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We continue the development, by reduction to a first-order system for the conormal gradient, of L2

a priori estimates and solvability for boundary value problems of Dirichlet, regularity, Neumann type for
divergence-form second-order complex elliptic systems. We work here on the unit ball and more generally
its bi-Lipschitz images, assuming a Carleson condition as introduced by Dahlberg which measures the
discrepancy of the coefficients to their boundary trace near the boundary. We sharpen our estimates by
proving a general result concerning a priori almost everywhere nontangential convergence at the boundary.
Also, compactness of the boundary yields more solvability results using Fredholm theory. Comparison
between classes of solutions and uniqueness issues are discussed. As a consequence, we are able to solve
a long standing regularity problem for real equations, which may not be true on the upper half-space,
justifying a posteriori a separate work on bounded domains.
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1. Introduction and main results

This study was initiated in [Auscher and Axelsson 2011] — henceforth referred to as [Part I] — where
the reader will find a comprehensive historical account of the theory of boundary value problems for
second-order equations of divergence form. Before we come to our work here, let us connect more
deeply to even earlier references going back to the seminal work of Stein and Weiss [1960] that paved
the way for the development of Hardy spaces H p on the Euclidean space in several dimensions. Their
key discovery was to look at the system of differential equations in the upper half-space satisfied by the
gradient F = (∂t u,∇x u) of a harmonic function u on the upper half-space, to which they gave the name
of conjugate system or M. Riesz system. The system of differential equations is in fact a generalized
Cauchy–Riemann system which can be put into a vector-valued ODE form. They did not exploit this
ODE structure but used instead subharmonicity properties of |F |p for p > n−1

n to define the (harmonic)
Hardy spaces H p as the space of those conjugate systems satisfying

sup
t>0

∫
Rn
|F(t, x)|p dx <∞

and to prove that the elements in this space have boundary values

F(t, x)→ F(0, x)

in the L p norm and almost everywhere nontangentially. Further, they proved that elements in H p can be
obtained as Poisson integrals of their boundary traces. In other words, there is a one-to-one correspondence
between H p and its trace space Hp. By using Riesz transforms, the trace space Hp is in one-to-one
correspondence with the space defined by taking the first component of trace elements. As they pointed
out, it was nothing new for p> 1 as we get L p, but for p≤ 1 it gave a new space. Over the years, this last
space turned out to have many characterizations, including the ones with Littlewood–Paley functionals of
[Fefferman and Stein 1972] and the atomic ones of [Coifman 1974] and [Latter 1978], and is now part of
a rich and well understood family of spaces.

In our earlier work with McIntosh [Auscher et al. 2010b], and in [Part I], we wrote down the Cauchy–
Riemann equations corresponding to the second-order equation and the key point was a further algebraic
transformation that transformed this system to a vector-valued ODE. In some sense, we were going back
in time since elliptic equations with nonsmooth coefficients have been developed by other methods since
then (see [Kenig 1994]). In this respect, it is no surprise in view of the above discussion that we denote our
trace spaces by H. They are in a sense generalized Hardy spaces, and this notation was used as well in our
earlier work with Hofmann [Auscher et al. 2008]. We shall use again such notation and terminology here.
What today allows the methods of Hardy spaces to be applicable in the case of nonsmooth coefficients,
are the quadratic estimates related to the solution of the Kato conjecture for square roots. These are a
starting point of the analysis. Indeed, the quadratic estimates are equivalent to the fact that two Hardy
spaces split the function space topologically, as it is the case for the classical upper and lower Hardy
spaces in complex analysis, essentially from the F. and M. Riesz theorem on the boundedness of the
Hilbert transform. So in a sense everything looks like the case of harmonic functions (for p = 2 at this
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time). But this is not the case. The difference is in the last step, taking only one component of the trace
of a conjugate system. This may or may not be a one-to-one correspondence, which translates to well- or
ill-posedness for the boundary value problems of the original second-order equation.

See also [Axelsson et al. 2009] for a different generalization of Stein–Weiss conjugate systems of
harmonic functions. There conjugate differential forms on Lipschitz domains were constructed by inverting
a generalized double layer potential equation on the boundary.

Let us introduce some notation in order to state our results. Our system of equations is of the form

divx A∇xu(x)=
( n∑

i, j=0

m∑
β=1

∂i (A
α,β

i, j ∂ j uβ)(x)
)
α=1,...,m

= 0, x ∈�, (1)

where ∂i =
∂
∂xi

, 0≤ i ≤ n, and the matrix of coefficients is A= (Aα,βi, j (x))
α,β=1,...,m
i, j=0,...,n ∈ L∞(�;L(C(1+n)m)),

n,m ≥ 1. We emphasize that the methods used here work equally well for systems (m ≥ 2) as for
equations (m = 1). For the time being, �=O1+n

:= {x ∈ R1+n ; |x|< 1} for the unit ball in R1+n (see
the end of the introduction for more general Lipschitz domains). The coefficient matrix A is assumed to
satisfy the strict accretivity condition∫

Sn
Re(A(r x)∇xu(r x),∇xu(r x)) dx ≥ κ

∫
Sn
|∇xu(r x)|2 dx (2)

for some κ > 0, uniformly for a.e. r ∈ (0, 1) and u ∈ C1(O1+n
;Cm) where we use polar coordinates

x = r x , r > 0, x ∈ Sn , and dx is the standard (nonnormalized) surface measure on Sn
= ∂O1+n . The

optimal κ is denoted κA. This ellipticity condition is natural when viewing A as a perturbation of its
boundary trace. See below.

The boundary value problems we consider are to find u ∈ D′(O1+n
;Cm) solving (1) in distribution

sense, with appropriate interior estimates of ∇xu and Dirichlet data in L2, or Neumann data in L2, or
regular Dirichlet data with gradient in L2. Note that since we shall impose distributional ∇xu ∈ L loc

2 , u
can be identified with a function u ∈W 1,loc

2 (O1+n,Cm), i.e., with a weak solution. In order to study these
boundary value problems, our task, and this is the first main core of the work, is to obtain L2 a priori
estimates.

As in [Part I], where we worked in the upper half-space R1+n
+ , we reduce (1) to a first-order system

with the conormal gradient as unknown function, so the strategy and the scale-invariant estimates are
similar. See [Part I, Road Map] for an overview. Some changes will arise in the algebraic setup and in
the analysis though. Here, the curvature of the boundary (the sphere) will play a role in the algebraic
setup, making the unit circle slightly different from the higher dimensional spheres. In addition, owing
to the fact that the boundary is compact, we may use Fredholm theory to obtain representations and
solvability by only making assumptions on the coefficients near the boundary. We shall focus on this
part here and give full details. We also mention that the whole story relies on a quadratic estimate for
a first-order bisectorial operator acting on the boundary function space. On the upper half-space, this
estimate was already available from [Axelsson et al. 2006b] as a consequence of the strategy to prove the
Kato conjecture on Rn . We shall need to prove it on the sphere, essentially by localization and reduction
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to [Axelsson et al. 2006a], where such estimates were proved for first-order operators with boundary
conditions. An implication of independent interest is the solution to the Kato square root on Lipschitz
manifolds. This is explained in Section 8.

As is known already for real equations (m = 1) from work of Caffarelli, Fabes and Kenig [Caffarelli
et al. 1981], solvability requires a Dini square regularity condition on the coefficients in the transverse
direction to the boundary. So it is natural to work under a condition of this type. We use the discrepancy
function and the Carleson condition introduced in [Dahlberg 1986]. For a measurable function f on
O1+n , set

f ∗(x) := ess sup
y∈W o(x)

| f ( y)|, (3)

where W o(x) denotes a Whitney region around x ∈O1+n and

‖ f ‖C := sup
r(Q)<c

(
1
|Q|

∫∫
(e−r(Q),1)Q

f ∗(x)2
dx

1− |x|

)1/2

for some fixed c < 1, (4)

where the supremum is over all geodesic balls Q ⊂ Sn of radius r(Q) < c. We make the standing
assumption on A throughout that there exists A1 a measurable coefficient matrix on Sn , identified with
radially independent coefficients in O1+n , such that E( y) := A( y)− A1(y), y = y/| y|, satisfies the large
Carleson condition

‖E‖C <∞. (5)

The choice of c is irrelevant. Note that this means in particular that E∗ vanishes on Sn in a certain sense
and so A1(y)= A( y/| y|). In fact, it can be shown as in [Part I] that if there is one such A1, it is uniquely
defined, ‖A1‖∞ ≤ ‖A‖∞ and κA1 ≥ κA. So we call A1 the boundary trace of A. It turns out that this is a
very natural assumption with our method, implying a wealth of a priori information about weak solutions
as stated in Theorem 1.1. Such a result applies in particular to all systems with radially independent
coefficients since E= 0 in that case.

For a function f defined in O1+n , its truncated modified nontangential maximal function is defined as
in [Kenig and Pipher 1993] by

Ñ o
∗
( f )(x) := sup

1−τ<r<1

(
|W o(r x)|−1

∫
W o(r x)

| f ( y)|2 d y
)1/2

, x ∈ Sn, (6)

for some fixed τ < 1. Note that changing the value of τ will not affect the results. We shall use the
notation fr (x) := f (r x) for 0< r < 1, x ∈ Sn . Our main result is the following.

Theorem 1.1 (a priori representations and estimates; existence of a trace; Fatou-type convergence).
Consider coefficients A∈ L∞(O1+n

;L(C(1+n)m)) which are strictly accretive in the sense of (2) and satisfy
(5) with boundary trace A1. Consider u ∈ W 1,loc

2 (O1+n
;Cm) which satisfies (1) in O1+n distributional

sense.

(i) Suppose ‖Ñ o
∗
(∇xu)‖L2(Sn) <∞. Then:
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(a) ∇xu has limit

lim
r→1

1
1− r

∫
r<|x|<(1+r)/2

|∇xu(x)− g1(x)|2 dx = 0 (7)

for some g1 ∈ L2(Sn
;C(1+n)m) with ‖g1‖L2(Sn;C(1+n)m) . ‖Ñ o

∗
(∇xu)‖L2(Sn).

(b) r 7→ ur belongs to C(0, 1; L2(Sn
;Cm)) and has L2 limit u1 at the boundary with

‖ur − u1‖L2(Sn;Cm) . 1− r,

and u1 ∈W 1
2 (S

n
;Cm).

(c) Fatou-type results: For almost every x ∈ Sn ,

lim
r→1
|W o(r x)|−1

∫
W o(r x)

u( y) d y = u1(x),

lim
r→1
|W o(r x)|−1

∫
W o(r x)

∂t u( y) d y = (g1)⊥(x),

lim
r→1
|W o(r x)|−1

∫
W o(r x)

(A∇xu)‖( y)d y = (A1g1)‖(x),

and if m = 1 (equations) or n = 1 (unit disk) we also have

lim
r→1
|W o(r x)|−1

∫
W o(r x)

∇xu( y) d y = g1(x),

lim
r→1
|W o(r x)|−1

∫
W o(r x)

(A∇xu)( y) d y = (A1g1)(x).

(ii) Suppose
∫

O1+n |∇xu|2(1− |x|) dx <∞. Then:

(a) r 7→ ur belongs to C(0, 1; L2(Sn
;Cm)) and has L2 limit

lim
r→1
‖ur − u1‖L2(Sn;Cm) = 0

for some u1 ∈ L2(Sn
;Cm).

(b) We have a priori estimates

‖Ñ o
∗
(u)‖2L2(Sn) .

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2 , (8)

‖ur‖
2
L2(Sn;Cm) . r−(n−1)

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2 , r ∈ (0, 1). (9)

(c) Fatou-type results: For almost every x ∈ Sn ,

lim
r→1
|W o(r x)|−1

∫
W o(r x)

u( y) d y = u1(x).
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The definition of the normal component ( · )⊥ and tangential part ( · )‖ of a vector field will be given
later. Not stated here are representation formulas giving ansatzes to find solutions as they use a formalism
defined later. In particular, we introduce a notion of a pair of conjugate systems associated to a solution.
We note that the nontangential maximal estimate (8) was already proved in the R1+n

+ setting of [Part I].
Again, this is an a priori estimate showing that, under the assumption ‖E‖C <∞, the class of weak
solutions with square function estimate

∫
O1+n |∇xu|2(1− |x|) dx <∞ is contained in the class of weak

solutions with nontangential maximal estimate ‖Ñ o
∗
(u)‖2 <∞. The almost everywhere convergences of

Whitney averages are new. They apply as well to the setup in [Part I].
Theorem 1.1 enables us to make the following rigorous definition of well-posedness of the BVPs.

Definition 1.2. Consider coefficients A∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2).

• By the Neumann problem with coefficients A being well-posed, we mean that given ϕ ∈ L2(Sn
;Cm)

with
∫

Sn ϕ(x) dx=0, there is a function u ∈W 1,loc
2 (O1+n

;Cm)with estimates ‖Ñ o
∗
(∇xu)‖L2(Sn)<∞,

unique modulo constants, solving (1) and having trace g1 = limr→1(∇xu)r in the sense of (7) such
that (A1g1)⊥ = ϕ.

• Well-posedness of the regularity problem is defined in the same way, but replacing the boundary
condition (A1g1)⊥ = ϕ by (g1)‖ = ϕ, for a given ϕ ∈ R(∇S)⊂ L2(Sn

;Cnm).

• By the Dirichlet problem with coefficients A being well-posed, we mean that given ϕ ∈ L2(Sn
;Cm),

there is a unique function u ∈ W 1,loc
2 (O1+n

;Cm) with estimates
∫

O1+n |∇xu|2(1 − |x|) dx < ∞,
solving (1) and having trace limr→1 ur = ϕ in the sense of almost everywhere convergence of
Whitney averages.

For the Neumann and regularity problem when ‖E‖C <∞, for equations (m = 1) or in the unit disk
(n = 1) or any system for which A is strictly accretive in pointwise sense, the trace can also be defined in
the sense of almost everywhere convergence of Whitney averages of ∇xu and the same for the conormal
derivative (A∇xu)⊥. The operator ∇S denotes the tangential gradient. See Section 3.

For the Dirichlet problem, the trace is defined for the almost everywhere convergence of Whitney
averages. When ‖E‖C <∞, Theorem 1.1 shows that it is the same as the trace in L2 sense. We remark
that we modified the meaning of the boundary trace in the definition of the Dirichlet problem compared
to [Part I]. This modification can be made there as well and the same results hold.

We now come to our general results on these BVPs. A small Carleson condition, but only near the
boundary, is further imposed to obtain invertibility of some operators. The second result is on the precise
relation between Dirichlet and regularity problems. The first and third are perturbations results for radially
dependent and independent perturbations respectively. The last is a well-posedness result for three classes
of radially independent coefficients.

Theorem 1.3. Consider coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2). There exists ε > 0 such that, if A satisfies the small Carleson condition

lim
τ→1
‖χτ<r<1(A− A1)‖C < ε (10)
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and the Neumann problem with coefficients A1 is well-posed, then the Neumann problem is well-posed
with coefficients A.

The corresponding perturbation result for the regularity and Dirichlet problems also holds. For the
Neumann and regularity problems, the solution u for datum ϕ has estimates∫

|x|<1/2
|∇xu|2 dx . ‖Ñ o

∗
(∇xu)‖22 ≈ ‖ϕ‖

2
2.

For the Dirichlet problem, the solution u for datum ϕ has estimates

‖Ñ o
∗
(u)‖22 ≈ sup

1/2<r<1
‖ur‖

2
2 ≈

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn
ϕ(x)dx

∣∣∣∣2 ≈ ‖ϕ‖22.
An ingredient of the proof is the following relation between Dirichlet and regularity problems, in the

spirit of [Kenig and Pipher 1993, Theorem 5.4].

Theorem 1.4. Consider coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2). There exists ε > 0 such that, if A satisfies the small Carleson condition (10), then the regularity
problem with coefficients A is well-posed if and only if the Dirichlet problem with coefficients A∗ is
well-posed.

Theorem 1.5. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). If the Neumann problem with coefficients A1 is well-posed, then there exists
ε > 0 such that the Neumann problem with coefficients A′1 ∈ L∞(Sn

;L(C(1+n)m)) is well-posed whenever
‖A1− A′1‖∞ < ε. The corresponding perturbation results for the regularity and Dirichlet problems also
hold.

Theorem 1.6. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). The Neumann, regularity and Dirichlet problems with coefficients A1 are
well-posed if

(1) either A1 is Hermitian, i.e., A∗1 = A1,

(2) or A1 has block form, i.e., (A1)⊥‖ = 0 = (A1)‖⊥ in the normal/tangential splitting of C(1+n)m (see
Section 3),

(3) or A1 has Hölder regularity C s(Sn
;L(C(1+n)m)), s > 1

2 .

Proof of Theorems 1.1, 1.3, 1.5 and 1.6. For Theorem 1.1, the L2-limits and L2-estimates of solutions
follow from Theorem 12.4 and Corollary 12.8 respectively. The nontangential maximal estimate (8) is in
Theorem 14.1. Almost everywhere convergence of averages follows from Theorems 15.2 and 15.5.

The well-posedness results in Theorem 1.6 are in Propositions 17.16, 17.15 and 17.17. The radially
independent perturbation result in Theorem 1.5 is in Theorem 17.13. The well-posedness result for
radially dependent coefficients with good boundary trace in Theorem 1.3 is in Theorem 17.14. �

Our next result is the following semigroup representation, analogous to the result in [Auscher 2009] in
the upper half-space. It is interesting to note that for harmonic functions u, it gives a direct proof (without
passing through nontangential maximal function or sup−L2 estimates) that

∫
O1+n |∇xu|2(1−|x|) dx<∞
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implies a representation by Poisson kernel from its trace (also shown to exist). We have not seen this
argument in the literature. Another interesting feature is that it points out the importance of well-posedness
of the Dirichlet problem when dealing with more general coefficients.

Theorem 1.7. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). Assume that the Dirichlet problem with coefficients A1 is well-posed. Then
the mapping

Pr : L2(Sn
;Cm)→ L2(Sn

;Cm) : u1 7→ ur ,

where u is the solution to the Dirichlet problem with datum u1, defines a bounded operator for each
r ∈ (0, 1]. The family (Pr )r∈(0,1] is a multiplicative C0-semigroup (i.e., Pr Pr ′ =Prr ′ and Pr→ I strongly
in L2 when r → 1) whose infinitesimal generator A (i.e., Pr = e(ln r)A) has domain D(A) contained in
W 1

2 (S
n
;Cm). Moreover, D(A)=W 1

2 (S
n
;Cm) if and only if the Dirichlet problem with coefficients A∗1 is

well-posed.

As mentioned above two classes of weak solutions compare: the one with square function estimates is
contained in the one with nontangential maximal control. It is thus interesting to examine this further.
Does the opposite containment holds? How do well-posedness in the two classes compare? Clearly
uniqueness in the larger class implies uniqueness in the smaller, and conversely for existence. As we
shall see, positive answers come a posteriori to solvability.

Definition 1.8. The Dirichlet problem with coefficients A is said to be well-posed in the sense of Dahlberg
if, given ϕ ∈ L2(Sn

;Cm), there is a unique weak solution u ∈W 1,loc
2 (O1+n

;Cm) to divx A∇xu = 0 with
estimates ‖Ñ o

∗
(u)‖2 <∞ and convergence of Whitney averages to ϕ, almost everywhere with respect to

surface measure on Sn .

This definition has the merit to be natural not only for equations but for systems as well. For real
equations, this is equivalent to the usual one as Ñ o

∗
can be replaced by the usual pointwise nontangential

maximal operator by the De Giorgi–Nash–Moser estimates on weak solutions. Even in this case, observe
that the control ‖Ñ o

∗
(u)‖2 <∞ does not enforce the almost everywhere convergence property. Thus

existence of the limit is part of the hypothesis in Definition 1.8, as compared to Definition 1.2. A first
result is the following.

Theorem 1.9. Consider radially independent coefficients A1 ∈ L∞(Sn
;L(C(1+n)m)) which are strictly

accretive in the sense of (2). Assume that the Dirichlet and regularity problems with coefficients A1 are
well-posed in the sense of Definition 1.2. Then, all weak solutions to divx A1∇xu = 0 with ‖Ñ o

∗
(u)‖2 <∞

are given by the semigroup of Theorem 1.7. In particular, the Dirichlet problem with coefficients A1 is
well-posed in the sense of Dahlberg.

Theorem 1.4 implies the same conclusion for the coefficients A∗1. The next results are only for real
equations where the theory based on elliptic measure brings more information. For (complex) equations,
the strict accretivity in the sense of (2) is equivalent to the usual pointwise accretivity, which is the same
as the strict ellipticity for real coefficients.
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Theorem 1.10. Consider an equation with real coefficients A ∈ L∞(O1+n
;L(R1+n)), which are strictly

elliptic. Assume further that the small Carleson condition (10) holds. Then the following statements are
equivalent.

(i) The Dirichlet problems with coefficients A and A∗ are well-posed in the sense of Dahlberg.

(ii) The Dirichlet problems with coefficients A and A∗ are well-posed in the sense of Definition 1.2.

Moreover, in this case the solutions for coefficients A (resp. A∗) from a same datum are the same.

Note that, by Theorem 1.4, we can replace (ii) by (ii′): the regularity problems with coefficients A and
A∗ are well-posed. When A = A∗, all the problems in (i) and (ii′) are well-posed by [Kenig and Pipher
1993] so there is nothing to prove. For (even nonsymmetric) real coefficients A alone, the direction from
(ii′) to (i) was known from [Kenig and Pipher 1993] (without assuming the Carleson condition) and the
converse is unknown. It seems that making the statement invariant under taking adjoints solves the issue.
We mention the equivalence in [Kilty and Shen 2011] concerning L p versions of this statement for self-
adjoint constant coefficient systems on Lipschitz domains (in this case, the L2 result is known and used).

Our last result is well-posedness of the regularity problem under a transversal square Dini condition on
the coefficients, analogous to the result obtained by Fabes, Jerison and Kenig [Fabes et al. 1984] for the
Dirichlet problem with real and symmetric A. This partly answers Problem 3.3.13 in [Kenig 1994].

Theorem 1.11. Consider an equation with coefficients A ∈ L∞(O1+n
;L(C1+n)), which are strictly

accretive in the pointwise sense. There exists ε > 0 such that, if A satisfies the small Carleson condition
(10) and its boundary trace A1 is real and continuous, then the Dirichlet problem with coefficients A
is well-posed in the sense of Definition 1.2 and in the sense of Dahlberg, and the regularity problem
with coefficients A is well-posed. In particular, this holds if A is real, continuous in O1+n and the Dini
square condition

∫
0w

2
A(t)

dt
t <∞ holds, where wA(t) = sup{|A(r x)− A(x)| ; x ∈ Sn, 1− r < t}. The

corresponding results hold in O2 for the Neumann problem with coefficients A.

Proofs of Theorems 1.7 and 1.9 are in Sections 18 and proofs of Theorems 1.10 and 1.11 are in
Section 19.

We end this introduction with a remark on the Lipschitz invariance of the above results. Let�⊂R1+n be
a domain which is Lipschitz diffeomorphic to O1+n and let ρ :O1+n

→� be the Lipschitz diffeomorphism.
Denote the boundary by 6 := ∂� and the restricted boundary Lipschitz diffeomorphism by ρ0 : Sn

→6.
Given a function ũ : �→ Cm , we pull it back to u := ũ ◦ ρ : O1+n

→ Cm . By the chain rule, we
have ∇xu = ρ∗(∇ yũ), where the pullback of an m-tuple of vector fields f , is defined as ρ∗( f )(x)α :=
ρt(x) f α(ρ(x)), with ρt denoting the transpose of Jacobian matrix ρ. If ũ satisfies div y Ã∇ yũ = 0
in �, with coefficients Ã ∈ L∞(�;L(C(1+n)m)), then u will satisfy divx A∇xu = 0 in O1+n , where
A ∈ L∞(O1+n

;L(C(1+n)m)) are the “pulled back” coefficients defined as

A(x) := |J (ρ)(x)|(ρ(x))−1 Ã(ρ(x))(ρt(x))−1, x ∈O1+n. (11)

Here J (ρ) is the Jacobian determinant of ρ.
The Carleson condition, nontangential maximal functions and square functions on � correspond to

ones on Sn under pullback, so that 1− |x| becomes δ( y) the distance to 6. In particular, the condition
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for Ã amounts to ‖E‖C <∞ with E defined from A. We remark that pullbacks allow to replace normal
directions by oblique (but transverse) ones to the sphere in the Carleson condition on the coefficients:
take ρ :O1+n

→O1+n to be a suitable Lipschitz diffeomorphism.
The boundary conditions on ũ on 6 translate in the following way to boundary conditions on u on Sn .

• The Dirichlet condition ũ = ϕ̃ on 6 is equivalent to u = ϕ on Sn , where ϕ := ϕ̃ ◦ ρ0 ∈ L2(Sn
;Cm).

• The Dirichlet regularity condition ∇6 ũ = ϕ̃ on 6 (∇6 denoting the tangential gradient on 6) is
equivalent to ∇Su = ϕ on Sn , where ϕ := ρ∗0 (ϕ̃) ∈ R(∇S)⊂ L2(Sn

;Cnm).

• The Neumann condition (ν, Ã∇ yũ) = ϕ̃ on 6 (ν being the outward unit normal vector field on
6) with

∫
6
ϕ̃(y) dy = 0 is equivalent to (En, A∇xu) = ϕ on Sn with

∫
Sn ϕ(x) dx = 0, where ϕ :=

|J (ρ0)|ϕ̃ ◦ ρ0 ∈ L2(Sn
;Cm).

In this way the Dirichlet/regularity/Neumann problem with coefficients Ã in the Lipschitz domain � is
equivalent to the Dirichlet/regularity/Neumann problem with coefficients A in the unit ball O1+n , and it
is straightforward to extend the results on O1+n above to Lipschitz domains �.

The plan of the paper is as follows. In Section 2, we transform the second-order equation (1) into a
system of Cauchy–Riemann type equations. In Section 3, the Cauchy–Riemann equations are integrated
to a vector-valued ODE for the conormal gradient of u and a second ODE is introduced to construct
a vector potential. The infinitesimal generators D0 and D̃0 for these ODE with radially independent
coefficients are studied in Sections 4 and 6, and it is shown in Section 7 that D0 and D̃0 have bounded
holomorphic functional calculi. Section 5 treats special features of elliptic systems in the unit disk. In
Section 9 we define the natural function spaces Xo and Yo for the BVPs and we describe in Section 10
how to construct solutions from the semigroups generated by

|D0| =

√
D2

0 and |D̃0| =

√
D̃2

0 .

In Section 11, the ODE with radially dependent coefficients for the conormal gradient from Section 4 is
reformulated as an integral equation involving an operator SA, which is shown to be bounded on the natural
function spaces for the BVPs. In Section 12, we obtain representation for Xo- and Yo-solutions. These
representations are further developed in Section 13 where we introduce the notion of a pair of conjugate
systems for (1), allowing to prove in Sections 14 and 15 nontangential maximal estimates and Fatou-type
results. Crucial for the solvability of (1) is the invertibility of I − SA. In Section 16, we apply Fredholm
theory to show that I − SA is invertible on the natural spaces whenever the small Carleson condition (10)
holds, which proves that it suffices to assume transversal regularity of A near the boundary only. (For
BVPs on the unbounded half-space studied in [Part I], the needed compactness was not available.) We
then study well-posedness in Section 17: this is where we prove the perturbation results, the equivalence
Dirichlet/regularity up to taking adjoints and obtain classes of radially independent coefficients for which
well-posedness holds. The Section 18 deals with uniqueness issues, on comparisons of different classes of
solutions upon some well-posedness assumptions. We conclude the article in Section 19 with a discussion
in the special case of real equations (m = 1) for which we obtain further results.
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2. Generalized Cauchy–Riemann system

Following [Auscher et al. 2008; 2010b] and [Part I], the starting point of our analysis is that solving for
u the divergence form system (1) amounts to solving for its gradient g a system of Cauchy–Riemann
equations.

Proposition 2.1. Consider coefficients A ∈ L∞(O1+n
;L(C(1+n)m)). If u is a weak solution to the

equation divx A∇xu = 0 in O1+n , then g := ∇xu ∈ L loc
2 (O1+n

;C(1+n)m) is a solution of the generalized
Cauchy–Riemann system {

divx(Ag)= 0,
curlx g = 0,

(12)

in O1+n
\ {0} distribution sense. Conversely, if g ∈ L loc

2 (O1+n
;C(1+n)m) is a solution to (12) in O1+n

\ {0}
distribution sense, then there exists a weak solution u to divx A∇xu = 0 in O1+n , such that g = ∇xu in
O1+n distribution sense.

Proof. If u is given, then g := ∇xu has the desired properties and the equation is even satisfied in O1+n

distribution sense. Conversely, assume g is given and satisfies (12) in O1+n
\ {0} distribution sense. Then

the next lemma applied to both operators divx and curlx implies that 0 is a removable singularity and that
(12) holds in O1+n distribution sense. Thus one can define a distribution u in O1+n such that g = ∇xu,
hence divx A∇xu = 0 in O1+n . That u is a weak solution follows from g ∈ L loc

2 (O1+n
;C(1+n)m). �

Lemma 2.2. Let X be a homogeneous first-order partial differential operator on R1+n mapping Ck-valued
distributions to C`-valued distributions, k, ` ∈ Z+. If h ∈ L loc

2 (O1+n
;Ck) and Xh = 0 in distributional

sense on O1+n
\ {0}, then Xh = 0 in O1+n-distributional sense.

Proof. Let φ ∈ C∞0 (O
1+n
;C`). We need to show that

∫
O1+n (X∗φ, h) dx = 0. To this end, let ηε be a

smooth radial function with ηε = 0 on {|x|< ε}, ηε = 1 on {2ε < |x|< 1} and ‖∇ηε‖∞ . ε−1. Then∫
O1+n

ηε(X∗φ, h) dx =
∫

O1+n
(X∗(ηεφ), h) dx−

∫
O1+n

((X∗ηε)φ, h) dx

=−

∫
O1+n

((X∗ηε)φ, h) dx.

As ε→ 0, the left hand side converges to
∫

O1+n (X∗φ, h) dx, whereas∣∣∣∣∫
O1+n

((X∗ηε)φ, h) dx
∣∣∣∣. 1

ε

∫
ε<|x|<2ε

|h|dx . ε(n−1)/2
(∫

ε<|x|<2ε
|h|2 dx

)1/2

→ 0.

This proves the lemma. �

3. The divergence form equation as an ODE

We introduce a convenient framework to transform the Cauchy–Riemann system into an ODE.
We systematically use boldface letters x, y, . . . to denote variables in R1+n and indicate the variable

for differential operators in R1+n: for example, ∇x . . . . We denote points on Sn by x, y, . . . and the
standard (nonnormalized) surface measure on Sn by dx . Polar coordinates are written x = r x , with r > 0
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and x ∈ Sn . For a function f defined in O1+n , we write fr (x) := f (r x), x ∈ Sn , for the restriction to the
sphere with radius 0< r < 1, parametrized by Sn .

The radial unit vector field we denote by En = En(x) := x/|x|. Vectors v ∈ R1+n , we split v = v⊥En+ v‖,
where v⊥ := (v, En) is the normal component and v‖ := v−v⊥En is the angular or tangential part of v, which
is a vector orthogonal to En. Note that v⊥ is a scalar, but v‖ is a vector. In the plane, i.e., when n = 1, we
denote the counter clockwise angular unit vector field by Eτ , and we have v= v⊥En+(v, Eτ)Eτ . For an m-tuple
of vectors v = (vα)1≤α≤m , we define its normal components and tangential parts componentwise as

(v⊥)
α
:= (vα)⊥, (v‖)

α
:= (vα)‖.

The tangential gradient, divergence and curl on the unit sphere are denoted by ∇S , divS and curlS

respectively. The gradient acts component-wise on tuples of scalar functions, whereas the divergence and
curl act vector-wise on tuples of vector fields. In polar coordinates, the R1+n differential operators are

∇xu = (∂r ur )En+ r−1
∇Sur ,

divx f = r−n∂r
(
rn( fr )⊥

)
+ r−1 divS( fr )‖,

curlx f = r−1
En ∧
(
∂r (r( fr )‖)−∇S( fr )⊥

)
+ r−1 curlS( fr )‖.

We use the boundary function space L2(Sn
;V), writing the norm ‖ · ‖2, of L2 sections of the complex

vector bundle

V :=

[
Cm

(TCSn)m

]
over Sn , where Cm is identified with the trivial vector bundle and TCSn denotes the complexified tangent

bundle of Sn . The elements of this bundle are written in vector form f =
[
α

β

]
=
[
α β

]t
, and we write

f⊥ := α, f‖ := β for the normal component and tangential part. Note that V is isomorphic to the trivial
vector bundle C(1+n)m , when identifying scalar, i.e., Cm-valued, functions and m-tuples of radial vector
fields. More precisely, the isomorphism is V3

[
α β

]t
7→ αEn+β ∈C(1+n)m , for α ∈Cm and β ∈ (TCSn)m .

The differential operators on Sn can be seen as unbounded operators. We use D(A),R(A),N(A) for
the domain, range and null space respectively of unbounded operators. Then

∇S : L2(Sn
;Cm)→ L2(Sn

; (TCSn)m)

and its adjoint

−divS : L2(Sn
; (TCSn)m)→ L2(Sn

;Cm),

with domains D(∇S) = W 1
2 (S

n
;Cm) and D(divS) = {g ∈ L2(Sn

; (TCSn)m) ; divS g ∈ L2(Sn
;Cm)}, are

closed unbounded operators with closed range. The condition g∈R(divS)=N(∇S)
⊥ is that

∫
Sn g(x) dx=0

so R(divS) is of codimension m in L2(Sn
;Cm). Also when n ≥ 2, R(∇S)= N(curlS), and when n = 1,

g ∈ R(∇S) if and only if
∫

S1(g(x), Eτ) dx = 0. Thus R(∇S) is of codimension m in L2(S1
;Cm) when

n = 1, and infinite codimension when n ≥ 2.
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Definition 3.1. In L2(Sn
;V), we define operators

D :=
[

0 −divS

∇S 0

]
and N :=

[
−I 0
0 I

]
,

where D(D) :=
[

D(∇S)

D(divS)

]
. Write N+ f := 1

2(I + N ) f =
[

0
f‖

]
and N− f := 1

2(I − N ) f =
[

f⊥
0

]
.

A basic observation is that the two operators D and N anticommute, i.e.,

N D =−DN .

Of fundamental importance in this paper are the closed orthogonal subspaces

H := R(D)=
[
R(divS)

R(∇S)

]
and H⊥ := N(D)=

[
N(∇S)

N(divS)

]
.

We consistently denote by PH the orthogonal projection onto H. We remark that

N+H⊥ =

{[
0
f‖

]
; divS f‖ = 0

}
and N−H⊥ =

{[
c
0

]
; c ∈ Cm

}
,

constants being identified to constant functions. It can be checked that (2) is equivalent to A is strictly
accretive on

H1 := {g ∈ L2(Sn
;C(1+n)m) ; g‖ ∈ R(∇S)}, (13)

uniformly for a.e. r ∈ (0, 1). More precisely, the accretivity assumption on A rewrites

n∑
i, j=0

m∑
α,β=1

∫
Sn

Re(Aα,βi, j (r x)gβj (x)g
α
i (x)) dx ≥ κ

n∑
i=0

m∑
α=1

∫
Sn
|gαi (x)|

2 dx, (14)

for all g ∈ H1, a.e. r ∈ (0, 1). In fact, as we shall see in Lemma 5.1 this is equivalent to pointwise
strict accretivity when n = 1 (unit disk), but this is in general not the case when n ≥ 2 except if m = 1
(equations).

Using the notation above, we can identify H1 with[
L2(Sn

;Cm)

R(∇S)

]
and see that H is a subspace of codimension m in H1.

On identifying C(1+n)m with V, the space of coefficients L∞(O1+n
;L(C(1+n)m)) identifies with

L∞(O1+n
;L(V)), so that we can split any coefficients A as

A(r x)=
[

A⊥⊥(r x) A⊥‖(r x)
A‖⊥(r x) A‖‖(r x)

]
,

with A⊥⊥(r x) ∈ L(Cm
;Cm), A⊥‖(r x) ∈ L((Tx Sn)m,Cm), A‖⊥(r x) ∈ L(Cm, (Tx Sn)m) and A‖‖(r x) ∈

L((Tx Sn)m, (Tx Sn)m). Note also that A⊥⊥(r x)= (A(r x)En, En).
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With our accretivity assumption (14), the component A⊥⊥(r · ) seen as a multiplication operator is
invertible on L2(Sn

;Cm), thus as a matrix function it is invertible in L∞(Sn
;Cm). This is the reason why

strict accretivity on H1 is needed, and not only on H, so that the transformed coefficient matrix Â below
can be formed in the next result. We make the above identification for coefficients A without mention.

We can now state the two results on which our analysis stands. Proposition 3.3 reformulates this
Cauchy–Riemann system (12) further, by solving for the r -derivatives, as the vector-valued ODE (17) for
the conormal gradient f defined below. This formulation is well suited for the Neumann and regularity
problems. For the Dirichlet problem, we use instead a similar first-order system formulation of the
equation; see Proposition 3.5. As explained in [Part I, Section 3], the vector-valued potential v appearing
there should be thought of as containing some generalized conjugate functions as tangential part. In
the case of the unit disk, we make this rigorous in Section 5 and come back to this in Section 13. The
fundamental object is the following.

Definition 3.2. The conormal gradient of a weak solution u to divx A∇xu = 0 in O1+n is the section
f : R+× Sn

→ V defined by

ft = e−(n+1)t/2
[
(Agr )⊥

(gr )‖

]
, (15)

where r = e−t and g =∇xu. The map gr 7→ ft is called the gradient-to-conormal gradient map.

Proposition 3.3. The pointwise transformation

A 7→ Â :=
[

A−1
⊥⊥

−A−1
⊥⊥

A⊥‖
A‖⊥A−1

⊥⊥
A‖‖− A‖⊥A−1

⊥⊥
A⊥‖

]
is a self-inverse bijective transformation of the set of bounded matrices which are strictly accretive on H1.

For a pair of coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) and B ∈ L∞(R+× Sn

;L(V)) which are strictly
accretive on H1 and such that B = Â, the gradient-to-conormal gradient map gives a one-to-one
correspondence, with inverse the conormal gradient-to-gradient map

ft 7→ gr = r−
n+1

2 ((B ft)⊥En+ ( ft)‖), (16)

where t = ln(1/r), between solutions g ∈ L loc
2 (O1+n

;C(1+n)m) to the Cauchy–Riemann system (12) in
O1+n

\ {0} distribution sense, and solutions f ∈ L loc
2 (R+;H), with

∫
∞

1 ‖ ft‖
2
2 dt <∞, to the equation

∂t f + (DB+ n−1
2 N ) f = 0, (17)

in R+× Sn distributional sense.

Recall that the Ricci curvature of Sn is n− 1, so the constant n−1
2 is related to curvature. On the other

hand, the exponent n+1
2 appearing in the correspondence gr ↔ ft is the only exponent for which no

powers of r remain in (17). It turns out that this also makes the gradient-to-conormal gradient map an L2

isomorphism, since ∫
O1+n
|g|2 dx ≈

∫ 1

0
‖gr‖

2
2rndr ≈

∫
∞

0
‖ ft‖

2
2 dt. (18)
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Proof. The stated properties of the matrix transformation are straightforward to verify, using the observation
that e(n+1)t Re(Bt ft , ft)= Re(Ar gr , gr ). See [Part I, Proposition 4.1] for details.

(i) Assume first that the equations (12) hold on O1+n
\ {0}. In polar coordinates x = r x , the equations

divx(Ag)= 0, curlx(g)= 0 give{
r−n∂r (rn(Ag)⊥)+ r−1 divS(Ag)‖ = 0,
∂r (rg‖)−∇Sg⊥ = 0.

Next we pull back the equations to R+ × Sn . Write (Ag)⊥ = r−(n+1)/2 f⊥ and (Ag)‖ = A‖⊥g⊥ + A‖‖g‖.
Then g⊥ = r−(n+1)/2 A−1

⊥⊥
( f⊥− A⊥‖ f‖) and g‖ = r−(n+1)/2 f‖, and the equations further become{

r−n∂r (r (n−1)/2 f⊥)+ r−(n+3)/2 divS(B‖⊥ f⊥+ B‖‖ f‖)= 0,
∂r (r (1−n)/2 f‖)− r−(n+1)/2

∇S(B⊥⊥ f⊥+ B⊥‖ f‖)= 0.

Using product rule for ∂r and the chain rule −r∂r = ∂t , this yields the equation (17).
It remains to check that ft ∈H for almost every t > 0. This is equivalent to (Ar gr )⊥ ∈ R(divS) and

(gr )‖ ∈R(∇S) for a.e. r ∈ (0, 1). To see (Ar gr )⊥ ∈R(divS) amounts to seeing that
∫

Sn (Ar gr )⊥dx = 0. We
apply Gauss’s theorem as follows. For any radial function φ ∈ C∞0 (O

1+n
;Cm), the divergence equation

gives
∫

O1+n (Ag,∇φ) dx = 0. Taking, for a.e. r ∈ (0, 1), the limit as φ approaches the characteristic
function for balls {|x| < r} shows that

∫
r Sn (Ag)⊥dx = 0. To check (gr )‖ ∈ R(∇S) we distinguish first

n= 1. In that case, a similar application of Stokes’ theorem shows that
∫

S1(Eτ , gr ) dx = 0 for a.e. r ∈ (0, 1).
For n ≥ 2, that curlS((gr )‖)= 0 is a consequence of curlx g = 0 and the general fact that pullbacks and
the exterior derivative commute. Hence ft ∈H.

(ii) Conversely, assume that (17) holds and ft ∈H for a.e. t > 0. Define the corresponding function g ∈
L loc

2 (O1+n
;C(1+n)m) by the conormal gradient-to-gradient map and note that curlS((gr )‖)= 0. Reversing

the rewriting of the equations in (i) shows that divx(Ag) = 0, curlx(g) = 0 hold on O1+n
\ {0}. This

proves the proposition. �

Corollary 3.4. For any coefficients A ∈ L∞(O1+n
;L(C(1+n)m)) which are strictly accretive in the sense

of (2), gradients of weak solutions to (1) in O1+n are in one-to-one correspondence with R+ × Sn

distributional solutions to the equation (17), belonging to L loc
2 (R+;H) with estimate

∫
∞

1 ‖ ft‖
2
2 dt <∞.

Proof. Combine Proposition 2.1 and Proposition 3.3. �

There is a second way of constructing weak solutions, which we now describe.

Proposition 3.5. Let A and B = Â be as in Proposition 3.3. Assume that v ∈ L loc
2 (R+;D(D)) with∫

∞

1 ‖Dvt‖
2
2dt <∞ satisfies

∂tv+ (B D− n−1
2 N )v = 0 (19)

in R+× Sn distributional sense. Then

ur := r−
n−1

2 (vt)⊥, r = e−t
∈ (0, 1),

extends to a weak solution of divx A∇xu = 0 in O1+n , and Dv equals the conormal gradient of u.
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Proof. By definition of u in the statement, (Dv)‖ =∇Sv⊥ = r (n+1)/2(r−1
∇Su). On the other hand, taking

the normal component of ∂tv+ (B D− n−1
2 N )v = 0 gives

∂tv⊥− A−1
⊥⊥
(divS v‖+ A⊥‖∇Sv⊥)+ σv⊥ = 0,

or equivalently
(Dv)⊥ =−divS v‖ =−A⊥⊥(∂t + σ)v⊥+ A⊥‖∇Sv⊥

= r (n+1)/2(A⊥⊥∂r u+ A⊥‖r−1
∇Su)= r (n+1)/2(A∇xu)⊥.

These equations hold in O1+n
\ {0}. Next, applying D to (19) yields(

∂t + DB+ n−1
2 N

)
(Dv)= 0.

Thus f := Dv satisfies (17) and ft ∈R(D)=H. By Corollary 3.4, there is a weak solution ũ in O1+n of the
divergence form equation associated to f . In particular, f‖= r (n+1)/2(r−1

∇S ũ) and f⊥= r (n+1)/2(A∇x ũ)⊥.
Applying the conormal gradient-to-gradient map, we deduce ∇x ũ =∇xu in O1+n

\ {0} distribution sense.
In particular, u = ũ+ c in O1+n

\ {0} for some constant c. As ũ+ c is also a weak solution in O1+n to the
divergence form equation with coefficients A, this provides us with the desired extension for u. �

For perturbations A of radially independent coefficients, Corollary 12.8(i) proves a converse of this
result, i.e., the existence of such a vector-valued potential v containing a given solution u to divx A∇xu= 0
as normal component. We do not know whether such v can be defined for general coefficients (except in
O2, see Section 5).

Remark 3.6. Assume that the coefficients A are defined in R1+n and that the accretivity condition (2) or
(14) holds for a.e r ∈ (0,∞). As in Proposition 3.3, there is also a one-to-one correspondence between
solutions g ∈ L loc

2 (R1+n
\O1+n; L2(Sn

;V)) to divx(Ag)= 0, curlx g = 0 in the exterior of the unit ball
and solutions f : R−→H to the equation ∂t f + (DB+ n−1

2 N ) f = 0 for t < 0 in L2(R−;H). Also, as
in Proposition 3.5, L loc

2 -solutions v : R−→ L2(Sn
;D(D)) to the equation ∂tv+ (B D− n−1

2 N )v = 0 for
t < 0, give weak solutions u to divx A∇xu = 0 in the exterior of the unit ball.

4. Study of the infinitesimal generator

In this section, we study the infinitesimal generators DB0+
n−1

2 N and B0 D− n−1
2 N for the vector-valued

ODEs appearing in (17) and (19) for radially independent coefficients

B0 = Â1 ∈ L∞(Sn
;L(V)),

strictly accretive on H with constant κ = κB0 > 0. Note that strict accretivity of A1 on H1 is needed for
the construction of B0 = Â1 as a multiplication operator. Once we have B0, only strict accretivity of
B0 on H is needed in our analysis. This has the following consequences used often in this work. First,
B0 :H→ B0H is an isomorphism. Second, the map PH B0 is an isomorphism of H.

The first operator will be used to get estimates of ∇xu, needed for the Neumann and regularity problems.
The second operator will be used to get estimates of the potential u, needed for the Dirichlet problem.
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Definition 4.1. Let σ ∈ R. Define the unbounded linear operators

D0 := DB0+ σN and D̃0 := B0 D− σN

in L2(Sn
;V), with domains D(D0) := B−1

0 D(D) and D(D̃0) := D(D) respectively. Here B−1
0 (X) :=

{ f ∈ L2 ; B0 f ∈ X}. When more convenient, we use the notation DA1 := D0 and D̃A1 := D̃0.

For these two operators, we have the following intertwining and duality relations.

Lemma 4.2. In the sense of unbounded operators, we have D0 D = DD̃0 and (D̃A1)
∗
= DB∗0 − σN =

−N (D Â∗1+ σN )N.

Proof. The proof is straightforward, using the identity B∗0 = N Â∗1 N for the second statement. �

Proposition 4.3. In L2 = L2(Sn
;V), the operator D0 is a closed unbounded operator with dense domain.

There is a topological Hodge splitting

L2 =H⊕ B−1
0 H⊥,

i.e the projections P1
B0

and P0
B0

onto H and B−1
0 H⊥ in this splitting are bounded. The operator D0 leaves

H invariant, and the restricted operator D0 :H→H, with domain D(D0)∩H, is closed, densely defined,
injective, onto, and has a compact inverse.

If σ 6= 0, then D0 : L2→ L2 is also injective and onto, and D0|B−1
0 H⊥ = σN.

If σ = 0, then D0 = DB0, N(D0)= B−1
0 H⊥ and R(D0)=H are closed and invariant. In particular,

when n = 1, dim N(D0)= 2m = dim(L2/R(D0)).

Proof. The splitting is a consequence of the strict accretivity of B0 on H, and it is clear that H is invariant
under D0. Note that

(i N )(DB0+ σN )= (i N D)B0+ iσ,

where i N is unitary on L2 as well as H, and where i N D =−i DN is a self-adjoint operator with range
H. This shows that D0 is closed, densely defined, injective and onto on H, and on L2 when σ 6= 0, as a
consequence of properties of operators such as (i N D)B0 stated in [Auscher et al. 2010b, Proposition 3.3].

Next we show that D0 : H→ H has a compact inverse. Write D0 = D(PH B0)+ σN . Since PH B0

is an isomorphism on H, it suffices to prove that the inverse of D : H→ H is compact. Note that
D(∇S) = W 1

2 (S
n
;Cm) is compactly embedded in L2(Sn

;Cm) by Rellich’s theorem. In particular ∇S :

R(divS)→ R(∇S) has compact inverse. Since ∇∗S =−divS , it follows that divS : R(∇S)→ R(divS) has a
compact inverse as well. This proves that the inverse of D is compact on H.

The remaining properties when σ 6= 0 and σ = 0 are straightforward and are left to the reader. �

Proposition 4.4. In L2 = L2(Sn
;V), the operator D̃0 is a closed unbounded operator with dense domain.

There is a topological Hodge splitting
L2 = B0H⊕H⊥,

i.e the projections P̃1
B0

and P̃0
B0

onto B0H and H⊥ in this splitting are bounded. Here H⊥ ⊂ D(D̃0) and
D̃0 leaves H⊥ invariant.
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If σ 6= 0, then D̃0 : L2→ L2 is also injective and onto, and D̃0|H⊥ =−σN.
If σ = 0, then D̃0 = B0 D, N(D̃0)=H⊥ and R(D̃0)= B0H is closed. In particular, the subspace B0H

is invariant under D̃0 and when n = 1, dim N(D̃0)= 2m = dim(L2/R(D̃0)).

Proof. These results for D̃0 follow from Proposition 4.3 by duality, using Lemma 4.2. �

Remark 4.5. The reader familiar with [Axelsson et al. 2006b] and [Part I] should note carefully the
following fundamental difference between the cases σ 6= 0 and σ = 0. When σ = 0, each of the operators
D0 and D̃0 is of the type considered in the papers just cited, and each has two complementary invariant
subspaces. On the other hand when σ 6= 0, the operator D0 has in general only the invariant subspace H,
and D̃0 only has the invariant subspace H⊥. One can define an induced operator D̃0 on the quotient space
L2/H

⊥, but this cannot be realized as an action in a subspace complementary to H⊥ in L2 in general.
As σ will be set to n−1

2 this means for us a difference in the treatment of n = 1 (space dimension 2) and
n ≥ 2 (space dimension 3 and higher).

We prove here a technical lemma for later use.

Lemma 4.6. There is a unique isomorphism

H→ L2/H
⊥
: h 7→ h̃ (20)

such that D0h = Dh̃ for h ∈H∩D(D0).

Proof. When σ = 0, we can take h̃ := B0h ∈ B0H≈ L2/H
⊥ as D0h = DB0h = Dh̃.

When σ 6= 0, we use that D : L2→H is surjective with null space H⊥. This defines h̃ for h ∈H∩D(D0).
With D−1 the compact inverse of D :H→H, the equation D0h = Dh̃ is equivalent to

PH B0h+ σD−1 Nh = PHh̃. (21)

This shows that (20) extends to a bounded map since ‖h̃‖L2/H⊥ ≈ ‖PHh̃‖2. Moreover, since PH B0 is an
isomorphism on H, we have also the lower bound ‖h‖2 . ‖PH B0h‖2 . ‖h̃‖L2/H⊥ +‖D

−1h‖2, which
shows that (20) is a semi-Fredholm operator. If h̃ = 0, then (21) implies h ∈ H ∩D(D0). Therefore
D0h = 0 and (20) is injective. Since the range contains the dense subspace D(D)/H⊥, invertibility
follows. �

5. Elliptic systems in the unit disk

In dimension n = 1, i.e., for the unit disk O2
⊂R2 with boundary S1, some special phenomena occurs. In

this section we collect these results.

Lemma 5.1. If n = 1 and A is strictly accretive in the sense of (2), then A is pointwise strictly accretive,
i.e.,

Re(A(x)v, v)≥ κ|v|2, for all v ∈ C2m, and a.e. x ∈O2.

Proof. By scaling and continuity, it suffices to consider v=
[
(zα) (wα)

]t
∈C2m , withwα 6=0, α=1, . . . ,m.

In (2), let
uα(reiθ ) := (ik)−1wαeik r

r0
zα
wα η(eiθ )eikθ , α = 1, . . . ,m,
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with a smooth function η : S1
→ R, k ∈ Z+ and r0 ∈ (0, 1). Using polar coordinates and letting k→∞

yields

Re
∫

S1
(A(r0x)v, v) |η(x)|2 dx ≥ κ|v|2

∫
S1
|η(x)|2 dx, for a.e. r0 ∈ (0, 1).

Taking |η|2 to be an approximation to the identity at a given point x ∈ S1 now proves the pointwise strict
accretivity in the statement. �

Definition 5.2. Assume that A ∈ L∞(O2
;L(C2m)) is pointwise strictly accretive. Given a weak solution

u ∈W 1,loc
2 (O2

;Cm) to divx A∇xu = 0, we say that a solution ũ ∈W 1,loc
2 (O2

;Cm) to J∇x ũ = A∇xu is a
conjugate of u, where J :=

[ 0
I
−I

0

]
.

We note that since A∇xu is divergence-free, there always exists a conjugate of u, unique modulo constants
in Cm . The notion of conjugate solution for two dimensional divergence form equations, in the scalar
case m = 1, goes back to Morrey. See [Morrey 1966]. Note that when A= I , the system J∇x ũ =∇xu is
the anti Cauchy–Riemann equations.

Lemma 5.3. Assume that A ∈ L∞(O2
;L(C2m)) is pointwise strictly accretive. Let u ∈W 1,loc

2 (O2
;Cm)

be a weak solution to divx A∇xu = 0. Then

A∇xu = J∇x ũ ⇐⇒
{
(A∇xu)⊥ =−(∇x ũ)‖
( Ã∇x ũ)⊥ = (∇xu)‖

}
⇐⇒ Ã∇x ũ = J t

∇xu =⇒ divx Ã∇x ũ = 0,

where Ã is the conjugate coefficient defined by

Ã := J t A−1 J.

We have

Ã =
[

(d−ca−1b)−1 (d−ca−1b)−1ca−1

a−1b(d−ca−1b)−1 a−1
+a−1b(d−ca−1b)−1ca−1

]
if A =

[
a b
c d

]
.

When m = 1, this reduces to Ã = (det A)−1 At .

Here, we have identified the tangential part ( · )‖ with its component along Eτ . (See below.)

Proof. The equivalences and implication are verified from Ã = J t A−1 J . The explicit formula for
Ã is classical if m = 1. If m ≥ 2, the proposed formula for Ã can be checked by a straightforward
computation. Note that a, b, c, d ∈ L∞(O2

;L(Cm)) and all the entries of Ã as well: the inverses are
pointwise multiplications. We omit further details. �

We next show that the vector-valued potential v in Proposition 3.5 contains, along with u as normal
component, its conjugate ũ as tangential component. To do that, it is convenient to identify V with the
trivial bundle C2m by identifying the tangential component β to the tangential part β Eτ ∈ (TCS1)m .

Given this identification, D becomes

D =
[

0 −∂Eτ
∂Eτ 0

]
,
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where ∂Eτ denotes the tangential counter clockwise derivative of m-tuples of scalar functions on S1. A
coefficient A ∈ L∞(O2

;L(C2m)) is thus identified with its matrix representation in the moving frame
{En, Eτ }. We remark that this identification commutes with the matrix J .

Proposition 5.4. Let A ∈ L∞(O2
;L(C2m)) be pointwise strictly accretive and let

B := Â ∈ L∞(O2
;L(C2m)).

Assume that v =
[
u ũ

]t
∈ L loc

2 (R+;D(D)) with
∫
∞

1 ‖Dvt‖
2
2 dt <∞ is a R+× Sn distributional solution

to ∂tv+ B Dv = 0 as in Proposition 3.5, so that ur = (vt)⊥, r = e−t , is a weak solution to divx A∇xu = 0
in O2. Then ũ is a conjugate to u.

Conversely, given a weak solution u to divx A∇xu = 0 in O2 and a conjugate ũ, the potential vector
v =

[
u ũ

]t
has the above properties.

Note that the construction of v this way is a feature of two-dimensional systems as compared to higher
dimensions.

Proof. Applying J t to ∂tv+ B Dv = 0 gives ∂t(J tv)+ B̃ D(J tv)= 0 with B̃ = J t B J , since J D = D J .
A calculation shows that B̃ = ̂̃A. Applying Proposition 3.5 shows that ũr = (J tvt)⊥ is a weak solution to
divx Ã∇x ũ = 0. Also we know that Dv and Dṽ are respectively equal to the conormal gradients of u and
ũ, and since J tv = ṽ, this gives the middle term in the equivalence of Lemma 5.3. Thus ũ is a conjugate
of u. The converse is immediate to check and left to the reader. �

We finish this section with the following simple expressions for the projections P0
B0

and P̃0
B0

of
Propositions 4.3 and 4.4 when n = 1. We still make the identification V≈ C2m .

Lemma 5.5. Let A1 ∈ L∞(O2
;L(C2m)) be pointwise strictly accretive radially independent coefficients,

and let B0 := Â1 ∈ L∞(O2
;L(C2m)) the corresponding coefficients. Then

P̃0
B0

g =
(∫

S1
B−1

0 dx
)−1 ∫

S1
B−1

0 g dx, g ∈ L2(S1
;C2m),

and P0
B0
= B−1

0 P̃0
B0

B0.

Proof. By accretivity, (
∫

S1 B−1
0 dx)−1 is a bounded operator (called the harmonic mean of B0). If g ∈ B0H,

then B−1
0 g ∈H and

∫
S1 B−1

0 g dx = 0, hence P̃0
B0

g = 0, follows. On the other hand, if g ∈H⊥, then g is
constant, and therefore the right hand side equals(∫

S1
B−1

0 dx
)−1 (∫

S1
B−1

0 dx
)

g = g.

This proves the expression for P̃0
B0

. The formula for P0
B0

comes from the similarity relation

DB0 = B−1
0 (B0 D)B0. �
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6. Resolvent estimates

In this section we prove that the spectra of D0 and D̃0 are contained in certain double hyperbolic regions,
and we estimate the resolvents. For parameters 0 < ω < ν < π/2 and σ ∈ R, define closed and open
hyperbolic regions in the complex plane by

Sω,σ := {x + iy ∈ C ; (tan2 ω)x2
≥ y2
+ σ 2
},

So
ν,σ := {x + iy ∈ C ; (tan2 ν)x2 > y2

+ σ 2
},

Sω,σ+ := {x + iy ∈ C ; (tanω)x ≥ (y2
+ σ 2)1/2},

So
ν,σ+ := {x + iy ∈ C ; (tan ν)x > (y2

+ σ 2)1/2}.

When σ = 0, we drop the subscript σ in the notation for the sectorial regions.

Proposition 6.1. On L2 = L2(Sn
;V), there is a constant ω ∈ (0, π/2), depending only on ‖B0‖∞ and

the accretivity constant κB0 , such that the spectra of the operators D0 and D̃0 are contained in the double
hyperbolic region Sω,σ . Moreover, there are resolvent bounds

‖(λ− D0)
−1
‖L2→L2, ‖(λ− D̃0)

−1
‖L2→L2 ≤

1√
y2+ σ 2/ tanω− |x |

,

for all λ= x + iy /∈ Sω,σ . These same estimates hold for the restriction D0 :H→H.

Proof. (i) To prove the spectral estimates for D0, assume that

(DB0+ σN − x − iy)u = f.

Introduce the auxiliary operator Ny := iσN − y I , and note that ‖Ny‖ = ‖N−1
y ‖
−1
=
√

y2+ σ 2. Multiply
with Ny and rewrite as

(Ny D)B0u+ i(y2
+ σ 2)u = Ny f + x Nyu. (22)

Now split the function u as
u = u1+ u0 ∈H⊕ B−1

0 H⊥,

and note that ‖u‖ ≈ ‖u1‖+‖u0‖. Apply the associated bounded projections P i
B0

to (22) to get

(Ny D)B0u1+ i(y2
+ σ 2)u1 = P1

B0
Ny f + x P1

B0
Nyu,

0+ i(y2
+ σ 2)u0 = P0

B0
Ny f + x P0

B0
Nyu.

Take the imaginary part of the inner product between the first equation and B0u1 (using that Ny D is
self-adjoint), and the second equation and u0 to get

(y2
+ σ 2)Re(u1, B0u1)= Im (P1

B0
Ny f, B0u1)+ Im (x P1

B0
Nyu, B0u1),

(y2
+ σ 2)‖u0‖

2
= Im (P0

B0
Ny f, u0)+ Im (x P0

B0
Nyu, u0).

Using the strict accretivity of B0 on H gives the estimate

(y2
+ σ 2)‖u‖2 ≤ C1

√
y2+ σ 2(‖ f ‖‖u‖+ |x |‖u‖2),
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for some constant C1 <∞. Thus ‖u‖ ≤ (
√

y2+ σ 2/C1− |x |)−1
‖ f ‖.

(ii) To prove a similar lower bound on D̃0, assume that (B0 D− σN − x − iy)u = f , and rewrite as

B0 DN−1
y Nyu+ i Nyu = f + xu. (23)

Write Nyu = B0u1+ u0 ∈ B0H⊕H⊥. Apply the bounded projections P̃ i
B0

to (23) to get

B0(DN−1
y )B0u1+ i B0u1 = P̃1

B0
f + x P̃1

B0
u,

0+ iu0 = P̃0
B0

f + x P̃0
B0

u.

Recall that B0 :H→ B0H is an isomorphism and apply its inverse B−1
0 : B0H→H to the first equation.

Then take the imaginary part of the inner product between the first equation and B0u1 (using that DN−1
y

is self-adjoint), and the second equation and u0 to get

Re(u1, B0u1)= Im (B−1
0 P̃1

B0
f, B0u1)+ Im (x B−1

0 P̃1
B0

u, B0u1),

‖u0‖
2
= Im (P̃0

B0
f, u0)+ Im (x P̃0

B0
u, u0).

Using the strict accretivity of B0 on H gives the estimate

(y2
+ σ 2)‖u‖2 ≤ C2(|x |‖u‖+‖ f ‖)(y2

+ σ 2)1/2‖u‖,

for some constant C2 <∞. Thus ‖u‖ ≤ (
√

y2+ σ 2/C2− |x |)−1
‖ f ‖.

(iii) Using that DB0 + σN and B∗0 D + σN are adjoint operators, combining the results in (i) and
(ii) shows that both operators D0− λ and D̃0− λ are onto, with bounded inverse, when λ /∈ Sω,σ . Here
ω := arctan(max(C1,C2)). The estimates on H follow. �

We shall also need the following off-diagonal estimates for the resolvents, both in L2 and in L p for p
near 2.

Lemma 6.2. (i) There exist ε, α > 0 such that for | 1p −
1
2 |< ε, closed sets E, F ⊂ Sn and f ∈ L p(Sn

;V)

with supp f ⊂ E and t ∈ R,

‖(I + i t D0)
−1 f ‖L p(F) . e−αd(E,F)/|t |

‖ f ‖L p(E),

where d(E, F) is the distance between the sets E and F.
(ii) There exist q > 2 with 1

2−
1
q < ε, and α > 0 such that for closed sets E, F ⊂ Sn and f ∈ L2(Sn

;V)

with supp f ⊂ E and f‖ = 0 and |t | ≤ 1,

‖(I + i t D0)
−1 f ‖Lq (F) . |t[

−n( 1
2−

1
q )e−αd(E,F)/|t |

‖ f ‖L2(E),

Proof. We first prove (i). The case p = 2 follows the argument in [Auscher et al. 2010a, Proposition 5.1].
It remains to prove L p boundedness for p near 2 as, the Lq off-diagonal bounds follow by interpolation
with the L2 off-diagonal bounds for q between p and 2.

For f ∈ L p ∩ L2, we let h = (I + i t D0)
−1 f and wish to prove ‖h‖p . ‖ f ‖p when p is near 2 and

uniformly in t . To prove this, we rewrite the equation (I + i t D0)h = f first as (I + i tσN + i t DB0)h = f
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and then in terms of a divergence form equation, with coefficients A1 = B̂0. Write h =
[
(A1h̃)⊥ h̃‖

]t
and

f =
[
(A1 f̃ )⊥ f̃‖

]t
. Then {

(1− i tσ)(A1h̃)⊥− i t divS(A1h̃)‖ = (A1 f̃ )⊥,
(1+ i tσ)h̃‖+ i t∇S h̃⊥ = f‖.

Using the second equation to eliminate h̃‖ in the first equation, and letting z = (1+ i tσ)−1, we obtain

Lh̃⊥ =
[
1 −i t z̄ divS

] [z̄(A1)⊥⊥ f̃⊥+ (z̄− z)(A1)⊥‖ f̃‖
−z(A1)‖‖ f̃‖

]
with

L :=
[
1 −i t z̄ divS

]
A1

[
1

−i t z∇S

]
=
[
1 −iτ divS

]
Aθ

[
1

−iτ∇S

]
and Aθ = D−θ A1 Dθ with t z = eiθτ , τ = |t z|, and Dθ the diagonal matrix with entries 1, eiθ in the
normal/tangential splitting. We note that Aθ is strictly accretive on H1 with the same constants as A1, and
that |z| ≤ 1 and |τ | ≤ |σ |−1. We claim that L is invertible from the Sobolev space W 1

p(S
n
;Cm) equipped

with the scaled norm

‖u‖W 1
p
:=

(∫
Sn
(|u(x)|2+ |τ∇Su(x)|2)p/2 dx

)1/p

(24)

to its dual, with bounds independent of τ, θ , for p in a neighborhood of 2.
To prove this, if we rescale from the sphere Sn of radius 1 to the sphere Sn

1/τ of radius 1/τ , we obtain
the same equation with Aθ , A1, z± unchanged, f (x), h(x) replaced by f (τ x), h(τ x), and τ divS , τ∇S

replaced by divSn
1/τ

, ∇Sn
1/τ

, and we want to show ‖h(τ · )‖L p(Sn
1/τ )
. ‖ f (τ · )‖L p(Sn

1/τ )
(with implicit constant

uniform in τ, θ ). Thus it is enough to set τ = 1 and work on Sn , as long as we only use estimates on Sn

which hold (with same constant) on Sn
1/τ as well.

Having set τ = 1, we have, for 1< p, q <∞ such that 1
p +

1
q = 1, estimates

‖Lu‖W−1
p
≤ ‖Aθ‖∞‖u‖W 1

p
= ‖A1‖∞‖u‖W 1

p
,

where ‖u‖W−1
p
:= sup‖v‖W 1

q
=1 |(u, v)| and (u, v) denotes the L2(Sn

;Cm) pairing extended in the sense of
distributions. For p = q = 2, the accretivity assumption on Aθ yields ‖Lu‖W−1

2
≥ κ‖u‖W 1

2
. Applying

the extrapolation result of Šneı̆berg [1974] to the complex interpolation scale {W 1
p}1<p<∞, shows the

existence of ε > 0 such that

‖Lu‖W−1
p
≈ ‖u‖W 1

p
,

for
∣∣1

p −
1
2

∣∣ < ε. (Even for τ 6= 1, one can verify that the Sobolev norms given by (24) on Sn
1/τ (with

τ∇S replaced ∇Sn
1/τ

) are equivalent to the ones given by the complex interpolation method, with constant
independent of τ . Hence ε depends only on the ellipticity constants and dimension, and is thus independent
of τ, θ .) Applying this isomorphism, we obtain the resolvent estimate

‖h‖p ≈ ‖h̃⊥‖p +‖h̃‖‖p . ‖h̃⊥‖W 1
p
+‖ f̃‖‖p . ‖ f ‖p.
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In the second step we used h̃‖ = −ieiθ
∇S h̃⊥+ z f̃‖ and |z| ≤ 1 (recall we have rescaled and set τ = 1).

In the third step we used the fact that
[
1 −i divS

]
: L p(Sn

;C(1+n)m) → W−1
p is an isometry since[

1 −i∇S
]t
:W 1

q → Lq(Sn
;C(1+n)m) is one. This finishes the proof of (i).

To prove the inequality (ii), the above argument shows that Lh̃⊥ = z−(A1)⊥⊥ f̃⊥ and h̃‖ =−i t z+∇S h̃⊥.
Having rescaled in the same way, the Sobolev embedding L2 ⊂ W−1

q for some q > 2 with 1
2 −

1
q < ε,

allows us to conclude that h ∈ Lq(Sn
;V) and since we assume |t | ≤ 1, we have |τ | ≈ |t | and obtain

‖h‖q . |t |
−n( 1

2−
1
q )‖ f ‖2, the power coming from scaling. It suffices to interpolate again with the L2

off-diagonal decay, and conclude for any exponent between 2 and q . �

We state the following useful corollary. Here and subsequently, Ñ p
∗ is defined as Ñ∗ replacing L2

averages by L p averages and M is the Hardy–Littlewood maximal operator.

Corollary 6.3. For ε as above and
∣∣ 1

p −
1
2

∣∣< ε, we have the pointwise inequalities

Ñ p
∗
((I + i t D0)

−1 f ). M(| f |p)1/p,

Ñ p
∗
((I + i t D̃0)

−1 f ). M(| f |p)1/p,

and, for some p < 2 with 1
p −

1
2 < ε,

Ñ∗(((I + i t D̃0)
−1 f )⊥). M(| f |p)1/p.

Proof. We fix a Whitney region W0 =W (t0, x0) in R+× Sn . Then

|W0|
−1
∫

W0

∣∣(I + i t D0)
−1 f (x)

∣∣pdt dx . M(| f |p)(x0)

follows directly from the off-diagonal decay of Lemma 6.2 as in [Auscher et al. 2008, Proposition 2.56].
Next, |W0|

−1
∫

W0

∣∣(I + i t D̃0)
−1 f (x)

∣∣p dt dx . M(| f |p)(x0) follows by testing against g ∈ Lq(W0;V),
supported in W0 with 1/p+ 1/q = 1. We have∫

W0

(
(I + i t D̃0)

−1 f (x), g(t, x)
)

dt dx =
∫ c0t0

t0/c0

(
f, (I − i t D̃∗0)

−1gt
)

dt

so that for each fixed t , using that D̃∗0 = DB∗0 − σN has the same form as D0, we can use the Lq

off-diagonal decay for each t ≈ t0 and obtain for any M > 0,

|W0|
−1
∫

W0

|(I + i t D̃0)
−1 f (x)|p dt dx .

∑
j≥2

2− j M
|B(x0, 2 j t0)|−1

∫
B(x0,2 j t0)

| f (x)|p dx, (25)

using standard computations on annuli around B(x0, t0) in Sn . Details are left to the reader.
The last estimate starts in the same way with g ∈ L2(W0;V), but since we want to estimate the normal

component of (I + i t D̃0)
−1 f we assume that (gt)‖ = 0 for each t . The second estimate in Lemma 6.2,

implies that (I − i t D̃∗0)
−1gt =: ht has Lq estimates with decay. Thus using Hölder’s inequality on
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t0/c0

( f, ht) dt with exponent q on ht and dual exponent on f yields(
|W0|

−1
∫

W0

∣∣((I + i t D̃0)
−1 f )⊥(x)

∣∣2dt dx
)1/2

.
∑
j≥2

2− j M
(
|B(x0, 2 j t0)|−1

∫
B(x0,2 j t0)

| f (x)|p dx
)1/p

(26)

and the conclusion follows. �

7. Square function estimates and functional calculus

All the remainder of this article rests on the square function estimate below.

Theorem 7.1. Let n ≥ 1. The operator D0 = DB0 + σN , with σ ∈ R fixed but arbitrary, has square
function estimates ∫

∞

0
‖t D0(1+ t2 D2

0)
−1 f ‖22

dt
t
≈ ‖ f ‖22, for all f ∈ R(D0).

The estimate . holds for all f ∈ L2(Sn,Cm). The same estimates hold for D̃0 = B0 D− σN.

Proof. Note that equivalence can only hold on R(D0)= R(D0), which equals L2(Sn
;V) if σ 6= 0 and H

if σ = 0. By standard duality arguments, the estimates & on R(D0) follows from the estimates . for D∗0 .
See [Albrecht et al. 1996]. Further D∗0 is of type D̃0. Hence it is enough to prove∫

∞

0
‖t D0(1+ t2 D2

0)
−1 f ‖22

dt
t
. ‖ f ‖22 (27)

for all f ∈ L2(Sn
;V), and similarly for D̃0. Consider first the operator D0.

(i) We first reduce (27) to ∫ 1

0

∥∥t DB0(1+ t2(DB0)
2)−1 f

∥∥2
2

dt
t
. ‖ f ‖22 (28)

for all f ∈ L2(Sn
;V). First note that∫

∞

1

∥∥t D0(I + t2 D2
0)
−1 f

∥∥2
2

dt
t
.
∫
∞

1

∥∥t2 D2
0(I + t2 D2

0)
−1 f

∥∥2
2

dt
t3 .

∫
∞

1
‖ f ‖22

dt
t3 ≈ ‖ f ‖22,

using that D0 has bounded inverse by Proposition 4.3. (When n = 1, write f = f1+ f0 ∈H⊕ B−1
0 H⊥.

The above estimate goes through for f1, and the contribution from f0 is zero.) For the integral
∫ 1

0 , we
may ignore the zero-order term in D0, using the idea from [Auscher et al. 2010a, Section 9]. Indeed,∥∥(I + i t D0)

−1 f − (I + i t DB0)
−1 f

∥∥
2 =

∥∥(I + i t D0)
−1i tσN (I + i t DB0)

−1 f
∥∥

2 . |t | ‖ f ‖2.

Since 2i t D0(I + t2 D2
0)
−1
= (I − i t D0)

−1
− (I + i t D0)

−1, and similarly for DB0, subtraction yields∫ 1

0

∥∥t D0(I + t2 D2
0)
−1 f

∥∥2
2

dt
t
.
∫ 1

0

∥∥t DB0(I + t2(DB0)
2)−1 f

∥∥2
2

dt
t
+

∫ 1

0
t dt ‖ f ‖22.
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(ii) Next, using a partition of unity, it suffices to show that∫ 1

0

∥∥ζ t DB0(I + t2(DB0)
2)−1 f

∥∥2
2

dt
t
. ‖ f ‖22, (29)

when ζ is a smooth cutoff that is 1 on a neighborhood of supp f . Indeed, L2-off diagonal estimates of
t DB0(1+ t2(DB0)

2)−1 from Lemma 6.2 and again

2i t DB0(I + t2(DB0)
2)−1
= (I − i t DB0)

−1
− (I + i t DB0)

−1

show in this case that
‖(1− ζ )t DB0(I + t2(DB0)

2)−1 f ‖22 . t2
‖ f ‖22.

(iii) To prove (29), we assume that f and ζ are supported inside the lower hemisphere, which we
parametrize by On using stereographic coordinates:

ρ : Rn
→ Sn

: y 7→ x =
|y|2− 1
|y|2+ 1

e0+
2y
|y|2+ 1

,

where e0 ∈ R1+n is a fixed unit normal vector to Rn
⊂ R1+n , which covers all Sn , except the north pole

e0 ∈ Sn . Note that ρ is a conformal map with length dilation d−1 and Jacobian determinant dx/dy = d−n ,
where

d(y) := (|y|2+ 1)/2.

Let T : Rn
→ R1+n

: y 7→ ∂yρ(y) be the differential of ρ, and note that T t T = d−2 I . Define adjoint
rescaled pullbacks and pushforwards

ρ∗ : L2(ρ(O
n);V)→ L2(O

n
;C(1+n)m) :

[
f⊥ f‖

]t
7→
[
d−n( f⊥ ◦ ρ) T t( f‖ ◦ ρ)

]t
,

ρ∗ : L2(O
n
;C(1+n)m)→ L2(ρ(O

n);V) :
[
g⊥ g‖

]t
7→
[
(g⊥ ◦ ρ−1) (dnT g‖) ◦ ρ−1

]t
.

Note that (ρ∗)−1
=

[
dn 0
0 d2−n

]
ρ∗. We claim that

ρ∗D = Dρ

[
dn 0
0 d2−n

]
ρ∗, where Dρ :=

[
0 −divy

∇y 0

]
.

Indeed, the tangential part of the equation is the chain rule, and the normal component is the adjoint
statement. We consider Dρ as a self-adjoint closed unbounded operator in L2(O

n
;C(1+n)m) with domain

D(Dρ) :=

[
H 1

0 (O
n
;Cm)

D(divy)

]
,

where H 1
0 denotes the Sobolev W 1

2 functions vanishing at the boundary Sn−1.
Next we map coefficients B0 in ρ(On) to coefficients Bρ := (ρ∗)−1 B0(ρ

∗)−1 in On , and claim that
Bρ is strictly accretive on R(Dρ). To see this, let g ∈ R(Dρ). Then curly g‖ = 0 and g‖ is normal on
∂On (or if n = 1 we have

∫ 1
−1 g‖dy = 0). Writing g = ρ∗ f and extending f by 0 outside ρ(On), it
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follows that f ∈ H1. (To see this, write g‖ = ∇yu with u ∈ H 1
0 (O

n
;Cm), and extend u by 0 to an

H 1(Rn
;Cm)-function.) The assumed strict accretivity of B0 on H1 gives

Re
∫

On
(Bρg, g) dy = Re

∫
On
((ρ∗)

−1 B0 f, ρ∗ f ) dy = Re
∫

Sn
(B0 f, f ) dx ≥ κ

∫
Sn
| f |2 dx ≈

∫
On
|g|2 dy.

Thus we obtain a bisectorial operator DρBρ in L2(O
n
;C(1+n)m), and we observe the intertwining relation

ρ∗DB0 f = Dρ

[
dn 0
0 d2−n

]
ρ∗ρ∗Bρρ∗ f = DρBρρ∗ f.

for f supported in the lower hemisphere. In On , let K := {|y|≤ 1/4}. By rotational invariance, it is enough
to consider those f = (ρ∗)−1g with g supported on K and ζ = (ρ∗)−1η = η ◦ ρ−1 with η ∈ C∞0 (R

n) be
such that η = 1 on {|y| ≤ 1/2} and supp η ⊂ {|y| ≤ 3/4}. Using ηg = g and understanding η, ζ as the
operators of pointwise multiplication by η, ζ , one can check the identity

ζ(I + i t DB0)
−1 f − (ρ∗)−1η2(I + i t DρBρ)−1g

= ζ(I + i t DB0)
−1(ρ∗)−1(ηg)− ζ(ρ∗)−1η(I + i t DρBρ)−1g

= ζ(I + i t DB0)
−1(ρ∗)−1 (η(I + i t DρBρ)− ρ∗(I + i t DB0)(ρ

∗)−1η
)
(I + i t DρBρ)−1g

= ζ(I + i t DB0)
−1(ρ∗)−1i t[η, Dρ]Bρ(I + i t DρBρ)−1g.

As in (i) above, subtracting the corresponding equation with t replaced by −t , yields the estimate

‖ζ t DB0(I + t2(DB0)
2)−1 f − (ρ∗)−1η2t DρBρ(I + t2(DρBρ)2)−1g‖2 . |t |‖g‖2,

since [η, Dρ] is bounded. As ‖ f ‖2 ≈ ‖g‖2 by the support conditions, (29) will follow from∫ 1

0
‖t DρBρ(I + t2(DρBρ)2)−1g‖22

dt
t
. ‖g‖22, for all g ∈ L2(O

n
;C(1+n)m).

(iv) The latter square function estimate follows from combining [Axelsson et al. 2006a, Theorem 2] and
[Axelsson et al. 2006b, Proposition 3.1(iii)], the latter purely being of functional analytic content. (See
[Auscher et al. 2010a, Section 10.1] where this is pointed out.)

(v) Consider now D̃0. Similarly one can reduce to prove . for B0 D. On N(B0 D)=H⊥, this is trivial.
On R(B0 D) = B0H we use that B0 D is similar to DB0 on R(DB0) = H through the isomorphism
B0 : H→ B0H. Thus the square function upper estimate for B0 D follows by similarity from the one
for DB0. �

The square function estimates from Theorem 7.1 provide bounds on the So
ν,σ -holomorphic functional

calculus of the operators D0 and D̃0, adapting the techniques described in [Albrecht et al. 1996]. Write

H(So
ν,σ ) := {holomorphic b ; So

ν,σ → C},

H∞(So
ν,σ ) := {b ∈ H(So

ν,σ ) ; sup{|b(λ)| ; λ ∈ So
ν,σ }<∞},

9(So
ν,σ ) := {b ∈ H(So

ν,σ ) ; |b(λ)|.min(|λ|a, |λ|−a), for some a > 0}.
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We summarize the result for the So
ν,σ -holomorphic functional calculus in the following corollary. The

proof is a straightforward adaption of the results in [Albrecht et al. 1996].

Corollary 7.2. Assume σ ∈ R and D0 = DB0+ σN. Fix ω < ν < π/2. There is a unique continuous
Banach algebra homomorphism

H∞(So
ν,σ )→ L(R(D0)) : b 7→ b(D0),

with bounds ‖b(D0) f ‖2 ≤ C(supSo
ν,σ
|b(λ)|)‖ f ‖2 for all f ∈ R(D0), where C only depends on ‖B0‖∞,

κB0 , n and σ , and with the following two properties. If b ∈9(So
ν,σ ) then

b(D0)=
1

2π i

∫
γ

b(λ)(λ− D0)
−1dλ ∈ L(R(D0)),

where γ := ∂Sθ,σ , ω < θ < ν, oriented counter clockwise around Sω,σ . For any b ∈ H∞(So
ν,σ ) we have

strong convergence

lim
k→∞
‖bk(D0) f − b(D0) f ‖2 = 0, for each f ∈ R(D0),

whenever bk ∈ 9(So
ν,σ ), k = 1, 2, . . . , are uniformly bounded, i.e., supk,λ |bk(λ)| <∞, and converges

pointwise to b.
The corresponding results hold for D̃0 = B0 D− σN replacing D0 by throughout.

We remark that the square function estimates in Theorem 7.1 hold when ψ(z)= z(1+ z2)−1 is replaced
by any ψ ∈9(So

ν ) which is nonzero on both components of So
ν,σ . We have∫

∞

0
‖ψ(t D0) f ‖22

dt
t
≈ ‖ f ‖22, for all f ∈ R(D0). (30)

A similar extension of the square function estimates holds for D̃0.
Fundamental operators in this paper are the following.

Definition 7.3. (i) Let χ+(λ) and χ−(λ) be the characteristic functions for the right and left half planes.
Define spectral projections E±0 := χ

±(D0) and Ẽ±0 := χ
±(D̃0) on R(D0) and R(D̃0) respectively.

(ii) Define closed and dense defined operators 3= |D0| := sgn(D0)D0 and 3̃= |D̃0| := sgn(D̃0)D̃0 on
L2(Sn

;V). Here |λ| := λ sgn(λ) and sgn(λ) := χ+(λ)−χ−(λ).

Define operators e−t3 and e−t3̃ on R(D0) and R(D̃0) respectively by applying Corollary 7.2 with
b(λ)= e−t |λ|, t > 0.

When σ = 0, R(D̃0)= B0H= B0R(D0) are strict subspaces of L2 and it is convenient to extend the
above operators to all L2. Using the Hodge splitting L2 = B0H⊕H⊥, on H⊥ the operator D̃0 = B0 D is
already 0 and 3̃= |B0 D| is naturally defined by 0. Using the other Hodge splitting L2 =H⊕ B−1

0 H⊥,
on B−1

0 H⊥ the operator D0 = DB0 is already 0 and 3= |DB0| is naturally defined by 0. It follows that
e−t3̃ and e−t3 are naturally extended to L2, by letting e−t3̃

|H⊥ := I and e−t3
|B−1

0 H⊥ := I .
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However, for the projections the extension is more subtle. Indeed, we see for the functional calculus of
D̃0 = DB0− σN that

b(D̃0)= b(−σN )=
[

b(σ )I 0
0 b(−σ)I

]
on H⊥ when σ 6= 0 using the definition of N . As we are mainly interested in σ = n−1

2 , it is more natural
for consistency of notation towards applications to divergence form equations to define the operators for
σ = 0 by continuity σ → 0+. Thus set

b(B0 D) := b(B0 D|B0H)P̃1
B0
+

[
b(0+)I 0

0 b(0−)I

]
P̃0

B0
,

where b(0±) := lim±λ∈Sω+,λ→0 b(λ), assuming the limits exist, b(B0 D|B0H) is the operator from Corollary
7.2 and P̃ i

B0
, i = 0, 1, denote the projections from Proposition 4.4 onto the subspaces in the Hodge splitting

L2 = B0H⊕H⊥.
Similarly, for σ 6= 0, we have D0 = DB0+ σN so D0 = σN on B−1

0 H⊥. For σ = 0, set

b(DB0) := b(DB0|H)P1
B0
+ P0

B0

[
b(0−)I 0

0 b(0+)I

]
,

where P i
B0

, i = 0, 1, denote the projections from Proposition 4.3 onto the subspaces in the Hodge splitting
L2 =H⊕ B−1

0 H⊥. Remark that P0
B0

on the left of the matrix is needed to obtain an element in B−1
0 H⊥.

An elementary calculation shows that this extension of the functional calculus coincides with (b̄(B∗0 D))∗,
where b̄(λ)= b(λ̄), and that the extended functional calculi of D0 and D̃0 thus obtained are intertwined
by D.

Taking b(λ)= λ or λ sgn(λ), this provides us with the zero extension that we already chose so this is
consistent. For the projections, this leads to the following definition.

Definition 7.4. When σ = 0, extend Ẽ±0 , E±0 originally defined on R(B0 D) = B0H and R(DB0) = H

respectively from Definition 7.3 to operators on all L2(Sn
;V), letting{

Ẽ±0 f := N∓ f for all f ∈H⊥,

E±0 f := P0
B0

N± f for all f ∈ B−1
0 H⊥.

Lemma 7.5. With L2= L2(Sn
;V), the spectral projections E±0 and Ẽ±0 are bounded, we have topological

spectral splittings
L2 = E+0 L2⊕ E−0 L2,

restricting to H= E+0 H⊕ E−0 H in the subspace H invariant under D0, and

L2 = Ẽ+0 L2⊕ Ẽ−0 L2,

restricting to H⊥= Ẽ+0 H⊥⊕ Ẽ−0 H⊥ in the subspace H⊥ invariant under D̃0. We also have the intertwining
relation

E±0 D = DẼ±0 (31)

so that D : Ẽ±0 L2→ E±0 H is surjective.
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If σ ≥ 0, then in the latter splitting we have Ẽ±0 = N∓ in H⊥. Hence Ẽ+0 H⊥ = N−H⊥ and Ẽ−0 H⊥ =

N+H⊥. (On the other hand, if σ < 0, then Ẽ±0 = N± in H⊥.)

Proof. When σ 6= 0, R(D̃0)= L2 and L2 = R(D0) by Proposition 6.1. Boundedness on L2 follows from
Corollary 7.2. The intertwining property is a consequence of Lemma 4.2. The surjectivity of D easily
follows from the spectral subspaces and using D : L2→H surjective and the splittings. That Ẽ±0 = N∓

in H⊥ when σ > 0 comes from D̃0 =−σN in H⊥ and χ±(−σN )= N∓. The case σ = 0 follows from
Definition 7.4. We leave further details to the reader. �

8. A detour to Kato’s square root on Lipschitz surfaces

Let 6 be a surface in R1+n , assumed to be Lipschitz diffeomorphic to Sn through a bilipschitz map
ρ0 : Sn

→ 6. Let dσ denote surface measure on 6. Consider, for n,m ≥ 1, coefficient matrices
H ∈ L∞(6;L((TC6)

m)) (with TC6 denoting the complexified tangent bundle) and h ∈ L∞(6;L(Cm)),
assumed to be strictly accretive in the sense that

Re
∫
6

(H(x)∇6u(x),∇6u(x)) dσ(x)≥ κ
∫
6

|∇6u(x)|2 dσ(x),

Re(h(x)z, z)≥ κ|z|2, a.e. x ∈6,

for all u ∈W 1
2 (6;C

m) and z ∈ Cm , and some κ > 0. Then L := −div6 H∇6 , with div6 := −(∇6)∗ in
L2(6; dσ), constructed by the method of sesquilinear forms, is a maximal accretive operator and hL
is defined on D(L) and can be shown to be an ω-sectorial operator on L2(6; dσ) for some 0< ω < π .
Thus it has a square root and we have

Theorem 8.1. The square root of the operator hL =−h div H∇6 has domain D(
√

hL)=W 1
2 (6;C

m),
and estimates ‖

√
hLu‖2 ≈ ‖∇6u‖2.

In particular for h = 1, we obtain a version of the Kato square root problem on Lipschitz surfaces 6.
The presence of h makes the theorem invariant under bilipschitz changes of variables as we shall see in
the proof.

Our Theorems 7.1 and 8.1 are inspired by [Axelsson et al. 2006b, Theorem 7.1], and a comparison of
these two results is in order. The main novelty in Theorems 7.1 and 8.1, is that these do not require the
coefficients B0 or H to be pointwise strictly accretive, which was needed for the localization argument
in [Axelsson et al. 2006b, Theorem 7.1]. This theorem considered more general forms on 6, and more
general compact Lipschitz surfaces 6. It is straightforward to extend our results Theorems 7.1 and 8.1
here to more general compact Lipschitz manifolds. On the other hand, we do not know how to extend our
localization argument here to the case of forms, unless pointwise strict accretivity is assumed.

We also mention that A. Morris [2010] proved similar results on embedded (possibly noncompact)
Riemannian manifolds with bounds on the second fundamental form and a lower bound on Ricci curvature.

Proof of Theorem 8.1. A calculation shows the pullback formula

(h div6 H∇6u)(ρ0(x))= (h̃ divS H̃∇S(u ◦ ρ0))(x), x ∈ Sn,
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where h̃(x) = |J (ρ0)(x)|−1h(ρ0(x)) and H̃(x) := |J (ρ0)(x)|(ρ0(x))−1 H(ρ0(x))(ρ0
t(x))−1. So we as-

sume that 6 = Sn from now on. Let D be as in Definition 3.1 and let

B0 :=

[
h 0
0 H

]
∈ L∞(Sn

;L(V)).

Then B0 is strictly accretive on the space H1 from (13) and

B0 D =
[

0 −h divS

H∇S 0

]
.

Thus by Theorem 7.1, with σ = 0, we have bounded functional calculus of B0 D in B0H. Following
[Auscher et al. 1997b], we have for u ∈ D(∇S) that[√

hLu
0

]
=

√
(B0 D)2

[
u
0

]
= sgn(B0 D)B0 D

[
u
0

]
= sgn(B0 D)

[
0

H∇Su

]
,

so that ‖
√

hLu‖2 ≈ ‖H∇Su‖2 ≈ ‖∇Su‖2, using that sgn(B0 D) is bounded and invertible on B0H and
that H is bounded above and below on R(∇S). �

Remark 8.2. It is interesting to note that we apply Theorem 7.1 with σ = 0 no matter what the dimension
is. If n ≥ 2, Kato’s square root problem on Sn is not directly linked to the boundary operator appearing in
(17), associated to the equation divx A∇xu = 0 on O1+n , with Â =

[ h
0

0
H

]
, i.e., when one can separate

in the equation radial derivatives from tangential derivatives. This is different from the case of the half
space (Rn replacing Sn) and emphasizes the role of curvature.

In view of Section 4, the second-order operator on the boundary associated to this divx A∇x on O1+n ,
comes from

(B0 D− σN )2 =
[
−hL + σ 2 0

0 −H∇Sh divS +σ
2

]
,

with σ = (n− 1)/2. Thus, the naturally associated Kato square root is
√
−hL + σ 2, and one has∥∥∥√−hL + (n−1

2 )2 u
∥∥∥

2
≈ ‖∇Su‖2+ n−1

2 ‖u‖2.

9. Natural function spaces

By Corollary 3.4, our method to study and construct solutions u to the divergence form equation (1)
consists in translating this equation to the ODE (17) for the conormal gradient f in R+× Sn . Conormal
gradients of variational solutions belong to L2(R+× Sn

;V) as noted in (18). The appropriate function
spaces for f with Dirichlet/Neumann boundary data for u in L2(Sn

;Cm) are the following.

Definition 9.1. The (truncated) modified nontangential maximal function of f defined on R+× Sn , is

Ñ∗( f )(x) := sup
0<t<c0

t−(1+n)/2
‖ f χs<1‖L2(W (t,x)), x ∈ Sn,

where
W (t, x) := {(s, y) ∈ R+× Sn ; |y− x |< c1t, c−1

0 < s/t < c0}
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for some fixed constants c0 > 1, c1 > 0. We assume that c0 ≈ 1 and c1 << 1, so that the Whitney regions
W (t, x) are nondegenerate for t < c0. For a function f0 on O1+n , we have Ñ o

∗
( f0) = Ñ∗( f ) where

f (t, x) := f0(e−t x), which properly defines Ñ o
∗

in the introduction.
The (truncated) modified Carleson norm of f in R+× Sn is

‖ f ‖C :=
(

sup
r(Q)<r0

1
|Q|

∫∫
(0,r(Q))×Q

ess sup
W (t,x)

| f |2
dt dx

t

)1/2

,

and the sup is taken over geodesic balls Q ⊂ Sn with volume |Q|, and with radius r(Q) less than some
fixed constant r0 << 1. For a function f0 on O1+n , we have ‖ f0‖C = ‖ f ‖C where f (t, x) := f0(e−t x),
which corresponds to ‖ f0‖C as in (4).

Note that changing the parameters c1, c1 does not affect the results.

Definition 9.2. (i) For g :O1+n
→ C(1+n)m , define norms

‖g‖2Yo :=

∫
O1+n
|g(x)|2(1− |x|) dx,

‖g‖2Xo := ‖Ñ o
∗
(g)‖22+

∫
|x|<e−1

|g(x)|2 dx.

Let Yo and Xo be the Hilbert/Banach spaces of functions g for which the respective norm is finite.

(ii) For f : R+× Sn
→ V, define norms

‖ f ‖2Y :=
∫
∞

0
‖ ft‖

2
2 min(t, 1) dt,

‖ f ‖2X := ‖Ñ∗( f )‖22+
∫
∞

1
‖ ft‖

2
2 dt.

Let Y and X be the Hilbert/Banach spaces of sections f for which the respective norm is finite.

The gradient-to-conormal gradient map of Proposition 3.3 is an isomorphism Yo
→ Y and Xo

→ X.

Lemma 9.3. There are estimates

sup
0<t<1/2

1
t

∫ 2t

t
‖ fs‖

2
2 ds . ‖Ñ∗( f )‖22 .

∫ 1

0
‖ fs‖

2
2

ds
s
, f ∈ L loc

2 (R+× Sn
;V).

Denoting by Y∗ the dual space of Y relative to L2(R+× Sn
;V), i.e., the space of functions f such that∫

∞

0 ‖ ft‖
2
2 max(t−1, 1) dt <∞, we have continuous inclusions of Banach spaces

Y∗ ⊂ X⊂ L2(R+× Sn
;V)⊂ Y.

Note that Lemma 9.3 shows that another choice of threshold than t = 1 in the definition of the norms
for X and Y would result in equivalent norms.

Proof. The L loc
2 (L2) estimates of ‖Ñ∗( f )‖2 is an adaption of the corresponding result for R1+n

+ , proved
in [Part I, Lemma 5.3]. The remaining statements, except possibly that X ⊂ L2(R+ × Sn

;V), are
straightforward consequences. To verify this embedding of X, we use the lower bound on ‖Ñ∗( f )‖2 to
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estimate∫
∞

0
‖ ft‖

2
2 dt =

∞∑
k=0

∫ 2−k

2−k−1
‖ ft‖

2
2 dt +

∫
∞

1
‖ ft‖

2
2 dt .

∞∑
k=0

2−k−1
‖Ñ∗( f )‖22+

∫
∞

1
‖ ft‖

2
2 dt = ‖ f ‖2X. �

The following lemma gives necessary and (different) sufficient conditions for a multiplication operator
E to map X into Y∗. Write

‖E‖C∩L∞ := ‖E‖C +‖E‖L∞(R+×Sn).

Lemma 9.4. For functions E : R+× Sn
→ C(1+n)m , define the multiplicator norm ‖E‖∗ := ‖E‖X→Y∗ =

sup‖ f ‖X=1 ‖E f ‖Y∗ . Then we have estimates

‖E‖L∞(R+×Sn) . ‖E‖∗ . ‖E‖C∩L∞ .

Proof. This is an adaption to the unit ball of [Part I, Lemma 5.5]. As in that proof, the estimate
‖E‖∞ . ‖E‖∗ follows from the L loc

2 estimates in Lemma 9.3. For the second estimate we write

‖E f ‖2Y∗ =
∫ a

0
‖Et ft‖

2
2

dt
t
+

∫
∞

a
‖Et ft‖

2
2 dt.

As in [Part I, Lemma 5.5], the first term is estimated with Whitney averaging and Carleson’s theorem. The
second term is controlled with ‖E‖∞. In total, this gives the bound ‖E f ‖Y∗ . ‖E‖C‖ f ‖X+‖E‖∞‖ f ‖X

as desired. �

Remark 9.5. It has been recently proved in [Hytönen and Rosén 2012] that ‖E‖∗ & ‖E‖C∩L∞ so all of
our results use in fact the same condition on E.

We end this section by introducing an auxiliary subspace Yδ of Y.

Definition 9.6. For δ > 0, define the norm

‖ f ‖2Yδ
:=

∫
∞

0
‖ ft‖

2
2 min(t, 1)eδt dt.

Let Yδ be the Hilbert spaces of sections f : R+× Sn
→ V such that ‖ f ‖Yδ

is finite.

Clearly Yδ ⊂ Y. The motivation for introducing Yδ is the following result.

Proposition 9.7. Given coefficients A ∈ L∞(O1+n
;L(C(1+n)m)), which are strictly accretive on H1, there

is δ > 0 such that ∫
∞

1
‖ ft‖

2
2eδt dt .

∫
∞

1/2
‖ ft‖

2
2 dt,

for all f ∈ L loc
2 (R+;H) solving ∂t f + (DB + n−1

2 N ) f = 0. Hence, if f ∈ Y ∩ L loc
2 (R+;H) and

∂t f + (DB+ n−1
2 N ) f = 0, then f ∈ Yδ and ‖ f ‖Yδ

. ‖ f ‖Y.

The proof of Proposition 9.7 uses reverse Hölder inequalities.
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Theorem 9.8. Fix c > 1. There exist C <∞ and p > 2 depending only on n,m, the ellipticity constants
‖A‖∞, κA of A and c, such that for any ball B with cB ⊂O1+n and any weak solution to divx(A∇xu)= 0
in O1+n , we have (∫

B
|∇xu|p dx

)1/p

≤ C
(∫

cB
|∇xu|2 dx

)1/2

.

Proof. This result is due to N. Meyers [1963] for equations. Here, we make sure that the result extends to
elliptic systems in the sense of Gårding by giving appropriate references. We begin by noting that the
usual Caccioppoli inequality for weak solutions(∫

B
|∇xu|2 dx

)1/2

≤ Cr
(∫

cB
|u|2 dx

)1/2

for any ball B so that cB ⊂O1+n , with r its radius, holds for any system that is elliptic in the sense of
the Gårding inequality (2). Although not stated like this in [Campanato 1980, Theorem 1.5, p. 46], the
proof only uses Gårding’s inequality. See also [Auscher and Qafsaoui 2000], where the proof is done
explicitly for second- and higher-order equations and it is said (p. 315) that this applies in extenso to
such systems. The constant C depends only on n, m, κ , ‖A‖∞ and c. Now, this combined with Poincaré
inequality yields (∫

B
|∇xu|2 dx

)1/2

≤

(∫
cB
|∇xu|q dx

)1/q

for 2(n+ 1)/(n+ 3) < q < 2. Finally, Gehring’s method for improvement of reverse Hölder inequalities
with increase of radii, presented in [Giaquinta 1983, Theorem 6.3], applies. �

Proof of Proposition 9.7. Corollary 3.4 shows that f is the conormal gradient of a weak solution to
divx A∇xu = 0 in O1+n . By Hölder’s inequality and Theorem 9.8, we have for g =∇xu the estimate(∫

|x|<e−1
|g(x)|2|x|−δ dx

)1/2

.

(∫
|x|<e−1

|g(x)|p dx
)1/p

.

(∫
|x|<e−1/2

|g(x)|2 dx
)1/2

for 0< δ < (n+ 1)(p− 2)/p. This translates to the stated estimate for f , using the gradient-to-conormal
gradient map from Definition 3.2. �

10. Semigroups and radially independent coefficients

In this section and subsequent ones, we set σ = n−1
2 .

In this section, fix radially independent coefficients A1 and B0 = Â1. We show how to obtain weak
solutions of divx A1∇xu = 0 inside and outside O1+n using the semigroups associated to 3 and 3̃. Later,
we show all weak solutions with prescribed growth towards the boundary have a representation in terms
of these semigroups.

Theorem 10.1. Let f0 belong to the spectral subspace E+0 H. Then

ft := e−t3 f0
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gives an H-valued solution to ∂t f +D0 f =0, in the strong sense f ∈C1(R+; L2)∩C0(R+;D(D0)) and in
R+×Sn distribution sense. (In particular f is the conormal gradient of a weak solution of divx A1∇xu= 0
in O1+n .) The function f has L2 limit limt→0 ft = f0 and rapid decay ‖∂ j

t ft‖2 ≤ C j,k/tk
‖ f0‖2, for each

k ≥ j ≥ 0. Moreover, we have estimates

‖∂t f ‖Y ≈ ‖ f0‖2 ≈ ‖ f ‖X.

If instead f0 belongs to the spectral subspace E−0 H, then define ft := et3 f0 for t < 0. Then ∂t f +D0 f
vanishes for t < 0. (In particular f is the conormal gradient of a weak solution of divx A1∇xu = 0 in
Rn
\O1+n .) Limits and estimates as above hold for ft , t < 0.

Proof. (i) The rapid decay of ft follows from the lower bound on D0|H from Proposition 4.3, giving

‖∂
j

t ft‖2 = ‖3
j e−t3 f0‖2 . ‖(D0)

k− j3 j e−t3 f0‖2 ≈ t−k
‖(t3)ke−t3 f0‖2 . t−k

‖ f0‖2.

(ii) That f is the conormal gradient of a solution follows from Corollary 3.4 and it is straightforward to
show that the ODE ∂t f + D0 f = 0 is satisfied in the strong and distribution sense.

(iii) Next, ‖∂t f ‖2Y≤
∫
∞

0 ‖∂t ft‖
2
2tdt , and the square function estimate

∫
∞

0 ‖∂t ft‖
2
2tdt≈‖ f0‖

2
2 follows from

(30), since ∂t ft =−3e−t3 f0. This together with the decay from (i) with j = 1 shows ‖ f0‖2 ≈ ‖∂t f ‖Y.

(iv) It remains to show that ‖ f0‖2 ≈ ‖ f ‖X. For this, the decay from (i) with j = 0 implies it is enough
to prove ‖Ñ∗ f ‖2 ≈ ‖ f0‖2. The proof is an adaptation of the results on R1+n

+ from [Auscher et al. 2008,
Proposition 2.56] as follows.

The estimate ‖Ñ∗( f )‖2 & ‖ f0‖2 follows from Lemma 9.3. Next consider the estimate .. We follow
the argument in [Auscher et al. 2008, Proposition 2.56]. By the reverse Hölder inequalities noted in the
proof of Proposition 9.7 applied to a weak solution of the divergence form equation with coefficients A1

associated with f = e−t |D0| f0, we can bound L2 averages by L p averages for some p<2, i.e., Ñ∗ f . Ñ p
∗ f

in a pointwise sense (up to changing to constants c0, c1). Since ψ(λ)= e−|λ|− (1+ iλ)−1
∈9(So

ν,σ ), it
follows from Lemma 9.3 and Theorem 7.1, or more precisely (30), that

‖Ñ p
∗
(ψ(t D0) f0)‖2 . ‖Ñ∗(ψ(t D0) f0)‖2 . ‖ f0‖2.

For ht := (I + i t D0)
−1 f0 we have ‖Ñ p

∗ (h)‖2 . ‖M(| f0|
p)1/p
‖2 . ‖ f0‖2 by Corollary 6.3 and the

boundedness of M on L2/p. We have proved that ‖Ñ∗ f ‖2 . ‖ f0‖2.

(v) The modifications for f0 ∈ E−0 H are straightforward, and the correspondence with u follows from
applying the methods of Proposition 3.3. �

Remark 10.2. The assumption σ = n−1
2 is used in part (iv) to pass from Ñ∗ to Ñ p

∗ with some p < 2.
Thus, for any σ ∈ R, f0 ∈H and p < 2, we have ‖Ñ p

∗ ( f )‖2 . ‖ f0‖2. The converse, however, is not clear
because p < 2, and this shows that the value of σ is significant.

Theorem 10.3. Let v0 ∈ Ẽ+0 L2. Then

vt := e−t3̃v0
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gives a solution to ∂tv+ D̃0v = 0, in the strong sense v ∈ C1(R+; L2)∩C0(R+;D(D̃0)) and in R+× Sn

distributional sense. (In particular r−σ (vt)⊥ extends to a weak solution of divx A1∇xu = 0 in O1+n as in
Proposition 3.5.) The function v has L2 limit limt→0 vt = v0 and rapid decay ‖∂ j

t vt‖2 ≤ C j,k/tk
‖v0‖2 for

each k ≥ j ≥ 0. (When σ = 0, this estimate for j = 0 only holds for v0 ∈ R(D̃0)∩ Ẽ+0 L2.) Moreover, for
p < 2, we have estimates

‖∂tv‖Y+‖Ñ p
∗
(v)‖2+‖Ñ∗(v⊥)‖2 . ‖v0‖2.

In dimension n = 1, we have ‖v‖X ≈ ‖v0‖2.
If instead v0 ∈ Ẽ−0 L2, then define vt := et3̃v0 for t < 0. Then ∂tv+ D̃0v = 0 for t < 0. (In particular

r−σ (vt)⊥ satisfies divx A1∇xu = 0 in Rn
\O1+n as in Proposition 3.5.) Limits and estimates as above

hold for vt , t < 0.

Proof. The proof, except for the nontangential maximal estimates, is identical to that of Theorem 10.1,
using Proposition 4.4 and Corollary 6.3. When n ≥ 2, the estimate of ‖Ñ∗(v⊥)‖2 follows, using the same
ψ as above and reduction to ‖Ñ∗((I + i t D̃0)

−1v0)⊥)‖2, from Corollary 6.3 and the maximal theorem.
When n = 1, one uses the splitting in Proposition 4.4: we have that e−t3̃ is the identity on H⊥ and that 3̃
on B0H is similar to 3 on H, so ‖v‖X ≈ ‖v0‖2 follows from Theorem 10.1.

The modifications when v0 ∈ Ẽ−0 L2 are straightforward. �

11. The ODE in integral form

Following [Part I], for radially dependent coefficients we solve (17) for f by rewriting it as

∂t f + (DB0+ σN ) f = DE f, where Et := B0− Bt .

Recall that solutions ft belong to H, where H splits into E+0 H and E−0 H by Lemma 7.5, with E±0 =χ
±(D0)

on H. Applying E±0 , integrating formally each subequation and subtracting the obtained equations we
obtain

ft = e−t3E+0 f0+

∫ t

0
e−(t−s)3E+0 DEs fs ds−

∫
∞

t
e−(s−t)3E−0 DEs fs ds, (32)

provided limt→0 ft = f0 and limt→∞ ft = 0 in appropriate sense. We first study proper definition,
boundedness of the integral operators in (32) on appropriate spaces and their limits. The justification of
(32) is done in Section 12.

Lemma 11.1. If f ∈ L loc
2 (R+;H) satisfies ∂t f + (DB+σN ) f = 0 in R+× Sn distributional sense, then

−

∫ t

0
∂sη
+

ε (t, s)e−(t−s)3E+0 fs ds =
∫ t

0
η+ε (t, s)e−(t−s)3E+0 DEs fs ds,

−

∫
∞

t
∂sη
−

ε (t, s)e−(s−t)3E−0 fs ds =
∫
∞

t
η−ε (t, s)e−(s−t)3E−0 DEs fs ds,

for all t > 0. The bump functions η±ε are constructed as follows. Let η0(t) to be the piecewise linear
continuous function with support [1,∞), which equals 1 on (2,∞) and is linear on (1, 2). Then let
ηε(t) := η0(t/ε)(1− η0(2εt)) and η±ε (t, s) := η0(±(t − s)/ε)ηε(t)ηε(s).
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Proof. Follow [Part I, Proposition 4.4]. �

Define for f ∈ L loc
2 (R+; L2(Sn

;V)),

SεA ft :=

∫ t

0
η+ε (t, s)e−(t−s)3E+0 DEs fs ds−

∫
∞

t
η−ε (t, s)e−(s−t)3E−0 DEs fs ds.

In fact, this formula makes sense by extension thanks to the following algebraic relations.

Lemma 11.2. We have SεA ft = ŜεA ft − σ ŠεA ft = DS̃εA ft , where

ŜεA ft :=

∫ t

0
η+ε (t, s)3e−(t−s)3 Ê+0 Es fs ds+

∫
∞

t
η−ε (t, s)3e−(s−t)3 Ê−0 Es fs ds,

ŠεA ft :=

∫ t

0
η+ε (t, s)e−(t−s)3 Ě+0 Es fs ds−

∫
∞

t
η−ε (t, s)e−(s−t)3 Ě−0 Es fsds,

S̃εA ft :=

∫ t

0
η+ε (t, s)e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
η−ε (t, s)e−(s−t)3̃ Ẽ−0 Es fs ds.

Here Ê±0 := E±0 B−1
0 P̃1

B0
, Ě±0 := E±0 N B−1

0 P̃1
B0

, with P̃1
B0

as in Proposition 4.4.

Proof. Here, B−1
0 denotes the inverse of the isomorphism B0 :H→ B0H. Since N(D)=H⊥, we have

E±0 D = E±0 D P̃1
B0
= E±0

(
(DB0+ σN )− σN

)
B−1

0 P̃1
B0
= D0 Ê±0 − σ Ě±0 ,

Using that e−u3 and e−u33 extend to bounded operators on H, this also shows that e−u3E+0 D extend to
bounded operators on L2 for u > 0. We now readily obtain SεA = ŜεA− σ ŠεA. The identity SεA = DS̃εA is a
consequence of the intertwining relation

b(D0)D = Db(D̃0)

between the two functional calculi. �

Theorem 11.3. Assume ‖E‖∗ <∞. We have bounded operators

SεA : X→ X, SεA : Y→ Y,

with norms . ‖E‖∗, uniformly for ε > 0. In the space X there is a limit operator SX
A ∈ L(X;X) such that

lim
ε→0
‖SεA f − SX

A f ‖L2(a,b;L2) = 0, for any f ∈ X, 0< a < b <∞.

The same bounds and limits hold for ŜεA and ŠεA on X.
In the space Y, there is a limit operator SY

A ∈ L(Y;Y) such that

lim
ε→0
‖SεA f − SY

A f ‖Y = 0, for any f ∈ Y.

The same bounds and limits hold for ŜεA and ŠεA on Y.
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Let SA := limε→0 SεA, ŜA := limε→0 ŜεA and ŠA := limε→0 ŠεA denote the limit operators on Y from
Theorem 11.3. Since X is densely embedded in Y, these limit operators restricts to the corresponding
limit operators on X from Theorem 11.3.

One sees that SA = ŜA− σ ŠA holds, and that

SA ft = lim
ε→0

(∫ t−ε

ε

e−(t−s)3E+0 DEs fs ds−
∫ ε−1

t+ε
e−(s−t)3E−0 DEs fsds

)
,

with convergence in L2(a, b; L2) for any 0< a < b <∞, both on Y and X.

Proof. The proof is essentially an application of [Part I, Section 6], where the results were proved
abstractly. Given Theorems 7.1 and 10.1, these results from that paper apply. In particular, this makes use
of the holomorphic So

ω,σ operational calculus of D0, where more general operator-valued holomorphic
functions are applied to D0. It is straightforward, given Theorem 7.1, to adapt the results in [Part I,
Sections 6–7] and construct this So

ω,σ operational calculus of D0, and we omit the details.

(i) Consider the operators ŜεA : X→ X. Here [Part I, Theorem 6.5] shows that ŜεA : L2(R+, dt; L2)→

L2(R+, dt; L2) are uniformly bounded, with norm . ‖E‖∞, and converge strongly in L(L2(R+, dt; L2))

as ε→ 0. Moreover, [Part I, Theorem 6.8] applies and shows that

ŜεA ft = Ẑ ε(E f )t + ηε(t)e−t3
∫
∞

0
ηε(s)3e−s3 Ê+0 Es fs ds

where Ẑ ε : L2(R+, dt/t; L2)→ L2(R+, dt/t; L2) are uniformly bounded and converge strongly as ε→ 0.
These estimates build on the square function estimates and make use of the operational calculus for D0.
On the other hand, using Theorem 10.1 and Theorem 7.1, the last term has estimates∥∥∥∥ηε(t)e−t3

∫
∞

0
ηε(s)3e−s3 Ê+0 Es fs ds

∥∥∥∥
X

.

∥∥∥∥∫ ∞
0

ηε(s)3e−s3 Ê+0 Es fs ds
∥∥∥∥

2

= sup
‖h‖2=1

∣∣∣∣∫ ∞
0
(s3∗e−s3∗h, ηε(s)Ê+0 Es fs)

ds
s

∣∣∣∣
. ‖ηεE f ‖Y∗ . ‖E‖∗‖ f ‖X,

and is seen to converge strongly in L(X, L2(a, b; L2)) for any 0< a < b<∞, as in [Part I, Lemma 6.9].
Piecing these estimates together, we obtain

‖ŜεA f ‖X . ‖Ẑ ε(E f )‖L2(dt/t;L2)+‖Ẑ
ε(E f )‖L2(dt;L2)+‖Ŝ

ε
A f − Ẑ ε(E f )‖X

. ‖E‖∗‖ f ‖X+‖E‖∞‖ f ‖L2(dt;L2)+‖E‖∗‖ f ‖X,

with strong convergence in L(X, L2(a, b; L2)).

(ii) For the operators ŠεA : X→ X, we note that the estimates for ŜεA go through when replacing Ê±0 by
Ě±0 . Since ŠεA =3

−1 ŜεA (with Ê±0 replaced by Ě±0 ) and 3−1
: L2(dt/t;H)→ L2(dt/t;H) is bounded, it

only remains to estimate the term ηε(t)e−t3
∫
∞

0 ηε(s)e−s3 Ě+0 Es fs ds. But again using the boundedness
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of 3−1 gives∥∥∥∥ηε(t)e−t3
∫
∞

0
ηε(s)e−s3 Ě+0 Es fs ds

∥∥∥∥
X

.

∥∥∥∥∫ ∞
0

ηε(s)e−s3 Ě+0 Es fs ds
∥∥∥∥

2

.

∥∥∥∥3 ∫ ∞
0

ηε(s)e−s3 Ě+0 Es fs ds
∥∥∥∥

2
,

and the rest of the estimates go though as for ŜεA. Altogether, this proves the stated bounds and convergence
for SεA : X→ X.

(iii) Next consider the operators ŜεA : Y→ Y. We have

‖ŜεA f ‖Y ≤ ‖ŜεA(χt<1 f )‖Y+‖ŜεA(χt>1 f )‖Y ≤ ‖ŜεA(χt<1 f )‖L2(tdt;L2)+‖Ŝ
ε
A(χt>1 f )‖L2(dt;L2)

. ‖E‖∗‖χt<1 f ‖L2(tdt;L2)+‖E‖∞‖χt>1 f ‖L2(dt;L2)

. ‖E‖∗‖ f ‖Y,

where the L2(tdt; L2) estimate follows from [Part I, Proposition 7.1] and the L2(dt; L2) estimate from
[Part I, Proposition 6.5], along with convergence. This immediately gives the estimates for ŠεA :Y→Y

since 3−1
: L2(tdt;H)→ L2(tdt;H) and 3−1

: L2(dt;H)→ L2(dt;H) are bounded. �

Denote by C(a, b; L2) the space of continuous functions (a, b) 3 t 7→ vt ∈ L2(Sn
;V).

Theorem 11.4. Assume ‖E‖∗ <∞. If n ≥ 2, then S̃εA f ∈ C(0,∞; L2) for any f ∈ Y. There are bounds
‖S̃εA ft‖2 . ‖E‖∗‖ f ‖Y, uniformly for all f ∈ Y, t, ε > 0, and for each f ∈ Y there is a limit function
S̃A f ∈ C(0,∞; L2) such that limε→0 ‖S̃εA ft − S̃A ft‖2 = 0 locally uniformly for t > 0. We have the
expression

S̃A ft =

∫ t

0
e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
e−(s−t)3̃ Ẽ−0 Es fs ds, (33)

where the integrals are weakly convergent in L2 for all f ∈ Y and t > 0. Finally, SA f = DS̃A f holds in
R+× Sn distributional sense for each f ∈ Y.

If n = 1, then the above results hold if Y is replaced by Yδ, for any fixed δ > 0.

Proof. (i) Consider first the case n ≥ 2. The proof is a adaption of the proof of [Part I, Proposition 7.2],
which we refer to for further details. We split the (0, t)-integral∫ t

0
η+ε (t, s)e−(t−s)3̃(I − e−2s3̃)Ẽ+0 Es fs ds+ e−t3̃

∫ t

0
η+ε (t, s)e−s3̃ Ẽ+0 Es fs ds,

The same duality estimate of the second term as in [Part I, Proposition 7.2], given Theorem 10.1 and
Lemma 4.2, goes through here. For the first term, we note the estimate

‖e−(t−s)3̃(I − e−2s3̃)‖.min
(s

t
, 1, 1

t−s

)
.
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For t ≤ 2, this yields the bound ‖E‖∞
∫ t

0 (s/t)‖ fs‖2 ds . ‖E‖∞‖ f ‖Y. On the other hand, for t ≥ 2 we
have the estimate

‖E‖∞

(∫ 1

0

s
t
‖ fs‖2 ds+

∫ t−1

1

1
t − s
‖ fs‖2 ds+

∫ t

t−1
‖ fs‖2 ds

)
. ‖E‖∞‖ f ‖Y.

The (t,∞)-integral is estimated similarly, by splitting it∫
∞

t
η−ε (t, s)e−(s−t)3̃(I − e−2t3̃)Ẽ−0 Es fs ds+ e−t3̃

∫
∞

t
η−ε (t, s)e−s3̃ Ẽ+0 Es fs ds,

The second term is estimated as before, and for the first term we note the estimates ‖e−(s−t)3̃(I−e−2t3̃)‖.
min(t/s, 1, 1/(s− t)), which give the bound

‖E‖∞

(∫ t+1

t

t
s
‖ fs‖2 ds+

∫
∞

t+1

1
s− t
‖ fs‖2 ds

)
. ‖E‖∞‖ f ‖Y.

(ii) Consider next the case n = 1. Since e−t3̃
= I on H⊥ and Ẽ±0 = N∓ on H⊥, we also need to estimate

the L2-norm of (∫ t

0
η+ε (t, s)P̃0

B0
Es fs

)
⊥

−

(∫
∞

t
η−ε (t, s)P̃0

B0
Es fs

)
‖

,

uniformly for t > 0, where P̃0
B0

is projection onto H⊥ from Proposition 4.4. So it is enough to obtain the
bound ∥∥∥∥∫ ∞

0
|P̃0

B0
Es fs | ds

∥∥∥∥
2
. ‖E‖∗‖ f ‖Yδ

.

On the one hand, we obtain from Proposition 9.7 the estimate∥∥∥∥∫ ∞
1
|P̃0

B0
Es fs | ds

∥∥∥∥
2
. ‖E‖∞

∫
∞

1
‖ fs‖2 ds . ‖E‖∞

(∫
∞

1
‖ fs‖

2
2eδsds

)1/2

. ‖E‖∞‖ f ‖Yδ
.

On the other hand, note that A, hence B−1
0 , is pointwise strictly accretive by Lemma 5.1 and by the

explicit expression in Lemma 5.5 (expressed in other coordinates), P̃0
B0

maps into constant functions and
|P̃0

B0
u|.

∫
S1 |u(x)|dx . Thus∥∥∥∥∫ 1

0
|P̃0

B0
Es fs | ds

∥∥∥∥
2
.
∫ 1

0

∫
S1
|Es(x)|| fs(x)|dx ds.

Pick h : R+× S1
→ V such that |hs(x)| = 1 and |Es(x)hs(x)| = |Es(x)| when s < 1, and hs(x) = 0

when s > 1. Cauchy–Schwarz inequality yields∫ 1

0

∫
S1
|Es(x)|| fs(x)| ds dx . ‖Eh‖Y∗‖ f ‖Y ≤ ‖E‖∗‖h‖X‖ f ‖Y . ‖E‖∗‖ f ‖Y.

This completes the proof of the estimate of ‖S̃εA ft‖2.
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(iii) As in the proof of [Part I, Proposition 7.2], replacing η±ε by η±ε −η
±

ε′ in the estimates shows convergence
of S̃εA and yield the expression for the limit operator. The relation SA = DS̃A follows at the limit from the
relation in Lemma 11.2. �

We turn to boundary behavior of the integral operators at t = 0.

Lemma 11.5. Assume ‖E‖∗ <∞.

(i) Let f ∈ X (or f ∈ Y) and define f 0
:= SA f . Then f 0 and f satisfy

(∂t + D0) f 0
= DE f

in R+× Sn distributional sense. If f ∈ X, then there are limits

lim
t→0

t−1
∫ 2t

t
‖SA fs − h−‖22 ds = 0,

where h− := −
∫
∞

0 e−s3E−0 DEs fs ds ∈ E−0 H has bounds ‖h−‖2 . ‖ f ‖X.

(ii) Let n ≥ 2. If f ∈ Y and v := S̃A f , then

(∂t + D̃0)v = E f

in R+× Sn distributional sense, and there are limits

lim
t→0
‖S̃A ft − h̃−‖2 = 0,

where h̃− := −
∫
∞

0 e−s3̃ Ẽ−0 Es fs ds ∈ Ẽ−0 L2 has bounds ‖h̃−‖2 . ‖ f ‖Y. If n = 1, these results for S̃A f
hold when replacing Y by Yδ, for any fixed δ > 0.

Proof. (i) By the convergence properties of SεA from Theorem 11.3, it suffices to show that for φ ∈
C∞0 (R+× Sn

;C(1+n)m) there is convergence∫ (
(−∂tφt + B∗0 D+ σN )φt , f εt

)
dt→

∫
(Dφs,Es fs) ds, ε→ 0,

where f εt := SεA ft . For the term (0, t)-integral, Fubini’s theorem and integration by parts gives∫
∞

0

∫ t

0
η+ε (t, s)((−∂t +3

∗)φt , e−(t−s)3E+0 DEs fs) ds dt

=−

∫
∞

0

(∫
∞

s
η+ε (t, s)D(E+0 )

∗∂t(e−(t−s)3∗φt) dt,Es fs

)
ds

=

∫
∞

0

(∫
∞

s
(∂tη

+

ε )(t, s)D(E+0 )
∗e−(t−s)3∗φt dt,Es fs

)
ds→

∫
∞

0
(D(E+0 )

∗φs,Es fs) ds.

Adding the corresponding limit for the (t,∞)-integral, we obtain in total the limit
∫
∞

0 (Dφs,Es fs) ds,
since D((E+0 )

∗
+ (E−0 )

∗)= ((E+0 + E−0 )D)
∗
= D∗ = D.

To prove the limit of SA ft for f ∈ X, we note from the proof of Theorem 11.3 that

SA ft = Z A ft + e−t3
∫
∞

0
e−s3E−0 DEs fs ds,
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where Z A f ∈ Y∗. When taking limits ε→ 0, we have used [Part I, Theorem 6.8 and Lemma 6.9]. This
proves the stated limit.

(ii) To prove (∂t + D̃0)v = E f , we let t ∈ (a, b) and differentiate S̃εA f to get

∂t S̃εA ft =
1
ε

∫ 2ε

ε

e−s3̃(Ẽ+0 Et−s ft−s + Ẽ−0 Et+s ft+s)ds− D̃0(S̃εA ft),

for small ε. The first term on the right is seen to converge to E f in L2(a, b; L2) as ε → 0, with an
argument as in [Part I, Theorem 8.2]. Note that this uses Ẽ+0 + Ẽ−0 = I , which holds also when n = 1
by Definition 7.4. Letting ε→ 0, we obtain ∂tv = E f − D̃0v in distributional sense, since (a, b) was
arbitrary.

The limit for S̃A ft when f ∈ Y (or Yδ when n = 1) is proved as in [Part I, Proposition 7.2 and
Lemma 6.9]. In particular, this uses an identity

S̃A ft = Z̃ A ft + e−t3̃
∫
∞

0
e−s3̃ Ẽ−0 Es fs ds,

with Z̃ A f ∈ C(0,∞; L2) and limt→0 Z̃ A ft = 0 in L2. �

12. Representation and traces of solutions

We now come to the heart of the matter. The natural classes of solutions for the Dirichlet and Neumann
problems, with L2 boundary data, use the spaces Yo

≈ Y and Xo
≈ X from Definition 9.2.

Definition 12.1. (i) By a Yo-solution to the divergence form equation, with coefficients A, we mean a
weak solution u of divx A∇u = 0 in O1+n with ‖∇xu‖Yo <∞.

(ii) By an Xo-solution to the divergence form equation, with coefficients A, we mean the gradient
g := ∇xu of a weak solution u of divx A∇u = 0 in O1+n with ‖g‖Xo <∞.

Note the slight abuse of notation when referring to the gradient ∇xu rather than u as an Xo-solution.
The reason for this convention, here as well as in [Part I], is that the Neumann and regularity problems
are BVPs for g (and not for the potential u), and Xo-solutions is the natural class of solutions for these
problems. This point of view is the one that lead us to our representations. However, when more
convenient we call the potential u itself an Xo-solution.

Remark 12.2. (i) No boundary trace is assumed in our definitions, but will be deduced.

(ii) The seminorm ‖∇xu‖Yo on Yo-solutions is modulo constants, which is unusual for Dirichlet problems.
Once we have shown that Yo-solutions have boundary traces, we will be able to put constants back
in the norm in a natural way.

(iii) For any Xo-solution g, the potential u has a boundary trace in appropriate sense (replacing pointwise
values by averages) and the trace belongs to W 1

2 (S
n
;Cm). This is essentially in [Kenig and Pipher

1993]. We also recover this from our representations. See Section 13.

Here and subsequently, we use the notation e−t3g to denote the function (t, x) 7→ (e−t3g)(x). Similarly
for e−t3̃g.
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Xo-solutions. We begin with representation and boundary trace for solutions of the corresponding ODE.

Theorem 12.3. Assume that ‖E‖∗ <∞. Let f ∈ X. Then f ∈ L loc
2 (R+;H) satisfies

∂t f +
(
DB+ n−1

2 N
)

f = 0

in R+× Sn distributional sense if and only if f satisfies the equation

ft = e−t3h++ SA ft , for some h+ ∈ E+0 H. (34)

In this case, f has limit

lim
t→0

t−1
∫ 2t

t
‖ fs − f0‖

2
2 ds = 0, (35)

where f0 := h++ h− and h− := −
∫
∞

0 e−s3E−0 DEs fs ds ∈ E−0 H, with estimates

max(‖h+‖2, ‖h−‖2)≈ ‖ f0‖2 . ‖ f ‖X.

If furthermore I − SA is invertible on X, then

f = (I − SA)
−1e−t3h+ (36)

and ‖ f ‖X . ‖h+‖2.

Proof. The proof is an adaption of [Part I, Theorem 8.2], to which we refer for details. Here is a quick
summary.

We show that f satisfies (17) if and only if f satisfies (34). Assume (17) and apply Lemma 11.1.
Letting ε→ 0 and applying Theorem 11.3, we obtain the stated equation for f , with h+ as a certain weak
limit as in part (i) of the proof of [Part I, Theorem 8.2], with 3= |D0| here.

Conversely, if f ∈ X satisfies (34), then we apply Lemma 11.5 with f o
:= f − e−t3h+. Since

(∂t + D0)e−t3h+ = 0 and e−t3h+ ∈ X by Theorem 10.1, it follows that f satisfies (17).
Lemma 11.5 also shows existence of the limit f0. The stated estimates follow as in part (iii) of the

proof of [Part I, Theorem 8.2].
If I − SA is invertible, (36) follows immediately from (34), and the estimate ‖ f ‖X . ‖h+‖2 follows

again from Theorem 10.1. �

Theorem 12.4. Assume that ‖E‖∗ <∞. Then g is an Xo-solution to the divergence form equation with
coefficients A if and only if the corresponding conormal gradient f ∈ X satisfies the equation

ft = e−t3h++ SA ft , for some h+ ∈ E+0 H. (37)

In this case, g has limit

lim
r→1

1
1− r

∫
r<|x|<(1+r)/2

|g(x)− g1(x)|2 dx = 0,

where g1 := (B0 f0)⊥En+ ( f0)‖ and ‖g1‖2 . ‖g‖Xo holds. If furthermore I − SA is invertible on X, then
‖h+‖2 ≈ ‖g1‖2 ≈ ‖g‖Xo .



1026 PASCAL AUSCHER AND ANDREAS ROSÉN

Proof. The equivalence follows from Corollary 3.4 and Theorem 12.3. The limit and the estimates follow
on applying the conormal gradient-to-gradient map of Proposition 3.3 from the ones satisfied by f . �

It is worth specifying the previous theorem in the case of radially independent coefficients.

Corollary 12.5. Assume A is radially independent. Then any Xo-solution has corresponding conormal
gradient given by f = e−t3h+ for a unique h+ ∈ E+0 H.

Remark 12.6. A careful examination of the proof of Theorem 12.3 in the case of radially independent
coefficients, shows in fact that for f ∈ L loc

2 (R+;H) the weaker condition sup0<t<1/2
1
t

∫ 2t
t ‖ fs‖

2
2 ds <∞

is sufficient to obtain this corollary, as in this case SA = 0.

Yo-solutions. We now turn to representations and boundary behavior pertaining to Yo-solutions.

Theorem 12.7. Assume that ‖E‖∗ <∞ and f ∈ Y.

(i) Then f ∈ L loc
2 (R+;H) satisfies ∂t f + (DB + n−1

2 N ) f = 0 in R+× Sn distributional sense if and
only if f satisfies the equation

ft = De−t3̃h̃++ SA ft , for some h̃+ ∈ Ẽ+0 L2. (38)

Here h̃+ is unique modulo Ẽ+0 H⊥ and ‖h̃+‖L2/H⊥ . ‖ f ‖Y, and if furthermore I − SA is invertible
on Y then

f = (I − SA)
−1 De−t3̃h̃+ (39)

with ‖ f ‖Y . ‖h̃+‖L2/H⊥ .

(ii) If (38) holds, let vt := e−t3̃h̃++ S̃A ft . Then f = Dv and ∂tv+ (B D− n−1
2 N )v = 0, and vt has L2

limit
lim
t→0
‖vt − v0‖2 = 0, (40)

where v0 := h̃++ h̃− and h̃− :=−
∫
∞

0 e−s3̃ Ẽ−0 Es fs ds ∈ Ẽ−0 L2, with estimates ‖h̃−‖2 . ‖ f ‖Y and

‖vt‖2 . ‖h̃+‖2+‖ f ‖Y, for all t > 0. (41)

Proof. The proof is an adaption, with some modifications, of [Part I, Theorem 9.2], to which we refer for
omitted details.

(i) Assume (17). We apply Lemma 11.1 to f . Letting ε→ 0 and applying Theorem 11.3, we obtain for
f the equation

ft = f̃t + SA ft ,

with the limit f̃t := limε→0 ε
−1
∫ 2ε
ε

e−(t−s)3E+0 fs ds. From here, one can proceed as in [Part I, Theo-
rem 9.2] to represent f̃t as D0e−t3h+ for some h+ ∈ E+0 H, or use a simpler argument (owing to the
boundedness of the boundary here): since D0 : E+0 H→ E+0 H is surjective, there exists ht ∈ E+0 H such
that f̃t = D0ht . From there and f̃t0+t = e−t3 f̃t0 , we conclude as in [Part I] that the weak L2-limit
h+ := limt→0 ht exists and that f̃t = D0e−t3h+.
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To write D0e−t3h+ as De−t3̃h̃+ for some h̃+ ∈ Ẽ+0 L2, we use Lemma 4.6. Indeed, there is an
isomorphism M :H→ L2/H

⊥ with D0 = D ◦M on D(D0). It is easy to see that the restriction of M
to E+0 H maps onto Ẽ+0 L2/Ẽ+0 H⊥. Now, on D(D0), D0e−t3

= e−t3D0 = e−t3D ◦M = De−t3̃
◦M . By

density and boundedness, the left and right terms agree on H. Thus, h̃+ = Mh+ ∈ Ẽ+0 L2/Ẽ+0 H⊥ satisfies
D0e−t3h+ = De−t3̃h̃+.

We conclude that ft = De−t3̃h̃++ S̃A ft , with estimates

‖h̃+‖L2/H⊥ ≈ ‖h
+
‖2 ≈ ‖D0e−t3h+‖Y = ‖ f − SA f ‖Y . ‖ f ‖Y. (42)

The middle equivalence uses Theorem 10.1.

(i′) Conversely, if f ∈ Y satisfies (38) for some h̃+ ∈ Ẽ+0 L2, then we apply Lemma 11.5 with

f o
= f − De−t3̃h̃+ = f − D0e−t3h+,

with h+ ∈ E+0 H given by the isomorphism above. Since (∂t + D0)D0e−t3h+ = 0, it follows that f
satisfies (17). For the estimate of ‖ f ‖Y when I − SA is invertible on Y, use that the last estimate in (42)
in this case is ≈.

(ii) Lemma 11.5 and Theorem 11.4 show the ODE satisfied by v, existence of the limit v0 and the estimates
of ‖vt‖2 and ‖h̃−‖2. This completes the proof. �

Corollary 12.8. Assume that ‖E‖∗ <∞. With the notation from Theorem 12.7, the following holds.

(i) Any Yo-solution u to the divergence form equation has representation ur = r−
n−1

2 (vt)⊥ with r = e−t ,
for some v as in Theorem 12.7, boundary trace in the sense limr→1 ‖ur − u1‖2 = 0, and there are
estimates

‖ur‖2 . r−
n−1

2 ‖∇xu‖Yo +

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣ , r ∈ (0, 1).

(ii) The map taking Yo-solutions u to boundary functions h̃+ = Ẽ+0 v0 ∈ Ẽ+0 L2 is well-defined and
bounded in the sense that

‖h̃+‖2 . ‖∇xu‖Yo +

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣ .

(iii) If furthermore I − SA is invertible on Y, then this map is an isomorphism and its inverse Ẽ+0 L2 3

h̃+→ u ∈ {Yo-solutions} is given by

ur := r−
n−1

2
(
(I + S̃A(I − SA)

−1 D)e−t3̃h̃+
)
⊥
, (43)

with estimates ‖∇xu‖Yo + |
∫

Sn u1(x) dx | ≈ ‖h̃+‖2.

Proof. (i) Let f be the conormal gradient of u and define h̃+ and v applying Theorem 12.7. As in the
proof of Proposition 3.5, it follows that

ur = r−σ (vt)⊥+ c

for some c ∈ Cm , where r = e−t
∈ (0, 1) and σ = n−1

2 .
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Recall that by (38), h̃+ is uniquely defined in Ẽ+0 L2 modulo Ẽ+0 H⊥ and we now use this freedom
to choose it in Ẽ+0 L2 such that c = 0. Indeed, by Lemma 7.5, Ẽ+0 H⊥ = N−H⊥ = {[c 0]t ; c ∈ Cm

} and
since 3̃= σ I on H⊥, we have

e−t3̃([c 0]t)= e−σ t
[c 0]t , c ∈ Cm . (44)

(The superscript t of the brackets denotes transpose.) Replacing h̃+ by h̃+ − [c 0]t , then ft remains
unchanged, e−t3̃h̃+ is replaced by e−t3̃h̃+−e−σ t

[c 0]t , and (vt)⊥ by (vt)⊥−e−σ t c. Thus we may assume
c = 0.

As vt has an L2(Sn
;C(1+n)m) limit v0 when t → 0, one can set u1 := (v0)⊥ and ur converges in

L2(Sn
;Cm) to u1. For the estimate on ‖ur‖2 it suffices to prove

‖ur −m‖2 . r−
n−1

2 ‖∇xu‖Yo, r ∈ (0, 1).

with m the mean value of u1 on Sn . We may assume that m = 0 as by (44) this amounts to modifying h̃+

modulo N−H⊥ without changing the conormal gradient f of u. We have

‖ur‖2 ≤ r−σ‖vt‖2 . r−σ (‖h̃+‖2+‖ f ‖Y).

By orthogonal projection onto N−H⊥, it follows ‖h̃+‖2 ≈ ‖h̃+‖L2/H⊥ +|
∫

Sn (h̃+)⊥dx | since h̃+ ∈ Ẽ+0 L2.
We can now conclude since ‖h̃+‖L2/H⊥ . ‖ f ‖Y and, since m = 0,∣∣∣∣∫

Sn
(h̃+)⊥(x) dx

∣∣∣∣= ∣∣∣∣∫
Sn
(u1− (h̃−)⊥)(x) dx

∣∣∣∣. ‖h̃−‖2 . ‖ f ‖Y.

(ii) The argument using (44) shows that given a Yo-solution u and its conormal gradient f , there
exists h̃+ ∈ Ẽ+0 L2 such that ur = r−σ (e−t3̃h̃+ + S̃A ft)⊥. Moreover, h̃+ = Ẽ+0 v0 by construction
and the estimate ‖h̃+‖2 . ‖∇xu‖Yo +

∣∣∫
Sn u1(x) dx

∣∣ follows from the above argument. To define
the map and prove its boundedness, it suffices to show uniqueness of such h̃+ ∈ Ẽ+0 L2. So assume
ur =r−σ (e−t3̃h̃++S̃A ft)⊥=r−σ (e−t3̃h̃+1 +S̃A ft)⊥ with f the conormal gradient of u and h̃+, h̃+1 ∈ Ẽ+0 L2.
This implies that ft = De−t3̃h̃+ + SA ft = De−t3̃h̃+1 + SA ft so we know that h̃+ − h̃+1 ∈ Ẽ+0 H⊥ by
Theorem 12.7. As Ẽ+0 H⊥ = N−H⊥, write h̃+ − h̃+1 = [c 0]t , with c ∈ Cm . We have from (44) that
0= r−σ (e−t3̃(h̃+− h̃+1 ))⊥ = c.

(iii) Given h̃+ ∈ Ẽ+0 L2, define

ft := (I − SA)
−1 De−t3̃h̃+, vt := e−t3̃h̃++ S̃A ft , ur := r−σ (vt)⊥.

By Theorem 10.3 and Lemma 11.5, v satisfies the equation ∂tv+D̃0v=0, and by Proposition 3.5, u extends
to a Yo-solution and f is the conormal gradient of u. For the continuity estimate ‖∇xu‖Yo+

∣∣∫
Sn u1(x) dx

∣∣
. ‖h̃+‖2, Theorem 12.7 implies ‖ f ‖Y . ‖h̃+‖2 and

∣∣∫
Sn u1(x) dx

∣∣. ‖u1‖2 . ‖v0‖2 . ‖h̃+‖2+‖ f ‖Y

. ‖h̃+‖2. This map clearly inverts the map in (ii). This completes the proof. �

It is worth specifying the Corollary 12.8 in the case of radially independent coefficients.

Corollary 12.9. Assume A is radially independent. Then any Yo-solution is given by u= r−
n−1

2 (e−t3̃h̃+)⊥
for a unique h̃+ ∈ Ẽ+0 L2 with ‖h̃+‖2 ≈ ‖∇xu‖Yo +

∣∣∫
Sn u1 dx

∣∣ .
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Conclusion. It is clear from (36) that provided I − SA is invertible on X, the ansatz

E+0 H→ X : h+ 7→ ft = (I − SA)
−1e−t3h+

maps onto all conormal gradients of Xo-solutions to the divergence form equation with coefficients A.
Similarly, (43) implies that provided I − SA is invertible on Y, the ansatz

Ẽ+0 H→ Yo
: h̃+ 7→ ur := r−

n−1
2

(
(I + S̃A(I − SA)

−1 D)e−t3̃h̃+
)
⊥

,

maps onto all Yo-solutions to the divergence form equation with coefficients A.
Thus we have a way of constructing solutions and our two main goals towards well-posedness results

are the following.
First understand when invertibility of I − SA holds. This will be done in Section 16.
Secondly, introduce the boundary maps that connect the traces of solutions to the data for the BVPs

and invert them. This is the object of Section 17.
Before we do this, we continue with different a priori representations of solutions in the next section.

This will be useful to prove nontangential maximal estimates and obtain convergence of Fatou type at the
boundary.

13. Conjugate systems

The results in the preceding section allow to represent Xo-solutions in terms of the conormal gradient
f . Actually, if one is interested in u itself, one can try to further describe the corresponding potential
vector v. Similarly, representation of Yo-solutions is embedded into a potential vector v but it could be
interesting to describe the properties of the conormal gradient f . Both are related by the rule Dv = f .
This leads us to the following notion.

Definition 13.1. A pair of conjugate systems to the divergence equation with coefficients A is a pair
(v, f ) ∈ L loc

2 (R+; L2(Sn
;V))× L loc

2 (R+; L2(Sn
;V)) with

(i) vt ∈ D(D) for almost every t and
∫
∞

1 ‖Dvt‖
2
2 dt <∞,

(ii) v is an R+× Sn-distributional solution of (19),

(iii) ft = Dvt for almost every t > 0,

(iv) f is a H-valued R+× Sn-distributional solution of (17).

By Proposition 3.5 and its proof, a pair of conjugate systems is completely determined by v satisfying
(i) and (ii). That is, f defined by (iii) automatically satisfies (iv). Moreover, the function

ur := r−(n−1)/2(vt)⊥, r = e−t
∈ (0, 1), (45)

extends to a weak solution of divx A∇xu = 0 in O1+n and f must be the conormal gradient of u. We say
that a weak solution u and a pair of conjugate systems (v, f ) to the divergence form equation for which
(45) holds are associated.
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It is our goal to give a description of the pair (not only f or v) in each case. Recall that in integrating
Dv = f , vt is only determined by ft modulo H⊥ so there is a choice to make.

Theorem 13.2. Assume ‖E‖∗ <∞. Let u be an Xo- or Yo-solution. Then u has an L2(Sn
;Cm) trace u1

at the boundary and there exists an associated pair of conjugate systems given by{
vt = e−t3̃v0+ w̃t ,

ft = e−t3 f0+wt ,
(46)

with the following properties.

(i) If u is an Xo-solution, then u1∈W 1
2 (S

n
;Cm), (v0, f0)∈D(D)×H with Dv0= f0, ‖∇Su1‖2.‖ f0‖2.

‖∇xu‖Xo , ‖v0‖2. ‖∇xu‖Xo+
∣∣∫

Sn u1 dx
∣∣, Dw̃t =wt ∈Y∗, vt ∈C(R+; L2) and ‖vt−v0‖2+‖w̃t‖2=

O(t) for t > 0.

(ii) If u is a Yo-solution, then u1 ∈ L2(Sn
;Cm), (v0, f0) ∈ L2

× Ẇ−1
2 (Sn

;V) with Dv0 = f0, ‖u1‖2 .
‖v0‖2+‖ f0‖Ẇ−1

2
. ‖∇xu‖Yo+

∣∣∫
Sn u1dx

∣∣, Dw̃t =wt ∈Y, vt ∈C(R+; L2) and ‖vt−v0‖2+‖w̃t‖2=

O(1) for t > 0 and o(1) for t→ 0.

Besides Xo- and Yo-solutions to the divergence form equation, we shall in the following sections also
consider the following classical class of variational solutions.

Definition 13.3. By a variational solution to the divergence form equation, with coefficients A, we mean
a weak solution of divx A∇u = 0 in O1+n with ‖∇xu‖2 <∞.

It is illuminating to see how the representation for variational solutions lies in between the ones for Xo-
and Yo-solutions, independently of solvability issues which are well-known for variational solutions. We
state this result without proof as it is not used in this paper. Note that, as compared to Theorem 13.2, the
Carleson condition ‖E‖∗ <∞ is not needed in the following result.

Proposition 13.4. Let u be a variational solution to the divergence form equation with coefficients A.
Then u has an L2(Sn

;Cm) trace u1 at the boundary and there exists an associated pair of conjugate
systems given by (46) with the following properties:

u1∈W 1/2
2 (Sn

;Cm), (v0, f0)∈D(|D|1/2)×Ẇ−1/2
2 (Sn

;V) with Dv0= f0, ‖v0‖2.‖∇xu‖2+
∣∣∫

Sn u1 dx
∣∣,

‖u1‖Ẇ 1/2
2
. ‖ f0‖Ẇ−1/2

2
. ‖∇xu‖2, Dw̃t = wt ∈ L2(R

+
; L2), vt ∈ C(R+; L2) and ‖vt − v0‖2+‖w̃t‖2 =

O(t1/2) for t > 0.
Here Ẇ 1/2

2 is equipped with homogeneous norm and Ẇ−1/2
2 is its dual.

Proof of Theorem 13.2. (i) From Theorem 12.3, we have

ft = e−t3h++ SA ft = e−t3 f0+wt , wt := SA ft − e−t3h−.

with f0 = h++ h− ∈H, ‖ f0‖2 . ‖∇xu‖Xo and h− =−
∫
∞

0 e−s3E−0 DEs fs ds.
We define v0, h̃+, h̃− and v as follows: h̃+ is the unique element in Ẽ+0 L2/Ẽ+0 H⊥ such that Dh̃+ =

h+(= D0(D−1
0 h+)), h̃− := −

∫
∞

0 e−s3̃ Ẽ−0 Es fs ds, v0 = h̃++ h̃− and

vt := e−t3̃h̃++ S̃A ft = e−t3̃v0+ w̃t , w̃t := S̃A ft − e−t3̃h̃−.
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Clearly, h̃+ ∈ D(D). Next, 3̃h̃− ∈ L2 because E f ∈ Y∗, so h̃− ∈ D(D)= D(3̃) and Dh̃− = h−. So
v0 ∈ D(D) and Dv0 = f0.

The estimate on ‖e−t3̃v0− v0‖2 follows from v0 ∈ D(D).
Next, Dw̃t = wt by construction and wt ∈ Y∗ from the proof of Lemma 11.5. (In fact, wt is nothing

but Z A ft defined in that proof.)
The estimate on ‖w̃t‖2 follows from

w̃t =

∫ t

0
e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
(e−(s−t)3̃

− e−(t+s)3̃)Ẽ−0 Es fs ds+ e−t3̃
∫ t

0
e−s3̃ Ẽ−0 Es fs ds,

using E f ∈Y∗, the uniform boundedness of the semigroup and its decay at infinity. Details are left to the
reader.

Eventually, as in Corollary 12.8, one can adjust h̃+ by adding an element in N−H⊥ such that u and v
satisfy (45). In particular, u has an L2 trace. It also follows that f is the conormal gradient of u with a
limit f0 when t→ 0 by (35). So u1 ∈W 1

2 (S
n
;Cm) with ‖∇Su1‖2 . ‖ f0‖2.

(ii) By Corollary 12.8, we have description of

vt = e−t3̃h̃++ S̃A ft = e−t3̃v0+ w̃t , w̃t = S̃A ft − e−t3̃h̃−,

with v0 = h̃++ h̃− such that u and v satisfy (45) and of trace and growth estimates for ‖e−t3̃v0− v0‖2+

‖w̃t‖2. It remains to consider the representation of f . We have by Theorem 12.7,

ft = De−t3̃h̃++ SA ft = De−t3̃v0+wt , wt = SA ft − De−t3̃h̃− = Dw̃t .

Define f0 := Dv0 in distribution sense, so that f0 ∈ Ẇ−1
2 (Sn

;V) and ‖ f0‖Ẇ−1
2
. ‖v0‖2. We obtain

ft = e−t3 f0+wt

and here, the action of e−t3 is extended to Ẇ−1
2 (Sn

;V) by extending the intertwining formula De−t3
=

e−t3̃D. �

14. Non-tangential maximal estimates

Theorem 14.1. Assume ‖E‖C∩L∞ <∞. Then any Yo-solution to the divergence form equation with
coefficients A satisfies

‖u1‖
2
2 . ‖Ñ

o
∗
(u)‖22 .

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2 .

When n = 1, the conjugate ũ of a Yo-solution u also satisfies the estimates

‖ũ1‖
2
2 . ‖Ñ

o
∗
(ũ)‖22 .

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

ũ1(x) dx
∣∣∣∣2 .

The proof follows the strategy of [Part I] with a slight modification in view of preparing the proof of
almost everywhere nontangential convergence.
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Proof. The estimate ‖Ñ o
∗
(u)‖2 & ‖u1‖2 follows from Lemma 9.3 and Corollary 12.8(i). For the upper

bound, we proceed as follows. From the representation ur = r−σ (vt)⊥ with vt = e−t3̃v0 + w̃t in
Theorem 13.2, it is enough to bound ‖Ñ∗((e−t3̃v0)⊥)‖2 and ‖Ñ∗(w̃⊥)‖2. Theorem 10.3, and Lemma 14.2
below, show that

‖Ñ o
∗
(u)‖2 . ‖v0‖2+‖ f ‖Y . ‖h̃+‖2+‖h̃−‖2+‖ f ‖Y . ‖h̃+‖L2/H⊥ +

∣∣∣∣∫
Sn

h̃+
⊥

dx
∣∣∣∣+‖ f ‖Y,

and ‖h̃+‖L2/H⊥ . ‖ f ‖Y,
∣∣∫

Sn h̃+
⊥

dx
∣∣ = ∣∣∫Sn (u1 − h̃−

⊥
) dx

∣∣ . ∣∣∫
Sn u1 dx

∣∣ + ‖ f ‖Y, as in the proof of
Corollary 12.8.

When n = 1, replacing A by the conjugate coefficients Ã defined in Section 5 in the above argument,
and using |∇x ũ| ≈ |∇xu|, proves the estimates for ‖Ñ o

∗
(ũ)‖2. �

Lemma 14.2. Assume ‖E‖C∩L∞ <∞. Then we have, for each p < 2,

‖Ñ p
∗
(w̃)‖2+‖Ñ∗(w̃⊥)‖2 . ‖E‖C∩L∞‖ f ‖Y.

Here Ñ p
∗ is defined similarly to Ñ∗, replacing L2 averages by L p averages. When n = 1, we also have

‖Ñ∗(w̃‖)‖2 . ‖E‖C∩L∞‖ f ‖Y.

Furthermore, these estimates hold with w̃ replaced by the truncation χt<τ w̃, and ‖ f ‖2Y replaced by∫
∞

0 ‖ ft‖
2
2 min(t, τ ) dt , for any τ < 1.

Proof. The proof will follow closely the strategy of [Part I, Lemma 10.2] on R1+n
+ . We remark that

Ñ p
∗ ≤ Ñ∗ pointwise. Thus we will work with Ñ∗, and indicate when we need to consider Ñ p

∗ or the
normal component. Recall that Ñ∗ estimates the truncation of the function to t < 1.

(i) From w̃t = S̃A ft − e−t3̃h̃− and the definition of h̃−,

w̃t =

∫ t

0
e−(t−s)3̃ Ẽ+0 Es fs ds−

∫
∞

t
e−(s−t)3̃ Ẽ−0 Es fs ds+ e−t3̃

∫
∞

0
e−s3̃ Ẽ−0 Es fs ds

=

∫ t

0
e−(t−s)3̃(1−e−2s3̃)Ẽ+0 Es fsds−

∫
∞

t
e−(s−t)3̃(1−e−2t3̃)Ẽ−0 Es fs ds+ e−t3̃

∫ t

0
e−s3̃Es fs ds

= I1− I2+ I3.

Note that Ẽ+0 + Ẽ−0 = I (also in dimension n = 1) is used in getting I3. For the first two terms, we use
Schur estimates as follows. Since ‖e−(t−s)3̃(I − e−2s3̃)‖. s/t , we have, as in [Part I, Lemma 10.2],

‖Ñ∗(I1)‖
2
2 .

∫ 1

0

(∫ t

0
st−1
‖ fs‖2ds

)2 dt
t
. ‖χt<1 f ‖2Y.

Similarly, since ‖e−(s−t)3̃(I − e−2t3̃)‖. t/s, we have

‖Ñ∗(I2)‖
2
2 .

∫ 1

0

(∫
∞

t
ts−1
‖ fs‖2 ds

)2 dt
t
.
∫ 1

0

(∫
∞

t
t/s2 ds

)(∫
∞

t
t‖ fs‖

2
2 ds

)
dt
t

.
∫
∞

0

(∫ min(s,1)

0
t

dt
t

)
‖ fs‖

2
2 ds = ‖ f ‖2Y.



MAXIMAL REGULARITY FOR ELLIPTIC SYSTEMS, II 1033

Note that the estimates so far hold for all w̃, not only for its normal component. By inspection, the
stated estimates of the truncated maximal function hold for these terms.

(ii) It remains to consider I3= e−t3̃
∫ t

0 e−s3̃Es fs ds. To make use of off-diagonal estimates in Lemma 6.2,
we need to replace e−t3̃ by the resolvents (I + i t D̃0)

−1. To this end, define ψt(z) := e−t |z|
− (1+ i t z)−1

and split the integral

e−t3̃
∫ t

0
e−s3̃Es fs ds = ψt(D̃0)

∫
∞

0
e−s3̃Es fs ds−

∫
∞

t
ψt(D̃0)e−s3̃Es fs ds

+

∫ t

0
(I + i t D̃0)

−1(e−s3̃
− I )Es fs ds+ (I + i t D̃0)

−1
∫ t

0
Es fs ds.

For the first term, square function estimates show that ψt(D̃0) : L2 → Y∗ ⊂ X is continuous, and
Theorem 11.4 shows ‖

∫
∞

0 e−s3̃Es fs ds‖2 . ‖ f ‖Y (or . ‖ f ‖Yδ
when n = 1, but ‖ f ‖Yδ

. ‖ f ‖Y for
conormal gradients of solutions by Proposition 9.7). For the second and third terms, we proceed as above
for I1 and I2 by Schur estimates using ‖ψt(D̃0)e−s3̃

‖. t/s, and ‖(I + i t D̃0)
−1(e−s3̃

− I )‖. s/t.

(iii) It remains to estimate (I + i t D̃0)
−1
∫ t

0 Es fs ds, and this is where we use ‖E‖C . Consider first Ñ p
∗ .

Fix a Whitney box W0 =W (t0, x0). We proceed by a duality argument in the spirit of Corollary 6.3, and
bound ‖(I + i t D̃0)

−1
∫ t

0 Es fs ds‖L p(W0) by testing against h ∈ Lq(W0;V), 1/p+ 1/q = 1. As in step
(iii) of the proof of [Part I, Lemma 10.2], this leads to a pointwise estimate implying∥∥∥∥Ñ p

∗

(
(I + i t D̃0)

−1
∫ t

0
Es fs ds

)∥∥∥∥
2
. ‖E‖C‖ f ‖Y.

Since the proof here is essentially the same as there, but replacing Rn by Sn , using area and maximal
functions on Sn instead, we omit the details. The main ingredients are the L p off-diagonal estimates for
(I + i t D̃∗0)

−1 from Lemma 6.2(i) and the tent space estimate [Coifman et al. 1985, Theorem 1(a)] of
Coifman, Meyer and Stein.

To estimate Ñ∗((I + i t D̃0)
−1
∫ t

0 Es fs ds)⊥), we proceed by duality as above. We now instead test
against h ∈ L2(W0;V) with h‖ = 0 and use the L2→ Lq off-diagonal estimates for (I + i t D̃∗0)

−1 from
Lemma 6.2(ii) to obtain ∥∥∥∥Ñ∗

((
(I + i t D̃0)

−1
∫ t

0
Es fs ds

)
⊥

)∥∥∥∥
2
. ‖E‖C‖ f ‖Y.

It remains to see that, when n = 1, the Ñ∗ estimate also applies to the tangential part w‖. Consider
the transformed conjugate coefficients B̃ = ̂̃A and B̃0 =

̂̃A1 from the proof of Proposition 5.4, and let
Ẽ := B̃0 − B̃. Then f̃ := J t f solves (∂t + DB̃) f̃ = 0, which yields the estimate of ‖Ñ∗(w‖)‖2 since
(S̃A f )‖ = (J t S̃A f )⊥ = (S̃Ã f̃ )⊥. This completes the proof. �

Remark 14.3. The proof also shows a priori estimates for the operators S̃A when f is not supposed to
be a conormal gradient of a solution. Assume ‖E‖C∩L∞ <∞. If n ≥ 2, then we have for each p < 2,

‖Ñ p
∗
(S̃A f )‖2+‖Ñ∗((S̃A f )⊥)‖2 . ‖E‖C∩L∞‖ f ‖Y, f ∈ Y.
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When n = 1, we have for each δ > 0,

‖Ñ∗(S̃A f )‖2 . ‖E‖C∩L∞‖ f ‖Yδ
, f ∈ Yδ.

15. Almost everywhere nontangential convergence

Since solutions are not defined in a pointwise sense, the classical notion of nontangential convergence at
a boundary point x is replaced here by

lim
r→1
|W o(r x)|−1

∫
W o(r x)

h( y) d y exists,

which we call convergence of Whitney averages at x because the region W o(r x) is a Whitney ball. Note
that since the Whitney balls at x cover a truncated cone with vertex x , it really amounts to a nontangential
convergence. Besides, a slight modification of the proofs below yields limits of averages on Whitney
regions W o(z) for z in a fixed cone with vertex at x0, as |z| → 1. The exact choice of the Whitney balls
does not matter.

Definition 15.1. Let h be a function in O1+n with range in the bundle V in the sense that h(r x) ∈Vx for
all r > 0 and x ∈ Sn . Let x0 ∈ Sn and 1≤ p <∞. We say that the Whitney averages of h converge at x0

in L p sense to c ∈ Vx0 if for any/some section cx0 ∈ C∞(Sn
;V) with cx0(x0)= c,

lim
r→1
|W o(r x0)|

−1
∫

W o(r x0)

|h( y)− cx0(y)|
pd y = 0.

Here W o(x) denotes a Whitney ball in O1+n centered at x. We say that the Whitney averages of h converge
in L p sense almost everywhere to h0 with respect to surface measure if this happens with c = h0(x0) for
almost every point x0 ∈ Sn . For functions with values in a trivial bundle, the sections cx0 are just constant
functions.

Note that the limit does not depend on the choice of the section cx0 , so this explains the “any/some”
and it suffices to prove the existence of the limit for one chosen section. Clearly this notion entails
convergence of Whitney averages.

Theorem 15.2. Let A be coefficients with ‖E‖C∩L∞ < ∞. Let u be a Yo-solution to the divergence
form equation with coefficients A and let u1 be the boundary trace of u given by Corollary 12.8. Then
Whitney averages of u converge in L2 sense almost everywhere to u1. In particular, Whitney averages of
u converge almost everywhere to u1.

The result also holds for the R1+n
+ setup of [Part I], with almost identical proof.

Proof. As in the proof of Theorem 13.2, we can write

u(x)= eσ t(e−t3̃v0+ w̃t)⊥(x),

where x = e−t x , σ = n−1
2 , v0 ∈ L2 with ‖v0‖2 . ‖∇xu‖Yo +

∣∣∫
Sn u1dx

∣∣ and u1 = (v0)⊥.
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Let p < 2 as in the third inequality of Corollary 6.3. Let x0 be a point on Sn , and let B(x0, t) be the
surface ball centered at x0 with radius t . Adapting the usual Lebesgue point argument for p = 1, it is
seen that for almost all points x0

lim
t→0
|B(x0, t)|−1

∫
B(x0,t)

|v0(x)− vx0(x)|
pdx = 0

for any section vx0 ∈ C∞(Sn
;V) with vx0(x0)= v0(x0) and one can further assume Dvx0 = 0, which in

particular implies that its normal component is the constant scalar function (v0(x0))⊥ = u1(x0). The key
point is the identity

u(x)− u1(x0)= (eσ t e−t3̃(v0− vx0))⊥(x)+ eσ t(w̃t)⊥(x), (47)

which follows since D̃0vx0 =−σNvx0 , and hence 3̃vx0 = σvx0 and eσ t e−t3̃vx0 = vx0 .
From Theorem 14.1, ‖Ñ∗(χt<τ w̃⊥)‖2→ 0 as τ → 0. Thus we can assume that the Whitney averages

of w̃⊥ converge to 0 in L2 sense at x0. It remains to show, with hx0 := v0− vx0 ,

lim
t0→0
|W (t0, x0)|

−1
∫

W (t0,x0)

|(eσ t e−t3̃hx0)⊥(x)|
2 dt dx = 0.

As in [Stein 1970, Chapter VII, Theorem 4], the rest of the argument consists in using the maximal
estimates in Theorem 10.3 with some adaptation. As we do not have pointwise bounds on the operators
that substitute the Poisson kernel we also have to handle more technicalities. Let 0 < c0t0 < τ with
t0, τ < 1 to be chosen and c−1

0 t0 < t < c0t0. In the L2 average, write

(eσ t e−t3̃hx0)⊥ = ((1+ i tσ)(I + i t D̃0)
−1hx0)⊥+ (e

σ t e−t3̃hx0 − (1+ i tσ)(I + i t D̃0)
−1hx0)⊥.

For the first term, we use (26). Fixing t and taking only the L2 average in x , this gives us a bound∑
j≥2

2− j
(
|B(x0, 2 j t)|−1

∫
B(x0,2 j t)

|hx0(x)|
p dx

)1/p

.

This is controlled by
M p
τ (hx0)(x0)+ (t0/τ)M p(hx0)(x0),

where M is the Hardy–Littlewood maximal operator over surface balls on Sn , M p(h) := M(|h|p)1/p, and
the subscript τ means that we restrict the maximal operator to balls having radii less than τ . This control
is obtained by truncating the sum at 2 j

≈ τ/t and using that t ≈ t0. The average in t now yields the same
bound.

For the second term, we note that (eσ t e−t3̃
− (1+ i tσ)(I + i t D̃0)

−1)vx0 = 0. Thus we may replace
hx0 by v0 in this term, and write it

(eσ tψ(t D̃0)v0)⊥+ (eσ t
− (1+ iσ t)−1)((I + i t D̃0)

−1v0)⊥.

with ψ(λ) := e−|λ|− (1+ iλ)−1. The first term has estimates

‖Ñ∗(χt<τψ(t D̃0)v0)‖
2
2 .

∫ τ

0
‖ψ(t D̃0)v0‖

2
2

dt
t
→ 0, τ → 0,
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by Lemma 9.3 and square function estimates. Therefore we can assume that Whitney averages of
(eσ tψ(t D̃0)v0)⊥ converge to 0 in L2 sense at x0. By Theorem 10.3, the second is controlled by

τM p(v0)(x0).

Thus it remains to show convergence to zero of

M p
τ (hx0)(x0)+ (t0/τ)M p(hx0)(x0)+ τM p(v0)(x0).

Since M p(v0)∈ L2(Sn) as p< 2, we can further assume for x0 that M p(v0)(x0)<∞. For such fixed x0 it
follows that M p(hx0)(x0)≤M p(v0)(x0)+M p(vx0)(x0)<∞. We now make M p

τ (hx0)(x0)+τM p(v0)(x0)

small by choosing τ small. Then choose t0 < τ to make (t0/τ)M p(hx0)(x0) small. All the constraints on
x0 are met almost everywhere and this completes the proof. �

Remark 15.3. The proof of almost everywhere convergence for averages applies to v (with Ñ p
∗ , p < 2,

if n ≥ 2). The starting point is

eσ tvt(x)− vx0(x)= eσ t e−t3̃(v0− vx0)(x)+ eσ t w̃t(x)

replacing (47) and the rest of the proof is as above. The only needed modification of the argument is that
we now use (25) instead of (26). We obtain almost everywhere convergence of Whitney averages of eσ tv

in L p sense to v0 for p < 2. Of course, the term eσ t can easily be removed in the end. This factor was
needed in order to have eσ t e−σ3̃ = I on N(D).

Corollary 15.4. Assume that A satisfies ‖E‖C∩L∞ < ∞ and is such that all weak solutions u to the
divergence form equation with coefficients A, for some fixed constant c > 1, satisfy the local boundedness
property

sup
x∈B
|u(x)| ≤ C

(
|cB|−1

∫
cB
|u( y)|2d y

)1/2

,

with a constant C independent of u and of closed balls B with cB ⊂O1+n . Then any Yo-solution to the
divergence form equation with coefficients A converges nontangentially almost everywhere to its boundary
trace.

The local boundedness property is a classical consequence of local Hölder regularity for weak solutions.
For real equations (m = 1), the latter follows from [Moser 1961; De Giorgi 1957]. For small complex L∞
perturbations of real equations, this is from [Auscher 1996]. For two dimensional systems (n = 1), local
regularity follows immediately from reverse Hölder inequalities described in Theorem 9.8 and Sobolev
embeddings. For any dimension and system (m ≥ 1, n ≥ 1), with continuous in O1+n or vmo coefficients,
this is explicitly done in [Auscher and Qafsaoui 2000].

Proof. Applying the local boundedness property to u − u1(x0) on Whitney balls yields the desired
convergence for almost every x0 from Theorem 15.2. �

We know describe new almost everywhere convergence results for Xo-solutions.
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Theorem 15.5. Let A be coefficients with ‖E‖C∩L∞ <∞. Let g be an Xo-solution with potential u to the
divergence form equation with coefficients A. Then for any p < 2, Whitney averages of g⊥ = ∂t u, and of
(Ag)‖ = (A∇xu)‖, converge in L p sense almost everywhere to (g1)⊥ and (A1g1)‖ respectively, where g1

is the boundary trace of g given by Theorem 12.4.
Furthermore, if we have pointwise ellipticity conditions on A, then the Whitney averages of ∇xu and

∂νA u converge in L p sense almost everywhere to g1 and (A1g1)⊥ respectively.
Finally, in all cases, Whitney averages of the potential u converge almost everywhere in L2 sense to u1.

Recall that pointwise ellipticity holds when m = 1 (equations) or n = 1 (two dimensional systems).
If A is continuous in O1+n , then pointwise accretivity can be deduced from the strict accretivity in the
sense of (2), for any m, n. See [Friedman 1976], for example. We do not know if this convergence of
∇xu and ∂νA u holds when m ≥ 2 and n ≥ 2 in general.

Proof. We begin with the convergence for u. It is a straightforward consequence of the growth ‖vt−v0‖2=

O(t) for t > 0 in Theorem 13.2 and u(x)− u1(x)= (e−σ tvt − v0)⊥(x). Let us turn to the gradient.
By Theorem 13.2 we have ft = e−t3 f0+wt for some f0 ∈H and w ∈ Y∗. From the correspondence

between g and f in Proposition 3.3, it follows that, modulo a rescaling, (g)⊥En+ (Ag)‖ equals B f . Thus
we need to prove convergence of Whitney averages of

Bt ft = e−t3̃(B0 f0)+ (B0e−t3
− e−t3̃B0) f0−Et e−t3 f0+ Btwt .

It is clear that any Y∗ element has Whitney averages converging almost everywhere to 0 in L2 sense.
This applies to the last three terms. Indeed, we have ‖w‖Y∗ < ∞, and hence ‖Bw‖Y∗ < ∞. Also
‖Et e−t3 f0‖Y∗ . ‖E‖∗‖e−t3 f0‖X <∞. Furthermore, using B0(I + i t DB0)

−1
= (I + i t B0 D)−1 B0, we

write(
B0e−t3

− e−t3̃B0
)

f0

= B0
(
e−t |DB0+σN |

− (I + i t (DB0+ σN ))−1) f0+ B0
(
(I + i t (DB0+ σN ))−1

− (I + i t DB0)
−1) f0

+
(
(I + i t B0 D)−1

− (I + i t (B0 D− σN ))−1)B0 f0+
(
(I + i t (B0 D− σN ))−1

− e−t |B0 D−σN |)B0 f0.

Square-function (that is, Y∗) estimates hold for the first and fourth terms, whereas the second and third
terms have L2 norms bounded by Ct . Hence χt<1(B0e−t3

− e−t3̃B0) ∈ Y∗.
For the term e−t3̃(B0 f0) we proceed as in the proof of Theorem 15.2, modified as in Remark 15.3.
To complete the proof, we now assume that A is pointwise elliptic. Up to rescaling, we have to prove

convergence of Whitney averages of the conormal gradient f of u. To see this, write f = B−1
0 (B0 f )

using that B0 is now invertible in L∞(Sn
;L(V)), seen as radial coefficients on O1+n . Now the same

argument as above replacing Bt by B0 shows that the Whitney averages of B0 f converge in L p sense to
B0 f0 almost everywhere for any p < 2. We claim that the notion of convergence in L p-sense of Whitney
averages is stable when p< 2 under multiplication by bounded radially independent coefficients. Assume
that h has such a convergence property and let M ∈ L∞(Sn

;L(V)). Select smooth sections hx0 and Mx0

with hx0(x0)= h(x0) and Mx0(x0)= M(x0). Then take the L p(W (t0, x0) average of

M(y)h( y)−Mx0(y)hx0(y)= (M(y)−Mx0(y))h( y)+Mx0(y)(h( y)− hx0(y))
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with y = e−t y ∈W (t0, x0). For the second term, one uses the assumption on h and that Mx0 is bounded.
For the first term, use Hölder inequality with exponents 1/p = 1/r +1/q and p < r < 2. The exponent q
falls on M(y)−Mx0(y) and Lebesgue convergence theorem applies (this is a further almost everywhere
constraint on x0). The exponent r falls on h which has uniform control by assumption. �

16. Fredholm theory for (I − SA)
−1

We saw in Section 12 that the invertibility of I − SA on X (resp. Y) allows to represent Xo (resp. Yo)
solutions through Cauchy type extensions

f = (I − SA)
−1e−t3E+0 f0

(resp. f = (I − SA)
−1 De−t3̃ Ẽ+0 v0)). Working in the space X or Y, it is clear from Theorem 11.3 that

I − SA is invertible provided ‖E‖∗ is small enough. In this section, we use Fredholm operator theory to
relax this condition and show that it suffices to assume this smallness only near the boundary t = 0. Our
discussion in this section is limited to the specific but relevant case where σ = n−1

2 .

Theorem 16.1. Assume that ‖E‖∗ <∞, so that SA is bounded on X and Y. There exists ε > 0 such that
if E satisfies the small Carleson condition

lim
τ→0
‖χt<τE‖∗ < ε, (48)

then I − SA is invertible on X and Y.

We remark that (48) is equivalent to the small Carleson condition (10). The proof of Theorem 16.1
requires the following lemmas.

Lemma 16.2. Assume ‖E‖∗ <∞. Then I − SA is injective on X.

Proof. Assume that f ∈ X satisfies f = SA f . Lemma 11.5 shows that f has trace h− ∈ E−0 H. As
X⊂ L2(R+; L2) and f is valued in H, we have f ∈ L2(R+;H). Extend f to f 1

∈ L2(R;H), letting

f 1
t :=

{
ft , t > 0,
et3h−, t ≤ 0.

To verify that f 1 satisfies ∂t f 1
+ (DB1

+σN ) f 1
= 0 in R× Sn distributional sense, where B1

t := Bt for
t>0 and B1

t = B0 for t ≤0, consider a test function φ ∈C∞0 (R×Sn
;C(1+n)m) and let ξε(t) :=1−η0(|t |/ε),

where η0 is the function from Lemma 11.1. Then∫
R

((−∂t + (B1)∗D+ σN )φ, f 1) dt

=

∫
R

(
((−∂t + (B1)∗D+ σN )((1− ξε)φ), f 1)+ ((−∂t + (B1)∗D+ σN )(ξεφ), f 1)

)
dt

= 0+
∫

R

ξε((−∂t + (B1)∗D+ σN )φ, f 1) dt + ε−1
∫ 2ε

ε

(φt , f 1
t ) dt − ε−1

∫
−ε

−2ε
(φt , f 1

t ) dt

→ 0+ (φ0, h−)− (φ0, h−)= 0,
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with φ0(x) :=φ(0, x), using that the equation holds both in R+ and R−. Hence ∂t f 1
+(DB1

+σN ) f 1
= 0

in all R× Sn . Since σ = n−1
2 , extending Proposition 3.3 from O1+n to all R1+n (see Remark 3.6), we see

that f 1 corresponds to a function g1
∈ L2(R

1+n
;C(1+n)m) solving divx(A1g1) = 0, curlx g1

= 0 in all
R1+n , with A1 corresponding to B1. To verify that this forces g1, and therefore f 1 and f , to vanish, note
that for any fixed R> 0 we can find u such that g1

=∇xu, where
∫
|x|<2R |u|

2 dx . R2
∫
|x|<2R |g

1
|
2 dx by

Poincaré’s inequality and the implicit constant is independent of R. Take a test function η∈C∞0 (|x|< 2R)
with η = 1 on |x|< R with |∇xη|. R−1, and use that divx(A1g1)= 0 in the distributional sense to get∫
|x|<R
|g1
|
2 dx . Re

∫
(A1g1,∇xu)ηdx =−Re

∫
(A1g1,∇xη)u dx

.

(∫
R<|x|<2R

|g1
|
2 dx

)1/2 (∫
|x|<2R

|g1
|
2 dx

)1/2

.

(∫
R<|x|<2R

|g1
|
2 dx

)1/2

‖g1
‖2.

Letting R→∞ this shows that g1
= 0, which proves the lemma. �

Lemma 16.3. Assume ‖E‖∗ <∞ and fix τ > 0. Then there are lower bounds

‖ f ‖L2(τ,∞;H) . ‖(I − SA) f ‖L2(τ/2,∞;H),

where the implicit constant depends on τ , for all f ∈ L2(R+;H) such that ft = 0 for t < τ .

Proof. By Lemma 11.5, f and f 0
:= (I − SA) f satisfy (∂t + DB0+σN ) f 0

= (∂t + DB+σN ) f . As in
Proposition 3.3 combined with Proposition 2.1, this can be translated to{

divx(A1g0)= divx(Ag),
curlx g0

= curlx g,

in O1+n distributional sense, where g0
r = r−(n+1)/2((B0 f 0

t )⊥En+( f 0
t )‖) and gr = r−(n+1)/2((B ft)⊥En+( ft)‖).

Write O1+n
τ := {|x|< e−τ }, so that O1+n

τ ⊂O1+n
τ/2 . In particular, the last equation implies that there is a

potential u :O1+n
τ/2 → Cm such that

g− g0
=∇xu in O1+n

τ/2 ,

and we may choose u so that ‖u‖L2(O
1+n
τ/2 )
. ‖g− g0

‖L2(O
1+n
τ/2 )

. Fix η ∈ C∞0 (O
1+n) such that η|O1+n

τ
= 1

and supp η ⊂O1+n
τ/2 . Using the first equation and supp g ⊂O1+n

τ gives

Re
∫
(Ag, g− g0) dx = Re

∫
(Ag,∇x(ηu)) dx = Re

∫
(Ag0,∇x(ηu)) dx

= Re
∫

O1+n
τ/2

(
A1g0, η(g− g0)+ (∇xη)u

)
dx . ‖g0

‖L2(O
1+n
τ/2 )
‖g− g0

‖L2(O
1+n
τ/2 )
.

Note that (gr )‖ = r−(n+1)/2( ft)‖ ∈ R(∇S), so that gr ∈ H1. The accretivity (14) of Ar , for each fixed
r ∈ (0, 1), and integration for 0< r < e−τ imply that
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‖g‖2
L2(O

1+n
τ )
. Re

∫
O1+n
τ

(Ag, g) dx ≤ Re
∫

O1+n
τ

(Ag, g− g0) dx+‖g‖L2(O
1+n
τ )‖g

0
‖L2(O

1+n
τ )

. ‖g‖L2(O
1+n
τ )‖g

0
‖L2(O

1+n
τ/2 )
+‖g0

‖
2
L2(O

1+n
τ/2 )
,

and hence that ‖g‖L2(O
1+n
τ ) . ‖g

0
‖L2(O

1+n
τ/2 )

. By the isomorphism (18), this translates to ‖ f ‖L2(τ,∞;H) .

‖ f 0
‖L2(τ/2,∞;H) and proves the lemma. �

Lemma 16.4. Assume ‖E‖∗ <∞. Let η :R+→R be a Lipschitz function, that is |η(t)−η(s)| ≤C |t− s|
for all t, s > 0. Then the commutator

[η, SA] = ηSA− SAη

is a compact operator on L2(R+, dt; L2).

Proof. Write SA = ŜA− σ ŠA as in Theorem 11.3. Since ŠA =3
−1 ŜA, except that Ê±0 are replaced by

Ě±0 , it is enough to show compactness of [η0, ŜA]. It suffices to verify that

F(3) : ft 7→

∫ t

0
(η(t)− η(s))3e−(t−s)3 fs ds, (49)

is a compact operator on L2(R+, dt;H). (The proof below only depends on the fact that 3 has compact
resolvents.) Indeed, by duality this implies that also ft 7→

∫
∞

t (η(t)− η(s))3e−(s−t)3 fs ds is compact,
upon changing 3 to 3∗. Since Ê±0 E are bounded L2(R+; L2)→ L2(R+;H) and commute with η, we
conclude that [η, ŜA] is compact.

Consider the symbol

F(λ) : ft 7→

∫ t

0
(η(t)− η(s))λe−(t−s)λ fs ds.

To estimate the norm of this integral operator, acting in L2(R+;C) for fixed λ ∈ So
ν,σ+, we apply Schur

estimates as in [Part I, Lemma 6.6]. We need to estimate

sup
t>0

∫ t

0
|(η(t)− η(s))λe−(t−s)λ

| ds+ sup
s>0

∫
∞

s
|(η(t)− η(s))λe−(t−s)λ

|dt.

Using Lipschitz regularity, the first integral has estimate∫ t

0
(t − s)λ1e−(t−s)λ1dt = λ−1

1

∫ tλ1

0
xe−x dx . λ−1,

where λ1 := Re λ≈ |λ| for λ ∈ So
ν,σ+, and a similar estimate for the second integral gives the bound

‖F(λ)‖L2(R+;C)→L2(R+;C) . λ
−1.

It is also clear that F(λ) defines a compact operator on L2(R+;C) (for example truncate the kernel and
show from the Schur estimates that F(λ) is a uniform limit of Hilbert–Schmidt operators).

Consider now the Dunford integral

F(3)=
1

2π i

∫
∂Sθ,σ+

F(λ)(λ−3)−1dλ, ω < θ < ν.
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From the compactness of F(λ) : L2(R+;C)→ L2(R+;C), and of (λ−3)−1
:H→H by Proposition 4.3,

we deduce the compactness of F(λ)(λ−3)−1
: L2(R+;H)→ L2(R+;H) (for example by approximating

(λ−3)−1 uniformly by finite rank operators). Since ‖F(λ)(λ−3)−1
‖ . λ−2, the Dunford integral

converges in norm, at least when σ > 0, and we conclude that F(3) is a compact operator on L2(R+;H)

(for example, approximate with Riemann sums, using norm continuity of λ 7→ F(λ)(λ−3)−1). In
dimension n = 1, i.e., σ = 0, note that λ= 0 does not belong to the spectrum of D0 on H. Hence it is not
needed to integrate through λ= 0 in the Dunford integral, in which case the Dunford integral converges
in norm also here. This proves the lemma. �

Lemma 16.5. Assume ‖E‖∗ <∞. Let 0< a < b <∞ and write χ0 := χ(0,a) and χ∞ := χ(b,∞) for the
characteristic functions of these intervals. Then

χ0SAχ∞ : X→ X and χ∞SAχ0 : Y→ Y

are compact operators.

Proof. As in the proof of Lemma 16.4, we may replace SA by ŜA as straightforward modifications of the
proof below give the result for ŠA.

(i) We claim that the integral operator

F(λ) ft :=

∫ a

0
λe−(t−s)λ fs ds

is a Hilbert–Schmidt (hence compact) operator F(λ) : L2(0, a; sds)→ L2(b,∞; dt). Indeed, a straight-
forward calculation shows that∫

∞

b

∫ a

0
|λe−(t−s)λ

|
2s ds dt ≤ a

4 e−2(b−a)λ.

As in the proof of Lemma 16.4, it follows by operational calculus that

L2(0, a; sds;H)→ L2(b,∞;H) : ft 7→

∫ a

0
3e−(t−s)3 fs ds

is compact. Since Ê−0 E is bounded on L2(0, a; sds;H), this proves that χ∞ ŜAχ0 : Y→ Y is compact.

(ii) To prove that χ0 ŜAχ∞ : X→ X is compact, it suffices to show that

L2(b,∞;H)→ X : ft 7→ χ0(t)
∫
∞

b
3e−(s−t)3 fs ds (50)

is compact, since Ê−0 E is bounded on L2(b,∞;H). To prove this, we write, for t < a,∫
∞

b
3e−(s−t)3 fs ds

=

∫
∞

b
3e−(s+t)3 fs ds+

∫
∞

b
(I − e−2t3)3e−(s−t)3 fs ds

= e−t3e−δ3
∫
∞

b
3e−(s−δ)3 fs ds+

(
√

te−(a−t)3 I − e−2t3
√

t3

)
e−δ3

∫
∞

b
33/2e−(s−a−δ)3 fs ds

= I1+ I2,
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where δ > 0 is small enough. The Cauchy–Schwarz inequality shows that the integral expressions in
both I1 and I2 define bounded operators L2(b,∞;H)→H, whereas e−δ3 = D−1

0 (D0e−δ|D0|) is compact
on H by Proposition 4.3. For I1, the factor e−t3

:H→ X is bounded by Theorem 10.1. Since Y∗ ⊂ X,
boundedness of the first factor in I2 follows from boundedness of

√
te−(a−t)3 for t ∈ (0, a), and square

function estimates for 3 since ψ(λ)= (1− e−2λ)/
√
λ ∈9(So

ν+). This completes the proof. �

Proof of Theorem 16.1. (i) Consider first invertibility in the space X. By Theorem 11.3, we have
‖SA‖X→X . ‖E‖∗, for any perturbation of coefficients E. Thus, for any τ > 0

‖SA f ‖X ≤ C‖χt<τE‖∗‖ f ‖X, whenever ft = 0 for t > τ,

with C independent of τ . This follows upon writing E f = (χt<τE) f . Under the hypothesis, we can
choose τ > 0 such that C‖χt<τE‖∗ ≤ 1/2. We obtain

‖(I − SA) f ‖X ≥ ‖ f ‖X−
1
2‖ f ‖X =

1
2‖ f ‖X, whenever ft = 0 for t > τ.

Next consider an arbitrary f ∈ X. Pick η0 ∈ C∞(R+) such supp η0 ⊂ [0, τ ] and η0 = 1 for t < τ/2.
Write η1 := 1−η0. Then ‖(I−SA)(η0 f )‖X≥

1
2‖η0 f ‖X, and Lemma 16.3 shows that ‖(I−SA)(η1 f )‖X&

‖η1 f ‖X. This gives

‖ f ‖X ≤ ‖η0 f ‖X+‖η1 f ‖X . ‖(I − SA)(η0 f )‖X+‖(I − SA)(η1 f )‖X

≤ ‖η0(I − SA) f ‖X+‖[η0, SA] f ‖X+‖η1(I − SA) f ‖X+‖[η1, SA] f ‖X

. ‖(I − SA) f ‖X+‖[η0, SA] f ‖X.

To show that [η0, SA] : X→ X is compact, we write

[η0, SA] = χ0[η0, SA] + (1−χ0)[η0, SA] = χ0SA(1− η0)+ (1−χ0)[η0, SA],

where χ0 := χ(0,τ/4). Hence, compactness of the first term is granted from Lemma 16.5. Next, as the X

and L2 norms are the same away from the boundary, Lemma 16.4 implies that the second term is compact
from X→ X. This shows that I − SA : X→ X is a semi-Fredholm operator.

To see that it is a Fredholm operator with index 0, note that the lower estimate on I − SA above goes
through with E replaced by αE, α ∈ [0, 1]. Apply the method of continuity. Since I − SA is injective on
X by Lemma 16.2, it follows that it is invertible.

(ii) Consider now invertibility in the space Y. That I − SA : Y→ Y is a Fredholm operator with index 0
follows as in (i), provided we show that [η0, SA] : Y→ Y is compact. Here we write

[η0, SA] = [η0, SA]χ0+ [η0, SA](1−χ0)= (η0− 1)SAχ0+ [η0, SA](1−χ0),

and Lemmas 16.5 and 16.4 are applied in the same way.
To verify bijectivity, we note that X⊂ Y is a dense continuous inclusion, where I − SA : X→ X is an

isomorphism. This implies that I − SA :Y→Y has dense range, hence is an isomorphism since its index
is 0. �
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17. Solvability of BVPs

Characterization of well-posedness. For A such that I − SA is invertible, we introduce boundary maps
and characterize well-posedness in terms of their invertibility.

Definition 17.1. For coefficients A such that ‖E‖∗ <∞ and I − SA : X→ X is invertible, define the
perturbed Hardy projection

E+A h := E+0 h− E−0

∫
∞

0
e−s3DEs fs ds, h ∈ L2(Sn

;V),

where f := (I−SA)
−1e−t3E+0 h. Write E−A := I−E+A . Here, E±0 denote the Hardy projections associated

to the corresponding radially independent coefficients A1.

Proposition 17.2. The operators E±A : L2(Sn
;V)→ L2(Sn

;V) are bounded projections and the range
E+A H ⊂ H consists of all traces f0 of conormal gradients f of Xo-solutions to the divergence form
equation with coefficients A in O1+n .

Proof. That E±A are bounded follows from their construction. The projection property (E±A )
2
= E±A

follows from E+0 E−0 = 0. Next, the statement about the range follows from Theorem 12.3. �

Definition 17.3. For coefficients A such that ‖E‖∗ <∞ and I − SA : Y→ Y is invertible, define the
perturbed Hardy projection

Ẽ+A h̃ := Ẽ+0 h̃− Ẽ−0

∫
∞

0
e−s3̃Es fs ds, h̃ ∈ L2(Sn

;V),

where f := (I − SA)
−1 De−t3̃ Ẽ+0 h̃. Write Ẽ−A := I − Ẽ+A . Here, Ẽ±0 denote the Hardy projections

associated to the corresponding radially independent coefficients A1.

Proposition 17.4. The operators Ẽ±A : L2(Sn
;V)→ L2(Sn

;V) are bounded projections and {(Ẽ+A h̃+)⊥ ;
h̃+ ∈ Ẽ+0 L2} consists of all traces of Yo-solutions to the divergence form equation with coefficients A in
O1+n .

Proof. That Ẽ±A are bounded follows from their construction. The projection property (Ẽ±A )
2
= Ẽ±A

follows from Ẽ+0 Ẽ−0 = 0. Next, the statement about the trace space follows from Corollary 12.8(ii). �

We remark that, unlike the case of r -independent coefficients, the complementary projections E−A and
Ẽ−A are in general not related to solutions of a divergence form equation in the complementary domain
R1+n

\O1+n .

Proposition 17.5. For coefficients A such that I − SA is invertible on X for (i) and (ii), or I − SA is
invertible on Y for (iii), the following hold.

(i) The Neumann problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if

E+0 H→H⊥ : h+ 7→ (E+A h+)⊥ (51)

is an isomorphism.
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(ii) The regularity problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if

E+0 H→H‖ : h+ 7→ (E+A h+)‖ (52)

is an isomorphism.

(iii) The Dirichlet problem (with coefficients A) is well-posed in the sense of Definition 1.2 if and only if

Ẽ+0 L2(Sn
;V)→ L2(Sn

;Cm) : h̃+ 7→ (Ẽ+A h̃+)⊥ (53)

is an isomorphism.

Proof. (i) The ansatz (36) in Theorem 12.3 gives is a one-to-one correspondence between h+ ∈ E+0 H and
conormal gradients f = (I − SA)

−1e−t3h+ of Xo-solutions to the divergence form equation. Moreover,
f0 = E+A h+ by Proposition 17.2. Under this correspondence, invertibility of h+ 7→ (E+A h+)⊥ translates
to well-posedness of the Neumann problem. The proof of (ii) is similar.

(iii) The ansatz (43) from Corollary 12.8(iii) gives a one-to-one correspondence between h̃+ ∈ Ẽ+0 L2

and Yo-solutions u to the divergence form equation. Moreover, (Ẽ+A h̃+)⊥ = u1 by Proposition 17.4.
Under this correspondence, invertibility of h̃+ 7→ (Ẽ+A h̃+)⊥ translates to well-posedness of the Dirichlet
problem. �

Equivalence between Dirichlet and regularity problems. We show that the Dirichlet and regularity
problems are the same up to taking adjoints.

Proposition 17.6. Assume that A are coefficients such that I − SA is invertible on X and I − SA∗ is
invertible on Y. Then the regularity problem with coefficients A is well-posed if and only if the Dirichlet
problem with coefficients A∗ is well-posed.

It is not clear to us whether invertibility of I − SA on X implies or is implied by invertibility of I − SA∗

on Y. Thus we assume both. We need three lemmas, the first being useful reformulations of invertibility
of the Dirichlet boundary map, the second an identity between Hardy projections and the third an abstract
principle.

Lemma 17.7. The maps

Ẽ+0 L2(Sn
;V)→ L2(Sn

;Cm) : h̃+ 7→ (Ẽ+A h̃+)⊥

and

Ẽ+0 (L2(Sn
;V)/H⊥)→ L2(Sn

;Cm)/Cm
: h̃+ 7→ (Ẽ+A h̃+)⊥

are simultaneous isomorphisms.

Proof. This amounts to mod out H⊥. We recall that H⊥ is preserved by 3̃ and Ẽ±0 , and annihilated by
D, so from the definition Ẽ+A h̃+ = Ẽ+0 h̃+ ∈ H⊥ for h̃+ ∈ H⊥. By Lemma 7.5, (Ẽ+0 h̃+)⊥ = (h̃+)⊥ for
h̃+ ∈H⊥, so Ẽ+0 (L2(Sn

;V)/H⊥)→ L2(Sn
;Cm)/Cm

: h̃+ 7→ (Ẽ+A h̃+)⊥ is a well defined map. That the
two maps simultaneously are isomorphisms can now be verified from {(Ẽ+A h̃+)⊥ ; h̃+ ∈H⊥} = Cm . �
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Lemma 17.8. On L2(Sn
;V) we have the duality relation

(E−A )
∗
= N Ẽ+A∗N . (54)

Proof. The proof of this duality builds on the formula

(DA1)
∗
=−N D̃A∗1 N

on L2(Sn
;V) from Lemma 4.2 with A1 equal to the boundary trace of A and where we used the notation

at the end of Definition 4.1. Using this observation and short hand notation E±0 = E±A1
, 3 = |DA1 |,

Ẽ±0 = Ẽ±A∗1 and 3̃= |D̃A∗1 |, it follows that we have

(E±0 )
∗
= N Ẽ∓0 N , 3∗ = N3̃N .

Note that when n = 1, these identities can be also checked from the extensions of the projections in
Definition 7.4. This implies that∫

∞

0
(N f̃t ,Et(SA f )t) dt =

∫
∞

0
(N (SA∗ f̃ )s,Es fs) ds, f̃ ∈ Y, f ∈ X,

which follows from Fubini’s theorem and the formula defining SεA from Lemma 11.2, and then letting
ε→ 0 using boundedness on X and Y. Details are left to the reader. Note that SA∗ is defined using the
coefficients Ẽt := Â∗1− Â∗, while Et = Â1− Â. This duality relation between SA and SA∗ clearly extends
to their resolvents.

For h, h̃ ∈ L2, using the isomorphism assumption on I − SA and I − SA∗ , we let

f = (I − SA)
−1e−t3E+0 h ∈ X and f̃ := (I − SA∗)

−1 De−s3̃ Ẽ+0 h̃ ∈ Y

and calculate

(Nh̃, E+A h)= (Nh̃, E+0 h)−
∫
∞

0
(Nh̃, E−0 e−s3DEs fs) ds

= (N Ẽ−0 h̃, h)+
∫
∞

0
(N De−s3̃ Ẽ+0 h̃,Es((I − SA)

−1e−t3E+0 h)s) ds

= (N Ẽ−0 h̃, h)+
∫
∞

0
(N ((I − SA∗)

−1 De−s3̃ Ẽ+0 h̃)t ,Et e−t3E+0 h) ds

= (N Ẽ−0 h̃, h)+
∫
∞

0
(N Ẽ−0 e−t3̃Ẽt f̃t , h) dt = (N Ẽ−A∗ h̃, h).

This completes the proof. �

Lemma 17.9. Assume that N± and E± are two pairs of complementary projections in a Hilbert space H,
i.e., (N±)2 = N± and N++ N− = I , and similarly for E±. Then the adjoint operators (N±)∗ and (E±)∗

are also two pair of complementary projections on H∗, and the restricted projection N+ : E+H→ N+H

is an isomorphism if and only if (N−)∗ : (E−)∗H∗→ (N−)∗H∗ is an isomorphism.

Proof. This is [Auscher et al. 2008, Proposition 2.52]. �
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Proof of Proposition 17.6. We apply the abstract result as follows. Here H is the Hilbert space R(D)⊂
L2(Sn

;V)= L2 and we realize its dual H∗ as L2/H
⊥. The operators N± are those from Definition 3.1:

N+ : f 7→
[

0
f‖

]
and N− : f 7→

[
f⊥
0

]
.

As both preserve H, their adjoints induce operators on H∗. We choose E+ = E+A and E− = E−A . By
Proposition 17.5(ii) and reformulating (52) using N+, well-posedness of the regularity problem for
A∗ is equivalent to N+ : E+A∗H→ N+H being an isomorphism. By Lemma 17.9 this is equivalent to
(N−)∗ : (E−A∗)

∗H∗→ (N−)∗H∗ being an isomorphism. By (54) with the roles of A and A∗ reversed,
and written as an identity on H∗ since both terms preserve H⊥, this translates into (N−)∗ : Ẽ+A H∗→

(N−)∗H∗ is an isomorphism. Using the definition of Ẽ+A , (N−)∗ = N− and H∗ = L2/H
⊥, this amounts

to Ẽ+0 (L2/H
⊥) → L2(Sn

;Cm)/Cm
: h̃+ 7→ (Ẽ+A h̃+)⊥ is an isomorphism. Using Lemma 17.7 and

Proposition 17.5(iii), this means that the Dirichlet problem for A is well-posed. �

Perturbation results. Proposition 17.6 shows that it suffices to consider the Neumann and regularity
problems and to study invertibility of the maps (51) and (52). Note that for r-independent coefficients
A = A1, we have E+A = E+0 and therefore (E+A h+)⊥ = h+

⊥
and (E+A h+)‖ = h+

‖
.

Lemma 17.10. Assume that A are coefficients such that I − SA is invertible on X. Then the maps (51)
and (52) are injective.

Proof. Assume that h+ ∈ E+0 H is such that (E+A h+)⊥ = 0. As in Theorem 12.3, let f ∈ X be such
that f0 = E+A h+, so that we are assuming ( f0)⊥ = 0. For the corresponding Xo-solution g = ∇xu to
divx Ag = 0, Green’s formula shows that∫

O1+n
(Ag, g) dx =

∫
Sn
(A1g1)⊥u1 dx,

where g ∈ Xo
⊂ L2(O

1+n
;C(1+n)m), (A1g1)⊥ = ( f0)⊥ ∈ L2(Sn

;Cm) and u ∈ H 1(O1+n
;Cm). The

accretivity of A then shows that g = 0. Hence f = 0 and h+ = E+0 f0 = 0.
The proof that the map h+ 7→ (E+A h+)‖ is injective is similar. In this case, we use that u1 is constant,

and f0 ∈H so that
∫

Sn ( f0)⊥dx = 0. �

We can now derive two perturbations results. Our first result is about L∞ perturbation within the class
of radially independent coefficients. We need two preliminary lemmas.

Lemma 17.11. Let Pt be bounded projections in a Hilbert space H which depend continuously on a
parameter t ∈ (−δ, δ), and let S :H→K be a bounded operator into a Hilbert space K. If S : P0H→K

is an isomorphism, then there exists 0< ε < δ, such that S : Pt H→K is an isomorphism when |t |< ε. If
each S : Pt H→ K is a semi-Fredholm operators with index it , then all indices it are equal.

Proof. The first conclusion is in [Axelsson et al. 2006b, Lemma 4.3] and the second one is proved similarly
using in addition the continuity method. �
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Proposition 17.12. The operators χ+(DB0 + σN ) ∈ L(H), defined for strictly accretive coefficients
A1 ∈ L∞(Sn

;L(V)) and σ ∈ R, depend continuously on A1 and σ .

Proof. This is a corollary of Theorem 7.1 and [Auscher et al. 2008, Proposition 2.42]. �

Here, note that for fixed σ we called this operator E+0 . Only its action on H matters for well-posedness
issues. In particular, this does not depend on the extension defined in Definition 7.4 when σ = 0.

Theorem 17.13. Assume that A1 are r-independent coefficients for which the Neumann problem is well-
posed. Then there exists ε > 0 such that the Neumann problem is well-posed for any r-independent
coefficients A′1 such that ‖A1− A′1‖∞ < ε. The corresponding results for the regularity and Dirichlet
problems hold.

Proof. Lemma 17.11 and Proposition 17.12 give the result for Regularity and Neumann problems as in
[Auscher et al. 2008]. For the Dirichlet problem, apply Proposition 17.6. �

The second result is perturbation from radially independent to radially dependent coefficients.

Theorem 17.14. Assume that A1 are r-independent coefficients for which the Neumann problem is
well-posed. Then there exists ε > 0 such that the Neumann problem is well-posed for any r-dependent
coefficients A such that limτ→0 ‖χt<τEt‖∗ < ε. The corresponding results for the regularity and Dirichlet
problems hold.

Proof. The condition on the coefficients implies that I − SA is invertible on X and I − SA∗ invertible on
Y by Theorem 16.1.

We write the map (51) as

(E+A h+)⊥ = h+
⊥
+

(
E−0

∫ τ

0
e−s3DEs fs

)
⊥

+

(
e−(τ/2)3E−0

∫
∞

τ

e−(s−τ/2)3DEs fs

)
⊥

=: h+
⊥
+ (h1)⊥+ (e−(τ/2)3h2)⊥,

for h+ ∈ E+0 H, where ‖ f ‖X . ‖h+‖2 by Theorem 12.3. By assumption the map E+0 H→H⊥ : h+ 7→ h+
⊥

is invertible. By [Part I, Lemma 6.9], the norm of E+0 H→H⊥ : h+ 7→ (h1)⊥ is . ‖χt<τEt‖∗. Fix τ small
enough so that E+0 H→H⊥ : h+ 7→ (h++ h1)⊥ is invertible. For the last term, we then have estimates

‖h2‖2 .
∫
∞

τ

‖e−(s−τ/2)3D‖2→2‖E‖∞‖ fs‖2 ds . ‖E‖∞

∫
∞

τ

s−1
‖ fs‖2 ds

. ‖E‖∞

(∫
∞

τ

‖ fs‖
2
2 ds

)1/2

. ‖E‖∞‖ f ‖X . ‖E‖∞‖h+‖2.

Here we used the estimate

‖e−(s−τ/2)3Dg‖2 . ‖3e−(s−τ/2)3(D0− σN )B−1
0 PB0Hg‖2 . ((s− τ/2)−2

+ σ(s− τ/2)−1)‖g‖2.

It follows that E+0 H→H⊥ : h+ 7→ (e−(τ/2)3h2)⊥ is a compact operator since e−(τ/2)3 is compact as a
consequence of Proposition 4.3. We conclude that E+0 H→H⊥ : h+ 7→ (E+A h+)⊥ is a Fredholm operator
with index 0. Lemma 17.10 shows that it is injective, hence an isomorphism.
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Replacing normal components ( · )⊥ by tangential parts ( · )‖ in the proof above shows the result for the
regularity problem. Proposition 17.6 then gives the result for the Dirichlet problem. �

Positive results. We now give examples of radially dependent coefficients for which one has well-
posedness. Given Theorems 17.13 and 17.14, this induces results for perturbed coefficients.

Proposition 17.15. If A are r-independent coefficients, and if A is a block matrix, i.e., A⊥‖ = 0 = A‖⊥,
then the Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

Proof. By Proposition 17.6, it suffices to consider the Neumann and regularity problems. Consider the
projections E±A = E±0 . As the maps (51) and (52) act on E+0 H⊂H, it suffices to consider their action on
H throughout this proof. In this case, we have E0 := sgn(DB0+ σN )= E+0 − E−0 . Consider also the H

preserving projections N± from Definition 3.1. Define the anticommutator

C := 1
2(E0 N + N E0).

Since B0 is a block matrix, N commutes with B0, which shows that N E0 N = N sgn(DB0+ σN )N =
sgn(N (DB0+ σN )N )=− sgn(DB0− σN ), using N D =−DN . Hence,

C = (E0+ N E0 N )N/2= (sgn(DB0+ σN )− sgn(DB0− σN ))N/2

= ((DB0)
2
+ σ 2)−1/2((DB0+ σN )− (DB0− σN ))N/2= σ((DB0)

2
+ σ 2)−1/2,

and it follows from Proposition 4.3 that C is a compact operator on H.
We claim that

(2E+0 )N
+
|E+0 H = I +C |E+0 H, N+(2E+0 )|N+H= I +C |N+H,

(2E+0 )N
−
|E+0 H = I −C |E+0 H, N−(2E+0 )|N−H= I −C |N−H.

The first identity follows from the computation

(2E+0 )N
+h+ = E+0 (I + N )h+ = h++ 1

2(I + E0)Nh+

= h++ 1
2(Nh++ 2Ch+− N E0h+)= h++Ch+, for all h+ ∈ E+0 H,

and the other three identities are proved similarly. This proves that the maps E+0 H→ H⊥ : h+ 7→ h+
⊥

and E+0 H→H‖ : h+ 7→ h+
‖

are Fredholm operators for any σ ∈ R, and for σ = 0 it follows that they are
isomorphisms. By Lemma 17.11, the indices of these operators are zero for any σ ∈R, and Lemma 17.10
implies that in fact the operators are isomorphisms for σ = (n− 1)/2. �

Proposition 17.16. If A are r-independent coefficients, and if A is Hermitian, i.e., A∗ = A, then the
Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

Proof. By Proposition 17.6, it suffices to consider the Neumann and regularity problems. Let h+ ∈ E+0 H

and define ft := e−t3h+. By Theorem 10.1, we have ∂t ft + D0 ft = 0, limt→0 ft = h+ and rapid decay
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of ft as t→∞. We calculate

(Nh+, B0h+)=−
∫
∞

0
∂t(N ft , B0 ft) dt =

∫
∞

0

(
(N D0 ft , B0 ft)+ (N ft , B0 D0 ft)

)
dt

=

∫
∞

0

(
((N DB0+ DB∗0 N ) ft , B0 ft)+ σ( ft , (B0+ N B0 N ) ft)

)
dt

= σ

∫
∞

0
( ft , (B0+ B∗0 ) ft) dt.

On the last line, we used that A∗ = A, or equivalently B∗0 = N B0 N , so that N DB0+ DB∗0 N = 0. This
gives the estimate ∣∣−(h+

⊥
, (B0h+)⊥)+ (h+‖ , (B0h+)‖)

∣∣. σ ∫ ∞
0
‖ ft‖

2
2 dt.

From this we deduce the estimate

‖h+‖22 . Re(h+, B0h+). |(h+
⊥
, (B0h+)⊥)| + ‖ f ‖2L2(R+;H)

. ‖h+
⊥
‖2‖h+‖2+‖ f ‖2L2(R+;H)

.

This shows that the map (51) is a semi-Fredholm map, if we prove that the map H→ L2(R+;H) given
by h 7→ (e−t3h)t>0 is compact. To see this, note that square function estimates for D0 give the estimate∫

∞

0
‖ ft‖

2
2 dt =

∫
∞

0
‖ψt(D0)(3

−1/2 f )‖22
dt
t
. ‖3−1/2 f ‖22,

where ψt(z) :=
√

t |z|e−t |z|, and 3−1/2 can be seen to be a compact operator on H by Proposition 4.3.
Taking Ps = χ+(DBs

+ σN ) in Lemma 17.11, where Bs , s ∈ [0, 1], denotes the straight line in
L∞(Sn

;L(V)) from I to B0, shows that the index of the map (51) is 0. By Lemma 17.10, this map is in
fact an isomorphism.

The proof for the regularity problem is similar, using instead the estimate

‖h+‖22 . |(h
+

‖
, (B0h+)‖)| + ‖ f ‖2L2(R+;H)

. ‖h+
‖
‖2‖h+‖2+‖ f ‖2L2(R+;H)

. �

Proposition 17.17. If A is a Hölder regular C1/2+ε(Sn
;L(C(1+n)m)), r-independent coefficients, for

some ε > 0, then the Neumann, regularity and Dirichlet problems with coefficients A are well-posed.

For the proof, we need the following lemmas.

Lemma 17.18. Let B0 ∈ C1/2+ε(Sn
;L(V)) be the matrix associated to A. Then for all f, g ∈ H,

|([|D|1/2, B0] f, g)|. ‖ f ‖2‖g‖2.

Lemma 17.19. Under the same assumptions, D(|D|1/2)∩H = D(|D0|
1/2)∩H with equivalent graph

domain norms.

Proof of Proposition 17.17. Consider first the Neumann and regularity problems. Let h+ ∈ E+0 H and
define ft := e−t3h+. By Theorem 10.1, we have ∂t ft+D0 ft = 0 and limt→0 ft = h+ and limt→∞ ft = 0
with rapid decay. We begin with the observation that (sgn(D)h+, h+)= Re(∇S(−divS ∇S)

−1/2h+
⊥
, h+
‖
).
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Thus |(sgn(D)h+, h+)| ≤ ‖h+
⊥
‖2‖h+‖ ‖2. Now, we calculate for fixed T > 0

(sgn(D)h+, h+)− (sgn(D) fT , fT )

=−

∫ T

0
∂t(sgn(D) ft , ft) dt =

∫ T

0

(
(sgn(D)(DB0+ σN ) ft , ft)+ ( ft , sgn(D)(DB0+ σN ) ft)

)
dt

= 2 Re
∫ T

0
(|D|B0 ft , ft) dt = 2 Re

∫ T

0

(
(B0|D|1/2 ft , |D|1/2 ft) dt + ([|D|1/2, B0] ft , |D|1/2 ft)

)
dt,

using that sgn(D)D = |D| and sgn(D)N + N sgn(D)= 0 in the third equality and Lemma 17.19 in the
last since ft ∈ D(|D0|

1/2)∩H⊂ D(|D|1/2). Accretivity of B0 and Lemma 17.18 lead to the estimate∫ T

0
‖|D|1/2 ft‖

2
2 dt . ‖h+

⊥
‖2‖h+‖ ‖2+ |(sgn(D) fT , fT )| +

∫ T

0
‖ ft‖2‖|D|1/2 ft‖2 dt,

and by absorption, to the same estimate but with last term equal
∫ T

0 ‖ ft‖
2
2 dt . Due the rapid decay of

‖ ft‖2 when t→∞, we conclude that∫
∞

0
‖|D|1/2 ft‖

2
2 dt . ‖h+

⊥
‖2‖h+‖ ‖2+

∫
∞

0
‖ ft‖

2
2 dt.

Since ‖|D0|
1/2 ft‖2 . ‖|D|1/2 ft‖2+‖ ft‖2 from Lemma 17.19, we may replace D by D0 in the left hand

side. Since square function estimates for D0 give∫
∞

0
‖|D0|

1/2 ft‖
2
2 dt =

∫
∞

0
‖(t |D0|)

1/2e−t |D0|h+‖22
dt
t
≈ ‖h+‖22,

this implies

‖h+‖22 . ‖h
+

⊥
‖2‖h+‖ ‖2+

∫
∞

0
‖ ft‖

2
2 dt.

Well-posedness of the Neumann and regularity problems now follows as in the proof of Proposition 17.16.
Proposition 17.6 then gives the result for the Dirichlet problem. �

Proof of Lemma 17.18. Note that D2 agrees on H with the (positive) Hodge–Laplace operator

1S := −

[
divS ∇S 0

0 ∇S divS − curl∗S curlS

]
,

where curlS : L2(Sn
; (TCSn)m)→ L2(Sn

; ∧
2(TCSn)m) is the tangential curl/exterior derivative on Sn .

Since f, g ∈H, we have

([|D|1/2, B0] f, g)= ([11/4
S , B0] f, g)

and it suffices to prove that [11/4
S , B0] is bounded on L2. Since the action of B0 mixes functions and

vector fields, some care has to be taken.

(i) First, by functional calculus we can replace 1S by T0 =1S + λ for any λ ∈ R+, to be chosen large
later, as 11/4

S − (1S + λ)
1/4 is bounded.
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(ii) Next, the commutator estimate is a local problem and by a partition of unity argument and rotational
invariance of the assumptions, we can assume that f is supported in the lower hemisphere and it is enough
to show that ‖ζ [T 1/4

0 , B0] f ‖2 . ‖ f ‖2 when the smooth scalar function ζ is 1 a neighborhood of the
support of f . Indeed (1− ζ )[T 1/4

0 , B0] f =−[[ζ, T 1/4
0 ], B0] f , where the inner commutator is seen to be

bounded on L2.

(iii) Now using rescaled pullback ρ∗ to Rn from the proof of Theorem 7.1 yields ρ∗(T0 f ) = T1(ρ
∗ f )

with

T1 := −

[
divRn d2−n

∇Rn dn 0
0 ∇Rn dn divRn d2−n

− dn−2 curl∗Rn d4−n curlRn

]
+ λI

in L2(R
n
;C(1+n)m), with d(y)= (|y|2+ 1)/2 inside |y|< 1 and extended to a smooth function on Rn ,

with d(y)= 2 for |y|> 2 and 1
2 ≤ d(y)≤ 2 for all y. Any extension would do since ρ∗ f is supported in

|y|< 1. (The proof of this equality builds on the fundamental differential geometric fact that the standard
pullback operation intertwines ∇ on Sn and Rn , as well as curl, and the adjoint results for div and curl∗.
Note that the rescaled pullback ρ∗ from Theorem 7.1 equals the standard pullback on vectors, but is d−n

times the standard pullback on scalars.) A further calculation shows that T1 =−divRn d2
∇Rn + R+ λI ,

where R is a first-order differential operator with smooth coefficients and divRn d2
∇Rn acts componentwise

on C(1+n)m-valued functions. Note that the coefficients of R must vanish outside |y|< 2 by construction.
We now choose λ large enough to guarantee the accretivity condition Re(T1g, g)≥ δ‖g‖2

W 1
2

with δ > 0

and all g ∈W 1
2 (R

n
;C(1+n)m). Consider K , η and g as in the proof of Theorem 7.1 and ζ = (ρ∗)−1η and

f = (ρ∗)−1g. We claim that ‖ζT 1/4
0 f − (ρ∗)−1η2T 1/4

1 g‖2 . ‖g‖2 ≈ ‖ f ‖2. For both operators Ti , we
use the identity

T 1/4
i = c

∫
∞

0
s1/2Ti (I + s2Ti )

−1ds = c
∫
∞

0
(I − (I + s2Ti )

−1)
ds

s3/2 . (55)

The part with s > 1 gives rise to a bounded operator for each Ti . For the integral of the difference over
s < 1, we use the identity obtained as in Theorem 7.1

ζ(I + s2T0)
−1 f − (ρ∗)−1η2(I + s2T1)

−1g = ζ(I + s2T0)
−1(ρ∗)−1s2

[η, T1](I + s2T1)
−1g

so that
‖ζ(I + s2T0)

−1 f − (ρ∗)−1η2(I + s2T1)
−1g‖2 . s‖g‖2,

using that the commutator [η, T1] is a first-order operator.

(iii) We are reduced to showing that [T 1/4
1 , B̃0] is bounded on L2(R

n
;C(1+n)m) with B̃0 := ρ

∗B0(ρ
∗)−1

of B0 on |y| ≤ 1 extended to a bounded matrix function of class C1/2+ε on Rn . We now eliminate the R
part of T1. Set T2 := −divRn d2

∇Rn +1 acting componentwise in L2(R
n
;C(1+n)m). The chosen extension

of d insures that T2 is accretive (in fact self-adjoint) as T1. We claim that T 1/4
1 − T 1/4

2 is bounded. We
use again (55) for each Ti . The part with s > 1 gives rise to a bounded operator for each Ti . For the s < 1
integral of the difference, we use ‖(I + s2T1)

−1
− (I + s2T2)

−1
‖. s by the resolvent formula, because

Ti have same second-order term. This proves the claim.
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(iv) Hence, it remains to estimate the commutator C = [T 1/4
2 , B̃0]. Since T2 acts componentwise, so

does T 1/4
2 and the commutator consists of a matrix of commutators with each component of B̃0. Thus it

suffices to estimate C = [T 1/4
2 , b] in L2(R

n
;C), with b scalar-valued. To see this, we use the different

representation for T 1/4
2 to obtain

C = c
∫
∞

0
[s2T2e−s2T2, b]

ds
s3/2 .

The s > 1 integral is trivially bounded, using boundedness of b and s2T2e−s2T2 . For s < 1, we have
‖[s2T2e−s2T2, b]‖L2→L2 . s1/2+ε using pointwise decay and regularity for the kernel of s2T2e−s2T2 and
regularity of b. See, for example, [Auscher 1996] where it is proved that under continuity of the coefficients
(here d2), the kernel of the semigroup e−sT2 , s < 1, has Gaussian estimates (this is in fact due to Aronson
for real measurable coefficients) and Hölder regularity in each variable with any exponent in (0, 1), in
particular larger that 1

2 + ε. From here, the same estimates hold for sT2e−sT2 =−s∂se−sT2 by analyticity
of the semigroup. This takes care of the s < 1 integral. Further details are left to the reader. �

Proof of Lemma 17.19. Recall that D0 = DB0+ σN . As before, by a representation formula it is easy to
prove that |DB0+σN |1/2−|DB0|

1/2 is bounded on L2. Hence we may replace D0 by DB0. We remark
that H is invariant for both D and DB0.

As PH B0 is an isomorphism of H, for f ∈H, f ∈ D(|DB0|) if and only if PH B0 f ∈ D(|D|) and in
this case

‖|DB0| f ‖2 ≈ ‖DB0 f ‖2 ≈ ‖D(PH B0 f )‖2 ≈ ‖|D|(PH B0 f )‖2.

Complex interpolation for sectorial operators (see [Auscher et al. 1997a]) shows that for f ∈ H, f ∈
D(|DB0|

1/2) if and only if PH B0 f ∈ D(|D|1/2) and

‖|DB0|
1/2 f ‖2 ≈ ‖|D|1/2(PH B0 f )‖2.

Next, for f ∈H∩D(|D|1/2), we have |D|1/2 f ∈H so that

‖|D|1/2 f ‖2 ≈ ‖PH B0|D|1/2 f ‖2.

Thus it suffices to show that for f ∈H, f ∈ D(|D|1/2) if and only if PH B0 f ∈ D(|D|1/2). This is where
we use the regularity of B0 to yield ‖|D|1/2(PH B0 f )− PH B0|D|1/2 f ‖2 . ‖ f ‖2 when f ∈H as a direct
consequence of Lemma 17.18 and the fact that D and PH commute. �

Remark 17.20. Using the T 1 theorem, the commutator C of the proof of Lemma 17.18 is bounded on
L2 when (−1+ 1)1/4b ∈ BMO (and b ∈ L∞). The converse is also true. This can be shown to be a
regularity condition between C1/2 and C1/2+ε. So well-posedness holds under this condition (expressed
in local coordinates on the coefficients of B0). This is probably the best conclusion we can draw from
this method. However, we suspect that Cε should be enough in general.

18. Uniqueness

The following is the class of solutions in Definition 1.8.
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Definition 18.1. By a Do-solution to the divergence form equation, with coefficients A, we mean a weak
solution of divx A∇u = 0 in O1+n with ‖Ñ o

∗
(u)‖2 <∞.

Note that unlike the previous classes, Do-solutions are defined through an estimate on u itself, not on
the gradient ∇xu.

Under the Carleson control on the discrepancy, we know that Yo-solutions are Do-solutions. We
would like to know the converse. At this stage we need assumption of well-posedness in the sense of
Definition 1.2. It goes via identification with variational solutions for smooth data which will be also
useful later.

Lemma 18.2. Let A be coefficients such that ‖E‖∗ <∞ and I − SA is invertible on Y and on X, and
assume that the regularity problem and the Dirichlet problem in the sense of Definition 1.2 both are well
posed. Let ϕ ∈ L2(Sn

;Cm) be Dirichlet datum such that ∇Sϕ ∈ L2(Sn
; (TCSn)m). Then the solution u to

the Dirichlet problem in the sense of Definition 1.2 coincides with the variational solution with datum ϕ.

Proof. By Proposition 17.5, there is a unique h+ ∈ E+0 H such that (E+A h+)‖ = ∇Sϕ, since the regularity
problem is well-posed. From Lemma 7.5, we know that D : Ẽ+0 L2→ E+0 H is surjective. Let h̃+ ∈ Ẽ+0 L2

be such that Dh̃+ = h+. Consider now ϕ̃ := (Ẽ+A h̃+)⊥. We claim that ∇Sϕ̃ =∇Sϕ. Indeed, this follows
from taking the tangential part in the intertwining formula

DẼ+A = E+A D,

which is readily verified from Lemma 4.2 and definitions of Ẽ+A , E+A . Thus ϕ̃−ϕ is constant. As in the
proof of Corollary 12.8, by adding a normal constant in Ẽ+0 H⊥ to h̃+, we may assume that ϕ̃ = ϕ.

Given this h̃+, the solution u to the Dirichlet problem with datum ϕ is given by the normal component
of

v :=
(

I + S̃A(I − SA)
−1 D

)
e−t3̃h̃+

as in Corollary 12.8(iii). Next, we have

f := Dv = (I − SA)
−1e−t3h+

and f is the conormal gradient to the solution to the regularity problem with datum ∇Sϕ. In particular
f ∈ X⊂ L2(R+× Sn

;V) by Lemma 9.3.
Translated to O1+n , this shows that the solution u to the Dirichlet problem with datum ϕ has ∇xu ∈

L2(O
1+n
;C(1+n)m). This shows that u is a variational solution. Uniqueness of the Dirichlet problem in

this class completes the proof. �

Remark 18.3. Note that since X⊂ L2(R+× Sn
;V), solutions to the regularity and Neumann problem

always coincide with the variational solutions, by the uniqueness of such. In the setting of the half-space,
as in [Auscher et al. 2010b] and [Part I], it was shown in [Axelsson 2010] that this uniqueness result does
not hold. As pointed out in [Auscher et al. 2010b, Remark 5.6], the problem occurs at infinity for the
regularity and Neumann problems, which explains why uniqueness holds for the bounded ball. Although
the analogue of [Axelsson 2010] for the Dirichlet problem on the ball is not properly understood at the
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moment, Theorem 19.4 below shows that uniqueness of solutions essentially holds also for the Dirichlet
problem on the unit ball.

Proposition 18.4. Let A be radially independent coefficients and assume that the regularity problem and
the Dirichlet problem in the sense of Definition 1.2 are both well-posed. Then all Do-solutions are given
by u = e−σ t(e−t3̃h̃+)⊥ for a unique h̃+ ∈ Ẽ+0 L2. In particular, the class of Do-solutions is the same as
the class of Yo-solutions, and the estimate

‖Ñ o
∗
(u)‖22 ≈

∫
O1+n
|∇xu|2(1− |x|) dx+

∣∣∣∣∫
Sn

u1(x) dx
∣∣∣∣2

holds for all weak solutions.

Proof. Let u be a Do-solution. For almost every ρ ∈ (0, 1), ∇Suρ ∈ L2(Sn
; (TCSn)m) and uρ ∈ L2(Sn

;Cm).
Fix such ρ. As in the proof of Lemma 18.2, we can find h+ρ ∈ E+0 H, h̃+ρ ∈ Ẽ+0 L2 with Dh̃+ρ = h+ρ ,

(h+ρ )‖=∇Suρ and (h̃+ρ )⊥=uρ on Sn . Using radial independence, the function ũρ(r x) := eσ t(e−t3̃h̃+ρ )⊥(x)
(here, ρ is fixed and e−t

= r ∈ (0, 1)) thus extends to a solution of the divergence form equation with
coefficients A, and it is a variational solution by Lemma 18.2. Since x 7→ u(ρx) is also a variational
solution and agrees with ũρ on Sn , we conclude by uniqueness that u(ρr ·)= eσ t(e−t3̃h̃+ρ )⊥ as L2(Sn

;Cm)-
functions for all e−t

= r ∈ (0, 1], and almost every ρ ∈ (0, 1).
From this representation, we see that the right hand side is continuous in t , with range in L2, so the

left hand side is continuous in r . We also have ‖uρr‖2 . ‖h̃+ρ ‖2 ≈ ‖uρ‖2 for every r ∈ ( 1
2 , 1] and almost

every ρ ∈ (0, 1). The last equivalence comes from the well-posedness of the Dirichlet problem, and the
implicit constants are independent of ρ. Since

sup
1/2<ρ<1

(1− ρ)−1
∫ ρ+1

2

ρ

‖us‖2ds . ‖Ñ o
∗
(u)‖2 <∞,

we conclude that ‖h̃+ρ ‖2 is bounded for 1
2 < ρ < 1. Consider a weak limit h̃+ ∈ Ẽ+0 L2 of a subsequence

h̃+ρn
with ρn→ 1. Reversing the roles of ρ and r , for almost every r < 1, uρnr converges in L2(Sn

;Cm)

to ur , so that ur = eσ t(e−t3̃h̃+)⊥. Extending to all r , the representation is proved.
In particular, this shows that the classes of Yo-solutions and of Do-solutions of Lu = 0 coincide under

our assumptions. �

Note that the full force of ‖Ñ o
∗
(u)‖2 <∞ is not used and the condition

sup
1/2<r<1

r−1
∫ 1−r

1−2r
‖uρ‖2dρ <∞

suffices in the proof of Proposition 18.4.

Remark 18.5. If A is not r-independent, we need to know that A(ρ · ) satisfies the large Carleson
condition for all 1

2 < ρ < 1 to run the argument. This is not clear if we just assume this for A. However,
if we assume that A is continuous on O1+n and satisfies the square Dini condition of Theorem 1.11, then
this can be checked.
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Proof of Theorem 1.7. We consider A1 ∈ L∞(Sn
;L(C(1+n)m)), radially independent coefficients which

are strictly accretive in the sense of (2). Assume that the Dirichlet problem with coefficients A1 is
well-posed. By Corollary 12.9, we have Pr u1 = r−σ (e−t3̃v0)⊥ with r = e−t and v0 given by the inverse
of the well-posedness map (53) from applied to u1. The assumed uniqueness of the solution u allows
us to prove the product rule of Pr by considering Pr u1 as another boundary data. The existence of
the generator with domain contained in W 1

2 (S
n
;Cm) is as in [Auscher 2009] in the setting of the upper

half-space. There, the if direction was deduced using the duality principle between Dirichlet and regularity.
An examination of the argument there reveals that the only if direction was implicit. We can repeat the
same duality argument using Proposition 17.6. �

Proof of Theorem 1.9. By Proposition 18.4 we know that the two classes of Do- and Yo-solutions are the
same. Thus the assumed well-posedness for Yo-solutions carries over to Do-solutions. This completes
the proof. �

19. New well-posedness results for real equations

We now specialize to the case of equations (m = 1) with real coefficients, and make this assumption for
the coefficients A throughout this section unless mentioned otherwise. For such equations the theory
of solvability for the Dirichlet problem using nontangential maximal control is rather complete for real
symmetric equations, but not so much for non symmetric equations. In [Kenig et al. 2000], the extensions
of the tools for real non symmetric equations are discussed and we refer there for details.

We have developed a strategy using square functions rather than nontangential maximal functions and
our goal here is to tie this up. It is convenient to introduce the square function

S(u)(x)=
(∫

y∈0x

|∇u( y)|2
d y

(1− | y|)n−1

)1/2

, x ∈ Sn,

(0x denoting a truncated cone with vertex x and axis the line (0, x)) and the divergence form operator
L := −divx A∇x . We note that a weak solution to Lu = 0 is in Yo if and only if S(u) ∈ L2(Sn), the
measure being the surface measure. We have so far studied Yo-solutions and well-posedness in this
class, which is convenient to denote here by well-posedness in Yo. (This was called “in the sense of
Definition 1.2” in the introduction.)

Recall that by a Do-solution of Lu = 0, we mean a weak solution with ‖Ñ o
∗
(u)‖2 <∞. As said in

the introduction, we may replace Ñ o
∗
(u) by the usual pointwise nontangential maximal function. For the

Dirichlet problem, we shorten well-posedness in the sense of Dahlberg in Definition 1.8 to well-posedness
in Do.

On regular domains such as O1+n , there is always a unique variational solution u ∈W 1
2 (O

1+n), which
is in addition continuous in O1+n , to the Dirichlet problem with data ϕ ∈ C(Sn) by results of Littman,
Stampacchia and Weinberger [Littman et al. 1963] which extend to real nonsymmetric equations (see
[Kenig et al. 2000]). Thus, it is natural to ask whether this solution satisfies ‖Ñ o

∗
(u)‖2 ≤ C‖ϕ‖2 with C

depending on the Lipschitz character of Sn . By a density argument, it suffices to do this for smooth ϕ,
say ϕ ∈ C1(Sn). If this is the case, then the Dirichlet problem (D)2 is said to be solvable.
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From the maximum principle and Harnack’s inequalities, one can study the L-elliptic measure ω, say
at 0, which is the probability measure C(Sn)3 ϕ 7→ u(0) with u the above solution. The question whether
ω is absolutely continuous with respect to surface measure is central.

The result, somehow folklore but we have not seen it stated explicitly in the literature, summarizing
the state of the art is the following.

Theorem 19.1. Let L = −divx A∇x be a real elliptic operator in O1+n , n ≥ 1. Then the following
statements are equivalent.

(i) The Dirichlet problem is well-posed in Do.

(ii) (D)2 is solvable.

(iii) The L-elliptic measure w is absolutely continuous with respect to surface measure and its Radon–
Nikodym derivative k satisfies the reverse Hölder B2 condition, i.e., there is a constant C <∞ such
that for all surface balls B on Sn ,(

|B|−1
∫

B
k2(x) dx

)1/2

≤ C |B|−1
∫

B
k(x) dx .

Proof. The proof that (ii) is equivalent to (iii) is stated for real nonsymmetric operators in [Kenig et al.
2000, p. 241]. The proof that (i) implies (ii) is trivial. For ϕ ∈ C(Sn), the variational solution is bounded,
hence satisfies ‖Ñ o

∗
(u)‖2 <∞ since O1+n is bounded. By uniqueness in (i), it is the unique solution

and the continuity estimate that follows from well-posedness shows ‖Ñ o
∗
(u)‖2 ≤ C‖ϕ‖2. So (ii) holds.

It remains to see (ii) implies (i). Existence and continuity estimate are granted from (D)2. Uniqueness
follows the argument in [Fabes et al. 1984, p. 125–126], using the equivalent assumption (iii) instead of
(ii). The extension to nonsymmetric real operators is allowed from the details in [Kenig et al. 2000]. �

Theorem 19.2. Let L be an elliptic operator with real coefficients. Then all weak solutions to Lu = 0
satisfy ‖S(u)‖L2(dµ) . ‖Ñ

o
∗
(u)‖L2(dµ) for any A∞ measure µ with respect to L-elliptic measure.

Proof. This is the result of [Dahlberg et al. 1984] where this is proved when L = L∗. Aside from properties
of solutions that are valid for all real operators (see [Kenig et al. 2000]), the proof on the use of [Dahlberg
et al. 1984, (7), p. 101], which is an integration by parts and is valid as is in the nonsymmetric case. This
is why the A∞ property with respect to L-elliptic measure intervenes in the hypotheses. Further details
are in [Dahlberg et al. 1984]. �

Corollary 19.3. Let L be an elliptic operator with real coefficients. Assume that the Dirichlet problem is
well-posed in Do for L. Then all weak solutions to Lu = 0 satisfy ‖S(u)‖2 . ‖Ñ o

∗
(u)‖2. In particular,

Do-solutions of Lu = 0 are Yo-solutions of Lu = 0 under this assumption.

Proof. By Theorem 19.1, L-elliptic measure is A∞ with respect to surface measure, and vice-versa by
[Coifman and Fefferman 1974]. So ‖S(u)‖Yo . ‖Ñ o

∗
(u)‖2 follows from Theorem 19.2. �

Note that Corollary 19.3 and Proposition 18.4 are close but incomparable. First, Proposition 18.4
applies to systems of equations, whereas Corollary 19.3 applies to radially dependent coefficient. Secondly,
the well-posedness assumptions are different. The next results reconciles the two approaches.
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Theorem 19.4. Let L = −divx A∇x be a real elliptic operator in O1+n , n ≥ 1. Assume further that L
has coefficients with limτ→0 ‖χt<τEt‖C∩L∞ sufficiently small. The following statements are equivalent.

(i) The Dirichlet problem is well-posed in Do for L and L∗.

(ii) The Dirichlet problem is well-posed in Yo for L and L∗.

Moreover, in this case the solutions for L (resp. L∗) from a same datum are the same.

Proof. It suffices to prove the conclusion for L in each case as the assumptions are invariant under taking
adjoints.

Assume (i). Uniqueness in Y0 is immediate since the class of Do-solutions a priori contains the
class Yo-solutions when ‖E‖C∩L∞ <∞. Next, for the existence, there is by assumption a unique Do-
solution with given boundary datum ϕ ∈ L2(Sn). Since the Dirichlet problem is well-posed in Do for L ,
Corollary 19.3 shows that this solution is in fact a Yo-solution.

Conversely, assume (ii). By Theorem 19.1, it suffices to show that (D)2 is solvable for L . To this
end, it suffices to consider ϕ ∈ C1(Sn) and the associated variational solution u. By Lemma 18.2, which
applies because of Theorem 16.1 (I − SA is invertible on X and on Y) and Proposition 17.6, u coincides
with the solution in the sense of Definition 1.2, that is, it is a Yo-solution. Now Theorem 14.1 provides
the nontangential maximal estimate that shows that (D)2 is solvable for L . �

Added in proof. In the context of the upper half-space, it was recently shown by Hofmann, Kenig,
Mayboroda and Pipher [Hofmann et al. 2012], that the conclusion of Corollary 19.3 is valid a priori for
all real operators with transversally independent coefficients, whether or not the Dirichlet problem is
well-posed in Do for L and without resorting to the A∞ property of the L-elliptic measure, which they
subsequently prove. Hence, for transversally independent coefficients, the two classes of solutions of L
are the same, and well-posedness in each class is simultaneous. Presumably, the conclusion should be the
same on the ball for operators with radially independent coefficients.

Remark 19.5. In the case of radially independent coefficients (or more generally for continuous, Dini
square coefficients) Proposition 18.4 (or the remark that follows it) proves the converse also for systems.

We can generalize results from [Kenig and Pipher 1993] to nonsymmetric perturbations of r -independent
real symmetric operators.

Corollary 19.6. In O1+n , the Dirichlet problem is well-posed in Do for all real operators L with coeffi-
cients A such that limτ→0 ‖χt<τEt‖C∩L∞ is small enough and its boundary trace A1 real symmetric.

Proof. Let L1 be the second-order operator with r-independent coefficients A1. By Proposition 17.16,
we know that the Dirichlet problem for L1 = L∗1 is well-posed in Yo. Thus, by Theorem 17.14, it is
well-posed in Yo for L and L∗. Thus, we conclude with Theorem 19.4. �

We continue with generalizations of results in [Fabes et al. 1984], where well-posedness for Dirichlet
was obtained for real symmetric coefficients. Well-posedness for regularity (which we denote here by
well-posedness in Xo) is new.
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Theorem 19.7. Assume that A are coefficients with limτ→0 ‖χt<τEt‖C∩L∞ small enough and boundary
trace A1 which is real and continuous. Then the Dirichlet problem is well-posed in Do and in Yo, and the
regularity problem in Xo is well-posed. In particular, this holds for real continuous coefficients in O1+n

satisfying the Dini square condition∫
0
w2

A(t)
dt
t
<∞, where wA(t)= sup{|A(r x)− A(x)| ; x ∈ Sn, 1− r < t}.

Proof. Let L1 be the operator with coefficients A1. Recall that under smallness of limτ→0 ‖χt<τEt‖C∩L∞ ,
it suffices to prove the result for L1 by Theorem 17.14. Next, by Proposition 17.6, the regularity problem
(in Xo) for L1 is well-posed if and only if the Dirichlet problem for L∗1 is well-posed in Yo. On applying
Theorem 19.4, it suffices to prove that the Dirichlet problem with coefficients A1 is well-posed in Do, as
the same would then hold for A∗1 by symmetry of the assumptions. To do this, we prove that L1-elliptic
measure satisfies property (iii) in Theorem 19.1. The argument is inspired by the one in [Fabes et al.
1984, pp. 139–140].

Assume first we work on some boundary region of O1+n . For r small, set

Qr = {ρy ∈ (0, 1)× Sn ; 1− r < ρ < 1, y ∈ B(x0, r)},

where B(x0, r) is a surface ball of radius r , with real radially independent coefficients A1 being the
restriction of some matrix defined on O1+n that we still denote by A1 and which is close in L∞ to the
constant matrix A1(x0). Let g be a C1 nonnegative function supported on the part of the boundary of
Qr/2 in Sn . Let v be the variational solution to the Dirichlet problem L1v = 0 in Qr/2 and v = g on the
boundary of Qr/2 in Sn and v = 0 on the part of the boundary that is contained in O1+n . Recall that
v ∈W 1

2 (Qr/2)∩C(Qr/2). By Theorem 17.13, because A1 is L∞ close to a (constant) matrix for which
one knows well-posedness by Proposition 17.17, one can construct the unique solution u in O1+n to the
Dirichlet problem in Yo with u = g on Sn , that is L1u = 0 with

∫
O1+n |∇xu|2(1− |x|) dx ≤ C‖g‖22. As

g ∈ C1(Sn), we know on applying Lemma 18.2 that the solution u is variational, i.e., u ∈W 1
2 (O

1+n). We
can apply Stampacchia’s minimum principle to obtain first that u ≥ 0 in O1+n , and next the maximum
principle in Qr/2 to conclude that v ≤ u. From there, it remains to repeat the argument in [Fabes et al.
1984], to obtain that v(ρy)≤ C(1− ρ)−n/2

‖g‖2 for all ρy ∈ Qr/4, which in turn, yields an L2 estimate
on the Radon–Nikodym derivative of the L1-elliptic measure.

The localization argument as in [Fabes et al. 1984], and using the continuity of A1 to cover a layer of
the boundary with a finite number of such small Qr/2, allows us to conclude. �

Corollary 19.8. With the same assumption as above and n = 1, then the Neumann problem with coeffi-
cients A is well-posed in Xo.

Proof. By the results in Section 5, it follows that the Neumann problem for coefficients A is well-posed
in Xo if and only if the regularity problem for conjugate coefficients Ã is well-posed in Xo. The latter
follows from the previous result since Ã satisfies the same assumption as A. �
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Remark 19.9. As in [Fabes et al. 1984], the Dini square condition in the normal direction can be replaced
by a Dini square condition in a C1 transverse direction to the sphere. It suffices to perform locally changes
of variables that transform the transverse direction to normal ones.
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