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We propose an approach that permits to avoid instability phenomena for the nonlinear Schrödinger
equations. We show that by approximating the solution in a suitable way, relying on a frequency cut-off,
global well-posedness is obtained in any Sobolev space with nonnegative regularity. The error between
the exact solution and its approximation can be measured according to the regularity of the exact solution,
with different accuracy according to the cases considered.

1. Introduction

We consider the nonlinear Schrödinger equation

i∂t u+1u = ε|u|2σu, (t, x) ∈ I ×Rd , u|t=0 = u0, (1-1)

for some time interval I 3 0, with ε = 1 (defocusing case) or ε =−1 (focusing case). The aim of this
paper is to propose an approach to overcome the lack of local well-posedness in Sobolev spaces with
nonnegative regularity.

Recall two important invariances associated to (1-1):

• Scaling: if u solves (1-1), then for λ > 0, so does uλ(t, x) := λ1/σu(λ2t, λx). This scaling leaves
the Ḣ sc

x -norm invariant, with sc = d/2− 1/σ .

• Galilean: if u solves (1-1), then for v ∈ Rd , so does eiv·x−i |v|2t/2u(t, x − vt). This transform leaves
the L2

x -norm invariant.

These two arguments suggest that the critical Sobolev regularity to solve (1-1) is max(sc, 0). Indeed,
if sc > 0, local well-posedness from H s(Rd) to H s(Rd) for s > sc has been established in [Cazenave
and Weissler 1990], and if sc < 0, local well-posedness from H s(Rd) to H s(Rd) for s > 0 has been
established in [Tsutsumi 1987].

If sc > 0, pathological phenomena have been exhibited for initial data in H s(Rd) with 0 < s < sc;
Gilles Lebeau has proved a “norm inflation” phenomenon for the wave equation ∂2

t u −1u + u p
= 0,

x ∈ R3, p ∈ 2N+ 1, p > 7 [Lebeau 2001; Métivier 2004]. The analogous result for (1-1) is this:
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Theorem 1.1 [Christ et al. 2003; Burq et al. 2005]. Let σ > 1. Assume that sc = d/2− 1/σ > 0, and let
0< s < sc. There exists a family (uh

0)0<h61 in S(Rd) with

‖uh
0‖H s(Rd )→ 0 as h→ 0,

a solution uh to (1-1) and 0< th
→ 0, such that

‖uh(th)‖H s(Rd )→+∞ as h→ 0.

The argument of the proof consists in considering concentrated initial data

u0(x)= hs−d/2(log 1/h)−αa0

( x
h

)
, with h→ 0,

and showing that for very short time, the Laplacian can be neglected in (1-1). The above result then stems
from its (easy) counterpart in the ODE case, by choosing a suitable α > 0. In the spirit of [Lebeau 2005],
the above result has been strengthened to a “loss of regularity” in [Alazard and Carles 2009; Carles 2007;
Thomann 2008]. The assumptions and conclusion are similar to that in Theorem 1.1; the only difference
is that uh(th, · ) is measured in H k(Rd) for any k > s/(1+ σ(sc− s)), so k is allowed to be smaller than
s. In all the cases mentioned here, the lack of uniform continuity of the nonlinear flow map near the
origin is due to the appearance of higher and higher frequencies on a very short time scale. If sc < 0,
similar pathological phenomena have been established in H s(Rd) with s < 0, where on the contrary, low
frequencies are ignited; see [Bejenaru and Tao 2006; Carles et al. 2012; Christ et al. 2003; Kenig et al.
2001]. In the rest of this paper, we focus on nonnegative regularity, s > 0.

The goal of this paper is twofold. First, we want to investigate a method to remove the pathology
mentioned above, causing a lack of well-posedness for (1-1), in a deterministic way, as opposed to the
probabilistic approach initiated in [Burq and Tzvetkov 2008a; 2008b] for the wave equation. The other
motivation is related to numerical simulations for (1-1), where high frequencies may be a source of
important errors; see for instance [Ignat and Zuazua 2012], a reference which will be discussed in further
detail in Sections 3 and 4.

We show that with a suitable cut-off on the high frequencies of the nonlinearity, the obstructions to
local well-posedness vanish, and the problem becomes globally well-posed: the nonlinear evolution of
any initial datum in L2(Rd) can be controlled a priori, an information which may be useful for numerics,
since we do not have to decide if the initial datum belongs to a full measure set or not. This strategy is
validated inasmuch as this procedure yields a good approximation of the solution to (1-1) as the cut-off
tends to the identity. Note that this approach can be viewed as a deterministic counterpart of the one
presented in [Burq et al. 2012] (see also [Burq 2011]). There, for the one-dimensional L2-supercritical
defocusing nonlinear Schrödinger equation, the authors construct a Gibbs measure such that, among other
features, the pathological phenomenon described in Theorem 1.1 occurs for a set of initial data whose
measure is zero: on the support of the Gibbs measure, the Cauchy problem is globally well-posed, and
a scattering theory is available. Both points of view aim at showing that norm inflation in the sense of
Theorem 1.1 is a rare phenomenon: in [Burq et al. 2012], the authors give a rigorous meaning to this
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statement in an abstract way, while we are rather interested in a recipe to avoid instabilities for sure, by a
suitable approximation of the equation, which can be used typically for numerical simulations.

Our choice of cutting off the high frequencies instead of, for instance, the values of the function itself
is indeed motivated by numerics, where it is standard to filter out high frequencies (sometimes without
even saying so). In an appendix, we discuss another approach, consisting in saturating the values of the
nonlinearity. One could of course combine both approaches, frequency and physical saturations.

Notation. We define the Fourier transform by the formula

f̂ (ξ)= F( f )(ξ)= 1
(2π)d/2

∫
Rd

e−i x ·ξ f (x) dx, f ∈ S(Rd).

We write a . b if there exists C such that a 6 Cb. In the presence of a small parameter h, the notation
indicates that C is independent of h ∈ (0, 1].

2. From instability to global well-posedness

Let χ : Rd
→ [0, 1] be a smooth function, equal to one on the unit ball, and even: χ(−x)= χ(x) for all

x ∈ Rd . It may be compactly supported, in the Schwartz class S(Rd), or with a slower decay at infinity.
For simplicity, we will not discuss sharp assumptions on χ . We define the frequency “cut-off” 5 as the
Fourier multiplier

5̂( f )(ξ)= χ(ξ) f̂ (ξ).

As pointed out in the introduction, in the examples constructed to prove the lack of local well-posedness,
the mechanism of high frequencies amplification occurs at the level of the ordinary differential equation.
We discuss some strategies to saturate high frequencies at the ODE level first, with ε = 1 for simplicity.

2A. Candidates at the ODE level. The first possibility to prevent the appearance of high frequencies by
nonlinear self-interaction consists in saturating the whole nonlinearity:

i∂tv =5(|v|
2σv). (2-1)

This can be viewed as an extremely simplified version of the I -method (see [Colliander et al. 2002]).
Another choice consists in saturating the high frequencies in the “nonlinear multiplicative potential” only,
that is |v|2σ . For σ ∈ N, we propose two possibilities,

i∂tv =5(|v|
2σ )v, (2-2)

i∂tv =
(
5(|v|2)

)σ
v. (2-3)

In the cubic case σ =1, the last two approaches obviously coincide. These approaches have two advantages
over (2-1):

• They preserve gauge invariance. If v solves the equation, then so does veiθ for any constant θ ∈ R.

• They preserve conservation of mass.
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To see the second point, rewrite 5( f ) as K ∗ f , with K (x) = (2π)−d/2χ̂(−x). Since χ is even and
real-valued, so is K , and therefore ∂t |v|

2
= 0 in (2-2) and (2-3). This identity leads to the conservation of

the L2-norm at the PDE level.
Before passing to the PDE case, we conclude this section by showing that even at the ODE level, cutting

off high frequencies in the initial data does not suffice to prevent the appearance of higher frequencies in
the solution for positive time. For a ∈ S(Rd) and s > 0, consider the solution vh to

i∂tv
h
= |vh

|
2σvh, vh(0, x)= hs−d/2a

( x
h

)
.

Then vh
|t=0 is bounded in H s(Rd), uniformly in h ∈ (0, 1], and if â is compactly supported (in B(0, R)),

then v̂h
|t=0 is compactly supported (in B(0, R/h)). Since ∂t |v

h
|
2
= 0, we have the explicit formula

vh(t, x)= hs−d/2a
( x

h

)
exp

(
−i th2σ(s−d/2)

∣∣∣a( x
h

)∣∣∣2σ).
We check that for t > 0, as h→ 0, the homogeneous Sobolev norms behave like

‖vh(t)‖Ḣ k ≈ hs−2kσ(s−d/2)−k tk,

at least for k ∈ N. The above quantity is unbounded as h→ 0 if

k > s
1+2σ(s−d/2)

.

Therefore, if s<d/2, vh(t, · ) is unbounded in H s(Rd) for t > 0, as h→ 0: cutting off the high frequencies
in the initial data does not suffice to control the frequency support of the solution. On the other hand,
the models (2-2) and (2-3) prevent the appearance of high frequencies by nonlinear self-interaction. The
above mechanism is essentially the one that leads to the norm inflation phenomenon in [Burq et al. 2005;
Christ et al. 2003; Lebeau 2001], except that in those papers, the approximation by an ODE is used only
on a time interval where the H s-norm becomes unbounded, but not the H k-norm for any k < s. The above
mechanism at the PDE level leads to the loss of regularity [Alazard and Carles 2009; Carles 2007; Lebeau
2005; Thomann 2008], where indeed k is allowed to be smaller than s, as recalled in the introduction.
Roughly speaking, the appearance of oscillations is quite similar to the above ODE example; in the PDE
case, the numerology is different, and the proof is more intricate.

2B. Choice at the PDE level. We consider now the equations

i∂t u+ P(D)u = ε5(|u|2σ )u, (2-4)

i∂t u+ P(D)u = ε
(
5(|u|2)

)σ
u, (2-5)

where P(D) is a Fourier multiplier with a real-valued symbol P : Rd
→ R,

P̂(D) f = P(ξ) f̂ (ξ).

The L2-norm of u is formally independent of time:

d
dt

∫
Rd
|u(t, x)|2 dx = 0. (2-6)
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In view of this conservation and of the Young inequality

‖5( f )‖L∞ 6 ‖K‖L∞‖ f ‖L1, (2-7)

the option (2-5) seems more interesting than (2-4), and we have the following result.

Theorem 2.1. Let σ ∈ N, ε ∈ {±1}, P : Rd
→ R and χ ∈ S(Rd) even and real-valued.

• For any u0 ∈ L2(Rd), (2-5) has a unique solution u ∈C(R; L2(Rd)) such that u|t=0= u0. Its L2-norm
is independent of time; (2-6) holds.

• If in addition u0 ∈ H s(Rd), s ∈ N, then u ∈ C(R; H s(Rd)).

• The flow map u0 7→ u is uniformly continuous from the balls in L2(Rd) to C(R; L2(Rd)). More
precisely, for all u0, v0 ∈ L2(Rd), there exists C depending on σ , ‖K‖L∞ , ‖u0‖L2 and ‖v0‖L2 such
that, for all T > 0,

‖u− v‖L∞([−T,T ];L2(Rd )) 6 ‖u0− v0‖L2(Rd )e
CT , (2-8)

where u and v denote the solutions to (2-5) with initial data u0 and v0, respectively.

• More generally, let s ∈N. For all u0, v0 ∈ H s(Rd), there exists C depending on σ , ‖K‖W s,∞ , ‖u0‖H s

and ‖v0‖H s such that for all T > 0,

‖u− v‖L∞([−T,T ];H s(Rd )) 6 ‖u0− v0‖H s(Rd )e
CT . (2-9)

Remark 2.2. As pointed out in [Cazenave et al. 2011], even if the solution is constructed by a fixed point
argument, the continuity of the flow map is not trivial in general. In the case of Schrödinger equations
(1-1), continuity of the flow map in H s(Rd) is known only in a limited number of cases: see [Tsutsumi
1987] for s = 0, [Kato 1987] for s = 1 and s = 2, and [Cazenave et al. 2011] for 0< s < 1.

Proof. First, recall that S(t)= e−i t P(D) is a unitary group on Ḣ s(Rd), s ∈R. Duhamel’s formula associated
to (2-5) reads

u(t)= S(t)u0− iε
∫ t

0
S(t − τ)

(
(K ∗ |u|2)σu

)
(τ ) dτ. (2-10)

The local existence in L2 stems from a standard fixed point argument in

X (T )=
{
u ∈ C([−T, T ]; L2(Rd))

∣∣ ‖u‖L∞([−T,T ];L2) 6 2‖u0‖L2
}
.

Denote by 8(u)(t) the right hand side of (2-10). In view of (2-7), for t ∈ [−T, T ],

‖8(u)(t)‖L2 6 ‖u0‖L2 +

∫
−T

∥∥((K ∗ |u|2)σu
)
(τ )
∥∥

L2 dτ

6 ‖u0‖L2 +

∫ T

−T

∥∥K ∗ |u(τ )|2
∥∥σ

L∞ ‖u(τ )‖L2 dτ

6 ‖u0‖L2 +‖K‖σL∞
∫ T

−T
‖u(τ )‖2σ+1

L2 dτ.

By choosing T > 0 sufficiently small, we see that X (T ) is stable under the action of 8. Note that in the
case of the model (2-4), the above estimate would have to be adapted, forcing us to work in a space smaller
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than X (T ) (L2 regularity in space would no longer be sufficient in general). Contraction is established in
the same way:

‖8(u)(t)−8(v)(t)‖L2 6
∫ T

−T

∥∥((K ∗ |u|2)σu
)
(τ )−

(
(K ∗ |v|2)σv

)
(τ )
∥∥

L2 dτ

6
∫ T

−T

∥∥((K ∗ |u|2)σ − (K ∗ |v|2)σ )u∥∥L2 dτ +
∫ T

−T

∥∥((K ∗ |v|2)σ )(u− v)∥∥L2 dτ.

Using the estimate |aσ − bσ |. (|a|σ−1
+ |b|σ−1)|a− b|, and (2-7) again, we infer

‖8(u)(t)−8(v)(t)‖L2

. ‖K‖σL∞
∫ T

−T

(
‖u‖2σ−1

L2 +‖v‖2σ−1
L2

)
‖u− v‖L2‖u‖L2 dτ +‖K‖σL∞

∫ T

−T
‖v‖2σL2‖u− v‖L2 dτ,

where all the functions inside the integrals are implicitly evaluated at time τ . Choosing T > 0 possibly
smaller, 8 is a contraction on X (T ). Note that this small time T depends only on σ , ‖K‖L∞ and ‖u0‖L2 .
Since the L2-norm of u is preserved (see [Cazenave 2003] for a rigorous justification), the construction
of a local solution can be repeated indefinitely, hence global existence and uniqueness at the L2 level.

Global existence in H s(Rd) for s ∈ N then follows easily, thanks to the estimate∥∥(K ∗ |u|2)σu
∥∥

H s .
∑

|α|+|β|=s

∥∥∂α(K ∗ |u|2)σ ∂βu
∥∥

L2 . ‖K‖σW s,∞‖u‖σL2‖u‖H s .

The continuity of the flow map in L2 is obtained by resuming the estimate written to establish the
contraction of 8: For t > 0,

‖u(t)− v(t)‖L2 6 ‖u0− v0‖L2 +‖K‖σL∞
∫ t

0

(
‖u‖2σL2 +‖v‖

2σ
L2

)
‖u− v‖L2 dτ

6 ‖u0− v0‖L2 +‖K‖σL∞
(
‖u0‖

2σ
L2 +‖v0‖

2σ
L2

) ∫ t

0
‖u− v‖L2 dτ,

where we have used the conservation of the L2-norm. Proceeding similarly for t < 0, Gronwall’s lemma
then yields (2-8) for C depending only of σ , ‖K‖L∞ , ‖u0‖L2 and ‖v0‖L2 . Finally, (2-9) is obtained in a
similar fashion. �

Remark 2.3. The proof of continuity of the flow map is easy. This is in sharp contrast with the case of
the equation without frequency cut-off. In the case of Schrödinger equations (P(ξ)=−|ξ |2), continuity
is more intricate to establish (see [Tsutsumi 1987]), and is true only for L2-subcritical nonlinearities,
σ 6 2/d, from [Christ et al. 2003].

We note that even for large σ , global well-posedness in L2 is available, in sharp contrast with the
nonlinear Schrödinger equation (1-1). Even in the focusing case ε = −1, the high frequency cut-off
prevents finite time blow-up. In (2-9), consider v0 = v = 0 and s = 1 for instance: by comparison with
the case of (1-1), we see that the constant C necessarily depends on K (or equivalently on χ), and is
unbounded as χ converges to the Dirac mass. The frequency cut-off 5 removes the instabilities, and
prevents finite time blow-up.
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Remark 2.4 (Hamiltonian structure in the cubic case). If σ = 1, (2-4) and (2-5) coincide. We have the
equivalence

χ even and real-valued ⇐⇒ K even and real-valued.

This implies that under the assumption of Theorem 2.1, (2-5) has an Hamiltonian structure, and the
conserved energy is

H(u)=
∫

Rd
u(x)P(D)u(x) dx + ε

2

∫∫
K (x − y)|u(y)|2|u(x)|2 dxdy.

3. Convergence in the smooth case

Suppose that P(D) converges to 1 and that 5 converges to Id, does the solution to (2-5) then converge
to the solution of NLS? We show that this is the case under suitable assumptions on these convergences,
at least in the case where the solution to the limiting Equation (1-1) is very smooth. In the sequel, the
convergence is indexed by h ∈ (0, 1].

Proposition 3.1. Let σ ∈ N. We assume that P and 5 verify the following properties:

• There exist α, β > 0 such that Ph(ξ)=−|ξ |
2
+O(hα〈ξ〉β).

• χh(ξ)= χ (hξ), with χ ∈ S(Rd
; [0, 1]) even, real-valued, χ = 1 on the unit ball.

Denote by uh the solution to (2-5) with Ph and χh , such that uh
|t=0 = u|t=0. Suppose that the solution to

(1-1) satisfies u ∈ L∞([0, T ]; H s+β), for some s > d/2. Then

‖u− uh
‖L∞([0,T ];H s) . hmin(α,β).

Example 3.2. The above assumption on Ph is satisfied with α = 1 and β = 2 in the following cases:

• Ph(ξ)=
−|ξ |2

1+h|ξ |2
.

• Ph(ξ)=−
1
h

arctan(h|ξ |2).

The second example is borrowed from [Debussche and Faou 2009], where this truncated operator appears
naturally when discretizing the Laplacian for numerical schemes.

Remark 3.3. In this result, no assumption is needed on the possible decay of χ at infinity.

Proof. Let wh
= u− uh . It satisfies wh

|t=0 = 0 and

i∂tw
h
+ Ph(D)wh

= ε(5h(|u|2))σu− ε(5h(|uh
|
2))σuh

+ (Ph(D)−1) u+ ε
(
|u|2σ − (5h(|u|2))σ

)
u,

where we have denoted by 5h the Fourier multiplier of symbol χh . Denote by Rh(u) the second line,
which corresponds to a source term. In view of the assumption on Ph , there exists C independent of
h ∈ (0, 1] such that

‖Ph(D) f −1 f ‖H s 6 Chα‖ f ‖H s+β for all f ∈ H s+β(Rd).
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We also have, by the Plancherel formula,

‖(1−5h) f ‖2H s =

∫
Rd
(1−χ(hξ))2〈ξ〉2s

| f̂ (ξ)|2dξ

6
∫
|ξ |>1/h

〈ξ〉2s
| f̂ (ξ)|2dξ 6 h2β

∫
|ξ |>1/h

〈ξ〉2s+2β
| f̂ (ξ)|2dξ 6 h2β

‖ f ‖2H s+β .

Therefore,

‖Rh(u)‖L∞([0,T ];H s) . hmin(α,β)
‖u‖L∞([0,T ];H s+β ).

Now since s > d/2, H s(Rd) is an algebra, and there exists C independent of h such that∥∥(5h(|u|2))σu− (5h(|uh
|
2))σuh

∥∥
H s 6 C‖χ̂‖σL1

(
‖u‖2σH s +‖uh

‖
2σ
H s

)
‖u− uh

‖H s ,

where the Young inequality that we have used is not the same as in Section 2:

‖K ∗ f ‖L2 6 ‖K‖L1‖ f ‖L2 .

This is essentially the only way to obtain an estimate independent of h ∈ (0, 1]. Indeed, 5h( f )= Kh ∗ f ,
with

Kh(x)=
1

(2π)d/2hd χ̂
(
−x
h

)
.

The result then stems from a bootstrap argument: so long as

‖uh
‖L∞([0,t];H s) 6 1+‖u‖L∞([0,T ];H s),

Gronwall’s lemma yields

‖u− uh
‖L∞([0,t];H s) . hmin(α,β)

‖u‖L∞([0,T ];H s+β ).

Therefore, up to choosing h sufficiently small, this estimate is valid up to t = T . �

Such a convergence result can be compared to the one proved in [Ignat and Zuazua 2012] to prove the
convergence of numerical approximations. The approach there is a bit different though, inasmuch as the
frequency cut-off does not affect the nonlinearity (as in (2-5)), but the initial data: consider a solution
vh to

i∂tv
h
+ Ph(D)vh

= ε|vh
|
2σvh, vh

|t=0 =5hu0.

Ignat and Zuazua proved that the discrete analogue of 5hu− vh is small. Proposition 3.1 differs from
their results in several aspects:

• The context in [Ignat and Zuazua 2012] is discrete.

• Only the low frequency part of u, 5hu, is shown to be well approximated.

• The regularity assumption on u may be much weaker.
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As mentioned above, the second point is due to the choice of the model. However, as discussed in
Section 2A, controlling the high frequencies of the initial data must not be expected to ensure a control of
high frequencies of the solution vh for positive time.

The third point is due to the use of Strichartz estimates in [Ignat and Zuazua 2012]. In the next section,
we show that in the presence of dispersion (with Ph(ξ) = −|ξ |

2), Proposition 3.1 can be adapted to
rougher data.

4. Convergence using dispersive estimates

We first recall a standard definition.

Definition 4.1. A pair (p, q) 6= (2,∞) is admissible if p > 2, q > 2, and

2
p
= d

(1
2
−

1
q

)
.

We shall consider (2-5) when P(D) is exactly the Laplacian, and not an approximation as in Proposi-
tion 3.1. The reason is that when P is bounded, then no Strichartz estimate is available, as we now recall.
Let S( · ) be bounded on H s for all s > 0. By the Sobolev embedding, for all (p, q) (not necessarily
admissible) with 26 q <∞, there exists C > 0 such that for all u0 ∈ H d/2−d/q(Rd), and all finite time
interval I ,

‖S( · )u0‖L p(I ;Lq (Rd ))6C‖S( · )u0‖L p(I ;Hd/2−d/q (Rd ))6C‖u0‖L p(I ;Hd/2−d/q (Rd ))=C |I |1/p
‖u0‖Hd/2−d/q (Rd ).

If the Fourier multiplier P is bounded, the above estimate cannot be improved, in sharp contrast with the
result provided by the Strichartz estimates.

Proposition 4.2 [Carles 2011]. Let d > 1, and P ∈ L∞(Rd
;R). Write S(t) = e−i t P(D). Suppose that

there exist an admissible pair (p, q), an index k ∈ R, a time interval I 3 0, |I |> 0, and a constant C > 0
such that

‖S( · )u0‖L p(I ;Lq (Rd )) 6 C‖u0‖H k(Rd ) for all u0 ∈ H k(Rd).

Then necessarily k > 2/p = d/2− d/q.

We now state the main result of this section.

Theorem 4.3. Let σ ∈ N and T > 0. We assume that χh(ξ)= χ (hξ), with χ ∈ S(Rd) even, real-valued,
χ = 1 on B(0, 1). Let u solve (1-1), and consider the solution uh to

i∂t uh
+1uh

= ε
(
5h
(
|uh
|
2))σuh, uh

|t=0 = u0.

1. Suppose that σ = 1 and d 6 2. If u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖u− uh
‖L∞([0,T ];L2)−→

h→0
0.

2. Suppose that σ = 1 and d = 3.
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• If u,∇u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖u− uh
‖L∞([0,T ];H1)−→

h→0
0.

• If u ∈ L∞([0, T ]; H s), with s > 3/2, then

‖u− uh
‖L∞([0,T ];L2) . hs and ‖u− uh

‖L∞([0,T ];H1) . hs−1.

3. Suppose that σ > 1 and d 6 2. If u ∈ L∞([0, T ]; H s), with s > 1 and s > d/2, then

‖u− uh
‖L∞([0,T ];L2) . hs and ‖u− uh

‖L∞([0,T ];H1)−→
h→0

0.

If in addition s > 1, then

‖u− uh
‖L∞([0,T ];H1) . hs−1.

Remark 4.4. Suppose u0 sufficiently smooth. If ε =+1 (defocusing case), the bounds for u are known
in several cases, with T > 0 arbitrarily large. On the contrary, if ε =−1 (focusing case), T may have
to be finite, bounded by a blow-up time. See [Cazenave 2003; Ginibre and Velo 1984]. Typically, if
σ = d = 1, then the assumption of the first point is fulfilled for all T > 0 as soon as u0 ∈ L2(R), for
ε ∈ {±1}, from [Tsutsumi 1987], and if σ > 1, d 6 2, the assumption of the third point is fulfilled for all
T > 0 as soon as u0 ∈ H s(Rd), for ε =+1, from [Ginibre and Velo 1984].

Proof. For fixed h > 0, Theorem 2.1 shows that uh
∈ C(R; H k), with k = 0, 1 or s according to the cases

considered in the assumptions of the theorem. Of course, the bounds provided by Theorem 2.1 blow up
as h→ 0 if k > 0.

As in the proof of Proposition 3.1, let wh
= u−uh . The equation satisfied by wh is simpler than in the

proof of Proposition 3.1, since Ph(D)=1:

i∂tw
h
+1wh

= ε
(
5h(|u|2)

)σ
u− ε

(
5h(|uh

|
2)
)σ

uh
+ ε

(
|u|2σ −

(
5h(|u|2)

)σ )u.
We resume the notation

Rh(u)= ε
(
|u|2σ −

(
5h(|u|2)

)σ )u and 5h( f )= Kh ∗ f,

with Kh(x)= (2π)−d/2h−d χ̂(−x/h). From the Young inequality, we have, for all q ∈ [1,∞],

‖5h( f )‖Lq 6 ‖Kh‖L1‖ f ‖Lq 6 ‖χ̂‖L1‖ f ‖Lq , (4-1)

an estimate which is uniform in h > 0. Introduce the Lebesgue exponents

q = 2σ + 2, p = 4σ+4
dσ

, θ =
2σ(2σ+2)
2−(d−2)σ

.

The pair (p, q) is admissible, and

1
q ′
=

2σ
q
+

1
q
,

1
p′
=

2σ
θ
+

1
p
. (4-2)
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For t > 0, write L j
t Lk
= L j ([0, t]; Lk(Rd)). From the Strichartz estimates (see [Cazenave 2003]),

‖wh
‖L p

t Lq∩L∞t L2 .
∥∥(5h(|u|2)

)σ
u−

(
5h(|uh

|
2)
)σ

uh
∥∥

L p′
t Lq′ +‖R

h(u)‖
L

p′1
t Lq′1

.
(
‖u‖2σLθt Lq +‖u

h
‖

2σ
Lθt Lq

)
‖wh
‖L p

t Lq +‖Rh(u)‖
L

p′1
t Lq′1

,

where we have used the Hölder inequality and (4-1), and where (p1, q1) is an admissible pair whose
value will be given later.

If σ = 1 and d 6 2, then θ 6 p, and we infer

‖wh
‖L p

t Lq∩L∞t L2 . t1/θ−1/p(
‖u‖2σL p

t Lq +‖u
h
‖

2σ
L p

t Lq

)
‖wh
‖L p

t Lq +‖Rh(u)‖
L

p′1
t Lq′1

.

In the first case of the theorem, we assume u ∈ L p([0, T ]; Lq), since p = 8/d and q = 4 for σ = 1.
We use again a bootstrap argument: so long as ‖uh

‖L p
t Lq 6 2‖u‖L p

t Lq , we divide the interval [0, T ] into
finitely many small intervals so the first term of the right hand side is absorbed by the left hand side
(recall that p is finite), and we have

‖wh
‖L p

t Lq∩L∞t L2 . ‖Rh(u)‖
L

p′1
t Lq′1

.

The bootstrap argument is validated provided that ‖Rh(u)‖
L

p′1
T Lq′1
→ 0 as h→ 0.

If we have only σ < 2/(d − 2), then by the Sobolev embedding,

‖u‖Lθt Lq 6 t1/θ
‖u‖L∞t H1 .

In the same way as above,

‖∇wh
‖L p

t Lq∩L∞t L2 .
∥∥∇((5h(|u|2)

)σ
u−

(
5h(|uh

|
2)
)σ

uh)∥∥
L p′

t Lq′ +‖∇Rh(u)‖
L

p′1
t Lq′1

.

The first term of the right hand side is controlled by∥∥(5h(|u|2)
)σ
∇u−

(
5h(|uh

|
2)
)σ
∇uh

∥∥
L p′

t Lq′ +
∥∥u∇

(
5h(|u|2)

)σ
− uh
∇
(
5h(|uh

|
2)
)σ∥∥

L p′
t Lq′ . (4-3)

Introducing the factor (5h(|u|2))σ∇uh , the first term is estimated by∥∥(5h(|u|2)
)σ
∇wh

∥∥
L p′

t Lq′ +
∥∥((5h(|u|2)

)σ
−
(
5h(|uh

|
2)
)σ )
∇uh

∥∥
L p′

t Lq′

.
∥∥5h(|u|2)

∥∥σ
Lθ/2t Lq/2 ‖∇w

h
‖L p

t Lq +
(
‖u‖2σ−2

Lθt Lq +‖u
h
‖

2σ−2
Lθt Lq

) ∥∥|u|2− |uh
|
2∥∥

Lθ/2t Lq/2 ‖∇uh
‖L p

t Lq

. ‖u‖2σLθt Lq ‖∇w
h
‖L p

t Lq +
(
‖u‖2σ−1

Lθt Lq +‖u
h
‖

2σ−1
Lθt Lq

) ∥∥wh
∥∥

Lθt Lq ‖∇uh
‖L p

t Lq

. t2σ/θ
‖u‖2σL∞t H1 ‖∇w

h
‖L p

t Lq + t2σ/θ(
‖u‖2σ−1

L∞t H1 +‖u
h
‖

2σ−1
L∞t H1

) ∥∥wh
∥∥

L∞t H1 ‖∇uh
‖L p

t Lq .

Proceeding similarly for the other term in (4-3), splitting [0, T ] into finitely many time intervals where the
terms containing wh on the right hand side can be absorbed by the left hand side, and using a bootstrap
argument, we end up with

‖wh
‖L p

t W 1,q∩L∞t H1 . ‖Rh(u)‖L
p′1
t W 1,q′1 .
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Therefore, it suffices to show that for some admissible pair (p1, q1), the source term converges to 0
in L p′1([0, T ]; Lq ′1) (if σ = 1 and d 6 2) or in L p′1([0, T ];W 1,q ′1) (in the other cases), so the bootstrap
argument is completed. In addition, the rate of converge of the source term, if any, yields a rate of
convergence for wh . The theorem then stems from the following lemma, in which (p, q) is given by
(4-2).

Lemma 4.5. Let T > 0. The source term Rh(u) can be controlled as follows.

1. Suppose that σ = 1 and d 6 2. If u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖Rh(u)‖L p′ ([0,T ];Lq′ )−→h→0
0.

2. Suppose that σ = 1 and d = 3.

• If u,∇u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖Rh(u)‖L p′ ([0,T ];W 1,q′ )−→h→0
0.

• If u ∈ L∞([0, T ]; H s), with s > 3/2, then

‖Rh(u)‖L1([0,T ];L2) . hs and ‖Rh(u)‖L1([0,T ];H1) . hs−1.

3. Suppose that σ > 1 and d 6 2. If u ∈ L∞([0, T ]; H s), with s > 1 and s > d/2, then

‖Rh(u)‖L1([0,T ];L2) . hs and ‖Rh(u)‖L1([0,T ];H1)−→
h→0

0.

If in addition s > 1, then

‖Rh(u)‖L1([0,T ];H1) . hs−1.

Proof of Lemma 4.5. For the first case, we use the Hölder inequality, in view of (4-2):

‖Rh(u)‖
L p′

T Lq′ = ‖(1−5h)(|u|2)u‖L p′
T Lq′ 6 ‖(1−5h)(|u|2)‖Lθ/2T Lq/2‖u‖L p

T Lq .

We note that for σ = 1, q = 4, so by the Plancherel theorem,

‖(1−5h)(|u|2)‖2L2 =

∫
Rd
(1−χ(hξ))2 |F(|u|2)(ξ)|2dξ 6

∫
|ξ |>1/h

|F(|u|2)(ξ)|2dξ.

By assumption, u ∈ L p([0, T ]; L4)⊂ Lθ ([0, T ]; L4), thus |u|2 ∈ Lθ/2([0, T ]; L2), and by the Plancherel
theorem, F(|u|2) ∈ Lθ/2([0, T ]; L2). The first point of the lemma then stems from the dominated
convergence theorem.

For the first case of the second point, we note that now θ > p, so the above argument must be
adapted, and we have to estimate the gradient of Rh(u) in the same space as above. Since we have
L∞([0, T ]; H 1(R3))⊂ Lθ ([0, T ]; L4(R3)), the dominated convergence theorem yields

‖Rh(u)‖
L p′

T Lq′ −→h→0
0.
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We now estimate ∇Rh(u). Write

‖∇Rh(u)‖
L p′

T Lq′ 6 ‖(1−5h)(|u|2)‖Lθ/2T L2‖∇u‖L p
T L2 +‖(1−5h)∇

(
|u|2

)
‖

L(1/θ+1/p)−1
T L2

‖u‖LθT L2

. ‖(1−5h)(|u|2)‖L∞T L2‖∇u‖L p
T L2 +‖(1−5h)∇(|u|2)‖L(1/θ+1/p)−1

T L2
‖u‖L∞T L2 .

By the same argument as above,

‖(1−5h)(|u|2)‖L∞T L2‖∇u‖L p
T L2 −→

h→0
0.

We note that u bounded in L∞([0, T ]; H 1(R3)) ⊂ Lθ ([0, T ]; L4(R3)), and ∇u bounded in L p
T L4, so

∇|u|2 is bounded in L(1/θ+1/p)−1

T L2. Invoking Plancherel theorem and the dominated convergence theorem
like above, we infer that

‖(1−5h)∇(|u|2)‖L(1/θ+1/p)−1
T L2

‖u‖L∞T L2 −→
h→0

0.

This completes the proof for the first case of the second point.
For the remaining cases, we use that H s(Rd) is embedded into L∞(Rd): for fixed t ,

‖Rh(u)(t)‖L2 .
(
‖u(t)‖2σ−2

L∞ +‖5h(|u(t)|2)‖σ−1
L∞

)
‖(1−5h)(|u(t)|2)‖L2‖u(t)‖L∞

. ‖u(t)‖2σ−1
L∞ ‖(1−5h)(|u(t)|2)‖L2 . ‖u(t)‖2σ−1

H s ‖(1−5h)(|u(t)|2)‖L2 .

Like in the proof of Proposition 3.1, we use the estimate

‖(1−5h) f ‖L2 6 hs
‖ f ‖H s , (4-4)

and since H s(Rd) is an algebra,

‖Rh(u)‖L∞([0,T ];L2) . hs
‖u‖2σ+1

L∞([0,T ];H s).

To conclude the proof, we estimate ∇Rh(u) in L2(Rd). We compute

∇Rh(u)= σ |u|2σ−2((1−5h)(∇(|u|2))
)
u+

(
|u|2σ − (5h(|u|2))σ

)
∇u,

+ σ
(
|u|2σ−2

− (5h(|u|2))σ−1)5h(∇(|u|2))u,

where the second line is zero if σ = 1. We estimate successively, thanks to (4-1),∥∥|u|2σ−2 ((1−5h) (∇(|u|2))
)

u
∥∥

L2 6 ‖u‖
2σ−1
L∞

∥∥(1−5h)(|u|2)
∥∥

H1 ,∥∥(|u|2σ − (5h(|u|2))σ
)
∇u
∥∥

L2 6 ‖u‖
2σ−2
L∞

∥∥(1−5h) (|u|2)
∥∥

L∞ ‖∇u‖L2,

and, if σ > 2,∥∥(|u|2σ−2
− (5h(|u|2))σ−1)5h(∇(|u|2))u

∥∥
L2 . ‖u‖

2σ−4
L∞ ‖(1−5h)(|u|2)‖L2‖∇(|u|2)‖L2‖u‖L∞

. ‖u‖2σ−2
L∞ ‖(1−5h)(|u|2)‖L2‖∇u‖L2 .

Since we have H s(Rd) ↪→ L∞(Rd), we end up with

‖∇Rh(u)‖L2 . ‖u‖2σ−2
H s ‖(1−5h)(|u|2)‖H1 .



1170 RÉMI CARLES

If s > 1, (4-4) yields, since in addition s > d/2,

‖(1−5h)(|u|2)‖H1 . hs−1
‖|u|2‖H s . hs−1

‖u‖2H s .

If s = 1 (a case which may occur only if d = 1, since s > d/2), we write

‖∇(1−5h)(|u|2)‖2L2 6
∫
|ξ |>1/h

|F(∇(|u|2))(ξ)|2dξ.

Now since ∇(|u|2) = 2 Re ū∇u and u ∈ H 1(R) ↪→ L∞(R), ∇u ∈ L2(R), we conclude thanks to the
dominated convergence theorem. �

This completes the proof of Theorem 4.3, by choosing (p1, q1)= (p, q) or (∞, 2). �

Appendix: Physical saturation of the nonlinearity

Instead of cutting off the high frequencies, one may be tempted to saturate the nonlinear potential, by
replacing |u|2 not by 5(|u|2) but by f (|u|2) where f is smooth, equal to the identity near the origin,
and constant at infinity. Note also that a saturated nonlinearity may be in better agreement with physical
models (recall however that (1-1) appears in rather different physical contexts, such as quantum mechanics,
optics, and even fluid mechanics), since typically the power-like nonlinearity in (1-1) may stem from a
Taylor expansion; see [Lannes 2011; Sulem and Sulem 1999]. More precisely, let f ∈ C∞(R;R) such
that

f (s)=
{

s if 06 s 6 1,
2 if s > 2.

(A-1)

The analogue of the Fourier multiplier 5h is defined as

fh(|u|2)=
1
h

f (h|u|2),

and we replace (2-5) with

i∂t uh
+ Ph(D)uh

= ε
(

fh(|uh
|
2)
)σ

uh, (A-2)

so the formal conservation of the L2-norm still holds. We could also consider

fh(|u|2)=
|u|2

1+ h|u|2
. (A-3)

In both cases, the main aspect to notice is that fh is bounded and z 7→ fh(|z|2)σ z is globally Lipschitzian.
We infer the analogue of Theorem 2.1, at least in the L2 case.

Proposition A.1. Let σ ∈ N, ε ∈ {±1}, P : Rd
→ R and f given either by (A-1) or by (A-3).

• For any u0 ∈ L2(Rd), (A-2) has a unique solution uh
∈ C(R; L2(Rd)) such that uh

|t=0 = u0. Its
L2-norm is independent of time.
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• The flow map u0 7→ uh is uniformly continuous from the balls in L2(Rd) to C(R; L2(Rd)). More
precisely, for all u0, v0 ∈ L2(Rd), there exists C depending on σ , h, ‖u0‖L2 and ‖v0‖L2 such that for
all T > 0,

‖uh
− vh
‖L∞([−T,T ];L2(Rd )) 6 ‖u0− v0‖L2(Rd )e

CT ,

where uh and vh denote the solutions to (A-2) with data u0 and v0, respectively.

Introduce

Fh(s)=
∫ s

0
fh(y)σdy.

We check that the following conservation of energy holds:

d
dt

(∫
Rd

uh(t, x)Ph(D)uh(t, x) dx + ε
∫

Rd
Fh(|u(t, x)|2) dx

)
= 0.

Proving the analogue of Proposition 3.1 is easy in the case (A-1), since the last source term for the error
wh is now

Rh(u)=
(
|u|2σ − fh(|u|2)σ

)
u,

and under the assumptions of Proposition 3.1, u ∈ L∞([0, T ]×Rd), so there exists h0 > 0 such that for
0< h 6 h0,

|u(t, x)|2σ = fh(|u(t, x)|2)σ for all (t, x) ∈ [0, T ]×Rd .

Therefore, this source term simply vanishes for h sufficiently small. In the case (A-3), we can use the
relation

|Rh(u)| =
∣∣(|u|2σ − fh(|u|2)σ

)
u
∣∣. h|u|2

1+ h|u|2
|u|2σ+1, (A-4)

and the Schauder lemma to get a source term which is O(h) in H s(Rd), for s > d/2.

Proposition A.2. Let σ ∈N. We assume that P is such that Ph(ξ)=−|ξ |
2
+O(hα〈ξ〉β) for some α, β > 0.

Denote by uh the solution to (A-2) with Ph and fh , such that uh
|t=0 = u|t=0. Suppose that the solution to

(1-1) satisfies u ∈ L∞([0, T ]; H s+β), for some s > d/2.

• In the case (A-1), ‖u− uh
‖L∞([0,T ];H s) . hα.

• In the case (A-3), ‖u− uh
‖L∞([0,T ];H s) . hmin(α,1).

In the case (A-1), proving an analogue to Theorem 4.3 seems to be more delicate though, and we
choose not to investigate this aspect here. On the other hand, in the case (A-3), using the estimate (A-4),
Strichartz estimates and Hölder inequalities with the “standard” Lebesgue exponents (in the same fashion
as in the proof of Theorem 4.3, see [Cazenave 2003]), we have, with steps similar to those presented in
the proof of Theorem 4.3:

Theorem A.3. Let σ ∈ N and T > 0. Let u solve (1-1), and consider a solution uh to

i∂t uh
+1uh

= ε

(
|uh
|
2

1+ h|uh|2

)σ
uh, uh

|t=0 = u0.
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1. If σ 6 2/d , and u ∈ L∞([0, T ]; L2)∩ L(4σ+4)/dσ ([0, T ]; L2σ+2), then

‖u− uh
‖L∞([0,T ];L2)−→

h→0
0.

2. Suppose that σ = 1 and d = 3.

• If u,∇u ∈ L∞([0, T ]; L2)∩ L8/d([0, T ]; L4), then

‖u− uh
‖L∞([0,T ];H1)−→

h→0
0.

• If u ∈ L∞([0, T ]; H s), with s > 3/2, then

‖u− uh
‖L∞([0,T ];H1) . h.

3. Suppose that σ > 1 and d 6 2. If u ∈ L∞([0, T ]; H s), with s > 1 and s > d/2, then

‖u− uh
‖L∞([0,T ];H1) . h.
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