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MICROLOCAL PROPERTIES OF SCATTERING MATRICES FOR
SCHRÖDINGER EQUATIONS ON SCATTERING MANIFOLDS

KENICHI ITO AND SHU NAKAMURA

Let M be a scattering manifold, i.e., a Riemannian manifold with an asymptotically conic structure, and
let H be a Schrödinger operator on M . One can construct a natural time-dependent scattering theory
for H with a suitable reference system, and a scattering matrix is defined accordingly. We show here
that the scattering matrices are Fourier integral operators associated to a canonical transform on the
boundary manifold generated by the geodesic flow. In particular, we learn that the wave front sets are
mapped according to the canonical transform. These results are generalizations of a theorem by Melrose
and Zworski, but the framework and the proof are quite different. These results may be considered
as generalizations or refinements of the classical off-diagonal smoothness of the scattering matrix for
two-body quantum scattering on Euclidean spaces.

1. Introduction

Let M be an n-dimensional smooth noncompact manifold such that M =Mc∪M∞, where Mc is relatively
compact, and M∞ is diffeomorphic to R+× ∂M , where ∂M is a compact manifold. In the following, we
often identify M∞ with R+×∂M , and we also suppose Mc∩M∞ ⊂ (0, 1)×∂M under this identification.

We recall the construction of the model introduced in [Ito and Nakamura 2010]. Let {ϕα : Uα→Rn−1
},

Uα ⊂ ∂M , be a local coordinate system of ∂M . We take

{ϕ̃α = I ⊗ϕα : Ũα = R+×Uα→ R×Rn−1
}

as the local coordinate system for M∞ ∼= R+× ∂M , and we use (r, θ) ∈ R×Rn−1 to represent a point
in M∞.

We suppose ∂M is equipped with a smooth strictly positive density H = H(θ) and a positive (2, 0)-
tensor h = (h jk(θ)) on ∂M . We let

Q =−1
2

∑
j,k

H(θ)−1 ∂

∂θ j
H(θ)h jk(θ)

∂

∂θk
on Hb = L2(∂M, H(θ)dθ).

Q is an essentially self-adjoint operator on Hb, and we denote its unique self-adjoint extension by the
same symbol Q.
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We let G be a smooth strictly positive density on M such that

G(x) dx = rn−1 H(θ) drdθ on (1,∞)× ∂M ⊂ M∞,

and we set H= L2(M,G(x)dx). Let P be a formally self-adjoint second order elliptic operator on M
such that

P =− 1
2 G−1(∂r , ∂θ/r)G

(
a1 a2
t a2 a3

)(
∂r

∂θ/r

)
+ V on M∞,

where
( a1 a2

t a2 a3

)
defines a real-valued smooth tensor and V is a real-valued smooth function. As in [Ito and

Nakamura 2010], we introduce the following assumption:

Assumption A. There is µ > 0 such that for any ` ∈ Z+, α ∈ Zn−1
+ , there is C`α > 0 and

|∂`r ∂
α
θ (a1(r, θ)− 1)| ≤ C`αr−1−µ−`,

|∂`r ∂
α
θ (a3(r, θ)− h(θ))| ≤ C`αr−µ−`,

|∂`r ∂
α
θ a2(r, θ)| ≤ C`αr−µ−`,

|∂`r ∂
α
θ V (r, θ)| ≤ C`αr−1−µ−`,

in each local coordinate of M∞ described above.

We may consider P as a short range perturbation of − 1
2∂

2
r +

1
r2 Q, but we will use different operators

to construct a scattering theory. It is known that P is essentially self-adjoint, that σess(P)= [0,∞), and
that P is absolutely continuous except on a countable discrete spectrum, the only possible accumulation
point being 0 (see [Ito and Nakamura 2010] and references therein). We construct a time-dependent
scattering theory for H as follows: We set

M f = R× ∂M, H f = L2(M f , H(θ) drdθ), P f =−
1
2
∂2

∂r2 on M f .

P f is the one-dimensional free Schrödinger operator, and it is self-adjoint with D(P f )= H 2(R)⊗Hb.
Let j (r) ∈ C∞(R) such that j (r)= 0 on (−∞, 1

2 ] and j (r)= 1 on [1,∞). We define I :H f →H by

(Iϕ)(r, θ)= r−(n−1)/2 j (r)ϕ(r, θ) if (r, θ) ∈ M∞,

and (Iϕ)(x)= 0 if x /∈ M∞. We define the wave operators by

W± =W±(P, P f ,I)= s-lim
t→±∞

ei t P Ie−i t P f .

It is shown in [Ito and Nakamura 2010] that these operators exist and are complete in the following sense.
Let F be the Fourier transform in r , i.e.,

(Fϕ)(ρ, θ)= (2π)−1/2
∫
∞

−∞

e−irρϕ(r, θ) dr for ϕ ∈ C∞0 (M f ),

and extend it to a unitary map in L2(M f ). If we set

H f,± = {ϕ ∈H f | supp(Fϕ)⊂ R±× ∂M},

then H f =H f,+⊕H f,−. We consider W± as maps from H f,± to H; they are asymptotically complete,
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i.e., unitary operators from H f,± to Hac(P) [ibid., Theorem 2]. Then the scattering operator defined by

S =W ∗
+

W− :H f,−→H f,+

is unitary. By the intertwining property (P f S = S P f ), there is S(λ) ∈B(Hb) for λ > 0 such that

(FSF−1ϕ)(ρ, · )= S(ρ2/2)ϕ(−ρ, · ) for ρ > 0, ϕ ∈ FH f,−.

S(λ) is our scattering matrix, and we study its microlocal properties.
Let

q(θ, ω)= 1
2

∑
j,k

h jk(θ)ω jωk for (θ, ω) ∈ T ∗∂M

be the classical Hamiltonian associated to Q. We denote the Hamilton flow generated by b by exp(t Hb)

for t ∈ R.

Theorem 1.1. Suppose Assumption A holds, and let u ∈Hb. Then

WF(S(λ)u)= exp(πH√2q)WF(u),

where WF(u) denotes the wave front set of u.

If µ= 1, then we can show S(λ) is a Fourier integral operator (FIO). This is a slight extension of a
theorem by Melrose and Zworski [1996].

Theorem 1.2. Suppose Assumption A holds with µ= 1. Then for each λ > 0, S(λ) is an FIO associated
to exp(πH√2q).

If 0< µ< 1, then S(λ) is not necessarily an FIO in the usual sense, but we can still show it is an FIO
in a generalized sense:

Theorem 1.3. Suppose Assumption A holds, and let S(λ) be the scattering matrix defined as above. Then
for each λ > 0, S(λ) is an FIO associated to an asymptotically homogeneous canonical transform in
T ∗∂M , which is asymptotic to exp(πH√2q) as ω→∞.

The exact definition of the phrase an FIO associated to an asymptotically homogeneous canonical
transform is given in [Ito and Nakamura 2012], and we discuss it in Section 6.

Remark 1.4. Since we do not introduce a Riemannian metric, our model looks rather different from the
scattering metric defined by Melrose [1994; Melrose and Zworski 1996]. However, as explained in [Ito
and Nakamura 2010, Appendix A], the Laplacian on scattering manifolds is a special case of our model.
Namely, their model corresponds to the case that µ= 1 and that each a j has asymptotic expansion in r−1

as r→∞ and V = 0.

Theorems 1.1 and 1.2 are essentially corollaries of Theorem 1.3, but they can be proved by a simpler
argument than Theorem 1.3. We feel the simpler argument is interesting in itself, and we first prove
Theorems 1.1 and 1.2, and then we refine the argument to prove Theorem 1.3 later.

The main idea to prove Theorems 1.1–1.3 is to consider the evolution

A(t)= ei t P f /hI∗e−i t P/ha(hr, Dr , θ, h Dθ )ei t P/hIe−i t P f /h
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with some symbol a, and use an argument similar to Egorov’s theorem for this time-dependent operator.
We use a semiclassical argument, i.e., we consider the asymptotic behavior of the operator as h→ 0. We
consider W (t)= ei t P f /hI∗e−i t P/h as a time-evolution, and then construct an asymptotic solution for A(t)
(with slight modifications) as a solution to a Heisenberg equation. The construction of the asymptotic
solution relies on the classical Hamilton flow generated by p, the symbol of P . The dominant part of the
symbol p is given by the unperturbed conic Hamiltonian: pc =

1
2ρ

2
+

1
r2 q(θ, ω). The classical scattering

operator for the pair pc and p f =
1
2ρ

2 is explicitly computed, and it is exp(πH√2q), which appears in
the statement of our main theorems. Thus, one may consider our results as a quantization of the classical
mechanical scattering on the scattering manifold. More precisely, we show that the canonical transform
appearing in Theorem 1.3 is actually the classical scattering map for the pair p and p f , which is not
necessarily homogeneous, and we need to use the method of FIOs with asymptotically conic Lagrangian
manifolds.

As mentioned in the beginning, Theorem 1.2 is slight generalization of the Melrose–Zworski theorem
[1996] (see also [Vasy 1998] for a simplification of the theory). They used the theory of Legendre distribu-
tion and the notion of scattering wave front sets, whereas we use relatively elementary pseudodifferential
operator calculus with somewhat nonstandard symbol classes, and a Beals-type characterization of FIOs.
We also note that our proof, as well as the setting, are time-dependent-theoretical, and we investigate the
scattering phenomena directly to obtain the properties of the wave operators and scattering operators,
whereas the Melrose–Zworski paper relies on the stationary, generalized eigenfunction expansion theory.

Our method is closely related to our previous works on the propagation of singularities for Schrödinger
evolution equations [Nakamura 2009a; 2009b; Ito and Nakamura 2009; 2012]. In these works, we
considered singularities of solutions, which are described by their high energy behavior, whereas in the
scattering phenomena we are concerned with the large r behavior (which in turn is related to the high
|ω| behavior, where ω is the conjugate variable to θ ∈ ∂M). Thus we are forced to use different symbol
classes in the calculus, and the corresponding classical mechanics look slightly different, but the general
strategy is essentially the same as in these papers.

If M = Rn and the Hamiltonian P is a short-range perturbation of the Laplacian − 1
24, then the

canonical map exp(πH√2q) is the antipodal map on T ∗Sn−1. In this case, the off-diagonal smoothness
of the scattering cross-section is well-known (see [Isozaki and Kitada 1986], and Section 9.4 and the
references of [Yafaev 2000]), and our result (as well as the Melrose–Zworski theorem) may be considered
as its generalizations. For such models, our result implies the scattering matrix is an FIO (associated to a
canonical map which is asymptotic to the identity map), and if µ= 1 then it is in fact a pseudodifferential
operator. It is also not difficult to show from our argument that the scattering matrix is a pseudodifferential
operator with symbol in S0

µ,0(S
n−1) if µ ∈ (0, 1).

The paper is organized as follows. In Section 2, we discuss Hamilton flows generated by pc and p,
and their scattering theory. In Section 3, we prepare the symbol calculus on the scattering manifolds. In
Section 4, we discuss an Egorov-type theorem and the construction of asymptotic solutions, which are
sufficient to show Theorems 1.1 and 1.2. We prove Theorems 1.1 and 1.2 in Section 5. In Section 6,
we discuss the modification of the argument to show Theorem 1.3. We discuss a local decay estimate
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necessary in the proof in Appendix A. A Beals-type characterization, or an inverse of Egorov’s theorem,
is discussed in Appendix B, along with a technical lemma on FIOs used in the proof.

Throughout this paper, we use the following notation: For norm spaces X and Y , the space of bounded
linear maps is denoted by B(X, Y ), and if X = Y , we also write B(X, X) = B(X). More generally, if
X and Y are topological linear spaces, the space of continuous linear maps is denoted by L(X, Y ). For
a symbol g on T ∗X with a manifold X , we denote by exp(t Hg) the Hamilton flow generated by the
Hamilton vector field

Hg =
∂g
∂ξ
·
∂

∂x
−
∂g
∂x
·
∂

∂ξ
.

We also write T ∗X \ 0= {(x, ξ) ∈ T ∗X | ξ 6= 0}.

2. Classical flow and scattering theory

In this section, we consider the classical mechanics, or the Hamilton flow for the Hamiltonian with conic
structure on T ∗M∞, where M∞ = R+ × ∂M , and then the Hamilton flow generated by the principal
symbol of P .

Exact solutions to the conic Hamilton flow. We set

pc(r, ρ, θ, ω)=
1
2
ρ2
+

1
r2 q(θ, ω) and q(θ, ω)= 1

2

∑
j,k

h jk(θ)ω jωk

on T ∗M∞ ∼= T ∗R+× T ∗∂M . We consider

(r(t), ρ(t), θ(t), ω(t))= exp(t Hpc)(r0, ρ0, θ0, ω0),

with (r0, ρ0, θ0, ω0) ∈ T ∗R+× (T ∗∂M \ 0), that is, with ω0 6= 0. It satisfies the Hamilton equation

r ′(t)=
∂pc

∂ρ
= ρ(t),

θ ′(t)=
∂pc

∂ω
=

1
r(t)2

∂q
∂ω
(θ(t), ω(t)),

ρ ′(t)=−
∂pc

∂r
=

2
r(t)3

q(θ(t), ω(t)),

ω′(t)=
∂pc

∂θ
=−

1
r(t)2

∂q
∂θ
(θ(t), ω(t)).

The solution has two invariants: total energy E0 = pc(r0, ρ0, θ0, ω0) and angular energy q0 = q(θ0, ω0).
(The conservation of the total energy follows from {pc, pc} = 0, and of the angular energy from {q, pc} =
1
2{q, ρ

2
}+ {q, 1

r2 }q + 1
r2 {q, q} = 0.) Then (r(t), ρ(t)) satisfies

r ′(t)= ρ(t), ρ ′(t)= 2
r(t)3

q0,

which is independent of (θ(t), ω(t)). Noting that (r2(t))′′ = 4E0, we can easily solve this equation to
obtain

r(t)=
√

2E0t2
+ 2r0ρ0t + r2

0 , ρ(t)=
2E0t + r0ρ0

√

2E0t2
+ 2r0ρ0t + r2

0

, t ∈ R.

We now set

τ(t)=
∫ t

0

ds
r(s)2

=
1
√

2q0

(
tan−1 2E0t + r0ρ0

√
2q0

− tan−1 r0ρ0
√

2q0

)
.
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Then (θ(t), ω(t)) satisfies
∂θ

∂τ
=
∂q
∂ω
(θ, ω),

∂ω

∂τ
=−

∂q
∂θ
(θ, ω),

and hence we learn that
(θ(t), ω(t))= exp(τ (t)Hq)(θ0, ω0).

Moreover, if we set σ(t)=
√

2q0 · τ(t), then we learn that

∂θ

∂σ
=

1
√

2q
∂q
∂ω
=
∂
√

2q
∂ω

(θ, ω),
∂ω

∂σ
=−

1
√

2q
∂q
∂θ
=−

∂
√

2q
∂θ

(θ, ω),

and hence that
(θ(t), ω(t))= exp

(
σ(t)H√2q

)
(θ0, ω0).

Note that exp
(
t H√2q

)
is the geodesic flow on ∂M with respect to the (co)metric (h jk(θ)) on T ∗∂M .

Classical mechanical wave operators and a scattering operator for the conic Hamilton flow. Now we
consider the asymptotics as t→±∞. We set

r± = lim
t→±∞

r̃(t)= lim
t→±∞

(r(t)− tρ(t))=±
r0ρ0
√

2E0
,

ρ± = lim
t→±∞

ρ(t)=±
√

2E0,

(θ±, ω±)= lim
t→±∞

(θ(t), ω(t))= exp(σ±H√2q)(θ0, ω0),

where σ± =±1
2π − tan−1(r0ρ0/

√
2q0). Note we need a modification only for r(t). (r±, ρ±, θ±, ω±) are

the scattering data for the trajectory (r(t), ρ(t), θ(t), ω(t)). We also note the identities

E0 =
1
2
ρ2

0 +
1
r2

0
q0 =

1
2
ρ2
±
, r0ρ0 = r±ρ±, q0 = q(θ±, ω±).

Using these, we can solve (r0, ρ0, θ0, ω0) for given (r±, ρ±, θ±, ω±) if ±ρ± > 0 and ω± 6= 0:

r0 =
√

r2
±
+ 2q0/ρ

2
±
, ρ0 =

r±ρ±
√

r2
±
+ 2q0/ρ

2
±

, (θ0, ω0)= exp(−σ±H√2q)(θ±, ω±),

where σ± = ± 1
2π − tan−1(r±ρ±/

√
2q). We define the classical wave operators (for the pair pc and

p f :=
1
2ρ

2) by
wc,± : (r±, ρ±, θ±, ω±) 7→ (r0, ρ0, θ0, ω0).

We can also write

wc,±(r±, ρ±, θ±, ω±)= lim
t→±∞

exp(−t Hpc) ◦ exp(t Hp f )(r±, ρ±, θ±, ω±).

It is easy to check that wc,± are diffeomorphisms from R×R±× (T ∗∂M \ 0) to R+×R× (T ∗∂M \ 0).
Hence the classical scattering operator

sc = w
−1
c,+ ◦wc,− : (r−, ρ−, θ−, ω−) 7→ (r+, ρ+, θ+, ω+)
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is a diffeomorphism from R×R−× (T ∗∂M \ 0) to R×R+× (T ∗∂M \ 0). We can easily compute sc

explicitly, we have
sc(r, ρ, θ, ω)= (−r,−ρ, exp(πH√2q)(θ, ρ)),

and this is the classical analogue of the Melrose–Zworski theorem.
We write

wc(t)= exp(−t Hpc) ◦ exp(t Hp f ) so that wc,± = lim
t→±∞

wc(t).

Let U ⊂ R+ ×R× (T ∗∂M \ 0) be a relatively compact domain. Then the convergence of wc(t)−1 to
w−1

c,± (as t→±∞) is uniform in U , along with all derivatives. Since the limit is a diffeomorphism, its
inverse w(t) also has the same property (on wc(t)−1U ). In particular, all the derivatives of wc(t)−1 on U
are uniformly bounded in t , and all the derivatives of wc(t) on wc(t)−1U are uniformly bounded.

We note that it is easy to check that wc,± and hence sc are homogeneous of order one with respect to
the (r, ω)-variables, i.e.,

w−1
c,±(λr0, ρ0, θ0, λω0)= (λr±, ρ±, θ±, λω) for λ > 0.

This is consistent with the scaling property of wc(t):

w−1
c (λt)(λr0, ρ0, θ0, λω0)= (λr̃(t), ρ(t), θ(t), λω(t))

for any λ > 0, t ∈ R.

Classical flow generated by the scattering metric. Here we discuss the Hamilton flow generated by the
symbol of P:

p(r, ρ, θ, ω)= 1
2

(
a1(r, θ)ρ2

+
2ρa2(r, θ) ·ω

r
+
ω · a3(r, θ)ω

r2

)
+ V (2-1)

on T ∗M∞.
We let �0 b T ∗R+× (T ∗∂M \ 0). For h ∈ (0, 1], we set

�h
0 = {(r, ρ, θ, ω) ∈ T ∗R+× (T ∗∂M \ 0) | (hr, ρ, θ, hω) ∈�0},

and we consider the Hamilton flow with initial conditions in �h
0 . We show that if h is sufficiently small

then the classical (inverse) wave operators exist on �h
0 , and they are very close to w−1

c,±, the (inverse)
wave operators for the conic metric.

Theorem 2.1. (i) Let �0 and �h
0 as above. Then there is h0 > 0 such that if h ∈ (0, h0], then

w∗
±
(r, ρ, θ, ω) := lim

t→±∞
exp(−t Hp f ) ◦ exp(t Hp)(r, ρ, θ, ω)

exists for (r, ρ, θ, ω) ∈�h
0 , and the convergence holds in the C∞-topology on �h

0 .

(ii) We write
(r(t), ρ(t), θ(t), ω(t))= exp(t Hp)(r, ρ, θ, ω),

(rc(t), ρc(t), θc(t), ωc(t))= exp(t Hpc)(r, ρ, θ, ω),
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for (r, ρ, θ, ω) ∈�h
0 . Then for any indices α, β, γ and δ, there is C > 0 such that

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ω(r(t)− rc(t))| + |∂αr ∂

β
ρ ∂

γ

θ ∂
δ
ω(ω(t)−ωc(t))| ≤ Ch−1+µ+|α|+|δ|,

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ω(ρ(t)− ρc(t))| + |∂αr ∂

β
ρ ∂

γ

θ ∂
δ
ω(θ(t)− θc(t))| ≤ Chµ+|α|+|δ|,

for (r, ρ, θ, ω) ∈�h
0 , t ∈ R, 0< h ≤ h0.

(iii) If we write

w∗
±
(r, ρ, θ, ω)= (r±, ρ±, θ±, ω±) and w∗c,±(r, ρ, θ, ω)= (rc,±, ρc,±, θc,±, ωc,±),

then
|∂αr ∂

β
ρ ∂

γ

θ ∂
δ
ω(r±− rc,±)| + |∂

α
r ∂

β
ρ ∂

γ

θ ∂
δ
ω(ω±−ωc,±)| ≤ Ch−1+µ+|α|+|δ|,

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ω(ρ±− ρc,±)| + |∂

α
r ∂

β
ρ ∂

γ

θ ∂
δ
ω(θ±− θc,±)| ≤ Chµ+|α|+|δ|

for (r, ρ, θ, ω) ∈�h
0 , 0< h ≤ h0.

For (r0, ρ0, θ0, ω0) ∈�0, we define (rh(t), ρh(t), θh(t), ωh(t)) so that

(h−1rh(t), ρh(t), θh(t), h−1ωh(t))= exp(h−1t Hp)(h−1r0, ρ0, θ0, h−1ω0).

We also set
ph(r, ρ, θ, ω)= p(h−1r, ρ, θ, h−1ω), (r, ρ, θ, ω) ∈ T ∗M∞.

Then it is easy to check that

(rh(t), ρh(t), θh(t), ωh(t))= exp(t Hph )(r0, ρ0, θ0, ω0).

On the other hand, if we write

ph(r, ρ, θ, ω)= pc(r, ρ, θ, ω)+ vh(r, ρ, θ, ω),

then we learn by Assumption A that for any indices α, β, γ, δ,∣∣∂αr ∂βρ ∂γθ ∂δωvh(r, ρ, θ, ω)
∣∣≤ Cαβγ δhµ

(
r−1
〈ρ〉2+ r−1

〈ρ〉〈ω〉+ r−2
〈ω〉2

)
r−µ−|α|〈ρ〉−|β|〈ω〉−|δ|. (2-2)

In order to prove Theorem 2.1, it suffices to show:

Theorem 2.2. (i) There is h0 > 0 such that if h ∈ (0, h0], then

w∗
±,h(r0, ρ0, θ0, ω0) := lim

t→±∞
exp(−t Hp f ) ◦ exp(t Hph )(r0, ρ0, θ0, ω0)

exists for (r0, ρ0, θ0, ω0) ∈�0, and the convergence holds in the C∞-topology.

(ii) For any indices α, β, γ, δ, there is C > 0 such that∣∣∂αr0
∂βρ0
∂
γ

θ0
∂δω0
(rh(t)− rc(t))

∣∣+ ∣∣∂αr0
∂βρ0
∂
γ

θ0
∂δω0
(ρh(t)− ρc(t))

∣∣
+
∣∣∂αr0

∂βρ0
∂
γ

θ0
∂δω0
(θh(t)− θc(t))

∣∣+ ∣∣∂αr0
∂βρ0
∂
γ

θ0
∂δω0
(ωh(t)−ωc(t))

∣∣≤ Chµ

for (r0, ρ0, θ0, ω0) ∈�0, h ∈ (0, h0], t ∈ R, where

(rc(t), ρc(t), θc(t), ωc(t))= exp(t Hpc)(r0, ρ0, θ0, ω0).
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(iii) Writing

(rh
±
, ρh
±
, θh
±
, ωh
±
)= w∗

±,h(r0, ρ0, θ0, ω0),

we have for any indices α, β, γ, δ that∣∣∂αr0
∂βρ0
∂
γ

θ0
∂δω0
(rh
±
− rc,±)

∣∣+ ∣∣∂αr0
∂βρ0
∂
γ

θ0
∂δω0
(ρh
±
− ρc,±)

∣∣
+
∣∣∂αr0

∂βρ0
∂
γ

θ0
∂δω0
(θh
±
− θc,±)

∣∣+ ∣∣∂αr0
∂βρ0
∂
γ

θ0
∂δω0
(ωh
±
−ωc,±)

∣∣≤ Chµ.

Proof of Theorem 2.2. The proof is analogous to the arguments in [Nakamura 2009a, Section 2; Ito and
Nakamura 2009, Section 2]. We only outline the proof, and we omit the details.

Step 1. By the standard virial-type argument, we learn that there is R > 0 such that

d2

dt2 (r
h(t)2)≥ c > 0 if rh(t)≥ R,

if (r0, ρ0, θ0, ω0)∈�0. Here we use the fact that |ρ| and |ω/r | are uniformly bounded by the conservation
of energy. On the other hand, since vh

= O(hµ), we also learn that rh(t)→ rc(t) as h ↓ 0, locally
uniformly in t . Thus, if t0 is large and h is small enough, rh(t)≥ R, and combining this with the above
observation, we have

|rh(t)| ≥
√

R+ c|t − t0|2/2 for t ≥ t0.

Hence we learn

c1〈t〉 ≤ rh(t)≤ c2〈t〉 for h ∈ (0, h0], t > 0,

with some h0, c1, c2 > 0. The case t < 0 can be handled similarly.

Step 2. We consider the time evolution of q0(t)= q(θh(t), ωh(t)). By the Hamilton equation and (2-2),
we have

d
dt

q0(t)=−{ph, q0} = −{v
h, q0} = O(hµr−1−µ

〈ω〉2)= O(hµ〈t〉−1−µ(1+ q0(t))).

Here we have used the boundedness of |ρ(t)| and |ω(t)/r(t)| again. Then by the Duhamel formula, we
learn that q0(t) is uniformly bounded for initial conditions in �0 and h ∈ (0, h0]. This implies |ωh(t)| is
also uniformly bounded.

Step 3. Combining these observations with the Hamilton equation, we learn that∣∣∣∣dρh(t)
dt

∣∣∣∣≤C〈t〉−2−µ,

∣∣∣∣dθh(t)
dt

∣∣∣∣≤C〈t〉−1−µ,

∣∣∣∣ d
dt
(rh(t)−tρh(t))

∣∣∣∣≤C〈t〉−1−µ,

∣∣∣∣dωh(t)
dt

∣∣∣∣≤C〈t〉−1−µ,

uniformly for (r0, ρ0, θ0, ω0) ∈�0, h ∈ (0, h0] and t ∈ R. These imply the existence of w∗
±,h on �0. We

can show the similar estimates for the derivatives, i.e.,∣∣∣ d
dt
(
∂αr0
∂βρ0
∂
γ

θ0
∂δω0
ρh(t)

)∣∣∣≤ C〈t〉−2−µ−|α|,

and so on. These imply the convergence in C∞-topology, and we conclude that assertion (i) holds.
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Step 4. We set

gh(t)= |rh(t)− rc(t)| + |ρh(t)− ρc(t)| + |θh(t)− θc(t)| + |ωh(t)−ωc(t)|.

Then by the Hamilton equation, (2-2), and the estimates in Steps 1 and 2, we learn that∣∣∣ d
dt

gh(t)
∣∣∣≤ C〈t〉−1−µgh(t)+Chµ〈t〉−1−µ

uniformly for initial conditions in �0 and h ∈ (0, h0]. Then by using the Duhamel formula and noting
that gh(0)= 0, we obtain

|gh(t)| ≤ Chµ, t ∈ R.

This is assertion (ii) with α = β = γ = δ = 0. The derivatives can be estimated similarly by induction.
For the details of this argument, we refer to [Craig et al. 1995, Section 2; Nakamura 2009a, Section 2].
Assertion (iii) follows immediately from assertion (ii). �

By the above argument, we also learn that w∗
±,h are invertible for small h. The inverses are uniformly

bounded, and their inverses

w±,h = (w
∗

±,h)
−1

are well-defined for h ∈ (0, h0]. It follows that

w± = (w
∗

±
)−1

is well-defined and diffeomorphic on w∗
±
[�h

0] with h ∈ (0, h0]. Thus we can define the classical scattering
operator by

s = w∗
+
◦w−

on w∗
−
[�h

0], with sufficiently small h.

3. Symbol classes and their quantization on scattering manifolds

Here we prepare a pseudodifferential operator calculus which is used extensively in the proof of the
main theorems. We refer to [Hörmander 1985; Taylor 1981, Chapter XVIII] for the standard theory of
microlocal analysis.

In the following, we employ symbol calculus on T ∗M , but we always suppose the symbol is supported
in T ∗M∞, and we use a local coordinate system as in Section 1. More specifically, we choose a
local coordinate system on ∂M : {ϕα : Uα → Rn−1

}, Uα ⊂ ∂M , and we use the coordinate system
{1⊗ϕα : R+×Uα→ R×Rn−1

} on M∞. We also use a similar local coordinate system on M f , defined
by {1⊗ϕα :R×Uα→R×Rn−1

}. We often identify Uα (or R+×Uα , R×Uα , respectively) with Ran ϕα
(or Ran (1⊗ϕα), respectively).

Symbol classes. We define a metric either on T ∗M∞ or T ∗M f by

g1 =
dr2

〈r〉2
+ dρ2

+ dθ2
+

dω2

〈ω〉2
,
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and consider symbols in S(m, g1) with a weight function m, i.e., a ∈ S(m, g1) if and only if for any
indices a, β, γ, δ, there is C such that∣∣∂αr ∂βρ ∂γθ ∂δωa(r, ρ, θ, ω)

∣∣≤ Cm(r, ρ, θ, ω)〈r〉−|α|〈ω〉−|δ|.

Later, we will consider the calculus of such symbols on sets �h
= {(r, ρ, θ, ω) | (hr, ρ, θ, hω) ∈ �},

where �⊂ T ∗M∞ is some compact set (supported away from {ω= 0}) and h > 0 is small. In such cases,
the symbol satisfies ∣∣∂αr ∂βρ ∂γθ ∂δωa(h; r, ρ, θ, ω)

∣∣≤ Cm(h)h|α|+|δ|,

and we denote such a (h-dependent) symbol as a ∈ Sh(m, gh
1 ), where m is an h-dependent weight. The

corresponding metric is naturally

gh
1 = h2dr2

+ dρ2
+ dθ2

+ h2dω2.

Weyl quantization. Let {χ2
α} be a partition of unity on ∂M compatible with our coordinate system

{ϕα,Uα}, that is, χα ∈ C∞0 (Uα) and
∑

α χα(θ)
2
≡ 1 on ∂M . We set χ̃α(r, θ) = χα(θ) j (r) ∈ C∞(M∞).

Let a ∈ S(m, g1) be a symbol on T ∗M∞, and let u ∈ C∞0 (T
∗M). We denote by a(α) and G(α) the

representations of a and G in the local coordinate (1⊗ϕα,R×Uα), respectively. We quantize a by

OpW(a)u =
∑
α

χ̃αG−1/2
(α) aW

(α)(r, Dr , θ, Dθ )G
1/2
(α) χ̃αu,

where aW
(α)(r, Dr , θ, Dθ ) denotes the usual Weyl quantization on the Euclidean space Rn , and we use the

identification R+×Uα
∼= R+× (Ran ϕα) for each α. (Strictly speaking, we should have written this as

OpW(a)u =
∑
α

χ̃α(ϕ̃α)
∗
(
G−1/2
(α) aW

(α)(r, Dr , θ, Dθ )G
1/2
(α) (ϕ̃α)∗(χ̃αu)

)
,

but we will omit (ϕ̃α)∗, (ϕ̃α)∗, . . ., when there can be no confusion.) This definition is compatible with
the standard definition of pseudodifferential operators on manifolds, but we choose a specific quantization
that preserves the asymptotically conic structure of M . Similarly, for a symbol a on T ∗M f , we quantize
it by

OpW(a)u =
∑
α

χαH−1/2
(α) aW

(α)(r, Dr , θ, Dθ )H
1/2
(α) χαu

for u ∈ C∞0 (M f ), where H(α) denotes the representation of H in the local coordinate (ϕα,Uα). In this
case, the linear structure in r is preserved.

In the above definition, we put weights around the locally defined pseudodifferential operators aW
α

so that OpW(a) is symmetric if a is real-valued. Moreover, by virtue of these weights, the symbol
corresponding to the operator is unique, including the subprincipal symbol, though we will not take
advantage of this fact in this paper.

The above definitions of quantizations also have the convenient property that if we identify a symbol a
on T ∗M∞ with a symbol on T ∗M f (by the obvious identification), then we have

IOpW(a)I∗ = OpW(a) on H,
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provided a is supported in {r > 1}, and we may identify these quantizations by using I. For a symbol
supported in {r > 1}, we may consider OpW(a) as an operator from H to H f (or from H f to H) also. We
define these operators by

OpW(a)u =
∑
α

χαH−1/2
(α) aW

(α)(r, Dr , θ, Dθ )G
1/2
(α) χ̃αu

for u ∈ C∞0 (M) and

OpW(a)u =
∑
α

χ̃αG−1/2
(α) aW

(α)(r, Dr , θ, Dθ )H
1/2
(α) χαu

for u ∈ C∞0 (M f ).
If A = OpW(a), we denote the (Weyl) symbol of A by a =6(A).

Hamiltonians. Now we consider properties of our Schrödinger operators and related operators as a
preparation for the next section.

We note that, as in the usual Weyl calculus on Rn , if a(x, ξ)=
∑

j,k a jk(x)ξ jξk , then

OpW(a)=
∑
j,k

D j a jk(x)Dk −
1
4

∑
j,k

(∂ j∂ka jk(x)).

Hence, if we let p be the symbol of P as in (2-1), we have

OpW(p)= P + f,

where f ∈ C∞(M f ) is such that ∣∣∂αr ∂βθ f (r, θ)
∣∣≤ Cαβ〈r〉−2−|α|

for any α, β. Thus, we can include this error term in V and we may consider P = OpW(p). On the other
hand, it is easy to see P f = OpW(p f ) on H f , where p f =

1
2ρ

2.

4. An Egorov-type theorem

Let (r0, ρ0, θ0, ω0)∈ T ∗(R+×∂M), ω0 6= 0, and suppose a ∈C∞0 (T
∗(R+×∂M)) is supported in a small

neighborhood of (r0, ρ0, θ0, ω0) so that a is supported away from {ω = 0}. We set

ah(r, ρ, θ, ω)= a(h; hr, ρ, θ, hω), h > 0,

where a itself may depend on the parameter h > 0, but we suppose it is bounded uniformly in the
C∞0 -topology, and supported in the same small neighborhood of (r0, ρ0, θ0, ω0). The notation here is
different from that of Section 2. We set

A0 = OpW(ah) on M.

We set ε > 0 so small that

exp(t Hpc)(supp a)∩ {r ≤ ε〈t〉} =∅
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for all t ∈ R. We choose η ∈ C∞(R) such that η(r)= 1 for r ≥ 1 and η(r)= 0 for r ≤ 1/2, and we set

Y = η
( hr
ε〈t〉

)
.

Then we define
A(t)= ei t P f /hI∗Y e−i t P/h A0ei t P/hY Ie−i t P f /h

for t ∈ R. The purpose of this section is to obtain the symbols of A(t) as a pseudodifferential operator,
and to study its behavior as t→±∞.

We compute (formally) that

d
dt
(
ei t P/hY Ie−i t P f /h)

=
i
h

ei t P/hT (t)e−i t P f /h,

where

T (t)= PY I− Y IP f −
h(hr)t
iε〈t〉3

η′
( hr
ε〈t〉

)
I.

We further rewrite this as
d
dt
(
ei t P/hY Ie−i t P f /h

)
=

i
h
(
ei t P/hY Ie−i t P f /h

)(
ei t P f /hI∗T (t)e−i t P f /h

)
+

i
h

ei t P/h(1−Y II∗)T (t)e−i t P f /h

=
i
h
(
ei t P/hY Ie−i t P f /h

)
L(t)+ R1(t),

where
L(t)= ei t P f /hI∗T (t)e−i t P f /h and R1(t)=

i
h

ei t P/h(1− Y II∗)T (t)e−i t P f /h .

We now consider the symbols of T (t) and L(t) as pseudodifferential operators. By direct computations,
it is easy to see that for any indices α, β, γ, δ,∣∣∂αr ∂βρ ∂γθ ∂δω6(T (t))(r, ρ, θ, ω)∣∣

≤ C
(
〈r〉−1−µ

〈ρ〉2+〈r〉−1−µ
〈ρ〉〈ω〉+ 〈r〉−2

〈ω〉2
)
〈r〉−|α|〈ρ〉−|β|〈ω〉−|δ|. (4-1)

Since T (t) is supported in {r ≥ ε〈t〉/2h}, we may replace 〈r〉 by 〈r〉+ ε〈t〉/2h in the above estimate. We
also have∣∣∣∣∂αr ∂βρ ∂γθ ∂δω(6(T (t))− Y

q(θ, ω)
r2

)∣∣∣∣
≤ C

(
〈r〉−1−µ

〈ρ〉2+〈r〉−1−µ
〈ρ〉〈ω〉+ 〈r〉−2−µ

〈ω〉2
)
〈r〉−|α|〈ρ〉−|β|〈ω〉−|δ|.

In particular, we learn that∣∣∣∣∂αr ∂βρ ∂γθ ∂δω(6(T (t))− Y
q(θ, ω)

r2

)∣∣∣∣≤ C〈t〉−1−µ−|α|hµ+|α|+|δ| (4-2)

on exp(t Hpc)[supp ah
], where the constant is independent of t and h.

Now we note, by virtue of the Weyl calculus (and our choice of the quantization), that

6(L(t))(r, ρ, θ, ω)=6(I∗T (t))(r + (t/h)ρ, ρ, θ, ω).
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Hence we have, by (4-1),

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ω6(L(t))| ≤ C

(
〈r̃〉−1−µ

〈ρ〉2+〈r̃〉−1−µ
〈ρ〉〈ω〉+ 〈r̃〉−2

〈ω〉2
)
〈r̃〉−|α|〈ω〉−|δ|,

where r̃ = r + (t/h)ρ. Note that we take advantage of the cut-off function Y in this estimate. We also
note, along with (4-2), that∣∣∣∣∂αr ∂βρ ∂γθ ∂δω(6(L(t))− q(θ, ω)

r̃2

)∣∣∣∣≤ C〈t〉−1−µ−|α|hµ+|α|+|δ| (4-3)

on exp(−t Hp f ) ◦ exp(t Hpc)[supp ah
] = supp(ah

◦wc(t)).
We then construct an asymptotic solution to the Heisenberg equation as

d
dt

B(t)=− i
h
[L(t), B(t)], B(0)= I∗A0I. (4-4)

Lemma 4.1. There exists bh(t; r, ρ, θ, ω) ∈ C∞0 (T
∗M f ) satisfying the following conditions:

(i) bh(0)= ah .

(ii) bh(t) is supported in wc(t/h)−1
[supp ah

].

(iii) bh(t) ∈ S(1, gh
1 ), and it is bounded uniformly in t ∈ R.

(iv) bh(t)− ah
◦wc(t/h) ∈ S(hµ, gh

1 ), i.e., the principal symbol of bh(t) is given by ah
◦wc(t/h), and

the remainder is bounded uniformly in t.

(v) If we set B(t)= OpW(bh(t)), then∥∥∥ d
dt

B(t)+ i
h
[L(t), B(t)]

∥∥∥≤ CN 〈t〉−1−µhN , h > 0,

for any N.

(vi) B(t) converges to B± as t→±∞ in B(H f ), and the symbols bh
±
:=6(B±) satisfy

bh
±
− ah
◦wc,± ∈ S(hµ, gh

1 ).

Proof. We follow the standard procedure to construct asymptotic solutions to Heisenberg equations (see
[Taylor 1981, Chapter 8; Martinez 2002, Chapter 4]). We let

`0(t; r, ρ, θ, ω)=
q(θ, ω)
(r + tρ)2

be the principal symbol of L(ht). If we set

b0(t)= a ◦wc(t)= a ◦ exp(−t Hpc) ◦ exp(t Hp f ),

then b0 satisfies the equation

∂

∂t
b0(t)=−{`0(t), b0(t)}, b0(0)= a.

We set bh
0(t; r, ρ, θ, ω)= b0(t/h; hr, ρ, θ, hω), and we also set B0(t)= OpW(bh

0(t)). We note that

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ωbh

0(t; r, ρ, θ, ω)| ≤ Ch|α|+|δ|
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uniformly in t with any α, β, γ, δ, since b0(t) converges to a ◦wc,± as t→±∞. We write

R0
0(t)=

d
dt

B0(t)+
i
h
[L(t), B0(t)], r0

0 (t)=6(R
0
0(t)).

Then by (4-3) and the symbol calculus, r0
0 (t) is supported on wc(t/h)−1

[supp ah
] modulo O(h∞)-terms,

and
∂αr ∂

β
ρ ∂

γ

θ ∂
δ
ωr0

0 (t)≤ C〈t〉−1−µ−|α|hµ+|α|+|δ| (4-5)

for any α, β, γ, δ. We set r̃0
0 (t) so that

r̃0
0 (t/h; hr, ρ, θ, hω)= r0

0 (t; r, ρ, θ, ω),

and solve the transport equation

∂

∂t
b1(t)+{`0(t), b1(t)} = −r̃0

0 (t), b1(0)= 0.

By (4-5), it is easy to observe that |∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ωb1(t; r, ρ, θ, ω)| ≤ Chµ uniformly in t . Moreover, b1(t)

converges to a symbol supported in w−1
c,±[supp a] in the C∞0 -topology as t→±∞. We then set

B1(t)= OpW(bh
1(t)), bh

1(t; r, ρ, θ, ω)= b1(t/h; hr, ρ, θ, hω).

We construct b j , j = 1, 2, . . . , iteratively, so that bh
j ∈ S(h jµ, gh

1 ), and set

bh(t)∼
∞∑
j=0

bh
j (t), B(t)= OpW(bh(t)).

By construction, bh(t) and B(t)= OpW(bh(t)) satisfy the assertion. �

We then observe that A(t) is very close to B(t) constructed as above.

Lemma 4.2. For any N , there is CN > 0 such that

‖A(t)− B(t)‖ ≤ CN hN , t ∈ R.

In particular, A+ and A−, defined by
A± := w-lim

t→±∞
A(t),

have the symbols bh
±

as pseudodifferential operators.

Proof. We first observe that

‖A(t)− B(t)‖ = ‖ei t P f /hI∗Y e−i t P/h A0ei t P/hY Ie−i t P f /h
− B(t)‖

= ‖I∗Y e−i t P/h A0ei t P/hY I− e−i t P f /h B(t)ei t P f /h
‖

≤ ‖Y II∗Y e−i t P/h A0ei t P/hY II∗Y − Y Ie−i t P f /h B(t)ei t P f /hI∗Y‖

≤ ‖e−i t P/h A0ei t P/h
− Y Ie−i t P f /h B(t)ei t P f /hI∗Y‖+ R2

= ‖A0− B̃(t)‖+ R2,
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where

R2 = 2‖(1− Y II∗Y )e−i t P/h A0‖ and B̃(t)= ei t P/hY Ie−i t P f /h B(t)ei t P f /hI∗Y e−i t P/h .

By Corollary A.2, we learn that R2 = O(〈t〉−N hN ) for any N . We then show B̃(t) is very close to A0

uniformly in t . We compute

d
dt

B̃(t)=
(
ei t P/hY Ie−i t P f /h) d

dt
B(t)

(
ei t P f /hI∗Y e−i t P/h)
+

i
h
(
ei t P/hY Ie−i t P f /h)L(t)B(t)(ei t P f /hI∗Y e−i t P/h)

−
i
h
(
ei t P/hY Ie−i t P f /h)B(t)L(t)∗(ei t P f /hI∗Y e−i t P/h)

+ R1(t)B(t)
(
ei t P f /hI∗Y e−i t P/h)

−
(
ei t P/hY Ie−i t P f /h)B(t)R1(t)∗

=
(
ei t P/hY Ie−i t P f /h)( d

dt
B(t)+ i

h
[L(t), B(t)]

)(
ei t P f /hI∗Y e−i t P/h)

+ R3(t),

where

R3(t)= R1(t)B(t)
(
ei t P f /hI∗Y e−i t P/h)

−
(
ei t P/hY Ie−i t P f /h)B(t)R1(t)∗

+
i
h
(
ei t P/hY Ie−i t P f /h)B(t)(L(t)− L(t)∗)

(
ei t P f /hI∗Y e−i t P/h).

We can show that ‖R3(t)‖ = O(〈t〉−N hN ) for any N . For example,∥∥R1(t)B(t)
(
ei t P f /hI∗Y e−i t P/h)∥∥≤ h−1

‖(1− Y II∗)T (t)e−i t P f /h B(t)‖

= h−1
‖ei t P f /h(1− Y II∗)T (t)e−i t P f /h B(t)‖.

As we have seen already, ei t P f /h(1−Y II∗)T (t)e−i t P f /h is a pseudodifferential operator, and its support
is separated from the support of bh(t) by a distance not less than c〈t〉h−1, for some c > 0. Thus their
product has a vanishing symbol, and its norm is O(〈t〉−N hN ) with any N . The other terms are estimated
similarly. Combining this with Lemma 4.1(v), we learn that∥∥∥ d

dt
B̃(t)

∥∥∥≤ CN 〈t〉−1−µhN

for any N , and hence ‖B̃(t)− B̃(0)‖ ≤ CN hN . We note that

B̃(0)= η
(hr
ε

)
II∗A0II∗η

(hr
ε

)
= A0+ O(hN )

by the choice of ε > 0. Combining these facts, we conclude the assertion holds. �

5. Proofs of Theorems 1.1 and 1.2

Let (r0, ρ0, θ0, ω0) ∈ T ∗(R+ × ∂M), and suppose ω0 6= 0 as in the last section. Also we let a in
C∞0 (T

∗(R+× ∂M)) be supported in a small neighborhood of (r0, ρ0, θ0, ω0) and we set

A0 = OpW(ah), ah(r, ρ, θ, ω)= a(hr, ρ, θ, hω).
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Let ε > 0 also as in the last section. Write

(r±, ρ±, θ±, ω±)= w−1
c,±(r0, ρ0, θ0, ω0)

as in Section 2, and recall thatwc,± are diffeomorphisms from R×R±×(T ∗∂M\0) to R+×R×(T ∗∂M\0).
We also note that

E0 = pc(r0, ρ0, θ0, ω0)=
1
2ρ

2
±
> 0

by conservation of energy.

Lemma 5.1. If δ > 2ε2, then

w-lim
t→±∞

η(P f /δ)A(t)η(P f /δ)= η(P f /δ)W ∗±A0W±η(P f /δ).

Proof. It is easy to show by the stationary phase method that

s-lim
t→±∞

(
1− η

( hr
ε〈t〉

))
Ie−i t P f /hη(P f /δ)= 0

(for fixed h), since the stationary points (in ρ) satisfy hr = tρ. This implies that

s-lim
t→±∞

ei t P/hY Ie−i t P f /hη(P f /δ)=W±η(P f /δ),

and the claim follows immediately. �

This implies, combined with Lemmas 4.1 and 4.2:

Lemma 5.2. Let A0 as above. Then W ∗
±

A0W± are pseudodifferential operators with the symbols bh
±

given in Lemma 4.1. In particular, 6(W ∗
±

A0W±) are supported in w−1
c,±[supp ah

] modulo O(h∞)-terms,
and the principal symbols (modulo S(hµ, gh

1 )) are given by ah
◦wc,±.

For the moment, we set

ρ0 = 0 and hence r± = 0.

Then we may take ε=
√

E0 provided a is supported in a sufficiently small neighborhood of (r0, 0, θ0, ω0).
Now let us suppose (0, ρ−, θ−, ω−) (with ω− 6= 0, ρ− > 2ε) is given, and (0, ρ0, θ0, ω0) is defined by

wc,−(0, ρ−, θ−, ω−)= (0, ρ0, θ0, ω0). The converse of Lemma 5.2 is given as follows:

Lemma 5.3. Let ã ∈C∞0 (R×R−×(T ∗∂M \0)) be supported in a small neighborhood of (0, ρ−, θ−, ω−),
and let

Ã = OpW(ãh), ãh(r, ρ, θ, ω)= ã(hr, ρ, θ, hω).

Then there is a symbol ah
0 supported in wc,−[supp ãh

] such that for any f ∈ C∞0 (R+),

f (P)A0 f (P)=W− f (P f ) Ã f (P f )W ∗−,

where A0 = OpW(ah
0 ). Moreover, the principal symbol (modulo S(hµ, gh

1 )) is ãh
◦w−1

c,− .



274 KENICHI ITO AND SHU NAKAMURA

Proof. We set ah
0,0 = ãh

◦w−1
c,−. Then by Lemma 5.2, we have

ah
−,1 :=6( Ã−W ∗

−
OpW(ah

0,0)W−) ∈ S(hµ, gh
1 ),

and it is supported in supp[ãh
] modulo O(h∞)-terms. Then we set a0,1 = ah

−,1 ◦w
−1
c,−, and set

ah
−,2 :=6( Ã−W ∗

−
OpW(ah

0,0+ ah
0,1)W−) ∈ S(h2µ, gh

1 ).

We construct ah
−, j , j = 2, 3, . . . , iteratively by

ah
−, j :=6( Ã−W ∗

−
OpW(ah

0,0+ · · ·+ ah
0, j−1)W−) ∈ S(h jµ, gh

1 ),

ah
0, j = ah

−, j ◦w
−1
c,−, and we set ah

0 ∼
∑
∞

j=0 ah
0, j as an asymptotic sum. Then we have

Ã =W ∗
−

A0W−

modulo S(h∞〈r〉−∞〈ω〉−∞, g1)-terms. Since there are no positive eigenvalues [Ito and Skibsted 2011;
Melrose and Zworski 1996], we also have W± f (P f )W ∗± = f (P) by virtue of the intertwining property
and asymptotic completeness [Ito and Nakamura 2010]. These imply

W− f (P f ) Ã f (P f )W ∗− =W− f (P f )W ∗−A0W− f (P f )W ∗− = f (P)A0 f (P),

and this implies the assertion. �

We note Lemma 5.3 naturally holds for wc,+ instead of wc,−, but we only use the above case. By
Lemma 5.3, we learn that

S f (P f ) Ã f (P f )S∗ =W ∗
+

f (P)A0 f (P)W+ = f (P f )(W ∗+A0W+) f (P f ).

By Lemma 5.2, W ∗
+

A0W+ is a pseudodifferential operator. By choosing f ∈C∞0 (R+) so that f (ρ2/2)= 1
in a neighborhood of the support of ã, we may omit f (P f ) factors up to negligible terms. Thus, S ÃS∗ is
a pseudodifferential operator with a symbol supported in sc[supp ãh

], and the principal symbol is given
by ãh

◦ s−1
c , where ã is the symbol given in Lemma 5.3, i.e., ã is supported in a small neighborhood of

(0, ρ−, θ−, ω−).
We note that, by the intertwining property of the scattering operator,

e−i t P f S = Se−i t P f , ∀t ∈ R.

This in turn implies
Tτ S = STτ , ∀τ ∈ R, where Tτ = exp(−iτ

√
2P f ).

On the other hand,
√

2P f =∓i ∂
∂r on H f,±, and hence Tτ are translations with respect to r . More precisely,

we have
Tτu±(r, θ)= u±(r ∓ τ, θ) for u± ∈H f,±.

We learn from these facts that
S(Tτ ÃT ∗τ )S

∗
= Tτ (S ÃS∗)T ∗τ ,
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and the symbols of Tτ ÃT ∗τ and Tτ (S ÃS∗)T ∗τ are given by ãh(r+τ, ρ, θ, ω) and6(S ÃS∗)(r+τ, ρ, θ, ω),
respectively. Using this observation, we may replace ã by a symbol supported in a small neighborhood
(r−, ρ−, θ−, ω−) with arbitrary r− ∈ R. Thus we have proved:

Lemma 5.4. Let a∈C∞0 (R×R−×(T ∗∂M\0)) be supported in a small neighborhood of (r−, ρ−, θ−, ω−)
with |ρ−| ≥ 2ε, and let

Ã = OpW(ah), ah(r, ρ, θ, ω)= a(hr, ρ, θ, hω).

Then S ÃS∗ is a pseudodifferential operator with a symbol supported in sc[supp ah
] modulo O(h∞)-terms,

and the principal symbol (modulo S(hµ, gh
1 )) is given by ah

◦ s−1
c .

Here we have used the formula

sc(r, ρ, θ, ω)= (−r,−ρ, exp(πH√2q)(θ, ω)).

We set Ĥ f,± = FH f,±. Then FSF−1 is a unitary map from Ĥ f,− to Ĥ f,+. For notational simplicity,
we set

5u(r, θ)= u(−r, θ) for u ∈H f,±,

so that F(S5)F−1 is a unitary map on Ĥ f,+. By the intertwining property above, F(S5)F−1 commutes
with functions of ρ, and hence is decomposed so that

F(S5)F−1u(ρ, ω)= (S(ρ2/2)u(ρ, · ))(ω) on Ĥ f,+ ∼= L2(R+; L2(∂M)),

where S(λ) ∈ B(L2(∂M)) is the scattering matrix.

Proof of Theorem 1.1. We recall the semiclassical-type characterization of the wave front set: Let
g(ρ, θ) ∈ D′(R+× ∂M), and let (ρ0, θ0, r0, ω0) ∈ T ∗(R+× ∂M). (ρ0, θ0, r0, ω0) /∈ W F(g) if and only
if there is a ∈ C∞0 (T

∗(R+× ∂M)) such that a(ρ0, θ0, r0, ω0) 6= 0 and

‖a(ρ, θ, h Dρ, h Dθ )g‖ = O(h∞) as h→+0.

We may replace a by an h-dependent symbol with a principal symbol which does not vanish at
(ρ0, θ0, r0, ω0).

We fix λ0 = ρ
2
0/2 with ρ0 > 2ε and consider S(λ) where λ is in a small neighborhood of λ0. Let

u ∈ L2(∂M) and let v ∈ C∞0 (R+) be supported in a small neighborhood of λ0. Then it is easy to see that

W F(v(ρ)u(θ))= {(ρ, θ, 0, ω) | ρ ∈ supp v, (θ, ω) ∈W F(u)}.

Then, by Lemma 5.4 and the above characterization of the wave front set, we learn that

W F(F(S5)F−1v(ρ)u(θ))= (1⊗ exp(πH√2q))W F(v(ρ)u(θ))

= {(ρ, θ, 0, ω) | ρ ∈ supp v, (θ, ω) ∈ exp(πH√2q)W F(u)};

see [Nakamura 2009b]. By the definition of the scattering matrix, this implies

W F(S(λ)u)⊂ exp(πH√2q)W F(u)
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for λ ∈ supp v. Since this argument works for S−1 also, the above inclusion is actually an equality, and
we conclude Theorem 1.1. �

Proof of Theorem 1.2. Here we suppose µ= 1. Then by Lemma 5.4 and the Beals-type characterization
of FIOs (Theorem B.1), F(S5)F−1 is an FIO associated to 1⊗ exp(πH√2q) on {(ρ, θ, r, ω) | ω 6= 0}.
Since F(S5)F−1 is decomposed as {S(λ)}, this implies S(λ) are FIOs on ∂M associated to the canonical
transform exp(πH√2q) (see Proposition B.4). �

6. Proof of Theorem 1.3

Here we discuss how to generalize the proof of Theorem 1.2 to conclude Theorem 1.3.
We first modify the Egorov-type argument in Section 4. Let (r0, ρ0, θ0, ω0) ∈ T ∗M∞, ω0 6= 0, and let

�0 be a small neighborhood of (r0, ρ0, θ0, ω0). We suppose a ∈ C∞0 (T
∗M∞) is supported in �0, and we

consider the behavior of A(t) as in Section 4. We set

w∗(t)= exp(−i t Hp f ) ◦ exp(t Hp),

which is well-defined for X ∈ T ∗M∞ as long as exp(t Hp)(X)∈ T ∗M∞. By the discussion in the proof of
Theorem 2.2, this condition is always satisfied if X = (r, ρ, θ, ω) ∈�h

0 and h is sufficiently small. We set

w(t)= w∗(t)−1
= exp(−t Hp) ◦ exp(t Hp f )

on the range of w(t). We note that

w∗
±
= lim

t→±∞
w∗(t)

on �h
0 with sufficiently small h, and that

w± = lim
t→±∞

w(t)

on w−1
± [�

h
0] with sufficiently small h. Convergence of these maps holds in the C∞-topology.

We replace Lemma 4.1 by the following slightly different statement:

Lemma 6.1. There exists bh(t; r, ρ, θ, ω) ∈ C∞0 (T
∗M f ) satisfying the following conditions:

(i) bh(0)= ah .

(ii) bh(t) is supported in w∗(t)[supp ah
].

(iii) bh(t) ∈ S(1, gh
1 ), and it is bounded uniformly in t ∈ R.

(iv) bh(t)−ah
◦w(t)∈ S(h, gh

1 ), i.e., the principal symbol of bh(t) is given by ah
◦w(t), and the remainder

is bounded uniformly in t.

(v) If we set B(t)= OpW(bh(t)), then∥∥∥ d
dt

B(t)+ i
h
[L(t), B(t)]

∥∥∥≤ CN 〈t〉−1−µhN , h > 0,

for any N.
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(vi) B(t) converges to B± as t→±∞ in B(H f ), and the symbols bh
±
:=6(B±) satisfy

bh
±
− ah
◦w± ∈ S(h, gh

1 ).

We note that w(t) is not homogeneous in the (r, ω)-variables, but very close to a homogeneous map
when |(r, ω)| is very large thanks to Theorem 2.2.

In order to prove Lemma 6.1, we set

bh
0(t)= ah

◦w(t)= a ◦ exp(−t Hp) ◦ exp(t Hp f ),

which is supported in w∗(t)[�h
0]. We have bh

0(t) ∈ S(1, gh
1 ) uniformly in t (for small h) again by

Theorem 2.2. Moreover, bh
0 satisfies

∂

∂t
bh

0(t)=−h−1
{`(t), bh

0(t)},

where `(t)=6(L(t)). Hence the first remainder term r0
0 (t) (as defined in Section 4) satisfies

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ωr0

0 (t)| ≤ C〈t〉−1−µ−|α|h1+|α|+|δ|

for any indices α, β, γ, δ. Then we construct the asymptotic solution as in the proof of Lemma 4.1 by
solving transport equations

∂

∂t
bh

j (t)+ h−1
{`(t), bh

j (t)} = −rh
j (t), j = 0, 1, 2, . . . ,

and we conclude Lemma 6.1. �
Lemma 4.2 holds when the construction of B(t) is replaced by the one above, with no modifications.

Lemmas 5.2 and 5.3 hold in the following form. The proofs are the same.

Lemma 6.2. Let A0 as above. Then W ∗
±

A0W± are pseudodifferential operators with the symbols bh
±

given in Lemma 6.1. In particular, 6(W ∗
±

A0W±) are supported in w−1
± [supp ah

] modulo O(h∞)-terms,
and the principal symbols (modulo S(h, gh

1 )) are given by ah
◦w±.

Lemma 6.3. Let ã ∈C∞0 (R×R−×(T ∗∂M \0)) be supported in a small neighborhood of (0, ρ−, θ−, ω−),
and let

Ã = OpW(ãh), ãh(r, ρ, θ, ω)= ã(hr, ρ, θ, hω).

Then W− ÃW ∗
−

is a pseudodifferential operator with a symbol supported in w−[supp ãh
], and the principal

symbol (modulo S(h, gh
1 )) is give by ãh

◦w∗
−

.

Combining these, we learn (as in Section 5) the following assertion.

Lemma 6.4. Let a∈C∞0 (R×R−×(T ∗∂M\0)) be supported in a small neighborhood of (r−, ρ−, θ−, ω−)
with |ρ−| ≥ 2ε, ω− 6= 0, and let

Ã = OpW(ah), ah(r, ρ, θ, ω)= a(hr, ρ, θ, hω).

Then S ÃS∗ is a pseudodifferential operator with a symbol supported in s[supp ah
] modulo O(h∞)-terms,

and the principal symbol (modulo S(h, gh
1 )) is given by ah

◦ s−1.
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In the following, we consider (r, ρ, θ, ω) ∈�h
0 with some �0 and sufficiently small h, or equivalently,

when |ω| is sufficiently large. By conservation of energy (or equivalently, by invariance under a shift in
r ), the classical scattering operator has the form

s(r, ρ, θ, ω)= (−r + g(ρ, θ, ω),−ρ, s(λ)(θ, ω)), (6-1)

where λ = ρ2/2 and s(λ) is a canonical transform on T ∗∂M for each λ > 0. (We note that without
g(ρ, θ, ω), the map s is not necessarily canonical.) Moreover, by Theorem 2.1, we have for any indices
α, β, γ that

|∂αρ ∂
β
θ ∂

γ
ω g(ρ, θ, ω)| ≤ Ch−1+µ+|γ |,

|∂αρ ∂
β
θ ∂

γ
ω s1(ρ, θ, ω)| ≤ Chµ+|γ |,

|∂αρ ∂
β
θ ∂

γ
ω s2(ρ, θ, ω)| ≤ Ch−1+µ+|γ |,

on �h
0 , where �0 is a small neighborhood of (0, ρ−, θ−, ω−), and s1, s2 are defined by

(s1(ρ, θ, ω), s2(ρ, θ, ω))= s(λ)(θ, ω)− exp(πH√2q)(θ, ω),

i.e., s1 denotes the θ -components of the right-hand side terms, and s2 denotes the ω-components. These
estimates imply that s is asymptotically homogeneous (in (r, ω)-variables) in the sense of [Ito and
Nakamura 2012, Section 4].

In general, an operator U with distribution kernel u is called an FIO of order m associated to an
asymptotically homogeneous canonical transform S if u is a Lagrangian distribution associated to

6S := {(x, y, ξ,−η) | (x, ξ)= S(y, η)},

that is, for any a1, . . . , aN ∈ S1
cl such that a j vanishes on 6S for each j , we have that Op(a1) · · ·Op(aN )u

is in B−m−n/2,∞
2,∞ (R2n) [Ito and Nakamura 2012]. The Beals-type characterization of FIOs discussed in

Appendix B holds for such FIOs without any change.
By Lemma 6.4 and the analogue of Corollary B.2, we learn that S is an FIO associated to the classical

scattering map s. Moreover, by Proposition B.4, we learn that the scattering matrix S(λ) is an FIO
associated to s(λ), where s(λ) is defined by (6-1) and it is asymptotic to exp(πH√2q). Thus we have
proved the following slightly more precise version of Theorem 1.3:

Theorem 6.5. Suppose Assumption A holds. Then for each λ > 0, S(λ) is an FIO associated to s(λ)
defined by (6-1). The canonical map s(λ) on T ∗∂M is asymptotically homogeneous in ω, asymptotic to
exp(πH√2q) with the error of O(|ω|1−µ).

Appendix A: Local decay estimates

Let P be as in Section 1. For a symbol a, we set ah(r, ρ, θ, ω) = a(hr, ρ, θ, hω). Then we have the
following:

Theorem A.1. Let (r0, ρ0, θ0, ω0) ∈ T ∗M∞ ∼= T ∗R+ × T ∗∂M , and suppose ω0 6= 0. We denote the
ε-neighborhood of (r0, ρ0, θ0, ω0) by �ε. We suppose ε > 0 so small that �2ε b T ∗R+× (T ∗∂M \ 0).
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If a ∈ C∞0 (T
∗M∞) is real-valued, and supported in �ε, then there is an h-dependent symbol b(t) in

C∞0 (T
∗M∞) for any t ∈ R such that:

(i) |a(r, ρ, θ, ω)| ≤ c1b(0; r, ρ, θ, ω) with some c1 > 0.

(ii) b(t) is supported in �(t) := exp(t Hpc)[�2ε] for t ∈ R.

(iii) For any indices α, β, γ and δ, there is Cαβγ δ > 0 such that

|∂αr ∂
β
ρ ∂

γ

θ ∂
δ
ωb(t, r, ρ, θ, ω)| ≤ Cαβγ δ, (r, ρ, θ, ω) ∈ T ∗M∞, t ∈ R.

(iv) There is R(t) ∈ B(L2(M)) such that ‖R(t)‖ ≤ CN hN for any N , and

e−i t P/hOpW(ah)ei t P/h
≤ c1OpW(bh(t))+ R(t)

for t > 0, and the reverse inequality for t < 0. Moreover, R(t) satisfies

‖K N R(t)K N
‖B(L2) ≤ CN hN , t ∈ R,

for any N , where K (· )= 〈dist(·, �h(t))〉 with

supp[bh(t)] ⊂�h(t) := {(r, ρ, θ, ω) | (hr, ρ, θ, hω) ∈�(t)}.

Before proving Theorem A.1, we present a corollary which is needed in Section 4.

Corollary A.2. Let η̄ ∈ C∞(R) be such that η̄(r)= 0 if r > 2, and η̄(r)= 1 if r ≤ 1. We choose ε1 > 0
so small that

dist
(
{(r, ρ, θ, ω) | |r | ≤ ε1〈t〉}, �(t)

)
≥ δ〈t〉

with some δ > 0. Then for any N there is CN > 0 such that∥∥∥∥η̄( hr
ε1〈t〉

)
e−i t P/hOp(ah)

∥∥∥∥≤ CN hN
〈t〉−N , t ∈ R.

We note that if ε > 0 is chosen sufficiently small, then we can find ε1 > 0 satisfying the property above.

Proof of Corollary A.2. We apply Theorem A.1 with ã such that OpW(ã) = OpW(a)OpW(a)∗, which
satisfies the same condition. Then we have∥∥∥∥η̄( hr

ε1〈t〉

)
e−i t P/hOp(ah)

∥∥∥∥2

= η̄

(
hr
ε1〈t〉

)
e−i t P/hOp(ãh)ei t P/h η̄

(
hr
ε1〈t〉

)
≤ c1η̄

(
hr
ε1〈t〉

)
Op(bh(t))η̄

(
hr
ε1〈t〉

)
+ η̄

(
hr
ε1〈t〉

)
R(t)η̄

(
hr
ε1〈t〉

)
≤ CN hN

〈t〉−N ,

where we used the fact that supp[bh(t)] is separated from �h(t) by a distance not less than δ〈t/h〉. �
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Proof of Theorem A.1. The proof is analogous to that of [Nakamura 2009b; Ito 2006; Ito and Nakamura
2009, Section 3], and we only sketch the main steps. We may suppose a is nonnegative without loss of
generality. If we set

ψ(t)= a ◦ exp(t Hpc)
−1,

then it is easy to see that
∂

∂t
ψ =−{pc, ψ}, ψ(0)= a,

and this is a good candidate for the principal term of b(t), but ψ does not satisfy the boundedness of the
derivatives uniformly in t . We choose ϕ ∈ C∞0 (R) so that

suppϕ ⊂ [−1, 1], ϕ(t)≥ 0 for all t,
∫ 1

−1
ϕ(t) dt = 1,

and moreover, ±ϕ′(t)≤ 0 for ±t ≥ 0. We set

ϕν(t)= ϕ(t/ν), for ν > 0,

and we denote convolution in t by ∗
t
. Then we set

b0(t, · )= ϕδ〈t〉 ∗
t
ψ =

∫
ϕδ〈t〉(t − s)ψ(s, · ) ds

with sufficiently small δ > 0. Then we have

∂

∂t
b0 =

∫
∂t(ϕδ〈t〉(t − s))ψ(s, · ) ds =−

∫
t (t − s)
δ〈t〉3

ϕ′((t − s)/δ〈t〉)ψ(s, · ) ds+ϕδ〈t〉 ∗
t
(∂tψ)

≥−ϕδ〈t〉 ∗
t
{pc, ψ} = −{pc, b0(t, · )} (A-1)

for t > 0, by the conditions on ϕ. We have the reverse inequality for t < 0.
We then show the derivatives of b0 satisfy the required uniform boundedness. We first note that

ψ̃(t; r, ρ, θ, ω) := ψ(t; r + tρ, ρ, θ, ω)→ a ◦w± (t→±∞)

in the C∞0 -topology, by virtue of the existence of the classical scattering for pc. Thus we have the
representation

ψ(t; r, ρ, θ, ω)= ψ̃(t; r − tρ, ρ, θ, ω),

with ψ̃(t) uniformly bounded in C∞0 (T
∗M). Hence we learn that the derivatives in variables other than ρ

are uniformly bounded. Then this property applies also to b0(t). Let us consider the first derivative of
b0(t) in ρ:

∂ρb0(t)=−
∫
ϕδ〈t〉(t − s)s(∂r ψ̃)(s, r − sρ, ρ, θ, ω) ds+

∫
ϕδ〈t〉(t − s)(∂ρψ̃)(s, r − sρ, ρ, θ, ω) ds.

The second term is clearly uniformly bounded. We note that

(∂r ψ̃)(s; r − sρ, ρ, θ, ω)=− 1
ρ

{
∂

∂s
[ψ̃(s; r − sρ, ρ, θ, ω)] − (∂sψ̃)(s; r − sρ, ρ, θ, ω)

}
,
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and then by integration by parts we have∫
ϕδ〈t〉(t − s)s(∂r ψ̃)(s, r − sρ, ρ, θ, ω) ds

=
1
ρ

∫
∂

∂s

(
ϕ
( t−s
δ〈t〉

)
s
)
ψ̃(s, r − sρ, ρ, θ, ω) ds+ 1

ρ

∫
ϕ
( t−s
δ〈t〉

)
s(∂sψ̃)(s; r − sρ, ρ, θ, ω) ds

=
1
ρ

∫
ϕ
( t−s
δ〈t〉

)
ψ̃(s, r − sρ, ρ, θ, ω) ds− 1

ρ

∫
s
δ〈t〉

ϕ′
( t−s
δ〈t〉

)
ψ̃(s, r − sρ, ρ, θ, ω) ds

+
1
ρ

∫
ϕ
( t−s
δ〈t〉

)
s(∂sψ̃)(s; r − sρ, ρ, θ, ω) ds.

Each term in the last expression is bounded uniformly in t since s ∼ t , and ∂sψ̃ = O(〈s〉−2). Repeating
this procedure, we can show that all the derivatives of b0 are uniformly bounded. It is also easy to check
that b0 satisfies the required support property provided a is supported in a sufficiently small neighborhood,
and δ > 0 is chosen sufficiently small.

Now by (A-1) and the sharp Gårding inequality, we have

d
dt

OpW(bh
0(t))≥−

i
h
[P,OpW(bh

0(t))] +Op(rh
1 (t))

with r1(t)= O(hµ). We set c j = 7/4− 2− j for j = 1, 2, . . . , and set

a j (r, ρ, θ, ω)= a
( r

c j
,
ρ

c j
,
θ

c j
,
ω

c j

)
, b j (t)= ϕδ〈t〉 ∗

t
(a j ◦ exp(t Hpc)).

Then we set

b(t)∼ b0(t)+
∞∑
j=1

µ j b j (t),

with appropriately chosen constants µ j > 0 so that

d
dt

OpW(bh(t))≥− i
h
[P,OpW(bh(t))] + O(h∞),

and b(t) satisfies all the required properties. We refer to [Nakamura 2009b; Ito and Nakamura 2009] for
the details of the construction. �

Appendix B: Beals-type characterization of Fourier integral operators

In this appendix, we consider operators on Rn , and we discuss Beals-type characterization of FIOs in
terms of h-pseudodifferential operators. We use the result for scattering manifolds, but the generalization
is straightforward, and we omit it. Most of the arguments here are similar to those of [Ito and Nakamura
2012, Section 2], and we mainly discuss the modifications necessary to show our results.

We let S be a canonical diffeomorphism on T ∗Rn , which is also supposed to be homogeneous in the
ξ -variable, i.e.,

if (y, η)= S(x, ξ), then S(x, λξ)= (y, λη) for λ > 0.
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We also let U ∈ L(S,S′), and let u ∈ D′(R2n) be its distribution kernel. For a symbol a ∈ C∞(T ∗Rn),
we write

ah(x, ξ)= a(x, hξ), OpW(ah)= aW (x, h Dx),

for h > 0 as before. For a ∈ C∞0 (T
∗Rn
\ 0), we define

AdS(ah)U = OpW(ah
◦ S−1)U −UOpW(ah) ∈ L(S,S′).

We note that OpW(ah
◦ S−1)= OpW((a ◦ S−1)h) since S is homogeneous in ξ .

Theorem B.1. Let U ∈ B(L2
cpt(R

n), L2
loc(R

n)). Suppose for any a1, a2, . . . , aN ∈ C∞0 (T
∗Rn
\ 0), there

is CN > 0 such that

‖AdS(ah
1 )AdS(ah

2 ) · · ·AdS(ah
N )U‖B(L2) ≤ CN hN . (B-1)

Then U is an FIO of order 0 associated to S.

Corollary B.2. Let S and U as above. If for any a ∈ C∞0 (T
∗Rn
\ 0) there is an h-dependent symbol

b ∈ C∞0 (T
∗Rn
\ 0) such that

|∂αx ∂
β
ξ b(h; x, ξ)| ≤ Cαβh,

for any α, β ∈ Zn
+

, h ∈ (0, 1], and

AdS(ah)U = OpW(bh)U + R, ‖R‖B(L2) = O(h∞),

then U is an FIO of order 0 associated to S.

Proof of Corollary B.2. We show (B-1) follows from the above condition. The cases N = 0, 1 are obvious.
Let N = 2 and we write

AdS(ah
j )U = OpW(bh

j )U + R j , j = 1, 2.

Then we have

AdS(ah
1 )AdS(ah

2 )U= OpW(ah
1 ◦ S−1)OpW(bh

2)U −OpW(bW
2 )UOpW(ah

1 )+AdS(ah
1 )R2

=
[
OpW(ah

1 ◦ S−1),OpW(bh
2)
]
U+OpW(bh

2)OpW(bh
1)U+AdS(ah

1 )R2+OpW(bh
2)R1

= OpW(bh
12)U + R12,

where R12 = O(h∞) and b12 ∈ C∞0 (T
∗Rn
\ 0) satisfies∣∣∂αx ∂βξ b12(h; x, ξ)

∣∣≤ C ′αβh2, for any α, β ∈ Zn
+

, h ∈ (0, 1],

and (B-1) for N = 2 follows. Iterating this procedure, we obtain (B-1) for any N . �

In order to prove Theorem B.1, we first note the semiclassical-type characterization of Besov spaces.
By the standard partition-of-unity argument, it is straightforward to observe that u ∈ Bσ,∞2,loc(R

m) if and
only if for any (x0, ξ0) ∈ T ∗Rm

\ 0 there is ϕ ∈ C∞0 (T
∗Rm) such that ϕ(x0, ξ0) 6= 0 and

‖OpW(ϕh)u‖L2 ≤ Chσ , h > 0.
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Thus, in turn, we learn that u ∈ Bσ,∞2,loc(R
2n) if and only if for any (x0, y0, ξ0, η0), (ξ0, η0) 6= (0, 0), there

are ϕ1, ϕ2 ∈ C∞0 (R
n) such that ϕ1(x0, ξ0) 6= 0, ϕ2(y0, η0) 6= 0, and

‖OpW(ϕh
1 )UOpW(ϕh

2 )‖H S ≤ Chσ , h > 0,

where ‖ · ‖H S denotes the Hilbert–Schmidt norm in B(L2(Rn)). Now we choose ϕ3 ∈ C∞0 (R
n) so that

ϕ3 = 1 in a neighborhood of suppϕ2. We note that

‖OpW(ϕ3)‖H S = (2π)−n/2
(∫

Rn
|ϕ3(x, hξ)|2dxdξ

)1/2

= (2πh)−n/2
(∫

Rn
|ϕ3(x, ξ)|2dxdξ

)1/2

= Ch−n/2

for h > 0 with some C > 0. Hence we have

‖OpW(ϕh
1 )UOpW(ϕh

2 )‖H S ≤ ‖OpW(ϕh
1 )UOpW(ϕh

2 )OpW(ϕh
3 )‖H S + R

≤ Ch−n/2
‖OpW(ϕh

1 )UOpW(ϕh
2 )‖B(L2)+ R,

where
R = ‖OpW(ϕh

1 )UOpW(ϕh
2 )(1−OpW(ϕh

3 ))‖H S = O(h∞)

by the symbol calculus. Thus we have proved the following lemma:

Lemma B.3. If for any (x0, y0, ξ0, η0) ∈ T ∗R2n with (ξ0, η0) 6= (0, 0) there are ϕ1, ϕ2 ∈C∞0 (T
∗Rn) such

that ϕ1(x0, ξ0) 6= 0, ϕ2(y0, η0) 6= 0 and

‖OpW(ϕh
1 )UOpW(ϕh

2 )‖B(L2) ≤ C, h > 0,

then u ∈ B−n/2,∞
2,loc (R2n).

Proof of Theorem B.1. We modify the proof of Theorem 2.1 in [Ito and Nakamura 2012], to which we
refer for further details.

We first note that

W F(u)⊂3S = {(x, y, ξ,−η) ∈ T ∗R2n
| (x, ξ)= S(y, η)}.

We note that if (x0, y0, ξ0,−η0) /∈3S with η0 6= 0, it is straightforward to show (x0, y0, ξ0,−η0) /∈W F(u).
If ξ0 6= 0, we consider U∗ and we can also conclude (x0, y0, ξ0,−η0) /∈W F(u).

Now we let a1, a2, . . . , aN ∈ S1
cl(R

n) and let (x0, ξ0)= S(y0, η0). We may assume a j are homogeneous
of order one in the ξ -variable. By Lemma B.3 and the proof just cited, it suffices to show the following to
conclude U is an FIO of order 0 associated to S: There are ψ1, ψ2 ∈C∞0 (T

∗Rn) such that ψ1(x0, ξ0) 6= 0,
ψ2(y0, η0) 6= 0 and

‖OpW(ψh
1 )[AdS(a1) · · ·AdS(aN )U ]OpW(ψh

2 )‖B(L2) ≤ C, h ∈ (0, 1], (B-2)

with some C > 0.
We set 90, 91 ∈ C∞0 (T

∗Rn) so that they are supported in a small neighborhood of (y0, η0), 9 j = 1
on a neighborhood of (y0, η0), and 90 = 1 on supp91. We then set

ϕ j (x, ξ)= a j (x, ξ)90(x, ξ) ∈ C∞0 (T
∗Rn).
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We note, since a j are homogeneous of order one in ξ , that

a j (x, ξ)90(x, hξ)= h−1a j (x, hξ)90(x, hξ)= h−1ϕ j (x, hξ).

We also set

ψ1 =91 ◦ S−1 and ψ2 =91

so ψ1(1−90 ◦ S−1)= 0 and (1−90)ψ2 = 0. This implies, in particular, that

ψ1(x, hξ)(a j ◦ S−1)(x, ξ)= h−1ψ1(x, hξ)(ϕ j ◦ S−1)(x, hξ),

a j (y, η)ψ2(y, hη)= h−1ϕ j (y, hη)ψ2(y, hη).

Using these, and applying the h-pseudodifferential operator calculus, we learn that

OpW(ψh
1 )[AdS(a1) · · ·AdS(aN )U ]OpW(ψh

2 )

= h−N OpW(ψh
1 )[AdS(ϕ

h
1 ) · · ·AdS(ϕ

h
N )U ]OpW(ψh

2 )+ O(h∞),

and this implies the right-hand side is bounded by the assumption of Theorem B.1. Now (B-2) follows
from this observation, and we conclude that the assertion hold. �

We note that the conditions and the assertion of Theorem B.1 are microlocal, and hence the theorem
is easily extended to a statement in a conic set in T ∗Rn . In the next proposition, we use the extended
statement on a conic set.

Proposition B.4. Let Rm
= Rn

× Rk , and let U be a bounded operator on L2(Rm) and let S be a
homogeneous canonical diffeomorphism on T ∗Rm . Suppose U commutes with multiplication operators in
y so that U is decomposed as

U =
∫
⊕

Rk
Ũ (y)dy on L2(Rm)∼= L2(Rk

y, L2(Rn
x)),

where {U (y)} is a family of operators on L2(Rn
x). Suppose also that S is decomposed as

S : (x, ξ, y, η) 7→ (S̃(y)(x, ξ), y, η+ g(x, ξ, y))

for (x, ξ, y, η) ∈ T ∗Rn ∼= T ∗Rn
x × T ∗Rk

y , where {S̃(y)} is a family of canonical maps on T ∗Rn
x . If U is an

FIO associated to S on a conic set {(x, ξ, t, η) | ξ 6= 0}, then for each y ∈ Rk , Ũ (y) is an FIO of order 0
associated to S̃(y).

Remark B.5. The assumption on S actually follows from the properties of U . We include it to introduce
the notations.

Proof. Let a ∈ C∞0 (T
∗Rn
\ 0), and let ϕ,ψ ∈ C∞0 (R

k) such that ϕ,ψ ≥ 0 and
∫
ψ(η) dη = 1. We also

denote ψz(η)= ψ(η− z) for z ∈ Rk . We consider

Az = az(x, h Dx , y, h Dy)= a(x, h Dx)ϕ(y)ψz(h Dy).
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Since U is an FIO, there is bz , which is bounded in C∞0 (T
∗Rm) uniformly in h ∈ (0, 1], such that

U Az = BzU + O(h∞), Bz = bz(x, h Dx , y, h Dy),

with the principal symbol

az ◦ S−1
= (a ◦ S̃(y)−1)(x, ξ)ϕ(y)ψ

(
η− g(S̃(y)−1(x, ξ), y)− z

)
.

Since U commutes with {eiy·z
| z ∈ Rk

} (translations in the η-variable), we learn that

bz(x, ξ, y, η)= b0(x, ξ, y, η− z),

and the remainder term also satisfies this property. Moreover, these symbols decay rapidly outside
S[supp az].

It is also easy to see that∫
|z|≤R

Azdz→ a(x, h Dx)ϕ(y) and
∫
|z|≤R

Bzdz→ b̃(x, h Dx , y)

strongly as R →∞, where b̃(x, ξ, y) =
∫

Rk b0(x, ξ, y, η) dη. The principal symbol of b̃ is given by
(a ◦ S̃(y)−1)(x, ξ)ϕ(y). These facts imply that

Ũ (y)a(x, h Dx)ϕ(y)= b̃(x, h Dx , y)Ũ (y)+ O(h∞),

where b̃(x, ξ, y)− (a ◦ S̃(y)−1)(x, ξ)ϕ(y)= O(h). Since ϕ ∈ C∞0 (R
k) is arbitrary, for a fixed y ∈ Rk we

may replace ϕ(y) by 1, and we learn Ũ (y) is an FIO of order 0 associated to S̃(y) by Corollary B.2. �
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