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GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING
QUINTIC NLS IN THREE DIMENSIONS

ROWAN KILLIP AND MONICA VIS, AN

We revisit the proof of global well-posedness and scattering for the defocusing energy-critical NLS in
three space dimensions in light of recent developments. This result was obtained previously by Collian-
der, Keel, Staffilani, Takaoka, and Tao.

1. Introduction

The defocusing quintic nonlinear Schrödinger equation,

iut +1u = |u|4u, (1-1)

describes the evolution of a complex-valued function u(t, x) of spacetime Rt × R3
x . This evolution

conserves energy:

E(u(t)) :=
∫

R3

1
2 |∇u(t, x)|2+ 1

6 |u(t, x)|6 dx . (1-2)

By Sobolev embedding, u(0) has finite energy if and only if u(0) ∈ Ḣ 1
x (R

3), which is the space of
initial data that we consider. This is also a scale-invariant space; both the class of solutions to (1-1) and
the energy are invariant under the scaling symmetry

u(t, x) 7→ uλ(t, x) := λ1/2u(λ2t, λx). (1-3)

For this reason, the equation is termed energy-critical.
A function u : I ×R3

→ C on a nonempty time interval I 3 0 is called a strong solution to (1-1) if it
lies in the class C0

t Ḣ 1
x (K ×R3)∩ L10

t,x(K ×R3) for all compact K ⊂ I , and obeys the Duhamel formula

u(t)= ei t1u(0)− i
∫ t

0
ei(t−s)1

|u(s)|4u(s) ds, (1-4)

for all t ∈ I . We say that u is a maximal-lifespan solution if the solution cannot be extended (in this
class) to any strictly larger interval.

Our main result is a new proof of the following:
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Theorem 1.1 (global well-posedness and scattering). Let u0 ∈ Ḣ 1
x (R

3). Then there exists a unique
global strong solution u ∈ C0

t Ḣ 1
x (R×R3) to (1-1) with initial data u(0) = u0. Moreover, this solution

satisfies ∫
R

∫
R3
|u(t, x)|10 dx dt ≤ C

(
‖u0‖Ḣ1

x

)
. (1-5)

Further, scattering occurs: (i) there exist asymptotic states u± ∈ Ḣ 1
x such that∥∥u(t)− ei t1u±

∥∥
Ḣ1

x
→ 0 as t→±∞ (1-6)

and (ii) for any u+ ∈ Ḣ 1
x (or u− ∈ Ḣ 1

x ) there exists a unique global solution u to (1-1) such that (1-6)
holds.

Theorem 1.1 was proved by Colliander, Keel, Staffilani, Takaoka, and Tao in the ground-breaking
paper [Colliander et al. 2008]. The key point is to prove the spacetime bound (1-5); scattering is an easy
consequence of this. Note also that the solution described in Theorem 1.1 is in fact unique in the larger
class of C0

t Ḣ 1
x functions obeying (1-4); this unconditional uniqueness statement is proved in [Colliander

et al. 2008, §16] by adapting earlier work.
The paper [Colliander et al. 2008] advanced the induction on energy technique, introduced by Bourgain

in [1999], and presaged many recent developments in dispersive PDE at critical regularity. The argument
may be outlined as follows: (i) If a bound of the form (1-5) does not hold, then there must be a minimal
almost-counterexample, that is, a minimal-energy solution with (prespecified) enormous spacetime norm.
(ii) By virtue of its minimality, such a solution must have good tightness and equi-continuity properties.
(iii) To be consistent with the interaction Morawetz identity such a solution must undergo a dramatic
change of (spatial) scale in a short span of time. (iv) Such a rapid change is inconsistent with simultaneous
conservation of mass and energy.

As just described, the argument appears to be by contradiction, but this is not the case. In fact, it is
entirely quantitative, showing that in order to achieve such a large spacetime norm, the solution must
have at least a certain amount of energy. The energy requirement diverges as the spacetime norm diverges
and so yields an effective bound for the function C appearing in (1-5). This style of argument adapts
also to other equations and dimensions; see, for example, [Nakanishi 1999; Ryckman and Vis,an 2007;
Tao 2005; Vis,an 2007].

The downside to the induction on energy argument is its complexity. It is monolithic, as opposed to
modular; the value of a small parameter introduced at the very beginning of the proof is not determined
until the very end. In recent years, the induction on energy argument has been supplanted by a related
contradiction argument that is completely modular and is much easier to understand; it is not quantitative.

The genesis of this new method comes from the discovery of Keraani [2006] that the estimates underly-
ing the proof that minimal almost-counterexamples have good tightness/equicontinuity properties can be
pushed further to show that failure of Theorem 1.1 guarantees the existence of a minimal counterexample.
This insight was first applied to the well-posedness problem in an important paper of Kenig and Merle
[2006], which considered the focusing equation with radial data in dimensions three, four, and five.
Subsequent papers (by a wide array of authors) have greatly refined and expanded this methodology.
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In this paper, we revisit the proof of Theorem 1.1 using this “minimal criminal” approach, which, we
believe, results in significant expository simplification. We will also endeavor to convey that much of the
original argument lives on, both in spirit and in the technical details, by explicit reference to [Colliander
et al. 2008] as well as by maintaining their notations, as much as possible.

In some very striking recent work [Dodson 2012; 2011b; 2011a], Dodson has proved the analogue
of Theorem 1.1 for the mass-critical nonlinear Schrödinger equation in arbitrary dimension. The most
significant difference between [Colliander et al. 2008] and the argument presented here comes from the
adaptation of some of his ideas (present already in the first paper [Dodson 2012]) to the problem (1-1).
We postpone a fuller discussion of these matters until we have described some of the key steps in the
proof.

Outline of the proof. We argue by contradiction. Simple contraction mapping arguments show that
Theorem 1.1 holds for solutions with small energy; thus, if the theorem were not to hold there must be
a transition energy above which the energy no longer controls the spacetime norm. The first step in the
argument is to show that there is a minimal counterexample and that, by virtue of its minimality, this
counterexample has good compactness properties.

Definition 1.2 (almost periodicity). A solution u ∈ L∞t Ḣ 1
x (I ×R3) to (1-1) is said to be almost periodic

(modulo symmetries) if there exist functions N : I → R+, x : I → R3, and C : R+→ R+ such that for
all t ∈ I and η > 0,∫

|x−x(t)|≥C(η)/N (t)

∣∣∇u(t, x)
∣∣2 dx +

∫
|ξ |≥C(η)N (t)

|ξ |2 |û(t, ξ)|2 dξ ≤ η. (1-7)

We refer to the function N (t) as the frequency scale function for the solution u, to x(t) as the spatial
center function, and to C(η) as the modulus of compactness.

Remark 1.3. Together with boundedness in Ḣ 1
x , the tightness plus equicontinuity statement (1-7) illus-

trates that almost periodicity is equivalent to the (co)compactness of the orbit modulo translation and
dilation symmetries. In particular, from compactness we see that for each η > 0 there exists c(η) > 0 so
that for all t ∈ I , ∫

|x−x(t)|≤c(η)/N (t)

∣∣∇u(t, x)
∣∣2 dx +

∫
|ξ |≤c(η)N (t)

|ξ |2 |û(t, ξ)|2 dξ ≤ η.

Similarly, compactness implies ∫
R3
|∇u(t, x)|2 dx .u

∫
R3
|u(t, x)|6 dx

uniformly for t ∈ I . This last observation plays the role of Proposition 4.8 in [Colliander et al. 2008].

With these preliminaries out of the way, we can now describe the first major milestone in the proof of
Theorem 1.1:

Theorem 1.4 (reduction to almost periodic solutions [Kenig and Merle 2006; Killip and Vis,an 2010]).
Suppose Theorem 1.1 fails. Then there exists a maximal-lifespan solution u : I ×R3

→ C to (1-1) which
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is almost periodic and blows up both forward and backward in time in the sense that for all t0 ∈ I ,∫ sup I

t0

∫
R3
|u(t, x)|10 dx dt =

∫ t0

inf I

∫
R3
|u(t, x)|10 dx dt =∞.

The theorem does not explicitly claim that u is a minimal counterexample; nevertheless, this is how it
is constructed and, more importantly, how it is shown to be almost periodic. In [Colliander et al. 2008],
the role of this theorem is played by Corollary 4.4 (equicontinuity) and Proposition 4.6 (tightness).

A précis of the proof of Theorem 1.4 can be found in [Kenig and Merle 2006], building on Keraani’s
method [2006]; for complete details see [Killip and Vis,an 2010] or [Killip and Vis,an 2008]. Just as for
the results from [Colliander et al. 2008] mentioned above, the key ingredients in the proof are improved
Strichartz inequalities, which show that concentration occurs, and perturbation theory, which shows that
multiple simultaneous concentrations are inconsistent with minimality.

Continuity of the flow prevents rapid changes in the modulation parameters x(t) and N (t). In partic-
ular, from [Killip et al. 2009, Corollary 3.6] or [Killip and Vis,an 2008, Lemma 5.18] we have

Lemma 1.5 (local constancy property). Let u : I × R3
→ C be a maximal-lifespan almost periodic

solution to (1-1). Then there exists a small number δ, depending only on u, such that if t0 ∈ I then[
t0− δN (t0)−2, t0+ δN (t0)−2]

⊂ I

and
N (t)∼u N (t0) whenever |t − t0| ≤ δN (t0)−2.

We recall next a consequence of the local constancy property; see [Killip et al. 2009, Corollary 3.7;
Killip and Vis,an 2008, Corollary 5.19].

Corollary 1.6 (N (t) at blowup). Let u : I ×R3
→ C be a maximal-lifespan almost periodic solution to

(1-1). If T is any finite endpoint of I , then N (t)&u |T − t |−1/2; in particular, limt→T N (t)=∞.

Finally, we will need the following result linking the frequency scale function N (t) of an almost
periodic solution u and its Strichartz norms:

Lemma 1.7 (spacetime bounds). Let u be an almost periodic solution to (1-1) on a time interval I . Then∫
I

N (t)2 dt .u ‖∇u‖q
Lq

t Lr
x (I×R3)

.u 1+
∫

I
N (t)2 dt (1-8)

for all 2
q +

3
r =

3
2 with 2≤ q <∞.

Proof. We recall that Lemma 5.21 in [Killip and Vis,an 2008] shows that∫
I

N (t)2 dt .u

∫
I

∫
R3
|u(t, x)|10 dx dt .u 1+

∫
I

N (t)2 dt. (1-9)

The second inequality in (1-8) follows from the second inequality above and an application of the
Strichartz inequality. The first inequality follows by the same method used to prove the corresponding
result in (1-9): The fact that u 6≡ 0 ensures that N (t)−2/q

‖∇u(t)‖Lr
x

never vanishes. Almost periodicity
then implies that it is bounded away from zero and the inequality follows. �
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Let u : I ×R3
→C be an almost periodic maximal-lifespan solution to (1-1). As a direct consequence

of the preceding three results, we can tile the interval I with infinitely many characteristic intervals Jk ,
which have the following properties:

• N (t)≡ Nk is constant on each Jk .

• |Jk | ∼u N−2
k , uniformly in k.

• ‖∇u‖Lq
t Lr

x (Jk×R3) ∼u 1, for each 2
q +

3
r =

3
2 with 2≤ q ≤∞ and uniformly in k.

Note that the redefinition of N (t) may necessitate a mild increase in the modulus of compactness. We
may further assume that 0 marks a boundary between characteristic intervals, which we do, for expository
reasons.

Returning to Theorem 1.4, a simple rescaling argument (see, for example, the proof of Theorem 3.3
in [Tao et al. 2007]) allows us to additionally assume that N (t) ≥ 1 at least on half of the interval I ,
say, on [0, Tmax). Inspired by [Dodson 2012], we further subdivide into two cases dictated by the control
given by the interaction Morawetz inequality. Putting everything together, we obtain

Theorem 1.8 (two special scenarios for blowup). Suppose Theorem 1.1 failed. Then there exists an
almost periodic solution u : [0, Tmax)×R3

→ C, such that

‖u‖L10
t,x ([0,Tmax)×R4) =+∞

and [0, Tmax)= ∪k Jk where Jk are characteristic intervals on which N (t)≡ Nk ≥ 1. Furthermore,

either
∫ Tmax

0
N (t)−1 dt <∞ or

∫ Tmax

0
N (t)−1 dt =∞.

Thus, in order to prove Theorem 1.1 we just need to preclude the existence of the two types of almost
periodic solution described in Theorem 1.8. By analogy with the trichotomies appearing in [Killip et al.
2009; Killip and Vis,an 2010], we refer to the first type of solution as a rapid low-to-high frequency
cascade and the second as a quasisoliton.

In each case, the key to showing that such solutions do not exist is a fundamentally nonlinear relation
obeyed by the equation. In the cascade case, it is the conservation of mass; in the quasisoliton case, it is
the interaction Morawetz identity (a monotonicity formula introduced in [Colliander et al. 2004]). Un-
fortunately, both of these relations have energy-subcritical scaling and so are not immediately applicable
to L∞t Ḣ 1

x solutions; additional control on the low frequencies is required. It is in how this control is
achieved that we deviate most from [Colliander et al. 2008].

The argument in [Colliander et al. 2008] relies heavily on the interaction Morawetz identity. To cope
with the noncritical scaling, a frequency localization is introduced. This produces error terms which are
then controlled by means of a highly entangled bootstrap argument. Dodson’s paper [2012] also uses a
frequency-localized interaction Morawetz identity; however, the error terms are handled via spacetime
estimates that are proved independently of this identity. Indeed, the proof of these estimates does not
even rely on the defocusing nature of the nonlinearity.
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In this paper, we adopt Dodson’s strategy (see also [Vis,an 2012]). The requisite estimates on the low-
frequency part of the solution appear in Theorem 4.1. It seems to us that this theorem represents the limit
of what can be achieved without the use of intrinsically nonlinear tools such as monotonicity formulae.
The rationale for this assertion comes from consideration of the focusing equation and is discussed in
Remark 4.3. Nevertheless, Theorem 4.1 does just suffice to treat the error terms in the frequency-localized
interaction Morawetz identity (see Section 6), which is then used to preclude quasisolitons in Section 7.

The proof of Theorem 4.1 relies on a type of Strichartz estimate that we have not seen previously. This
estimate, Proposition 3.1, has the flavor of a maximal function in that it controls the worst Littlewood–
Paley piece at each moment of time. The necessity of considering a supremum over frequency projections
(as opposed to a sum) is borne out by an examination of the ground-state solution to the focusing equation;
see Remark 4.3. The proof of this proposition is adapted from the double Duhamel trick first introduced
in [Colliander et al. 2008, §14]. The original application of this trick also appears here, namely, as
Proposition 3.2.

The nonexistence of cascade solutions is proved in Section 5. The argument combines the following
proposition and Theorem 4.1 to prove first that the mass is finite and then (to reach a contradiction) that
it is zero. It is equally valid in the focusing case.

Proposition 1.9 (no-waste Duhamel formula, [Killip and Vis,an 2008; Tao et al. 2008]). Let u : [0, Tmax)×

R3
→ C be a solution as in Theorem 1.8. Then for all t ∈ [0, Tmax),

u(t)= i lim
T→ Tmax

∫ T

t
ei(t−s)1

|u(s)|4u(s) ds,

where the limit is to be understood in the weak Ḣ 1
x topology.

2. Notation and useful lemmas

We use the notation X . Y to indicate that there exists some constant C so that X ≤ CY . Similarly, we
write X ∼ Y if X . Y . X . We use subscripts to indicate the dependence of C on additional parameters.
For example, X .u Y denotes the assertion that X ≤ CuY for some Cu depending on u.

We will make frequent use of the fractional differential/integral operators |∇|s together with the cor-
responding homogeneous Sobolev norms:

‖ f ‖Ḣ s
x
:= ‖|∇|

s f ‖L2
x

where |̂∇|s f (ξ) := |ξ |s f̂ (ξ).

We will also need some Littlewood–Paley theory. Specifically, let ϕ(ξ) be a smooth bump supported
in the ball |ξ | ≤ 2 and equaling one on the ball |ξ | ≤ 1. For each dyadic number N ∈ 2Z we define the
Littlewood–Paley operators

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ), P̂>N f (ξ) := (1−ϕ(ξ/N )) f̂ (ξ), P̂N f (ξ) := (ϕ(ξ/N )−ϕ(2ξ/N )) f̂ (ξ).

Similarly, we can define P<N , P≥N , and PM<·≤N := P≤N−P≤M , whenever M and N are dyadic numbers.
We will frequently write f≤N for P≤N f and similarly for the other operators.
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The Littlewood–Paley operators commute with derivative operators, the free propagator, and complex
conjugation. They are self-adjoint and bounded on every L p

x and Ḣ s
x space for 1 ≤ p ≤ ∞ and s ≥ 0.

They also obey the following Sobolev and Bernstein estimates:

‖|∇|
±s PN f ‖L p

x
∼s N±s

‖PN f ‖L p
x
, ‖PN f ‖Lq

x
.s N

3
p−

3
q ‖PN f ‖L p

x
,

whenever s ≥ 0 and 1≤ p ≤ q ≤∞.
We will frequently denote the nonlinearity in (1-1) by F(u), that is, F(u) := |u|4u. We will use the

notation Ø(X) to denote a quantity that resembles X , that is, a finite linear combination of terms that look
like those in X , but possibly with some factors replaced by their complex conjugates and/or restricted to
various frequencies. For example,

F(u+ v)=
5∑

j=0

Ø(u jv5− j ) and F(u)= F(u>N )+Ø(u≤N u4) for any N > 0.

We use Lq
t Lr

x to denote the spacetime norm

‖u‖Lq
t Lr

x
:=

(∫
R

(∫
R3
|u(t, x)|r dx

)q/r

dt
)1/q

,

with the usual modifications when q or r is infinity, or when the domain R× R3 is replaced by some
smaller spacetime region. When q = r we abbreviate Lq

t Lr
x by Lq

t,x .
Let ei t1 be the free Schrödinger propagator. In physical space this is given by the formula

ei t1 f (x)=
1

(4π i t)3/2

∫
R3

ei |x−y|2/4t f (y)dy.

In particular, the propagator obeys the dispersive inequality

‖ei t1 f ‖L∞x (R3) . |t |
−3/2
‖ f ‖L1

x (R
3) (2-1)

for all times t 6= 0. As a consequence of this dispersive estimate, one obtains the Strichartz estimates;
see, for example, [Ginibre and Velo 1992; Keel and Tao 1998; Strichartz 1977]. The particular version
we need is from [Colliander et al. 2008].

Lemma 2.1 (Strichartz inequality). Let I be a compact time interval and let u : I×R3
→C be a solution

to the forced Schrödinger equation
iut +1u = G

for some function G. Then we have{∑
N∈2Z

‖∇uN‖
2
Lq

t Lr
x (I×R3)

}1/2
. ‖u(t0)‖Ḣ1

x (R
3)+‖∇G‖

L q̃′
t L r̃ ′

x (I×R3)
(2-2)

for any time t0 ∈ I and any exponents (q, r) and (q̃, r̃) obeying 2
q +

3
r =

2
q̃ +

3
r̃ =

3
2 and 2 ≤ q, q̃ ≤∞.

Here, as usual, p′ denotes the dual exponent to p, that is, 1/p+ 1/p′ = 1.
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Elementary Littlewood–Paley theory shows that (2-2) implies

‖∇u‖Lq
t Lr

x (I×R3) . ‖u(t0)‖Ḣ1
x (R

3)+‖∇G‖
L q̃′

t L r̃ ′
x (I×R3)

,

which corresponds to the usual Strichartz inequality; however, the Besov variant given above allows us
to “Sobolev embed” into L∞x :

Lemma 2.2 (an endpoint estimate). For any u : I ×R3
→ R we have

‖u‖L4
t L∞x (I×R3) . ‖∇u‖1/2L∞t L2

x

{∑
N∈2Z

‖∇uN‖
2
L2

t L6
x (I×R3)

}1/4
.

In particular, for any frequency N > 0,

‖u≤N‖L4
t L∞x (I×R3) . ‖∇u≤N‖

1/2
L∞t L2

x

{∑
M≤N

‖∇uM‖
2
L2

t L6
x (I×R3)

}1/4
.

Proof. Using Bernstein’s inequality we have,

‖u‖4L4
t L∞x (I×R3)

.
∫

I

{∑
N∈2Z

‖uN (t)‖L∞x

}4
dt

.
∑

N1≤N2≤N3≤N4

‖uN1‖L∞t L∞x ‖uN2‖L∞t L∞x ‖uN3‖L2
t L∞x
‖uN4‖L2

t L∞x

.
∑

N1≤···≤N4

[
N1 N2
N3 N4

] 1
2
‖∇uN1‖L∞t L2

x
‖∇uN2‖L∞t L2

x
‖∇uN3‖L2

t L6
x
‖∇uN4‖L2

t L6
x

. ‖∇u‖2L∞t L2
x

∑
N3≤N4

[
N3
N4

] 1
2
‖∇uN3‖L2

t L6
x
‖∇uN4‖L2

t L6
x
.

All spacetime norms above are over I ×R3. The claim now follows from Schur’s test. �

3. Maximal Strichartz estimates

Proposition 3.1. Let (i∂t +1)v = F +G on a compact interval [0, T ]. Then for each 6< q ≤∞,∥∥M(t)
3
q−1
‖PM(t)v(t)‖Lq

x

∥∥
L2

t
.
∥∥|∇|− 1

2 v
∥∥

L∞t L2
x
+
∥∥|∇|− 1

2 G
∥∥

L2
t L6/5

x
+‖F‖L2

t L1
x

uniformly for all functions M : [0, T ] → 2Z. All spacetime norms are over [0, T ]×R3.

It is not difficult to see that the conclusion is weaker than (and has the same scaling as) |∇|−1/2v ∈

L2
t L6

x . In fact, if F ≡ 0, this stronger result can be deduced immediately from the Strichartz inequality.
However, this argument does not extend to give a proof of the proposition because F ∈ L1

x does not imply
|∇|
−1/2 F ∈ L6/5

x . Indeed, the whole theory of the energy-critical NLS in three dimensions is dogged by
the absence of endpoint estimates of this type.

The freedom of choosing an arbitrary function M(t) makes this a maximal function estimate; at each
time one can take the supremum over all choices of the parameter. Writing maximal functions in this
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way yields linear operators and so one may use the method of T T ∗; this is an old idea dating at least to
the work of Kolmogorov and Seliverstov in the 1920s (cf. [Zygmund 2002, Chapter XIII]). As we will
see, the double Duhamel trick, which underlies the proof of Proposition 3.1, is a variant of the T T ∗ idea.
Specifically, one takes the inner-product between two different representations of v(t).

The double Duhamel trick was introduced in [Colliander et al. 2008, §14]. There it was used for a
different purpose, namely, to obtain control over the mass on balls. This is then used to estimate error
terms in the (localized) interaction Morawetz identity. We will also need this information and for exactly
the same reasons; see (6-16). The following proposition captures the main thrust of [Colliander et al.
2008, §14]:

Proposition 3.2. Let (i∂t +1)v = F +G on a compact interval [0, T ] and let

[SRv](t, x) :=
(
(πR2)−3/2

∫
R3
|v(t, x + y)|2e−|y|

2/R2
dy
)1/2

. (3-1)

Then for each 0< R <∞ and 6< q ≤∞,

R
1
2−

3
q
∥∥SRv

∥∥
L2

t Lq
x
. ‖v‖L∞t L2

x
+‖G‖L2

t L6/5
x
+ R−

1
2 ‖F‖L2

t L1
x
, (3-2)

where all spacetime norms are over [0, T ]×R3.

We use the letter S for the operator appearing in (3-1) to signify both “smudging” and “square func-
tion”. It is easy to see that the Gaussian smudging used here could be replaced by other methods without
affecting the result; indeed, the analogous estimate in [Colliander et al. 2008] averages over balls. That
paper also sets q = 100 and sums over a lattice rather than integrating in x . As Sv is slowly varying,
summation and integration yield comparable norms.

To control SRv we need to estimate some complicated oscillatory (and nonoscillatory) integrals. By
choosing a Gaussian weight, some of the integrals can be done both quickly and exactly; see the proof of
Lemma 3.4. Before turning to that subject, we first show how the two propositions are interconnected.
The proof of the next lemma also demonstrates how bounds on SR can be used to deduce analogous
results with other weights.

Lemma 3.3. Fix 6< q ≤∞. Then

sup
M>0

M
3
q−1∥∥ fM

∥∥
Lq

x
. sup

M>0
M

3
q−1∥∥SM−1

(
fM
)∥∥

Lq
x
. (3-3)

Proof. Let P̃M = PM/2+ PM + P2M denote the fattened Littlewood–Paley projector. The basic relation
PM = P̃M PM reduces our goal to showing that

sup
M>0

M
3
q−1∥∥P̃M g

∥∥
Lq

x
. sup

M>0
M

3
q−1∥∥SM−1 g

∥∥
Lq

x
(3-4)

for general functions g : R3
→ C, say, g = fM .



864 ROWAN KILLIP AND MONICA VIS, AN

Recall that the convolution kernel for P̃M takes the form M3ψ(Mx) for some Schwartz function ψ .
By virtue of its rapid decay, we can write

|ψ(x)| ≤
∫
∞

0
π−3/2e−|x |

2/λ2
dµ(λ)

where µ is a positive measure with all moments finite. Indeed, since ψ is radial one can choose dµ(λ)=
20|ψ ′(λ)| dλ. Thus by the Cauchy–Schwarz inequality,∣∣[P̃M g](x)

∣∣2 ≤ ∫
R3
|g(x + y)|2 M3

|ψ(My)| dy ≤
∫
∞

0

∣∣[SλM−1 g](x)
∣∣2λ3 dµ(λ).

Applying Minkowski’s inequality in Lq/2
x (R3) then easily yields (3-4); indeed, one can take the constant

to be [
∫
λ1+6/q dµ(λ)]1/2. �

Lemma 3.4. For fixed 6< q ≤∞, the integral kernel

K R(τ, z; s, y; x) := (πR2)−3/2
〈δz, eiτ1e−| ·−x |2/R2

eis1δy〉

obeys

sup
R>0

∫
∞

0

∫
∞

0
R2− 6

q ‖K R(τ, z; s, y; x)‖L∞z,y Lq/2
x

f (t + τ) f (t − s) ds dτ .
∣∣[M f ](t)

∣∣2, (3-5)

where M denotes the Hardy–Littlewood maximal operator and f : R→ [0,∞).

Proof. From the exact formula for the propagator,

K R(t, z; s, y; x)=
∫

R3

exp{i |z− x ′|2/4τ − |x ′− x |2/R2
+ i |x ′− y|2/4s}

(4π iτ)3/2(4π is)3/2(πR2)3/2
dx ′. (3-6)

Completing the square and doing the Gaussian integral yields

|K R(t, z; s, y; x)| = (2π)−3[16s2τ 2
+ R4(s+ τ)2

]−3/4 exp
{
−

R2(s+ τ)2|x − x∗|2

16s2τ 2+ R4(s+ τ)2

}
where x∗ = (sz+ t y)/(s+ t). One more Gaussian integral then yields

‖K R(. . .)‖Lq/2
x
= (2π)−3(2π/q)3/q R−6/q

|s+ τ |−6/q
[16s2τ 2

+ R4(s+ τ)2]−3/4+3/q .

Notice that there is no dependence on z or y. This is due to simultaneous translation and Galilean
invariance. In this way, we deduce that

LHS(3-5). sup
R>0

∫
∞

0

∫
∞

0
K ∗q (α, β) f (t + R2α) f (t − R2β) dα dβ, (3-7)

where we have changed variables to α = R−2τ and β = R−2s and written

K ∗q (α, β) := [α+β]
−6/q[α2β2

+ (α+β)2
]−3/4+3/q

.
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To finish the proof, we just need to show that K ∗q can be majorized by a convex combination of (L1-
normalized) characteristic functions of rectangles of the form [0, `] × [0, w]. In fact, we can write it
exactly as a positive linear combination of such rectangles:

K ∗q (α, β)=
∫
∞

0

∫
∞

0

1
`
χ[0,`](α)

1
w
χ[0,w](β) ρ(`,w) d` dw =

∫
∞

α

∫
∞

β

ρ(`,w) d` dw
`w

where ρ(`,w) := `w∂`∂wK ∗q (`, w)≥ 0. Thus, we just need to check that ρ ∈ L1. With a little patience,
one finds that ρ(`,w).q K ∗q (`, w), which leaves us to integrate the latter over a quadrant. We use polar
coordinates, `+ iw = reiθ :∫

∞

0

∫
∞

0
K ∗q (`, w) d` dw .

∫
∞

0

∫ π/2

0
r−6/q

[r4 sin2(2θ)+ r2
]
−3/4+3/q r dθ dr

.
∫
∞

0
r−1/2(1+ r)−3/2+6/q dr . 1.

Notice that convergence of the r integral relies on q > 6. The estimate for the θ integral given above
is only valid in the range 6 < q < 12. When q > 12, the correct form is

∫
r−1/2(1+ r)−1 dr and when

q = 12, it is
∫

r−1/2 log(2+ r)(1+ r)−1 dr . Nevertheless, both of these integrals are also finite. �

We now have all the necessary ingredients to complete the proofs of Propositions 3.1 and 3.2. We
only provide the details for the former because the two arguments are so similar. Indeed, the proof of the
latter essentially follows by choosing M(t) ≡ R−1 and throwing away the Littlewood–Paley projector
PM(t) in the argument we are about to present.

Proof of Proposition 3.1. In view of Lemma 3.3 we need to show that

sup
M>0

M
3
q−1∥∥SM−1

(
PMv(t)

)∥∥
Lq

x
∈ L2

t ([0, T ])

(with suitable bounds), where the supremum is taken pointwise in time.
As noted earlier, we will use the double Duhamel trick, which relies on playing two Duhamel formulae

off against one another, one from each endpoint of [0, T ]:

v(t)= ei t1v(0)− i
∫ t

0
ei(t−s)1G(s) ds− i

∫ t

0
ei(t−s)1F(s) ds (3-8)

= e−i(T−t)1v(T )+ i
∫ T

t
e−i(τ−t)1G(τ ) dτ + i

∫ T

t
e−i(τ−t)1F(τ ) dτ. (3-9)

The idea is to compute the L2
x norm of PMv(t) with respect to the Gaussian measure that defines

[SM−1 PMv](t, x) by taking the inner product between these two representations. Actually, we deviate
slightly from this idea because it is not clear how to estimate a pair of cross-terms. Our trick for avoiding
this is the following simple fact about vectors in a Hilbert space:

v = a+ b = c+ d =⇒ ‖v‖2 ≤ 3‖a‖2+ 3‖c‖2+ 2|〈b, d〉|. (3-10)
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(The numbers are neither optimal nor important.) To prove this, write

‖v‖2 = 〈a, v〉+ 〈v, c〉− 〈a, c〉+ 〈b, d〉

and then use the Cauchy–Schwarz inequality.
Let us invoke (3-10) with a and c representing (PM applied to) the first two summands in (3-8) and

(3-9), respectively, while b and d represent the summands which involve F . In this way, we obtain the
pointwise statement

∣∣[SM−1(PMv)](t, x)
∣∣2 . ∣∣∣∣SM−1

(
ei t1vM(0)− i

∫ t

0
ei(t−s)1G M(s) ds

)
(x)
∣∣∣∣2

+

∣∣∣∣SM−1

(
e−i(T−t)1vM(T )+ i

∫ T

t
e−i(τ−t)1G M(τ ) dτ

)
(x)
∣∣∣∣2+ hM(t, x),

where hM is an abbreviation for

hM(t, x) := π−3/2 M3
∣∣∣∣〈∫ T

t
e−i(τ−t)1FM(τ ) dτ, e−M2

| · −x |2
∫ t

0
ei(t−s)1FM(s) ds

〉∣∣∣∣
The contributions of the first two summands are easily estimated: For any function w, Young’s and

Bernstein’s inequalities imply

M
3
q−1∥∥[SM−1(PMw)](t, x)

∥∥
Lq

x (R3)
. M−

1
2
∥∥PMw(t)

∥∥
L6

x (R
3)
.
∥∥|∇|− 1

2w(t)
∥∥

L6
x (R

3)
.

This can then be combined with Strichartz inequality, which shows∥∥∥∥|∇|− 1
2

(
ei t1v(0)− i

∫ t

0
ei(t−s)1G(s) ds

)∥∥∥∥
L2

t L6
x

.
∥∥|∇|− 1

2 v(0)
∥∥

L2
x
+
∥∥|∇|− 1

2 G
∥∥

L2
t L6/5

x

and similarly for the second summand.
The third summand, hM , is the crux of the matter. Using the notation from Lemma 3.4 and changing

variables, we have

hM(t, x)=
∣∣∣∣∫ T−t

0

∫ t

0

∫∫
F̄M(t + τ ′, z)KM−1(τ ′, z; s ′, y; x)FM(t − s ′, y) dy dz ds ′ dτ ′

∣∣∣∣.
Note also that by Bernstein’s inequality and the maximal inequality, the function f (t) := ‖F(t)‖L1

x
obeys

‖FM(t)‖L1
x
. f (t) and ‖M f ‖L2

t
. ‖F‖L2

t L1
x
.

Thus using Lemma 3.4 (with f as just defined), we obtain∥∥∥ sup
M>0

M
6
q−2
‖hM(t)‖Lq/2

x

∥∥∥
L1

t

. ‖F‖2L2
t L1

x
.

Recalling that hM appears in an upper bound on the square of the size of PMv, the proposition follows.
�
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4. Long-time Strichartz estimates

The main result of this section is a long-time Strichartz estimate. As will be evident from the proof, the
result is also valid for L∞t Ḣ 1

x (R
3) solutions to the focusing equation; see also Remark 4.3 at the end of

this section.

Theorem 4.1 (long-time Strichartz estimate). Let u : (Tmin, Tmax)×R3
→C be a maximal-lifespan almost

periodic solution to (1-1) and I ⊂ (Tmin, Tmax) a time interval that is tiled by finitely many characteristic
intervals Jk . Then for any fixed 6< q <∞ and any frequency N > 0,

A(N ) :=
{∑

M≤N

‖∇uM‖
2
L2

t L6
x (I×R3)

}1/2
(4-1)

and

Ãq(N ) := N 3/2 ∥∥sup
M≥N

M
3
q−1
‖uM(t)‖Lq

x (R3)

∥∥
L2

t (I )
(4-2)

obey

A(N )+ Ãq(N ).u 1+ N 3/2K 1/2, (4-3)

where K :=
∫

I N (t)−1 dt. The implicit constant is independent of the interval I .

The proof of this theorem will occupy the remainder of this section. Throughout, we consider a single
interval I and so the implicit dependence of A(N ), Ãq(N ), and K on the interval should not cause
confusion. Additionally, all spacetime norms will be on I ×R3, unless specified otherwise.

By Bernstein’s inequality, Ãq(N ) is monotone in q . Thus q =∞ is also allowed.
The analogue of Theorem 4.1 in [Colliander et al. 2008] is Proposition 12.1. Our proof is very different

and is inspired by Dodson’s work [2012] on the mass-critical NLS (see also [Vis,an 2012]). In [Colliander
et al. 2008], this estimate is derived on the assumption that u>N obeys certain L4

t,x spacetime bounds.
That the solution does admit these spacetime bounds is derived from the interaction Morawetz estimate,
using the analogue of (4-3) to control certain error terms. This results in a tangled bootstrap argument
across several sections of the paper. The argument that follows does not use the Morawetz identity,
merely Strichartz and maximal Strichartz estimates, and so is equally valid in the focusing case. We also
contend that it is simpler.

The attentive reader will discover that the implicit constant in (4-3) depends only on u through its
L∞t Ḣ 1

x norm and its modulus of compactness (cf. Definition 1.2). Indeed, the dependence on the latter
can be traced to the following: Let η > 0 be a small parameter to be chosen later. Then, by Remark 1.3
and Sobolev embedding, there exists c = c(η) such that

‖u≤cN (t)‖L∞t L6
x
+‖∇u≤cN (t)‖L∞t L2

x
≤ η. (4-4)

By elementary manipulations with the square function estimate and Lemma 2.2, respectively, we have

‖∇u≤N‖L2
t L6

x
. A(N ), ‖u≤N‖L4

t L∞x
. A(N )1/2‖∇u≤N‖

1/2
L∞t L2

x
.u A(N )1/2. (4-5)
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As noted earlier, the only reason for considering the Besov-type norm that appears in (4-1), rather than
the simpler L2

t L6
x norm, is that it allows us to deduce these L4

t L∞x bounds.
By combining the Strichartz inequality (Lemma 2.1) with Lemma 1.7 we have

A(N )2 .u 1+
∫

I
N (t)2 dt .u

∫
I

N (t)2 dt. (4-6)

Note that the second inequality relies on the fact that I contains at least one whole characteristic interval
Jk . Similarly, using Proposition 3.1 and then Bernstein’s inequality we find

Ãq(N ). N 3/2
{∥∥|∇|−1/2u≥N

∥∥
L∞t L2

x
+
∥∥|∇|−1/2 P≥N F(u)

∥∥
L2

t L6/5
x

}
. 1+‖∇u‖L2

t L6
x
‖u‖4L∞t L6

x

.u

(∫
I

N (t)2 dt
)1/2

.

Thus

A(N )+ Ãq(N ).u N 3/2K 1/2 whenever N ≥
( ∫

I N (t)2 dt∫
I N (t)−1 dt

)1/3

(4-7)

and so, in particular, when N ≥ Nmax := supt∈I N (t). This is the base step for the inductive proof of
Theorem 4.1. The passage to smaller values of N relies on the following:

Lemma 4.2 (recurrence relations for A(N ) and Ãq(N )). For η sufficiently small,

A(N ).u 1+ c−3/2 N 3/2K 1/2
+ η2 Ãq(2N ) (4-8)

Ãq(N ).u 1+ c−3/2 N 3/2K 1/2
+ ηA(N )+ η2 Ãq(2N ), (4-9)

uniformly in N ∈ 2Z. Here c = c(η) as in (4-4).

Proof. The recurrence relations for A(N ) and Ãq(N ) rely on Lemma 2.1 and Proposition 3.1, respec-
tively. To estimate the contribution of the nonlinearity, we decompose u(t) = u≤cN (t)(t)+ u>cN (t)(t)
and then selectively u = u≤N + u>N . Recalling that the Ø notation incorporates possible additional
Littlewood–Paley projections, we may write

F(u)= Ø
(
u2
>cN (t)u

3)
+Ø

(
u2
≤cN (t)u

3)
= Ø

(
u2
>cN (t)u

3)
+Ø

(
u2
≤cN (t)u

2
>N u

)
+Ø

(
u2
≤cN (t)u

2
≤N u

)
. (4-10)

Using this decomposition together with Lemma 2.1 and Bernstein’s inequality, we obtain

A(N ). ‖∇u≤N‖L∞t L2
x
+
∥∥∇P≤N Ø

(
u2
>cN (t)u

3)∥∥
L2

t L6/5
x

+
∥∥∇P≤N Ø

(
u2
≤cN (t)u

2
>N u

)∥∥
L2

t L6/5
x
+
∥∥∇P≤N Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x

.u 1+ N 3/2
‖u2

>cN (t)u
3
‖L2

t L1
x
+ N 3/2

‖u2
≤cN (t)u

2
>N u‖L2

t L1
x
+
∥∥∇Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x
. (4-11)
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Using instead Proposition 3.1 and Bernstein’s inequality, we find

Ãq(N ). N 3/2
{∥∥|∇|−1/2u≥N

∥∥
L∞t L2

x
+‖u2

>cN (t)u
3
‖L2

t L1
x
+‖u2

≤cN (t)u
2
>N u‖L2

t L1
x

+
∥∥|∇|−1/2 P≥N Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x

}
.u 1+ N 3/2

‖u2
>cN (t)u

3
‖L2

t L1
x
+ N 3/2

‖u2
≤cN (t)u

2
>N u‖L2

t L1
x
+
∥∥∇Ø

(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x
. (4-12)

Therefore, to obtain the desired recurrence relations it remains to estimate the (identical) last three terms
on the right-hand sides of (4-11) and (4-12). We will consider these terms individually, working from
left to right.

To treat the first term, we decompose the time interval I into characteristic subintervals Jk where
N (t)≡ Nk . On each of these subintervals, we apply Hölder’s inequality, Sobolev embedding, Bernstein’s
inequality, and Lemma 1.7 to obtain

‖u2
>cN (t)u

3
‖L2

t L1
x (Jk×R3) . ‖u>cNk‖

2
L4

t,x (Jk×R3)
‖u‖3L∞t L6

x

.u c−3/2 N−3/2
k ‖∇u>cNk‖

2
L4

t L3
x (Jk×R3)

.u c−3/2 N−3/2
k .

Squaring and summing the estimates above over the subintervals Jk , we find

N 3/2
‖u2

>cN (t)u
3
‖L2

t L1
x
.u c−3/2 N 3/2K 1/2, (4-13)

which is the origin of this term on the right-hand sides of (4-8) and (4-9).
To estimate the second term, we begin with a preliminary computation: Using Bernstein’s inequality

and Schur’s test (for the last step), we estimate∥∥Ø
(
u2
>N u

)∥∥
L2

t L3/2
x
.

∥∥∥∥ ∑
M1≥M2≥M3

M2>N

‖uM1(t)‖L2
x
‖uM2(t)‖Lq

x
‖uM3(t)‖

L
6q

q−6
x

∥∥∥∥
L2

t

.

∥∥∥∥ sup
M>N
‖M

3
q−1uM(t)‖Lq

x

∑
M1≥M3

(M3
M1

)3/q
‖∇uM1(t)‖L2

x
‖∇uM3(t)‖L2

x

∥∥∥∥
L2

t

.u N−3/2 Ãq(2N ). (4-14)

Using this, Hölder, and (4-4), we find

N 3/2
‖u2
≤cN (t)u

2
>N u‖L2

t L1
x
. N 3/2

‖u≤cN (t)‖
2
L∞t L6

x
‖Ø
(
u2
>N u

)
‖L2

t L3/2
x
.u η

2 Ãq(2N ). (4-15)

This is the origin of the last term on the right-hand sides of (4-8) and (4-9).
Finally, to estimate the contribution coming from the last term in (4-11) and (4-12), we distribute the

gradient, use Hölder’s inequality, and then (4-4) and (4-5):∥∥∇Ø
(
u2
≤cN (t)u

2
≤N u

)∥∥
L2

t L6/5
x
. ‖∇u≤N‖L2

t L6
x
‖u≤cN (t)‖L∞t L6

x
‖u‖3L∞t L6

x

+‖∇u‖L∞t L2
x
‖u≤cN (t)‖L∞t L6

x
‖u≤N‖

2
L4

t L∞x
‖u‖L∞t L6

x

.u ηA(N ). (4-16)
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As A(N ) is known to be finite (cf. (4-6)), this can be brought to the other side of (4-8); naturally, this
requires η to be sufficiently small depending on u and certain absolute constants, but not on I .

Collecting estimates (4-13) through (4-15) and choosing η sufficiently small, this completes the proof
of the lemma. �

We now have all the ingredients needed to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. With the base step (4-7) and Lemma 4.2 in place, Theorem 4.1 follows from a
straightforward induction argument, provided η is chosen sufficiently small depending on u. �

Remark 4.3. In the introduction it was asserted that the long-time Strichartz estimates in Theorem 4.1
are essentially best possible in the focusing case. We now elaborate that point. For the energy-critical
equation, the principal difficulty is to obtain control over the low frequencies, because all known con-
servation laws (with the exception of energy) and monotonicity formulae are energy-subcritical. If (by
some miracle) we knew our putative minimal counterexample u belonged to L∞t L2

x , the whole argument
could be brought to a swift conclusion, even in the focusing case (cf. [Killip and Vis,an 2010]). Thus any
potential improvement of Theorem 4.1 should be judged by whether it gives better control on the low
frequencies.

It is well-known that

W (x)=
(
1+ 1

3 |x |
2)−1/2 obeys 1W +W 5

= 0 (4-17)

and so is a static solution of the focusing energy-critical NLS. In particular, it is almost periodic with
parameters N (t)≡ 1 and x(t)≡ 0.

As
∫

W (x)5 dx = 4π
√

3, we can read off from (4-17) that

Ŵ (ξ)= 4π
√

3|ξ |−2
+ O

(
|ξ |ε

)
as ξ → 0 (4-18)

and so deduce ‖WM‖Lq ∼M1−3/q for M small and 6≤q≤∞. This shows that the supremum is essential
in (4-2); we cannot expect the bound (4-3) for the sum of the Littlewood–Paley pieces. It also shows that
the L2

t L6
x norm of ∇W≤N on long time intervals decays no faster than the N 3/2 rate proved for A(N ).

5. Impossibility of rapid frequency cascades

In this section, we show that the first type of almost periodic solution described in Theorem 1.8 (for which∫ Tmax
0 N (t)−1 dt <∞) cannot exist. We will show that its existence is inconsistent with the conservation

of mass, M(u) :=
∫

R3 |u(t, x)|2 dx . The argument does not utilize the defocusing nature of the equation
beyond the fact that the solution belongs to L∞t Ḣ 1

x .

Lemma 5.1 (finite mass). Let u : [0, Tmax) × R3
→ C be an almost periodic solution to (1-1) with

‖u‖L10
t,x ([0,Tmax)×R3) =+∞ and

K :=
∫ Tmax

0
N (t)−1 dt <∞. (5-1)
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(Note Tmax =∞ is allowed.) Then u ∈ L∞t L2
x ; indeed, for all 0< N < 1,

‖uN≤ ·≤1‖L∞t L2
x ([0,Tmax)×R3)+

1
N

{∑
M<N

‖∇uM‖
2
L2

t L6
x ([0,Tmax)×R3)

}1/2
.u 1. (5-2)

Proof. The key point is to prove (5-2); finiteness of the mass follows easily from this. Indeed, letting N→
0 in (5-2) to control the low frequencies and using ∇u ∈ L∞t L2

x and Bernstein for the high frequencies,
we obtain

‖u‖L∞t L2
x
≤ ‖u≤1‖L∞t L2

x
+‖u>1‖L∞t L2

x
.u 1. (5-3)

In the inequality above and for the remainder of the proof all spacetime norms are over [0, Tmax)×R3.
As K is finite, the conclusion (4-3) of Theorem 4.1 extends (by exhaustion) to the time interval
[0, Tmax). Observe that the second summand in (5-2) is N−1 A(N/2), in the notation of that theorem.

We will estimate the left-hand side of (5-2) by a small multiple of itself plus a constant. For this
statement to be meaningful, we need the left-hand side of (5-2) to be finite. This follows easily from
Theorem 4.1 and Bernstein’s inequality:

LHS(5-2). N−1
‖∇u‖L∞t L2

x
+ N−1 A(N/2).u N−1(1+ N 3K )1/2 <∞. (5-4)

The origin of the small constant lies with the almost periodicity of the solution. Indeed, by Remark 1.3
and Sobolev embedding, for η > 0 (a small parameter to be chosen later) there exists c= c(η) such that

‖u≤cN (t)‖L∞t L6
x
+‖∇u≤cN (t)‖L∞t L2

x
≤ η. (5-5)

To continue, fix 0 < N < 1. Using the Duhamel formula from Proposition 1.9 together with the
Strichartz inequality we obtain

LHS(5-2). 1
N ‖∇P<N F(u)‖L2

t L6/5
x
+‖PN≤ ·≤1 F(u)‖L2

t L6/5
x
. (5-6)

To estimate the nonlinearity, we decompose u(t)= u≤cN (t)(t)+u>cN (t)(t) and then u= u<N+uN≤ ·≤1+

u>1. As the Ø notation incorporates possible additional Littlewood–Paley projections, we may write

F(u)= Ø
(
u2
>cN (t)u

3)
+Ø

(
u≤cN (t)u2

<N u2)
+Ø

(
u≤cN (t)u2

≤1uN≤ ·≤1u
)

+Ø
(
u≤cN (t)u2

>1u2). (5-7)

Next, we estimate the contributions of each of these terms to (5-6), working from left to right.
Using Bernstein’s inequality and (4-13), we bound the contribution of the first term as follows:

1
N

∥∥∇P<N Ø
(
u2
>cN (t)u

3)∥∥
L2

t L6/5
x
+
∥∥PN≤ ·≤1Ø

(
u2
>cN (t)u

3)∥∥
L2

t L6/5
x

. (N 1/2
+ 1)‖Ø(u2

>cN (t)u
3)‖L2

t L1
x

.u c−3/2K 1/2.
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To estimate the contribution of the second term in (5-7) to (5-6), we use Bernstein’s inequality on the
second summand and distribute the gradient, followed by Hölder’s inequality, (4-5), and (5-5):

1
N

∥∥∇P<N Ø(u≤cN (t)u2
<N u2)

∥∥
L2

t L6/5
x
+
∥∥PN≤ ·≤1Ø(u≤cN (t)u2

<N u2)
∥∥

L2
t L6/5

x

. 1
N ‖∇u≤cN (t)‖L∞t L2

x
‖u<N‖

2
L4

t L∞x
‖u‖2L∞t L6

x
+

1
N ‖u≤cN (t)‖L∞t L6

x
‖∇u<N‖L2

t L6
x
‖u‖3L∞t L6

x

+
1
N ‖u≤cN (t)‖L∞t L6

x
‖u<N‖

2
L4

t L∞x
‖∇u‖L∞t L2

x
‖u‖L∞t L6

x

.u η LHS(5-2).

Using Bernstein’s inequality, Theorem 4.1, (4-5), and (5-5), we estimate the contribution of the third
term in (5-7) as follows:

1
N

∥∥∇P<N Ø
(
u≤cN (t)u2

≤1uN≤ ·≤1u
)∥∥

L2
t L6/5

x
+
∥∥PN≤ ·≤1Ø

(
u≤cN (t)u2

≤1uN≤ ·≤1u
)∥∥

L2
t L6/5

x

. ‖u≤cN (t)‖L∞t L6
x
‖u≤1‖

2
L4

t L∞x
‖uN≤ ·≤1‖L∞t L2

x
‖u‖L∞t L6

x

.u η(1+ K 1/2)LHS(5-2).

Finally, to estimate the contribution to (5-6) of the last term in (5-7) we use Bernstein’s inequality,
Theorem 4.1, (4-14), and (5-5):

1
N

∥∥∇P≤N/2Ø
(
u≤cN (t)u2

>1u2)∥∥
L2

t L6/5
x
+
∥∥PN≤ ·≤1Ø

(
u≤cN (t)u2

>1u2)∥∥
L2

t L6/5
x

. (N 1/2
+ 1)

∥∥Ø
(
u≤cN (t)u2

>1u2)∥∥
L2

t L1
x

. ‖u≤cN (t)‖L∞t L6
x
‖Ø(u2

>1u)‖L2
t L3/2

x
‖u‖L∞t L6

x

.u η(1+ K 1/2).

Collecting all the estimates above, (5-6) implies

LHS(5-2).u η(1+ K 1/2)LHS(5-2)+ 1+ c−3/2K 1/2.

Recalling (5-1) and (5-4) and taking η small enough depending on u and K yields (5-2). �

We are now ready to prove the main result of this section:

Theorem 5.2 (no rapid frequency-cascades). There are no almost periodic solutions u : [0, Tmax)×R3
→

C to (1-1) with ‖u‖L10
t,x ([0,Tmax)×R3) =+∞ and∫ Tmax

0
N (t)−1 dt <∞. (5-8)

Proof. We argue by contradiction. Let u be such a solution. By Corollary 1.6,

lim
t→Tmax

N (t)=∞, (5-9)

when Tmax is finite; this is also true when Tmax is infinite by virtue of (5-8).
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We will prove that the existence of such a solution u is inconsistent with the conservation of mass. In
Lemma 5.1 we found that the mass is finite; to derive the desired contradiction we will prove that the
mass is not only finite, but zero!

We first show that the mass at low frequencies is small. To do this, we use the Duhamel formula from
Proposition 1.9 together with the Strichartz inequality, followed by Bernstein’s inequality:

‖u≤N‖L∞t L2
x
. ‖P≤N F(u)‖L2

t L6/5
x
. N 1/2

‖F(u)‖L2
t L1

x
.

In the display above and for the remainder of the proof all spacetime norms are over [0, Tmax)×R3.
To estimate the nonlinearity we decompose it as follows:

F(u)= Ø(u3
≤1u2)+Ø(u3

>1u2).

By Theorem 4.1, (4-5), (5-8), Bernstein, and finiteness of the mass,

‖Ø(u3
≤1u2)‖L2

t L1
x
. ‖u≤1‖

2
L4

t L∞x
‖u≤1‖L∞t,x‖u‖

2
L∞t L2

x
.u 1,

while by Theorem 4.1, (4-14), and (5-8),

‖Ø(u3
>1u2)‖L2

t L1
x
. ‖u‖2L∞t L6

x
‖u3

>1‖L2
t L3/2

x
.u 1.

Thus,

‖u≤N‖L∞t L2
x
.u N 1/2.

By comparison, control over the mass at middle and high frequencies can be obtained with just Bern-
stein’s inequality and the fact that for any η > 0 there exists c = c(u, η) > 0 so that

‖∇u≤cN (t)(t)‖L2
x
≤ η,

which was noted in Remark 1.3. Altogether, we have that for any t ∈ [0, Tmax),

‖u(t)‖L2
x
. ‖u≤N (t)‖L2

x
+‖P>N u≤cN (t)(t)‖L2

x
+‖u>cN (t)(t)‖L2

x

.u N 1/2
+ N−1

‖∇u≤cN (t)(t)‖L2
x
+ c−1 N (t)−1

‖∇u‖L∞t L2
x

.u N 1/2
+ N−1η+ c−1 N (t)−1.

Using (5-9), we can make the right-hand side here as small as we wish. (Choose N small, then η small,
and then t close to Tmax.) Because mass is conserved under the flow, this allows us to conclude that
‖u‖L∞t L2

x
= 0 and thus u ≡ 0 in contradiction to the hypothesis ‖u‖L10

t,x ([0,Tmax)×R3) =+∞. �

6. The frequency-localized interaction Morawetz inequality

In this section, we prove a spacetime bound on the high-frequency portion of the solution:

Theorem 6.1 (a frequency-localized interaction Morawetz estimate). Suppose u : [0, Tmax)×R3
→C is

an almost periodic solution to (1-1) such that N (t) ≥ 1 and let I ⊂ [0, Tmax) be a union of contiguous
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characteristic intervals Jk . Fix 0< η0 ≤ 1. For N > 0 sufficiently small (depending on η0 but not on I ),∫
I

∫
R3
|u>N (t, x)|4 dx dt .u η0

(
N−3
+ K

)
, (6-1)

where K :=
∫

I N (t)−1 dt. Importantly, the implicit constant in the inequality above does not depend on
η0 or the interval I .

Unlike Theorem 4.1, the argument does not rely solely on estimates for the linear propagator and is
not indifferent to the sign of the nonlinearity. Instead, we use a special monotonicity formula associated
with (1-1), namely, the interaction Morawetz identity. This is a modification of the traditional Morawetz
identity (cf. [Lin and Strauss 1978; Morawetz 1975]) introduced in [Colliander et al. 2004]. We begin
with a general form of the identity:

Proposition 6.2. Suppose i∂tφ =−1φ+ |φ|
4φ+F and let

M(t) := 2
∫∫

R3×R3
|φ(y)|2ak(x − y) Im{φk(x)φ̄(x)} dx dy, (6-2)

for some weight a : Rd
→ R. Then

∂t M(t)=
∫

R3

∫
R3

{
4
3akk(x − y)|φ(x)|6|φ(y)|2 (6-3)

+ 2ak(x − y)|φ(y)|2 Re
[
φk(x)F̄(x)−Fk(x)φ̄(x)

]
(6-4)

+ 4ak(x − y)(Im F(y)φ̄(y))(Imφk(x)φ̄(x)) (6-5)

+ 4a jk(x − y)
[
|φ(y)|2φ̄ j (x)φk(x)− (Im φ̄(y)φ j (y))(Im φ̄(x)φk(x))

]
(6-6)

− a j jkk(x − y) |φ(y)|2|φ(x)|2
}

dx dy. (6-7)

Subscripts denote spatial derivatives and repeated indices are summed.

The significance of this identity to our problem is best seen by choosing a(x) = |x | and φ to be a
solution to (1-1). In this case, F= 0 and the fundamental theorem of calculus yields

8π
∫

I

∫
R3
|φ(t, x)|4 dx dt ≤ 2‖M(t)‖L∞t (I ) ≤ 4‖φ‖3L∞t L2

x (I×R3)
‖φ‖L∞t Ḣ1

x (I×R3).

The left-hand side originates from (6-7); the terms (6-6) and (6-3) are both positive.
Unfortunately for us, a minimal blowup solution need not have finite L2

x norm at any time. Thus
it is necessary to localize the identity to high frequencies, that is, choose φ = u>N . Naturally, this
produces myriad error terms; nevertheless, in spatial dimensions four and higher they can be controlled
(cf. [Ryckman and Vis,an 2007; Vis,an 2007; 2012]). In the three-dimensional case under consideration
here, there is one error term (originating from (6-5)) that cannot be satisfactorily controlled. (See also
Remark 6.9 at the end of this section.) This was observed already in [Colliander et al. 2008] and as there,
our solution is to truncate the function a. This truncation ruins the convexity properties of a that made
some of the terms in Proposition 6.2 positive, thus creating more error terms to control.
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For reasons we will explain in due course, it is important to perform the cutoff of a in a very careful
fashion. We choose a to be a smooth spherically symmetric function, which we regard interchangeably
as a function of x ∈ R3 or r = |x |. We specify it further in terms of its radial derivative:

a(0)= 0, ar ≥ 0, arr ≤ 0, ar =


1 if r ≤ R,

1− J−1 log(r/R) if eR ≤ r ≤ eJ−J0 R,

0 if eJ R ≤ r,

(6-8)

where J0 ≥ 1, J ≥ 2J0, and R are parameters that will be determined in due course. It is not difficult to
see that one may fill in the regions where ar is not yet defined so that the function obeys

|∂k
r ar |.k J−1r−k for each k ≥ 1, (6-9)

uniformly in r and in the choice of parameters.
When |x | ≤ R, we see that a(x)= |x |, while a is a constant when |x | ≥ eJ R. The key point about the

transition between these two regimes is that

2
r

ar ≥
2J0

Jr
but |arr | ≤

1
Jr

(6-10)

when eR ≤ r ≤ eJ−J0 R. Thus the Laplacian akk = arr +
2
r ar is dominated by the first derivative term

and so remains coercive at these radii. (This also appears implicitly in [Colliander et al. 2008, §11] and
is the key point behind the “averaging over R” argument there.)

As noted above, we will be applying Proposition 6.2 with

φ = uhi := u>N , and so F= Phi F(u)− F(uhi). (6-11)

(We will also write ulo := u≤N .) Here N is an additional parameter that will be chosen small (depending
on η0 and u). We require that N , R, and J are related via

eJ RN = 1. (6-12)

Actually, it is merely essential that eJ RN ≤ 1, but choosing equality makes the exposition simpler.
Our first restriction on these parameters is that N is small enough and R is large enough so that given
η = η(η0, u),∫

R3
|∇ulo(t, x)|2 dx +

∫
R3
|Nuhi(t, x)|2 dx +

∫
|x−x(t)|> R

2

|∇uhi(t, x)|2 dx < η2 (6-13)

uniformly for 0 ≤ t < Tmax. The possibility of doing this follows immediately from the fact that u is
almost periodic modulo symmetries and N (t)≥ 1.

Before moving on to estimating the terms in Proposition 6.2, we pause to review the tools at our
disposal. Besides using the norm ‖uhi‖L4

t,x
to estimate itself, we will also make recourse to Theorem 4.1

and Proposition 3.2. For ease of reference, we record these results in the forms we will use:
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Corollary 6.3 (a priori bounds). For all 2
q +

3
r =

3
2 with 2≤ q ≤∞ and any s < 1− 3

q ,

‖∇ulo‖Lq
t Lr

x
+
∥∥N 1−s

|∇|
suhi

∥∥
Lq

t Lr
x
.u

(
1+ N 3K

)1/q
. (6-14)

Under the hypothesis (6-13),

‖ulo‖L4
t L∞x
.u η

1/2(1+ N 3K )1/4. (6-15)

Furthermore, for any ρ ≤ ReJ
= N−1,∫

I
sup
x∈R3

∫
|x−y|≤ρ

|uhi(t, y)|2 dy dt .u ρ
(
K + N−3). (6-16)

Proof. Recall that Theorem 4.1 implies

A(M) :=
{ ∑

M ′≤M

‖∇uM ′‖
2
L2

t L6
x (I×R3)

}1/2
.u (1+M3K )1/2

uniformly in M . Setting M = N yields all the estimates on ulo stated in the corollary. More explicitly,
the q = 2 case of (6-14) as well as (6-15) follow from this statement and (4-5). The other values of q
can then be deduced by interpolation with the (conserved) energy.

Similarly, to estimate uhi we write

M1−s
‖|∇|

suM‖Lq
t Lr

x
. ‖∇uM‖Lq

t Lr
x
. A(M)2/q‖∇u‖(q−2)/q

L∞t L2
x
.u (1+M3K )1/q ,

multiply through by M s−1, and sum over M ≥ N . Notice that the condition 3
q + s < 1 guarantees the

convergence of this sum.
Claim (6-16) will follow by combining Proposition 3.2 and Theorem 4.1. First we write (i∂t +

1)u>N = F +G with F = P>N Ø(u2
>N u3) and G = P>N Ø(u4

≤N u) and then estimate these as follows:
By Theorem 4.1 and (4-14),

‖F‖L2
t L1

x
. ‖u‖2L∞t L6

x
‖Ø(u2

>N u)‖L2
t L3/2

x
.u N−3/2

+ K 1/2,

while by Bernstein, Theorem 4.1, and (4-5),

‖G‖L2
t L6/5

x
. N−1

‖∇Ø(u4
≤N u)‖L2

t L6/5
x
. N−1

‖∇u‖L∞t L2
x
‖u‖2L∞t L6

x
‖u≤N‖

2
L4

t L∞x

.u N−1
+ N 1/2K 1/2.

Putting these together with Proposition 3.2 yields

ρ1/2∥∥Su>N
∥∥

L2
t L∞x (I×R3)

.u N−1
+
(
N 1/2
+ ρ−1/2)(K + N−3)1/2

.

Noting from (3-1) that, modulo a factor of ρ−3/2, Su>N (t, x) controls the L2
x norm on the ball around

x , and recalling the restriction on ρ, we deduce the claim. �

We now will analyze the individual terms in Proposition 6.2, beginning with the most important one:
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Lemma 6.4 (mass-mass interactions).

8π‖uhi‖
4
L4

t,x (I×R3)
−

∫
I

∫∫
−a j jkk(x − y) |uhi(y)|2|uhi(x)|2 dx dy dt .u

η2e2J

J
(K + N−3).

Proof. In three dimensions, 1|x | = 2|x |−1 and −(4π |x |)−1 is the fundamental solution of Laplace’s
equation. In this way, we are left to estimate the error terms originating from the truncation of a at radii
|x − y| ≥ R. Combining (6-9) and (6-16) yields∫

I

∫∫
|x−y|≥R

∣∣a j jkk(x − y)
∣∣ |uhi(y)|2|uhi(x)|2 dx dy dt .u J−1

‖uhi‖
2
L∞t L2

x

J∑
j=0

(Re j )−3(Re j )(K + N−3).

To obtain the lemma, we simply invoke (6-13) as well as (6-12). �

The second most important term originates from (6-3). Its importance stems from the fact that it
contains additional coercivity that we will use to estimate other error terms below.

Lemma 6.5. We estimate (6-3) in two pieces:

BI :=

∫
I

∫∫
|x−y|≤eJ−J0 R

4
3akk(x − y)|uhi(x)|6|uhi(y)|2 dx dy dt ≥ 0, (6-17)

as akk ≥ 0 there, and on the complementary region,∫
I

∫∫
|x−y|≥eJ−J0 R

|akk(x − y)||uhi(x)|6|uhi(y)|2 dx dy dt . J 2
0
J

(
K + N−3). (6-18)

Proof. That akk≥0 and hence BI ≥0 is immediate from (6-10). Further, by construction, |akk |. J0(Jr)−1

when r ≥ eJ−J0 R. In this way, we see that (6-18) relies only on controlling∫
I

∫∫
eJ−J0 R≤|x−y|≤eJ R

J0|uhi(x)|6|uhi(y)|2

J |x − y|
dx dy dt,

which by (6-16) is

.u J0‖uhi‖
6
L∞t L6

x

J∑
j=J−J0

(Je j R)−1
· (e j R)

(
K + N−3) .u

J 2
0
J

(
K + N−3),

as needed. �

Now we come to the most dangerous-looking term, (6-6). Satisfactory control relies on the full strength
of (6-10).

Lemma 6.6. Let

8 jk(x, y) := |uhi(y)|2∂ j uhi(x)∂kuhi(x)− (Im uhi(y)∂ j uhi(y))(Im uhi(x)∂kuhi(x)).

Then
−

∫
I

∫∫
4a jk(x − y)8 jk(x, y)dx dy dt .u

(
η2
+

J0
J

)
(K + N−3)+ 1

J0
BI .

(For the BI notation, refer to (6-17).)
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Proof. As a jk(x − y) is invariant under x↔ y, we may replace 8 by the matrix

1
28 jk(x, y)+ 1

28 jk(y, x),

which is Hermitian-symmetric. Moreover, for each x, y this matrix defines a positive semidefinite qua-
dratic form on R3. To see this, notice that for any vector e ∈ R3 and any function φ,∣∣eke j (Im φ̄(y)φ j (y))(Im φ̄(x)φk(x))

∣∣≤ |φ(y)| |e · ∇φ(y)| |φ(x)| |e · ∇φ(x)|
≤

1
2 |φ(x)|

2
|e · ∇φ(y)|2+ 1

2 |φ(y)|
2
|e · ∇φ(x)|2.

As a jk is a real symmetric matrix (for any x and y), its eigenvectors are real. Thus, wherever a jk is
positive semidefinite (i.e., a is convex), the integrand has a favorable sign. In general, the eigenvalues
of the Hessian of a spherically symmetric function are arr and r−1ar with the latter having multiplicity
two (ambient dimension minus one). In our case ar ≥ 0 and |arr | . J−1r−1. Therefore, we are left to
estimate ∫

I

∫∫
R<|x−y|<eJ R

|∇uhi(x)|2|uhi(y)|2

J |x − y|
dx dy dt. (6-19)

To do this, we break the integral into two regions: |x− x(t)|> R/2 and |x− x(t)| ≤ R/2. In the former
case, we use (6-13) and (6-16) to obtain the bound

.u ‖∇uhi‖
2
L∞t L2

x (|x−x(t)|>R/2)

J∑
j=0

(Je j R)−1
· (e j R)

(
K + N−3).u η

2(K + N−3).
When |x− x(t)| ≤ R/2, we further subdivide into two regions. When additionally |x− y| ≥ ReJ−J0 , we
estimate in much the same manner as above to obtain the bound

.u ‖∇u‖2L∞t L2
x

J∑
j=J−J0

(Je j R)−1
· (e j R)

(
K + N−3).u

J0
J

(
K + N−3).

This leaves us to consider the integral (6-19) over the region where |x − x(t)| ≤ R/2 and |x − y| <
ReJ−J0 . Here we use the fact that by the almost periodicity of u (cf. also Remark 1.3 and (6-13)),∫

R3
|∇uhi(t, x)|2 dx .u

∫
R3
|uhi(t, x)|6 dx .u

∫
|x−x(t)|≤R/2

|uhi(t, x)|6 dx,

uniformly for t ∈ [0, Tmax). We also observe from (6-10) that J0(Jr)−1
≤ akk ; recall J0 ≥ 1. Therefore,

the remaining integral is .u
1
J0

BI . �

The terms appearing in (6-4) are referred to as momentum bracket terms on account of the notation

{F, φ}p := Re(F∇φ̄−φ∇F̄). (6-20)

Note that applying Proposition 6.2 with φ = u>N gives F = Phi F(u)− F(uhi). These error terms are
comparatively easy to control:
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Lemma 6.7 (Momentum bracket terms). For any ε ∈ (0, 1],∫
I

∫
R3

∫
R3
|uhi(t, y)|2∇a(x−y)·{F, φ}p dx dy dt.u εBI+η‖uhi‖

4
L4

t,x
+
(
ε−1η+ε

J 2
0
J

)
(N−3

+K ). (6-21)

Proof. We begin by expanding the momentum bracket into several terms. First, we note that {F(φ), φ}p=
−

2
3∇|φ|

6 and so

{F, uhi}p =−
2
3∇
(
|u|6− |ulo|

6
− |uhi|

6)
−{F(u)− F(ulo), ulo}p −{Plo F(u), uhi}p.

Then, using { f, g}p =∇( f g)+Ø( f∇g), we obtain

{F, uhi}p =

∇

5∑
j=1

O(u j
hiu

6− j
lo )+Ø(u2uhiu2

lo∇ulo)+Ø(u3u2
hi∇ulo)+∇Ø(uhi Plo F(u))+Ø(uhi∇Plo F(u)). (6-22)

We will treat each of these terms in succession. The presence of the gradient in front of a term is a signal
that we will integrate by parts in (6-21) before estimating its contribution.

We begin with the first term in (6-22). Integrating by parts and using

5∑
j=1

|uhi|
j
|ulo|

6− j . ε|uhi|
6
+ ε−1

|ulo|
2
|uhi|

[
|uhi| + |ulo|

]3
,

we find that we need to obtain satisfactory estimates for

ε

∫
I

∫∫
|akk(x − y)||uhi(t, y)|2|uhi(t, x)|6 dx dy dt, (6-23)

which follow already from Lemma 6.5, and for∫
I

∫∫
|uhi(t, y)|2|ulo(t, x)|2|uhi(t, x)|[|uhi(t, x)| + |ulo(t, x)|]3

ε|x − y|
dx dy dt. (6-24)

(To obtain this compact form, we use the fact that |akk(x − y)| . |x − y|−1.) To bound this second
integral, we use the Hölder and Hardy–Littlewood–Sobolev inequalities, as well as Corollary 6.3 and
(6-13):

(6-24). ε−1∥∥|x |−1
∗ |uhi|

2∥∥
L4

t L6
x
‖uhi‖L4

t L3
x
‖ulo‖

2
L4

t L∞x
‖u‖3L∞t L6

x

. ε−1
‖uhi‖L∞t L2

x
‖uhi‖

2
L4

t L3
x
‖ulo‖

2
L4

t L∞x
‖ulo‖

3
L∞t L6

x

.u ε
−1η(N−3

+ K ).

We now move on to estimating the contribution of the second term in (6-22). This is easily estimated
using Corollary 6.3:

‖Ø(u2uhiu2
lo∇ulo)‖L1

t,x
. ‖uhi‖L∞t L2

x
‖∇ulo‖L2

t L6
x
‖ulo‖

2
L4

t L∞x
‖u‖2L∞t L6

x
.u ηN−1(1+ N 3K ).
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This takes the desired form when multiplied by∫
R3
|uhi(t, y)|2 dy .u η

2 N−2. (6-25)

To control the third term in (6-22), we use Bernstein together with Corollary 6.3:

‖Ø(u3u2
hi∇ulo)‖L1

t,x
. ‖∇ulo‖L2

t L∞x
‖uhi‖

2
L4

t,x
‖u‖3L∞t L6

x

.u N 1/2
‖∇ulo‖L2

t L6
x
‖uhi‖

2
L4

t,x

.u N 2
‖uhi‖

4
L4

t,x
+ N−1(1+ N 3K ).

Next, we estimate the contribution from the fourth term in (6-22), which, after integration by parts,
this takes the form

−

∫
I

∫∫
|uhi(t, y)|2akk(x − y)Ø

(
uhi Plo F(u)

)
(t, x) dx dy dt.

To continue, we write uhi(t, x)= div(∇1−1uhi(t, x)) and integrate by parts once more. This breaks the
contribution into two parts; after applying Hölder’s inequality and the Mikhlin multiplier theorem, the
total contribution is bounded by∥∥|x |−1

∗ |uhi|
2∥∥

L4
t L12

x
‖|∇|

−1uhi‖L2
t L6

x
‖∇Plo F(u)‖L4

t L4/3
x

(6-26)

+
∥∥|x |−2

∗ |uhi|
2∥∥

L4
t L12/5

x
‖|∇|

−1uhi‖L2
t L6

x
‖Plo F(u)‖L4

t L12/5
x
. (6-27)

Applying the Hardy–Littlewood–Sobolev inequality to the first factor in each term and using Sobolev
embedding on the very last factor, yields

(6-26)+ (6-27).
∥∥|uhi|

2∥∥
L4

t L4/3
x

∥∥|∇|−1uhi
∥∥

L2
t L6

x
‖∇Plo F(u)‖L4

t L4/3
x
. (6-28)

To estimate ∇Plo F(u), we decompose F(u) = F(ulo) + Ø(uhiu4). Using Hölder, Bernstein, and
Corollary 6.3, we obtain

‖∇Plo F(ulo)‖L4
t L4/3

x
. N 3/4

‖∇F(ulo)‖L4
t L1

x
. N 3/4

‖∇ulo‖L4
t L3

x
‖ulo‖

4
L∞t L6

x
.u N 3/4(1+ N 3K )1/4,

‖∇PloØ(uhiu4)‖L4
t L4/3

x
. N 3/2

‖uhiu4
‖L4

t L12/11
x
. N 3/2

‖uhi‖L4
t,x
‖u‖4L∞t L6

x
.u N 3/2

‖uhi‖L4
t,x
,

Putting these together with Corollary 6.3 and (6-13) yields

(6-28). ‖uhi‖L∞t L2
x
‖uhi‖L4

t,x
‖|∇|

−1uhi‖L2
t L6

x

(
N 3/4(1+ N 3K )1/4+ N 3/2

‖uhi‖L4
t,x

)
.u ηN−1

‖uhi‖L4
t,x

N−2(1+ N 3K )1/2
(
N 3/4(1+ N 3K )1/4+ N 3/2

‖uhi‖L4
t,x

)
.u η

(
‖uhi‖

4
L4

t,x
+ (N−3

+ K )
)

For the fifth (and last) term in (6-22), we again write uhi = div(∇1−1uhi). After integrating by parts
once, the contribution splits into two pieces, one of which is controlled by (6-26) and another which we
bound by ∥∥(∇a) ∗ |uhi|

2∥∥
L∞t L∞x

∥∥|∇|−1uhi
∥∥

L2
t L6

x
‖1Plo F(u)‖L2

t L6/5
x
. (6-29)
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We now decompose F(u)= F(ulo)+Ø(uhiu2
lou2)+Ø(u2

hiu
3). Using the Hölder and Bernstein inequal-

ities, we deduce

‖1Plo F(ulo)‖L2
t L6/5

x
. N‖∇ulo‖L2

t L6
x
‖ulo‖

4
L∞t L6

x
.u N (1+ N 3K )1/2,

‖1PloØ(uhiu2
lou2)‖L2

t L6/5
x
. N 2

‖uhi‖L∞t L2
x
‖ulo‖

2
L4

t L∞x
‖u‖2L∞t L6

x
.u N (1+ N 3K )1/2,

and
‖1PloØ(u2

hiu
3)‖L2

t L6/5
x
. N 5/2

‖uhi‖
2
L4

t,x
‖u‖3L∞t L6

x
.u N 5/2

‖uhi‖
2
L4

t,x
.

Putting it all together we find

(6-29). ‖uhi‖
2
L∞t L2

x
N−2(1+ N 3K )1/2

(
N (1+ N 3K )1/2+ N 5/2

‖uhi‖
2
L4

t,x

)
.u η

2 (
‖uhi‖

4
L4

t,x
+ (N−3

+ K )
)
.

With the last term estimated satisfactorily, the proof of Lemma 6.7 is now complete. �

Looking back to Proposition 6.2, we are left with just one term in ∂t M(t) to estimate, namely, (6-5).
As in [Colliander et al. 2008], we call this the mass (Poisson) bracket term and use the notation

{F, φ}m := Im(Fφ̄).

Notice that {|φ|4φ, φ}m = 0 for any function φ.

Lemma 6.8 (mass bracket terms). For any ε > 0,∣∣∣∣Im ∫
I

∫
R3

∫
R3
{F, uhi}m(t, y)∇a(x − y) · ∇uhi(t, x)uhi(t, x) dx dy dt

∣∣∣∣. η1/4(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)
.

(6-30)

Proof. Exploiting the cancellation noted above and

F(u)− F(uhi)− F(ulo)= Ø
(
ulouhiu3),

we write

{F, uhi}m = {Phi F(u)− F(uhi), uhi}m

= {Phi[F(u)− F(uhi)− F(ulo)], uhi}m −{Plo F(uhi), uhi}m +{Phi F(ulo), uhi}m

= Ø
(
ulou2

hiu
3)
−{Plo F(uhi), uhi}m +{Phi F(ulo), uhi}m . (6-31)

We will treat their contributions in reverse order (right to left) since this corresponds to increasing com-
plexity.

The contribution of the third term is easily seen to be bounded by

‖uhi∇uhi‖L∞t L1
x
‖uhi Phi F(ulo)‖L1

t,x
. ‖∇uhi‖L∞t L2

x
‖uhi‖

2
L∞t L2

x
N−1
‖∇F(ulo)‖L1

t L2
x

.u η
2 N−3

‖∇ulo‖L2
t L6

x
‖ulo‖

2
L4

t L∞x
‖ulo‖

2
L∞t L6

x

.u η
2(N−3

+ K ).
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For the second term in (6-31) we write uhi = div(∇1−1uhi) and integrate by parts. This yields two
contributions to LHS(6-30), which we bound as follows:

‖uhi∇uhi‖L∞t L1
x

∥∥|∇|−1uhi
∥∥

L2
t L6

x

∥∥∇Plo F(uhi)
∥∥

L2
t L6/5

x
.u ‖uhi‖L∞t L2

x
N−2(1+ N 3K )1/2 N 3/2

‖F(uhi)‖L2
t L1

x

.u η(N−3
+ K )1/2‖uhi‖

2
L4

t,x
‖uhi‖

3
L∞t L6

x

.u η
(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)

and ∥∥|x |−1
∗ |uhi∇uhi|

∥∥
L4

t L12
x

∥∥|∇|−1uhi
∥∥

L2
t L6

x

∥∥Plo F(uhi)‖L4
t L4/3

x

. ‖∇uhi‖L∞t L2
x
‖uhi‖L4

t,x
N−2(1+ N 3K )1/2 N 3/4

‖F(uhi)‖L4
t L1

x

.u ‖uhi‖L4
t,x

N 1/4(N−3
+ K )1/2‖uhi‖L4

t,x
‖uhi‖

15/4
L∞t L6

x
‖uhi‖

1/4
L∞t L2

x

.u η
1/4(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)
.

We now move to the first term in (6-31). This term, or more precisely, the term Ø(ulou5
hi) contained

therein, is the reason we needed to introduce the spatial truncation on a. Using ReJ
= N−1, we estimate

this term via

‖∇uhi‖L∞t L2
x
‖uhi‖L4

t,x
‖∇a‖L∞t L4

x
‖uhi‖

2
L4

t,x
‖ulo‖L4

t L∞x
‖u‖3L∞t L6

x
.u ‖uhi‖

3
L4

t,x
(eJ R)3/4η1/2(1+ N 3K )1/4

.u η
1/2(
‖uhi‖

4
L4

t,x
+ N−3

+ K
)
.

This completes the control of the mass bracket terms. �

Proof of Theorem 6.1. From Hölder’s inequality, we see that when φ = uhi and a is as above, the
interaction Morawetz quantity defined in (6-2) obeys

sup
t∈I
|M(t)| ≤ 2‖uhi‖

3
L∞t L2

x (I×R3)
‖∇uhi‖L∞t L2

x (I×R3) .u η
3 N−3,

provided, of course, that N is small enough so that (6-13) holds. Applying the fundamental theorem of
calculus to the identity in Proposition 6.2 and putting together all the lemmas in this section, we reach
the conclusion that

8π‖uhi‖
4
L4

t,x (I×R3)
+ BI .u

(
ε+

1
J0

)
BI + η

1
4 ‖uhi‖

4
L4

t,x (I×R3)
+

(
η

1
4 +

η

ε
+

J 2
0
J
+ η2 e2J

J

)
(N−3

+ K ).

We remind the reader that this estimate is uniform in ε, η ∈ (0, 1], but was derived under several overar-
ching hypotheses: (6-13), N ReJ

= 1, and J ≥ 2J0 ≥ 2.
We now choose our parameters as follows: First ε and J−1

0 are made small enough so that the BI

term on the RHS can be absorbed by that on the LHS. Next η and J−1 are chosen small enough both to
handle the L4

t,x on the RHS and to ensure that the prefactor in front of (N−3
+K ) is smaller than η0. We

now choose R and N−1 large enough so that (6-13) holds and then further increase N−1 or R so as to
ensure N ReJ

= 1.
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To fully justify bringing the two terms across the inequality, we need to verify that they are indeed
finite. This is easily done:

‖uhi‖
4
L4

t,x
. ‖|∇|1/4u≥N‖

4
L4

t L3
x
. N−3

‖∇uhi‖
4
L4

t L3
x
.u N−3

+ N−3
∫

I
N (t)2 dt,

by Sobolev embedding, Bernstein, and Lemma 1.7. Similarly,

BI .
∥∥|x |−1

∗ |uhi|
2∥∥

L4
t L12

x
‖uhi‖

5/4
L∞t L2

x
‖uhi‖

19/4
L19/3

t L114/7
x

. ‖uhi‖L4
t L4

x
‖uhi‖

9/4
L∞t L2

x
‖∇uhi‖

19/4
L19/3

t L38/15
x
.u N−3

+ N−3
∫

I
N (t)2 dt,

by also using the Hardy–Littlewood–Sobolev inequality. �

Remark 6.9. As noted in the course of the proof, the necessity of truncating a(x) stems from our inability
to estimate one term. It would be possible to give a much simpler proof if we could show (a priori) that

‖u5
hiulo‖L1

t,x
.u N−2

+ ηN K , (6-32)

for N sufficiently small. We will now describe what appears to be an intrinsic obstacle to doing this.
With current technology, proving (6-32) without using the interaction Morawetz identity seems to

require proving that it also holds for almost periodic solutions of the focusing equation; however, the
static solution W described in Remark 4.3 shows (6-32) does not hold in that setting. From (4-18) and
simple arguments,

lim
N→0

N−1
∫

R3

[
W>N (x)

]5W≤N (x) dx = lim
N→0

N−1
∫

R3
W (x)5W≤N (x) dx

= lim
N→0

N−1
∫

R3
|ξ |2|Ŵ (ξ)|2ϕ(ξ/N ) dξ ∼ 1.

As N (t)≡ 1, it follows that K = |I | and so ‖W 5
hiWlo‖L1

t,x
& N K for N small.

7. Impossibility of quasisolitons

In this section, we show that the second type of almost periodic solution described in Theorem 1.8,
namely, those with

∫ Tmax
0 N (t)−1 dt = ∞, cannot exist. This is because their existence is inconsistent

with the interaction Morawetz estimate obtained in the last section.

Theorem 7.1 (no quasisolitons). There are no almost periodic solutions u : [0, Tmax)×R3
→ C to (1-1)

with N (t)≡ Nk ≥ 1 on each characteristic interval Jk ⊂[0, Tmax) which satisfy ‖u‖L10
t,x ([0,Tmax)×R3)=+∞

and ∫ Tmax

0
N (t)−1 dt =∞. (7-1)

Proof. We argue by contradiction and assume there exists such a solution u.
First we observe that there exists C(u) > 0 such that

N (t)
∫
|x−x(t)|≤C(u)/N (t)

|u(t, x)|4 dx ≥ 1/C(u) (7-2)
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uniformly for t ∈ [0, Tmax). That this is true for a single time t follows from the fact that u(t) is not
identically zero. To upgrade this to a statement uniform in time, we use the fact that u is almost periodic.
More precisely, we note that the left-hand side of (7-2) is both scale- and translation-invariant and that
the map u(t) 7→ LHS(7-2) is continuous on L6

x and hence also on Ḣ 1
x .

Moreover, by Hölder’s inequality,

N (t)
∫
|x−x(t)|≤C(u)/N (t)

|u≤N (t, x)|4 dx .u ‖u≤N (t)‖4L6
x

for any N > 0,

uniformly for t ∈ [0, Tmax). Combining this with (7-2) and Theorem 6.1 shows that for each η0 > 0 there
exists some N = N (η0) sufficiently small so that∫

I
N (t)−1 dt .u η0 N−3

+ η0

∫
I

N (t)−1 dt

uniformly for time intervals I ⊂ [0, Tmax) that are a union of characteristic subintervals Jk . In particular,
we may choose η0 small enough to defeat the implicit constant in this inequality and so deduce that∫ Tmax

0
N (t)−1 dt = lim

T↗Tmax

∫ T

0
N (t)−1 dt .u 1,

which contradicts (7-1). �
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