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NONCONCENTRATION IN PARTIALLY RECTANGULAR BILLIARDS

LUC HILLAIRET AND JEREMY L. MARZUOLA

In specific types of partially rectangular billiards we estimate the mass of an eigenfunction of energy E in
the region outside the rectangular set in the high-energy limit. We use the adiabatic ansatz to compare
the Dirichlet energy form with a second quadratic form for which separation of variables applies. This
allows us to use sharp one-dimensional control estimates and to derive the bound assuming that E is not
resonating with the Dirichlet spectrum of the rectangular part.

1. Introduction

We study concentration and nonconcentration of eigenfunctions of the Laplace operator in stadium-like
billiards. As predicted by the quantum/classical correspondence, such concentration is deeply linked with
the classical underlying dynamics. In particular, the celebrated quantum ergodicity theorem roughly states
that when the corresponding classical dynamics is ergodic then almost every sequence of eigenfunctions
equidistributes in the high energy limit (see [Schnirelman 1974; Colin de Verdière 1985; Zelditch 1987]
and [Gérard and Leichtnam 1993; Zelditch and Zworski 1996] in the billiard setting for a more precise
statement). In strongly chaotic systems such as negatively curved manifolds, it is expected that every
sequence of eigenfunctions equidistributes. This statement is the quantum unique ergodicity conjecture
(Q.U.E.) and remains open in most cases despite several recent striking results (see for instance [Faure
et al. 2003; Lindenstrauss 2006; Anantharaman 2008; Anantharaman and Nonnenmacher 2007]). On
the other extreme, the Bunimovich stadium, although ergodic, is expected to violate Q.U.E. Indeed, it is
expected that there exist bouncing ball modes, i.e., exceptional sequences of eigenfunctions concentrating
on the cylinder of bouncing ball periodic orbits that sweep out the rectangular region (see [Bäcker et al.
1997] for instance). The existence of such bouncing ball modes is still open and only recently did Hassell
prove that the generic Bunimovich stadium billiard indeed fails to be Q.U.E. (see [Hassell 2010]).

Our work is closely related to the search for bouncing ball modes but proceeds loosely speaking in
the other direction. We actually aim at understanding how strong concentration of eigenfunctions in
the rectangular part cannot be. We thus follow [Burq and Zworski 2005], where it is proved that even
bouncing ball modes couldn’t concentrate strictly inside the rectangular region. This was made precise by
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Burq, Hassell and Wunsch in [Burq et al. 2007], where the following estimate was proved:

kukL2.W / �E�1
kukL2.�/;

in which kukL2.W / and kukL2.�/ denote the L2 norm of the eigenfunction u in the wings and in the
billiard, respectively.

Our main result for the Bunimovich stadium is the following:

Theorem 1. Let � be a Bunimovich stadium with rectangular part R WD Œ�B0; 0� � Œ0;L0�. We set
W D� nR and denote by † the Dirichlet spectrum of R, i.e.,

† D

�
k2�2

L2
0

C
l2�2

B2
0

; k; l 2 N

�
:

For any "� 0 there exists E0 and C such that if u is an eigenfunction of energy E such that E >E0 and
dist.E; †/ >E�" then the following estimates holds:

kukL2.�/ � CE
5C8"

6 kukL2.W /;

This bound improves on the Burq–Hassell–Wunsch bound provided that " < 1
8

. It is natural that the
smaller " is the better the bound is. Indeed, the condition on the distance between E and † is comparable
to a nonresonance condition and should imply heuristically that u must have some mass in the wing
region. It is quite interesting to have a quantitative statement confirming this heuristics. We will actually
give a more general statement concerning more general billiards (see Theorem 2). In particular we will
consider billiards with smoother boundaries (see Section 2) disregarding the fact that these may not
be ergodic. Here again we expect the bound to be better when the billiard becomes smoother and this
statement is made quantitative in Theorem 2.

The method we propose relies on comparing the Dirichlet energy quadratic form with another quadratic
form arising from the adiabatic ansatz presented in the numerical study of eigenfunctions by Bäcker,
Schubert and Stifter [1997]. This adiabatic quadratic form has also appeared recently in [Hillairet and
Judge 2009] in the study of the spectrum of the Laplacian on triangles. These two quadratic forms are
close provided we do not enter too deeply into the wing region so that the nonconcentration estimate
really takes place in a neighborhood of the rectangle that becomes smaller and smaller when the energy
goes to infinity (see Sections 4.3.3 and 4.6.1). Since the new quadratic form may be addressed using
separation of variables, we will show precise one-dimensional control estimates and then use them to
prove our results. We have separated these one dimensional estimates in an appendix since they may be
of independent interest. Finally, we remark that the method can be applied to quasimodes with some
caution (see Remark 5.2) but there are no reasons to think that the bound we obtain is optimal.

2. The setting

Let L be a function defined on Œ�B0;B1� with the following properties:

- For nonpositive x, L.x/ D L0 > 0.
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.�B0; 0/

.�B0;L0/
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�
L.x/

.b0; 0/

Figure 1. An example of a billiard �.

- On .0;B1/, L is smooth, nonnegative and nonincreasing.

- When x goes to B1, L0 has a negative limit (either finite or �1).

- For small positive x, we have the asymptotic expansions

L.x/DL0� cLx
 C o.x
 /; L0.x/D�cL
x
�1
C o.x
�1/ (2-1)

for some positive cL and 
 � 3
2

.

The billiard � is then defined by

� D f.x;y/ j �B0 � x � B1; 0� y �L.x/ g :

See Figure 1 for an example of an applicable billiard. For any b < B1, we will denote by �b WD

�\fx � bg and by Wb WD�\f0� x � bg.
We study eigenfunctions of the positive Dirichlet Laplacian, �, on �. Namely, we study solutions uE

such that
�uE D �

�
@2

x C @2
y

�
uE D EuE and uEj@� D 0;

where E > 0.
We may formulate this equation using quadratic forms. We thus introduce q defined on H 1.�/ by

q.u/ D

Z
�

jruj2dx dy:

The Euclidean Laplacian with Dirichlet boundary condition in � is the unique self-adjoint operator
associated with q defined on H 1

0
.�/. We denote by qb the restriction of q to H 1.�b/ and by �b the

Dirichlet Laplace operator on �b . We will also denote by Db the set of smooth functions with compact
support in �b .

3. Adiabatic approximation

Motivated by the well-known eigenvalue problem on a rectangular billiard and computational results in
[Bäcker et al. 1997], we introduce a second family of quadratic forms ab and compare it to qb .
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For any b < B1 and any u 2 Db , Fourier decomposition in y implies that

u.x;y/D
X

k

uk.x/ sin
�
�k

L.x/
y

�
: (3-1)

Since Z L.x/

0

ˇ̌̌̌
sin
�

k�
y

L.x/

�ˇ̌̌̌2
dy D

L.x/

2

each Fourier coefficient uk is given by

uk.x/ D
2

L.x/

Z L.x/

0

u.x;y/ sin
�
�k

L.x/
y

�
dy:

For such u, we define

ab.u/ D
X
k2N

Z b

�B0

�
ju0k.x/j

2
C

k2�2

L2.x/
juk.x/j

2

�
L.x/

2
dx;

Nb.u/ D
X
k2N

Z b

�B0

juk.x/j
2 L.x/

2
dx:

Observe that for each fixed x, Plancherel’s formula readsX
k2N

juk.x/j
2 L.x/

2
D

Z L.x/

0

ju.x;y/j2 dy;

so that we get Nb.u/D kuk
2
L2.�b/

by integration with respect to x.
Fixing some 0< b0 < B1, and using that L is uniformly bounded above and below on Œ�B0; b0� we

find a constant C such that for any b � b0 and u 2L2.�b/:

C�1
kuk2�b

�

1X
kD1

kukk
2
L2.�B0;b/

� Ckuk2�b
: (3-2)

The quadratic form ab appears as the direct sum of the following quadratic forms ab;k (that can be
defined on the whole function space H 1.�B0; b/):

ab;k.u/ WD

Z b

�B0

�
ju0j2C

k2�2

L2.x/
juj2

�
L.x/

2
dx: (3-3)

Recall that, on an interval I , the standard H 1 norm is defined by

kukH 1 WD
�
ku0k2

L2.I /
Ckuk2

L2.I /

� 1
2 ; (3-4)

so that, for any k and b < B1 and any u 2 C1
0
.�B0; b/ we have

min
�

L.b/ ;
k2�2

L0

�
kuk2

H 1 � ab;k.u/ � max
�

L0 ;
k2�2

L.b/

�
kuk2

H 1 : (3-5)



NONCONCENTRATION IN PARTIALLY RECTANGULAR BILLIARDS 835

The norm a
1
2
b;k

thus defines on H 1.�B0; b/ a norm that is equivalent to the standard H 1 norm.

3.1. Comparing ab and qb. To compare ab and qb , we introduce the following operators D and R

defined on Db by

Ru D
yL0.x/

L.x/
@yu;

Du D @xuCRu:

Using the Plancherel formula for each fixed x and then integrating, we obtain

ab.u/ D

Z
�b

jDuj2Cj@yuj2 dx dy:

from which the following holds for any u; v 2 Db:

ab.u; v/� qb.u; v/D hDu;Dvi � h@xu; @xvi

D h@xu;RviC hRu;Dvi; (3-6)

D h@xu;Rvi C hRu; @xvi C hRu;Rvi: (3-7)

We thus obtain the following lemma.

Lemma 3.1. Let ı be the function defined by

ı.b/ D sup
.0;b�

jL0.x/j C sup
.0;b�

jL0.x/j2:

Then for all u; v 2 Db

jab.u; v/� qb.u; v/j � ı.b/ � q
1
2

b
.u/ � q

1
2

b
.v/:

Remark 3.1. The function ı is continuous on .0;B1/ and ı.b/DO.b
�1/ when b goes to 0.

Proof. In (3-7), we use the Cauchy–Schwarz inequality, max.kDuk; k@yuk/� a
1
2

b
.u/, and the fact that

y=L.x/ is uniformly bounded by 1 on �. �

The following corollary is then straightforward.

Corollary 3.2. For any 0 < b < B1 and any u 2 H 1.�/, the linear functional ƒ defined by ƒ.v/ WD
ab.u; v/� qb.u; v/ belongs to H�1.�b/. Moreover

kƒkH�1.�b/
� ı.b/kukH 1.�b/

:

4. Nonconcentration

4.1. Preliminary reduction. Let u be an eigenfunction of q with eigenvalue E. And define the associated
linear functional ƒ using Corollary 3.2.

Integration by parts shows that for any v 2H 1
0
.�b/ we have

qb.u; v/ D E � hu; viL2.�/;
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so that

ab.u; v/�E �Nb.u; v/ D ƒ.v/: (4-1)

We now deal with this equation using the adiabatic decomposition. We thus defineƒk as the distribution
over Db such that, for any v 2 Db ,

ƒk.v/ WDƒ

�
v.x/ sin

�
k�

y

L.x/

��
: (4-2)

Remark 4.1. From now on, u will always denote the eigenfunction that we are dealing with. We will
denote by uk the functions entering in the adiabatic decomposition of u, by ƒ the linear functional
associated with u and by ƒk the one-dimensional linear functionals that are associated with ƒ.

A straightforward computation yields, that for any v 2 Db we have

ab;k.uk ; v/�E �

Z b

�B0

uk.x/v.x/
L.x/

2
dx D ƒk.v/;

where ab;k is the quadratic form defined in (3-3).
An integration by parts then shows that, in the distributional sense in .�B0; b/, we have

�
1

L

d

dx
.Lu0k/ C

�
k2�2

L2
�E

�
uk D

Qƒk ; (4-3)

where the linear functional Qƒk is defined by

Qƒk.v/ WDƒk

�
2

L
� v
�
: (4-4)

Remark 4.2. Since L is not smooth, this definition of Qƒk doesn’t make sense as a distribution. However,
in the next section, we will prove that ƒk actually is in H�1 and, since multiplication by 2=L is a
bounded operator from H 1.�B0; b/ into itself, we thus get that Qƒk is a perfectly legitimate element of
H�1. Moreover, for any b0 there exists C.b0/ such that for any b � b0, and v 2 Db , we have


 2

L
v





H 1.�B0;b/
� C.b0/kvkH 1.�B0;b/

:

We denote by Pk the operator that is defined by

Pk.u/ D �
1

L

d

dx
.Lu0/ C

�
k2�2

L2
�E

�
u;

and we try to analyze the way a solution to equation (4-3) on .�B0; b/ may be controlled by its behavior
on .0; b/.

The strategy will depend upon whether k is large or not, but first we have to get a bound on ƒk in
some reasonable functional space of distributions.
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4.2. Bounding ƒk. In this section, we prove that each ƒk is actually in H�1.�B0; b/ and provide a
bound for its H�1 norm.

We first note that, using (3-4), for any F 2H�1.�B0; b/:

kFkH�1.�B0;b/
WD sup

�2Db

jF.�/j

k�kH 1

� sup
�2Db

jF.�/j

k�0kL2

: (4-5)

Using (3-6) in the definition of ƒk — see (4-2) — we obtain

ƒk.v/ D

�
@xu;R

�
v.x/ sin

�
k�

y

L.x/

���
C

�
Ru;D

�
v.x/ sin

�
k�

y

L.x/

���
:

Denote by Ak.v/ the first term on the right and Bk.v/ the second term. By inspection, we have

Ak.v/ WD
k�

2

Z b

0

v.x/
L0.x/

L.x/
Fk.x/ dx and Bk.v/ WD

1

2

Z b

0

v0.x/L0.x/Gk.x/ dx;

where we have set

Fk.x/ WD
2

L.x/

Z L.x/

0

1W �y@xu.x;y/ � cos
�

k�
y

L.x/

�
dy; (4-6)

Gk.x/ WD
2

L.x/

Z L.x/

0

1W �y@yu.x;y/ � sin
�

k�
y

L.x/

�
dy (4-7)

Since u 2H 1.�/, Fk and Gk are L2.0; b/ and we can estimate the H�1 norm of ƒk using them.

Lemma 4.1. For any b0 < B1, and given ƒk and Fk ; Gk defined as above, there exists C D C.�b0
/

such that
kƒkkH�1 � C.kb
kFkkL2.0;b/C b
�1

kGkkL2.0;b//: (4-8)

Proof. We estimate Ak.v/, using first an integration by parts

Ak.v/ WD �
k�

2

Z b

�B0

v0.x/

�Z x

0

L0.�/

L.�/
Fk.�/ d�

�
dx:

Using the Cauchy–Schwarz inequality and the fact that L0.�/DO.�
�1/ we haveˇ̌̌̌Z x

0

L0.�/

L.�/
Fk.�/ d�

ˇ̌̌̌
� Cx


� 1
2

C kFkkL2.0;b/:

Inserting into Ak.v/ and using the Cauchy–Schwarz inequality again we get

jAk.v/j � C � .kb
 /kFkkL2.0;b/ � kv
0
kL2.�B0;b/

;

which gives the claimed bound using (4-5).
Next, the second term is estimated using directly the Cauchy–Schwarz estimate and the fact that

supŒ0;b� jL
0.x/j � Cb
�1. We get

jBk.v/j � C � b
�1
kGkkL2.0;b/ � kv

0
kL2.�B0;b/

:

That gives the claimed bound using again (4-5). �
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Define F WD 1W @xu and G WD 1W @yu. By definition, Fk.x/ is the Fourier coefficient of the function
F.x; �/ with respect to the Fourier basis�

y 7! cos
�

k�
y

L.x/

��
k2N[f0g

:

Using the Plancherel formula we getX
k�1

Fk.x/
2 L.x/

2
�

Z L.x/

0

jF.x;y/j2dy:

For the same reason, but using this time the sin basis, we haveX
k�1

Gk.x/
2 L.x/

2
D

Z L.x/

0

jG.x;y/j2dy:

Integrating with respect to x and bounding y from above and L.x/ from below uniformly we get:

Lemma 4.2. For any b0 there exists C depending only on the billiard and b0 such that, for any b < b0,X
k�1

kFkk
2
L2.0;b/

� Ck@xuk2
L2.Wb/

; (4-9)

X
k�1

kGkk
2
L2.0;b/

� Ck@yuk2
L2.Wb/

: (4-10)

We now switch to the control estimate. We begin by dealing with the modes for which
k2�2

L2
0

�E �E.

4.3. Large modes.

4.3.1. A control estimate. Equation (4-3) may be rewritten as

�u00k C

�
k2�2

L2.x/
�E

�
uk D hk ; (4-11)

where hk is the element of H�1 defined by

hk WD
Qƒk C

L0

L
u0k (4-12)

The H�1 norm of hk is now estimated as follows:

Lemma 4.3. There exists a constant C WDC.b0/ such that for any b � b0 and any k with k2�2

L2
0

�E �E

the following estimate holds:

khkkH�1.�B0;b/
� C.b0/

�
kb
kFkkL2.0;b/C b
�1

kGkkL2.0;b/ C b
�1
kukkL2.0;b/

�
: (4-13)

Proof. Using Remark 4.2, the norm of Qƒk is uniformly controlled by the norm of ƒk and the latter is
estimated using Lemma 4.1. To estimate the H�1 norm of .L0=L/u0

k
, we first set v D .L0=L/u0

k
and

remark that

v D

�
L0

L
uk

�0
�

�
L00

L
�
.L0/2

L2

�
uk :
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We choose a test function � and estimate

I1 D

Z b

�B0

�
L0

L
uk

�0
� dx:

We perform an integration by parts, use that L0.x/=L.x/�Cb
�11x>0, then apply the Cauchy–Schwarz
inequality to getˇ̌̌̌ Z b

�B0

�
L0

L
uk

�0
� dx

ˇ̌̌̌
D

ˇ̌̌̌ Z b

�B0

L0.x/

L.x/
uk.x/�

0.x/ dx

ˇ̌̌̌
� Cb
�1

kukkL2.0;b/k�
0
kL2.�B0;b/

:

We then estimate

I2 D

ˇ̌̌̌Z b

�B0

�
L00.x/

L.x/
�
.L0.x//2

L2.x/

�
u.x/�.x/ dx

ˇ̌̌̌
:

We perform an integration by parts, use thatˇ̌̌̌
L00.x/

L.x/
�
.L0.x//2

L2.x/

ˇ̌̌̌
� Cx


�2
C ;

then twice apply the Cauchy–Schwarz inequality to get

I2 � C

Z b

�B0

�Z x

0

�

�2
C ju.�/j d�

�
j�0.x/j dx � Cb
�1

kukL2.0;b/k�
0
kL2.0;b/:

The claim follows using (4-5). �

The variational formulation of equation (4-11) is given byZ b

�B0

u0kv
0 dx C

Z b

�B0

�
k2�2

L2.x/
�E

�
ukv dx D hk.v/: (4-14)

Since k2�2=L2
0
�E �E, the left-hand side is a continuous quadratic form on H 1

0
.�B0; b/, so that,

by Lax–Milgram theory, there is a unique vk in H 1
0
.�B0; b/ satisfying (4-11) in the distributional sense.

The following lemma allows us to estimate the L2 norm of this vk .

Lemma 4.4. There exists a constant C depending only on b0 but not on b < b0, k, or E such that, if
E � 1 and k2�2=L2

0
�E �E, the variational solution vk in H 1

0
.�B0; b/ to equation (4-11) satisfies

kvkkL2.�B0;b/
� C.b0/

�
b
kFkkL2.0;b/CE�

1
2 b
�1

kGkkL2.0;b/CE�
1
2 b
�1

kukkL2.0;b/

�
: (4-15)

Proof. Since vk is a variational solution, putting v D vk in (4-14) we getZ b

�B0

jv0k.x/j
2dx C

Z b

�B0

�
k2�2

L2.x/
�E

�
jvk.x/j

2dx D hk.vk/: (4-16)

In the regime we are considering the second integral on the left is positive, so that we obtainZ b

�B0

jv0k.x/j
2dx � jhk.vk/j � khkkH�1kvkkH 1 :
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Since vk is in H 1
0
.�B0; b/, Poincaré’s inequality gives c.b/, a positive continuous function of b defined

for b > �B0 and satisfying Z b

�B0

jv0k.x/j
2dx � c.b/kvkk

2
H 1 :

This gives a constant C depending only on b0 such that, for any 0< b < b0, we have

kvkkH 1 � CkhkkH�1 :

We now use (4-16) again to obtain�
k2�2

L2
0

�E

�Z b

�B0

jvk.x/j
2dx � khkkH�1kvkkH 1 � Ckhkk

2
H�1

with the preceding bound. Using the estimate (4-13) we obtain�
k2�2

L2
0

�E

�1
2

kvkkL2.�B0;b/
� C

�
kb
kFkkL2.0;b/C b
�1

kGkkL2.0;b/C b
�1
kukkL2.0;b/

�
:

We divide both sides by .k2�2=L2
0
�E/

1
2 . The coefficient in front of b
kFkkL2.0;b/ is bounded by a

constant that is uniform in k, using the fact that

sup
k2�2=L2

0
�E�E

k2

k2�2=L2
0
�E
D sup

Z�E

L2
0

�2

�
1C

E

Z

�
D

L2
0

�2

�
1C

E

E

�
:

For the two other terms, we use simply that k2�2=L2
0
�E �E. This gives the lemma. �

We can now let wk D uk � vk . By construction, wk is a solution to the homogeneous equation

�w00C

�
k2�2

L2.x/
�E

�
w D 0: (4-17)

Moreover, since both uk and vk satisfy Dirichlet boundary condition at�B0 we have thatwk.�B0/D0.
Since the “potential” part in equation (4-17) is bounded below by E, concentration properties of

solutions may be obtained using convexity estimates.

Lemma 4.5. For any b � b0, any solution w to (4-17) such that w.�B0/D 0 satisfies

b

Z b

�B0

jwj2.x/ dx � .B0C b0/

Z b

0

jwj2.x/ dx:

Proof. Multiplying the equation by w we find

�w00wC

�
k2�2

L2.x/
�E

�
w2
D 0:

It follows that .w2/00 � ˇ2w2; for some positive ˇ (here ˇ2 D 2E).
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Since w.�B0/D 0, using the maximum principle on Œ�B0; ��, we obtain for all �B0 � x � � � b0

w2.x/� w2.�/
sinh.ˇ.xCB0//

sinh.ˇ.�CB0//
:

For any t 2 Œ0; 1�, define x.t/ D �B0C t.B0Cb/ and �.t/D tb. Since for any t we have �B0 � x.t/�

�.t/� b0, we may integrate the preceding relation:Z 1

0

w2.x.t// dt �

Z 1

0

w2.�.t//
sinh.ˇ.x.t/CB0//

sinh.ˇ.�.t/CB0//
dt:

Since sinh is increasing the quotient of sinh is bounded above by 1 and we obtain

b

Z b

�B0

w2.x/ dx � .B0C b/

Z b

0

w2.x/ dx: �

Putting these two lemmas together we obtain:

Proposition 4.6. There exists a constant C depending only on b0 such that for any b � b0, for any k and
E such that k2�2=L2

0
�E �E and E � 1,

kukkL2.�B0;b/
� C

�
b
�

1
2 kFkkL2.0;b/CE�

1
2 b
�

3
2 kGkkL2.0;b/C b�

1
2 kukkL2.0;b/

�
(4-18)

for C D C.b0/.

Proof. According to Lemma 4.5 we have

kwkkL2.�B0;b/
� Cb�

1
2 kwkkL2.0;b/;

where wk D uk � vk and vk is the variational solution constructed above. Using the reverse triangle
inequality, we obtain

kukkL2.�B0;b/
� Cb�

1
2 kukkL2.0;b/C .C C b

1
2
0 /b
� 1

2 kvkkL2.�B0;b/
:

The claim will follow using estimate (4-15) of Lemma 4.4. Observe that the prefactor of kukkL2.0;b/ is
at first (up to a constant prefactor)

b�
1
2 C b�

1
2 E�

1
2 b
�1:

Since E�
1
2 b
�1 is uniformly bounded we obtain the given estimate. �

4.3.2. Summing over k. We will now sum the preceding estimates over k. We thus introduce

uC.x;y/ D
X

k2�2=L0�E�E

uk.x/ sin
k�y

L.x/

and prove the following proposition.

Proposition 4.7. There exist b0 and E0 and a constant C depending only on E0 and b0 such that, if u is
an eigenfunction with energy E > E0 and b < b0, then

kuCk
2
L2.R/

� C
�
b2
�1

k@xuk2Wb
C E�1b2
�3

k@yuk2
L2.Wb/

C b�1
kuk2

L2.Wb/

�
:
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Proof. We square estimate (4-18), sum over k, and use (3-2) and Lemma 4.2. �

Observe that the controlling term in the preceding estimate is supported in the wing region. However,
compared to the usual bounds (as in [Burq et al. 2007]) there is a loss of derivatives since we need @xu

and @yu in the wings.

Corollary 4.8. Let b0 and E0 be fixed. There exists C depending on the billiard b0 and E0 but not on
the eigenfunction nor on b < b0 such that

kuCk
2
L2.R/

� C
�
.b2
�1E C b2
�3/kuk2

L2.�/
C b�1

kuk2
L2.W /

�
:

Proof. We bound k@xuk2
L2.Wb/

and k@yuk2
L2.Wb/

by Ekuk2
L2.�/

and use the fact that the norm over Wb

is less than the norm over W . �

It remains to choose b in a clever way to obtain the desired bound.

4.3.3. Optimizing b. We will choose b to be of the form M�1E�˛ for some constants M and ˛ to be
chosen. As long as ˛ is positive, there is some large E0 such that for any E �E0 then b DME�˛ < b0

so that we can use the preceding proposition.
We obtain

kuCk
2
L2.R/

� C
�
.M 1�2
E1�˛.2
�1/

C E�˛.2
�3//kuk2
L2.�/

C ME˛
kuk2

L2.W /

�
: (4-19)

It remains to make good choices to obtain the following proposition.

Proposition 4.9. There exists E0 and C depending only on the billiard such that for any u eigenfunction
with energy E >E0 the following holds:

kuCk
2
L2.R/

�
1
4
kuk2

L2.�/
C CE

1
2
�1 kuk2

L2.W /
(4-20)

Proof. We choose ˛ WD 1=.2
 � 1/ and M such that CM 1�2
 D
1
8

. For E large enough, E�˛.2
�3/

goes to zero. It is thus bounded by 1=.8C / for E large enough. Substituting in (4-19) we get (4-20). �

4.4. Small modes. We now consider modes for which k2�2=L2
0
�E �E, and this time we rewrite the

equation Pk.uk/Dƒk in the form
�u00k � zkuk D hk ; (4-21)

in which we have set zk WDE � k2�2=L2
0

and

hk WD
Qƒk C

L0

L
u0k C

k2

�2

�
1

L2
0

�
1

L2

�
uk :

4.4.1. The control estimate. Since zk ��E we can use the results of the Appendix to control the term
kukkL2.�B0;b/

. To do so, we need to estimate the norm of hk in H�1.�B0; b/.

Lemma 4.10. There exists some constant C depending only on b0 such that, for any b � b0 and any k

such that k2�2=L2
0
�E �E, the following holds:

khkkH�1.�B0;b/
�C

�
kb
kFkkL2.0;b/Cb
�1

kGkkL2.0;b/C .b

�1
C k2b
C1/kukkL2.0;b/

�
: (4-22)
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Proof. From the definition,

hk D
Qƒk C

L0

L
u0k C

k2

�2

�
1

L2
0

�
1

L2

�
uk

and estimate each term separately. The first term is estimated using Lemma 4.1 and Remark 4.2. The
second is estimated as in the proof of Lemma 4.3. The same method applies to estimate the third term.
We introduce

I3 D

ˇ̌̌̌Z b

�B0

�
1

L2
0

�
1

L2.x/

�
uk.x/�.x/ dx

ˇ̌̌̌
;

and observe that the quantity in parentheses is O.x


C/. Integrating by parts and using the Cauchy–Schwarz

inequality twice gives
I3 � Cb
C1

k�0kL2.0;b/kukkL2.0;b/:

Using the definition of the H�1 norm (see (4-5)) and putting these estimates together yields the
lemma. �

For any E 2 R, define

�.E/ WDmin
�ˇ̌̌̌

E �
k2�2

L2
0

�
l2�2

B2
0

ˇ̌̌̌
; .k; l/ 2 N�N

�
:

Remark 4.3. Taking l D 1 in the definition shows that, for E large, we have

�.E/ < c
p

E (4-23)

for some constant c.

Lemma 4.11. For any ˇ > 0, there exists some c such that the following holds. For any k such that
zk D E � k2�2=L2

0
� ˇ2,

jsin.B0
p

zk/j � c �
�.E/
p

zk

:

Proof. First we use that there exists some c such that

jsin xj � c dist.x; �Z/ for all x 2 R:

We denote by lk the integer such that

dist
�
p

zk ;
�

B0

Z

�
D

ˇ̌̌̌
p

zk �
lk�

B0

ˇ̌̌̌
;

so that we have

ˇ̌
sin.B0

p
zk/
ˇ̌
� c

ˇ̌̌̌
p

zk �
lk�

B0

ˇ̌̌̌
� c

zk � l2
k
�2=B2

0
p

zk C lk�=B0

� c

E �
k2�2

L2
0

�
l2
k
�2

B2
0

p
zk

;

where, for the last bound, we have used the Lemma 4.12 below.
The claim follows by the definition of �.E/. �
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Lemma 4.12. Fix ˛ > 0 and denote by l the (step-like) function on Œ0;1/ defined by

j�� l.�/˛j D dist.�; ˛Z/

Then there exists some C such that

�C l.�/˛ � C�: for all � 2 Œ0;1/:

Proof. Define f by

f .�/ D
�C l.�/˛

�
:

Since l vanishes on Œ0; ˛=2�, we have f .�/D 1 on this interval. Next, f tends to the limit 2 when � goes
to infinity. Finally, on Œ˛=2;M � we have

f .�/ D 1C
l.�/

�
˛ � 1C

2M C 1

˛
: �

Putting these estimates together, we get:

Proposition 4.13. There exists b0 and E0 and a constant C WD C.b0;E0/ such that the following holds.
For any E >E0, for any k such that k2�2=L2

0
�E �E and for any b < b0, we have the estimate

kukkL2.�B0;b/
�C

E
1
2

�.E/

�
E

1
2 b
C

1
2 kFkkL2.0;b/Cb
�

1
2 kGkkL2.0;b/C.1 C Eb
C2/b�

1
2 kukkL2.0;b/

�
:

(4-24)

Proof. For any k we let zk DE � k2�2=L2
0

and use the estimates of the appendix combined with the
bound on hk given by Lemma 4.10. For k such that zk corresponds to estimates (A-10) and (A-12) of
Theorem 3 we obtain

kukkL2.�B0;b/
� C

�
b

1
2 khkkH�1.�B0;b/

C b�
1
2 kukkL2.0;b/

�
� C

�
kb
C

1
2 kFkkL2.0;b/C b
�

1
2 kGkkL2.0;b/C .b



C k2b
C2

C 1/b�
1
2 kukkL2.0;b/

�
:

We now use that k DO.E
1
2 / in the regime we are considering. We also remark that b
 Ck2b
C2C1D

O.1CEb
C2/.
In the opposite case (for k such that zk corresponds to estimate (A-11)), we have to add a global

jsin.B0
p

zk/j
�1 prefactor. Using Lemma 4.11, we have

jsin.B0
p

zk/j
�1
� C

p
zk

�.E/
� C

E
1
2

�.E/
:

We thus obtain that, for any k,

kukkL2.�B0;b/

� C �max
�

1;
E

1
2

�.E/

� �
E

1
2 b
C

1
2 kFkkL2.0;b/C b
�

1
2 kGkkL2.0;b/C .1CEb
C2/b�

1
2 kukL2.0;b/

�
:

Using (4-23), for large E we have E1=2=�.E/ bounded from below, so that the claim follows. �
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4.5. Summing over k. We use the estimates of the preceding sections to obtain a control on ku�k2L2.R/

in which we have set

u�.x;y/ D
X

k2�2=L0�E�E

uk.x/ sin
�

k�y

L.x/

�
:

Proposition 4.14. There exists b0 and E0 and a constant C depending only on E0 and b0 such that if u

is an eigenfunction with energy E > E0 and b < b0, then

ku�k
2
L2.R/

� C
E

�.E/2

�
Eb2
C1

k@xuk2
L2.W /

C b2
�1
k@yuk2

L2.W /
C .1CEb
C2/2b�1

kuk2
L2.W /

�
:

Proof. We square (4-24) and sum with respect to k. The Lemma 4.2 controls
P
kFkk

2 and
P
kGkk

2.
Plancherel formula takes care of

P
kukk

2. We also use as before that the norm over Wb is smaller than
the norm over W . �

As for the large mode case, we get a corollary using the fact that k@xuk2 and k@yuk2 are bounded
above by Ekuk2

L2.�/
.

Corollary 4.15. There exists b0 and E0 and a constant C depending only on E0 and b0 such that if u is
an eigenfunction with energy E > E0 and b < b0, then

ku�k
2
L2.R/

� C

��
E3

�.E/2
b2
C1

C
E2

�.E/2
b2
�1

�
kuk2

L2.�/
C .1CEb
C2/2

Eb�1

�.E/2
kuk2

L2.W /

�
:

4.6. A nonresonance condition. We now want to make the previous estimates explicit with respect to
E and b so that we can use a similar optimization procedure as for the large modes case. We thus impose
some condition on �.E/. Namely, for any "� 0, we introduce the set

Z" WD
˚
E 2 R j �.E/� c0E�"

	
D

�
E 2 R

ˇ̌̌ ˇ̌̌̌
E �

k2�2

L2
0

�
l2�2

B2
0

ˇ̌̌̌
� c0E�" for k; l 2 N

�
:

In other words, the set Z" consists in energies that are far from the Dirichlet spectrum of the rectangle
Œ�B0; 0� � Œ0;L0�. It is natural to say that such energies are not resonating with the rectangle. The
coefficient c0 which is irrelevant when " > 0 has been chosen in such a way that Weyl’s law for the
rectangle implies that Z0 is not empty. Note however that, although expected, it is not clear that there
actually are eigenvalues in Z0, nor for that matter in Z".

Once " is fixed, the estimate of the Corollary 4.15 becomes

ku�k
2
L2.R/

� C
�
.b2
C1E3C2"

C b2
�1E2C2"/ kuk2
L2.�/

C .1CEb
C2/2b�1E1C2"
kuk2

L2.W /

�
:

(4-25)

4.6.1. Optimizing b. As before we let b D ME�˛ for some positive ˛ and try to optimize the bound.

Proposition 4.16. Define ˛ by

˛ Dmax
�

3C 2"

2
 C 1
;

2C 2"

2
 � 1

�
:



846 LUC HILLAIRET AND JEREMY L. MARZUOLA

There exists E0 and C such that for any u eigenfunction with energy E in Z" such that E > E0, the
following holds:

ku�k
2
L2.R/

�
1
4
kuk2

L2.�/
C C �E1C2"C˛

� kuk2
L2.W /

: (4-26)

Proof. With the given choice of ˛ it is possible to choose M so that the prefactor of kuk2
L2.�/

is 1
4

for E

large enough. The claim follows remarking that the definition of ˛ implies

˛ �
3

2
 C 1
>

1


 C 2
;

so that the prefactor .1CEb
C2/2 is uniformly bounded above. �

5. Nonconcentration estimate

We now put all the estimates together to obtain the following theorem.

Theorem 2. Fix ", and define � by

� WDmax
�

2C 
 C 2.
 C 1/"

2
 C 1
;
1C 2
 C 4
"

4
 � 2

�
:

There exists E0 and C such that any eigenfunction u of � with energy E in Z" such that E >E0 satisfies:

kukL2.�/ � C �E�
kukL2.W /:

Proof. We first remark that whatever the exponent ˛ is we always have 1 C 2" C ˛ � 1> 1
2
�1

so that
the exponent for the small modes is always larger than the exponent for the large modes. Thus, adding
the estimates from propositions 4.9 and 4.16, we obtain

kuk2
L2.R/

�
1
2
kuk2

L2.�/
C CE1C2"C˛

kuk2
L2.W /

:

Since kuk2
L2.R/

D kuk2
L2.�/

�kuk2
L2.W /

we get

1
2
kuk2

L2.�/
� .1CCE1C2"C˛/kuk2

L2.W /

When E is large the constant 1 can be absorbed in the term with a power of E. The claim follows by
computing 1C 2"C˛ for both possible choices of ˛ and taking square roots. �

We state as a corollary the corresponding statement for the Bunimovich billiard (see Theorem 1).

Corollary 5.1. In the Bunimovich stadium, for any " � 0 there exists E0 and C such that if u is an
eigenfunction of energy E in Z" such that E >E0 then the following estimate holds:

kukL2.�/ � CE
5C8"

6 kukL2.W /:

Proof. We let 
 D 2, so ˛ D max
�

4C6"

5
;
5C8"

6

�
. Since 4C6"

5
�

5C8"

6
for any nonnegative ", the

proof is complete. �



NONCONCENTRATION IN PARTIALLY RECTANGULAR BILLIARDS 847

Remark 5.1. The bounds in [Burq et al. 2007] gives a similar control with 1 as the exponent of E. Our
bound thus gives a better estimate as long as " < 1

8
. As it has been recalled in the introduction, it is quite

natural that the nonresonance condition allows to get better bounds.

Remark 5.2. We could deal with quasimodes by adding an error term to ƒ that is controlled by some
negative power of E. There will be mainly two differences in the analysis. First the second term ƒ will
not have support away from the rectangle anymore and second, in the optimization process, we will have
to take care of the new error term (which will possibly change the range of applicable exponents).

Remark 5.3. By adding the estimates in propositions 4.7 and 4.14, we get a different control estimate,
where the control still is in the wings but now with a loss in derivatives. We haven’t tried to optimize this
bound.

Appendix: One-dimensional control estimates

The aim of this appendix is to provide a control estimate for the equation

�u00� z �u D h

on Œ�B0; b� of the form

kukL2.�B0;0/
� C1khkH�1.�B0;b/

C C2kukL2.0;b/;

in which we want an explicit dependence of the constants C1 and C2 on z and b. It is now standard (see
[Burq and Zworski 2005]) that if b is fixed then we can choose C1 and C2 to be independent of z but
what we need is an estimate when b goes to 0.

We first need a few preparatory lemmas.

Lemma A.2. For any " > 0, there exists a constant C WD C."/ such that for any b, for any h 2

H�1.�B0; b/ and any z such that z � .1� "/�2=b2, there exists a solution vp 2H 1
0
.0; b/ to

�v00p � zvp D h;

in D0.0; b/ and
kvpkL2.0;b/ � CbkhkH�1.�B0;b/

: (A-1)

Proof. First we note that h, when restricted to .0; b/ also belongs to H�1.0; b/ and that khkH�1.0;b/ �

khkH�1.�B0;b/
. The proof follows from a standard resolvent estimate since, on .0; b/, the bottom of the

spectrum of the self-adjoint operator v 7! �v00 with Dirichlet boundary condition is �2=b2. We include
it for the convenience of the reader. We decompose vp in Fourier series:

vp.x/ D
X
k�1

ak sin
�

k�

b
x
�
:

We have

h.x/ D
X
k�1

�
k2�2

b2
� z

�
ak sin

�
k�

b
x
�
I
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hence

khk2
H�1.0;b/

D

X
k�1

�
k2�2=b2� z

�2
k2�2=b2

ja2
k j

or

khk2
H�1.0;b/

� �2b�2

 
inf
k�1

�
1�

zb2

k2�2

�2

�2k2

!
kvpk

2
H 1.0;b/

� c�2b�2
kvpk

2
L2.0;b/

:

The claim follows since the inf is bounded away from zero in the regime we are considering. �

Lemma A.3. Given z � .1� "/�2=b2, let w 2H 1
0
.�B0; b/ be a solution to

�w00� zw D 0

in D0 ..�B0; b/ n f0g/. Then there exists a constant A such that w D AG, in which the function G is
defined by

G.x/ D

8̂̂<̂
:̂

sin.
p

z.xCB0//
p

z

sin.
p

zb/
p

z
if x < 0;

sin.
p

z.b�x//
p

z

sin.
p

zB0/
p

z
if x > 0:

(A-2)

Proof. Let w be such a function then necessarily there exist two constants A˙ such that

w.x/ D

8̂̂<̂
:̂

A�
sin.
p

z.xCB0//
p

z
if x < 0;

AC
sin.
p

z.b�x//
p

z
if x > 0:

By assumption w 2H 1 and hence is continuous at 0, so

A�
sin.
p

zB0/
p

z
D AC

sin.
p

zb/
p

z
:

In the regime we are considering sin.
p

zb/=
p

z ¤ 0, hence we can divide by this expression and express
A� in terms of AC. The claim follows. �

We finish these preparatory lemmas by establishing the control estimate for multiples of G.

Lemma A.4. (1) For ˇ such that 0 < ˇ � �=B0, there exists B1 D B1.ˇ/ and C WD C.ˇ/ such that,
for any z � ˇ2 and any b < B1, the following estimate holds:

kGkL2.�B0;0/
� Cb�

1
2 kGkL2.0;b/: (A-3)

(2) For any ˇ; " > 0 there exists B1 WD B1.ˇ/ and C WD C.ˇ; "/ such that, for any b � B1 and
ˇ2 � z � .1� "/�2=b2, the following estimate holds:

kGkL2.�B0;0/
� C

b�
1
2

sin.
p

zB0/
kGkL2.0;b/: (A-4)
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Proof. (1) We first assume that z < �Z2
0

for some positive Z0. We set z D�!2 and computeZ 0

�B0

jG.x/j2 dx D
sinh2.!b/

!2

Z 0

�B0

sinh2.!.B0Cx// dx;

Z b

0

jG.x/j2 dx D
sinh2.!B0/

!2

Z b

0

sinh2.!.b�x// dx:

By a straightforward change of variables we getZ 0

�B0

jG.x/j2 dx D
sinh2.!b/

!3

Z !B0

0

sinh2.�/ d�;

Z b

0

jG.x/j2 dx D
sinh2.!B0/

!3

Z b

0

sinh2.�/ d�:

We set F.X / WD

R X
0 sinh2.�/ d�

sinh2.X /
, so that we finally obtain

Z 0

�B0

jG.x/j2 dx D
F.!B0/

F.!b/
�

Z b

0

jG.x/j2 dx:

It is straightforward that F.X / is positive, tends to 1 at infinity and that F.X /=X tends to 1
3

at 0. As a
consequence, there exists some C.Z0/ such that, for any z < �Z2

0
,Z 0

�B0

jG.x/j2 dx � C max.1; .!b/�1/

Z b

0

jG.x/j2 dx;

For b < B1 and ! > Z0, we have max.1; .!b/�1/ � max.1; !�1/b�1 � Cb�1 which gives the claim
for this range of parameters.

We now assume that we have �Z2
0
< z < ˇ2. We haveZ 0

�B0

jG.x/j2 dx D

ˇ̌̌̌
sin.
p

zb/
p

z

ˇ̌̌̌2 Z 0

�B0

ˇ̌̌̌
sin.
p

z.xCB0//
p

z

ˇ̌̌̌2
dx

D b2

ˇ̌̌̌
sin.
p

zb/
p

zb

ˇ̌̌̌2 Z 0

�B0

ˇ̌̌̌
sin.
p

z.xCB0//
p

z.xCB0/

ˇ̌̌̌2
.xCB0/

2 dx � Cb2;

where the constant C comes from the fact that the function sin.w/=w is continuous and its argument
belongs to a fixed compact set. On the other hand, by a simple change or variables we haveZ b

0

jG.x/j2 dx D

ˇ̌̌̌
sin.
p

zB0/
p

z

ˇ̌̌̌2 Z b

0

ˇ̌̌̌
sin.
p

zx/
p

z

ˇ̌̌̌2
dx � cB2

0

b3

3
;

in which c is given by

c D

ˇ̌̌̌
sin.
p

zB0/
p

zB0

ˇ̌̌̌2
inf

0�x�B1

ˇ̌̌̌
sin.
p

zx/
p

zx

ˇ̌̌̌2
:
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Using that sin.w/=w is continuous and does not vanish on .�1; �/ and choosing B1 accordingly we
obtain the first bound.

(2) We first use homogeneity and prove the bound for QG WD zG. We haveZ 0

�B0

ˇ̌
QG.x/

ˇ̌2
dx D

ˇ̌
sin.
p

zb/
ˇ̌2 Z 0

�B0

ˇ̌
sin.
p

z.xCB0//
ˇ̌2

dx � B0 jsin.X /j2 ;

in which we have set X WD
p

zb. On the other hand we haveZ b

0

ˇ̌
QG.x/

ˇ̌2
dx D

ˇ̌
sin.
p

zB0/
ˇ̌2 Z b

0

ˇ̌
sin.
p

zx/
ˇ̌2

dx D b �
ˇ̌
sin.
p

zB0/
ˇ̌2
�

1

X

Z X

0

jsin.�/j2d�;

with the same X . Under the assumptions, X belongs to a compact subinterval of Œ0; �/. Since on this
interval the function

X 7!
1

X jsin.X /j2

Z X

0

jsin.�/j2d�

is continuous, the claim follows. �
Proposition A.5. There exist ˇ and B1 WD B1.ˇ/, such that if b � B1 and v 2H 1

0
.�B0; b/ satisfies

�v00� zv D h;

with h that vanishes on .�B0; 0/, then the following estimates hold:

(1) If z � ˇ2, then

kvkL2.�B0;0/
� C1

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kvkL2.0;b/

�
; (A-5)

(2) If ˇ2 � z �
1

b2
,

kvkL2.�B0;0/
� C1

�
b

1
2

jsin.B0

p
z/j
khkH�1.�B0;b/

C
b�

1
2

jsin.B0

p
z/j
kvkL2.0;b/

�
; (A-6)

(3) If 1

b2
� z then

kvkL2.�B0;0/
� C3

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kvkL2.0;b/

�
: (A-7)

Proof. In the first two cases, we have z � 1
b2 <

�2

b2 . We may thus consider vp as given by Lemma A.2 and
define Qvp by extending vp by 0 for negative x. Observe that w WD v� Qvp is in H 1

0
.�B0; b/ and satisfies

�w00� zw D 0

in D..�B0; b/ n f0g/ so that v� Qvp DAG for some A according to Lemma A.3. Using Lemma A.4 we
obtain in the first case

kv� QvpkL2.�B0;0/
� Cb�

1
2 kv� QvpkL2.0;b/:

We use the triangle inequality on the right-hand side and the fact that Qvp is 0 for negative x and coincide
with vp for positive v. We obtain

kvkL2.�b0;0/
� Cb�

1
2

�
kvkL2.0;b/ C kvpkL2.0;b/

�
:
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The claim then follows from the estimate on kvpkL2.0;b/ in Lemma A.2. We prove the second case by
following the same argument, inserting the corresponding bound for G.

The third case will follow the same lines but we will introduce a different particular solution vp,
following then even more closely the proof of [Burq and Zworski 2005]. We set �D

p
z.

Denote by H the unique L2 function on .�B0; b/ that vanishes on .�B0; 0/ and such that H 0 D h in
the distributional sense. The L2 norm of H is related to the H�1 norm of h by the relation

kH �

�Z b

0

H.y/ dy

�
kL2.�B0;b/

D khkH�1.�B0;b/
:

The Cauchy–Schwarz inequality then implies that

kHkL2.�B0;b/
� .1C b

1
2 /�1
khkH�1.�B0;b/

: (A-8)

Set

vp.x/ D

Z x

�B0

sin.�.x�y//

�
H 0.y/ dy:

Then vp satisfies
�v00p ��

2vp D H 0

in D0.�B0; b/ and vp.�B0/D 0 but the boundary condition need not be satisfied at b. We thus have

v.x/ D vp.x/� vp.b/
sin.�.xCB0//

sin.�.B0C b//
:

The function v� vp is thus a multiple of sin.�.xCB0//.
We have Z 0

�B0

ˇ̌
sin.�.xCB0//

ˇ̌2
dx � B0

and Z b

0

jsin.�.xCB0//j
2 dx �

1

2

�
b�

1

2�

�
:

Hence, in the regime under consideration we have

kv� vpkL2.�B0;b/
� Cb�

1
2 kv� vpkL2.0;b/: (A-9)

We perform an integration by parts in vp and observe that the boundary contributions vanish because
H vanishes near �B0 and sin.�.y �x// vanishes at y D x.

Finally, we obtain

vp.x/ D

Z x

�B0

cos.�.x�y//H.y/ dy:

It follows that vp is identically 0 on .�B0; 0/ and that, on .0; b/, it satisfies

jvp.x/j � kHkL2.�B0;b/

p
x:
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Squaring and integrating, we get

kvpkL2.0;b/ � bkHkL2.�B0;b/
:

Using the triangle inequality in (A-9) and inserting this bound, the result follows for b� 1
2

using (A-8). �

In the paper, we will need to relax the condition that v.b/ D 0. This can be done using a standard
construction related to a commutator method. We will get the following

Theorem 3. There exist ˇ and four constants B1;C1;C2;C3 depending only on ˇ such that the following
holds. For any b � B1, for any function u in H 1.�B0; b/ that satisfies

�u00� zu D h;

with h 2 H�1.�B0; b/ and such that u.�B0/ D 0 and h vanishes on .�B0; 0/. Then, the following
estimates hold:

(1) If z � ˇ2, then

kukL2.�B0;0/
� C1

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kukL2.0;b/

�
: (A-10)

(2) If ˇ2 � z �
1

b2
, then

kukL2.�B0;0/
� C1

�
b

1
2

jsin.B0

p
z/j
khkH�1.�B0;b/

C
b�

1
2

jsin.B0

p
z/j
kukL2.0;b/

�
: (A-11)

(3) If 1

b2
� z, then

kukL2.�B0;0/
� C3

�
b

1
2 khkH�1.�B0;b/

C b�
1
2 kukL2.0;b/

�
: (A-12)

Proof. Define a smooth cutoff function �1 such that �1.x/ is identically 1 if x � 1
2

and identically 0 if
x � 1 and let �b be the function x 7! �1.x=b/. Define v WD �bu then v 2H 1

0
.�B0; b/ and satisfies

�v00� zv D h C 2.�0bu/0� �00bu:

The right-hand side vanishes on .�B0; 0/ so that, in order to use Proposition A.5, we have to estimate its
H�1 norm. The strategy is the same as in the proofs of Lemmas 4.3 and 4.10.

An integration by parts followed by the use of the Cauchy–Schwarz inequality givesˇ̌̌̌Z B1

�B0

.�0bu/0�

ˇ̌̌̌
� k�0ukL2.0;b/k�

0
kL2 �

C

b
kukL2.0;b/k�

0
kL2 :

Thus,

k.�0bu/0kH�1 �
C

b
kukL2.0;b/:

The third term can be estimated using the same method. Indeed,ˇ̌̌̌Z
�00bu�

ˇ̌̌̌
D

ˇ̌̌̌Z b

0

�Z x

0

�00b.y/u.y/ dy

�
�0.x/ dx

ˇ̌̌̌
� k

Z x

0

�00b.y/u.y/ dykL2.0;b/k�
0
kL2 :
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Using again Cauchy–Schwarz inequality and the fact that j�00
b
.y/j � Cb�2 we getˇ̌̌̌Z x

0

�00b.y/u.y/ dy

ˇ̌̌̌
� Cb�2

kukL2.0;b/

p
x:

We obtain



Z x

0

�00b.y/u.y/ dy






L2.0;b/

� Cb�2
kukL2.0;b/k

p
xkL2.0;b/ � Cb�1

kukL2.0;b/:

It follows that

kh C 2.�0bu/0� �00bukH�1.�B0;b/
� khkH�1.�B0;b/

C Cb�1
kukL2.0;b/:

We obtain the theorem by plugging this bound into the estimates of the Proposition A.5. �
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