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WITHOUT SURFACE TENSION

YAN GUO AND IAN TICE

We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded
below by a fixed solid boundary and above by a free moving boundary. The domain is allowed to have a
horizontal cross-section that is either periodic or infinite in extent. The fluid dynamics are governed by
the gravity-driven incompressible Navier–Stokes equations, and the effect of surface tension is neglected
on the free surface. This paper is the first in a series of three on the global well-posedness and decay of
the viscous surface wave problem without surface tension. Here we develop a local well-posedness theory
for the equations in the framework of the nonlinear energy method, which is based on the natural energy
structure of the problem. Our proof involves several novel techniques, including: energy estimates in
a “geometric” reformulation of the equations, a well-posedness theory of the linearized Navier–Stokes
equations in moving domains, and a time-dependent functional framework, which couples to a Galerkin
method with a time-dependent basis.

1. Introduction

Formulation of the equations in Eulerian coordinates. We consider a viscous, incompressible fluid
evolving in a moving domain

�(t)=
{

y ∈6×R
∣∣−b(y1, y2) < y3 < η(y1, y2, t)

}
.

Here we assume that either 6 =R2 or 6 = (L1T)× (L2T) for T=R/Z the usual 1-torus and L1, L2 > 0
the periodicity lengths. The lower boundary of �(t) is assumed to be rigid and given, but the upper
boundary is a free surface that is the graph of the unknown function η :6×R+→ R. We assume that{

0< b ∈ C∞(6) if 6 = (L1T)× (L2T),

b ∈ (0,∞) is constant if 6 = R2.

For each t , the fluid is described by its velocity and pressure functions (u, p) : �(t)→ R3
×R. We

require that (u, p, η) satisfy the gravity-driven incompressible Navier–Stokes equations in �(t) for t > 0:
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∂t u+ u · ∇u+∇ p = µ1u in �(t),

div u = 0 in �(t),

∂tη = u3− u1∂y1η− u2∂y2η on {y3 = η(y1, y2, t)},

(pI −µD(u))ν = gην on {y3 = η(y1, y2, t)},

u = 0 on {y3 =−b(y1, y2)},

for ν the outward-pointing unit normal on {y3 = η}, I the 3× 3 identity matrix, (Du)i j = ∂i u j + ∂ j ui the
symmetric gradient of u, g > 0 the strength of gravity, and µ> 0 the viscosity. The tensor (pI −µD(u))
is known as the viscous stress tensor. The third equation in 1 implies that the free surface is advected
with the fluid. Note that in 1, we have shifted the gravitational forcing to the boundary and eliminated the
constant atmospheric pressure, patm, in the usual way by adjusting the actual pressure p̄ according to
p = p̄+ gy3− patm.

The problem is augmented with initial data (u0, η0) satisfying certain compatibility conditions, which
for brevity we will not write now. We will assume that η0 >−b on 6. When 6 = (L1T)× (L2T), we
shall refer to the problem as either the “periodic problem” or the “periodic case”, and when 6 = R2, we
shall refer to it as either the “nonperiodic problem” or the “infinite case”.

Without loss of generality, we may assume that µ= g = 1. Indeed, a standard scaling argument allows
us to scale so that µ= g = 1, at the price of multiplying b and the periodicity lengths L1, L2 by positive
constants and rescaling b. This means that, up to renaming b, L1, and L2, we arrive at the above problem
with µ= g = 1.

The problem 1 possesses a natural physical energy. For sufficiently regular solutions to both the
periodic and nonperiodic problems, we have an energy evolution equation that expresses how the change
in physical energy is related to the dissipation:

1
2

∫
�(t)
|u(t)|2+ 1

2

∫
6

|η(t)|2+ 1
2

∫ t

0

∫
�(s)
|Du(s)|2 ds = 1

2

∫
�(0)
|u0|

2
+

1
2

∫
6

|η0|
2.

The first two integrals constitute the kinetic and potential energies, while the third constitutes the dissipation.
The structure of this energy evolution equation is the basis of the energy method that we will use to
analyze 1.

Geometric form of the equations. In order to work in a fixed domain, we want to flatten the free surface
via a coordinate transformation. We will not use a Lagrangian coordinate transformation, but rather a
flattening transformation introduced by Beale [1984]. To this end, we consider the fixed equilibrium
domain

� :=
{

x ∈6×R
∣∣−b(x1, x2) < x3 < 0

}
,

for which we will write the coordinates as x ∈�. We will think of 6 as the upper boundary of �, and
we will write 6b := {x3 =−b(x1, x2)} for the lower boundary. We continue to view η as a function on
6×R+. We then define

η̄ := Pη = harmonic extension of η into the lower half-space,
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where Pη is defined by (A-8) when 6 = R2 and by (A-14) when 6 = (L1T)× (L2T). The harmonic
extension η̄ allows us to flatten the coordinate domain via the mapping

� 3 x 7→
(

x1, x2, x3+ η̄(x, t)
(

1+
x3

b(x1, x2)

))
=:8(x, t)= (y1, y2, y3) ∈�(t). (1-1)

Note that 8(6, t)= {y3 = η(y1, y2, t)} and 8( · , t)|6b = Id6b ; that is, 8 maps 6 to the free surface and
keeps the lower surface fixed. We have

∇8=

1 0 0
0 1 0
A B J

 and A := (∇8−1)T =

1 0 −AK
0 1 −BK
0 0 K

 (1-2)

for

A = ∂1η̄b̃−
x3η̄∂1b

b2 , B = ∂2η̄b̃−
x3η̄∂2b

b2 , J = 1+
η̄

b
+ ∂3η̄b̃, K = J−1, b̃ =

1+ x3

b
. (1-3)

Here J = det∇8 is the Jacobian of the coordinate transformation. See Lemma A.3 for some properties
of A.

If η is sufficiently small (in an appropriate Sobolev space), then the mapping 8 is a diffeomorphism.
This allows us to transform the problem to one on the fixed spatial domain � for t ≥ 0. In the new
coordinates, the PDE 1 becomes

∂t u− ∂t η̄b̃K∂3u+ u · ∇Au−1Au+∇A p = 0 in �,

divA u = 0 in �,

SA(p, u)N= ηN on 6,

∂tη = u ·N on 6,

u = 0 on 6b,

u(x, 0)= u0(x), η(x ′, 0)= η0(x ′).

(1-4)

Here we have written the differential operators ∇A, divA, and 1A with their actions given by (∇A f )i :=
Ai j∂ j f , divA X :=Ai j∂ j X i , and 1A f = divA ∇A f for appropriate f and X ; as for u · ∇Au, we mean
(u · ∇Au)i := u j A jk∂kui . We have also written

N := −∂1ηe1− ∂2ηe2+ e3

for the nonunit normal to {y3 = η(y1, y2, t)}, and we write SA(p, u)= (pI −DAu) for the stress tensor,
where I is the 3×3 identity matrix and (DAu)i j =Aik∂ku j +A jk∂kui is the symmetric A-gradient. Note
that if we extend divA to act on symmetric tensors in the natural way, then divA SA(p, u)=∇A p−1Au
for vector fields satisfying divA u = 0.

Recall that A is determined by η through the relation (1-2). This means that all of the differential
operators in (1-4) are connected to η, and hence to the geometry of the free surface. This geometric
structure is essential to our analysis, as it allows us to control high-order derivatives that would otherwise
be out of reach.
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Previous results. Local well-posedness for the problem 1 in a bounded domain, all of whose boundary
is free, was proved by Solonnikov [1977]. Local well-posedness for the problem in domains like ours
was proved by Beale [1981]. Both of these results employ parabolic regularity theory in a functional
framework different from the one we use: Solonnikov worked in Hölder spaces, while Beale worked
in L2-based space-time Sobolev spaces. Abels [2005] extended this local theory to the framework of
L p-based Sobolev spaces. Global well-posedness was proved in the periodic case by Hataya [2009]
and discussed in the infinite case by Sylvester [1990] as well as Tani and Tanaka [1995], all within a
Beale–Solonnikov functional framework.

If the effect of surface tension is included at the free interface, then the free surface function gains
regularity, stabilizing the problem. This led to a proof of small-data global well-posedness by Beale
[1984], as well as a proof by Beale and Nishida [1985] that the global solutions with surface tension
decay algebraically in time. In the periodic case, Nishida, Teramoto and Yoshihara [Nishida et al. 2004]
proved global well-posedness and exponential decay. Bae [2011] proved global well-posedness with
surface tension using energy methods rather than a Beale–Solonnikov framework. For a bounded mass of
fluid with surface tension, local well-posedness was proved by Coutand and Shkoller [2003].

Many authors have also considered one-fluid free boundary problems for inviscid fluids, which are
modeled by setting µ = 0 in 1 and replacing the no-slip condition with the no-penetration condition,
u · ν = 0 on 6b. For this problem, it is often assumed that the fluid is initially curl-free, in which case
this condition propagates in time and the fluid is said to be irrotational. The velocity field is then both
curl-free and divergence-free for all time, and is therefore the gradient of a function that is harmonic in
�(t). This allows for the reformulation of the problem as one only on the free surface, involving the
Dirichlet-to-Neumann operator. Local well-posedness in this framework was established by Wu [1997;
1999] and Lannes [2005], an almost-global well-posedness result was then proved by Wu [2009] for the
2D problem, and global well-posedness was proved by Wu [2011] and Germain, Masmoudi and Shatah
[Germain et al. 2009] in 3D. Only the irrotational problem has been shown to admit global solutions in
the inviscid case. Local well-posedness without the irrotationality assumption was proved with a modified
surface formulation by Zhang and Zhang [2008] and with the original formulation in [[Christodoulou
and Lindblad 2000; Lindblad 2005; Coutand and Shkoller 2007; Shatah and Zeng 2008]]. Note that in
the viscous case, it is known that vorticity is generated at the free surface, even if the fluid is initially
irrotational. Therefore it is not possible to use the surface formulation of the problem.

Main result. As mentioned above, the standard method for constructing solutions in the existing literature
is based on the parabolic regularity theory pioneered by Beale [1981] for domains like ours and by
Solonnikov [1977] for bounded, nonperiodic domains. The advantage of full parabolic regularity is that
it enables one to treat viscous surface waves as a perturbation of the “flat surface” problem, which is
obtained by setting η = 0, A = I , N = e3, etc. in (1-4). The actual problem (1-4) is then rewritten as
the flat surface problem with nonlinear forcing terms that correspond to the difference between the two
forms of the equations. The key to the existence theory of, say, [Beale 1981], is regularity in H r with the
choice of r = 3+ δ for δ ∈

(
0, 1

2

)
. According to the natural energy structure of the problem, 1, one might

expect r to naturally be an integer. The extra gain of δ > 0 regularity allows for enough control of the
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nonlinear forcing terms to produce a local solution to (1-4) from solutions to the flat surface problem and
an iteration argument. As recognized early on by Beale himself, a disadvantage of Beale–Solonnikov
theory is that the functional framework makes it difficult to extract time decay information.

In a pair of companion papers [Guo and Tice 2013b; 2013a], we prove a priori decay estimates that are
developed through a high-regularity energy method. This necessitates using the natural energy structure
of the problem, 1, which in turn requires us to use positive integer Sobolev indices for u. The advantage
of the natural energy structure is that it produces two distinct types of estimates: roughly speaking,
L∞([0, T ]; L2) “energy estimates” and L2([0, T ]; H 1) “dissipation estimates”. The interplay between
the energy and the dissipation naturally leads to time decay information. The disadvantage of the energy
structure is that our regularity index r must be an integer, so we cannot use the δ > 0 gain that would
allow us to treat the problem (1-4) as a perturbation of the flat surface problem.

The difficulty in proving local well-posedness in the natural energy structure is thus clear. We cannot use
solutions to the standard flat surface problem to produce solutions to (1-4) via an iteration argument since
the forcing terms cannot be controlled in the iteration. For example, we would have trouble controlling
the interaction between the highest-order temporal derivatives of p and div u. Our solution, then, is to
abandon the flat surface problem and prove local existence directly, using the geometric structure of (1-4).
The geometric structure is crucial since it decreases the derivative count of the forcing terms, which then
allows us to close an iteration argument using only the natural energy structure. The essential difficulty is
that the geometric structure requires us to solve the Navier–Stokes equations in moving domains. In the
presence of such a time-dependent geometric effect, even the construction of local-in-time solutions to
the linear Navier–Stokes equations is highly delicate and has to be carried out from the beginning.

Before we state our local existence result, let us mention the issue of compatibility conditions for
the initial data (u0, η0). We will work in a high-regularity context, essentially with regularity up to 2N
temporal derivatives for N ≥ 3 an integer. This requires us to use u0 and η0 to construct the initial data
∂

j
t u(0) and ∂ j

t η(0) for j = 1, . . . , 2N and ∂ j
t p(0) for j = 0, . . . , 2N − 1. These other data must then

satisfy various conditions (essentially what one gets by applying ∂ j
t to (1-4) and then setting t = 0), which

in turn require u0 and η0 to satisfy 2N compatibility conditions. We describe these conditions in detail
on pages 338–339 and state them explicitly in (5-22), so for brevity we will not state them here.

In order to state our result, we must explain our notation for Sobolev spaces and norms. We take
H k(�) and H k(6) for k ≥ 0 to be the usual Sobolev spaces. When we write norms, we will suppress the
H and � or 6. When we write ‖∂ j

t u‖k and ‖∂ j
t p‖k , we always mean that the space is H k(�), and when

we write ‖∂ j
t η‖k , we always mean that the space is H k(6). In the following result, we also refer to the

space XT , which is defined later in (2-4).

Theorem 1.1. Let N ≥ 3 be an integer. Assume that u0 and η0 satisfy the bounds

‖u0‖
2
4N +‖η0‖

2
4N+1/2 <∞
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as well as the (2N )-th compatibility conditions (5-22). There exist 0< δ0, T0 < 1 such that if

0< T ≤ T0 min
{

1,
1

‖η0‖
2
4N+1/2

}
and ‖u0‖

2
4N +‖η0‖

2
4N ≤ δ0, then there exists a unique solution (u, p, η) to (1-4) on the interval [0, T ]

that achieves the initial data. The solution obeys the estimates

2N∑
j=0

sup
0≤t≤T

∥∥∂ j
t u
∥∥2

4N−2 j +

2N∑
j=0

sup
0≤t≤T

∥∥∂ j
t η
∥∥2

4N−2 j +

2N−1∑
j=0

sup
0≤t≤T

∥∥∂ j
t p
∥∥2

4N−2 j−1

+

∫ T

0

( 2N∑
j=0

∥∥∂ j
t u
∥∥2

4N−2 j+1+

2N−1∑
j=0

∥∥∂ j
t p
∥∥2

4N−2 j

)
+‖∂2N+1

t u‖2(XT )∗

+

∫ T

0

(
‖η‖24N+1/2+‖∂tη‖

2
4N−1/2+

2N+1∑
j=2

∥∥∂ j
t η
∥∥2

4N−2 j+5/2

)
≤ C

(
‖u0‖

2
4N +‖η0‖

2
4N + T ‖η0‖

2
4N+1/2

)
(1-5)

and
sup

0≤t≤T
‖η‖24N+1/2 ≤ C

(
‖u0‖

2
4N + (1+ T )‖η0‖

2
4N+1/2

)
for a universal constant C > 0. The solution is unique among functions that achieve the initial data and
for which the sum of the first three sums in (1-5) is finite. Moreover, η is such that the mapping 8( · , t),
defined by (1-1), is a C4N−2 diffeomorphism for each t ∈ [0, T ].

Remark 1.2. Since the mapping 8( · , t) is a C4N−2 diffeomorphism, we may change coordinates to
y ∈�(t) to produce solutions to 1.

The tools needed for the proof of Theorem 1.1 are developed throughout the rest of the paper, and the
theorem is proved starting on page 354. We will sketch here the main ideas of the proof.

Linear A-Navier–Stokes. Our iteration procedure is based on a geometric variant of the linear Navier–
Stokes problem. We consider η (and hence A,N, etc.) as given and then solve the linear A-Navier–Stokes
equations for (u, p): 

∂t u−1Au+∇A p = F1 in �,

divA u = 0 in �,

SA(p, u)N= F3 on 6,

u = 0 on 6b,

(1-6)

with initial data u0. Transforming this problem back to a moving domain �(t) using the mapping 8
defined in (1-1) shows that this problem is essentially equivalent (we have absorbed the correction to the
time derivative into F1, so it does not transform exactly) to solving the linear Navier–Stokes equations in
a domain whose upper boundary is given by η(t). In other words, we are really solving the usual linear
problem in a moving domain.
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Pressure as a Lagrange multiplier in time-dependent function spaces. It is well-known (see [Solonnikov
and Skadilov 1973; Beale 1981; Coutand and Shkoller 2003; 2007]) that for the usual linear Navier–Stokes
equations, the pressure can be viewed as a Lagrange multiplier that arises by restricting the dynamics
to the class of vectors satisfying div u = 0. To adapt this idea to the problem (1-6), we must restrict to
the class of vectors satisfying divA u = 0, which is a time-dependent condition since η (and hence A)
depends on t . This leads us to build time-dependent variants of the usual Sobolev spaces H 0

= L2 and
H 1 so that we can make sense of this time-dependent collection of divA-free vectors. For the purpose of
estimates, we want the time-dependent norms on these spaces to all be comparable to the usual Sobolev
norms; this can be achieved through a smallness assumption on η, which we quantify. With the spaces
in hand, we then adapt a technique from [Solonnikov and Skadilov 1973] to introduce the pressure as a
Lagrange multiplier for divA-free dynamics.

Elliptic estimates for A-problems. In order to get the regularity we need for solutions to the parabolic
problem (1-6), we first need the corresponding elliptic regularity theory. We accomplish this by using
(1-1) to transform these elliptic problems back into Eulerian coordinates so that the PDEs transform to
ones with constant coefficients. We then apply standard estimates for elliptic equations and systems,
proved in [Agmon et al. 1959; 1964], and then transform these estimates on the Eulerian domain back to
estimates on �. The only problem with this process is that the Eulerian domain has a boundary whose
regularity is dictated by η and is phrased in H k norms rather than Ck norms, which are what appear
in [Agmon et al. 1959; 1964]. We get around this problem by using a smoothing operator, a limiting
argument, and the smallness of η. Similar elliptic estimates were proved in Lagrangian coordinates for
open, bounded domains in [Cheng and Shkoller 2010].

Galerkin method with a time-dependent basis. We construct solutions to (1-6) by using a time-dependent
Galerkin method. This requires a countable basis of our space of divA-free vector fields. Since the
requirement divA u = 0 is time-dependent, any basis of this space must also be time-dependent. For
each t ∈ [0, T ], the space we work in (basically H 2 with divA u = 0) is separable, so the existence
of a countable basis is not an issue. The technical difficulty is that, in order for the basis to be useful
in the Galerkin method, we must be able to differentiate the basis elements in time, and we must be
able to express these time derivatives in terms of finitely many basis elements. Fortunately, due to a
clever observation of Beale [1984], we are able construct an explicit time-dependent isomorphism that
maps the div-free vector fields to the divA-free fields. This allows us to construct the desired basis and
push through the Galerkin method to produce “pressureless” weak solutions that are restricted to the
collection of divA-free fields. We then use our previous analysis to introduce the pressure as a Lagrange
multiplier, which gives a weak solution to (1-6). We also use the Galerkin scheme to get higher regularity,
showing that the solution is actually strong. The compatibility conditions serve as necessary conditions
for controlling the temporal derivatives of the approximate solutions in the Galerkin scheme. The result of
our strong existence theorem then allows us to iteratively deduce higher regularity, given that the forcing
terms are more regular and higher-order compatibility conditions are satisfied.
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Transport estimates. The problem (1-6) considers η as given and then produces (u, p). The second step
in our iteration procedure is to take u as given and then solve ∂tη+ u1∂1η+ u2∂2η = u3 on 6. This is a
standard transport equation, so solving it presents no real obstacle. The difficulty is that in our analysis of
(1-6), we need control of sup0≤t≤T ‖η(t)‖

2
4N+1/2, but owing to the transport structure, the only available

estimate is, roughly speaking,

sup
0≤t≤T
‖η(t)‖24N+1/2 ≤ C exp

(
C
∫ T

0
‖Du(t)‖H2(6) dt

)[
‖η0‖

2
4N+1/2+ T

∫ T

0
‖u(t)‖24N+1 dt

]
.

Without knowing a priori that u decays, the right side of this estimate has the potential to grow at the
rate of (1+ T )eC

√
T . Even if u decays rapidly, the right side can still grow like (1+ T ). Of course,

such a growth in time is disastrous for global stability analysis, but even in our local-existence iteration
scheme, a delicate technique is required to accommodate such a growth without breaking the estimates of
Theorem 1.1.

Closing the iteration with a two-tier energy scheme. Our iteration scheme then proceeds as described,
using ηm to produce (um+1, pm+1), and then using um+1 to produce ηm+1. Iterating in this manner without
losing control of our high-order energy estimates is rather delicate, and can only be completed by using
sufficiently small initial data. The boundedness of the infinite sequence (um, pm, ηm) in our high-order
norms gives weak limits in the usual way, but because of the nature of our iteration scheme, we cannot
guarantee a priori that the weak limits constitute a solution to (1-4). Instead of using high-order weak
limits, we instead show that the sequence contracts in low-order norms, yielding strong convergence in
low norms. We then combine the low-order strong convergence with the high-order weak convergence
and an interpolation argument to deduce strong convergence in higher (but not all the way to the highest
order) norms, which then suffices for passing to the limit m→∞ to produce a solution to (1-4).

Utility in the global theory. We believe that our local well-posedness result, Theorem 1.1, is interesting
in its own right. It provides an alternative to the standard Beale–Solonnikov framework that is perhaps
more natural due to the natural energy structure 1. The new ideas and techniques that we have introduced
in order to work in this framework will likely be useful in many other problems.

However, we also need Theorem 1.1 as a crucial component in our global analysis of 1, which we
carry out in [Guo and Tice 2013b] in the infinite case and in [Guo and Tice 2013a] in the periodic case.
In both cases we develop novel a priori estimates that couple to the local theory to produce global-in-time
solutions that decay to equilibrium at an algebraic rate. We call our a priori estimates a two-tier energy
method because it couples the boundedness of certain high-regularity norms to the decay of certain
low-regularity norms. The local theory we develop here both provides the tools for iteratively achieving
global well-posedness and justifies all of the computations used in our two-tier a priori estimates.

Let us now informally state the theorems we prove in [Guo and Tice 2013b; 2013a].

Theorem 1.3. The problem 1 is globally well-posed for sufficiently small initial data. In the infinite case,
the solutions decay at a fixed algebraic rate. In the periodic case, by adjusting the smallness of the initial
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data, the solutions can be made to decay at arbitrarily fast algebraic rates. In other words, solutions in
the periodic case decay almost exponentially.

Remark 1.4. The reader interested in a unified presentation of the present paper and the global decay
results of [Guo and Tice 2013b; 2013a] may consult [Guo and Tice 2010].

Remark 1.5. One can see a glimpse of the utility of our two-tier energy method already in the local
theory. Indeed, the contraction argument we use to produce local solutions uses the boundedness of the
high norms to close the contraction estimate for the low norms.

Definitions and terminology. We now mention some of the definitions, bits of notation, and conventions
that we will use throughout the paper.

Einstein summation and constants. We will employ the Einstein convention of summing over repeated
indices for vector and tensor operations. Throughout the paper, C > 0 will denote a generic constant that
can depend on the parameters of the problem, N , and �, but does not depend on the data, etc. We refer
to such constants as “universal”. They are allowed to change from one inequality to the next. When a
constant depends on a quantity z, we will write C = C(z) to indicate this. We will employ the notation
a . b to mean that a ≤ Cb for a universal constant C > 0.

Derivatives and norms. We will write D f for the horizontal gradient of f , that is, D f = ∂1 f e1+ ∂2 f e2,
while ∇ f will denote the usual full gradient. We write H k(�) with k ≥ 0 and H s(6) with s ∈ R for
the usual Sobolev spaces. We will typically write H 0

= L2; the exception to this is where we use
L2([0, T ]; H k) notation to indicate the space of square-integrable functions with values in H k .

To avoid notational clutter, we will avoid writing H k(�) or H k(6) in our norms and typically write
only ‖ · ‖k . Since we will do this for functions defined on both � and 6, this presents some ambiguity.
We avoid this by adopting two conventions. First, we assume that functions have natural spaces on which
they “live”. For example, the functions u, p, and η̄ live on �, while η itself lives on 6. As we proceed in
our analysis, we will introduce various auxiliary functions; the spaces they live on will always be clear
from the context. Second, whenever the norm of a function is computed on a space different from the one
in which it lives, we will explicitly write the space. This typically arises when computing norms of traces
onto 6 of functions that live on �.

Plan of the paper. Our proof of Theorem 1.1 employs an iteration that is based on the following linear
problem for (u, p), where we think of η (and hence A,N, etc.) as given:

∂t u−1Au+∇A p = F1 in �,

divA u = 0 in �,

SA(p, u)N= F3 on 6,

u = 0 on 6b,

(1-7)

subject to the initial condition u(0) = u0. Note that the first equation in (1-7) may be rewritten as
∂t u+ divA SA(p, u)= F1.
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In Section 2, we develop the machinery of time-dependent function spaces so that we can consider
the class of divA-free vector fields. We use an orthogonal splitting of a space to introduce the pressure
as a Lagrange multiplier. In Section 3, we record some elliptic estimates for the A-Stokes problem and
the A-Poisson problem. In Section 4, we develop the local existence theory for (1-7) by using a time-
dependent Galerkin scheme. We iterate this result to produce high-regularity solutions. In Section 5, we
do some preliminary work for the nonlinear problem, constructing initial data, detailing the compatibility
conditions, and constructing solutions to the transport equation with high-regularity estimates. In Section 6,
we construct solutions to (1-4) through the use of iteration and contraction arguments, completing the
proof of Theorem 1.1.

Throughout the paper, we assume that N ≥ 3 is an integer. We consider both the nonperiodic and
periodic cases simultaneously. When different analysis is needed for each case, we will indicate so.
Otherwise, the argument we write works in both cases.

2. Functional setting

Time-dependent function spaces. We begin our analysis of (1-7) by introducing some function spaces.
We write H k(�) and H k(6) for the usual L2-based Sobolev spaces of either scalar or vector-valued
functions. Define

0 H 1(�) :=
{
u ∈ H 1(�)

∣∣ u|6b = 0
}
,

0 H 1(�) :=
{
u ∈ H 1(�)

∣∣ u|6 = 0
}
,

0 H 1
σ (�) :=

{
u ∈ 0 H 1(�)

∣∣ div u = 0
}
,

with the obvious restriction that the last space is for vector-valued functions only.
For our time-dependent function spaces, we will consider η as given with A, J , etc. determined by η

via (1-3); in our subsequent analysis, η will always be sufficiently regular for all terms derived from η to
make sense. We define a time-dependent inner-product on L2

= H 0 by introducing

(u, v)H0 :=

∫
�

(u · v)J (t)

with corresponding norm ‖u‖H0 :=
√
(u, u)H0 . Then we write H0(t) := {‖u‖H0 <∞}. Similarly, we

define a time-dependent inner-product on 0 H 1(�) according to

(u, v)H1 :=

∫
�

(DA(t)u : DA(t)v)J (t),

and we define the corresponding norm by ‖u‖H1 =
√
(u, u)H1 . Then we define

H1(t) :=
{
u
∣∣ ‖u‖H1 <∞, u|6b = 0

}
and X(t) :=

{
u ∈H1(t)

∣∣ divA(t) u = 0
}
. (2-1)

We will also need the orthogonal decomposition H0(t)= Y(t)⊕Y(t)⊥, where

Y(t)⊥ := {∇A(t)ϕ | ϕ ∈
0 H 1(�)}. (2-2)
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A further discussion of the space Y(t) can be found later in Remark 3.4. In our use of these norms and
spaces, we will often drop the (t) when there is no potential for confusion.

Finally, for T > 0 and k = 0, 1, we define inner products on L2([0, T ]; H k(�)) by

(u, v)Hk
T
:=

∫ T

0
(u(t), v(t))Hk dt. (2-3)

Write ‖u‖Hk
T

for the corresponding norms and Hk
T for the corresponding spaces. We define the subspace

of divA-free vector fields as

XT :=
{
u ∈H1

T

∣∣ divA(t) u(t)= 0 for almost every t ∈ [0, T ]
}
. (2-4)

A priori, we do not know that the spaces Hk(t) and Hk
T have the same topology as H k and L2 H k ,

respectively. This can be established under a smallness assumption on η.

Lemma 2.1. There exists a universal ε0 > 0 such that if

sup
0≤t≤T
‖η(t)‖3 < ε0, (2-5)

then
1
√

2
‖u‖k ≤ ‖u‖Hk ≤

√
2‖u‖k (2-6)

for k = 0, 1 and for all t ∈ [0, T ]. As a consequence, for k = 0, 1,

1
√

2
‖u‖L2 H k ≤ ‖u‖Hk

T
≤
√

2‖u‖L2 H k . (2-7)

Proof. Consider ε ∈
(
0, 1

2

)
with a precise value to be chosen later. It is straightforward to verify, using the

definitions in (1-3) along with Lemma A.8 in the nonperiodic case and Lemma A.10 in the periodic case,
that

sup
{
‖J − 1‖L∞, ‖A‖L∞, ‖B‖L∞

}
≤ C‖η‖3. (2-8)

Then we may choose ε0 = ε/C such that the right side of (2-8) is bounded by ε. Since K = 1/J , this
implies that

‖K − 1‖L∞ ≤
ε

1−ε
, ‖K‖L∞ ≤

1
1−ε

and

‖I −A‖L∞ ≤

√
3ε

1−ε
, ‖A+ I‖L∞ ≤ 2

√
3+
√

3ε
1−ε

.

In turn, this implies that

‖J‖L∞‖I −A‖L∞‖I +A‖L∞ ≤
3ε(1+ ε)(2− ε)

(1− ε)2
:= g(ε). (2-9)

Notice that g is a continuous, increasing function on
(
0, 1

2

)
such that g(0)= 0. With the estimates (2-8)

and (2-9) in hand, we can show that if ε is chosen sufficiently small, then (2-6) and (2-7) hold.



298 YAN GUO AND IAN TICE

In the case k = 0, the estimate (2-6) follows directly from the estimate for J in (2-8):

1
2

∫
�

|u|2 ≤ (1− ε)
∫
�

|u|2 ≤
∫
�

J |u|2 ≤ (1+ ε)
∫
�

|u|2 ≤ 2
∫
�

|u|2.

To derive (2-6) when k = 1, we first rewrite∫
�

J |DAu|2 =
∫
�

J |Du|2+
∫
�

J (DAu+Du) : (DAu−Du). (2-10)
To estimate the last term, we note that |(DAu±Du)| ≤ 2|A± I ||∇u|, which implies that∣∣∣∣∫

�

J (DAu+Du) : (DAu−Du)
∣∣∣∣≤ 4‖J‖L∞‖I −A‖L∞‖I +A‖L∞

∫
�

|∇u|2

≤ 4C�g(ε)
∫
�

|Du|2, (2-11)

where C� is the constant in Korn’s inequality, Lemma A.13. We may then employ the bounds (2-8) and
(2-11) in (2-10) to estimate∫

�

|DAu|2 J ≥
∫
�

J |Du|2− 4C�g(ε)
∫
�

|Du|2 ≥
(
1− ε− 4C�g(ε)

) ∫
�

|Du|2, (2-12)∫
�

|DAu|2 J ≤
∫
�

J |Du|2+ 4C�g(ε)
∫
�

|Du|2 ≤
(
1+ ε+ 4C�g(ε)

) ∫
�

|Du|2. (2-13)

Then (2-6) with k = 1 follows from (2-12)–(2-13) by choosing ε small enough so that ε+ 4C�g(ε)≤ 1
2 .

The estimates (2-7) follow by applying (2-6) for almost every t ∈ [0, T ], squaring, and integrating over
t ∈ [0, T ]. �

Remark 2.2. Throughout the rest of this paper, we will assume that (2-5) is satisfied, so that (2-6)–(2-7)
hold.

Remark 2.3. Because of the bound (2-6) and the usual Korn inequality on �, Lemma A.13, we have
a corresponding Korn-type inequality in H1(t) (defined in (2-1)): ‖u‖H0 . ‖u‖H1 . The standard trace
embedding H 1(�) ↪→ H 1/2(6) and (2-6) imply that ‖u‖H1/2(6) . ‖u‖H1 for all t ∈ [0, T ]. Similarly,
given f ∈ H 1/2(6), we may construct an extension f̃ ∈H1(t) such that ‖ f ‖H1 . ‖ f ‖H1/2(6).

We now prove a result about the differentiability of norms in our time-dependent spaces.

Lemma 2.4. Suppose that u ∈ H1
T , ∂t u ∈ (H1

T )
∗, where H1

T is defined in (2-3). Then the mapping
t 7→ ‖u(t)‖2

H0(t) is absolutely continuous, and

d
dt
‖u(t)‖2H0 = 2〈∂t u(t), u(t)〉(H1)∗ +

∫
�

|u(t)|2∂t J (t) (2-14)

for almost every t ∈ [0, T ]. Moreover, u ∈ C0
(
[0, T ]; H 0(�)

)
. If v ∈H1

T , ∂tv ∈ (H
1
T )
∗ as well, then

d
dt
(u(t), v(t))H0 = 〈∂t u(t), v(t)〉(H1)∗ +〈∂tv(t), u(t)〉(H1)∗ +

∫
�

u(t) · v(t)∂t J (t). (2-15)

A similar result holds for u ∈ XT with ∂t u ∈ (XT )
∗.
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Proof. In light of Lemma 2.1, the time-dependent spaces H0
T , H1

T , (H1
T )
∗ present no obstacle to the usual

method of approximation by temporally smooth functions via convolution. This allows us to argue as in
Theorem 3 in Section 5.9 of [Evans 2010] to deduce (2-14) and the continuity u ∈ C0([0, T ]; H 0(�)).
The equality (2-15) follows by applying (2-14) to u+ v and canceling terms by using (2-14) with u and
with v. �

Now we want to show the spaces 0 H 1(�) and 0 H 1
σ (�) are related to the spaces H1(t) and X(t). To

this end, we define the matrix

M := M(t)= K∇8=

 K 0 0
0 K 0

AK BK 1

 , (2-16)

where A, B, and K are as defined in (1-3). Note that M is invertible, and M−1
= JAT . Since J 6= 0 and

∂ j (JAi j )= 0 for each i = 1, 2, 3 (see Lemma A.3),

p = divA v ⇐⇒

J p = J divA v = JAi j∂ jvi = ∂ j (JAi jvi )= ∂ j (JAT v) j = ∂ j (M−1v) j = div(M−1v). (2-17)

The matrix M(t) induces a linear operator Mt : u 7→Mt(u)=M(t)u that possesses several nice properties,
the most important of which is that div-free vector fields are mapped to divA-free vector fields. We record
these now.

Proposition 2.5. For each t ∈ [0, T ], Mt is a bounded, linear isomorphism: from H k(�) to H k(�) for
k = 0, 1, 2; from L2(�) to H0(t); from 0 H 1(�) to H1(t); and from 0 H 1

σ (�) to X(t). In each case the
norms of the operators Mt ,M−1

t are bounded by a constant times 1+‖η(t)‖9/2.
The mapping M given by Mu(t) :=Mt u(t) is a bounded, linear isomorphism: from L2([0, T ]; H k(�))

to L2([0, T ]; H k(�)) for k = 0, 1, 2; from L2([0, T ]; H 0(�)) to H0
T ; from L2([0, T ]; 0 H 1(�)) to H1

T ;
and from L2([0, T ]; 0 H 1

σ (�)) to XT . In each case, the norms of the operators M and M−1 are bounded
by a constant times the sum 1+ sup0≤t≤T ‖η(t)‖9/2.

Proof. For each t ∈ [0, T ], it is easy to see, using Lemma A.8 in the nonperiodic case and Lemma A.10
in the periodic case, that

‖Mt u‖k . ‖M(t)‖C2‖u‖k .
(
1+‖η̄(t)‖C3

)
‖u‖k .

(
1+‖η(t)‖9/2

)
‖u‖k

for k = 0, 1, 2, which establishes that Mt is a bounded operator on H k . Since M(t) is an invertible
matrix, M−1

t v = M(t)−1v = JAT (t)v, which allows us to argue similarly to see that for k = 0, 1, 2,
‖M−1

t v‖k . (1+‖η(t)‖9/2)‖v‖k . Hence Mt is an isomorphism of H k to itself for k = 0, 1, 2. With this
fact in hand, Lemma 2.1 implies that Mt is an isomorphism of H 0(�) to H0(t) and of 0 H 1(�) to H1(t).

To prove that Mt is an isomorphism of 0 H 1
σ (�) to X(t), we must only establish that div u = 0 if and

only if divA(Mu)= 0. To see this, we appeal to (2-17) with p = 0 to see that 0= divA v if and only if
0= div(M−1v). Hence, writing v = Mu, we see that div u = 0 if and only if divA(Mu)= 0.

The mapping properties of the operator M on space-time functions may be established in a similar
manner. �
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Pressure as a Lagrange multiplier. It is well-known [Solonnikov and Skadilov 1973; Beale 1981;
Coutand and Shkoller 2007] that the space 0 H 1(�) can be orthogonally decomposed as 0 H 1(�) =

0 H 1
σ (�)⊕ R(Q), where R(Q) is the range of the operator Q : H 0(�)→ 0 H 1(�), defined by the Riesz

representation theorem via the relation∫
�

p div u =
∫
�

D(Qp) : Du for all u ∈ 0 H 1(�).

We now wish to establish a similar decomposition for our spaces X(t) ⊂ H1(t). Unfortunately, the
mappings Mt , while isomorphisms, are not isometries, so we cannot use the known result to decompose
H1(t). Instead, we must adapt the method of [Solonnikov and Skadilov 1973] to our time-dependent
context.

For p ∈ H0(t), we define the functional Qt ∈ (H
1(t))∗ by Qt(v) = (p, divA v)H0 . By the Riesz

representation theorem, there exists a unique Qt p ∈H1(t) such that Qt(v)= (Qt p, v)H1 for all v ∈H1(t).
This defines a linear operator Qt :H

0(t)→H1(t), which is bounded since we may take v = Qt p to get
the bound

‖Qt p‖2H1 = (Qt p, Qt p)H1 = Qt(v)= (p, divA v)H0

≤ ‖p‖H0‖divA v‖H0 ≤ ‖p‖H0‖v‖H1 = ‖p‖H0‖Qt p‖H1, (2-18)

so that ‖Qt p‖H1 ≤ ‖p‖H0 . In the previous inequality, we have utilized the simple bound ‖divA v‖H0 ≤

‖v‖H1 , which follows from the fact that divA v = tr(DAu)/2. In a straightforward manner, we may also
define a bounded linear operator Q :H0

T →H1
T via the relation

(p, divA v)H0
T
= (Qp, v)H1

T
for all v ∈H1

T .

Arguing as above, we can show that Q satisfies ‖Qp‖H1
T
≤ ‖p‖H0

T
.

In order to study the range of Qt in H1(t) and of Q in H1
T , we will first need a lemma on the solvability

of the equation divA v = p.

Lemma 2.6. Let p ∈H0(t). Then there exists a v ∈H1(t) such that divA v = p and

‖v‖H1 .
(
1+‖η(t)‖9/2

)
‖p‖H0 .

If instead p ∈ H0
T , then there exists a v ∈ H1

T such that divA v = p for almost every t ∈ [0, T ], and
‖v‖H1

T
. (1+ sup0≤t≤T ‖η(t)‖9/2)‖p‖H0

T
.

Proof. It is established in the proof of Lemma 3.3 of [Beale 1981] that for any q ∈ L2(�), the problem
div u = q admits a solution u ∈ 0 H 1(�) such that ‖u‖1 . ‖q‖0. The result in [Beale 1981] concerns the
nonperiodic case, but its proof may be easily adapted to the periodic case as well. Choose q = J p so that

‖q‖20 =
∫
�

|q|2 =
∫
�

|p|2 J 2
≤ ‖J‖L∞‖p‖2H0 ≤ 2‖p‖2H0 .

Then by (2-17), we know that v = M(t)u ∈H1(t) satisfies divA v = p, and Proposition 2.5 implies that

‖v‖H1 .
(
1+‖η(t)‖9/2

)
‖u‖1 .

(
1+‖η(t)‖9/2

)
‖q‖0 .

(
1+‖η(t)‖9/2

)
‖p‖H0 . (2-19)
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If p ∈H0
T , then for almost every t ∈ [0, T ], p(t) ∈H0(t), so we may apply the above analysis to find

v(t) ∈H1(t) such that divA v(t)= p(t) and the bound (2-19) holds with v = v(t) and p = p(t). We may
then square both sides and integrate over t ∈ [0, T ] to deduce that

‖v‖2
H1

T
=

∫ T

0
‖v(t)‖2H1 dt .

(
1+ sup

0≤t≤T
‖η(t)‖29/2

) ∫ T

0
‖p(t)‖2H0 dt

.
(

1+ sup
0≤t≤T

‖η(t)‖29/2
)
‖v‖2

H0
T
. �

With this lemma in hand, we can show that the range of Qt , R(Qt), is a closed subspace of H1(t) and
that R(Q) is a closed subspace of H1

T .

Lemma 2.7. R(Qt) is closed in H1(t), and R(Q) is closed in H1
T .

Proof. For p ∈H0(t), let v ∈H1(t) be the solution to divA v = p provided by Lemma 2.6. Then

‖p‖2H0 = (p, divA v)H0 = Qt(v)= (Qt p, v)H1

≤ ‖Qt p‖H1‖v‖H1 . ‖Qt p‖H1
(
1+‖η(t)‖9/2

)
‖p‖H0,

so that we get, using (2-18),

‖Qt p‖H1 ≤ ‖p‖H0 . (1+‖η(t)‖9/2)‖Qt p‖H1 .

Hence R(Qt) is closed in H1(t). A similar analysis shows that R(Q) is closed in H1
T . �

Now we can perform the orthogonal decomposition of H1(t) and H1
T , defined by (2-1) and (2-3)

respectively.

Lemma 2.8. We have that H1(t)= X(t)⊕ R(Qt), that is, X(t)⊥ = R(Qt). Also, H1
T = XT ⊕ R(Q), that

is, X⊥T = R(Q).

Proof. By Lemma 2.7, R(Qt) is a closed subspace of H1(t), and so it suffices to prove the equality
R(Qt)

⊥
= X(t).

Let v ∈ R(Qt)
⊥. Then for all p ∈H0(t), we know that∫

�

p divA v J = Qt(v)= (Qt p, v)H1 = 0,

and hence divA v = 0. This implies that R(Qt)
⊥
⊆ X(t).

Now suppose that v ∈ X(t). Then divA v = 0 implies that

0=
∫
�

p divA v J = Qt(v)= (Qt p, v)H1

for all p ∈H0(t). Hence v ∈ R(Qt)
⊥, and we see that X(t)⊆ R(Qt)

⊥.
A similar argument shows that H1

T = XT ⊕ R(Q). �

This decomposition will eventually allow us to introduce the pressure function. This will be accom-
plished by use of the following result.
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Proposition 2.9. If 3t ∈ (H
1(t))∗ is such that 3t(v) = 0 for all v ∈ X(t), then there exists a unique

p(t) ∈H0(t) such that
(p(t), divA v)H0 =3t(v) for all v ∈H1(t)

and ‖p(t)‖H0 . (1+‖η(t)‖9/2)‖3t‖(H1(t))∗ .
If 3 ∈ (H1

T )
∗ is such that 3(v)= 0 for all v ∈ XT , then there exists a unique p ∈H0

T such that

(p, divA v)H0
T
=3(v) for all v ∈H1

T

and ‖p‖H0
T
.
(
1+ sup0≤t≤T ‖η(t)‖9/2

)
‖3‖(H1

T )
∗ .

Proof. If 3t(v) = 0 for all v ∈ X(t), then the Riesz representation theorem yields the existence of a
unique w ∈X(t)⊥ such that 3t(v)= (w, v)H1 for all v ∈H1(t). By Lemma 2.8, w= Qt p(t) for a unique
p(t) ∈H0(t). Then 3t(v)= (Qt p(t), v)H1 = (p(t), divA v)H0 for all v ∈H1(t). By Lemma 2.6, we may
find v(t) ∈H1(t) such that divA v(t)= p(t) and ‖v(t)‖H1 . (1+‖η(t)‖9/2)‖p(t)‖H0 . Hence

‖p(t)‖2H0 =
(

p(t), divA v(t)
)

H0 =3t(v(t))≤ ‖3t‖(H1(t))∗
(
1+‖η(t)‖9/2

)
‖p(t)‖H0,

and the desired estimate holds. A similar argument proves the result for 3 ∈ (H1
T )
∗ such that 3(v)= 0

for all v ∈ XT . �

3. Elliptic estimates

Preliminary estimates. In studying the elliptic problems in the rest of this section, we will utilize the fact
that the equations can be transformed into constant coefficient equations on the domain �′=8(�), where
8 is defined by (1-1). In order to properly utilize this transformation, we must verify that composition
with 8 generates an isomorphism of H k(�′) to H k(�). This type of result is standard (see the appendix
of [Bourguignon and Brezis 1974] for the case of a bounded domain, or of [Beale 1984, Lemma 5.2] and
[Sylvester 1990, Lemma 6.2] for the case of Rn), but the precise form we need is not readily available in
the literature, so we record it now.

Lemma 3.1. Let 9 : �→ �′ be a C1 diffeomorphism satisfying 9 ∈ H k+1
loc (�) and ∇9 − I ∈ H k(�)

for an integer k ≥ 3, as well as the estimate ‖1− det∇9‖L∞ ≤
1
2 . If v ∈ H m(�′), then v ◦9 ∈ H m(�)

for m = 0, 1, . . . , k+ 1, and

‖v ◦9‖Hm(�) . C
(
‖∇9 − I‖H k(�)

)
‖v‖Hm(�′) (3-1)

for C(‖∇9 − I‖H k(�)) a constant depending on ‖∇9 − I‖H k(�). Similarly, for u ∈ H m(�), u ◦9−1
∈

H m(�′) for m = 0, 1, . . . , k+ 1, and

‖u ◦9−1
‖Hm(�′) . C

(
‖∇9 − I‖H k(�)

)
‖u‖Hm(�). (3-2)

Let 6′ = 9(6) denote the upper boundary of �′. If v ∈ H m−1/2(6′) for m = 1, . . . , k − 1, then
v ◦9 ∈ H m−1/2(6) and

‖v ◦9‖Hm−1/2(6) . C
(
‖∇9 − I‖H k(�)

)
‖v‖Hm−1/2(6′). (3-3)
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If u ∈ H m−1/2(6) for m = 1, . . . , k− 1, then v ◦9−1
∈ H m−1/2(6′) and

‖u ◦9−1
‖Hm−1/2(6′) . C

(
‖∇9 − I‖H k(�)

)
‖u‖Hm−1/2(6). (3-4)

Proof. The proof of (3-1)–(3-2) is similar to the proofs of the results in [Bourguignon and Brezis 1974;
Beale 1984; Sylvester 1990] mentioned above, so we present only a sketch. We first prove that for
m ∈ {0, 1, 2}, we have

‖v ◦9‖Hm(�) . C
(
‖∇9 − I‖H k(�)

)
‖v‖Hm(�′). (3-5)

Such a bound follows easily from the size of k, the Sobolev embeddings, and the bound on det∇9. We
then proceed inductively for m = 3, . . . , k+ 1. Suppose the bound (3-5) holds for m = 0, 1, 2, . . . ,m0

for 2≤ m0 ≤ k. To show that it holds for m0+ 1, we write x for coordinates in � and y for coordinates
in �′ and note that

∂

∂xi
(v ◦9)(x)=

∂v

∂y j
◦9(x) ·

∂9 j

∂xi
(x)=

∂v

∂yi
◦9(x)+

∂v

∂y j
◦9(x) ·

(∂9 j

∂xi
(x)− Ii j

)
.

By the induction hypothesis, if v ∈ H m0+1, then

∂v

∂y j
◦9 ∈ H m0 for j = 1, 2, 3,

and since we have the multiplicative embedding H m0 · H k ↪→ H m0 for m0 ≥ 2 and k ≥ 3, we deduce that

∂

∂xi
(v ◦9) ∈ H m0 for i = 1, 2, 3,

and hence that v ◦9 ∈ H m0+1. Moreover, an estimate of the form (3-5) holds. By induction, we deduce
that (3-1) holds. The result (3-2) follows similarly, utilizing the fact that ∇9−1(y)= (∇9)−1

◦9−1(y).
We now turn to the proof of (3-3)–(3-4). First note that since 9 ∈ H k+1

loc , the usual Sobolev embeddings
imply that 6′ is locally the graph of a Ck−1,1/2 function. Hence (see [Adams 1975]), there exists a
bounded extension operator E : H m−1/2(6′)→ H m(�′) for m = 1, . . . , k − 1 with the norm of the
operator depending on C(‖∇9 − I‖H k(�)). For v ∈ H m−1/2(6′), let V = Ev ∈ H m(�′). By (3-1), we
have that V ◦9 ∈ H m(�), and by the usual trace theory, v ◦9 = V ◦9|6 ∈ H m−1/2(6). Moreover,

‖v ◦9‖Hm−1/2(6) . ‖V ◦9‖Hm(�) . C
(
‖∇9 − I‖H k(�)

)
‖Ev‖Hm(�′)

. C
(
‖∇9 − I‖H k(�)

)
‖v‖Hm−1/2(6′),

which is (3-3). The bound (3-4) follows similarly. �

Remark 3.2. It is easy to show, using Lemma A.10 in the periodic case and Lemma A.8 in the nonperiodic
case, that if ‖η‖2k+1/2 is sufficiently small for k ≥ 3, then the mapping 8 defined by (1-1) is a C1

diffeomorphism that satisfies the hypotheses of Lemma 3.1.

We will also need the following H−1/2 boundary estimates for functions satisfying u, divA u ∈H0(t).
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Lemma 3.3. If v ∈H0(t) and divA v ∈H0(t), then v ·N ∈ H−1/2(6), v · ν ∈ H−1/2(6b) (with ν the unit
normal on 6b), and

‖v ·N‖H−1/2(6)+‖v · ν‖H−1/2(6b) . ‖v‖H0 +‖divA v‖H0 .

Proof. We will only prove the result on 6; the result on 6b may be derived in a similar manner, using the
fact that JAν = ν on 6b.

Let ϕ ∈ H 1/2(6) be a scalar function, and let ϕ̃ ∈ 0 H 1(�) be a bounded extension. If we define the
vector field w = ϕ̃e1, then a straightforward computation reveals that

2
∫
�

|∇Aϕ̃|
2 J ≤ ‖w‖2H1 and ‖w‖2

0 H1(�)
≤ 4

∫
�

|∇ϕ̃|2,

which, when combined with Lemma 2.1, implies that ‖ϕ̃‖H0 +‖∇Aϕ̃‖H0 . ‖ϕ‖H1/2(6). Then∫
6

ϕv ·N=

∫
6

JAi jviϕ(e j · e3)=

∫
�

divA(vϕ̃)J =
∫
�

ϕ̃ divA v J + v · ∇Aϕ̃ J

≤ ‖ϕ̃‖H0‖divA v‖H0 +‖v‖H0‖∇Aϕ̃‖H0 . ‖ϕ‖H1/2(6)

(
‖v‖H0 +‖divA v‖H0

)
.

The desired bound follows from this inequality by taking the supremum over all ϕ, so that ‖ϕ‖H1/2(6) ≤ 1.
�

Remark 3.4. Recall the space Y(t) ⊂ H0(t), defined by (2-2). It can be shown that if v ∈ Y(t), then
divA v = 0 in the weak sense, so that Lemma 3.3 implies that v ·N ∈ H−1/2(6) and v · ν ∈ H−1/2(6b).
Moreover, since the elements of Y(t) are orthogonal to each ∇Aϕ for ϕ ∈ 0 H 1(�), we find that v · ν = 0
on 6b.

The A-Stokes problem. In order to derive the regularity for our solutions to (1-7), we will first need to
study the regularity of the corresponding stationary problem

divA SA(p, u)= F1 in �,

divA u = F2 in �,

SA(p, u)N= F3 on 6,

u = 0 on 6b.

(3-6)

In these equations, recall that we have written SA(p, u)= (pI −DAu). Since this problem is stationary,
we will temporarily ignore the time dependence of η,A, etc.

We are interested in the regularity theory for strong solutions to (3-6), but before discussing that, we
shall mention the weak formulation. Our method of solution is similar to that of [Solonnikov and Skadilov
1973; Beale 1981; Coutand and Shkoller 2007]; we utilize Proposition 2.9 to introduce p after first solving
a pressureless problem. Suppose F1

∈ (H1)∗, F2
∈H0, F3

∈ H−1/2(6). We say (u, p) ∈H1
×H0 is a

weak solution to (3-6) if divA u = F2 almost everywhere in �, and

1
2(u, v)H1 − (p, divA v)H0 = 〈F1, v〉(H1)∗−〈F

3, v〉−1/2 for all v ∈H1, (3-7)
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where 〈 · , · 〉(H1)∗ denotes the dual pairing in H1 and 〈 · , · 〉−1/2 denotes the dual pairing between H−1/2(6)

and H 1/2(6).

Proposition 3.5. Suppose F1
∈ (H1)∗, F2

∈ H0, F3
∈ H−1/2(6). Then there exists a unique weak

solution (u, p) ∈H1
×H0 to (3-7).

Proof. By Lemma 2.6, there exists a ū ∈H1 such that divA ū = F2. We may then switch unknowns to
w = u− ū so that the weak formulation for w is divAw = 0 and

1
2(w, v)H1 − (p, divA v)H0 =−

1
2(ū, v)H1 +〈F1, v〉(H1)∗−〈F

3, v〉−1/2 for all v ∈H1. (3-8)

To solve for w without p, we restrict the test functions to v ∈ X so that the second term on the left
vanishes. A straightforward application of the Riesz representation theorem then provides a unique w ∈X

satisfying
1
2(w, v)H1 =−

1
2(ū, v)H1 +〈F1, v〉(H1)∗−〈F

3, v〉−1/2 for all v ∈ X. (3-9)

To introduce the pressure, p, we define 3 ∈ (H1)∗ as the difference between the left and right sides
of (3-9). Then 3(v) = 0 for all v ∈ X, so by Proposition 2.9, there exists a unique p ∈ H0 satisfying
(p, divA v)H0 =3(v) for all v ∈H1, which is equivalent to (3-8). �

The regularity gain available for solutions to (3-6) is limited by the regularity of the coefficients of
the operators 1A,∇A, divA, and hence by the regularity of η. In the next result, we establish the strong
solvability of (3-6) and present some elliptic estimates, but we do not yet seek the optimal regularity.

Lemma 3.6. Suppose that η ∈ H k+1/2(6) for k ≥ 3 is as small as in Remark 3.2, so that the mapping
8 defined by (1-1) is a C1 diffeomorphism of � to �′ = 8(�). If F1

∈ H 0(�), F2
∈ H 1(�), and

F3
∈ H 1/2(6), then the problem (3-6) admits a unique strong solution (u, p) ∈ H 2(�)× H 1(�), that

is, (u, p) satisfy (3-6) almost everywhere in �, 6, and 6b. Moreover, for r = 2, . . . , k− 1, we have the
estimate

‖u‖r +‖p‖r−1 . C(η)
(
‖F1
‖r−2+‖F2

‖r−1+‖F3
‖r−3/2

)
, (3-10)

whenever the right-hand side is finite, where C(η) is a constant depending on ‖η‖k+1/2.

Proof. We transform the problem (3-6) to one on �′ = 8(�) by introducing the unknowns (v, q)
according to u = v ◦8, p = q ◦8. Then (v, q) should be solutions to the usual Stokes problem on
�′ = {−b(y1, y2)≤ y3 ≤ η(y1, y2)} with upper boundary 6′ = {y3 = η}:

div S(q, v)= G1
= F1

◦8−1 in �′,

div v = G2
= F2

◦8−1 in �′,

S(q, v)N= G3
= F3

◦8−1 on 6′,

v = 0 on 6b,

(3-11)

where we recall that S(q, v)= (q I−Dv). Note that, according to Lemma 3.1, G1
∈ H 0(�′), G2

∈ H 1(�′),
and G3

∈ H 1/2(6′). We claim that there exist unique v ∈ H 2(�′), q ∈ H 1(�′), solving problem (3-11)
with

‖v‖H2(�′)+‖q‖H1(�′) . C(η)
(
‖G1
‖H0(�′)+‖G

2
‖H1(�′)+‖G

3
‖H1/2(6′)

)
, (3-12)
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for C(η) a constant depending on ‖η‖k+1/2. Let us assume for the moment that the claim is true; we first
show how (3-10) follows from the claim, and then turn to its proof.

To go from H 2
×H 1 to higher regularity, we appeal to the theory of elliptic systems with complementary

boundary conditions, developed in [Agmon et al. 1964]. It is well-known that the Stokes system (3-11) is
such an elliptic system. Theorem 10.5 of [Agmon et al. 1964] provides estimates in bounded domains,
but we may argue as in Lemma 3.3 of [Beale 1981] to transform the localized estimates into estimates
in all of �′, provided that the boundary 6′ is sufficiently smooth. In order for estimates of the form
(3-10) to hold for r = 2, . . . , k−1, [Agmon et al. 1964] requires that 6′ be Ck−1, which is satisfied since
η ∈ H k+1/2(6) ↪→ Ck−1,1/2(6). Hence, for r = 2, . . . , k− 1,

‖v‖H r (�)′ +‖q‖H r−1(�′) . C(η)
(
‖G1
‖H r−2(�′)+‖G

2
‖H r−1(�)′ +‖G

3
‖H r−3/2(6′)

)
, (3-13)

for C(η) a constant depending on ‖η‖k+1/2, whenever the right side is finite.
We now transform back to � with u = v ◦8, p = q ◦8. It is readily verified that (u, p) are strong

solutions of (3-6). Since 8 satisfies ∇8− I ∈ H k , Lemma 3.1 and (3-13) imply that

‖u‖r +‖p‖r−1 . C(η)
(
‖F1
‖r−2+‖F2

‖r−1+‖F3
‖r−3/2

)
for r = 2, . . . , k− 1, whenever the right side is finite. This is (3-10).

We now turn to the proof of the above claim, which employs ideas from [Beale 1981]. To demonstrate
the existence of H 2

× H 1 solutions of (3-11), we first consider the special case in which G2
= 0, G3

= 0,
and G1

∈ H 0(�′) is arbitrary. In this case, we may argue as in Lemma 3.3 of [Beale 1981] (which in turn
invokes [Solonnikov and Skadilov 1973]) to deduce the existence of a unique solution to (3-11) satisfying
(3-12) with G2

= 0, G3
= 0.

To handle the case of nonvanishing G2 and G3, we construct some special auxiliary functions that allow
us to reduce to the special case. First, there exists a v1

∈ H 2(�′)∩0 H 1(�′) such that div v1
=G2

∈ H 1(�′)

and
‖v1
‖H2(�′) . ‖G

2
‖H1(�′). (3-14)

The existence of v1 may be established as in Lemma 3.3 and Section 4 of [Beale 1981]. To deal with the
boundary term G3, we first need some projections. For a vector field X :6′→ R3, let us write 5X for
the vector field, so that 5X (y) is the orthogonal projection of X (y) onto the space of vectors orthogonal
to N(y), and let us write 5⊥X (y) for the orthogonal projection onto the line generated by N(y). Our
second special function is v2

∈ H 2(�′)∩ 0 H 1
σ (�

′) that satisfies 5(−Dv2N)=5(G3
+Dv1N) and

‖v2
‖H2(�′) . C(η)

(
‖G3
+Dv1N‖H1/2(6′)

)
. C(η)

(
‖G2
‖H1(�′)+‖G

3
‖H1/2(6′)

)
. (3-15)

The construction of v2 may be carried out through a simple modification of the proof of Lemma 4.2 in
[Beale 1981], working in Sobolev spaces defined on �′ rather than �′× (0, T ). The third special function
is q1
∈ H 1(�′) that satisfies q|6′ =5⊥(G3

+Dv1N) and

‖q1
‖H1(�′) . C(η)

(
‖G3
+Dv1N‖H1/2(6′)

)
. C(η)

(
‖G2
‖H1(�′)+‖G

3
‖H1/2(6′)

)
. (3-16)

The existence of q1 follows from the usual trace and extension theory since G3
+Dv1N ∈ H 1/2(6′).
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Now, with v1, v2 and q1 in hand, we reduce the solvability of (3-11) with the estimate (3-12) to the
special case discussed above. The construction of these special functions guarantees that w= v−v1

−v2,
Q = q − q1 should satisfy

div S(Q, w)= G1
+ div(Dv1

+Dv2)−∇q2
∈ H 0(�′) in �′,

divw = 0 in �′,

S(Q, w)N= 0 on 6′,

w = 0 on 6b.

As above, there exist unique (w, Q) solving this so that

‖w‖H2(�′)+‖Q‖H1(�′) . C(η)
∥∥G1
+ div(Dv1

+Dv2)−∇q2∥∥
H0(�′)

. (3-17)

The existence of unique (v, q) solving (3-11) is immediate, and the estimate (3-12) follows by combining
(3-17) with (3-14)–(3-16), finishing the proof of the claim. �

It turns out that we can achieve a gain of somewhat more regularity than is mentioned in Lemma 3.6 by
making a smallness assumption on η. The smallness allows us to view the problem (3-6) as a perturbation
of the Stokes problem on �. For this problem there is no constraint to regularity gain since the coefficients
are constant and the boundary is smooth. This allows us to shift the constraint of regularity gain to the
regularity of η in H k+1/2 rather than in Ck−1. We note that although we require η ∈ H k+1/2, the smallness
assumption is written in terms of ‖η‖k−1/2.

Proposition 3.7. Let k ≥ 4 be an integer and suppose that η ∈ H k+1/2. There exists ε0 > 0 such that if
‖η‖k−1/2 ≤ ε0, then solutions to (3-6) satisfy

‖u‖r +‖p‖r−1 ≤ C
(
‖F1
‖r−2+‖F2

‖r−1+‖F3
‖r−3/2

)
(3-18)

for r = 2, . . . , k, whenever the right side is finite. Here C is a constant that does not depend on η.
In the case r = k+ 1, solutions to (3-6) satisfy

‖u‖k+1+‖p‖k ≤C
(
‖F1
‖k−1+‖F2

‖k+‖F3
‖k−1/2

)
+C‖η‖k+1/2

(
‖F1
‖2+‖F2

‖3+‖F3
‖5/2

)
. (3-19)

Proof. In the case that 6 = R2, we let ρ ∈ C∞c (R
2) be such that supp(ρ) ⊂ B(0, 2) and ρ(x) = 1 for

x ∈ B(0, 1). For m ∈ N, define ηm by Fηm(ξ)= ρ(ξ/m)Fη(ξ), where F denotes the Fourier transform.
Clearly, for each m, ηm

∈ H j (6) for all j ≥ 0, and also ηm
→ η in H k−1/2(6) (and in H k+1/2(6)

if η ∈ H k+1/2(6)) as m →∞. In the periodic case, we similarly define ηm by throwing away high
frequencies: Fηm(n) = 0 for |n| ≥ m. In this case, ηm has the same convergence properties as before.
Let Am and Nm be defined in terms of ηm according to (1-3). Initially, let ε0 be small enough that ηm is
as small as in Remark 3.2. This allows the mapping 8m defined by ηm to be a C1 diffeomorphism.

Consider the problem (3-6) with A and N replaced with Am and Nm . Since ηm
∈ H k+5/2(6), we may

apply Lemma 3.6 to deduce the existence of a unique pair (um, pm) that solve (3-6) (with Am,Nm) and
that satisfy

‖um
‖r +‖pm

‖r−1 . C(‖ηm
‖k+5/2)

(
‖F1
‖r−2+‖F2

‖r−1+‖F3
‖r−3/2

)
(3-20)
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for r = 2, . . . , k+1, whenever the right-hand side is finite. We rewrite the equations (3-6) as a perturbation
of the usual Stokes equations on �:

div S(pm, um)= F1
+G1,m in �,

div um
= F2

+G2,m in �,

S(pm, um)e3 = F3
+G3,m on 6,

um
= 0 on 6b,

(3-21)

where
G1,m

= divI−A SA(pm, um)+ div SI−A(pm, um),

G2,m
= divI−A um,

G3,m
= S(pm, um)(e3−Nm)+ SI−A(pm, um)Nm .

Suppose that ‖ηm
‖k+1/2 ≤ 1, which implies that ‖ηm

‖
`
k+1/2 ≤ ‖η

m
‖k+1/2 for any `≥ 1. This fact and a

straightforward calculation, using Lemma A.8 in the nonperiodic case and Lemma A.10 in the periodic
case, reveal that

‖G1,m
‖r−2 ≤ C‖ηm

‖k−1/2
(
‖um
‖r +‖pm

‖r−1
)
,

‖G2,m
‖r−1 ≤ C‖ηm

‖k−1/2‖um
‖r ,

(3-22)

and
‖G3,m

‖H r−3/2(6) ≤ C‖ηm
‖k−1/2

(
‖um
‖H r−1/2(6)+‖pm

‖H r−3/2(6)

)
≤ C‖ηm

‖k−1/2
(
‖um
‖r +‖pm

‖r−1
)

(3-23)

for r = 2, . . . , k and a constant C > 0 independent of η and m. In the case r = k+ 1, a minor variant of
this argument shows that

‖G1,m
‖k−1+‖G2,m

‖k +‖G3,m
‖H k−1/2(6)

≤ C‖ηm
‖k−1/2

(
‖um
‖k+1+‖pm

‖k
)
+C‖ηm

‖k+1/2‖um
‖7/2 (3-24)

for C independent of η and m. The key to this variant is that nowhere in the terms Gi,m do there occur
products of the highest derivative count of both ηm and um (or pm). Note that the right sides of (3-22),
(3-23), and (3-24) are finite by virtue of the estimate (3-20).

Since the boundaries 6 and 6b are smooth and the problem (3-21) has constant coefficients, we may
argue as in Lemma 3.6, employing the elliptic estimates of [Agmon et al. 1964] as done in Lemma 3.3 of
[Beale 1981], to arrive at the estimate

‖um
‖r +‖pm

‖r−1 ≤ C
(
‖F1
+G1,m

‖r−2+‖F2
+G2,m

‖r−1+‖F3
+G3,m

‖r−3/2
)

(3-25)

for r = 2, . . . , k+ 1 and for C > 0 independent of η and m. We may then combine (3-22)–(3-23) with
(3-25) to find that, if ‖ηm

‖k−1/2 ≤ 1, then

‖um
‖r +‖pm

‖r−1 ≤ C
(
‖F1
‖r−2+‖F2

‖r−1+‖F3
‖r−3/2

)
+C‖ηm

‖k−1/2
(
‖um
‖r +‖pm

‖r−1
)
+ δr,k+1C‖ηm

‖k+1/2‖um
‖7/2. (3-26)
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On the right side of (3-26), we have written δr,k+1 for the quantity that vanishes when r 6= k+ 1 and is
unity when r = k+ 1.

We now derive the estimate (3-18). Since ηm
→ η in H k−1/2, we may assume that m is sufficiently

large that ‖ηm
‖k−1/2 ≤ 2‖η‖k−1/2. Then if

‖η‖k−1/2 ≤min
{ 1

4C
,

1
2

}
:= ε0

for C > 0 the constant appearing on the right side of (3-26), the bound (3-26) may be rearranged to get

‖um
‖r +‖pm

‖r−1 ≤ 2C
(
‖F1
‖r−2+‖F2

‖r−1+‖F3
‖r−3/2

)
, (3-27)

for r = 2, . . . , k when the right side is finite.
The bound (3-27) implies that the sequence {(um, pm)} is uniformly bounded in H r

× H r−1, so up to
the extraction of a subsequence, um ⇀ u0 weakly in H r (�) and pm ⇀ p0 weakly in H r−1(�). Since
ηm
→ η in H k−1/2(6), we also have that Am

−A→ 0, J m
− J → 0 in H k−1(�), and Nm

−N→ 0 in
H k−3/2(6). We multiply the equation divA um

= F2 by J mw for w ∈ C∞c (�) to see that∫
�

F2wJ m
=

∫
�

divAm (um)wJ m
=−

∫
�

um
· ∇AmwJ m

→−

∫
�

u0
· ∇AwJ =

∫
�

divA(u0)wJ,

from which we deduce that divA(u0)= F2. Then we multiply the first equation in (3-6) (with um , etc.)
by wJ m for w ∈ 0 H 1(�) and integrate by parts to see that∫

�

1
2 DAm um

: DAmwJ m
− pm divAm (w)J m

=

∫
�

F1
·wJ m

−

∫
6

F3
·w.

Passing to the limit m→∞, we deduce that∫
�

1
2 DAu0

: DAwJ − p0 divAwJ =
∫
�

F1
·wJ −

∫
6

F3
·w,

which reveals, upon integrating by parts again, that (u0, p0) satisfy (3-6). Since (u, p) are the unique
solutions to (3-6), we have that u = u0, p = p0. This, weak lower semicontinuity, and the bound (3-27)
imply (3-18).

Now we derive the estimate (3-19), supposing that F1
∈ H k−1, F2

∈ H k , and F3
∈ H k−1/2. The bound

(3-27) with r = 4 implies that

‖um
‖4 ≤ 2C

(
‖F1
‖2+‖F2

‖3+‖F3
‖5/2

)
<∞. (3-28)

Since ηm
→ η in H k+1/2, we are free to assume that m is sufficiently large that ‖ηm

‖k+1/2 ≤ 2‖η‖k+1/2.
Then if ‖η‖k−1/2 ≤ ε0, we may use (3-26) and (3-28) to deduce that

‖um
‖k+1+‖pm

‖k

≤ 2C
(
‖F1
‖k−1+‖F2

‖k +‖F3
‖k−1/2

)
+ 4C‖η‖k+1/2

(
‖F1
‖2+‖F2

‖3+‖F3
‖5/2

)
. (3-29)

We may then argue as above to extract weak limits, show that the limits equal u and p, and then deduce
that the bound (3-29) holds with um and pm replaced by u and p. This is (3-19). �
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The A-Poisson problem. Next we consider the scalar elliptic problem
1A p = f 1 in �,

p = f 2 on 6,

∇A p · ν = f 3 on 6b,

(3-30)

where ν is the outward-pointing normal on 6b. We will eventually discuss the strong solvability of this
problem, but first we consider the weak formulation of the problem. We define a scalar H1 in a natural
way through the norm

‖ f ‖2H1 =

∫
�

J |∇A f |2.

Note that
√

2‖ f ‖2
H1 ≤ ‖ f e1‖H1 ≤ 2‖ f ‖2

H1 , where the middle term is the H1 norm for vectors. Then
Lemma 2.1 shows that this scalar norm generates the same topology as the usual scalar H 1 norm.

For the weak formulation, we suppose f 1
∈ (0 H 1(�))∗, f 2

∈ H 1/2(6), and f 3
∈ H−1/2(6b). Let

p̄ ∈ H 1(�) be an extension of f 2 such that supp( p̄)⊂ {−(inf b)/2< x3 ≤ 0}. We switch unknowns to
q = p− p̄. Then we can define a weak formulation of (3-30) by finding a q ∈ 0 H 1(�) such that

(q, ϕ)H1 =−( p̄, ϕ)H1 −〈 f 1, ϕ〉∗+〈 f 3, ϕ〉−1/2 for all ϕ ∈ 0 H 1(�), (3-31)

where 〈 · , · 〉∗ is the dual pairing with 0 H 1(�) and 〈 · , · 〉−1/2 is the dual pairing with H 1/2(6b). The
existence and uniqueness of a solution to (3-31) follow from standard arguments, and the resulting
p = q + p̄ ∈ H 1(�) satisfies

‖p‖2H1 .
(
‖ f 1
‖

2
(0 H1(�))∗

+‖ f 2
‖

2
H1/2(6)

+‖ f 3
‖

2
H−1/2(6b)

)
. (3-32)

In the event that the action of f 1 is given in a more specific fashion, we will rewrite the PDE (3-30)
to accommodate the structure of f 1. To make this precise, suppose that the action of f 1 on an element
ϕ ∈ 0 H 1(�) is given by

〈 f 1, ϕ〉∗ = (g0, ϕ)H0 + (G,∇Aϕ)H0

for (g0,G) ∈ H 0(�;R)× H 0(�;R3)with ‖g0‖
2
0+‖G‖

2
0 = ‖ f 1

‖
2
(0 H1(�))∗

(standard arguments show that
it is always possible to uniquely write f 1 in this way). Then (3-31) may be rewritten as

(∇A p+G,∇Aϕ)H0 =−(g0, ϕ)H0 +〈 f 3, ϕ〉−1/2 for all ϕ ∈ 0 H 1(�).

We may take ϕ ∈ C∞c (�) in this equality and integrate by parts to see that divA(∇A p+G)= g0 ∈H0,
which allows us to deduce from Lemma 3.3 that (∇A p+G) · ν ∈ H−1/2(6b). This serves as motivation
for us to say that p is a weak solution to the PDE

divA(∇A p+G)= g0 ∈ H 0(�),

p = f 2
∈ H 1/2(6),

(∇A p+G) · ν = f 3
∈ H−1/2(6b).

(3-33)

This way of writing the weak solution will be utilized later in Theorem 4.3. Note that when f 1
∈ H 0(�),

there is no need to make this distinction since then G = 0 and f 1
= g0.
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Our next result on this problem is the analogue of Lemma 3.6; it establishes the strong solvability of
(3-30) and some regularity.

Lemma 3.8. Suppose that η ∈ H k+1/2(6) for k ≥ 3 is as small as in Remark 3.2, so that the mapping
8 defined by (1-1) is a C1 diffeomorphism of � to �′ = 8(�). If f 1

∈ H 0(�), f 2
∈ H 3/2(6), and

f 3
∈ H 1/2(6b), then the problem (3-30) admits a unique strong solution p ∈ H 2(�). Moreover, for

r = 2, . . . , k− 1, we have the estimate

‖p‖r . C(η)
(
‖ f 1
‖r−2+‖ f 2

‖r−1/2+‖ f 3
‖r−3/2

)
, (3-34)

whenever the right-hand side is finite, where C(η) is a constant depending on ‖η‖k+1/2.

Proof. If f 2
∈ H r−1/2(6) for r = 2, . . . , k−1, there exists a ψ ∈ H r (�) such that ψ |6 = f 2, supp(ψ)⊂

{−(inf b)/2< x3 ≤ 0}, and ‖ψ‖r . ‖ f 2
‖r−1/2. Writing p = q+ψ , the problem (3-30) may be rewritten

for the unknown q as 
1Aq = f 1

+ g1 in �,

q = 0 on 6,

∇Aq · ν = f 3 on 6b,

(3-35)

where g1
=−1Aψ ∈ H r−2.

The problem (3-35) may be solved as in Lemma 3.6 by transforming to the domain �′, where the
problem for Q = q ◦8−1 becomes 1Q = ( f 1

+ g1) ◦8−1 in �′ with boundary conditions Q = 0 on 6′

and ∇Q · ν = f 3
◦8−1 on 6b. The existence of a unique solution to this problem is established in the

nonperiodic case in Lemma 2.8 of [Beale 1981], and estimates of the form (3-34) for Q hold by virtue
of the elliptic estimates in [Agmon et al. 1959], adapted to �′ as in [Beale 1981]. This method may be
adapted easily to the periodic case as well. Then the existence and uniqueness of a solution to (3-30)
satisfying (3-34) follows by transforming to q = Q ◦8 on � for a solution to (3-35) and then applying
Lemma 3.1. �

Our next result is the analogue of Proposition 3.7 for the problem (3-30). For our purposes, we
only need a regularity gain up to k, and this is less important than the estimate in terms of a constant
independent of η. Notice again that the smallness assumption is stated in H k−1/2 even though we require
η ∈ H k+1/2.

Proposition 3.9. Let k ≥ 4 be an integer and suppose that η ∈ H k+1/2. There exists ε0 > 0 such that, if
‖η‖k−1/2 ≤ ε0, then solutions to (3-30) satisfy

‖p‖r ≤ C
(
‖ f 1
‖r−2+‖ f 2

‖r−1/2+‖ f 3
‖r−3/2

)
(3-36)

for r = 2, . . . , k, whenever the right side is finite. Here C is a constant that does not depend on η.

Proof. The proof is similar to that of Proposition 3.7. We smooth η to get ηm and solve (3-30) with A

replaced with Am . Then we rewrite the problem as a perturbation of the Poisson problem
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1pm

= f 1
+ g1,m in �,

pm
= f 2 on 6,

∇ pm
· ν = f 3

+ g3,m on 6b.

The constants in the elliptic estimates for this problem do not depend on ηm , and we may estimate gi,m in
terms of pm . Then if ‖η‖k−1/2 ≤ ε0 for some ε0 sufficiently small, we can absorb the highest Sobolev
norms on the right side of the elliptic estimate into the left side, and we deduce (3-36) for pm . Then we
pass to the limit m→∞. �

4. Solving the time-dependent problem (1-7)

The weak solution. In our analysis of problem (1-7), we will employ two notions of solution: strong and
weak. The meaning of the former is standard, but the latter merits some explanation. The definition of a
weak solution to (1-7) is motivated by assuming the existence of a smooth solution to (1-7), multiplying
by Jv for v ∈H1

T , integrating over � by parts, and then in time from 0 to T to see that

(∂t u, v)H0
T
+

1
2(u, v)H1

T
− (p, divA v)H0

T
= (F1, v)H0

T
− (F3, v)0,6,T (4-1)

for (F3, v)0,6,T =
∫ T

0

∫
6

F3
· v. If we were to restrict our class of test functions to v ∈ XT (defined

by (2-4)), then the term (p, divA v)H0
T

would vanish above, and we would be left with a “pressureless”
formulation of the problem involving only the velocity field. This leads us to define a weak formulation
without the pressure.

Suppose that

F ∈ (XT )
∗ and u0 ∈ Y(0),

where Y(0) is defined by (2-2). Then our definition of a weak solution requires that u satisfies
u ∈ XT , ∂t u ∈ (XT )

∗,

〈∂t u, ψ〉∗+ 1
2(u, ψ)H1

T
= 〈F, ψ〉∗, for every ψ ∈ XT ,

u(0)= u0,

(4-2)

where 〈 · , · 〉∗ denotes the dual pairing between (XT )
∗ and XT . Note that the third condition in (4-2)

makes sense in light of Lemma 2.4. Our weak formulation requires only that u ∈ XT , which means that
F ∈ (XT )

∗ is natural. Within the context of problem (1-7), the functional F is most naturally of the form
appearing on the right side of (4-1), and if F admits a representation of this form, we may say that a
solution to (4-2) is a weak solution of (1-7).

Since our aim is to construct solutions to (1-7) with high regularity, we will not need to directly
construct weak solutions to (4-2). Rather, weak solutions to problems of this type will arise as a byproduct
of our construction of strong solutions of (1-7). Hence, for our purposes, it will suffice to ignore the issue
of existence and only record a couple results on the properties of weak solutions.

We now record a result on some integral equalities and bounds satisfied by solutions of (4-2).
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Lemma 4.1. Suppose that u is a weak solution of (4-2). Then, for almost every t ∈ [0, T ],

1
2
‖u(t)‖2H0(t)+

1
2

∫ t

0
‖u(s)‖2H1(s) ds = 1

2
‖u(0)‖2H0(0)+〈F, u〉(Xt )∗ +

1
2

∫ t

0

∫
�

|u(s)|2∂t J (s) ds. (4-3)

Also
sup

0≤t≤T
‖u(t)‖2H0(t)+‖u‖

2
H1

T
. exp(C0(η)T )

(
‖u(0)‖2H0(0)+‖F‖

2
(XT )∗

)
, (4-4)

where C0(η) := sup0≤t≤T ‖∂t J K‖L∞ .

Proof. The identity (4-3) follows directly from (4-2) and Lemma 2.4 by using the test function ψ =
uχ[0,t] ∈ XT , where χ[0,t] is a temporal indicator function equal to unity on the interval [0, t].

From (4-3) it is straightforward to derive the inequality

1
2‖u(t)‖

2
H0(t)+

1
2‖u‖

2
H1

t
≤

1
2‖u(0)‖

2
H0(0)+‖F‖(Xt )∗‖u‖H1

t
+

C0(η)

2
‖u‖2

H0
t
, (4-5)

where we have written

‖u‖2
Hk

t
=

∫ t

0
‖u(s)‖2Hk(s) ds for k = 0, 1,

and similarly defined ‖F‖(Xt )∗ . Inequality (4-5) and Cauchy’s inequality then imply that

1
2‖u(t)‖

2
H0(t)+

1
4‖u‖

2
H1

t
≤

1
2‖u(0)‖

2
H0(0)+‖F‖

2
(Xt )∗
+

C0(η)

2
‖u‖2

H0
t
. (4-6)

Then (4-4) follows from the differential inequality (4-6) and Gronwall’s lemma. �

We can now parlay the results of Lemma 4.1 into uniqueness results for weak solutions to (4-2).

Proposition 4.2. Weak solutions to (4-2) are unique.

Proof. If u1 and u2 are both weak solutions to (4-2), then w = u1
− u2 is a weak solution with F = 0 and

w(0)= u1(0)− u2(0)= 0. Then the bound (4-4) of Lemma 4.1 implies that w = 0; hence solutions to
(4-2) are unique. �

The strong solution. Now we turn to the construction of strong solutions to (1-7). We will assume that
the forcing functions satisfy

F1
∈ L2(

[0, T ]; H 1(�)
)
∩C0(

[0, T ]; H 0(�)
)
,

F3
∈ L2(

[0, T ]; H 3/2(6)
)
∩C0(

[0, T ]; H 1/2(6)
)
,

∂t(F1
− F3) ∈ L2(

[0, T ]; (0 H 1(�))∗
)
.

(4-7)

Here in the last line we mean that the weak time derivative of the functional v 7→ (F1, v)H0 − (F3, v)0,6

(which is itself in L2([0, T ]; (0 H 1(�))∗)) is in L2([0, T ]; (0 H 1(�))∗) ↪→ (XT )
∗. We also assume the

initial velocity u0 ∈ H 2(�)∩X(0).
The solution that we construct will satisfy (1-7) in the strong sense, but we will also show that Dt u

satisfies an equation of the form (1-7) in the weak sense of (4-2). Here we define

Dt u := ∂t u− Ru for R := ∂t M M−1, (4-8)
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with M the matrix defined by (2-16). We employ the operator Dt because it preserves the divA-free
condition. Before turning to the result, we define the quantity

K(η) := sup
0≤t≤T

(
‖η‖29/2+‖∂tη‖

2
7/2+‖∂

2
t η‖

2
5/2
)
. (4-9)

We also define an orthogonal projection onto the tangent space of the surface {x3 = η0} according to

50v = v− (v ·N0)N0|N0|
−2 (4-10)

for N0 = (−∂1η0,−∂2η0, 1). By construction, 50v = 0 if and only if v ‖N0.

Theorem 4.3. Suppose that F1, F3 satisfy (4-7), that u0 ∈ H 2(�)∩X(0), and that u0, F3(0) satisfy the
compatibility condition

50
(
F3(0)+DA0u0N0

)
= 0, where N0 = (−∂1η0,−∂2η0, 1), (4-11)

and 50 is the projection defined by (4-10). Further suppose that K(η) is less than the smaller of ε0 from
Lemma 2.1 and ε0 from Proposition 3.7 (in particular, this requires K(η)≤ 1). Then there exists a unique
strong solution (u, p) to (1-7) such that

u ∈ XT ∩C0(
[0, T ]; H 2(�)

)
∩ L2(

[0, T ]; H 3(�)
)
,

∂t u ∈ C0(
[0, T ]; H 0(�)

)
∩ L2(

[0, T ]; H 1(�)
)
, Dt u ∈ XT , ∂2

t u ∈ (XT )
∗,

p ∈ C0(
[0, T ]; H 1(�)

)
∩ L2(

[0, T ]; H 2(�)
)
.

(4-12)

The solution satisfies the estimate

‖u‖2L∞H2 +‖u‖2L2 H3 +‖∂t u‖2L∞H0 +‖∂t u‖2L2 H1 +‖∂
2
t u‖2(XT )∗

+‖p‖2L∞H1 +‖p‖2L2 H2

. (1+K(η)) exp
(
C(1+K(η))T

)(
‖u0‖

2
2+‖F

1(0)‖20+‖F
3(0)‖21/2+‖F

1
‖

2
L2 H1

+‖F3
‖

2
L2 H3/2 +‖∂t(F1

− F3)‖2(XT )∗

)
, (4-13)

where C is a constant independent of η. The initial pressure, p(0) ∈ H 1(�), is determined in terms of
u0, F1(0), F3(0) as the weak solution to

divA0

(
∇A0 p(0)− F1(0)

)
=− divA0(R(0)u0) ∈ H 0(�),

p(0)= (F3(0)+DA0u0N0) ·N0|N0|
−2
∈ H 1/2(6),(

∇A0 p(0)− F1(0)
)
· ν =1A0u0 · ν ∈ H−1/2(6b),

(4-14)

in the sense of (3-33). Also, Dt u(0)= ∂t u(0)− R(0)u0 satisfies

Dt u(0)=1A0u0−∇A0 p(0)+ F1(0)− R(0)u0 ∈ Y(0), (4-15)

where Y(0) is defined by (2-2).
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Moreover, Dt u satisfies
∂t(Dt u)−1A(Dt u)+∇A(∂t p)= Dt F1

+G1 in �,

divA(Dt u)= 0 in �,

SA(∂t p, Dt u)N= ∂t F3
+G3 on 6,

Dt u = 0 on 6b,

(4-16)

in the weak sense of (4-2), where G1 is defined by

G1
=−(R+ ∂t J K )1Au− ∂t Ru+ (∂t J K + R+ RT )∇A p+ divA

(
DA(Ru)− RDAu+D∂t Au

)
(RT denoting the matrix transpose of R), and G3 by

G3
= DA(Ru)N− (pI −DAu)∂t N+D∂t AuN.

More precisely, (4-16) holds in the weak sense of (4-2) in that

〈∂t Dt u, ψ〉∗+ 1
2(∂t u, ψ)H1

T
= 〈∂t(F1

− F3), ψ〉∗− (∂t Ru+ R∂t u, ψ)H0
T

+ (∂t J K F1, ψ)H0
T
− (∂t J K∂t u, ψ)H0

T
− (p, divA(Rψ))H0

T

−
1
2

∫ T

0

∫
�

(
∂t J K DAu : DAψ +D∂t Au : DAψ +DAu : D∂t Aψ

)
J (4-17)

for all ψ ∈ XT . Here the inclusions (4-12) guarantee that G1 and G3 satisfy the same inclusions as
F1, F3 listed in (4-7), whereas (4-14) guarantees that the initial data Dt u(0) ∈ Y(0).

Finally, let

divA ∂t u =−∂t Ai j∂ j ui := F2
∈ C0(

[0, T ]; H 1(�)
)
∩ L2(

[0, T ]; H 2(�)
)
∩ H 1(

[0, T ]; H 0(�)
)
.

Then for any 0≤ s ≤ t ≤ T , we have the equality

1
2‖∂t u(t)‖2H0 −

1
2‖∂t u(s)‖2H0 − (p(t), F2(t))H0 + (p(s), F2(s))H0 +

1
2

∫ t

s
‖∂t u‖2H1

=−
1
2

∫ t

s

∫
�

(
∂t J K DAu :DA∂t u+D∂t Au :DA∂t u+DAu :D∂t A∂t u

)
J+

∫ t

s
〈∂t(F1

− F3), ∂t u〉∗

+

∫
�

∂t J F1
· ∂t u− 1

2∂t J |∂t u|2+ p∂t(JAi j )∂ j∂t ui − p∂t(J F2). (4-18)

Proof. The result will be established by first solving a pressureless problem and then introducing the
pressure via Proposition 2.9. For the pressureless problem, we will make use of the Galerkin method. We
divide the proof into several steps.

Step 1: The Galerkin setup. In order to utilize the Galerkin method, we must first construct a countable
basis of H 2(�)∩X(t) for each t ∈ [0, T ]. Since the requirement divA v = 0 is time-dependent, any basis
of this space must also be time-dependent. For each t ∈ [0, T ], the space H 2(�)∩X(t) is separable, so
the existence of a countable basis is not an issue. The technical difficulty is that, in order for the basis to
be useful in the Galerkin method, we must be able to differentiate the basis elements in time, and we
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must be able to express these time derivatives in terms of finitely many basis elements. Fortunately, it is
possible to overcome this difficulty by employing the matrix M(t), defined by (2-16).

Since H 2(�)∩ 0 H 1
σ (�) is separable, it possesses a countable basis {w j

}
∞

j=1. Note that this basis is not
time-dependent. Define ψ j

=ψ j (t) :=M(t)w j for M(t) defined by (2-16). According to Proposition 2.5,
ψ j (t) ∈ H 2(�)∩X(t), and {ψ j (t)}∞j=1 is a basis of H 2(�)∩X(t) for each t ∈ [0, T ]. Moreover,

∂tψ
j (t)= ∂t M(t)w j

= ∂t M(t)M−1(t)M(t)w j
= ∂t M(t)M−1(t)ψ j (t) := R(t)ψ j (t), (4-19)

which allows us to express ∂tψ
j in terms of ψ j . For any integer m ≥ 1, we define the finite-dimensional

space Xm(t) := span{ψ1(t), . . . , ψm(t)} ⊂ H 2(�)∩X(t), and we write Pm
t : H 2(�)→ Xm(t) for the

H 2(�) orthogonal projection onto Xm(t). Clearly, for each v ∈ H 2(�)∩X(t), we have that Pm
t v→ v as

m→∞.
The next ingredient needed for the Galerkin method is the orthogonal projection onto the tangent

space of the surface {x3 = η(0)}, 50, defined by (4-10). This projection will be used to compensate for
the fact that our finite-dimensional Galerkin approximation of the initial data u0 may fail to satisfy the
compatibility conditions (4-11).

Step 2: Solving the Galerkin problem. For our Galerkin problem, we will first construct a solution to the
pressureless problem as follows. For each m ≥ 1, we define an approximate solution

um(t)= am
j (t)ψ

j (t), with am
j : [0, T ] → R for j = 1, . . . ,m,

where as usual we use the Einstein convention of summation of the repeated index j . We want to choose
the coefficients am

j so that

(∂t um, ψ)H0 +
1
2(u

m, ψ)H1 = (F1, ψ)H0 −
(
F3
−50(F3(0)+DA0(P

m
0 u0)N0), ψ

)
0,6 (4-20)

for each ψ ∈ Xm(t), where we have written ( · , · )0,6 for the usual H 0(6) inner product, and where 50

and Pm
0 are defined in the previous step. We supplement Equation (4-20) with the initial condition

um(0)= Pm
0 u0 ∈ Xm(0). (4-21)

Note that in (4-20), we have added the last projection term to compensate for the fact that um(0) may
not satisfy the compatibility condition (4-13). Appealing to (4-19), we find that ∂t um(t)= ȧm

j (t)ψ
j (t)+

R(t)um(t), and hence (4-20) is equivalent to the system of ODEs for am
j given by

ȧm
j (ψ

j , ψk)H0 + am
j
(
(R(t)ψ j , ψk)H0 +

1
2(ψ

j , ψk)H1
)

= (F1, ψk)H0 −
(
F3
−50(F3(0)+DA0um(0)N0), ψ

k)
0,6 (4-22)

for j, k = 1, . . . ,m. The m×m matrix with j, k entry (ψ j , ψk)H0 is invertible, the coefficients of the
linear system (4-22) are C1([0, T ]), and the forcing term is C0([0, T ]), so the usual well-posedness theory
of ODEs guarantees the existence of am

j ∈ C1([0, T ]), a unique solution to (4-22) that satisfies the initial
conditions induced by (4-21). This, in turn, provides the desired solution, um , to (4-20)–(4-21). Since
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F1, F3 satisfy (4-7), Equation (4-22) may be differentiated in time to see that actually am
j ∈ C1,1([0, T ]),

with am
j twice differentiable almost everywhere in [0, T ].

Note that throughout the rest of the proof, we use constants C and the symbol . with the assumption
that the constants do not depend on m.

Step 3: Energy estimates for um . Since um(t) ∈ Xm(t), we may use ψ = um as a test function in (4-20).
Doing so, employing Remark 2.3, and using the fact that 50 is an orthogonal projection, we may derive
the bound

∂t
1
2
‖um
‖

2
H0 +

1
2
‖um
‖

2
H1 ≤ C‖F1

‖H0‖um
‖H1 −

1
2

∫
�

|um
|
2∂t J

+C‖um
‖H1

(
‖F3
‖H1/2(6)+

∥∥F3(0)+DA0um(0)N0
∥∥

H0(6)

)
. (4-23)

We may then apply Cauchy’s inequality to (4-23) to find that

∂t
1
2‖u

m
‖

2
H0 +

1
8‖u

m
‖

2
H1 ≤ C

∥∥F3(0)+DA0um(0)N0
∥∥2

H0(6)

+C
(
‖F1
‖

2
H0 +‖F3

‖
2
H1/2(6)

)
+C0(η)

1
2‖u

m
‖

2
H0 (4-24)

for C0(η) := 1+ sup0≤t≤T ‖∂t J K‖L∞ . Note that since Pm
0 is the H 2(�) orthogonal projection, we may

use Lemma 2.1 to obtain the bound

‖um(0)‖H0 ≤ 2‖um(0)‖0 ≤ 2‖um(0)‖2 = 2‖Pm
0 u0‖2 ≤ 2‖u0‖2. (4-25)

Now we can apply Gronwall’s lemma to the differential inequality (4-24) and utilize (4-25) to deduce
energy estimates for um :

sup
0≤t≤T
‖um
‖

2
H0 +‖um

‖
2
H1

T

≤ sup
0≤t≤T
‖um
‖

2
H0 +

∫ T

0
exp

(
C0(η)(T − s)

)
‖um(s)‖2H1 ds

. exp
(
C0(η)T

)(∥∥F3(0)+DA0um(0)N0
∥∥2

H0(6)
+‖u0‖

2
2+‖F

1
‖

2
H0

T
+‖F3

‖
2
L2 H1/2

)
. (4-26)

Step 4: Estimate of ‖∂t um(0)‖H0 . We will eventually derive energy estimates for ∂t um similar to those
derived in the previous step for um , but first we must be able to estimate ‖∂t um(0)‖H0 . If u ∈ H 2(�)∩X(t),
ψ ∈H1, then an integration by parts reveals that

1
2(u, ψ)H1 =

∫
�

−1Au ·ψ J +
∫
6

(DAuN) ·ψ = (−1Au, ψ)H0 + (DAuN, ψ)0,6. (4-27)

Evaluating (4-20) at t = 0 and employing (4-27), we find that(
∂t um(0), ψ

)
H0 =

(
1A0um(0)+ F1(0), ψ

)
H0 −

(
5⊥0 (F

3(0)+DA0um(0)N0), ψ
)

0,6 (4-28)

for all ψ ∈ Xm(0), where we have written 5⊥0 = I −50 for the orthogonal projection onto the line
generated by N0.
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For ψ ∈Xm(0), we must estimate the last term in (4-28) in terms of ‖ψ‖H0 . This is possible due to the
appearance of 5⊥0 and Lemma 3.3. Indeed, we know that

5⊥0
(
F3(0)+DA0um(0)N0

)
=
(
F3(0) ·N0+DA0um(0)N0 ·N0

) N0

|N0|2
,

which implies, since |N0|
2
≥ 1 and divA0 ψ = 0, that∣∣(5⊥0 (F3(0)+DA0um(0)N0), ψ

)
0,6

∣∣≤ |N0|
2∣∣(5⊥0 (F3(0)+DA0um(0)N0), ψ

)
0,6

∣∣
=
∣∣(F3(0) ·N0+DA0um(0)N0 ·N0, ψ ·N0

)
0,6

∣∣
≤ ‖ψ ·N0‖H−1/2(6)

∥∥(F3(0)+DA0um(0)N0
)
·N0)

∥∥
H1/2(6)

. C1(η)‖ψ‖H0

∥∥F3(0)+DA0um(0)N0
∥∥

H1/2(6)
. (4-29)

In the last inequality, we have used Lemmas 3.3 and A.1, and we have written C1(η) := ‖N0‖C1(6).
By virtue of (4-19), we have that

∂t um(t)− R(t)um(t)= ȧm
j (t)ψ

j (t) ∈ Xm(t), (4-30)

so that ψ = ∂t um(0)− R(0)um(0) ∈ Xm(0) is a valid choice of a test function in (4-28). We plug this ψ
into (4-28), rearrange, and employ the bound (4-29) to see that

‖∂t um(0)‖2H0≤‖R(0)um(0)‖H0‖∂t um(0)‖H0+
∥∥∂t um(0)−R(0)um(0)

∥∥
H0

∥∥1A0um(0)+F1(0)
∥∥

H0

+CC1(η)
∥∥∂t um(0)− R(0)um(0)

∥∥
H0

∥∥F3(0)+DA0um(0)N0
∥∥

H1/2(6)
. (4-31)

A simple computation and (4-25) imply that ‖1A0um(0)‖H0 . ‖A0‖
2
C1‖u0‖2. This allows us to use

Cauchy’s inequality and (4-25) to derive from (4-31) the bound

‖∂t um(0)‖2H0 . C2(η)
(
‖u0‖

2
2+‖F

1(0)‖2H0 +
∥∥F3(0)+DA0um(0)N0

∥∥2
H1/2(6)

)
(4-32)

for C2(η) := 1+‖R(0)‖2L∞ +‖A0‖
2
C1 +C1(η)

2. This is our desired estimate of ‖∂t um(0)‖H0 .

Step 5: Energy estimates for ∂t um . We now turn to estimates for ∂t um of a similar form to those we
already derived for um . Suppose for now that ψ(t)= bm

j (t)ψ
j for bm

j ∈ C0,1([0, T ]), j = 1, . . . ,m; it is
easily verified, as in (4-30), that ∂tψ − R(t)ψ ∈ Xm(t) as well. We now use this ψ in (4-20), temporally
differentiate the resulting equation, and then subtract from the result Equation (4-20) with test function
∂tψ − Rψ ; this eliminates the appearance of ∂tψ and leaves us with the equality

〈∂2
t um, ψ〉X∗+

1
2(∂t um, ψ)H1 =

〈
∂t(F1

−F3), ψ
〉
X∗
−
(
F3
−50(F3(0)+DA0um(0)N0), Rψ

)
0,6

+
(
F1, (∂t J K + R)ψ

)
H0 −

(
∂t um, (∂t J K + R)ψ

)
H0 −

1
2(u

m, Rψ)H1

−
1
2

∫
�

(
∂t J K DAum

: DAψ +D∂t Aum
: DAψ +DAum

: D∂t Aψ
)
J. (4-33)

According to (4-30) and the fact that am
j is twice differentiable almost everywhere, we may use

ψ = ∂t um(t)− R(t)um(t) ∈ Xm(t) as a test function in (4-33). Plugging in this ψ and arguing as in the
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previous steps by employing Remark 2.3, Cauchy’s inequality, and trace embeddings, we may deduce
from (4-33) that

∂t
( 1

2‖∂t um
‖

2
H0 − (∂t um, Rum)H0

)
+

1
8‖∂t um

‖
2
H1

≤ CC3(η)‖um
‖

2
H1 +C0(η)

( 1
2‖∂t um

‖
2
H0 − (∂t um, Rum)H0

)
+C

(
‖F1
‖

2
H0 +‖F3

‖
2
H1/2(6)

)
+C

∥∥F3(0)+DA0um(0)N0
∥∥2

H0(6)
+C‖∂t(F1

− F3)‖2X∗ (4-34)

for C0(η) as defined above and

C3(η) := sup
0≤t≤T

[
1+‖R‖2C1 +‖∂t R‖2L∞ +‖∂t A‖

2
L∞ +

(
1+‖A‖2L∞

)(
1+‖∂t J K‖2L∞

)]
× sup

0≤t≤T

[
1+‖R‖2C1

]
.

Then (4-34), Gronwall’s lemma, and a further application of Cauchy’s inequality imply that

sup
0≤t≤T
‖∂t um

‖
2
H0 +‖∂t um

‖
2
H1

T

. exp (C0(η)T )
(
‖∂t um(0)‖2H0 +C2(η)‖um(0)‖2H0

+
∥∥F3(0)+DA0um(0)N0

∥∥2
H0(6)

+‖F1
‖

2
H0

T
+‖F3

‖
2
L2 H1/2 +‖∂t(F1

− F3)‖2(XT )∗

)
+C3(η)

(
sup

0≤t≤T
‖um
‖

2
H0 +

∫ T

0
exp

(
C0(η)(T − s)

)
‖um(s)‖2H1 ds

)
. (4-35)

Now we combine (4-35) with the estimates (4-25), (4-26), and (4-32) to deduce our energy estimates for
∂t um :

sup
0≤t≤T
‖∂t um

‖
2
H0 +‖∂t um

‖
2
H1

T

.
(
C2(η)+C3(η)

)
exp(C0(η)T )

(
‖u0‖

2
2+‖F

1(0)‖2H0 +
∥∥F3(0)+DA0um(0)N0

∥∥2
H0(6)

)
+ exp(C0(η)T )

[
C3(η)

(
‖F1
‖

2
H0

T
+‖F3

‖
2
L2 H1/2

)
+
∥∥∂t(F1

− F3)
∥∥2
(XT )∗

]
. (4-36)

Step 6: Improved energy estimate for um . We can now improve our energy estimates for um by using
ψ = ∂t um(t)− R(t)um(t) ∈Xm(t) as a test function in (4-20). Plugging this in and rearranging yields the
equality

∂t
1
4‖u

m
‖

2
H1 +‖∂t um

‖
2
H0

= (∂t um, Rum)H0 +
1
2(u

m, Rum)H1 + (F1, ∂t um
− Rum)H0

−
(
F3
−50(F3(0)+DA0um(0)N0), ∂t um

−Rum)
0,6+

1
2

∫
�

(
DAum

:D∂t Aum
+∂t J K

|DAum
|
2

2

)
J. (4-37)

We may then argue as before to use (4-37) to derive the inequality

∂t
1
4‖u

m
‖

2
H1 +‖∂t um

‖
2
H0

≤C
∥∥F3(0)+DA0um(0)N0

∥∥2
H1/2(6)

+C
(
‖F1
‖

2
H0+‖F3

‖
2
H1/2(6)

)
+C

(
‖∂t um

‖
2
H1+C3(η)‖um

‖
2
H1

)
. (4-38)
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We could regard (4-38) as a differential inequality for ‖um
‖

2
H1 and apply Gronwall’s lemma as before, but

this is not necessary since we already control ‖um
‖

2
H1

T
and ‖∂t um

‖
2
H1

T
. Indeed, we may simply integrate

(4-38) in time to deduce an improved energy estimate for um :

sup
0≤t≤T
‖um
‖

2
H1 +‖∂t um

‖
2
H0

T

.
(
C2(η)+C3(η)

)
exp(C0(η)T )

(
‖u0‖

2
2+‖F

1(0)‖2H0 +
∥∥F3(0)+DA0um(0)N0

∥∥2
H1/2(6)

)
+ exp(C0(η)T )

[
C3(η)

(
‖F1
‖

2
H0

T
+‖F3

‖
2
L2 H1/2

)
+
∥∥∂t(F1

+ F3)
∥∥2
(XT )∗

]
. (4-39)

Step 7: Estimating terms in (4-36), (4-39). In order to use (4-36) and (4-39) as uniform bounds, we must
first remove the appearance of um(0) on the right side of the estimates. For this we use Lemma A.2, the
embedding H 2(�) ↪→ H 3/2(6), and the bound ‖um(0)‖2 ≤ ‖u0‖2 to find that∥∥F3(0)+DA0um(0)N0

∥∥2
H1/2(6)

. C4(η)
(
‖F3(0)‖2H1/2(6)

+‖u0‖
2
2
)

(4-40)

for C4(η) := 1+‖N0‖
2
C1(6)
‖A0‖

2
C1 .

We now seek to estimate the constants Ci (η), i = 0, . . . , 4 in terms of the quantity K(η). A simple
computation shows that

C0(η)+
(
C2(η)+C3(η)

)(
1+C4(η)

)
≤ sup

0≤t≤T
Q1
(
‖η̄‖2C2, ‖∂t η̄‖

2
C2, ‖∂

2
t η̄‖

2
C1

)
, (4-41)

where Q1 is a polynomial in three variables. According to Lemma A.8 in the nonperiodic case and
Lemma A.10 in the periodic case, we have the estimate ‖∂ j

t η̄‖
2
Ck . ‖∂

j
t η‖

2
k+3/2 for j, k ≥ 0. This, (4-41),

and the fact that K(η)≤ 1 then imply that

C0(η)+
(
C2(η)+C3(η)

)(
1+C4(η)

)
≤ Q1

(
K(η),K(η),K(η)

)
≤ C

(
1+K(η)

)
(4-42)

for a constant C independent of η.

Step 8: Passing to the limit. We now utilize the energy estimates (4-36) and (4-39) in conjunction with
(4-40) to pass to the limit m→∞. According to these energy estimates and Lemma 2.1, we have that
the sequence {um

} is uniformly bounded in L∞H 1 and {∂t um
} is uniformly bounded in L∞H 0

∩ L2 H 1.
Up to the extraction of a subsequence, we then know that

um ∗

⇀ u weakly-∗ in L∞H 1, ∂t um ∗

⇀∂t u in L∞H 0, and ∂t um ⇀∂t u weakly in L2 H 1.

By lower semicontinuity and (4-42), the energy estimates imply that the quantity

‖u‖2L∞H1 +‖∂t u‖2L∞H0 +‖∂t u‖2L2 H1

is bounded above by the right-hand side of (4-13).
Because of these convergence results, we can integrate (4-33) in time from 0 to T and send m→∞ to

deduce that ∂2
t um ⇀∂2

t u weakly in X∗T , with the action of ∂2
t u on an element ψ ∈XT defined by replacing

um with u everywhere in (4-33). From the equation resulting from passing to the limit in (4-33), it is
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straightforward to show that ‖∂2
t u‖2(XT )∗

is bounded by the right-hand side of (4-13). This bound then
shows that ∂t u ∈ C0L2.

Step 9: The strong solution. Due to the convergence established in the last step, we may pass to the limit
in (4-20) for almost every t ∈ [0, T ]. Since um(0)→ u0 in H 2 and u0, F3(0) satisfy the compatibility
condition (4-11), we have ∥∥50(F3(0)+DA0um(0)N0)

∥∥
H1/2(6)

→ 0.

In the limit, (4-20) implies that for almost every t ,

(∂t u, ψ)H0 +
1
2(u, ψ)H1 = (F1, ψ)H0 − (F3, ψ)0,6 for every ψ ∈ X(t). (4-43)

Now we introduce the pressure. Define the functional3t ∈ (H
1(t))∗ so that3t(v) equals the difference

between the left and right sides of (4-43), with ψ replaced by v ∈H1(t). Then 3t(v)= 0 for all v ∈X(t),
so by Proposition 2.9, there exists a unique p(t) ∈ H0(t) such that (p(t), divA v)H0 = 3t(v) for all
v ∈H1(t). This is equivalent to

(∂t u, v)H0 +
1
2(u, v)H1 − (p, divA v)H0 = (F1, v)H0 − (F3, v)0,6 for every v ∈H1(t). (4-44)

For almost every t ∈ [0, T ], (u(t), p(t)) is the unique weak solution to the elliptic problem (3-6)
in the sense of (3-7), with F1 replaced by F1(t)− ∂t u(t), F2

= 0, and F3 replaced by F3(t). Since
F1(t)− ∂t u(t) ∈ H 0(�) and F3(t) ∈ H 1/2(6), Lemma 3.6 implies that this elliptic problem admits a
unique strong solution, which must coincide with the weak solution. We may then apply Proposition 3.7
and Lemma 2.1 for the bound

‖u(t)‖2r +‖p(t)‖2r−1 .
(
‖∂t u(t)‖2Hr−2 +‖F1(t)‖2r−2+‖F

3(t)‖2H r−3/2(6)

)
(4-45)

when r = 2, 3. When r = 2, we take the supremum of (4-45) over t ∈ [0, T ], and when r = 3, we
integrate over [0, T ]; the resulting inequalities imply that u ∈ L∞H 2

∩ L2 H 3 and p ∈ L∞H 1
∩ L2 H 2

with estimates as in (4-13). This, in turn, implies that (u, p) is a strong solution to (1-7).
Since we already know that u ∈ L2 H 3 and ∂t u ∈ L2 H 1, Lemma A.4 implies that u ∈C0 H 2. Then since

F1
− ∂t u ∈ C0 H 0 and DAuN+ F3

∈ C0 H 1/2(6), we know that ∇A p ∈ C0 H 0 and p ∈ C0 H 1/2(6) as
well, from which we see, via Poincaré’s inequality (Lemma A.12), that p ∈ C0 H 1. With these continuity
results established, we can compute p(0) and ∂t u(0). We start with the Dirichlet condition for p(0) on 6,
the second equation in (4-14). Since p ∈ C0 H 1(�), u ∈ C0 H 2(�), and F3

∈ C0 H 1/2(6), the boundary
condition SA(p, u)N= F3, which holds in H 1/2(6) for each t > 0, can be evaluated at t = 0. Then the
Dirichlet condition for p(0) on6 in (4-14) is easily deduced by solving SA0(p(0), u0)N0= F3(0) for p(0).

Now we derive the PDE satisfied by p(0) and compute ∂t u(0). First note that for any ϕ ∈ 0 H 1(�),
we may integrate by parts and use the fact that divA Dt u = 0 in � and Dt u = 0 on 6b to see that

(Dt u,∇Aϕ)H0 =−(divA Dt u, ϕ)H0 + (Dt u ·N, ϕ)0,6 = 0.

Then since (u, p) is a strong solution to (1-7), we have that(
Ru+∇A p−1Au− F1,∇Aϕ

)
H0 =−(Dt u,∇Aϕ)H0 = 0 for all ϕ ∈ 0 H 1(�). (4-46)
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By the established continuity properties, we may set t = 0 in (4-46), and again integrate by parts to see that(
∇A0 p(0)− F1(0),∇A0ϕ

)
H0 =−

(
− divA0(R(0)u0), ϕ

)
H0 +〈1A0u0 · ν, ϕ〉−1/2

for all ϕ ∈ 0 H 1(�). This establishes that p(0) is the weak solution to (4-14). According to (3-32), we
then have p(0)∈ H 1(�). This and (4-44) allow us to solve for ∂t u(0) as in (4-15), and then (4-46) implies
that ∂t u(0)− R(0)u0 ∈ Y(0) since then Dt u(0)⊥∇A(0)ϕ for every ϕ ∈ 0 H 1(�).

Step 10: The weak solution satisfied by Dt u = ∂t u− Ru. Now we seek to use (4-33) to determine the
PDE satisfied by Dt u. As mentioned above, we may integrate (4-33) in time from 0 to T and pass to
the limit m→∞. For any ψ ∈ XT , we have Rψ ∈H1

T , so that we may replace all of the terms Rψ in
the resulting equation by using v = Rψ in (4-44); this yields the equality

〈∂2
t u, ψ〉∗+ 1

2(∂t u, ψ)H1
T

=
〈
∂t(F1

− F3), ψ
〉
∗
+ (∂t J K F1, ψ)H0

T
− (∂t J K∂t u, ψ)H0

T
− (p, divA(Rψ))H0

T

−
1
2

∫ T

0

∫
�

(
∂t J K DAu : DAψ +D∂t Au : DAψ +DAu : D∂t Aψ

)
J (4-47)

for all ψ ∈ XT . Equation (4-17) follows directly from (4-47) via

〈∂2
t u, v〉∗ = 〈∂t Dt u, v〉∗+ (R∂t u, v)H0

T
+ (∂t Ru, v)H0

T
.

To justify that (4-17) implies (4-16), we will now perform some computations.
Lemma A.3 shows that −RT N= ∂t N on 6, so that we may integrate by parts for the equality

−
(

p, divA(Rv)
)

H0
T
= (RT

∇A p, v)H0
T
−〈pRT N, v〉−1/2 = (RT

∇A p, v)H0
T
−〈−p∂t N, v〉−1/2, (4-48)

where RT is the matrix transpose of R. Another integration by parts yields

−
1
2

∫ T

0

∫
�

(
∂t J K DAu : DAv+D∂t Au : DAv+DAu : D∂t Av

)
J

=−

∫ T

0

∫
�

(
−RDAu+D∂t Au

)
: ∇Av J

=
(
divA(−RDAu+D∂t Au), v

)
H0

T
−〈DAu∂t N+D∂t AuN, v〉−1/2. (4-49)

We may then combine (4-48)–(4-49) with the fact that Dt u = ∂t u− Ru ∈ XT to deduce from (4-17) that
Dt u is weak solutions of (4-16) in the sense of (4-2) with Dt u(0) ∈ Y(0) given by (4-15). Here, the fact
that G1 and G3 satisfy the same inclusions as F1 and F3 listed in (4-7) is easily established from the
above bounds on (u, p).

Step 11: Proof of (4-18). Let us now define the functional J∂t u− P ∈ (0 H 1(�))∗ via

〈J∂t u− P, v〉 :=
∫
�

J∂t u · v− pJAi j∂ jvi for v ∈ 0 H 1(�).

By our estimates on (u, p), we clearly have J∂t u− P ∈ L2
(
[0, T ]; (0 H 1(�))∗

)
. Since (u, p) are a strong
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solution, the equality (4-44) holds also for arbitrary v ∈ 0 H 1(�), which is equivalent to

〈J∂t u− P, v〉 = − 1
2(u, v)H1 + (F1, v)H0 − (F3, v)0,6.

Then for any ϕ ∈ C∞c (R), we may compute the weak derivative via

−

∫ T

0
〈J∂t u− P, v〉ϕ′ =−

∫ T

0

(
−

1
2(u, v)H1 + (F1, v)H0 − (F3, v)0,6

)
ϕ′

=

∫ T

0
ϕ
(
−

1
2(∂t u, v)H1 +〈∂t(F1

− F3), v〉∗+U(v)
)
,

where we have written

U(v)= (∂t J K F1, v)H0 −
1
2

∫
�

(
∂t J K DAu : DAv+D∂t Au : DAv+DAu : D∂t Av

)
J.

Using this, we find that ∂t(J∂t u− P) ∈ L2
(
[0, T ]; (0 H 1(�))∗

)
with〈

∂t(J∂t u− P), v
〉
=
〈
∂t(F1

− F3), v
〉
∗
+

∫
�

∂t J F1
· v

− (∂t u, v)H1 −
1
2

∫
�

(
∂t J K DAu : DAv+D∂t Au : DAv+DAu : D∂t Av

)
J.

We may then use this and the inclusions (4-12) in conjunction with Lemma A.16 to deduce (4-18). �

Remark 4.4. Notice that the compatibility condition (4-11) was essential in achieving the ∂t u estimate
of Theorem 4.3.

Higher regularity. In order to state our higher regularity results for the problem (1-7), we must be able
to define the forcing terms and initial data for the problem that results from temporally differentiating
(1-7) several times. To this end, we first define some mappings. Given F1, F3, v, q , we define the vector
fields G0,G1 on � and G3 on 6 by

G0(F1, v, q)=1Av−∇Aq + F1
− Rv,

G1(v, q)=−(R+ ∂t J K )1Av− ∂t Rv+ (∂t J K + R+ RT )∇Aq
+ divA(DA(Rv)− RDAv+D∂t Av),

G3(v, q)= DA(Rv)N− (q I −DAv)∂t N+D∂t AvN,

(4-50)

and we define the functions f1 on �, f2 on 6, and f3 on 6b according to

f1(F1, v)= divA(F1
− Rv),

f2(F3, v)= (F3
+DAvN) ·N|N|−2,

f3(F1, v)= (F1
+1Av) · ν.

(4-51)

In the definitions of Gi and fi , we assume that A,N, R (recall that R is defined by (4-8)), etc. are evaluated
at the same t as F1, F3, v, q. These mappings allow us to define the forcing terms as follows. Write
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F1,0
= F1 and F3,0

= F3. When F1, F3, u, and p are sufficiently regular for the following to make
sense, we recursively define the vectors

F1, j
:= Dt F1, j−1

+G1(D j−1
t u, ∂ j−1

t p)= D j
t F1
+

j−1∑
`=0

D`
t G

1(D j−`−1
t u, ∂ j−`−1

t p
)
,

F3, j
:= ∂t F3, j−1

+G3(D j−1
t u, ∂ j−1

t p)= ∂ j
t F3
+

j−1∑
`=0

∂`t G
3(D j−`−1

t u, ∂ j−`−1
t p

) (4-52)

on � and 6, respectively, for j = 1, . . . , 2N . These are the forcing terms that appear when we apply j
temporal derivatives to (1-7) (see (4-74)).

Now we define various sums of norms of F1, F3, and η that will appear in our estimates. Define the
quantities

F(F1, F3) :=

2N−1∑
j=0

‖∂
j

t F1
‖L2 H4N−2 j−1 +‖∂2N

t F1
‖L2(0 H1(�))∗ +

2N∑
j=0

‖∂
j

t F3
‖L2 H4N−2 j−1/2

+

2N−1∑
j=0

‖∂
j

t F1
‖L∞H4N−2 j−2 +‖∂

j
t F3
‖L∞H4N−2 j−3/2,

F0(F1, F3) :=

2N−1∑
j=0

‖∂
j

t F1(0)‖4N−2 j−2+‖∂
j

t F3(0)‖4N−2 j−3/2.

(4-53)

For brevity, we will only write F for F(F1, F3) and F0 for F0(F1, F3) throughout the rest of this section.
Lemmas A.4 and 2.4 imply that if F<∞, then

∂
j

t F1
∈ C0(

[0, T ]; H 4N−2 j−2(�)
)

and ∂
j

t F3
∈ C0(

[0, T ]; H 4N−2 j−3/2(6)
)

for j = 0, . . . , 2N − 1. The same lemmas also imply that the sum of the L∞H k norms in the definition
of F can be bounded by a constant that depends on T times the sum of the L2 H k+1 norms. To avoid the
introduction of a constant that depends on T , we will retain the L∞ terms. For η, we define

D(η) := ‖η‖L2 H4N+1/2 +‖∂tη‖L2 H4N−1/2 +

2N+1∑
j=2

‖∂
j

t η‖L2 H4N−2 j+5/2,

E(η) := ‖η‖4N +‖∂tη‖4N−1+

2N∑
j=2

‖∂
j

t η‖4N−2 j+3/2,

E(η) :=

2N∑
j=0

‖∂
j

t η‖L∞H4N−2 j , and K(η) := E(η)+D(η),

(4-54)

as well as

E0(η) := ‖η(0)‖24N +‖∂tη(0)‖24N−1+

2N∑
j=2

‖∂
j

t η(0)‖
2
4N−2 j+3/2. (4-55)
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Again, Lemma A.4 implies that η ∈ C0([0, T ]; H 4N (6)), ∂tη ∈ C0([0, T ]; H 4N−1(6)), and ∂ j
t η ∈

C0([0, T ]; H 4N−2 j+3/2(6)) for j = 2, . . . , 2N . Throughout the rest of this section, we will assume that
K(η),E0(η)≤ 1, which implies that Q(K(η)). 1+K(η) and Q(E0(η)). 1+E0(η) for any polynomial Q.
Note that K(η)≤ E(η)≤ K(η), where K(η) is defined by (4-9); also, we have that ‖η0‖

2
4N−1/2 ≤ E0(η).

We now record an estimate of the F i, j in terms of F,K(η) and certain norms of u, p.

Lemma 4.5. For m = 1, . . . , 2N − 1 and j = 1, . . . ,m, the following estimates hold whenever the
right-hand sides are finite:

‖F1, j
‖

2
L2 H2m−2 j+1 +‖F3, j

‖
2
L2 H2m−2 j+3/2

.
(
1+K(η)

)(
F+

j−1∑
`=0

‖∂`t u‖2L2 H2m−2 j+3 +

j−1∑
`=0

‖∂`t u‖2L∞H2m−2 j+2

+‖∂`t p‖2L2 H2m−2 j+2 +‖∂
`
t p‖2L∞H2m−2 j+1

)
, (4-56)

‖F1, j
‖

2
L∞H2m−2 j +‖F3, j

‖
2
L∞H2m−2 j+1/2

.
(
1+K(η)

)(
F+

j−1∑
`=0

‖∂`t u‖2L∞H2m−2 j+2 +

j−1∑
`=0

‖∂`t p‖2L∞H2m−2 j+1

)
, (4-57)

and∥∥∂t(F1,m
− F3,m)

∥∥2
L2(0 H1(�))∗

.
(
1+K(η)

)(
F+

m−1∑
`=0

‖∂`t u‖2L∞H2 +‖∂
`
t u‖2L2 H3 +‖∂

m
t u‖2L2 H2

+‖∂m
t p‖2L2 H1 +

m−1∑
`=0

‖∂`t p‖2L∞H1 +‖∂
`
t p‖2L2 H2

)
. (4-58)

Similarly, for j = 1, . . . , 2N − 1,

‖F1, j (0)‖24N−2 j−2+‖F
3, j (0)‖24N−2 j−3/2

.
(
1+E0(η)

)(
F0+

j−1∑
`=0

‖∂`t u(0)‖24N−2`+‖∂
`
t p(0)‖24N−2`−1

)
. (4-59)

Proof. The estimates follow from simple but lengthy computations, invoking standard arguments. For this
reason, we present only a sketch of how to derive the estimates (4-56) and (4-58). The estimates (4-57)
and (4-59) follow from similar arguments.

To derive the estimate (4-56), we use the definition of F1, j , F3, j given by (4-52) and expand all terms
using the Leibniz rule and the definition Dt (given in (4-8)) to rewrite F i, j as a sum of products of two
terms: one involving products of various derivatives of η̄, and one linear in derivatives of u, p, F1, or F3.
For almost every t ∈ [0, T ], we then estimate the norm (H 2m−2 j+1 and H 2m−2 j+3/2, respectively) of the
resulting products by using the usual algebraic properties of Sobolev spaces (that is, Lemma A.1) in
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conjunction with the Sobolev embeddings. The resulting inequalities may then be integrated in time from
0 to T to find an inequality of the form

‖F1, j
‖

2
L2 H2m−2 j+1 +‖F3, j

‖
2
L2 H2m−2 j+3/2 . Q(E(η))(D(η)Y∞+ Y2), (4-60)

where Q( · ) is a polynomial,

Y∞ =
2N−1∑

j=0

‖∂
j

t F1
‖

2
L∞H4N−2 j−2 +‖∂

j
t F3
‖

2
L∞H4N−2 j−3/2 +

j−1∑
`=0

‖∂`t u‖2L∞H2m−2 j+2 +‖∂
`
t p‖2L∞H2m−2 j+1,

and

Y2 =

2N−1∑
j=0

‖∂
j

t F1
‖

2
L2 H4N−2 j−1 +‖∂

2N
t F1

‖
2
L2(0 H1(�))∗

+

2N∑
j=0

‖∂
j

t F3
‖

2
L2 H4N−2 j−1/2 +

j−1∑
`=0

‖∂`t u‖2L2 H2m−2 j+3 +‖∂
`
t p‖2L2 H2m−2 j+2 .

Since K(η)≤ 1, we know that

Q(E(η))(1+D(η)). (1+K(η)),

and the bound (4-56) follows immediately from (4-60).
For the estimate (4-58), we first use the trivial bound∥∥∂t(F1,m

− F3,m)
∥∥2

L2(0 H1(�))∗
. ‖∂t F1,m

‖
2
0+‖∂t F3,m

‖
2
0. (4-61)

Then we appeal to (4-52) to note that ∂t F1,m and ∂t F3,m involve at most m temporal derivatives of u and
p through the appearance of G1(Dm

t u, ∂m
t p) and G3(Dm

t u, ∂m
t p). With this observation in hand, we may

argue as above to get the bound the right side of (4-61) by the right side of (4-58). �

Next we record an estimate for the difference between ∂tv and Dtv for a general v. The proof is similar
to that of Lemma 4.5, and is thus omitted.

Lemma 4.6. If k = 0, . . . , 4N − 1 and v is sufficiently regular, then∥∥∂tv− Dtv
∥∥2

L2 H k .
(
1+K(η)

)
‖v‖2L2 H k , (4-62)

and if k = 0, . . . , 4N − 2, then∥∥∂tv− Dtv
∥∥2

L∞H k .
(
1+K(η)

)
‖v‖2L∞H k . (4-63)

If m = 1, . . . , 2N − 1, j = 1, . . . ,m, and v is sufficiently regular, then

∥∥∂ j
t v− D j

t v
∥∥2

L2 H2m−2 j+3 .
(
1+K(η)

) j−1∑
`=0

(
‖∂`t v‖

2
L2 H2m−2 j+3 +‖∂

`
t v‖

2
L∞H2m−2 j+2

)
, (4-64)

∥∥∂ j
t v− D j

t v
∥∥2

L∞H2m−2 j+2 .
(
1+K(η)

) j−1∑
`=0

‖∂`t v‖
2
L∞H2m−2 j+2, (4-65)
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and∥∥∂t Dm
t v− ∂

m+1
t v

∥∥2
L2 H1 +

∥∥∂2
t Dm

t v− ∂
m+2
t v

∥∥2
(XT )∗

.
(
1+K(η)

)( m∑
`=0

‖∂`t v‖
2
L2 H1 +‖∂

`
t v‖

2
L∞H2 +‖∂

m+1
t u‖2(XT )∗

)
. (4-66)

Also, if j = 0, . . . , 2N and v is sufficiently regular, then

∥∥∂ j
t v(0)− D j

t v(0)
∥∥2

4N−2 j .
(
1+E0(η)

) j−1∑
`=0

‖∂`t v(0)‖
2
4N−2`. (4-67)

Now we record an estimate for the terms G0 and fi (defined in (4-50) and (4-51), respectively) that
will be used in computing initial data.

Lemma 4.7. Suppose that v, q, G1, G3 are evaluated at t = 0 and are sufficiently regular for the right
sides of the following estimates to make sense. For j = 0, . . . , 2N − 1, we have∥∥G0(G1, v, q)

∥∥2
4N−2 j−2

.
(
1+‖η(0)‖24N +‖∂tη(0)‖24N−1

)(
‖v‖24N−2 j +‖q‖

2
4N−2 j−1+‖G

1
‖

2
4N−2 j−2

)
. (4-68)

If j = 0, . . . , 2N − 2, then∥∥f1(G1, v)
∥∥2

4N−2 j−3+
∥∥f2(G3, v)

∥∥2
4N−2 j−3/2+

∥∥f3(G1, v)
∥∥2

4N−2 j−5/2

.
(
1+‖η(0)‖24N

)(
‖G1
‖

2
4N−2 j−2+‖G

3
‖

2
4N−2 j−3/2+‖v‖

2
4N−2 j

)
. (4-69)

For j = 2N − 1, if divA(0) v = 0 in �, then∥∥f2(G3, v)
∥∥2

1/2+
∥∥f3(G1, v)

∥∥2
−1/2 .

(
1+‖η(0)‖24N

)(
‖G1
‖

2
2+‖G

3
‖

2
1/2+

∥∥v∥∥2
2

)
. (4-70)

Proof. The proof of the estimates (4-68) and (4-69) as well as the f2 estimate in (4-70) can be carried out as
in the proof Lemma 4.5. We omit further details. For the f3 estimate of (4-70), we note that divA(0) v = 0
implies that divA(0)1A(0)v = 0, so that Lemmas 3.3 and 2.1 provide the bound ‖1A(0)v · ν‖

2
H−1/2(6b)

.
‖1A(0)v‖

2
0. We may then argue as in Lemma 4.5 to derive the f3 bound. �

Now we assume that u0 ∈ H 4N (�), η0 ∈ H 4N+1/2(6), F0 <∞ (see (4-53) for the definition), and that
‖η0‖

2
4N−1/2 ≤E0(η)≤ 1 (defined in (4-55)) is sufficiently small for the hypothesis of Propositions 3.7 and

3.9 to hold when k = 4N . Note, though, that we do not need ‖η0‖
2
4N+1/2 to be small. We will iteratively

construct the initial data D j
t u(0) for j = 0, . . . , 2N and ∂ j

t p(0) for j = 0, . . . , 2N − 1. To do so, we
will first construct all but the highest-order data, and then we will state some compatibility conditions
for the data. These are necessary to construct D2N

t u(0) and ∂2N−1
t p(0), and to construct high-regularity

solutions in Theorem 4.8.
We now turn to the construction of D j

t u(0) for j = 0, . . . , 2N − 1 and ∂ j
t p(0) for j = 0, . . . , 2N − 2,

which will employ Lemma 4.7 in conjunction with estimates (4-59) of Lemma 4.5 and (4-67) of Lemma 4.6.
For j = 0, we write F1,0(0)= F1(0) ∈ H 4N−2, F3,0(0)= F3(0) ∈ H 4N−3/2, and D0

t u(0)= u0 ∈ H 4N .
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Suppose now that F1,`
∈ H 4N−2`−2, F3,`

∈ H 4N−2`−3/2, and D`
t u(0) ∈ H 4N−2` are given for 0≤ `≤ j ∈

[0, 2N−2]; we will define ∂ j
t p(0)∈ H 4N−2 j−1 as well as D j+1

t u(0)∈ H 4N−2 j−2, F1, j+1(0)∈ H 4N−2 j−4,
and F3, j+1(0)∈ H 4N−2 j−7/2, which allows us to define all of said data via iteration. By virtue of estimate
(4-69), we know that

f 1
= f1(F1, j (0), D j

t u(0)) ∈ H 4N−2 j−3,

f 2
= f2(F3, j (0), D j

t u(0)) ∈ H 4N−2 j−3/2,

f 3
= f3(F1, j (0), D j

t u(0)) ∈ H 4N−2 j−5/2.

This allows us to define ∂ j
t p(0) as the solution to (3-30) with this choice of f 1, f 2, f 3, and then

Proposition 3.9 with k = 4N and r = 4N − 2 j − 1 < k implies that ∂ j
t p(0) ∈ H 4N−2 j−1. Now the

estimates (4-59), (4-67), and (4-68) allow us to define

D j+1
t u(0) :=G0(F1, j (0), D j

t u(0), ∂ j
t p(0)

)
∈ H 4N−2 j−2,

F1, j+1(0) := Dt F1, j (0)+G1(D j
t u(0), ∂ j

t p(0)
)
∈ H 4N−2 j−4,

F3, j+1(0) := ∂t F3, j (0)+G3(D j
t u(0), ∂ j

t p(0)
)
∈ H 4N−2 j−7/2.

Using this analysis, we iteratively construct all of the desired data except for D2N
t u(0) and ∂2N−1

t p(0).
By construction, the initial data D j

t u(0) and ∂ j
t p(0) are determined in terms of u0 as well as ∂`t F1(0)

and ∂`t F3(0) for `= 0, . . . , 2N − 1. In order to use these in Theorem 4.3 and to construct D2N
t u(0) and

∂2N−1
t p(0), we must enforce compatibility conditions for j = 0, . . . , 2N − 1. For such j , we say that the

j-th compatibility condition is satisfied if{
D j

t u(0) ∈ X(0)∩ H 2(�),

50
(
F3, j (0)+DA0 D j

t u(0)N0
)
= 0.

(4-71)

The construction of D j
t u(0) and ∂ j

t p(0) ensures that D j
t u(0) ∈ H 2(�) and divA0(D

j
t u(0))= 0, so the

condition D j
t u(0) ∈ X(0)∩ H 2(�) may be reduced to the condition D j

t u(0)|6b = 0.
It remains only to define ∂2N−1

t p(0)∈H 1 and D2N
t u(0)∈H 0. According to the j=2N−1 compatibility

condition (4-71), divA0 D2N−1
t u(0)= 0, which means that we can use estimate (4-70) of Lemma 4.7 to

see that f 2
= f2(F3,2N−1(0), D2N−1

t u(0)) ∈ H 1/2 and f 3
= f3(F1,2N−1(0), D2N−1

t u(0)) ∈ H−1/2. We
also see from (4-71) that if we define the quantity g0 =− divA0(R(0)D

2N−1
t u(0)), then g0 ∈ H 0. Then,

owing to the fact that G =−F1,2N−1
∈ H 0, we can define ∂2N−1

t p(0) ∈ H 1 as a weak solution to (3-30)
in the sense of (3-33) with this choice of f 2, f 3, g0, and G. Then we define

D2N
t u(0)=G0(F1,2N−1(0), D2N−1

t u(0), ∂2N−1
t p(0)

)
∈ H 0,

employing (4-68) for the inclusion in H 0. In fact, the construction of ∂2N−1
t p(0) guarantees that D2N

t u(0)∈
Y(0). Besides providing the inclusions above, the bounds (4-59), (4-69), (4-68) also imply the estimate

2N∑
j=0

‖D j
t u(0)‖24N−2 j +

2N−1∑
j=0

‖∂
j

t p(0)‖24N−2 j−1 . (1+E0(η)
(
‖u0‖

2
4N +F0

)
. (4-72)

Owing to estimate (4-67), the bound (4-72) also holds, with ∂ j
t u(0) replacing D j

t u(0) on the left.



LOCAL WELL-POSEDNESS OF THE VISCOUS SURFACE WAVE PROBLEM 329

Before stating our result on higher regularity for solutions to problem (1-7), we define two quantities
associated to (u, p). Write

D(u, p) :=
2N∑
j=0

‖∂
j

t u‖2L2 H4N−2 j+1 +‖∂
2N+1
t u‖2(XT )∗

+

2N−1∑
j=0

‖∂
j

t p‖2L2 H4N−2 j ,

E(u, p) :=
2N∑
j=0

‖∂
j

t u‖2L∞H4N−2 j +

2N−1∑
j=0

‖∂
j

t p‖2L∞H4N−2 j−1,

K(u, p) := E(u, p)+D(u, p).

(4-73)

Theorem 4.8. Suppose that u0 ∈ H 4N (�), η0 ∈ H 4N+1/2(6), F<∞, and that K(η) ≤ 1 is sufficiently
small that K(η), defined by (4-9), satisfies the hypotheses of Theorem 4.3 and Proposition 3.9. Let
D j

t u(0) ∈ H 4N−2 j (�) and ∂ j
t p(0) ∈ H 4N−2 j−1, for j = 0, . . . , 2N − 1 along with D2N

t u(0) ∈ Y(0), all
be determined as above in terms of u0 and ∂ j

t F1(0), ∂ j
t F3(0) for j = 0, . . . , 2N − 1. Suppose that for

j = 0, . . . , 2N − 1, the initial data satisfy the j-th compatibility condition (4-71).
There exists a universal constant T0 > 0 such that if 0 < T ≤ T0, then there exists a unique strong

solution (u, p) to (1-7) on [0, T ] such that

∂
j

t u ∈ C0(
[0, T ]; H 4N−2 j (�)

)
∩ L2(

[0, T ]; H 4N−2 j+1(�)
)

for j = 0, . . . , 2N ,

∂
j

t p ∈ C0(
[0, T ]; H 4N−2 j−1(�)

)
∩ L2(

[0, T ]; H 4N−2 j (�)
)

for j = 0, . . . , 2N − 1,

∂2N+1
t u ∈ (XT )

∗.

The pair (D j
t u, ∂ j

t p) satisfies the PDE
∂t(D

j
t u)−1A(D

j
t u)+∇A(∂

j
t p)= F1, j in �,

divA(D
j
t u)= 0 in �,

SA(∂
j

t p, D j
t u)N= F3, j on 6,

D j
t u = 0 on 6b,

(4-74)

in the strong sense with initial data (D j
t u(0), ∂ j

t p(0)) for j = 0, . . . , 2N − 1, and in the weak sense of
(4-2) with initial data D2N

t u(0) ∈ Y(0) for j = 2N. Here the vectors F1, j and F3, j are as defined by
(4-52). Moreover, the solution satisfies the estimate

E(u, p)+D(u, p).
(
1+E0(η)+K(η)

)
exp

(
C(1+E(η))T

)(
‖u0‖

2
4N +F0+F

)
(4-75)

for a constant C > 0, independent of η.

Proof. For notational convenience, throughout the proof we write

Z :=
(
1+E0(η)+K(η)

)
exp

(
C(1+E(η))T

)(
‖u0‖

2
4N +F0+F

)
.

Since the 0-th order compatibility condition (4-71) is satisfied and K(η) is small enough for K(η) to
satisfy the hypotheses of Theorem 4.3, we may apply Theorem 4.3. It guarantees the existence of (u, p)
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satisfying the inclusions (4-12). The (D j
t u, ∂ j

t p) are solutions in that (4-74) is satisfied in the strong
sense when j = 0 and in the weak sense when j = 1. Finally, the estimate (4-13) holds, but we may
replace its right-hand side by Z since K(η)≤ E(η)≤ K(η).

For an integer m ≥ 0, let Pm denote the proposition asserting the following three statements. First,
that (D j

t u, ∂ j
t p) are solutions to (4-74) in the strong sense for j = 0, . . . ,m and in the weak sense for

j = m+ 1. Second, that
∂

j
t u ∈ L∞H 2m−2 j+2

∩ L2 H 2m−2 j+3

for j = 0, 1, . . . ,m+ 1, ∂m+2
t u ∈ (XT )

∗, and

∂
j

t p ∈ L∞H 2m−2 j+1
∩ L2 H 2m−2 j+2

for j = 0, 1, . . . ,m. Third, that the estimate

m+1∑
j=0

∥∥∂ j
t u
∥∥2

L∞H2m−2 j+2 +
∥∥∂ j

t u
∥∥2

L2 H2m−2 j+3 +
∥∥∂m+2

t u
∥∥2
(XT )∗

+

m∑
j=0

∥∥∂ j
t p
∥∥2

L∞H2m−2 j+1 +
∥∥∂ j

t p
∥∥2

L2 H2m−2 j+2 . Z (4-76)

holds.
The above analysis implies that P0 holds. We claim that if Pm holds for some m = 0, . . . , 2N − 2,

then Pm+1 also holds. Once the claim is established, a finite induction implies that Pm holds for all
m = 0, . . . , 2N − 1, which immediately implies all of the conclusions of the theorem. The rest of the
proof, which we divide into two steps, is dedicated to the proof of this claim.

Step 1: Applying Theorem 4.3. Suppose that Pm holds for some m= 0, . . . , 2N−2. In order to prove that
the first assertion of Pm+1 holds, we would like employ Theorem 4.3 to solve problem (1-7), with F1, F3

replaced by F1,m+1, F3,m+1 and with initial data Dm+1
t u(0). In order to do so, we must verify three things.

First, that the compatibility condition (4-11) is satisfied. This is guaranteed by the fact that Dm+1
t u(0)

satisfies the (m+ 1)-st order compatibility condition (4-71). Second, we need that F1,m+1
∈ L2 H 1 and

F3,m+1
∈ L2 H 3/2. This follows directly from the estimate (4-56) in Lemma 4.5 and the bound (4-76)

provided by Pm . Third, we need that ∂t(F1,m+1
− F3,m+1) ∈ L2(0 H 1(�))∗. Appealing to (4-58) in

Lemma 4.5, we encounter an obstacle, namely that we can use Pm to control every term on the right-hand
side except for ‖∂m+1

t u‖2L2 H2 +‖∂
m+1
t p‖2L2 H1 . However, we may trivially estimate

‖∂m+1
t u‖2L2 H2 +‖∂

m+1
t p‖2L2 H1 ≤ T

(
‖∂m+1

t u‖2L∞H2‖∂
m+1
t p‖2L∞H1

)
and note that the term on the right would be controlled via (4-13) by formally applying Theorem 4.3 with
forcing terms F1,m+1, F3,m+1. This suggests that we may employ an iteration argument in conjunction
with a small T assumption to get around our obstacle, and indeed this strategy works. Such an iteration
argument is fairly standard, so we will only provide a sketch.

First we consider an arbitrary pair (v, q) of sufficient regularity to make sense of

F1,m+1
= F1,m+2(v, q) and F3,m+1

= F1,m+2(v, q)
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via (4-52). Note that the forcing terms depend linearly on (v, q). From (4-56) and (4-58) of Lemma 4.5,
we have that∥∥F1,m+1(v, q)

∥∥2
L2 H1 +

∥∥F3,m+1(v, q)
∥∥2

L2 H3/2

.
(
1+K(η)

)(
F+

m∑
`=0

‖∂`t v‖
2
L2 H3 +

m∑
`=0

‖∂`t v‖
2
L∞H2 +‖∂

`
t q‖2L2 H2 +‖∂

`
t q‖2L∞H1

)
, (4-77)

∥∥F1,m+1(v, q)
∥∥2

L∞H0 +
∥∥F3,m+1(v, q)

∥∥2
L∞H1/2

.
(
1+K(η)

)(
F+

m∑
`=0

‖∂`t v‖
2
L∞H2 +

m∑
`=0

‖∂`t q‖2L∞H1

)
, (4-78)

and∥∥∂t(F1,m+1(v, q)− F3,m+1(v, q))
∥∥2

L2(0 H1(�))∗
.
(
1+K(η)

)(
F+

m∑
`=0

∥∥∂`t v∥∥2
L∞H2 +

∥∥∂`t v∥∥2
L2 H3

+
∥∥∂m+1

t v
∥∥2

L2 H2 +
∥∥∂m+1

t q
∥∥2

L2 H1 +

m∑
`=0

∥∥∂`t q
∥∥2

L∞H1 +
∥∥∂`t q

∥∥2
L2 H2

)
. (4-79)

Now we let u0 be the extension of the initial data ∂ j
t u(0), j = 1, . . . , 2N , given by Lemma A.5, and

we similarly let p0 be the extension of ∂ j
t p(0), j = 1, . . . , 2N − 1, given by Lemma A.6; by (4-72) and

the estimates given in the lemmas, they satisfy

2N∑
j=0

∥∥∂ j
t u0∥∥2

L2 H4N−2 j+1 +
∥∥∂ j

t u0∥∥2
L∞H4N−2 j +

2N−1∑
j=0

∥∥∂ j
t p0∥∥2

L2 H4N−2 j +
∥∥∂ j

t p0∥∥2
L∞H4N−2 j−1

.
2N∑
j=0

∥∥∂ j
t u(0)

∥∥2
4N−2 j +

2N−1∑
j=0

∥∥∂ j
t p(0)

∥∥2
4N−2 j−1 .

(
1+E0(η)

)(
‖u0‖

2
4N +F0

)
. (4-80)

By combining (4-77)–(4-80), we find that F1,m+1(u0, p0) and F3,m+1(u0, p0) satisfy (4-7). Also, the
compatibility condition (4-11) with F3 replaced by F3,m+1(u0, p0) and u0 replaced by Dm+1

t u(0) is
satisfied by virtue of (4-71) since u0 and p0 achieve the initial data. We are then free to apply Theorem 4.3
to find (v1, q1) satisfying the conclusions of the theorem. In particular, if we abbreviate (1-7) as
L(v, q)= F= (F1, F3), then

L(v1, q1)= Fm+1(u0, p0) :=
(
F1,m+1(u0, p0), F3,m+2(u0, p0)

)
,

v1(0)= Dm+1
t u(0), q1(0)= ∂m+1

t p(0).

Let us write B(u, p) for the left-hand side of (4-13). Then (4-13), (4-59), (4-77), (4-79), and (4-80) imply
that

B(v1, q1).
(
1+E0(η)+K(η)

)
exp

(
C(1+E(η))T

)(
‖u0‖

2
4N +F0+F

)
. Z.
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Now, given a pair (vn, qn) satisfying B(vn, qn) <∞, we define a corresponding pair (un, pn) by
solving the linear ODEs{

Dm+1
t un

= vn,

∂
j

t un(0)= ∂ j
t u(0) for j = 0, . . . ,m,

and
{
∂m+1

t pn
= qn,

∂
j

t pn(0)= ∂ j
t p(0) for j = 0, . . . ,m.

(4-81)

Such solutions exist and are unique. Let us define R(v, q) by

R(v, q)

=
∥∥∂m+1

t v
∥∥2

L2 H2 +
∥∥∂m+1

t q
∥∥2

L2 H1 +

m∑
`=0

∥∥∂`t v∥∥2
L2 H3 +

∥∥∂`t v∥∥2
L∞H2 +

∥∥∂`t q
∥∥2

L2 H2 +
∥∥∂`t q

∥∥2
L∞H1 .

Then the solutions satisfy the estimate

R(un, pn). p(T )
(
1+K(η)

)( m∑
j=0

∥∥∂ j
t u(0)

∥∥2
3+

∥∥∂ j
t p(0)

∥∥2
2+ TB(vn, qn)

)
, (4-82)

where p(T ) is a polynomial in T . Note that the data norm terms on the right side of (4-82) are finite
because m ≤ 2N − 2.

We iteratively apply Theorem 4.3 to produce sequences {(vn, qn)}∞n=1 and {(un, pn)}∞n=1 satisfying

L(vn, qn)= Fm+1(un−1, pn−1),

vn(0)= Dm+1
t u(0), qn(0)= ∂m+1

t p(0)
(4-83)

and (4-81). Then
L(vn+1

− vn, qn+1
− qn)= Fm+1(un

− un−1, pn
− pn−1)

(vn+1
− vn)(0)= 0, (qn+1

− qn)(0)= 0.

Notice that the terms involving F1 and F3 cancel in Fm+1(un
− un−1, pn

− pn−1), so from (4-77) and
(4-79), we have that∥∥F1,m+1(un

− un−1, pn
− pn−1)

∥∥2
L2 H1 +

∥∥F3, j (un
− un−1, pn

− pn−1)
∥∥2

L2 H3/2

+
∥∥∂t(F1,m+1(un

− un−1, pn
− pn−1)− F3,m+1(un

− un−1, pn
− pn−1))

∥∥2
L2(0 H1(�))∗

.
(
1+K(η)

)
R
(
un
− un−1, pn

− pn−1).
On the other hand, since every (un, pn) satisfies the same initial conditions, a simple modification of
(4-82) implies that

R(un
− un−1, pn

− pn−1). (1+K(η))T p(T )B(vn
− vn−1, qn

− qn−1).

These two estimates, together with the estimate (4-13) of Theorem 4.3, then imply that

B(vn+1
− vn, qn+1

− qn)

.
(
1+E0(η)+K(η)

)
exp

(
C(1+E(η))T

)
T p(T )B(vn

− vn−1, qn
− qn−1). (4-84)
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Then from (4-84), we find that there exists a universal T0 > 0 such that if T ≤ T0, then the sequence
{(vn, qn)}∞n=1 converges to (v, q) in the norm

√
B( · , · ), which in turn implies that {(un, pn)}∞n=1 con-

verges to (u, p) in the norm
√
R( · , · ).

Passing to the limit in (4-81) reveals that v = Dm+1
t u and q = ∂m+1

t p. We then pass to the limit in
(4-83) to see that

L(Dm+1
t u, ∂m+1

t p)= Fm+1(u, p).

Since Pm already provides that (D j
t u, ∂ j

t p) are solutions to (4-74) in the strong sense for j = 0, . . . ,m,
we deduce that the first assertion of Pm+1 holds.

Theorem 4.3, together with the estimates (4-77), (4-79), and (4-76), then provides us with the estimate

B(Dm+1
t u, ∂m+1

t p).
(
1+E0(η)+K(η)

)
exp

(
C(1+E(η))T

)
×
(
‖u0‖

2
4N +F0+F+Z+‖∂m+1

t u‖2L2 H2 +‖∂
m+1
t p‖2L2 H1

)
. (4-85)

On the other hand, the estimate (4-65) of Lemma 4.6 implies that

‖∂m+1
t u‖2L2 H2 +‖∂

m+1
t p‖2L2 H1 ≤ T

(
‖∂m+1

t u‖2L∞H2 +‖∂
m+1
t p‖2L∞H1

)
. T

(∥∥∂m+1
t u− Dm+1

t u
∥∥2

L∞H2 +‖Dm+1
t u‖2L∞H2 +‖∂

m+1
t p‖2L∞H1

)
. T

((
1+K(η)

) m∑
`=0

‖∂`t u‖2L∞H2 +B
(
Dm+1

t u, ∂m+1
t p

))
. T

(
Z+B(Dm+1

t u, ∂m+1
t p)

)
, (4-86)

where in the last inequality we have again used (4-76). Chaining together (4-85) and (4-86), we find that
we may further restrict the size of the universal constant T0 > 0 such that if T ≤ T0, then

B
(
Dm+1

t u, ∂m+1
t p

)
.
(
1+E0(η)+K(η)

)
exp

(
C(1+E(η))T

)(
‖u0‖

2
4N +F0+F+Z

)
. Z. (4-87)

Step 2: Proving the second and third assertions. It remains to prove the second and third assertions of
Pm+1; they are intertwined and will be derived simultaneously. The estimates of the u terms in (4-87),
together with the estimates (4-64)–(4-66) of Lemma 4.6 and the estimate (4-76), imply that

‖∂m+1
t u‖2L2 H3 +‖∂

m+2
t u‖2L2 H1 +‖∂

m+3
t u‖2(XT )∗

+‖∂m+1
t u‖2L∞H2 +‖∂

m+2
t u‖2L∞H0

.
(
1+K(η)

)(m+2∑
`=0

‖∂`t u‖2L2 H2m−2`+3 +

m+1∑
`=0

‖∂`t u‖2L∞H2m−2`+2

)
+Z

.
(
1+K(η)

)
Z+Z. Z. (4-88)

Hence
m+2∑

j=m+1

‖∂
j

t u‖2L∞H2(m+1)−2 j+2 +‖∂
j

t u‖2L2 H2(m+1)−2 j+3 +‖∂
m+3
t u‖2(XT )∗

+

m+1∑
j=m+1

‖∂
j

t p‖2L∞H2(m+1)−2 j+1 +‖∂
j

t p‖2L2 H2(m+1)−2 j+2 . Z, (4-89)
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Thus, in order to derive the estimate (4-76) with m replaced by m+ 1, it suffices to prove that

m∑
j=0

‖∂
j

t u‖2L∞H2(m+1)−2 j+2 +‖∂
j

t p‖2L∞H2(m+1)−2 j+1

+

m∑
j=0

‖∂
j

t u‖2L2 H2(m+1)−2 j+3 +‖∂
j

t p‖2L2 H2(m+1)−2 j+2 . Z. (4-90)

Once (4-90) is established, summing (4-89) and (4-90) implies that (4-76) holds with m replaced by
m+ 1, which further implies that the second and third assertions of Pm+1 hold, so that then all of Pm+1

holds.
In order to prove (4-90), we will use the elliptic regularity of Proposition 3.7 (with k = 4N ) and an

iteration argument. As the first step, we must record estimates for the forcing terms. For these, we
combine (4-76) with the estimates (4-56) and (4-57) of Lemma 4.5 to see that

m+1∑
j=1

(
‖F1, j

‖
2
L2 H2m−2 j+3 +‖F3, j

‖
2
L2 H2m−2 j+7/2 +‖F1, j

‖
2
L∞H2m−2 j+2 +‖F3, j

‖
2
L∞H2m−2 j+5/2

)
. (1+K(η))

(
F+

m∑
`=0

‖∂`t u‖2L∞H2m−2`+2 +‖∂
`
t u‖2L2 H2m−2`+3 +

m∑
`=0

‖∂`t p‖2L∞H2m−2`+1 +‖∂
`
t p‖2L2 H2m−2`+2

)
. (1+K(η))(F+Z). Z. (4-91)

The last inequality in (4-91) follows from the fact that K(η)≤ 1 and the definition of Z.
The estimates of Dm+1

t u in (4-87), together with (4-76) and the estimates (4-62) and (4-63) of
Lemma 4.6, allow us to deduce that

‖∂t Dm
t u‖2L∞H2 +‖∂t Dm

t u‖2L2 H3 . Z. (4-92)

Since (4-74) is satisfied in the strong sense for j = m, we may rearrange to find that for almost every
t ∈ [0, T ], (Dm

t , ∂
m
t p) solve the elliptic problem (3-6) with F1 replaced by F1,m

−∂t Dm
t u, F2

= 0, and F3

replaced by F3,m . We may then apply Proposition 3.7 with r = 5 to deduce that the estimate (3-18) holds
for almost every t ∈ [0, T ]; squaring this estimate and integrating over [0, T ] then yields the inequality

‖Dm
t u‖2L2 H5 +‖∂

m
t p‖2L2 H4 .

∥∥F1,m
− ∂t Dm

t u
∥∥2

L2 H3 +‖F3,m
‖

2
L2 H7/2

. ‖F1,m
‖

2
L2 H3 +‖∂t Dm

t u‖2L2 H3 +‖F3,m
‖

2
L2 H7/2. Z, (4-93)

where in the last inequality we have used (4-91) and (4-92). Similarly, we may apply Proposition 3.7
with r = 4 to deduce

‖Dm
t u‖2L∞H4 +‖∂

m
t p‖2L∞H3 .

∥∥F1,m
− ∂t Dm

t u
∥∥2

L∞H2 +‖F3,m
‖

2
L∞H5/2 . Z. (4-94)

We may argue as before to deduce from (4-93) and (4-94) that

‖∂m
t u‖2L∞H4 +‖∂

m
t u‖2L2 H5 . Z
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as well. This argument may be iterated to estimate ∂ j
t u, ∂ j

t p for j = 1, . . . ,m; this yields the estimate

m∑
j=1

‖∂
j

t u‖2L∞H2(m+1)−2 j+2 +‖∂
j

t p‖2L∞H2(m+1)−2 j+1

+

m∑
j=1

‖∂
j

t u‖2L2 H2(m+1)−2 j+3 +‖∂
j

t p‖2L2 H2(m+1)−2 j+2 . Z. (4-95)

We then apply Proposition 3.7 with r = 2(m+ 1)+ 2≤ 4N to see that

‖u‖2L∞H2(m+1)+2 +‖p‖2L∞H2(m+1)+1 . ‖F1
− ∂t u‖2L∞H2(m+1) +‖F3

‖
2
L∞H2(m+1)+1/2

. ‖F1
‖

2
L∞H2(m+1) +‖∂t u‖2L∞H2(m+1) +‖F3

‖
2
L∞H2(m+1)+1/2 . Z, (4-96)

and then again with r = 2(m+ 1)+ 3≤ 4N + 1 to see that

‖u‖2L2 H2(m+1)+3 +‖p‖2L2 H2(m+1)+2

. ‖F1
− ∂t u‖2L2 H2(m+1)+1 +‖F3

‖
2
L2 H2(m+1)+3/2 +‖η‖

2
L2 H4N+1/2

(
‖F1
− ∂t u‖2L∞H2 +‖F3

‖
2
L∞H5/2

)
. ‖F1

‖
2
L2 H2(m+1)+1 +‖∂t u‖2L2 H2(m+1)+1 +‖F3

‖
2
L2 H2(m+1)+3/2 +K(η)(F+Z). Z. (4-97)

Summing (4-95)–(4-97) then gives (4-90), completing the proof. �

5. Preliminaries for the nonlinear problem

Forcing estimates. We want to eventually use our linear theory for the problem (1-7) in order to solve
the nonlinear problem (1-4). To do so, we define forcing terms F1, F3 to be used in the linear theory that
match the terms in (1-4). That is, given u, η, we define

F1(u, η)= ∂t η̄b̃K∂3u− u · ∇Au and F3(u, η)= ηN=−ηDη+ ηe3, (5-1)

where A,N, K are determined as usual by η.
We will need to be able to estimate various norms of F1(u, η) and F3(u, η) in terms of the norms of u

and η that appear in K(η), E0(η), and K(u, p), defined by (4-54), (4-55), and (4-73), respectively. The
norms of the F i terms are contained in F and F0, as defined by (4-53). We will actually need a slight
modification of K(u, p), which we define as

K2N (u)=
2N∑
j=0

‖∂
j

t u‖2L2 H4N−2 j+1 +‖∂
j

t u‖2L∞H4N−2 j . (5-2)

Our estimates are the content of the following lemma.

Lemma 5.1. Suppose that K(η)≤ 1 and K2N (u) <∞. Then

F
(
F1(u, η), F3(u, η)

)
.
[
1+ T +K(η)

]
E(η)+K(η)

[
K2N (u)+ (K2N (u))2

]
+ (K2N (u))2. (5-3)
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Proof. All terms in the definition of F1(u, η), F3(u, η) are quadratic or higher-order except the term ηe3

in F3. Hence we may argue as in the proof of Lemma 4.5 to deduce the bound

F
(
F1(u, η), F3(u, η)− ηe3

)
. E(η)K(η)+K(η)

(
K(η)+K2N (u)+ (K2N (u))2

)
+ (K2N (u))2. (5-4)

Here the appearance of the term E(η)K(η) is due to the term ηDη in F3, while the appearance of K2N (u)2

is due to the term u · ∇u that appears when we write

u · ∇Au = u · ∇u+ u · ∇A−I u

in F1.
On the other hand, by definition, we have

F(0, ηe3)=

2N∑
j=0

‖∂
j

t η‖
2
L2 H4N−2 j−1/2 +

2N−1∑
j=0

‖∂
j

t η‖
2
L∞H4N−2 j−3/2

. (1+ T )
2N∑
j=0

‖∂
j

t η‖
2
L∞H4N−2 j = (1+ T )E(η). (5-5)

Then, since F(X, Y + Z). F(X, Y )+F(0, Z), we may combine (5-4) with (5-5) to deduce (5-3). �

Data estimates. In the construction of the initial data performed after Lemma 4.7, it was assumed that
∂

j
t η(0) for j = 0, . . . , 2N and ∂ j

t F1(0), ∂ j
t F3(0) for j = 0, . . . , 2N − 1 were all known. Knowledge of

the former allowed us to compute R(0), A0, N0, etc. along with their temporal derivatives; these quantities
then served as coefficients in deriving the initial conditions for (u, p) and their temporal derivatives.
Since for the full nonlinear problem the function η is unknown and its evolution is coupled to that of u
and p, we must revise the construction of the data to include this coupling, assuming only that u0 and η0

are given. This will also reveal the compatibility conditions that must be satisfied by u0 and η0 in order
to solve the nonlinear problem (1-4). To this end, we first define the quantities

E0 := ‖u0‖
2
4N +‖η0‖

2
4N and F0 := ‖η0‖

2
4N+1/2. (5-6)

For our estimates, we must also introduce the quantity

E0(u, p)=
2N∑
j=0

∥∥∂ j
t u(0)

∥∥2
4N−2 j +

2N−1∑
j=0

∥∥∂ j
t p(0)

∥∥2
4N−2 j−1. (5-7)

We will also need a more exact enumeration of the terms in E0(u, p), E0(η), and F0 (as defined in
(5-7), (4-55), and (4-53), respectively). For j = 0, . . . , 2N − 1, we define

F
j
0

(
F1(u, η), F3(u, η)

)
:=

j∑
`=0

∥∥∂`t F1(0)
∥∥2

4N−2`−2+
∥∥∂`t F3(0)

∥∥2
4N−2`−3/2 (5-8)

and

E
j
0(η) := ‖η0‖

2
4N +

∥∥∂tη(0)
∥∥2

4N−1+

j∑
`=2

∥∥∂`t η(0)∥∥2
4N−2`+3/2, (5-9)
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with the sum in (5-9) only including the first term when j = 0 and only the first two terms when j = 1.
For j = 0, we write E0

0(u, p) := ‖u0‖
2
4N , and for j = 1, . . . , 2N we write

E
j
0(u, p) :=

j∑
`=0

‖∂`t u(0)‖24N−2 j +

j−1∑
`=0

‖∂`t p(0)‖24N−2 j−1.

The following lemma records more refined versions of the estimates (4-59) and (4-67) as well as some
other related estimates that are useful in dealing with the initial data.

Lemma 5.2. For F1(u, η) and F3(u, η) defined by (5-1) and j = 0, . . . , 2N − 1, we have

F
j
0

(
F1(u, η), F3(u, η)

)
≤ Pj

(
E

j+1
0 (η),E

j
0(u, p)

)
(5-10)

for Pj ( · , · ) a polynomial such that Pj (0, 0)= 0.
For j = 1, . . . , 2N − 1, let F1, j (0) and F3, j (0) be determined by (4-52) and (5-1), using ∂`t η(0),

∂`t u(0), and ∂`t p(0) for appropriate values of `. Then

‖F1, j (0)‖24N−2 j−2+‖F
3, j (0)‖24N−2 j−3/2 ≤ Pj

(
E

j+1
0 (η),E

j
0(u, p)

)
(5-11)

for Pj ( · , · ) a polynomial such that Pj (0, 0)= 0.
For j = 0, . . . , 2N , we have∥∥∂ j

t u(0)− D j
t u(0)

∥∥2
4N−2 j ≤ Pj

(
E

j
0(η),E

j
0(u, p)

)
(5-12)

for Pj ( · , · ) a polynomial such that Pj (0, 0)= 0.
For j = 1, . . . , 2N − 1, we have∥∥∥∥ j∑

`=0

(
j
`

)
∂`t N(0) · ∂ j−`

t u(0)
∥∥∥∥

H4N−2 j+3/2(6)

≤ Pj
(
E

j
0(η),E

j
0(u, p)

)
for Pj ( · , · ) a polynomial such that Pj (0, 0)= 0. Also,

‖u0 ·N0‖
2
H4N−1(6)

. ‖u0‖
2
4N (1+‖η0‖

2
4N ). (5-13)

Proof. These bounds may be derived by arguing as in the proof of Lemma 4.5, so again we omit the
details. �

This lemma allows us to modify the construction presented after Lemma 4.7 to construct all of the
initial data ∂ j

t u(0), ∂ j
t η(0) for j = 0, . . . , 2N and ∂ j

t p(0) for j = 0, . . . , 2N −1. Along the way, we will
also derive estimates of E0(u, p)+E0(η) in terms of E0 and determine the compatibility conditions for
u0, η0 necessary for existence of solutions to (1-4).

We assume that u0, η0 satisfy F0 <∞ and that ‖η0‖
2
4N−1/2 ≤ E0 ≤ 1 is sufficiently small for the

hypothesis of Proposition 3.9 to hold when k = 4N . As before, we will iteratively construct the initial
data, but this time we will use the estimates in Lemma 5.2.
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Step 1. Define ∂tη(0)= u0 ·N0, where u0 ∈ H 4N−1/2(6) when traced onto 6, and N0 is determined in
terms of η0. Estimate (5-13) implies that ‖∂tη(0)‖24N−1 . E0, and hence that E0

0(u, p)+E1
0(η). E0. We

may use this bound in (5-10) with j = 0 to find that

F0
0
(
F1(u, η), F3(u, η)

)
≤ P0

(
E1

0(η),E
0
0(u, p)

)
≤ P(E0)

for a polynomial P( · ) such that P(0) = 0. Note that in this estimate and in the estimates below, we
employ a convention with polynomials of E0 similar to the one we employ with constants: they are
allowed to change from line to line, but they always satisfy P(0)= 0.

Step 2: Iterative definition of ∂ j
t p(0), ∂ j+1

t u(0), and ∂ j+2
t η(0), for 0 ≤ j ≤ 2N−2. Now suppose, for

given j ∈ [0, 2N − 2], that ∂`t u(0) is known for `= 0, . . . , j , ∂`t η(0) is known for `= 0, . . . , j + 1, and
∂`t p(0) is known for `= 0, . . . , j−1 (with the understanding that nothing is known of p(0) when j = 0),
and that

E
j
0(u, p)+E

j+1
0 (η)+F

j
0

(
F1(u, η), F3(u, η)

)
≤ P(E0). (5-14)

According to the estimates (5-11) and (5-12), we then know that∥∥F1, j (0)
∥∥2

4N−2 j−2+
∥∥F3, j (0)

∥∥2
4N−2 j−3/2+

∥∥D j
t u(0)

∥∥2
4N−2 j ≤ P(E0). (5-15)

By virtue of estimates (4-69) and (5-14), we know that∥∥f1(F1, j (0), D j
t u(0))

∥∥2
4N−2 j−3+

∥∥f2(F3, j (0), D j
t u(0))

∥∥2
4N−2 j−3/2

+
∥∥f3(F1, j (0), D j

t u(0))
∥∥2

4N−2 j−5/2 ≤ P(E0). (5-16)

This allows us to define ∂ j
t p(0) as the solution to (3-30) with f 1, f 2, f 3 given by f1, f2, f3. Then

Proposition 3.9 with k = 4N and r = 4N − 2 j − 1< k implies that∥∥∂ j
t p(0)

∥∥2
4N−2 j−1 ≤ P(E0). (5-17)

Now the estimates (4-68), (5-14), and (5-15) allow us to define

D j+1
t u(0) :=G0(F1, j (0), D j

t u(0), ∂ j
t p(0)

)
∈ H 4N−2 j−2, (5-18)

and owing to (5-12), we have the estimate∥∥∂ j+1
t u(0)

∥∥2
4N−2( j+1) ≤ P(E0). (5-19)

Now we define ∂ j+2
t η(0)=

∑ j+1
`=0

( j
`

)
∂`t N(0) · ∂ j−`

t u(0). The estimate (5-13), together with (5-14) and
(5-19), then imply that ∥∥∂ j+2

t η(0)
∥∥2

4N−2( j+2)+3/2 ≤ P(E0). (5-20)

We may combine (5-14) with (5-17)–(5-20) to deduce that

E
j+1
0 (u, p)+E

j+2
0 (η)≤ P(E0);
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but then (5-10) implies that F j+1
0 (F1(u, η), F3(u, η)) ≤ P(E0) as well, and we deduce that the bound

(5-14) also holds with j replaced by j + 1.
Using the above analysis, we may iterate from j = 0, . . . , 2N − 2 to deduce that

E2N−1
0 (u, p)+E2N

0 (η)+F2N−1
0

(
F1(u, η), F3(u, η)

)
≤ P(E0). (5-21)

Step 3: Definition of ∂2N−1
t p(0) and D2N

t u(0). After this iteration, it remains only to define ∂2N−1
t p(0)

and D2N
t u(0). In order to do this, we must first impose the compatibility conditions on u0 and η0. These

are the same as in (4-71), but because now the temporal derivatives of η have been constructed as well,
we restate them in a slightly different way. Let ∂ j

t u(0), F1, j (0), F3, j (0) for j = 0, . . . , 2N − 1, ∂ j
t η(0)

for j = 0, . . . , 2N , and ∂ j
t p(0) for j = 0, . . . , 2N −2 be constructed in terms of η0, u0 as above. Let 50

be the projection defined in terms of η0 as in (4-10) and Dt be the operator defined by (4-8). We say that
u0, η0 satisfy the (2N )-th order compatibility conditions if

divA0(D
j
t u(0))= 0 in �,

D j
t u(0)= 0 on 6b,

50
(
F3, j (0)+DA0 D j

t u(0)N0
)
= 0 on 6,

(5-22)

for j = 0, . . . , 2N − 1. Note that if u0, η0 satisfy (5-22), then the j-th order compatibility condition
(4-71) is satisfied for j = 0, . . . , 2N − 1.

Now we define ∂2N−1
t p(0) and D2N

t u(0). We use the compatibility conditions (5-22) and argue as
above and in the derivation of (4-70) in Lemma 4.7 to estimate∥∥f2(F3,2N−1(0), D2N−1

t u(0))
∥∥2

1/2+
∥∥f3(F1,2N−1(0), D2N−1

t u(0))
∥∥2
−1/2 ≤ P(E0) (5-23)

and ∥∥F1,2N−1(0)
∥∥2

0+
∥∥divA0(R(0)D

2N−1
t u(0))

∥∥2
0 ≤ P(E0). (5-24)

We then define ∂2N−1
t p(0) ∈ H 1 as a weak solution to (3-30) in the sense of (3-33) with this choice of

f 2
= f2, f 3

= f3, g0 = − divA0(R(0)D
2N−1
t u(0)), and G = −F1,2N−1(0). The estimate (3-32), when

combined with (5-23)–(5-24), allows us to deduce that∥∥∂2N−1
t p(0)

∥∥2
1 ≤ P(E0). (5-25)

Then we set D2N
t u(0) = G0(F1,2N−1(0), D2N−1

t u(0), ∂2N−1
t p(0)), using (4-68) to see that D2N

t ∈ H 0.
In fact, the construction of ∂2N−1

t p(0) guarantees that D2N
t u(0) ∈Y(0). Arguing as before, we also have

the estimate ∥∥∂2N
t u(0)

∥∥2
0 . P(E0). (5-26)

This completes the construction of the initial data, but we will record a form of the estimates (5-21),
(5-25)–(5-26) in the following proposition.

Proposition 5.3. Suppose that u0, η0 satisfy F0 < ∞ and that E0 ≤ 1 is sufficiently small for the
hypothesis of Proposition 3.9 to hold when k = 4N. Let ∂ j

t u(0), ∂ j
t η(0) for j = 0, . . . , 2N and ∂ j

t p(0)
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for j = 0, . . . , 2N − 1 be given as above. Then

E0 ≤ E0(u, p)+E0(η). E0. (5-27)

Proof. The first inequality in (5-27) is trivial. Summing (5-21) and (5-25)–(5-26) yields the estimate
E0(u, p)+E0(η)≤ P(E0) for a polynomial P satisfying P(0)=0. Since E0≤1, we have that P(E0).E0,
and the last inequality in (5-27) follows directly. �

Transport problem. Thus far we have considered solving for (u, p), given η. Now we discuss how to
solve for η, given u (more precisely, its trace on 6). We do so by considering the transport problem{

∂tη+ u1∂1η+ u2∂2η = u3 in 6,
η(0)= η0.

(5-28)

We now state a well-posedness theory for (5-28) involving the quantities E0, F0, K2N (u), K(η) as
defined by (5-6), (5-2), (4-54), respectively. We will also need one more quantity, which we write as

F(η) := ‖η‖2L∞H4N+1/2 .

Theorem 5.4. Suppose that u0, η0 satisfy F0 < ∞ and that E0(η) ≤ 1 is sufficiently small for the
hypothesis of Proposition 3.9 to hold when k = 4N. Let ∂ j

t η(0), ∂
j

t u(0) for j = 1, . . . , 2N be defined
in terms of u0, η0 as in Section 5 and suppose that u satisfies K2N (u) ≤ 1 and achieves the initial
conditions ∂ j

t u(0) for j = 0, . . . , 2N. Then the problem (5-28) admits a unique solution η that satisfies
F(η)+ K(η) <∞ and achieves the initial data ∂ j

t η(0) for j = 0, . . . , 2N. Moreover, there exists a
0< T ≤ 1, depending on N , such that if 0< T ≤ T min{1, 1/F0}, then we have the estimates

F(η). F0+ TK2N (u), (5-29)

E(η). E0+ TK2N (u), (5-30)

E(η). E(η)+K2N (u)(1+E(η)), (5-31)

D(η). E0+ T F0+K2N (u). (5-32)

Proof. The proof proceeds through four steps. We first establish the solvability of problem (5-28), then
we establish the L∞H k estimates needed to bound E(η) and E(η) as in (5-30) and (5-31), and then we
handle the L2 H k estimates for the terms in D(η) to derive (5-32). Summing the bounds (5-31) and (5-32)
shows that K(η)= E(η)+D(η) <∞.

Step 1: Solving the transport equation. The assumptions on u imply, via trace theory, that

u ∈ L2(
[0, T ]; H 4N+1/2(6)

)
,

which allows us to employ the a priori estimates for solutions of the transport equation derived in [Danchin
2005a] (more specifically, Proposition 2.1 with p= p2= r = 2, σ = 4N+ 1

2 ). Although the well-posedness
of (5-28) is not proved in [Danchin 2005a], it can be deduced from the a priori estimates in a standard
way; full details are provided in Theorem 3.3.1 of [Danchin 2005b]. The result is that (5-28) admits a



LOCAL WELL-POSEDNESS OF THE VISCOUS SURFACE WAVE PROBLEM 341

unique solution η ∈ C0([0, T ]; H 4N+1/2(6)) with η(0)= η0 that satisfies the estimate

‖η‖L∞H4N+1/2 ≤ exp
(

C
∫ T

0
‖u(t)‖H4N+1/2(6) dt

)(√
F0+

∫ T

0
‖u3(t)‖H4N+1/2(6) dt

)
(5-33)

for C > 0. By trace theory, we have ‖u(t)‖H4N+1/2(6) .
√
K2N (u), so that the Cauchy–Schwarz inequality

implies C
∫ T

0 ‖u(t)‖H4N+1/2(6) dt .
√

T
√
K2N (u).

√
T , and hence that

exp
(

C
∫ T

0
‖u(t)‖H4N+1/2(6) dt

)
≤ 2 (5-34)

for T ≤ T with T ≤ 1 sufficiently small. We deduce from (5-33) and (5-34) that√
F(η)≤ 2

(√
F0+

√
TK2N (u)

)
, (5-35)

from which (5-29) easily follows.

Step 2: Bounding E(η). Proposition 2.1 of [Danchin 2005a] also implies the a priori estimate

‖η‖L∞H4N ≤ exp
(

C
∫ T

0
‖u(t)‖H4N+1/2(6) dt

)(
‖η0‖4N +

∫ T

0
‖u3(t)‖H4N (6) dt

)
.
(√

E0(η)+
√

TK2N (u)
)
, (5-36)

where we have used the smallness of T , trace theory, and Cauchy–Schwarz as above. Since ∂tη satisfies
∂tη = u3− Dη · u and K2N (u) <∞, we know that ∂tη is temporally differentiable and satisfies

∂t(∂tη)+ u · D(∂tη)= ∂t u3− ∂t u · Dη

with initial condition ∂tη(0)= u0 ·N0, which matches the initial data constructed in terms of u0, η0. We
may again apply Proposition 2.1 of [Danchin 2005a] and then use (5-36) to find

‖∂tη‖L∞H4N−2 ≤ 2
(
‖∂tη(0)‖4N−2+

∫ T

0
‖∂t u3‖H4N−2(6)+‖∂t u · Dη‖H4N−2(6)

)
. ‖∂tη(0)‖4N−2+

(
1+‖η‖L∞H4N−1

) ∫ T

0
‖∂t u‖H4N−2(6)

.
√
E0(η)+

√
TK2N (u)

(
1+‖η‖L∞H4N−1

)
.
√
E0(η)+

√
TK2N (u)

(
1+

√
E0(η)+

√
TK2N (u)

)
. P

(√
E0(η),

√
TK2N (u)

)
for a polynomial P( · , · ) with P(0, 0)= 0. A straightforward modification of this argument allows us to
iterate to obtain, for j = 1, . . . , 2N , the estimate

‖∂
j

t η‖L∞H4N−2 j ≤ P
(√

E0(η),
√

TK2N (u)
)

(5-37)

for P( · , · ) a polynomial with P(0, 0) = 0. We also find that the initial data ∂ j
t η(0) is achieved for

j=0, . . . , 2N . Squaring (5-36) and (5-37) and summing, we then deduce that E(η)≤ P(E0(η), TK2N (u))
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for another polynomial with P(0, 0)= 0. Since E0(η)≤ 1 and TK2N (u)≤ TK2N (u)≤ 1, we then have

E(η). E0(η)+ TK2N (u), (5-38)

which yields (5-30) when combined with Proposition 5.3.

Step 3: Bounding E(η). We can improve the estimates for ∂ j
t η, j = 1, . . . , 2N by using the equation

∂tη = u3− Dη · u directly. Indeed,

‖∂tη‖
2
4N−1 . ‖u3‖

2
H4N−1(6)

+‖Dη · u‖24N−1 . ‖u‖
2
4N (1+‖η‖

2
4N ). K2N (u)(1+E(η)). (5-39)

For higher-order temporal derivatives, we simply apply ∂ j−1
t with j = 2, . . . , 2N −1 to ∂tη= u3−Dη ·u

and argue as above to find that

‖∂
j

t η‖
2
4N−2 j+3/2 . K2N (u)(1+E(η)). (5-40)

Then (5-31) follows by summing (5-39), (5-40), and the trivial estimate ‖η‖24N ≤ E(η).

Step 4: Bounding D(η). Now we control the terms in D(η). From (5-35), Cauchy–Schwarz, and the fact
that T ≤ 1, we see that

‖η‖L2 H4N+1/2 ≤
√

T
√

F(η)≤ 2
(√

T F0+
√
K2N (u)

)
. (5-41)

We may then use Equation (5-28), trace theory, the fact that H 4N−1/2(6) is an algebra, and estimate
(5-41) to get the bound

‖∂tη‖L2 H4N−1/2 . ‖u3‖L2 H4N−1/2 +‖u‖L∞H4N−1/2‖η‖L2 H4N+1/2

.
√
K2N (u)

(
1+

√
T F0+

√
K2N (u)

)
. P

(√
T F0,

√
K2N (u)

)
(5-42)

for P a polynomial with P(0, 0)= 0. We argue similarly (employing (5-42) along the way) to find that

‖∂2
t η‖L2 H4N−3/2 . ‖∂t u3‖L2 H4N−1/2 +‖η‖L∞H4N−1/2‖∂t u‖L2 H4N−3/2 +‖∂tη‖L2 H4N−1/2‖u‖L∞H4N−3/2

.
√
K2N (u)

(
1+‖η‖L∞H4N−1/2 +‖∂tη‖L2 H4N−1/2

)
.
√
K2N (u)

(
1+

√
E(η)+ P

(√
T F0,

√
K2N (u)

))
. P

(√
T F0,

√
K2N (u),

√
E(η)

)
(5-43)

for a polynomial P with P(0, 0, 0)= 0. Iterating this argument for j = 2, . . . , 2N + 1 then yields the
inequalities

‖∂
j

t η‖L2 H4N−2 j+5/2 ≤ P
(√

T F0,
√
K2N (u),

√
E(η)

)
(5-44)

for a polynomial with P(0, 0, 0)= 0. We may then square and sum (5-41)–(5-44) to find that D(η)≤
P(T F0,K2N (u),E(η)), but then (5-38) and the bound T ≤ 1 imply that D(η)≤ P(T F0,K2N (u),E0(η))

for another P . By assumption, T F0 ≤ T ≤ 1, and K2N (u),E0(η)≤ 1 as well; hence

D(η). T F0+K2N (u)+E0(η),

which provides the estimate (5-32) when combined with Proposition 5.3. �
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6. Local well-posedness of the nonlinear problem

Sequence of approximate solutions. In order to construct the solution to (1-4), we will pass to the limit
in a sequence of approximate solutions. The construction of this sequence is the content of our next result.

Theorem 6.1. Assume the initial data are given as on pages 338–339 and satisfy the (2N )-th compatibility
conditions (5-22). There exist 0 < δ < 1 and 0 < T < 1 such that if E0 ≤ δ, F0 <∞, and 0 < T ≤
T0 := T min{1, 1/F0}, then there exists an infinite sequence {(um, pm, ηm)}∞m=1 with the following three
properties. First, for m ≥ 1 we have

∂t um+1
−1Am um+1

+∇Am pm+1
= ∂t η̄

m b̃K m∂3um
− um

· ∇Am um in �,

divAm um+1
= 0 in �,

SAm (pm+1, um+1)Nm
= ηmNm on 6,

um+1
= 0 on 6b,

(6-1)

and

∂tη
m+1
= um+1

·Nm+1 on 6, (6-2)

where Am,Nm, K m are given in terms of ηm . Second, (um, pm, ηm) achieve the initial data for each
m ≥ 1, that is, ∂ j

t um(0)= ∂ j
t u(0) and ∂ j

t η
m(0)= ∂ j

t η(0) for j = 0, . . . , 2N , while ∂ j
t pm(0)= ∂ j

t p(0) for
j = 0, . . . , 2N − 1. Third, for each m ≥ 1, we have the estimates

K(ηm)+K(um, pm)≤ C(E0+ T F0) and F(ηm)≤ C(F0+E0+ T F0) (6-3)

for a universal constant C > 0.

Proof. We divide the proof into three steps. First, we construct an initial pair (u0, η0) that will be used
as a starting point for constructing (um, pm, ηm) for m ≥ 1. Second, we prove that if (um, pm, ηm) are
known and satisfy certain estimates, then we can construct (um+1, pm+1, ηm+1). Third, we combine the
first two steps in an appropriate way to iteratively construct all of the (um, pm, ηm). Throughout the proof,
we will need to explicitly enumerate the various constants appearing in estimates where previously we
have written .. We do so with C1, . . . ,C10 > 0.

Before proceeding to the steps, we define some terms and make some assumptions. Let δ1 > 0 be such
that if K(η)≤ δ1, then the hypotheses of Theorem 4.8 are satisfied. Similarly, let δ2 > 0 be the constant
such that if E0(η)≤ δ2, then the hypotheses of Theorem 5.4 are satisfied. We assume that δ is sufficiently
small that E0 ≤ δ satisfies the hypotheses of Proposition 5.3 and that (using the estimate (5-27))

E0(η)+E0(u, p)≤ C1E0 ≤ C1δ ≤min{1, δ2}. (6-4)

This allows us to use (5-10) of Lemma 5.2 with j = 2N − 1 to get the bound

F0
(
F1(u, η), F2(u, η)

)
≤ C2E0. (6-5)
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Step 1: Seeding the sequence. We begin by extending the initial data ∂ j
t u(0) ∈ H 4N−2 j (�) to a time-

dependent function u0 such that ∂ j
t u0(0) = ∂ j

t u(0). We do so by applying Lemma A.5. Although this
produces a u0 defined on the time interval [0,∞), we may restrict to [0, T ] without increasing any of the
space-time norms in K2N (u0). We may combine the estimate of K2N (u0) provided by Lemma A.5 with
(6-4) to get the bound

K2N (u0)≤ C3E0. (6-6)

With u0 in hand, we define η0 as the solution to (5-28) with u0 replacing u. To do so, we apply
Theorem 5.4, the hypotheses of which are satisfied by virtue of (6-4) and (6-6) if we further restrict to
C3δ ≤ 1. Restricting T as in the theorem, we find our solution η0, which satisfies ∂ j

t η
0(0)= ∂ j

t η(0) as
well as the estimates

F(η0)≤ C4
(
F0+ TK2N (u0)

)
,

E(η0)≤ C5
(
E0+ TK2N (u0)

)
,

D(η0)≤ C6
(
E0+ T F0+K2N (u0)

)
.

(6-7)

Step 2: The iteration argument. We claim that there exist γ1, γ2, γ3, γ4 > 0 and 0 < δ̃, T̃ < 1 (both
depending on the γi ) such that if δ ≤ δ̃ and T ≤ T̃ , then the following property is satisfied. If (um, ηm)

are known and satisfy the estimates

E(ηm)≤ γ1(E0+ T F0), D(ηm)≤ γ2(E0+ T F0),

K2N (um)≤ γ3(E0+ T F0), F(ηm)≤ C4F0+ γ4(E0+ T F0),
(6-8)

then there exists a unique triple (um+1, pm+1, ηm+1) that achieves the initial data, satisfies (6-1) and (6-2),
and obeys the estimates

E(ηm+1)≤ γ1(E0+ T F0), D(ηm+1)≤ γ2(E0+ T F0),

K(um+1, pm+1)≤ γ3(E0+ T F0), F(ηm+1)≤ C4F0+ γ4(E0+ T F0).
(6-9)

To prove the claim, we will first use ηm to solve for (um+1, pm+1), and then we will use the resulting um+1

to solve for ηm+1. Along the way, we will restrict the size of δ̃ and T̃ in terms of γi , i = 1, 2, 3, 4. We
will define the γi in terms of the Ci , so the δ̃ and T̃ can be thought of as universal constants. Note that the
estimates of (6-9) are stronger than those of (6-8) since K2N (um+1)≤ K(um+1, pm+1). This asymmetry
is useful to us since in Step 1, we have not bothered to construct p0, so only (u0, η0) are available to
begin the iterative construction of {(um, pm, ηm)}∞m=1.

From (5-31), (6-8), and the fact that E0+ T0F0 ≤ 1, we have that

E(ηm)≤ C7
(
E(ηm)+K2N (um)(1+E(ηm))

)
≤ C7(γ1+ γ3+ γ1γ3)(E0+ T0F0). (6-10)

We assume initially that T̃ ≤ T0, the constant appearing in Theorem 4.8. We also assume that

δ̃, T̃ ≤ 1
2 min

{ min{1, δ1}

(C7(γ1+ γ3+ γ1γ3)+ γ2)
,

1
γ3

}
,
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so that (6-8) implies that K2N (um)≤ 1 and (6-10) implies that

K(ηm)= E(ηm)+D(ηm)≤
(
C7(γ1+ γ3+ γ1γ3)+ γ2

)
(E0+ T0F0)≤min{δ1, 1},

the latter of which allows us to use Theorem 4.8 to produce a unique pair (um+1, pm+1) that achieves the
desired initial data and satisfies (6-1). Moreover, from (4-75) and (6-4)–(6-5), we have the estimate

K(um+1, pm+1)≤ C8
(
1+E0+K(ηm)

)
exp

(
C9(1+E(ηm))T

)
×
[
(1+C2)E0+F(F1(um, ηm), F3(um, ηm))

]
. (6-11)

Assume that 2T̃ C9 ≤ log 2; then

C8
(
1+E0+K(ηm)

)
exp

(
C9(1+E(ηm))T

)
≤ 3C8 exp(2C9T̃ )≤ 6C8. (6-12)

On the other hand, we can use our bounds on ηm, um in Lemma 5.1 to see that

F
(
F1(um, ηm), F3(um, ηm)

)
≤ C10

[
3E(ηm)+ 2K(ηm)K2N (um)+ (K2N (um))2

]
. (6-13)

Combining (6-11)–(6-13) with (6-8) then shows that

K(um+1, pm+1)

≤ 6C8
[
(1+C2)E0+3C10γ1(E0+T F0)+2C10γ3(γ1+γ2)(E0+T F0)

2
+C10γ

2
3 (E0+T F0)

2]. (6-14)

We have now enumerated all of the constants Ci , i=1, . . . , 10 that we need to define the γi , i=1, . . . , 4.
We choose the values of the γi according to

γ1 := 2C5, γ3 := 6C8(3+C2+ 3C10γ1)+C3,

γ4 := C4, γ2 := C6(1+ γ3).
(6-15)

Notice that even though we have used γ1 to define γ3 and γ3 to define γ2, all of the γi are determined in
terms of the constants Ci .

Now we will use the choice of the γi in (6-15) to derive the K(um+1, pm+1) estimate of (6-9) from
(6-14). To do this, we further restrict

δ̃, T̃ ≤ 1
2 min

{ 1
2C10γ3(γ1+ γ2)

,
1

C10γ
2
3

}
.

Then since E0+ T F0 ≤ δ̃+ T̃ , we may use (6-14) to get the bound

K(um+1, pm+1)≤ 6C8(3+C2+ 3C10γ1)(E0+ T F0)≤ γ3(E0+ T F0). (6-16)

Now we construct ηm+1. Recall that δ̃, T̃ ≤ 1/(2γ3); this and (6-16) yield the bound K2N (um+1)≤ 1.
This estimate then allows us to apply Theorem 5.4 to find ηm+1 that solves (6-2) and achieves the initial
data. Estimates (5-29)–(5-32) of the theorem, together with (6-16) and the bound T0γ3 ≤ T̃ γ3 ≤ 1, imply
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that
F(ηm+1)≤ C4

(
F0+ T0K2N (um+1)

)
≤ C4F0+C4(E0+ T F0),

E(ηm+1)≤ C5
(
E0+ T0K2N (um+1)

)
≤ 2C5(E0+ T F0),

D(ηm+1)≤ C6
(
E0+ T F0+K2N (um+1)

)
≤ C6(1+ γ3)(E0+ T F0). (6-17)

Using the definitions of the γi given in (6-15), we see from (6-17) that the ηm+1 estimates of (6-9) hold.
Then, owing to (6-16), all of the estimates in (6-9) hold, which completes the proof of the claim.

Step 3: Construction of the full sequence. We assume that γ1, γ2, γ3, γ4 are given by (6-15) and that δ̃
and T̃ are as small as in Step 2. We assume that δ ≤ δ̃ and T ≤ T̃ in addition to the other restrictions
on their size made in Step 1 and before. Returning to (6-6), note that C3 ≤ γ3, which means that
K2N (u0)≤γ3(E0+T F0). We can also combine (6-6) and (6-7) and further restrict T ≤1/C3 to deduce that

F(η0)≤ C4F0+ T0C3C4E0 ≤ C4F0+ γ4(E0+ T F0),

E(η0)≤ C5(1+ T0C3)E0 ≤ 2C5E0 ≤ γ1(E0+ T F0),

D(η0)≤ C6(E0+ T F0+C3E0)≤ C6(1+C3)(E0+ T F0)≤ γ2(E0+ T F0).

Note that in the last inequality we have used the fact that C3 ≤ γ3 to bound C6(1+C3)≤C6(1+γ3)= γ2.
We are then free to use the pair (u0, η0) as the starting point in Step 2, which allows us to construct
(u1, p1, η1) satisfying the desired PDE and initial conditions, along with the estimates

E(η1)≤ γ1(E0+ T F0), D(η1)≤ γ2(E0+ T F0),

K(u1, p1)≤ γ3(E0+ T F0), F(η1)≤ C4F0+ γ4(E0+ T F0).

We then iterate from m = 1, . . . ,∞, using (um, ηm) and Step 2 to produce the next element of the
sequence, (um+1, pm+1, ηm+1), which satisfies (6-9). All of the conclusions of the theorem follow. �

Contraction. Estimates (6-3) of Theorem 6.1 allow us to extract weakly converging subsequences from
the sequence {(um, pm, ηm)}∞m=1. But, given such a convergent subsequence {(umk , pmk , ηmk )}∞k=1, we
cannot guarantee that {(umk−1, pmk−1, ηmk−1)}∞k=1 converges to the same limit. This prevents us from
simply passing to the limit in (6-1)–(6-2) in order to produce the desired solution to (1-4). We are thus
led to study the strong convergence of the sequence, and in particular to consider its contraction in some
norm.

We now define the norms in which we will show the sequence contracts. For T > 0, we define

N(v, q; T )= ‖v‖2L∞H2 +‖v‖
2
L2 H3 +‖∂tv‖

2
L∞H0 +‖∂tv‖

2
L2 H1 +‖q‖2L∞H1 +‖q‖2L2 H2,

M(ζ ; T )= ‖ζ‖2L∞H5/2 +‖∂tζ‖
2
L∞H3/2 +‖∂

2
t ζ‖

2
L2 H1/2,

(6-18)

where we write L p H k for L p([0, T ]; H k(�)) in N and L p([0, T ]; H k(6)) in M.
The next result provides a comparison of N for pairs of solutions to problems of the form (6-1)–(6-2).

We will use it later in Theorem 6.3 to show that the sequence of approximate solutions contracts, but
we will also use it to prove the uniqueness of solutions to (1-4). To avoid confusion with the sequence
{(um, pm, ηm)}, we refer to velocities as v j , w j , pressures as q j , and surface functions as ζ j for j = 1, 2.
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Theorem 6.2. Let w1, w2, v1, v2, q1, q2, and ζ 1, ζ 2 satisfy

sup
{
E(ζ 1),E(ζ 2),E(v1, q1),E(v2, q2),E(w1, 0),E(w2, 0)

}
≤ ε, (6-19)

where the temporal L∞ norms in E are computed over the interval [0, T ] with 0< T . Suppose that for
j = 1, 2, 

∂tv
j
−1A jv j

+∇A j q j
= ∂t ζ̄

j b̃K j∂3w
j
−w j

· ∇A jw j in �,

divA j v j
= 0 in �,

SA j (q j , v j )N j
= ζ j N j on 6,

v j
= 0 on 6b,

∂tζ
j
= w j

·N j on 6,

(6-20)

where A j , K j ,N j are determined by ζ j as usual. Further, suppose that ∂k
t v

1(0)= ∂k
t v

2(0) for k = 0, 1,
ζ 1(0)= ζ 2(0), and q1(0)= q2(0).

Then there exist ε1 > 0, T1 > 0 such that if ε ≤ ε1 and 0< T ≤ T1, then

N(v1
− v2, q1

− q2
; T )≤ 1

2N(w
1
−w2, 0; T ) (6-21)

and

M(ζ 1
− ζ 2
; T ).N(w1

−w2, 0; T ). (6-22)

Proof. The proof proceeds through six steps. First, we define v = v1
− v2, w = w1

−w2, q = q1
− q2,

and derive the PDEs satisfied by v, q . We also identify the energy evolution for some norms of ∂tv, ∂tq .
Second, we bound various forcing terms that appear in the energy evolution and on the right side of the
PDEs for v, q. Third, we prove some bounds for ∂tv, ∂tq, using the energy evolution equation. Fourth,
we use elliptic estimates to bound norms of v, q. Fifth, we derive estimates for ζ 1

− ζ 2 in terms of w.
Sixth, we close the estimate to derive the contraction estimates (6-21), (6-22).

Step 1: PDEs and energy evolution for differences. We now derive the PDE satisfied by v, q , which are
defined above. We subtract the equations in (6-20) with j = 2 from the same equations with j = 1. With
the help of some simple algebra, we can write the resulting equations in terms of v, q:

∂tv+ divA1 SA1(q, v)= divA1(D(A1−A2)v
2)+ H 1 in �,

divA1 v = H 2 in �,

SA1(q, v)N1
= D(A1−A2)v

2N1
+ H 3 on 6,

v = 0 on 6b,

v(t = 0)= 0,

(6-23)

where H 1, H 2, H 3 are defined by

H 1
= div(A1−A2)(DA2v2)− (A1

−A2)∇q2
+ ∂t ζ̄

1b̃K 1(∂3w
1
− ∂3w

2)+ (∂t ζ̄
1
− ∂t ζ̄

2)b̃K 1∂3w
2

+ ∂t ζ̄
1b̃(K 1

− K 2)∂3w
2
− (w1

−w2) · ∇A1w1
−w2

· ∇A1(w1
−w2)−w2

· ∇(A1−A2)w
2,
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H 2
=− div(A1−A2) v

2,

H 3
=−q2(N1

−N2)+DA1v2(N1
−N2)−D(A1−A2)v

2(N1
−N2)+(ζ 1

−ζ 2)N1
+ζ 2(N1

−N2).

The solutions are sufficiently regular for us to differentiate (6-23) in time, which results in the equations

∂t(∂tv)+ divA1 SA1(∂tq, ∂tv)= divA1(D(∂t A1−∂t A2)v
2)+ H̃ 1 in �,

divA1 ∂tv = H̃ 2 in �,

SA1(∂tq, ∂tv)N
1
= D(∂t A1−∂t A2)v

2N1
+ H̃ 3 on 6,

∂tv = 0 on 6b,

∂tv(t = 0)= 0,

(6-24)

where

H̃ 1
= ∂t H 1

+ div∂t A1(D(A1−A2)v
2)+ divA1(D(A1−A2)∂tv

2)+ div∂t A1(DA1v)+ divA1(D∂t A1v)

−∇∂t A1q, (6-25)

H̃ 2
= ∂t H 2

− div∂t A1 v, (6-26)

H̃ 3
= ∂t H 3

+D(A1−A2)∂tv
2N1
+D(A1−A2)v

2∂t N
1
− SA1(q, v)∂t N

1
+D∂t A1vN1. (6-27)

Now we multiply (6-24) by J 1∂tv, integrate over�, and integrate by parts as in the proof of Theorem 4.3
to deduce the evolution equation

∂t

∫
�

|∂tv|
2

2
J 1
+

1
2

∫
�

|DA1∂tv|
2 J 1

=

∫
�

|∂tv|
2

2
(∂t J 1K 1)J 1

+

∫
�

J 1∂tq H̃ 2
+

∫
�

J 1(divA1(D(∂t A1−∂t A2)v
2)+ H̃ 1)

· ∂tv

−

∫
6

(
D(∂t A1−∂t A2)v

2N1
+ H̃ 3)

· ∂tv. (6-28)

Another integration by parts reveals that∫
�

J 1 divA1(D(∂t A1−∂t A2)v
2) ·∂tv=−

1
2

∫
�

J 1D(∂t A1−∂t A2)v
2
:DA1∂tv+

∫
6

D(∂t A1−∂t A2)v
2N1
·∂tv. (6-29)

We then employ (6-29) to rewrite (6-28), and we integrate in time from 0 to t < T ; since ∂tv(t = 0)= 0,
we arrive at the equation∫
�

|∂tv|
2

2
J 1(t)+ 1

2

∫ t

0

∫
�

|DA1∂tv|
2 J 1
=

∫ t

0

∫
�

|∂tv|
2

2
(∂t J 1K 1)J 1

+

∫ t

0

∫
�

J 1(H̃ 1
· ∂tv+ H̃ 2∂tq)−

1
2

∫ t

0

∫
�

J 1D(∂t A1−∂t A2)v
2
: DA1∂tv−

∫ t

0

∫
6

H̃ 3
· ∂tv. (6-30)

Step 2: Estimates of the forcing terms. In order for Equation (6-30) to be useful, we must be able to
estimate the terms that appear on its right. To this end, we now derive estimates for H̃ 1, H̃ 2, ∂t H̃ 2 in
H 0(�) and H̃ 3 in H−1/2(6). We claim that the following estimates hold (here and through the end of
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this section, we have written P( · ) for a polynomial such that P(0)= 0 — possibly a different one each
time):∥∥H̃ 1∥∥

0 . P(
√
ε)
[
‖ζ 1
− ζ 2
‖3/2+‖∂tζ

1
− ∂tζ

2
‖1/2+‖∂

2
t ζ

1
− ∂2

t ζ
2
‖0

+‖w1
−w2
‖1+‖∂tw

1
− ∂tw

2
‖1+‖v‖2+‖q‖1

]
, (6-31)∥∥H̃ 2∥∥

0 . P(
√
ε)
[
‖ζ 1
− ζ 2
‖1/2+‖∂tζ

1
− ∂tζ

2
‖1/2+‖v‖1

]
, (6-32)∥∥∂t H̃ 2∥∥

0 . P(
√
ε)
[
‖ζ 1
− ζ 2
‖1/2+‖∂tζ

1
− ∂tζ

2
‖1/2+‖∂

2
t ζ

1
− ∂2

t ζ
2
‖1/2+‖v‖1+‖∂tv‖1

]
, (6-33)∥∥H̃ 3∥∥

−1/2 . P(
√
ε)
[
‖ζ 1
− ζ 2
‖1/2+‖∂tζ

1
− ∂tζ

2
‖1/2+‖v‖2+‖q‖1

]
+‖∂tζ

1
− ∂tζ

2
‖−1/2. (6-34)

According to the definitions (6-25)–(6-27), all of the summands in H̃ 1, H̃ 2, ∂t H̃ 2 are quadratic, of the
form X × Y , where Y is one of v, q, ∂ j

t ζ
1
− ∂

j
t ζ

2 for j = 0, 1, 2, or ∂ j
t w

1
− ∂

j
t w

2 for j = 0, 1. The
bounds (6-31)–(6-33) may be established by estimating the products X × Y with Lemmas A.1, A.7, A.9,
A.10, and A.8 and the usual Sobolev and trace embeddings; the appearance of the terms P(

√
ε) is due to

the X terms, whose appropriate Sobolev norm may be bounded above by a polynomial in√
sup

{
E(ζ 1),E(ζ 2),E(v1, q1),E(v2, q2),E(w1, 0),E(w2, 0)

}
≤
√
ε. (6-35)

The estimate (6-34) follows similarly by using (A-3) of Lemma A.1, except that H̃ 3 has a single term,
namely (∂tζ

1
− ∂tζ

2)e3, that is not quadratic and that causes the last term on the right side of (6-34) to
not be multiplied by P(

√
ε). The same sort of argument also allows us to deduce the bound∥∥D(∂t A1−∂t A2)v

2∥∥
0 . P(

√
ε)
[
‖ζ 1
− ζ 2
‖1/2+‖∂tζ

1
− ∂tζ

2
‖1/2

]
. (6-36)

We will eventually employ an elliptic estimate with (6-23), so we will also need estimates of H 1,
H 2, H 3 and the two other terms appearing on the right side of (6-23). The following estimates hold for
r = 0, 1:

‖H 1
‖r . P(

√
ε)
[
‖ζ 1
− ζ 2
‖r+1/2+‖∂tζ

1
− ∂tζ

2
‖r−1/2+‖w

1
−w2
‖r+1

]
, (6-37)

‖H 2
‖r+1 . P(

√
ε)‖ζ 1

− ζ 2
‖r+3/2, (6-38)

‖H 3
‖r+1/2 . P(

√
ε)‖ζ 1

− ζ 2
‖r+3/2+‖ζ

1
− ζ 2
‖r+1/2, (6-39)∥∥divA1(D(A1−A2)v

2)
∥∥

r . P(
√
ε)‖ζ 1

− ζ 2
‖r+1/2, (6-40)∥∥D(A1−A2)v

2N1∥∥
r+1/2 . P(

√
ε)‖ζ 1

− ζ 2
‖r+3/2. (6-41)

The proof of (6-37)–(6-41) may be carried out in the same manner we used above to prove (6-31)–(6-34).

Step 3: Estimates of ∂tv from (6-30). Now we employ the estimates of the forcing terms from the previous
step in (6-30) in order to deduce estimates for ∂tv. First we note that, owing to (6-35) and Sobolev
embeddings, we obtain the bounds

‖J 1
‖L∞ +‖K 1

‖L∞ . 1+ P(
√
ε) and ‖∂t J 1

‖L∞ . P(
√
ε). (6-42)
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Because of the time derivative on q, the most delicate term in (6-30) is the product J 1 H̃ 2∂tq. To
handle it, we integrate by parts in time and use the fact that q(0)= 0 to see that∫ t

0

∫
�

J 1 H̃ 2∂tq =
∫ t

0

[
∂t

∫
�

J 1q H̃ 2
−

∫
�

∂t J 1q H̃ 2
+ J 1q∂t H̃ 2

]
=

∫
�

J 1q H̃ 2(t)− J 1q H̃ 2(0)−
∫ t

0

∫
�

∂t J 1q H̃ 2
+ J 1q∂t H̃ 2

=

∫
�

J 1q H̃ 2(t)−
∫ t

0

∫
�

∂t J 1q H̃ 2
+ J 1q∂t H̃ 2. (6-43)

This, (6-42), and the estimates (6-32) and (6-33) then imply that

∫ t

0

∫
�

J 1 H̃ 2∂tq . P(
√
ε)‖q‖L∞H0

[ 1∑
j=0

∥∥∂ j
t ζ

1
− ∂

j
t ζ

2∥∥
L∞H1/2 +‖v‖L∞H1

]

+ P(
√
ε)

∫ t

0
‖q‖0

[ 2∑
j=0

∥∥∂ j
t ζ

1
− ∂

j
t ζ

2∥∥
1/2+‖v‖1+‖∂tv‖1

]
, (6-44)

where the L∞ norms are computed over the temporal interval [0, T ].
The other terms on the right of (6-30) are not so delicate and may be estimated directly with (6-31),

(6-34), and (6-36). Indeed, these estimates together with trace theory and the Poincaré inequality imply∫ t

0

∫
�

J 1 H̃ 1
· ∂tv−

1
2 J 1D(∂t A1−∂t A2)v

2
: DA1∂tv−

∫ t

0

∫
6

H̃ 3
· ∂tv

≤

∫ t

0
‖J 1
‖L∞‖H̃ 1

‖0‖∂tv‖0+
1
2‖J 1
‖L∞

∥∥D(∂t A1−∂t A2)v
2∥∥

0‖DA1∂tv‖0+

∫ t

0
‖H̃ 3
‖−1/2‖∂tv‖H1/2(6)

.
∫ t

0
‖∂tv‖1

(
P(
√
ε)
√

Z+
∥∥∂tζ

1
− ∂tζ

2∥∥
−1/2

)
, (6-45)

where we have written

Z := ‖ζ 1
− ζ 2
‖

2
3/2+

∥∥∂tζ
1
− ∂tζ

2∥∥2
1/2+

∥∥∂2
t ζ

1
− ∂2

t ζ
2∥∥2

1/2

+‖w1
−w2
‖

2
1+

∥∥∂tw
1
− ∂tw

2∥∥2
1+‖v‖

2
2+‖q‖

2
1. (6-46)

Also, we may use (6-35) to get the bound∫ t

0

∫
�

|∂tv|
2

2
(∂t J 1K 1)J 1

≤ C
√
ε

∫ t

0

∫
�

|∂tv|
2

2
J 1 (6-47)

for some constant C > 0.
We now combine the estimates (6-44), (6-45), and (6-47) with (6-30), employ Lemma 2.1 to get the

bound ‖∂tv‖1/2≤ ‖
√

J 1DA1∂tv‖0, and utilize Cauchy’s inequality to absorb
∫ t

0‖∂tv‖
2
1 into the left side
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of the resulting inequality; this yields the bound

1
2

∫
�

|∂tv|
2 J 1(t)+ 1

8

∫ t

0
‖∂tv‖

2
1

≤ C
√
ε

∫ t

0

∫
�

|∂tv|
2

2
J 1

+ P(
√
ε)

∫ t

0
‖q‖20+ P(

√
ε)‖q‖L∞H0

[ 1∑
j=0

∥∥∂ j
t ζ

1
−∂

j
t ζ

2∥∥
L∞H1/2 +‖v‖L∞H1

]

+ P(
√
ε)

∫ t

0
‖q‖0

[ 2∑
j=0

∥∥∂ j
t ζ

1
−∂

j
t ζ

2∥∥
1/2+‖v‖1

]
+

∫ t

0

[
P(
√
ε)Z+C

∥∥∂tζ
1
−∂tζ

2∥∥2
−1/2

]
. (6-48)

This bound can be viewed as a differential inequality of the form

x(t)+ y(t)≤ C
√
ε

∫ t

0
x(s) ds+ F(t),

where x, y, F ≥ 0, x(0)= 0, and F(t) is increasing in t . Gronwall’s lemma then implies that

x(t)+ y(t)≤ eC
√
εt F(t). (6-49)

We assume that ε1 and T1 are sufficiently small for eC
√
εt
≤ eC

√
ε1T1 ≤ 2. Then from (6-48), (6-49), and

Lemma 2.1, we deduce the bound

‖∂tv‖
2
L∞H0 +‖∂tv‖

2
L2 H1 ≤ P(

√
ε)‖q‖2L2 H0 +C

∥∥∂tζ
1
− ∂tζ

2∥∥2
L2 H−1/2 +

∫ T

0
P(
√
ε)Z

+ P(
√
ε)‖q‖L∞H0

[ 1∑
j=0

∥∥∂ j
t ζ

1
− ∂

j
t ζ

2∥∥
L∞H1/2 +‖v‖L∞H1

]

+ P(
√
ε)‖q‖L2 H0

[ 2∑
j=0

∥∥∂ j
t ζ

1
− ∂

j
t ζ

2∥∥
L2 H1/2 +‖v‖L2 H1

]
, (6-50)

where again the temporal L∞ and L2 norms are computed over [0, T ].

Step 4: Elliptic estimates for v and q. In order to close our estimates, we must be able to estimate v
and q . This will be accomplished with an elliptic estimate. We combine Proposition 3.7 with the estimates
(6-37)–(6-41) to deduce the bound for r = 0, 1,

‖v‖2r+2+‖q‖
2
r+1

. ‖∂tv‖
2
r +‖H

1
‖

2
r +

∥∥divA1(D(A1−A2)v
2)
∥∥2

r‖H
2
‖

2
r+1+‖H

3
‖

2
r+1/2+

∥∥D(A1−A2)v
2N1∥∥2

r+1/2

. ‖∂tv‖
2
r +‖ζ

1
− ζ 2
‖

2
r+1/2+ P(

√
ε)
[
‖ζ 1
− ζ 2
‖

2
r+3/2+

∥∥∂tζ
1
− ∂tζ

2∥∥2
r−1/2+‖w

1
−w2
‖

2
r+1
]
. (6-51)

We set r = 0 in (6-51) and then take the supremum in time over [0, T ] to find

‖v‖2L∞H2 +‖q‖2L∞H1 . ‖∂tv‖
2
L∞H0 +‖ζ

1
− ζ 2
‖

2
L∞H1/2

+ P(
√
ε)
[
‖ζ 1
− ζ 2
‖

2
L∞H3/2 +

∥∥∂tζ
1
− ∂tζ

2∥∥2
L∞H−1/2 +‖w

1
−w2
‖

2
L∞H1

]
. (6-52)
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Then we set r = 1 in (6-51) and integrate over [0, T ] to find

‖v‖2L2 H3 +‖q‖2L2 H2

.‖∂tv‖
2
L2 H1+‖ζ

1
−ζ 2
‖

2
L2 H3/2+P(

√
ε)
[
‖ζ 1
−ζ 2
‖

2
L2 H5/2+

∥∥∂tζ
1
−∂tζ

2∥∥2
L2 H1/2+‖w

1
−w2
‖

2
L2 H2

]
. (6-53)

Step 5: Estimates of ζ 1
− ζ 2. Now we turn to estimating the difference ζ 1

− ζ 2 in terms of w1
−w2. We

subtract the equations satisfied by ζ 2 from the one for ζ 1 to find that{
∂t(ζ

1
− ζ 2)+w1

· D(ζ 1
− ζ 2)= (w1

−w2) ·N2 in 6,
(ζ 1
− ζ 2)(t = 0)= 0.

(6-54)

The PDE (6-54) is a transport equation for ζ 1
− ζ 2, so we can employ Lemma A.11 to estimate

‖ζ 1
− ζ 2
‖L∞H5/2 ≤ exp

(
C
∫ T

0
‖w1(r)‖H7/2(6) dr

)∫ T

0

∥∥(w1
−w2) ·N2(r)

∥∥
H5/2(6)

dr

. eC
√

T
√
ε
(
1+ P(

√
ε)
) ∫ T

0

∥∥(w1
−w2)(r)

∥∥
3 dr

. eC
√

T
√
ε
(
1+ P(

√
ε)
)√

T ‖w1
−w2
‖L2 H3 .

We can further restrict ε1 and T1 so that eC
√

T
√
ε
≤ 2 and 1+ P(

√
ε)≤ 2; then

‖ζ 1
− ζ 2
‖L∞H5/2 .

√
T ‖w1

−w2
‖L2 H3 . (6-55)

Then we use the first equation in (6-54), trace theory, and the estimate (6-55) to see that∥∥∂tζ
1
− ∂tζ

2∥∥
L∞H3/2 ≤

∥∥(w1
−w2) ·N2∥∥

L∞H3/2 +
∥∥w1
· D(ζ 1

− ζ 2)
∥∥

L∞H3/2

.
(
1+ P(

√
ε)
)
‖w1
−w2
‖L∞H3/2(6)+ P(

√
ε)‖ζ 1

− ζ 2
‖L∞H5/2

. ‖w1
−w2
‖L∞H2 + P(

√
ε)
√

T ‖w1
−w2
‖L2 H3 . (6-56)

Similarly, we differentiate (6-54) in time to find that∥∥∂2
t ζ

1
− ∂2

t ζ
2∥∥

L2 H1/2

.
(
1+ P(

√
ε)
)∥∥∂tw

1
−∂tw

2∥∥
L2 H1+ P(

√
ε)
[
‖w1
−w2
‖L2 H1+‖ζ 1

−ζ 2
‖L2 H3/2+

∥∥∂tζ
1
−∂tζ

2∥∥
L2 H3/2

]
.
∥∥∂tw

1
−∂tw

2∥∥
L2 H1+ P(

√
ε)
√

T
[
‖w1
−w2
‖L∞H1+‖ζ 1

−ζ 2
‖L∞H3/2+

∥∥∂tζ
1
−∂tζ

2∥∥
L∞H3/2

]
.
∥∥∂tw

1
−∂tw

2∥∥
L2 H1+ P(

√
ε)
√

T ‖w1
−w2
‖L∞H2+ P(

√
ε)T ‖w1

−w2
‖L2 H3 . (6-57)

Step 6: Synthesis: contraction. We now have all of the ingredients to prove our contraction result. We
write

Nv(T ) :=N(v1
− v2, q1

− q2
; T ),

Nw(T ) :=N(w1
−w2, 0; T ),

M(T ) :=M(ζ 1
− ζ 2
; T ), (6-58)

where M and N are defined by (6-18). We will first rewrite the bounds (6-50), (6-52), and (6-53) in terms
of these new quantities.
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We begin with the right side of (6-50). According to the definition of Z, (6-46), we may bound

‖q‖2L2 H0 +

∫ T

0
Z. (1+ T )

[
M(T )+Nw(T )

]
+ TNv(T ). (6-59)

Similarly,

‖q‖L2 H0

[ 2∑
j=0

∥∥∂ j
t ζ

1
− ∂

j
t ζ

2∥∥
L2 H1/2 +‖v‖L2 H1

]
.
√

TNv(T )
[
(1+
√

T )
√
M(T )+

√
TNv(T )

]
, (6-60)∥∥∂tζ

1
− ∂tζ

2∥∥2
L2 H−1/2 ≤ TM(T ), (6-61)

and

‖q‖L∞H0

[ 1∑
j=0

∥∥∂ j
t ζ

1
− ∂

j
t ζ

2∥∥
L∞H1/2 +‖v‖L∞H1

]
.
√
Nv(T )

[√
M(T )+

√
Nv(T )

]
. (6-62)

Then, using (6-59)–(6-62) and Cauchy’s inequality, we may rewrite (6-50) as

‖∂tv‖
2
L∞H0 +‖∂tv‖

2
L2 H1

.
[
T + P(

√
ε)(1+ T )

]
M(T )+

[
P(
√
ε)(1+ T )

]
Nw(T )+

[
P(
√
ε)(1+ T )

]
Nv(T ). (6-63)

Now we turn to the elliptic estimates (6-52)–(6-53). The bound (6-52) becomes

‖v‖2L∞H2 +‖q‖2L∞H1 . ‖∂tv‖
2
L∞H0 +‖ζ

1
− ζ 2
‖

2
L∞H1/2 + P(

√
ε)
[
M(T )+Nw(T )

]
. (6-64)

Note here that we have kept the term with ζ 1
− ζ 2 because it does not yet have a small multiplier in front

of it. On the other hand, the bound (6-53) becomes

‖v‖2L2 H3 +‖q‖2L2 H2 . ‖∂tv‖
2
L2 H1 + T

(
1+ P(

√
ε)
)[
M(T )+Nw(T )

]
. (6-65)

We need not retain the ζ 1
− ζ 2 term in (6-65) since we can control the square of the temporal L2 norm by

the square of the L∞ norm to pick up a T factor.
Next we reformulate the bounds (6-55)–(6-57) in a similar fashion. The estimate (6-55) becomes

‖ζ 1
− ζ 2
‖

2
L∞H5/2 . TNw(T ). (6-66)

Similarly, we may sum (6-56) and (6-57) to get the bound∥∥∂tζ
1
− ∂tζ

2∥∥2
L∞H3/2 +

∥∥∂tζ
1
− ∂tζ

2∥∥2
L2 H1/2 .

[
1+ (T + T 2)P(

√
ε)
]
Nw(T ). (6-67)

Summing (6-66) and (6-67) yields

M(T ).
[
1+ (T + T 2)P(

√
ε)
]
Nw(T ). (6-68)

The estimate (6-22) directly follows from (6-68) and the definitions (6-58).
We now combine the above to get an estimate for Nv from our estimates for v, q. Note that due to

(6-66), estimate (6-64) also holds with ‖ζ 1
− ζ 2
‖

2
L∞H1/2 replaced by TNw(T ) on the right. We then add

this modified version of (6-64) to (6-65), and then add to this a large constant times (6-63). If the constant
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is chosen to be sufficiently large, we can absorb the appearances of ∂tv norms on the right side into the
left; doing so, we arrive at the bound

Nv(T ).
[
T + P(

√
ε)(1+T )

]
M(T )+

[
T + P(

√
ε)(1+T )

]
Nw(T )+

[
P(
√
ε)(1+T )

]
Nv(T ). (6-69)

This estimate may be combined with (6-68) to see that

Nv(T ).
[
1+ (T + T 2)P(

√
ε)
][

T + P(
√
ε)(1+ T )

]
Nw(T )+

[
P(
√
ε)(1+ T )

]
Nv(T ). (6-70)

By further restricting ε1 and T1, we may replace (6-70) by Nv(T )≤ 1
4N

w(T )+ 1
2N

v(T ), which may be
rearranged to see that Nv(T )≤ 1

2N
w(T ), which gives (6-21) after using the definitions of Nw(T ), Nv(T )

given in (6-58). �

Local well-posedness: the proof of Theorem 1.1. Now we combine Theorems 6.1 and 6.2 to produce
a solution to problem (1-4). Note that Theorem 1.1 follows directly from the following theorem by
changing notation.

Theorem 6.3. Assume that u0, η0 satisfy E0,F0 < ∞ and that the initial data ∂ j
t u(0), etc. are as

constructed on pages 338–339 and satisfy the (2N )-th compatibility conditions (5-22). Then there exist
0< δ0, T0 < 1 such that if E0 ≤ δ0 and 0< T ≤ T0 min{1, 1/F0}, then the following hold. There exists a
solution triple (u, p, η) to the problem (1-4) on the time interval [0, T ] that achieves the initial data and
satisfies

K(η)+K(u, p)≤ C(E0+ T F0) and F(η)≤ C(F0+E0+ T F0) (6-71)

for a universal constant C > 0. The solution is unique among functions that achieve the initial data and
satisfy E(η)+E(u, p) <∞. Moreover, η is such that the mapping 8( · , t), defined by (1-1), is a C4N−2

diffeomorphism for each t ∈ [0, T ].

Proof. We again divide the proof into several steps. First, we use Theorem 6.1 to construct a sequence
of approximate solutions. Then we use Theorem 6.2 to show the sequence converges in the norm
√
M(η; T )+N(u, p; T ), which yields strong convergence of the sequence. Next, we use an interpolation

argument to improve the convergence results. These then allow us to pass to the limit in the PDEs to
deduce that the limit solves the problem (1-4). Finally, we again use Theorem 6.2 to show that our
solution is unique.

We assume throughout the proof that T0 ≤min{T1, T }, where T is given by Theorem 6.1, and T1 is
given by Theorem 6.2. Let C > 0 denote the universal constant in Theorem 6.1. We further assume that
T0 ≤ ε1/(2C), where ε1 > 0 is the constant from Theorem 6.2.

Step 1: The sequence of approximate solutions. Suppose that δ0 ≤ δ, where δ is given in Theorem 6.1.
The hypotheses then allow us to apply Theorem 6.1 to produce the sequence of triples {(um, pm, ηm)}∞m=1,
all elements of which achieve the initial data, satisfy the PDEs (6-1), (6-2), and obey the bounds

sup
m≥1

(
K(ηm)+K(um, pm)

)
≤ C(E0+ T F0) and sup

m≥1
F(ηm)≤ C(F0+E0+ T F0). (6-72)
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We further assume that δ0 is small enough for Cδ0 ≤ ε1/2 (with ε1 again from Theorem 6.2) so that (6-72)
implies, in particular, that

sup
m≥1

max
{
E(ηm),E(um, pm)

}
≤ C(E0+ T F0)≤ C(δ0+ T0)≤ ε1. (6-73)

The uniform bounds (6-72) allow us to take weak and weak-∗ limits, up to the extraction of a
subsequence:

∂
j

t um ⇀∂
j

t u weakly in L2
(
[0, T ]; H 4N−2 j+1(�)

)
for j = 0, . . . , 2N ,

∂2N+1
t um ⇀∂2N+1

t u weakly in (XT )
∗,

∂
j

t um ∗

⇀∂
j

t u weakly-∗ in L∞
(
[0, T ]; H 4N−2 j (�)

)
for j = 0, . . . , 2N ,

∂
j

t pm ⇀∂
j

t p weakly in L2
(
[0, T ]; H 4N−2 j (�)

)
for j = 0, . . . , 2N − 1,

∂
j

t pm ∗

⇀∂
j

t p weakly-∗ in L∞
(
[0, T ]; H 4N−2 j−1(�)

)
for j = 0, . . . , 2N − 1

and 

ηm ⇀η weakly in L2
(
[0, T ]; H 4N+1/2(6)

)
,

∂tη
m ⇀∂tη weakly in L2

(
[0, T ]; H 4N−1/2(6)

)
,

∂
j

t η
m ⇀∂

j
t η weakly in L2

(
[0, T ]; H 4N−2 j+5/2(6)

)
for j = 2, . . . , 2N + 1,

ηm ∗

⇀η weakly-∗ in L∞
(
[0, T ]; H 4N+1/2(6)

)
,

∂
j

t η
m ∗

⇀∂
j

t η weakly-∗ in L∞
(
[0, T ]; H 4N−2 j (6)

)
for j = 1, . . . , 2N .

According to the weak and weak-∗ lower semicontinuity of the norms in K(ηm), K(um, pm), and F(ηm),
we find that the limit (u, p, η) satisfies

K(η)+K(u, p)≤ C(E0+ T F0) and F(η)≤ C(F0+E0+ T F0).

The collection of triples (v, q, ζ ) that achieve the initial data, that is, ∂ j
t v(0)= ∂

j
t u(0), ∂ j

t ζ(0)= ∂
j

t η(0)
for j = 0, . . . , 2N and ∂ j

t q(0)= ∂ j
t p(0) for j = 0, . . . , 2N − 1, is clearly convex; Lemma A.4 implies

that it is also closed with respect to the topology generated by the norm
√
D(ζ )+D(v, q). Therefore,

the collection is also closed in the corresponding weak topology. Then, since each (um, pm, ηm) is in this
collection, we deduce that the limit (u, p, η) is as well. Hence (u, p, η) achieves the initial data.

Step 2: Contraction. Now we want to improve the weak convergence results of the previous step to
strong convergence in the norm

√
M(η; T )+N(u, p; T ), where M and N are defined by (6-18). For

m ≥ 1, we set v1
= um+2, v2

= um+1, w1
= um+1, w2

= um , q1
= pm+2, q2

= pm+1, ζ 1
= ηm+1, ζ 2

= ηm

in Theorem 6.2. Because of (6-1)–(6-2), we have that (6-20) holds; the initial data of w j , v j , q j , ζ j

match for j = 1, 2 by construction. Also, (6-73) implies that (6-19) holds, so all of the hypotheses of
Theorem 6.2 are satisfied. Then (6-21) and (6-22) imply that

N
(
um+2

− um+1, pm+2
− pm+1

; T
)
≤

1
2N
(
um+1

− um, pm+1
− pm

; T
)

(6-74)

and
M(ηm+1

− ηm
; T ).N

(
um+1

− um, pm+1
− pm

; T
)
. (6-75)
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The bound (6-74) implies that the sequence {(um, pm)}∞m=1 is Cauchy in the norm
√
N( · , · ; T ), so as

m→∞, 
um
→ u in L∞

(
[0, T ]; H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
,

∂t um
→ ∂t u in L∞

(
[0, T ]; H 0(�)

)
∩ L2

(
[0, T ], H 1(�)

)
,

pm
→ p in L∞

(
[0, T ]; H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
.

(6-76)

Because of (6-75), we further deduce that the sequence {ηm
}
∞

m=1 is Cauchy in the norm
√
M( · ; T ), so

that, as m→∞, 
ηm
→ η in L∞

(
[0, T ]; H 5/2(6)

)
,

∂tη
m
→ ∂tη in L∞

(
[0, T ]; H 3/2(6)

)
,

∂2
t η

m
→ ∂2

t η in L2
(
[0, T ]; H 1/2(6)

)
.

(6-77)

Step 3: Interpolation for improved strong convergence. Since (um, pm, ηm) obey the bounds (6-72), we
can parlay the convergence results (6-76), (6-77) into convergence in better norms by use of interpolation
theory. We first interpolate with L2 H 0 norms of temporal derivatives (such estimates take the form

‖∂k
t f ‖L2 H0 ≤ C(T )‖ f ‖θL2 H0

∥∥∂ j
t f
∥∥1−θ

L2 H0 (6-78)

for j > k ≥ 0 and θ = θ( j, k) ∈ (0, 1) and C(T ) a constant depending on T ), which reveals that
∂

j
t um
→ ∂

j
t u in L2

(
[0, T ]; H 0(�)

)
for j = 0, . . . , 2N − 1,

∂
j

t pm
→ ∂

j
t p in L2

(
[0, T ]; H 0(�)

)
for j = 0, . . . , 2N − 2,

∂
j

t η
m
→ ∂

j
t η in L2

(
[0, T ]; H 0(6)

)
for j = 0, . . . , 2N .

(6-79)

Here the range of j is determined by the range of j appearing in D(η) and D(u, p). Then we use spatial
interpolation between H 0 and H k to deduce from (6-79) that

∂
j

t um
→ ∂

j
t u in L2

(
[0, T ]; H 4N−2 j (�)

)
for j = 0, . . . , 2N − 1,

∂
j

t pm
→ ∂

j
t p in L2

(
[0, T ]; H 4N−2 j−1(�)

)
for j = 0, . . . , 2N − 2,

ηm
→ η in L2

(
[0, T ]; H 4N (6)

)
,

∂tη
m
→ ∂tη in L2

(
[0, T ]; H 4N−1(6)

)
,

∂
j

t η
m
→ ∂

j
t η in L2

(
[0, T ]; H 4N−2 j+2(6)

)
for j = 2, . . . , 2N .

(6-80)

Here the Sobolev index is determined by the Sobolev index k in the L2 H k norms of D(η) and D(u, p).
Finally, we use the temporal L2 convergence of (6-80) to get L∞ and C0 convergence by applying
Lemma A.4. This yields

∂
j

t um
→ ∂

j
t u in C0

(
[0, T ]; H 4N−2 j−1(�)

)
for j = 0, . . . , 2N − 2,

∂
j

t pm
→ ∂

j
t p in C0

(
[0, T ]; H 4N−2 j−2(�)

)
for j = 0, . . . , 2N − 3,

ηm
→ η in C0

(
[0, T ]; H 4N−1/2(6)

)
,

∂tη
m
→ ∂tη in C0

(
[0, T ]; H 4N−3/2(6)

)
,

∂
j

t η
m
→ ∂

j
t η in C0

(
[0, T ]; H 4N−2 j+1(6)

)
for j = 2, . . . , 2N − 1.

(6-81)
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Step 4: Passing to the limit in the PDEs. The strong convergence results of (6-81) are more than sufficient
for us to pass to the limit in the equations (6-1), (6-2) for each t ∈ [0, T ]. Doing so, we find that the limits
(u, p, η) are a strong solution to problem (1-4) on the time interval t ∈ [0, T ].

Step 5: Uniqueness. We now turn to the question of uniqueness of our solution (u, p, η). Suppose that
(v, q, ζ ) is another solution to (1-4) on the time interval [0, T ] that achieves the same initial data as
(u, p, η) and which satisfies E(ζ )+E(v, q)<∞. Since (v, q, ζ ) achieve the same data as (u, pη), which
is small, we may restrict to a temporal subinterval [0, T∗] ⊂ [0, T ] so that E(ζ )+E(v, q)≤ ε1, where ε1

is given in Theorem 6.2 and the norms are computed on [0, T∗]. We then set v1
= w1

= u, v2
= w2

= v,
q1
= p, q2

= q , ζ 1
= η, and ζ 2

= ζ in Theorem 6.2 to deduce that

N(u− v, p− q; T∗)≤ 1
2N(u− v, p− q; T∗) and M(η− ζ ; T∗).N(u− v, p− q; T∗),

which implies that u = v, p = q , η= ζ on the time interval [0, T∗]. This argument can then be iterated in
the usual way, repeatedly increasing T∗, to extend the uniqueness to all of the interval [0, T ].

Step 6: Diffeomorphism. It is easy to check that the smallness of K(η) is sufficient to guarantee that the
map 8, given by (1-1), is a C1 diffeomorphism for each t ∈ [0, T ]. The fact that it is in C4N−2 follows
easily from Lemma A.10 in the periodic case and Lemma A.8 in the infinite case. �

Appendix: Analytic tools

Products in Sobolev spaces. We will need some estimates of the product of functions in Sobolev spaces.

Lemma A.1. Let U denote either 6 or �.

(1) Let 0≤ r ≤ s1 ≤ s2 be such that s1 > n/2. Let f ∈ H s1(U ), g ∈ H s2(U ). Then f g ∈ H r (U ) and

‖ f g‖H r . ‖ f ‖H s1‖g‖H s2 . (A-1)

(2) Let 0≤ r ≤ s1 ≤ s2 be such that s2 > r +n/2. Let f ∈ H s1(U ), g ∈ H s2(U ). Then f g ∈ H r (U ) and

‖ f g‖H r . ‖ f ‖H s1‖g‖H s2 . (A-2)

(3) Let 0≤ r ≤ s1 ≤ s2 be such that s2 > r + n/2. Let f ∈ H−r (6), g ∈ H s2(6). Then f g ∈ H−s1(6)

and
‖ f g‖−s1 . ‖ f ‖−r‖g‖s2 . (A-3)

Proof. The proofs of (A-1) and (A-2) are standard; the bounds are first proved in Rn with the Fourier
transform, and then the bounds in sufficiently nice subsets of Rn are deduced by use of an extension
operator. To prove (A-3), we argue by duality. For ϕ ∈ H s1 , we use (A-2) bound∫

6

ϕ f g . ‖ϕg‖r‖ f ‖−r . ‖ϕ‖s1‖g‖s2‖ f ‖−r ,

so that taking the supremum over ϕ with ‖ϕ‖s1 ≤ 1, we get (A-3). �

We will also need the following variant.
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Lemma A.2. Suppose that f ∈ C1(6) and g ∈ H 1/2(6). Then

‖ f g‖1/2 . ‖ f ‖C1‖g‖1/2.

Proof. Consider the operator F : H k
→ H k given by F(g)= f g for k = 0, 1. It is a bounded operator for

k = 0, 1 since
‖ f g‖0 ≤ ‖ f ‖C1‖g‖0 and ‖ f g‖1 . ‖ f ‖C1‖g‖1.

Then the theory of interpolation of operators implies that F is bounded from H 1/2 to itself, with operator
norm less than a constant times

√
‖ f ‖C1

√
‖ f ‖C1 = ‖ f ‖C1 , which is the desired result. �

Identities involving A. We now record some useful identities involving A, as defined by (1-3).

Lemma A.3. The following hold.

(1) For each j = 1, 2, 3, we have that ∂k(JA jk)= 0.

(2) On 6, we have that JAe3 = N, while on 6b, we have that JAe3 = e3.

(3) Let R be defined by (4-8). Then RT N=−∂t N on 6.

Proof. The first item may be verified by a simple computation. The first part of the second item holds
since b̃ = 1 on 6, which means that

JAe3 =−Ae1− Be2+ e3 =−∂1η̄e1− ∂2η̄e2+ e3 =−∂1ηe1− ∂2ηe2+ e3 = N

on 6. The second part of the third item follows similarly since b̃ = 0 on 6b. For the third item, we
compute RT

=−K∂t J − ∂t AA−1. Then, using the second item, we find that, on 6,

RT N= (−K∂t J − ∂t AA−1)JAe3 =−∂t JAe3− J∂t Ae3

=

−AJ∂t K
−B J∂t K
∂t J K

+
∂t A+ AJ∂t K
∂t B+ B J∂t K
−J∂t K

=
∂t A
∂t B

0

=−∂t N. �

Continuity and temporal derivatives. We will need the following interpolation result, which affords us
control of the L∞H k norm of a function f , given that we control f in L2 H k+m and ∂t f in L2 H k−m .

Lemma A.4. Let 0 denote either6 or�. Suppose ζ ∈ L2([0, T ]; H s1(0)) and ∂tζ ∈ L2([0, T ]; H s2(0))

for s1 ≥ s2 ≥ 0. Let s = (s1+ s2)/2. Then ζ ∈ C0([0, T ]; H s(0)) (after possibly being redefined on a set
of measure 0), and

‖ζ‖2L∞H s .

(
1+ 1

T

)(
‖ζ‖2L2 H s1 +‖∂tζ‖

2
L2 H s2

)
. (A-4)

Proof. According to the usual theory of extensions and restrictions in Sobolev spaces, it suffices to prove
the result with 0 = Rn or 0 = (L1T)× (L2T)×Rm for n = 2, 3, m = 0, 1. We will prove the result
assuming that 0 = Rn; the proof in the other case may be derived similarly, replacing integrals in Fourier
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space with sums, etc. Assume for the moment that ζ is smooth. Writinĝ for the Fourier transform, we
compute

∂t‖ζ(t)‖2s = 2<
(∫

Rn
〈ξ〉2s ζ̂ (ξ, t)∂t ζ̂ (ξ, t) dξ

)
≤ 2

∫
Rn
〈ξ〉2s
|ζ̂ (ξ, t)| |∂t ζ̂ (ξ, t)| dξ

= 2
∫

Rn
〈ξ〉s1 |ζ̂ (ξ, t)| 〈ξ〉s2 |∂t ζ̂ (ξ, t)| dξ ≤

∫
Rn
〈ξ〉2s1 |ζ̂ (ξ, t)|2 dξ +

∫
Rn
〈ξ〉2s2 |∂t ζ̂ (ξ, t)|2 dξ

= ‖ζ(t)‖2s1
+‖∂tζ(t)‖2s2

.

Hence for r, t ∈ [0, T ], we have that ‖ζ(t)‖2s ≤ ‖ζ(r)‖
2
s +‖ζ‖

2
L2 H s1 +‖∂tζ‖

2
L2 H s2 . We can then integrate

both sides of this inequality with respect to r ∈ [0, T ] to deduce the bound

sup
0≤t≤T
‖ζ(t)‖2s ≤

1
T
‖ζ‖2L2 H s +‖ζ‖

2
L2 H s1 +‖∂tζ‖

2
L2 H s2 .

(
1+ 1

T

)(
‖ζ‖2L2 H s1 +‖∂tζ‖

2
L2 H s2

)
. (A-5)

If ζ is not smooth, we may employ a standard mollification argument (see [Evans 2010, Section 5.9]) in
conjunction with (A-5) to deduce that ζ ∈ C0([0, T ]; H s(Rn)) and that (A-4) holds. �

Extension results. In our well-posedness arguments, we need to be able to take the initial data ∂ j
t u(0),

j = 0, . . . , 2N and extend it to a function u satisfying K2N (u) . E0(u, 0), defined by (5-2) and (5-7),
respectively. This extension is the content of the following lemma.

Lemma A.5. Suppose that ∂ j
t u(0) ∈ H 4N−2 j (�) for j = 0, . . . , 2N. Then there exists an extension u,

achieving the initial data, so that

∂
j

t u ∈ L2(
[0,∞); H 4N−2 j+1(�)

)
∩ L∞

(
[0,∞); H 4N−2 j (�)

)
for j = 0, . . . , 2N. Moreover, K2N (u). E0(u, 0), where in the definition of K2N (u) we take T =∞.

Proof. Owing to the usual theory of extensions and restrictions in Sobolev spaces, it suffices to prove the
result with � replaced by R3 in the nonperiodic case and (L1T)× (L2T)×R in the periodic case. The
proof in the periodic case can be derived from the nonperiodic proof by trivially changing some integrals
over frequencies to sums; thus we present only the proof in R3.

Let f j ∈ H 4N−2 j (R3) denote the spatial extension of ∂ j
t u(0) ∈ H 4N−2 j (�). It suffices to construct

F j (x, t) for j = 0, . . . , 2N so that ∂k
t F j (x, 0)= δ j,k f j (x) (δ j,k is the Kronecker delta) and

‖∂k
t F j‖

2
L2 H4N−2k+1 +‖∂

k
t F j‖

2
L∞H4N−2k . ‖ f j‖

2
4n−2 j (A-6)

for k = 0, . . . , 2N . Indeed, with such F j in hand, the sum F =
∑2N

j=0 F j is the desired extension. Note
that in the norms of (A-6), the symbol L p H m denotes L p([0,∞); H m(R3)).

Let ϕ j ∈C∞c (R) be such that ϕ(k)j (0)=δ j,k for k=0, . . . , 2N (here (k) is the number of derivatives). We

then define F̂ j (ξ, t)= ϕ j (t〈ξ〉2) f̂ j (ξ)〈ξ〉
−2 j , where ·̂ denotes the Fourier transform and 〈ξ〉 =

√
1+ |ξ |2.
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By construction, ∂k
t F̂ j (ξ, t)= ϕ(k)j (t〈ξ〉

2) f̂ j (ξ)〈ξ〉
2(k− j), so that ∂k

t F( · , 0)= δ j,k f j . We estimate

∥∥∂k
t F j ( · , t)

∥∥2
4N−2k =

∫
R3
〈ξ〉2(4N−2k)

∣∣ϕ(k)j (t〈ξ〉
2)
∣∣2∣∣ f̂ j (ξ)

∣∣2〈ξ〉2(2k−2 j) dξ

=

∫
R3

∣∣ϕ(k)j (t〈ξ〉
2)
∣∣2∣∣ f̂ j (ξ)

∣∣2〈ξ〉2(4N−2 j) dξ ≤
∥∥ϕ(k)j

∥∥2
L∞
∥∥ f j

∥∥2
4N−2 j ,

so that ‖∂k
t F j‖

2
L∞H4N−2k . ‖ f j‖

2
4N−2 j . Similarly,

∥∥∂k
t F j

∥∥2
L2 H4N−2k+1 =

∫
∞

0

∫
R3
〈ξ〉2(4N−2k+1)∣∣ϕ(k)j (t〈ξ〉

2)
∣∣2∣∣ f̂ j (ξ)

∣∣2〈ξ〉2(2k−2 j) dξ dt

=

∫
∞

0

∫
R3

∣∣ϕ(k)j (t〈ξ〉
2)
∣∣2∣∣ f̂ j (ξ)

∣∣2〈ξ〉2(4N−2 j+1) dξ dt

=

∫
R3

∣∣ f̂ j (ξ)
∣∣2〈ξ〉2(4N−2 j+1)

(∫
∞

0

∣∣ϕ(k)j (t〈ξ〉
2)
∣∣2 dt

)
dξ

=

∫
R3

∣∣ f̂ j (ξ)
∣∣2〈ξ〉2(4N−2 j+1)

(
1
〈ξ〉2

∫
∞

0

∣∣ϕ(k)j (r)
∣∣2 dr

)
dξ

=
∥∥ϕ(k)j

∥∥2
L2

∫
R3

∣∣ f̂ j (ξ)
∣∣2〈ξ〉2(4N−2 j) dξ =

∥∥ϕ(k)j

∥∥2
L2

∥∥ f j
∥∥2

4N−2 j , (A-7)

so that ‖∂k
t F j‖

2
L2 H4N−2k+1 . ‖ f j‖

2
4N−2 j . Note that in (A-7), we have used Fubini’s theorem to switch the

order of integration; this is possible since ϕ is compactly supported. We then have that F j satisfies the
desired properties, completing the proof. �

A similar result can be proved for the pressure. We omit the proof.

Lemma A.6. Suppose that ∂ j
t p(0) ∈ H 4N−2 j−1(�) for j = 0, . . . , 2N − 1. Then there exists an exten-

sion p, achieving the initial data, such that

∂
j

t p ∈ L2(
[0,∞); H 4N−2 j (�)

)
∩ L∞

(
[0,∞); H 4N−2 j−1(�)

)
for j = 0, . . . , 2N − 1. Moreover,

2N−1∑
j=0

∥∥∂ j
t p
∥∥2

L2 H4N−2 j +
∥∥∂ j

t p
∥∥2

L∞H4N−2 j−1 .
2N−1∑

j=0

∥∥∂ j
t p(0)

∥∥2
H4N−2 j−1 .

Poisson integral: nonperiodic case. For a function f , defined on 6 = R2, the Poisson integral in
R2
× (−∞, 0) is defined by

P f (x ′, x3)=

∫
R2

f̂ (ξ)e2π |ξ |x3e2π i x ′·ξ dξ. (A-8)

Although P f is defined in all of R2
× (−∞, 0), we will only need bounds on its norm in the restricted

domain �= R2
× (−b, 0). This yields a couple improvements of the usual estimates of P f on the set

R2
× (−∞, 0).
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Lemma A.7. Let P f be the Poisson integral of a function f that is either in Ḣq(6) or Ḣq−1/2(6) for
q ∈ N (here Ḣ s is the usual homogeneous Sobolev space of order s). Then

‖∇
qP f ‖20 .

∫
R2
|ξ |2q
| f̂ (ξ)|2

(1− e−4πb|ξ |

|ξ |

)
dξ, (A-9)

and in particular,

‖∇
qP f ‖20 . ‖ f ‖2Ḣq−1/2(6)

and ‖∇
qP f ‖20 . ‖ f ‖2Ḣq (6)

. (A-10)

Proof. Employing Fubini, the horizontal Fourier transform, and Parseval, we may bound

‖∇
qP f ‖20 .

∫
R2

∫ 0

−b
|ξ |2q

∣∣ f̂ (ξ)
∣∣2e4π |ξ |x3 dx3 dξ

≤

∫
R2
|ξ |2q

∣∣ f̂ (ξ)
∣∣2(∫ 0

−b
e4π |ξ |x3 dx3

)
dξ .

∫
R2
|ξ |2q

∣∣ f̂ (ξ)
∣∣2(1− e−4πb|ξ |

|ξ |

)
dξ.

(A-11)

This is (A-9). To deduce (A-10) from (A-9), we simply note that

1− e−4πb|ξ |

|ξ |
≤min

{
4πb,

1
|ξ |

}
, (A-12)

which means we are free to bound the right-hand side of (A-11) by either ‖ f ‖2
Ḣq−1/2(6)

or ‖ f ‖2
Ḣq (6)

. �

We will also need L∞ estimates.

Lemma A.8. Let P f be the Poisson integral of f , defined on 6. Let q ∈ N, s > 1. Then

‖∇
qP f ‖2L∞ . ‖D

q f ‖2s . (A-13)

Proof. We use the definition of P f and the trivial estimate exp(2π |ξ |x3)≤ 1 in � to get the bound

‖∇
qP f ‖L∞ .

∫
R2
|ξ |q

∣∣ f̂ (ξ)
∣∣ dξ.

The estimate (A-13) then follows from this and the easy bound∫
R2
|ξ |q

∣∣ f̂ (ξ)
∣∣ dξ . ‖Dq f ‖s

(∫
R2
〈ξ〉−2sdξ

)1/2

. ‖Dq f ‖s,

which holds when s > 1. �

Poisson integral: periodic case. Suppose that 6 = (L1T)× (L2T). We define the Poisson integral in
�− =6× (−∞, 0) by

P f (x)=
∑

n∈(L−1
1 Z)×(L−1

2 Z)

e2π in·x ′e2π |n|x3 f̂ (n), (A-14)

where for n ∈ (L−1
1 Z)× (L−1

2 Z), we have written

f̂ (n)=
∫
6

f (x ′)e
−2π in·x ′

L1L2
dx ′.
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It is well known that P : H s(6)→ H s+1/2(�−) is a bounded linear operator for s > 0. We now show
how derivatives of P f can be estimated in the smaller domain �.

Lemma A.9. Let P f be the Poisson integral of a function f that is either in Ḣq(6) or Ḣq−1/2(6) for
q ∈ N. Then

‖∇
qP f ‖20 . ‖ f ‖2Ḣq−1/2(6)

and ‖∇
qP f ‖20 . ‖ f ‖2Ḣq (6)

.

Proof. Since P f is defined on 6× (−∞, 0), it suffices to prove the estimates on �̃ := 6× (−b+, 0)
with b+ = supx ′∈6 b since �⊂ �̃. By Fubini and Parseval,∥∥∇qP f

∥∥2
H0(�̃)

.
∑

n∈(L−1
1 Z)×(L−1

2 Z)

∫ 0

−b+
|n|2q

∣∣ f̂ (n)
∣∣2e4π |n|x3 dx3

.
∑

n∈(L−1
1 Z)×(L−1

2 Z)

|n|2q
∣∣ f̂ (n)

∣∣2(1− e−4πb+|n|

|n|

)
. (A-15)

However,
1− e−4πb+|n|

|n|
≤min

{
4πb+,

1
|n|

}
,

which means we are free to bound the right-hand side of (A-15) by either ‖ f ‖2
Ḣq−1/2(6)

or ‖ f ‖2
Ḣq (6)

. �

We will also need L∞ estimates.

Lemma A.10. Let P f be the Poisson integral of a function f that is in Ḣq+s(6) for q ≥ 1 an integer
and s > 1. Then

‖∇
qP f ‖2L∞ . ‖ f ‖2Ḣq+s .

The same estimate holds for q = 0 if f satisfies
∫
6

f = 0.

Proof. We estimate

‖∇
qP f ‖L∞ .

∑
n∈(L−1

1 Z)×(L−1
2 Z)

∣∣ f̂ (n)
∣∣|n|q . ‖ f ‖Ḣq+s

( ∑
n∈(L−1

1 Z)×(L−1
2 Z)\{0}

|n|−2s
)1/2

. ‖ f ‖Ḣq+s

if s > 1. The same estimate works with q = 0 if f̂ (0)= 0. �

Transport estimate. Let 6 be either periodic or nonperiodic. Consider the equation{
∂tη+ u · Dη = g in 6× (0, T ),
η(t = 0)= η0,

(A-16)

with T ∈ (0,∞]. We have the following estimate of the transport of regularity for solutions to (A-16),
which is a particular case of a more general result proved in [Danchin 2005a]. Note that the result in
[Danchin 2005a] is stated for6=R2, but the same result holds in the periodic setting6= (L1T)×(L2T),
as described in [Danchin 2005b].
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Lemma A.11 [Danchin 2005a, Proposition 2.1]. Let η be a solution to (A-16). Then there is a universal
constant C > 0 such that for any 0≤ s < 2,

sup
0≤r≤t
‖η(r)‖H s ≤ exp

(
C
∫ t

0
‖Du(r)‖H3/2 dr

)(
‖η0‖H s +

∫ t

0
‖g(r)‖H s dr

)
.

Proof. Use p= p2= 2, N = 2, and σ = s in Proposition 2.1 of [Danchin 2005a] along with the embedding
H 3/2 ↪→ B1

2,∞ ∩ L∞. �

Poincaré-type inequalities. Let 6 and � be either periodic or nonperiodic.

Lemma A.12. We have
‖ f ‖2L2(�)

. ‖ f ‖2L2(6)
+‖∂3 f ‖2L2(�)

(A-17)

for all f ∈ H 1(�). Also, if f ∈W 1,∞(�), then

‖ f ‖2L∞(�) . ‖ f ‖2L∞(6)+‖∂3 f ‖2L∞(�) . (A-18)

Proof. By density, we may assume that f is smooth. Writing x = (x ′, x3) for x ′ ∈6 and x3 ∈ (−b(x ′), 0),
we have

| f (x ′, x3)|
2
= | f (x ′, 0)|2− 2

∫ 0

x3

f (x ′, z)∂3 f (x ′, z) dz

≤ | f (x ′, 0)|2+ 2
∫ 0

−b(x ′)
| f (x ′, z)||∂3 f (x ′, z)| dz.

We may integrate this with respect to x3 ∈ (−b(x ′), 0) to get∫ 0

−b(x ′)
| f (x ′, x3)|

2 dx3 . | f (x ′, 0)|2+ 2
∫ 0

−b(x ′)
| f (x ′, z)||∂3 f (x ′, z)| dz.

Now we integrate over x ′ ∈6 to find∫
�

| f (x)|2 dx . ‖ f ‖2L2(6)
+ 2

∫
�

| f (x)||∂3 f (x)| dx ≤ ‖ f ‖2L2(6)
+ ε ‖ f ‖2L2(�)

+
1
ε
‖∂3 f ‖2L2(�)

for any ε > 0. Choosing ε > 0 sufficiently small then yields (A-17). The estimate (A-18) follows similarly,
taking suprema rather than integrating. �

We will need a version of Korn’s inequality, proved, for instance, in Lemma 2.7 of [Beale 1981].

Lemma A.13. We have ‖u‖1 . ‖Du‖0 for all u ∈ H 1(�;R3) such that u = 0 on 6b.

We also record the standard Poincaré inequality, which applies for functions taking either vector or
scalar values.

Lemma A.14. We have ‖ f ‖0 . ‖ f ‖1 . ‖∇ f ‖0 for all f ∈ H 1(�) such that f = 0 on 6b. Also,
‖ f ‖L∞(�) . ‖ f ‖W 1,∞(�) . ‖∇ f ‖L∞(�) for all f ∈W 1,∞(�) such that f = 0 on 6b.
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An elliptic estimate. The proof of the following estimate may be found in [Beale 1981] in the nonperiodic
case. The same proof holds in the periodic case with obvious modification.

Lemma A.15. Suppose (u, p) solve
−1u+∇ p = φ ∈ H r−2(�),

div u = ψ ∈ H r−1(�),

(pI −D(u))e3 = α ∈ H r−3/2(6),

u|6b = 0.

Then, for r ≥ 2,
‖u‖2H r +‖p‖2H r−1 . ‖φ‖

2
H r−2 +‖ψ‖

2
H r−1 +‖α‖

2
H r−3/2 .

Integration by parts. Here we record a temporal integration-by-parts equation. We assume throughout
that η is sufficiently regular that J and A are C1([0, T ]; L∞(�)).

Lemma A.16. Suppose that

p ∈ C0(
[0, T ]; H 0(�)

)
,

w ∈ C0(
[0, T ]; H 0(�)

)
∩ L2(

[0, T ]; 0 H 1(�)
)
,

divAw = F ∈ H 1((0, T ); H 0(�)
)
.

Define P ∈ C0
(
[0, T ]; (0 H 1(�))∗

)
via 〈P, v〉∗ = (p, divA v)0. Suppose also that

∂t(Jw− P) ∈ L2(
[0, T ]; (0 H 1(�))∗

)
.

Then, for any 0≤ s ≤ t ≤ T , we have

1
2‖w(t)‖

2
0−

1
2‖w(s)‖

2
0−

(
p(t), F(t)

)
0+

(
p(s), F(s)

)
0

=

∫ t

s
〈∂t(Jw− P), w〉∗

∫ t

s

∫
�

−
1
2∂t J |w|2+ p∂t(JAi j )∂ jwi − p∂t(J F). (A-19)

Proof. Step 1: Mollification. Let ϕ ∈ C∞c (R) be such that ϕ(t) = 1 for t ∈ [−2T, 2T ]. We define
w ∈ C0

c (R; H 0(�)) via

w = ϕw̃, where w̃(t) :=


w(0) t < 0,

w(t) 0≤ t ≤ T,

w(T ) t ≥ T .

Similarly, we define p̄ ∈ C0
c (R; H 0(�)) via

p̄ = ϕ p̃, where p̃(t) :=


p(0) t < 0,

p(t) 0≤ t ≤ T,

p(T ) t ≥ T .

Also let F ∈ H 1(R; H 0(�)) denote a bounded extension of F to all of R such that supp(F)⊂ [−2T, 2T ].
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Now we let ψε be the usual 1−D approximate identity (satisfying ψε(x)=ψ(x/ε)/ε for ψ ∈C∞c (R)
with 0≤ ψ , supp(ψ)⊂ (−1, 1), and

∫
ψ = 1) and define

wε := ψε ∗w ∈ C∞c (R; H 0(�)),

pε := ψε ∗ p̄ ∈ C∞c (R; H 0(�)),

Fε := ψε ∗ F ∈ C∞c (R; H 0(�)).

Let us define
Pε ∈ C1((0, T ); (0 H 1(�))∗

)
via

〈Pε, v〉∗ =
∫
�

pε J divA v.

The usual properties of mollifiers imply that

pε→ p in C0(
[0, T ]; H 0(�)

)
,

wε→ w in C0(
[0, T ]; H 0(�)

)
,

wε→ w in L2(
[0, T ]; 0 H 1(�)

)
,

Fε→ F in H 1((0, T ); H 0(�)
)
,

Pε→ P in C0(
[0, T ]; (0 H 1(�))∗

)
. (A-20)

Step 2: Computation. Now we define the function

f (t)= 1
2‖w(t)‖

2
0− (p(t), F(t))0,

which clearly satisfies f ∈ C0([0, T ]). We also define

fε(t)= 1
2‖wε(t)‖

2
0− (pε(t), Fε(t))0,

which satisfies fε ∈ C1([0, T ]).
Note that since Fε→ F in H 1

(
(0, T ); H 0(�)

)
, the Sobolev embedding in one dimension implies that

Fε→ F in C0(
[0, T ]; H 0(�)

)
.

From this and the C0 H 0 convergence results for pε and wε listed in (A-20), we see that

fε→ f in C0([0, T ]). (A-21)

Now, since fε is C1, we may let 0≤ s ≤ t ≤ T and compute

fε(t)− fε(s)=
∫ t

s
∂t fε =

∫ t

s

∫
�

∂t(Jwε) ·wε − 1
2∂t J |wε|2−

∫
�

∂t pε J Fε + pε∂t(J Fε)

=

∫ t

s

∫
�

∂t(Jwε) ·wε − 1
2∂t J |wε|2−

∫ t

s

∫
�

∂t pε J divAwε + pε∂t(JAi j )∂ jwε,i

− pε∂t(JAi j )∂ jwε,i + ∂t pε J (Fε − divAwε)+ pε∂t(J Fε)

=

∫ t

s

〈
∂t(Jwε − Pε), wε

〉
∗
+

∫
�

−
1
2∂t J |wε|2+ pε∂t(JAi j )∂ jwε,i

− ∂t pε J (Fε − divAwε)− pε∂t(J Fε). (A-22)
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Now we send ε to 0. Note that by Lemma A.17, the pε convergence listed in (A-20), and an integration
by parts in time, we know that ∫ t

s

∫
�

∂t pε J (Fε − divAwε)→ 0.

Similarly, from Lemma A.17 and the wε convergence listed in (A-20), we have that∫ t

s

〈
∂t(Jwε − Pε), wε

〉
∗
→

∫ t

s

〈
∂t(Jw− P), w

〉
∗
.

Then from these and (A-20), we can pass to the limit on the right side of (A-22), and from (A-21) we can
pass to the limit on the left. We then get (A-19). �

The next lemma contains some of the convergence results used in the proof of the previous lemma.

Lemma A.17. We have

divAwε − Fε→ 0 in C0(
[0, T ]; H 0(�)

)
as ε→ 0,

∂t(divAwε − Fε)→ 0 in L2(
[0, T ]; H 0(�)

)
as ε→ 0.

(A-23)

Also,

∂t(Jwε − Pε)→ ∂t(Jw− P) in L2(
[0, T ]; (0 H 1(�))∗

)
as ε→ 0. (A-24)

Proof. Step 1: Proof of (A-23). We compute

divAwε(t)− Fε(t)=
∫

R

1
ε
ψ
( t−s
ε

)(
Ai j (t)−Ai j (s)

)
∂ jwi (s) ds.

Then∥∥divAwε(t)− Fε(t)
∥∥

0 ≤ ‖∂t Ai j‖C0 L∞

∫ t+ε

t−ε

|t−s|
ε

ψ
( t−s
ε

)
‖∂ jwi (s)‖0 ds

. ‖∂t Ai j‖C0 L∞

∫ t+ε

t−ε
ψ
( t − s
ε

)
‖∂ jwi (s)‖0 ds

. ‖∂t Ai j‖C0 L∞
√

2ε
(∫ t+ε

t−ε
‖∂ jwi (s)‖20 ds

)1/2

.
√
ε‖∂t Ai j‖C0 L∞‖w‖L2 H1 .

Hence

sup
t∈[0,T ]

∥∥divAwε(t)− Fε(t)
∥∥

0 .
√
ε‖∂t Ai j‖C0 L∞‖w‖L2 H1 → 0. (A-25)

Next, we handle the time derivative. We write ∂t
(
divAwε(t)− Fε(t)

)
= I + II , with

I :=
∫

R

1
ε
ψ
( t−s
ε

)
∂t Ai j (t)∂ jwi (s) ds.

Clearly

I → ∂t Ai j∂ jwi in L2L2 as ε→ 0.
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Also,

II =
∫ t+ε

t−ε

1
ε
ψ ′
( t − s
ε

)(Ai j (t)−Ai j (s)
ε

)
∂ jwi (s) ds

=

∫ 1

−1
ψ ′(r)

(Ai j (t)−Ai j (t − εr)
ε

)
∂ jwi (t − εr) dr.

Note that ∫
R

rψ ′(r) dr =−
∫

R

ψ(r) dr =−1.

Hence, for any k ∈ L2 H 0, we have

II (t)− k(t)=
∫ 1

−1
ψ ′(r)

[(
Ai j (t)−Ai j (t − εr)

ε

)
∂ jwi (t − εr)+ k(t)r

]
dr.

From this we see that if we choose

k(t)=−∂t Ai j (t)∂ jwi (t) ∈ L2 H 0,

then
II − k→ 0 in L2 H 0.

Hence
∂t
(
divAwε(t)− Fε(t)

)
= I + II → 0 in L2 H 0,

which together with (A-25) is (A-23).

Step 2: Proof of (A-24). Since Jw− P ∈ H 1
(
(0, T ); (0 H 1(�))∗

)
, the usual theory of mollifiers shows

that
ψε ∗ (Jw− P)→ Jw− P in H 1((0, T ); (0 H 1(�))∗

)
as ε→ 0.

Hence, to prove (A-24) it suffices to prove that

∂t
[
(Jwε − Pε)−ψε ∗ (Jw− P)

]
→ 0 in L2(

[0, T ]; (0 H 1(�))∗
)

as ε→ 0.

This convergence may be deduced by modifying the argument used above in Step 1. �
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