H|
i+j=(

—1 £—i
+C > IVH||\V/H||VRH| VY[ +C YOS CIVIH]VIF] VTR VEH)
i+j+k=¢ i=0 j=0

From the evolution inequalities
3
EIHIZSA|H|2—2|VH|2+C-|Rm|~|H|2,
3
E|F|2 <A|F|?=2|VF|?4+C-|Rm|-|F|?,

the following theorem is obvious.

Theorem 6.4. Suppose that (g(x,t), H(x,t), F(x,t)) is a solution to RF(A, B) on a compact manifold
M?" for a short time 0 <t < T and Ky, K,, K5 are arbitrary given nonnegative constants. Then there
exists a constant Cy, depending only on n such that if

Rm(x,)]gx,e) = K1, [HX)|gx) = K2, [F(X)|gx) = K3
forall x e M andt €0, T], then
|H(x, 0)lg(e) < Kae K1 | F(x, 1) gy < Kae© R, (6-6)
forallx € M andt €0, T).

Parallel to Theorem 4.6, we can prove:

Theorem 6.5. Suppose that (g(x,t), H(x,t), F(x,t)) is a solution to RF(A, B) on a compact manifold
M" and K is an arbitrary given positive constant. Then for each a > 0 and each integer m > 1 there
exists a constant Cy, depending on m, n, max{«a, 1}, and K such that if

|Rm(xvt)|g(x,t) <K, |H(x)|g(x) <K, |F(x)|g(x) <K

forallx € M andt € [0,/ K], then
_ C
v : Rm(x»t)|g(x,t) +|V™H (x, Z)lg(x,t) +[V7F(x, t)lg(x,t) = Z_;’ (6-7)

forallx e M andt € (0,a/K].
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We can also establish the corresponding compactness theorem for RF(A4, B). We omit the detail since
the proof is close to the proof in Section 5. In the forthcoming paper, we will consider the BBS estimates
for complete noncompact Riemannian manifolds.
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