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1. Introduction and statement of result

It is well known that the spectrum of a nonselfadjoint operator does not control its resolvent, and that
the latter may become very large even far from the spectrum. Understanding the behavior of the norm
of the resolvent of a given nonselfadjoint operator is therefore a natural and basic problem, which has
recently received considerable attention, in particular, within the circle of questions around the notion of
the pseudospectrum [Trefethen and Embree 2005]. Some general upper bounds on resolvents are provided
by abstract operator theory, and, restricting our attention to the setting of semiclassical pseudodifferential
operators on Rn , relevant for this note, we recall a rough statement of such bounds, following [Dencker et al.
2004; Markus 1988; Viola 2012]. Assume that P = pw(x, h Dx) is the semiclassical Weyl quantization
on Rn of a complex-valued smooth symbol p with Re p ≥ 0, belonging to a suitable symbol class and
satisfying an ellipticity condition at infinity, guaranteeing that the spectrum of P is discrete in a small
neighborhood of the origin. Then the norm of the L2-resolvent of P is bounded from above by a quantity
of the form O(1) exp(O(1)h−n), provided that z ∈ neigh(0,C) is not too close to the spectrum of P .
On the other hand, the available lower bounds on the resolvent of P , coming from the pseudospectral
considerations, are typically of the form C−1

N h−N , N ∈ N, or (1/C)e1/(Ch), provided that p enjoys some
analyticity properties [Dencker et al. 2004]. Therefore, there appears to be a substantial gap between
the available upper and lower bounds on the resolvent, especially when n ≥ 2. The purpose of this note
is to address the issue of bridging this gap in the particular case of an elliptic quadratic semiclassical
differential operator on Rn , and to establish a sharp upper bound on the norm of its resolvent.
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ANR-08-BLAN-0228-01, as well as a FABER grant from the Conseil régional de Bourgogne.
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Let q be a complex-valued quadratic form:

q : Rn
x ×Rn

ξ → C, (x, ξ) 7→ q(x, ξ). (1-1)

We shall assume throughout the following discussion that the quadratic form q is elliptic on R2n , in the
sense that q(X)= 0, X ∈ R2n , precisely when X = 0. In this case, according to Lemma 3.1 of [Sjöstrand
1974], if n > 1, there exists λ ∈ C, λ 6= 0, such that Re(λq) is positive definite. In the case when n = 1,
the same conclusion holds, provided that the range of q on R2 is not all of C [Sjöstrand 1974; Hitrik
2004], which we assume in what follows. After a multiplication of q by λ, we may and do henceforth
assume that λ= 1, so that

Re q > 0. (1-2)

It follows that the range 6(q) = q(R2n) of q on R2n is a closed angular sector with a vertex at zero,
contained in the union of {0} and the open right half-plane.

Associated to the quadratic form q is the semiclassical Weyl quantization qw(x, h Dx), 0 < h ≤ 1,
which we view as a closed densely defined operator on L2(Rn), equipped with the domain

{u ∈ L2(Rn) : qw(x, h Dx)u ∈ L2(Rn)}.

The spectrum of qw(x, h Dx) is discrete, and following [Sjöstrand 1974], we shall now recall its explicit
description. See also [Boutet de Monvel 1974]. To that end, let us introduce the Hamilton map F of q ,

F : C2n
→ C2n,

defined by the identity

q(X, Y )= σ(X, FY ), X, Y ∈ C2n. (1-3)

Here the left-hand side is the polarization of q , viewed as a symmetric bilinear form on C2n , and σ is the
complex symplectic form on C2n . We notice that the Hamilton map F is skew-symmetric with respect to
σ , and, furthermore,

FY = 1
2 Hq(Y ), (1-4)

where Hq = q ′ξ · ∂x − q ′x · ∂ξ is the Hamilton field of q .
The ellipticity condition (1-2) implies that the spectrum of the Hamilton map F avoids the real axis,

and, in general, we know from Section 21.5 of [Hörmander 1985] that if λ is an eigenvalue of F , so is
−λ, and the algebraic multiplicities agree. Let λ1, . . . , λn be the eigenvalues of F , counted according to
their multiplicity, such that λ j/ i ∈6(q), j = 1, . . . , n. Then the spectrum of the operator qw(x, h Dx) is
given by the eigenvalues of the form

h
n∑

j=1

λ j

i
(2ν j,`+ 1), ν j,` ∈ N∪ {0}. (1-5)

We notice that Spec(qw(x, h Dx))⊂6(q), and from [Pravda-Starov 2007] we also know that

Spec(qw(x, h Dx))∩ ∂6(q)=∅,

provided that the operator qw(x, h Dx) is not normal.
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Here is the main result of this work.

Theorem 1.1. Let q : Rn
x ×Rn

ξ → C be a quadratic form such that Re q is positive definite. Let �b C.
There exists h0 > 0, and for every C > 0 there exists A > 0 such that

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≤ A exp(Ah−1), (1-6)

for all h ∈ (0, h0], and all z ∈ �, with dist
(
z,Spec(qw(x, h Dx))

)
≥ 1/C. Furthermore, for all C > 0,

L ≥ 1, there exists A > 0 such that for h ∈ (0, h0], we have

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≤ A exp

(
Ah−1 log 1

h

)
, (1-7)

if the spectral parameter z ∈� is such that

dist
(
z,Spec(qw(x, h Dx))

)
≥ hL/C.

Remark 1.2. Assume that the elliptic quadratic form q, with Re q > 0, is such that the Poisson bracket
{Re q, Im q} does not vanish identically, and let z ∈ 6(q)o, z /∈ Spec(qw(x, h Dx)). Here 6(q)o is the
interior of 6(q). Then it follows from the results of [Dencker et al. 2004; Pravda-Starov 2008] that we
have the following lower bound for (qw(x, h Dx)− z)−1, as h→ 0:

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≥

1
C0

e1/(C0h), C0 > 0.

It follows that the upper bound (1-6) is of the right order of magnitude, when z ∈ 6(q)o ∩�, |z| ∼ 1,
avoids a closed cone ⊂6(q)∪ {0}, containing the spectrum of qw(x, h Dx).

Remark 1.3. In Section 4, we give a simple example of an elliptic quadratic operator on R2, for which
the associated Hamilton map has a nonvanishing nilpotent part in its Jordan decomposition, and whose
resolvent exhibits the superexponential growth given by the right-hand side of (1-7), in the region of
the complex spectral plane where |z| ∼ 1, dist

(
z,Spec(qw(x, h Dx))

)
∼ h. On the other hand, sharper

resolvent estimates can be obtained when the Hamilton map F of q is diagonalizable. In this case, we
shall see in Section 4 that the bound (1-7) improves to the following, when z ∈� and h ∈ (0, h0]:

‖(qw(x, h Dx)− z)−1
‖L(L2(Rn),L2(Rn)) ≤

AeA/h

dist
(
z,Spec(qw(x, h Dx))

) . (1-8)

Remark 1.4. Let z0 ∈ Spec(qw(x, h Dx))∩� and let

5z0 =
1

2π i

∫
∂D
(z− qw(x, h Dx))

−1 dz

be the spectral projection of qw(x, h Dx), associated to the eigenvalue z0. Here D ⊂� is a small open
disc centered at z0, such that the closure D avoids the set Spec(qw(x, h Dx))\{z0}, and ∂D is its positively
oriented boundary. Assume for simplicity that the quadratic form q is such that its Hamilton map is
diagonalizable. Then it follows from (1-8) that

5z0 = O(1) exp(O(1)h−1) : L2(Rn)→ L2(Rn).
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In the context of elliptic quadratic differential operators in dimension one, resolvent bounds have been
studied in particular, in [Boulton 2002; Davies 2000; Davies and Kuijlaars 2004]. We should also mention
the general resolvent estimates in [Dencker et al. 2004; Sjöstrand 2010], valid for h-pseudodifferential
operators when the spectral parameter is close to the boundary of the range of the corresponding symbol.

The plan of this note is as follows. In Section 2, we make an essentially well-known reduction of our
problem to the setting of a quadratic differential operator acting in a Bargmann space of holomorphic
functions, convenient for the subsequent analysis. Section 3 is devoted to suitable a priori elliptic
estimates, valid for holomorphic functions vanishing to a high, h-dependent order at the origin. The proof
of Theorem 1.1 is completed in Section 4 by some elementary considerations in the space of holomorphic
polynomials on Cn , of degree not exceeding O(h−1).

2. The normal form reduction

We shall be concerned here with a quadratic form q : T ∗Rn
→ C, such that Re q is positive definite. Let

F be the Hamilton map of q , introduced in (1-3). When λ ∈ Spec(F), we let

Vλ = Ker((F − λ)2n)⊂ T ∗Cn (2-1)

be the generalized eigenspace belonging to the eigenvalue λ. The symplectic form σ is then nondegenerate
viewed as a bilinear form on Vλ× V−λ.

We introduce the stable outgoing manifold for the Hamilton flow of the quadratic form i−1q , given by

3+ :=
⊕

Im λ>0

Vλ ⊂ T ∗Cn. (2-2)

It is then true that 3+ is a complex Lagrangian plane such that q vanishes along 3+, and Proposition 3.3
of [Sjöstrand 1974] states that the complex Lagrangian 3+ is strictly positive in the sense that

1
i
σ(X, X) > 0, 0 6= X ∈3+. (2-3)

We also define

3− =
⊕

Im λ<0

Vλ ⊂ T ∗Cn, (2-4)

which is a complex Lagrangian plane such that q vanishes along3−, and from the arguments of [Sjöstrand
1974] we also know that 3− is strictly negative in the sense that

1
i
σ(X, X) < 0, 0 6= X ∈3−. (2-5)

The complex Lagrangians 3+ and 3− are transversal, and following [Helffer and Sjöstrand 1984;
Sjöstrand 1987], we would like to implement a reduction of the quadratic form q to a normal form by
applying a linear complex canonical transformation which reduces 3+ to {(x, ξ) ∈ C2n

: ξ = 0} and 3−

to {(x, ξ) ∈ C2n
: x = 0}. We shall then be able to implement the canonical transformation in question

by an FBI–Bargmann transform. Let us first simplify q by means of a suitable real linear canonical
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transformation. When doing so, we observe that the fact that the Lagrangian 3− is strictly negative
implies that it is of the form

η = A−y, y ∈ Cn,

where the complex symmetric n × n matrix A− is such that Im A− < 0. Here (y, η) are the standard
canonical coordinates on T ∗Rn

y that we extend to the complexification T ∗Cn
y . Using the real linear

canonical transformation (y, η) 7→ (y, η− (Re A−)y), we reduce 3− to the form η= i Im A−y, and by a
diagonalization of Im A−, we obtain the standard form η =−iy. After this real linear symplectic change
of coordinates and the conjugation of the semiclassical Weyl quantization qw(x, h Dx) of q by means of
the corresponding unitary metaplectic operator, we may assume that 3− is of the form

η =−iy, y ∈ Cn, (2-6)

while the positivity property of the complex Lagrangian 3+ is unaffected, so that, in the new real
symplectic coordinates, extended to the complexification, 3+ is of the form

η = A+y, Im A+ > 0. (2-7)

Let

B = B+ = (1− i A+)−1 A+, (2-8)

and notice that the matrix B is symmetric. Let us introduce the FBI–Bargmann transform

T u(x)= Ch−3n/4
∫

eiϕ(x,y)/hu(y) dy, x ∈ Cn, C > 0, (2-9)

where

ϕ(x, y)= i
2
(x − y)2− 1

2
(Bx, x). (2-10)

The associated complex linear canonical transformation on C2n

κT : (y,−ϕ′y(x, y)) 7→ (x, ϕ′x(x, y)) (2-11)

is of the form

κT : (y, η) 7→ (x, ξ)= (y− iη, η+ i Bη− By), (2-12)

and we see that the image of 3− : η =−iy under κT is the fiber {(x, ξ) ∈ C2n
: x = 0}, while κT (3

+) is
given by the equation {(x, ξ) ∈ C2n

: ξ = 0}.
We know from [Sjöstrand 1996] that for a suitable choice of C > 0 in (2-9), the map T is unitary:

T : L2(Rn)→ H80(C
n), (2-13)

where

H80(C
n)= Hol (Cn)∩ L2(Cn

: e−280/h L(dx)),

and 80 is a strictly plurisubharmonic quadratic form on Cn , given by

80(x)= supy∈Rn (− Imϕ(x, y))= 1
2((Im x)2+ Im(Bx, x)). (2-14)
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We also recall [Sjöstrand 1996] that the canonical transformation κT in (2-11) maps R2n bijectively onto

380 :=

{(
x,

2
i
∂80

∂x
(x)
)
: x ∈ Cn

}
. (2-15)

As explained in Chapter 11 of [Sjöstrand 1982], the strict positivity of κT (3
+)= {(x, ξ) ∈ C2n

: ξ = 0}
with respect to 380 implies that the quadratic weight function 80 is strictly convex, so that

80(x)∼ |x |2, x ∈ Cn. (2-16)

Next we have the exact Egorov property [Sjöstrand 1996],

T qw(y, h Dy)u = q̃w(x, h Dx)T u, u ∈ S(Rn), (2-17)

where q̃ is a quadratic form on C2n given by q̃ = q ◦ κ−1
T . Therefore it follows that

q̃(x, ξ)= Mx · ξ, (2-18)

where M is a complex n× n matrix. We have

Hq̃ = Mx · ∂x −M tξ · ∂ξ ,

and using (1-4), we see that the corresponding Hamilton map

F̃ = 1
2

(
M 0
0 −M t

)
maps (x, 0) ∈ κT (3

+) to (1/2)(Mx, 0). Now F and F̃ are isospectral, and we conclude that, with the
agreement of algebraic multiplicities, the following holds:

Spec(M)= Spec(2F)∩ {Im λ > 0}. (2-19)

Therefore the problem of estimating the norm of the resolvent of qw(x, h Dx) on L2(Rn) is equivalent to
controlling the norm of the resolvent of the quadratic operator q̃w(x, h Dx), acting in the space H80(C

n),
where the quadratic weight 80 enjoys the property (2-16).

In what follows, it will be convenient to reduce the matrix M in (2-18) to its Jordan normal form.
To this end, let us notice that we can implement this reduction by considering a complex canonical
transformation of the form

κC : C
2n
3 (x, ξ) 7→ (C−1x,C tξ) ∈ C2n, (2-20)

where C is a suitable invertible complex n×n matrix. On the operator level, associated to the transformation
in (2-20), we have the operator u(x) 7→ |det C |u(Cx), which maps the space H80(C

n) unitarily onto
the space H81(C

n), where 81(x) = 80(Cx) is a strictly plurisubharmonic quadratic weight such that
κC(380)=381 . We notice that the property

81(x)∼ |x |2, x ∈ Cn (2-21)

remains valid.
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We summarize the discussion pursued in this section in the following result.

Proposition 2.1. Let q : Rn
x ×Rn

ξ → C be a quadratic form with Re q > 0. The operator

qw(x, h Dx) : L2(Rn)→ L2(Rn),

equipped with the domain

D(qw(x, h Dx))= {u ∈ L2(Rn) : (x2
+ (h Dx)

2)u ∈ L2(Rn)},

is unitarily equivalent to the quadratic operator

q̃w(x, h Dx) : H81(C
n)→ H81(C

n),

with the domain

D(q̃w(x, h Dx))= {u ∈ H81(C
n) : (1+ |x |2)u ∈ L2

81
(Cn)}.

Here

q̃(x, ξ)= Mx · ξ,

where M is a complex n× n block-diagonal matrix, each block being a Jordan matrix. The eigenvalues of
M are precisely those of 2F in the upper half-plane, and the quadratic weight function 81(x) satisfies

81(x)∼ |x |2, x ∈ Cn.

We have the ellipticity property

Re q̃
(

x,
2
i
∂81

∂x
(x)
)
∼ |x |2, x ∈ Cn. (2-22)

Remark 2.2. The normal form reduction described in Proposition 2.1 is close to the corresponding
discussion of Section 3 in [Sjöstrand 1974]. Here, for future computations, it will be convenient for us to
work in the Bargmann space H81(C

n).

3. An elliptic estimate

Following the reduction of Proposition 2.1, here we concern ourselves with the quadratic operator
q̃w(x, h Dx), acting on H81(C

n). The purpose of this section is to establish a suitable a priori estimate
for holomorphic functions, vanishing to a high, h-dependent order at the origin, instrumental in the proof
of Theorem 1.1. The starting point is the following observation, which comes directly from Lemma 4.5
in [Gérard and Sjöstrand 1987], and whose proof we give only for the convenience of the reader.

Lemma 3.1. Let u ∈ Hol(Cn) and assume that ∂αu(0)= 0, |α|< N , and that 0< C0 < C1 <∞. Then

‖u‖L∞(B(0,C0)) ≤

(
N

C1

C1−C0

)(
C0

C1

)N

‖u‖L∞(B(0,C1)). (3-1)

Here B(0,C j )= {x ∈ Cn
: |x | ≤ C j }, j = 0, 1.
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Proof. By Taylor’s formula, we have

u(x)=
∫ 1

0

(1− t)N−1

(N − 1)!

( d
dt

)N
u(t x) dt.

We may assume that |x | = C0 and apply Cauchy’s inequalities so that∣∣∣( d
dt

)N
u(t x)

∣∣∣≤ C N
0 N !

(C1−C0t)N ‖u‖L∞(B(0,C1)).

It suffices therefore to remark that the expression

N
∫ 1

0

(1− t)N−1

(C1/C0− t)N dt

does not exceed
N

C1/C0−1

(
C0

C1

)N−1

. �

Let K > 0 be fixed and assume that u ∈ H81(C
n) is such that ∂αu(0) = 0, when |α| < N . Using

Lemma 3.1, we write

‖u‖2H81 (B(0,K ))
≤ ‖u‖2L2(B(0,K ))

≤ OK (1)‖u‖2L∞(B(0,K )) ≤ OK (1)N 2e−2N
‖u‖2L∞(B(0,K e))

≤ OK (1)N 2e−2N
‖u‖2L2(B(0,(K+1)e)) ≤ OK (1)N 2e−2N e(2/h)C1(K+1)2e2

‖u‖2H81
. (3-2)

In the last inequality we used that 81(x)≤ C1|x |2 for some C1 ≥ 1. It follows that

‖u‖H81 (B(0,K )) ≤ OK (1)e−1/2h
‖u‖H81

, (3-3)

provided that the integer N satisfies

N ≥
2C1(K + 1)2e2

+ 1
h

. (3-4)

In what follows, we shall let N0 = N0(K ) ∈ N, N0 ∼ h−1, be the least integer which satisfies (3-4).
It is now easy to derive an a priori estimate for functions in H81(C

n), which vanish to a high order at
the origin. Let χ ∈ C∞0 (C

n), 0≤ χ ≤ 1, be such that supp (χ)⊂ {x ∈ Cn
: |x | ≤ K }, with χ(x)= 1 for

|x | ≤ K/2. If u ∈ H81(C
n) is such that (1+ |x |2)u ∈ L2

81
(Cn), we have the quantization-multiplication

formula [Sjöstrand 1990], valid for z in a compact subset of C,

((1−χ)(q̃w(x, h Dx)− z)u, u)L2
81

=

∫
(1−χ(x))

(
q̃
(

x,
2
i
∂81

∂x
(x)
)
− z

)
|u(x)|2e−281(x)/h L(dx)+O(h)‖u‖2H81

.

The ellipticity property

Re q̃
(

x,
2
i
∂81

∂x
(x)
)
≥
|x |2

C0
, x ∈ Cn, (3-5)

valid for some C0 > 1, implies that, on the support of 1−χ , we have
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Re
(

q̃
(

x,
2
i
∂81

∂x
(x)
)
− z

)
≥
|x |2

2C0
,

provided that |z| ≤ K 2/8C0. Restricting the attention to this range of z’s and using the Cauchy–Schwarz
inequality, we obtain that∫

(1−χ(x))|u(x)|2e−281(x)/h L(dx)≤ OK (1)‖(q̃w(x, h Dx)− z)u‖H81
‖u‖H81

+OK (h)‖u‖2H81
. (3-6)

If u ∈ H81(C
n), (1+|x |2)u ∈ L2

81
(Cn), is such that ∂αu(0)= 0 for all α ∈Nn with |α|< N0, an application

of (3-3) shows that the left-hand side of (3-6) is of the form

‖u‖2H81
+OK (h∞)‖u‖2H81

.

We may summarize the discussion so far in the following proposition.

Proposition 3.2. Let K > 0 be fixed and assume that u ∈ H81(C
n), (1+ |x |2)u ∈ L2

81
(Cn), is such that

∂αu(0)= 0, |α|< N0, where N0 ∼ h−1 is the least integer such that

N0 ≥
2C1(K + 1)2e2

+ 1
h

.

Here 81(x)≤ C1|x |2, C1 ≥ 1. Assume also that |z| ≤ K 2/8C0, where C0 > 1 is the ellipticity constant in
(3-5). Then we have the following a priori estimate, valid for all h > 0 sufficiently small:

‖u‖H81
≤ O(1)‖(q̃w(x, h Dx)− z)u‖H81

.

We finish this section by discussing norm estimates for the linear continuous projection operator

τN : H81(C
n)→ H81(C

n),

given by

τN u(x)=
∑
|α|<N

(α!)−1(∂αu(0))xα. (3-7)

As in Proposition 3.2, we shall be concerned with the case when N ∈N satisfies N ∼ h−1. The projection
operator τN is highly nonorthogonal — nevertheless, using the strict convexity of the quadratic weight 81,
establishing an exponential upper bound on its norm will be quite straightforward, as well as sufficient
for our purposes. In the following, we shall use the fact that

1
C1
|x |2 ≤81(x)≤ C1|x |2, C1 ≥ 1. (3-8)

Notice also that [τN , q̃w(x, h Dx)] = 0.

Proposition 3.3. Assume that N ∈ N is such that Nh ≤ O(1). There exists a constant C > 0 such that

‖τN‖L(H81 (C
n),H81 (C

n)) ≤ CeC/h . (3-9)
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Proof. We first observe that when deriving the bound (3-9), it suffices to restrict the attention to the space
of holomorphic polynomials, which is dense in H81(C

n). Indeed, the analysis in [Sjöstrand 1974] tells us
that the linear span of the generalized eigenfunctions of the quadratic operator qw(x, h Dx) is dense in
L2(Rn), which implies the density of the holomorphic polynomials in H81(C

n). Let

u(x)=
∑
|α|≤N1

aαxα (3-10)

for some N1, where we may assume that N1 > N . We have

τN u =
∑
|α|<N

aαxα,

and therefore, using (3-8), we see that

‖τN u‖2H81
≤ ‖τN u‖2H8` , (3-11)

where 8`(x)= |x |2/C1. When computing the expression in the right-hand side of (3-11), we notice that
since 8` is radial, we have

(xα, xβ)H8` = 0, α 6= β,

while

(xα, xα)H8` =

n∏
j=1

∫
|x j |

2α j e−2|x j |
2/C1h L(dx j ),

which is immediately seen to be equal to (
C1h

2

)n+|α|

πnα!.

It follows that

‖τN u‖2H81
≤

∑
|α|<N

|aα|2
(

C1h
2

)n+|α|

πnα!. (3-12)

On the other hand, (3-8) also gives that

‖u‖2H81
≥ ‖u‖2H8u

, (3-13)

where 8u(x)=C1|x |2, and arguing as above, it is straightforward to see that the right-hand side of (3-13)
is given by the expression ∑

|α|≤N1

|aα|2
( h

2C1

)n+|α|
πnα!.

We conclude that when u ∈ H81(C
n) is a holomorphic polynomial of the form (3-10),

‖u‖2H81
≥

∑
|α|<N

|aα|2
( h

2C1

)n+|α|
πnα!. (3-14)

Combining (3-12), (3-14), and recalling the fact that Nh≤O(1), we obtain the result of the proposition. �
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4. The finite-dimensional analysis and end of the proof

In this section we analyze the resolvent of the quadratic operator q̃w(x, h Dx) acting on the finite-
dimensional space Im τN , where τN is the projection operator introduced in (3-7) and N ∼ h−1. This will
allow us to complete the proof of Theorem 1.1. For m = 0, 1, . . . , define the finite-dimensional subspace
Em ⊂ H81(C

n) as the linear span of the monomials xα, with |α| = m. We have

Im τN =

N−1⊕
m=0

Em .

We may notice here that

νm := dim Em =
1

(n− 1)!
(m+ 1) · · · (m+ n− 1), (4-1)

and also that each space Em is invariant under q̃w(x, h Dx). We shall equip Im τN with the basis

ϕα(x) := (πnα!)−1/2h−n/2(h−1/2x)α, |α|< N , (4-2)

which will be particularly convenient in the following computations, since the normalized monomials ϕα
form an orthonormal basis in the weighted space H8(Cn), where 8(x)= (1/2)|x |2. We have

Im τN ⊂ H81(C
n)∩ H8(Cn),

in view of the strict convexity of the weights.
Let us first derive an upper bound on the norm of the inverse of the operator

z− q̃w(x, h Dx) : Em→ Em, 0≤ m < N ∼ h−1,

assuming that Em has been equipped with the H8-norm. Let λ1, . . . , λn be the eigenvalues of the Hamilton
map F of q in the upper half-plane, repeated according to their algebraic multiplicity. According to
Proposition 2.1, we then have

q̃w(x, h Dx)= q̃wD(x, h Dx)+ q̃wN (x, h Dx),

where

q̃wD(x, h Dx)=

n∑
j=1

2λ j x j h Dx j +
h
i

n∑
j=1

λ j , (4-3)

is the diagonal part, while

q̃wN (x, h Dx)=

n−1∑
j=1

γ j x j+1h Dx j , γ j ∈ {0, 1}, (4-4)

is the nilpotent one. It is also easily seen that the operators q̃wD(x, h Dx) and q̃wN (x, h Dx) commute. It
will be important for us to have an estimate of the order of nilpotency of the operator q̃wN (x, h Dx) acting
on the space Em .
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Lemma 4.1. Let n ≥ 2, m ≥ 1, and let Em(n) be the space of homogeneous polynomials of degree m in
the variables x1, x2, . . . , xn . The operator

N :=

n−1∑
j=1

x j+1∂x j : Em(n)→ Em(n)

is nilpotent of order m(n− 1)+ 1.

Proof. When α = (α1, . . . , αn), |α| = m, let us write

S(α)=
n∑

j=1

jα j ,

and notice that m ≤ S(α)≤ nm. We have

Nxα =
∑
|α′|=m

S(α′)=S(α)+1

cα′xα
′

,

and similarly for powers Npxα , but with S(α′)= S(α)+ p. It follows that Nm(n−1)+1xα must vanish, as

S(α′)= S(α)+m(n− 1)+ 1≥ mn+ 1

is impossible. We also notice that Nm(n−1)xm
1 = Cxm

n 6= 0, for some C 6= 0. �

In what follows, we shall only use that the operator q̃wN (x, h Dx) : Em→ Em is nilpotent of order O(m),
with the implicit constant depending on the dimension n only.

It is now straightforward to derive a bound on the norm of the inverse of the operator

z− q̃w(x, h Dx) : Em→ Em,

when the space Em is equipped with the H8-norm. The matrix D(m) of the operator q̃wD(x, h Dx) with
respect to the basis ϕα, |α| = m, is diagonal, with the eigenvalues of q̃w(x, h Dx),

µα =
h
i

n∑
j=1

λ j (2α j + 1), |α| = m,

along the diagonal. On the other hand, using (4-2), we compute

x j+1∂x jϕα = α
1/2
j (α j+1+ 1)1/2ϕα−e j+e j+1, 1≤ j ≤ n− 1,

where α = (α1, . . . , αn) and e1, . . . , en is the canonical basis in Rn . It follows that

q̃wN (x, h Dx)ϕα =

n−1∑
j=1

−ihγ jα
1/2
j (α j+1+ 1)1/2ϕα−e j+e j+1, (4-5)

and hence the entries (N(m)α,β)=
(
(q̃wN (x, h Dx)ϕβ, ϕα)

)
, |α| = |β| =m, of the matrix N(m) :Cνm→Cνm

of q̃wN (x, h Dx) : Em→ Em with respect to the basis {ϕα}, are bounded in modulus by

hα1/2
j (α j+1+ 1)1/2 ≤ h(m+ 1)≤ O(1),
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since |α| = m and m does not exceed N = O(h−1). Furthermore, from (4-5), it follows that the matrix
N(m) has no more than n−1 nonzero entries in any column, and a similar reasoning shows that each row
of N(m) also has no more than n−1 nonzero entries. Since we have just seen that the entries in N(m) are
O(1), an application of Schur’s lemma shows that that the operator norm of N(m) on Cνm does not exceed(

sup
β

∑
α

|N(m)α,β |
)1/2(

sup
α

∑
β

|N(m)α,β |
)1/2

≤ O(1).

Now the inverse of the νm × νm matrix

z−D(m)−N(m) : Cνm → Cνm

is given by

(z−D(m))−1
∞∑
j=0

(
(z−D(m))−1N(m)

) j
, (4-6)

and according to Lemma 4.1 and the fact that
[
q̃wD(x, h Dx), q̃wN (x, h Dx)

]
= 0, we know that the Neumann

series in (4-6) is finite, containing at most O(m) terms. It follows that

(z−D(m)−N(m))−1
=

exp(O(m))
d(z, σm)O(m)

: Cνm → Cνm , (4-7)

where d(z, σm)= inf|α|=m |z−µα| is the distance from z ∈C to the set of eigenvalues {µα} of q̃w(x, h Dx),
restricted to Em .

Using the fact that Im τN is the orthogonal direct sum of the spaces Em , 0 ≤ m ≤ N − 1, we may
summarize the discussion so far in the following result.

Proposition 4.2. Assume that N ∈N is such that Nh≤O(1), and let us equip the finite-dimensional space
Im τN ⊂ H81(C

n)∩ H8(Cn) with the H8-norm, where 8(x) = (1/2)|x |2. Assume that z ∈ C satisfies
dist(z,Spec(q̃w(x, h Dx)))≥ hL/C , for some C > 0, L ≥ 1. Then we have

(z− q̃w(x, h Dx))
−1
= O(1) exp

(
O(1)h−1 log 1

h

)
: Im τN → Im τN . (4-8)

Assuming that dist
(
z,Spec(q̃w(x, h Dx))

)
≥ 1/C , the bound (4-8) improves to

(z− q̃w(x, h Dx))
−1
= O(1) exp(O(1)h−1) : Im τN → Im τN . (4-9)

Remark 4.3. Assume that the quadratic form q is such that the nilpotent part in the Jordan decomposition
of the Hamilton map F is trivial. The quadratic operator q̃w(x, h Dx) acting on H8(Cn) is then normal,
and therefore, the estimate (4-8) improves to

‖(z− q̃w(x, h Dx))
−1
‖L(Im τN ,Im τN ) ≤

1
dist

(
z,Spec(q̃w(x, h Dx))

) .
Example 4.4. Let n = 2. Consider the semiclassical Weyl quantization of the elliptic quadratic form

q̃(x, ξ)= 2λ
2∑

j=1

x jξ j + x2ξ1, λ=
i
2
,
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acting on H8(C2). The eigenvalues of q̃w(x, h Dx) are of the form µα = h(|α| + 1), |α| ≥ 0, and writing

q̃wD(x, h Dx)= 2λ
2∑

j=1

x j h Dx j +
2λh

i
, q̃wN (x, h Dx)= x2h Dx1,

we have

q̃wD(x, h Dx)ϕα = µαϕα,

and

q̃wN (x, h Dx)ϕα =−ih(α1(α2+ 1))1/2ϕα−e1+e2, (4-10)

where the ϕα were introduced in (4-2).

Let |α| = m, and let us write, following (4-6),

(q̃w(x, h Dx)− z)−1ϕα = (µα − z)−1
m∑

j=0

(µα − z)− j (q̃wN (x, h Dx))
jϕα. (4-11)

It is then natural to take α = (m, 0), and using (4-10), a straightforward computation shows that, for
0≤ j ≤ m,

(q̃wN (x, h Dx))
jϕ(m,0) = (−ih) j

√
j !m!

(m− j)!
ϕ(m− j, j).

Let z = 1 and take m = h−1
∈ N so that µα − z = h. By Parseval’s formula,

‖(q̃w(x, h Dx)− z)−1ϕ(m,0)‖
2
H8 =

m∑
j=0

h−2h−2 j h2 j j !m!
(m− j)!

, (4-12)

and the right-hand side can be estimated from below simply by discarding all terms except when j = m.
An application of Stirling’s formula shows that

‖(q̃w(x, h Dx)− z)−1ϕ(m,0)‖H8 ≥ m! ≥ exp
( 1

2h
log 1

h

)
,

for all h > 0 sufficiently small, and therefore, we see that the result of Proposition 4.2 cannot be improved.
Let us finally notice that, as can be checked directly, the quadratic operator q̃w(x, h Dx) acting on H8(C2)

is unitarily equivalent, via an FBI-Bargmann transform, to the quadratic operator

q(x, h Dx) : L2(Rn)→ L2(Rn),

of the form

q(x, h Dx)= q0(x, h Dx)−
i
2

a∗2a1,

where

q0(x, h Dx)=−
1
2 h21+ 1

2 x2
=

1
2(a
∗

1a1+ a∗2a2)+ h

is the semiclassical harmonic oscillator, while

a∗j = x j − h∂x j , a j = x j + h∂x j , j = 1, 2
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are the creation and annihilation operators, respectively. See also [Caliceti et al. 2007].
We shall now complete the proof of Theorem 1.1 in a straightforward manner, combining our ear-

lier computations and estimates. Elementary considerations analogous to those used in the proof of
Proposition 3.3 show that for some constant C > 0, we have, when u ∈ Im τN ,

‖u‖H81
≤ CeC/h

‖u‖H8, ‖u‖H8 ≤ CeC/h
‖u‖H81

. (4-13)

Here we recall that N ∼ h−1. It follows therefore that the result of Proposition 4.2,

(z− q̃w(x, h Dx))
−1
= O(1) exp

(
O(1)h−1 log

1
h

)
: Im τN → Im τN , (4-14)

also holds when the space Im τN ⊂ H81(C
n)∩ H8(Cn) is equipped with the H81-norm, at the expense of

an O(1) loss in the exponent. The same conclusion holds for the bound (4-9).
Let � b C and assume that z ∈ � ⊂⊂ C is such that dist

(
z,Spec(q̃w(x, h Dx))

)
≥ hL/C for some

L ≥ 1 and C > 0 fixed. Then, according to Proposition 3.2, there exists N0 ∈ N, N0 ∼ h−1, such that if
u ∈ H81(C

n) is such that (1+ |x |2)u ∈ L2
81
(Cn), then, using that [q̃w(x, h Dx), τN0] = 0, we get, for all

h > 0 small enough,

‖(1− τN0)u‖H81
≤ O(1)‖(q̃w(x, h Dx)− z)(1− τN0)u‖H81

≤ O(1) exp(O(1)h−1)‖(q̃w(x, h Dx)− z)u‖H81
. (4-15)

Here we also used Proposition 3.3. On the other hand, the bound (4-14) and Proposition 3.3 show that

‖τN0u‖H81
≤ O(1) exp

(
O(1)h−1 log 1

h

)
‖τN0(q̃

w(x, h Dx)− z)u‖H81

≤ O(1) exp
(

O(1)h−1 log 1
h

)
‖(q̃w(x, h Dx)− z)u‖H81

. (4-16)

Combining (4-15) and (4-16), we obtain the bound (1-7). The estimate (1-6) follows in a similar way,
and hence, the proof of Theorem 1.1 is complete. �
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