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POROUS MEDIA: THE MUSKAT PROBLEM IN THREE DIMENSIONS

ANTONIO CÓRDOBA, DIEGO CÓRDOBA AND FRANCISCO GANCEDO

The Muskat problem involves filtration of two incompressible fluids through a porous medium. We
consider the problem in three dimensions, discussing the relevance of the Rayleigh–Taylor condition and
the topology of the initial interface, in order to prove the local existence of solutions in Sobolev spaces.

1. Introduction

The Muskat problem [Muskat and Wickoff 1937; Bear 1972] involves filtration of two incompressible fluids
through a porous medium, characterized by a positive constant κ quantifying its porosity and permeability.
The two fluids, having velocity fields v1 and v2, occupy disjoint regions D1 and D2

= R3
− D1, with a

common boundary (interface) given by the surface S = ∂D1
= ∂D2. Naturally, those domains change

with time, as does the interface. We denote by p j ( j = 1, 2) the corresponding pressures, and we will
also assume that the dynamical viscosities µ j and the densities ρ j are constants with µ1

6= µ2, ρ1
6= ρ2.

Conservation of mass in this setting is given by the equation ∇ ·v = 0 (in the distribution sense), where
v = v1χD1 + v2χD2 .

The momentum equation, obtained experimentally by Darcy [1856] (see also [Bear 1972]), is

µ j

κ
v j
=−∇ p j

− (0, 0, ρ j g), j = 1, 2,

where g is the acceleration due to gravity.
One can find in the literature several attempts to derive Darcy’s law from Navier–Stokes [Tartar 1980;

Sánchez-Palencia and Zaoui 1987] through the process of homogenization under the hypothesis of a
periodic, or almost periodic, porosity. In any case, the presence of the porous medium justifies the
elimination of the inertial terms in the motion, leaving friction (viscosity) and gravity as the only relevant
forces, to which one has to add pressure as it appears in the formulation of Darcy’s law. There are three
scales involved in the analysis: the macroscopic or bulk mass, the microscopic size of the fluid particle,
and the mesoscopic scale corresponding to the pores. In the references above, one finds descriptions of
the velocity v as an average over the mesoscopic cells of the fluid particle velocities. Taking into account
that each cell contains a solid part where the particle velocity vanishes, it is then natural to get the viscous
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forces associated to that average velocity, which is a scaled approximation of the laplacian term appearing
in the Navier–Stokes equation.

In this paper, we shall consider the case of a homogeneous and isotropic porous material. Porosity is
the fraction of the volume occupied by pores or void space. But it is important to distinguish between two
kinds of pores — the kind that forms a continuous interconnected phase within the medium, and the kind
that is isolated — because non-interconnected pores cannot contribute to fluid transport. Permeability is
the term used to describe the conductivity of a porous medium with respect to a newtonian fluid, and it
depends upon the properties of the medium and the fluid. Darcy’s law indicates this dependence, allowing
us to define the notion of specific permeability κ and its units. In the case of an anisotropic material, κ
will be a symmetric and positive definite tensor, and the methods of our proof can be modified to get local
existence; but for a nonhomogeneous medium, the properties of the tensor κ(x) will have to be specified
in a very precise manner in order to allow an interesting theory.

The Muskat problem and related problems [Saffman and Taylor 1958] have been studied recently
[Constantin and Pugh 1993; Siegel et al. 2004; Córdoba and Gancedo 2007; 2009; Córdoba et al. 2011].
The first natural question is about the evolution of the system (existence of solutions), at least for a short
time t > 0, and the persistence of smoothness of the interface S(t) if we begin with a smooth enough
surface at time t = 0. One can easily deduce from this formulation that in the event of smooth evolution,
both pressures can be taken to be equal at the interface:

p1
|S(t) = p2

|S(t).

Therefore, we look at the case without surface tension (see [Escher and Simonett 1997], where the
regularizing effect of surface tension is considered). The normal component of the velocity fields must
also agree at the free boundary; that is, if ν j is the unit normal to S pointing into D j , we have

(v1
− v2) · ν j

= 0 at S(t), j = 1, 2

(note that ν2
=−ν1). Furthermore, the vorticity will be concentrated at the interface, having the form

curl(v)= ω(z) d S(z),

where ω is tangent to S at the point z and d S(z) is surface measure.
This paper extends to the three-dimensional case the results obtained in [Córdoba et al. 2011] for the

case of two dimensions, by proving local existence in the scale of Sobolev spaces of the initial value
problem if the Rayleigh–Taylor (R-T) condition is initially satisfied (see [Saffman and Taylor 1958],
where this issue is studied from a physical point of view). In our case, that condition amounts to the
positivity of the function

σ = (∇ p2
−∇ p1) · (ν2

− ν1)

at the interface S. The R-T property also appears in other fluid interface problems, such as water waves
[Cordoba et al. 2009].

Together with that hypothesis, one also assumes that the initial surface S is connected and simply
connected. In the presence of a global parametrization X : R2

→ S, the preservation of that character will
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be controlled by the gauge

F(X)(α, β)=
|α−β|

|X (α)− X (β)|
, ‖F(X)‖L∞ = sup

α 6=β

|α−β|

|X (α)− X (β)|
<∞.

Section 2 of this paper contains the derivation of the evolution equations for the interface S. In Section 3,
we prove the existence of global isothermal parametrization as a consequence of the Koebe–Poincaré
uniformization theorem of Riemann surfaces in the geometric scenarios considered in our work, namely,
double periodicity in the horizontal variables and asymptotic flatness. Let us add that given the nonlocal
character of the operator involved, to obtain a global isothermal parametrization is an important step in
the proof, whose main components are sketched in Section 4.

In closing our system (Section 2), we need to control the norm of the inverse operator (I + λD)−1,
where D is the double-layer potential and |λ| ≤ 1. It is well-known from Fredholm’s theory that those
operators are bounded on L2(S). However, since the surface S = S(t) is moving, a precise control of its
norm is needed in order to proceed with our proof. That is the purpose of Section 5, where the estimates
for the double-layer potential are revisited.

In Sections 6 and 7, we develop the energy estimates needed to conclude local existence. Let us
mention that at a crucial point (more precisely, just at that step where the positivity of σ(α, t) (R-T) plays
its role), we use the pointwise estimate θ(x)3θ(x) ≥ 1

23θ
2(x) of [Córdoba and Córdoba 2003], with

3=
√
−1.

In the strategy of our proof, it is crucial to analyze the evolution of both quantities σ and F (Section 8)
at the same time as the interface X and vorticity ω. There are several publications (see, for example,
[Ambrose 2007]) where different authors have treated these problems assuming that the Rayleigh–Taylor
condition is preserved during the evolution. Under such a hypothesis the proof can be considerably
simplified, especially if one also assumes the appropriate bounds for the resolvent of the double-layer
potential with respect to a moving domain, or the existence of global isothermal coordinates, etc. It is our
purpose to carefully go over such items, which are responsible for the more delicate and intricate parts of
this paper.

2. The contour equation

We consider the following evolution problem for the active scalars ρ = ρ(x, t) and µ = µ(x, t), with
x ∈ R3 and t ≥ 0:

ρt + v · ∇ρ = 0,

µt + v · ∇µ= 0,

with a velocity v = (v1, v2, v3) satisfying the momentum equation

µv =−∇ p− (0, 0, ρ) (2-1)

and the incompressibility condition ∇ · v = 0, where, without loss of generality, we have prescribed the
values κ = g= 1.
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The vector (µ, ρ) is defined by

(µ, ρ)(x1, x2, x3, t)=
{
(µ1, ρ1) x ∈ D1(t),
(µ2, ρ2) x ∈ D2(t)= R3

\ D1(t),

where µ1
6= µ2 and ρ1

6= ρ2. Darcy’s law (2-1) implies that the fluid is irrotational in the interior of each
domain D j , and because of the jump of densities and viscosities on the free boundary, we may assume a
velocity field such that

curl v = ω(α, t)δ(x − X (α, t)),

where ∂D j (t)= {X (α, t) ∈ R3
: α = (α1, α2) ∈ R2

}; that is,

〈curl v, ϕ〉 =
∫

R2
ω(α, t) ·ϕ(X (α, t)) dα, (2-2)

for any ϕ : R3
→ R3 vector field in C∞c (R

3).
The incompressibility hypothesis (〈∇ · v, ϕ〉 ≡ −〈v,∇ϕ〉 = 0, for any ϕ ∈ C∞c (R

3)), yields

v1(X (α, t), t) · N (α, t)= v2(X (α, t), t) · N (α, t),

with N (α, t)= ∂α1 X (α, t)∧ ∂α2 X (α, t), and Equation (2-2) gives us the identity

ω(α, t)=
(
v2(X (α, t), t)− v1(X (α, t), t)

)
∧ N (α, t).

Defining the potential φ by v(x, t)=∇φ(x, t) for x ∈ R2
\ ∂D j (t), we get

�(α, t)= φ2(X (α, t), t)−φ1(X (α, t), t),

∂α1�(α, t)=
(
v2(X (α, t), t)− v1(X (α, t), t)

)
· ∂α1 X,

∂α2�(α, t)=
(
v2(X (α, t), t)− v1(X (α, t), t)

)
· ∂α2 X.

Then one has the equality

ω(α, t)=
(
v2(X (α, t), t)− v1(X (α, t), t)

)
∧
(
∂α1 X (α, t)∧ ∂α2 X (α, t)

)
,

and therefore
ω(α, t)= ∂α2�(α, t)∂α1 X (α, t)− ∂α1�(α, t)∂α2 X (α, t), (2-3)

implying that ∇ · curl v = 0 in a weak sense.
Using the law of Biot–Savart, we have for x not lying in the free surface (x 6= X (α, t)) the following

expression for the velocity:

v(x, t)=− 1
4π

∫
R2

x − X (β, t)
|x − X (β, t)|3

∧ω(β) dβ.

It follows that

X t(α)= BR(X, ω)(α, t)+C1(α)∂α1 X (α)+C2(α)∂α2 X (α), (2-4)

where BR is the well-known Birkhoff–Rott integral:

BR(X, ω)(α, t)=− 1
4π

PV
∫

R2

X (α)− X (β)
|X (α)− X (β)|3

∧ω(β) dβ. (2-5)
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Next we will close the system using Darcy’s law. Since

∇φ = v(x, t)−�(α, t)N (α, t)δ(x − X (α, t)),

we have

〈1φ, ϕ〉 = −〈∇φ,∇ϕ〉 =

∫
R2
�(α, t)N (α, t) · ∇ϕ(X (α, t)) dα,

and taking ϕ(y)=−1/(4π |x − y|), one obtains φ in terms of the double layer potential:

φ(x)=− 1
4π

∫
R2

x − X (α)
|x − X (α)|3

· N (α)�(α) dα.

Darcy’s law yields
1p(x, t)=− div(µ(x, t)v(x, t))− ∂x3ρ(x, t),

that is,
1p(x, t)= P(α, t)δ(x − X (α, t)),

where P(α, t) is given by

P(α, t)= (µ2
−µ1)v(X (α, t), t) · N (α, t)+ (ρ2

− ρ1)N3(α, t),

implying the continuity of the pressure at the free boundary.
Next, if x 6= X (α, t), i.e., x is not placed at the interface, we can write Darcy’s law in the form

µφ(x, t)=−p(x, t)− ρx3,

and taking limits in both domains D j , we get at S the equality(
µ2φ2(X (α, t), t)−µ1φ1(X (α, t), t)

)
=−(ρ2

− ρ1)X3(α, t).

Then the formula for the double-layer potential gives

µ2
+µ1

2
�(α, t)− (µ2

−µ1)
1

4π
PV

∫
R2

X (α)−X (β)
|X (α)−X (β)|3

· N (β)�(β) dβ =−(ρ2
− ρ1)X3(α, t),

that is,
�(α, t)− AµD(�)(α, t)=−2AρX3(α, t), (2-6)

where

D(�)(α)=
1

2π
PV

∫
R2

X (α)−X (β)
|X (α)−X (β)|3

· N (β)�(β) dβ, Aµ =
µ2
−µ1

µ2+µ1 , Aρ =
ρ2
− ρ1

µ2+µ1 . (2-7)

The evolution equations are then given by (2-3)–(2-7), where the functions C1 and C2 will be chosen in
the next section.

Furthermore, taking limits, we get from Darcy’s law the following two formulas:

∂α1�(α, t)+ 2Aµ BR(X, ω)(α, t) · ∂α1 X (α, t)=−2Aρ∂α1 X3(α, t), (2-8)

∂α2�(α, t)+ 2Aµ BR(X, ω)(α, t) · ∂α2 X (α, t)=−2Aρ∂α2 X3(α, t). (2-9)
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3. Isothermal parametrization: choosing the tangential terms

Although the normal component of the velocity vector field is the relevant one in the evolution of the
interface, it is however very important to choose an adequate parametrization in order to uncover and
handle properly the cancellations contained in the equations of motion. Fortunately for our task, we can
rely upon the ideas of H. Lewy [1951], and many other authors, who discovered the convenience of using
isothermal coordinates in different PDEs for understanding how a minimal surface leaves an obstacle and
also in several fluid mechanical problems.

Let us recall that an isothermal parametrization must satisfy

|Xα1(α, t)|2 = |Xα2(α, t)|2, Xα1(α, t) · Xα2(α, t)= 0,

for t ≥ 0.
Next we define

C1(α)

=
1

2π

∫
R2

α1−β1

|α−β|2

BRβ2 ·Xβ2 −BRβ1 ·Xβ1

|Xβ2 |
2 dβ − 1

2π

∫
R2

α2−β2

|α−β|2

BRβ1 ·Xβ2 +BRβ2 ·Xβ1

|Xβ1 |
2 dβ (3-1)

and
C2(α)

=−
1

2π

∫
R2

α2−β2

|α−β|2

BRβ2 ·Xβ2 −BRβ1 ·Xβ1

|Xβ2 |
2 dβ − 1

2π

∫
R2

α1−β1

|α−β|2

BRβ1 ·Xβ2 +BRβ2 ·Xβ1

|Xβ1 |
2 dβ. (3-2)

That is, X t = BR+C1 Xα1 +C2 Xα2 and

Xα1t = BRα1 +C1 Xα1α1 +C2 Xα1α2 +C1α1 Xα1 +C2α1 Xα2,

Xα2t = BRα2 +C1 Xα1α2 +C2 Xα2α2 +C1α2 Xα1 +C2α2 Xα2 .

Writing f =
(
|Xα1 |

2
− |Xα2 |

2
)
/2 and g = Xα1 · Xα2 , we have

ft =
(
BRα1 ·Xα1 −BRα2 ·Xα2

)
+C1 fα1 +C2 fα2 + (C2α1 −C1α2)g+ 2C1α1 f + (C1α1 −C2α2)|Xα2 |

2.

The expressions for C1 and C2 yield the vanishing of the sum of the first and the last terms in the
identity above. Therefore, we get

ft = C1 fα1 +C2 fα2 + (C2α1 −C1α2)g+ 2C1α1 f. (3-3)

Similarly, we have

gt =
(
BRα2 ·Xα1 +BRα1 ·Xα2

)
+C1gα1 +C2gα2 + (C1α1 +C2α2)g− 2C2α1 f + (C1α2 +C2α1)|Xα1 |

2

and
gt = C1gα1 +C2gα2 + (C1α1 +C2α2)g− 2C2α1 f. (3-4)

The linear character of equations (3-3) and (3-4) allows us to conclude that if there is a solution of the
system X t = BR+C1 Xα1 +C2 Xα2 and we start with isothermal coordinates at time t = 0, then they will
continue to be isothermal so long as the evolution equations provide us with a smooth enough interface.
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The fact that one can always prescribe such coordinates at time t = 0 follows from the following
argument: in the double periodic setting we have a C2 simply connected surface, homeomorphic to the
euclidean plane R2, which, by the Riemann–Koebe–Poincaré uniformization theorem, is conformally
equivalent to either the Riemann sphere, the plane, or the unit disc. The sphere is easily eliminated by
compactness, but we can also rule out the unit disc because the assumption of double periodicity in the
horizontal variables implies the existence of a discrete abelian subgroup of rank two in the group of
conformal transformations, and that cannot happen in the case of the unit disc.

Therefore, we have an orientation-preserving conformal (isothermal) equivalence

φ : R2
−→ S.

Since S is invariant under translations τν(x) = x + 2πν, where ν ∈ Z2
× {0}, it follows that fν(z) =

φ−1
◦ τν ◦φ(z) must be a diffeoholomorphism of C= R2, and therefore it has to be of the form

fν(z)= aνz+ bν,

for certain aν, bν ∈ C. Clearly, the family fν is generated by f1 = f(1,0,0), f2 = f(0,1,0). Let

f1(z)= a1z+ b1, f2(z)= a2z+ b2.

We claim that a1 = a2 = 1. Suppose that |a1|< 1; then we get f n
1 (z)= an

1 z+ b1(1+ a1+ · · ·+ an−1
1 ), a

sequence converging to b1/(1−a1), contradicting the discrete character of the group action. On the other
hand, if |a1|> 1, then since

f −1
1 (z)= f(−1,0,0)(z)=

z
a1
−

b1

a1
,

we get a contradiction with the sequence f −n
1 (z). Therefore, we must have a1 = e2π iθ for some 0≤ θ < 1.

Assume that 0< θ < 1; then

f (n)1 (z)= e2π inθ z+ b1
(
1+ e2π iθ

+ · · ·+ e2π i(n−1)θ)
= e2π inθ z+ b1

1−e2π inθ

1−e2π iθ ,

so the sequence f n(z) is bounded and satisfies | f n(z)| ≤ |z| + |b1|/sinπθ . Therefore it contains a
converging subsequence, again contradicting discreteness. It follows that f1(z)= z+ b1 and, similarly,
f2(z)= z+ b2, which leads easily to the double periodicity of the isothermal parametrization φ.

In the asymptotically flat case, we start with an orientable simply connected surface S that, outside
a ball B in R3, is the graph of a C2-function x3 = ϕ(x1, x2) such that |Dαϕ(x)| = o(|x |−N ) for every
N and |α| ≤ 2. In particular, the normal vector ν(x) = (−∇ϕ, 1)/

√
1+ |∇ϕ|2 is roughly vertical and

1/
√

1+ |∇ϕ|2 is close to 1 for |x | big enough.
Then one can find isothermal coordinates whose first fundamental form λ(α, β)(dα2

+ dβ2) converges
asymptotically to the identity.

Again by the uniformization theorem, S must be conformally equivalent to either C or the unit disc.
But since outside B, the surface S is conformally equivalent to C− B ∩ {x3 = 0}, it cannot be also
conformally equivalent to D− K , for any regular compact set K contained in the unit disc D, because
the harmonic measure of the ideal boundary is 1 in the case of D and 0 for R2.
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4. Main theorem and outline of the proof

The proof of local existence requires the following:

(1) A connected and simply connected surface S = S(t) parametrized by isothermal coordinates

X : R2
−→ R3, X = X (α, t),

with normal vector N (α, t)= Xα1 ∧ Xα2 and gauge

F(X)(α, β)=
|β|

|X (α)− X (α−β)|
,

such that ‖F(X)‖L∞ <∞ and ‖|N |−1
‖L∞ <∞.

(2) The positivity of

σ(α, t)=−
(
∇ p2(X (α, t), t)−∇ p1(X (α, t), t)

)
· N (α, t)

= (µ2
−µ1)BR(X, ω)(α, t) · N (α, t)+ (ρ2

− ρ1)N3(α, t),
(4-1)

where the last equality is a consequence of Darcy’s law after taking limits in both domains D j . This
is the Rayleigh–Taylor condition to be imposed at time t = 0, it being a part of the problem to prove
that it remains true as time passes.

(3) The estimates on the norm of (I − λD)−1, |λ| < 1, D = double-layer potential (see Section 5),
allowing us to obtain the inequalities

‖�‖H k+1 ≤ P
(
‖X‖2k+1+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
,

‖ω‖H k ≤ P
(
‖X‖2k+1+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
,

for k ≥ 3, where P is a polynomial function and the norm ‖ · ‖k is given by

‖X‖k = ‖X1−α1‖L3 +‖X2−α2‖L3 +‖X3‖L2 +‖∇(X − (α, 0))‖2H k−1,

as in (7-1) below, and ‖ · ‖H j denotes the norm in the Sobolev space H j .

(4) A control of the Birkhoff–Rott integral BR(X, ω):

‖BR(X, ω)‖H k ≤ P
(
‖X‖2k+1+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
,

for k ≥ 3.

(5) Energy estimates: the properties of isothermal parametrizations help us to reorganize the terms in
such a way that

d
dt
‖X‖2k(t)≤ P

(
‖X‖2k(t)+‖F(X)‖

2
L∞(t)+‖|N |

−1
‖L∞(t)

)
−

∑
i=1,2

23/2

(µ1+µ2)

∫
R2

σ(α, t)
|∇X (α, t)|3

∂k
αi

X (α, t) ·3(∂k
αi

X)(α, t) dα,
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where k ≥ 4, |∇X (α)|3 =
(
|∂α1 X (α)|2+ |∂α2 X (α)|2

)3/2, and 3= (−1)1/2 = R1(∂α1)+ R2(∂α2).
Then the pointwise inequality

θ3(θ)− 1
23(θ

2)≥ 0,

together with the condition σ > 0, allows us to get rid of the dangerous terms in the inequality above
(those involving (k+ 1)-derivatives of X ) to obtain the estimate

d
dt
‖X‖2k(t)≤ P

(
‖X‖2k(t)+‖F(X)‖

2
L∞(t)+‖|N |

−1
‖L∞(t)

)
.

(6) Finally, we need to control the evolution of ‖F(X)‖L∞(t) and inf(t)= inf
α∈R2

σ(α, t), which is obtained
via the estimates

d
dt
‖F(X)‖2L∞(t)≤ P

(
‖X‖24(t)+‖F(X)‖

2
L∞(t)+‖|N |

−1
‖L∞(t)

)
,

d
dt

1
inf(t)

≤
1

inf(t)2
P
(
‖X‖24(t)+‖F(X)‖

2
L∞(t)+‖|N |

−1
‖L∞(t)

)
.

(7) All those facts together yield the inequality

d
dt

E(t)≤ CP(E(t))

for the energy

E(t)= ‖X‖2k(t)+‖F(X)‖
2
L∞(t)+‖|N |

−1
‖L∞(t)+ inf(t)−1,

where k ≥ 4, C is a universal constant, and P has polynomial growth (depending upon k).

At this point it is not difficult to prove the existence of a solution, locally in time, so long as the
initial data X (0) is in the appropriate Sobolev space of order k ≥ 4, and the Rayleigh–Taylor and
no-self-intersection conditions (σ0 > c > 0, ‖F(X (0))‖L∞ <∞) are satisfied.

The main theorem presented in this paper is the following:

Theorem 4.1. Let X (0) with ‖X (0)‖k <∞ for k ≥ 4, ‖F(X (0))‖L∞ <∞, ‖|N (α, 0)|−1
‖L∞ <∞, and

σ(α, 0)=−
(
∇ p2(X (0), 0)−∇ p1(X (0), 0)

)
· N (α, 0) > 0.

Then there exists a time τ > 0 such that there is a solution to (2-3), (2-4), (2-6) in C([0, τ ]; H k) with
X (α, 0)= X (0).

Finally, let us point out that since our existence proof is based upon energy inequalities, an extra
argument is needed to prove uniqueness. Nevertheless, that task is much easier than proving existence.
(The interested reader may consult [Córdoba et al. ≥ 2013], where the details of the proof have been
written out for some important cases, such as Muskat and SQG patches.)

Let us remark that, at the end, we have to work with a coupled system involving the evolution of the
surface X , the “vorticity density” ω, the Rayleigh–Taylor condition σ , the non-self-intersecting character
of S quantified by the gauge F(X), and the tangential parts C1 Xα1 +C2 Xα2 of the velocity field.
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Remark. This paper is a continuation of [Córdoba et al. 2011], where the two-dimensional case was
considered. Many of the needed estimates can be obtained following exactly the same methods that
were used in [Córdoba et al. 2011] for the lower-dimensional case. Therefore, in order to simplify our
presentation, we shall avoid here many details which were carefully proven there. This is especially the
case in Section 6 (control of the Birkhoff–Rott integral) and Section 8 (energy estimates), and also for the
approximation schemes which are identical to those developed in [Córdoba et al. 2011]. Therefore, in the
following, we shall focus our attention on the more innovative parts of the proof, namely the evolution of
the Rayleigh–Taylor condition, the non-self-intersecting property of the free boundary, and the needed
estimates for double-layer potentials.

5. Inverting the operator: the single- and double-layer potentials revisited

In this proof, we need to consider the properties of single- and double-layer potentials, which are
well-known characters in finding solutions to the Dirichlet and Neumann problems in domains D of Rn .

For our purposes, these domains will be of three different types, namely: bounded, periodic in the
“horizontal” variables, and asymptotically flat. We shall also assume that their boundaries are smooth
enough (say C2) and do not present self-intersections. Therefore, one has tangent balls at every point of
the boundary, one completely contained in D and the other in Dc. We shall denote by ν(x) the unit inner
normal at the point x ∈ ∂D; then under our hypothesis we have that, for r > 0 small enough, the parallel
surfaces ∂Dr = {x + rν(x) | x ∈ ∂D} are also C2 surfaces with curvatures controlled by those of ∂D.
Furthermore, the vector field ν can be extended smoothly up to a collar neighborhood of ∂D, allowing us
to write the formula

1u(x)= ∂
2u
∂ν2 (x)− h(x)∂u

∂ν
(x)+1su(x),

where 1 denotes the ordinary laplacian in Rn , 1s is the Laplace–Beltrami operator in ∂D, h(x) is the
mean curvature of ∂D at the point x , and u is any C2-function defined in a neighborhood of ∂D.

For convenience, we will use the notation D1 = D, D2 = Dc, S = ∂D j , and ν j (x) (for j = 1, 2) the
inner normal at x ∈ S pointing inside D j . Let d S be the surface measure in S induced by Lebesgue
measure in ambient space. Given integrable functions ϕ,ψ on S, we call

V (x)= cn

∫
S
ψ(y) 1

‖x−y‖n−2 d S(y)

the single-layer potential of ψ , and we call

W (x)= cn

∫
S
ϕ(y) ∂

∂νx

(
1

‖x − y‖n−2

)
d S(y)

the double-layer potential of ϕ. In both cases, cn is a normalizing constant chosen so that cn
‖x‖n−2 is a

fundamental solution of 1 in Rn , n ≥ 3.
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For x ∈ S and j = 1, 2, denote by W j (x) and V j (x) the corresponding limits of the potentials in D j .
We have

W1(x)=
1
2

(
ϕ(x)−

∫
S
ϕ(y)K (x, y) dσ(y)

)
=

1
2
(ϕ(x)−Dϕ(x)),

W2(x)=
1
2

(
ϕ(x)+

∫
S
ϕ(y)K (x, y) dσ(y)

)
=

1
2
(ϕ(x)+Dϕ(x)),

∂V
∂ν1

(x)=−1
2

(
ψ(x)+

∫
S
ψ(y)K (y, x) dσ(y)

)
=−

1
2
(ψ(x)+D∗ψ(x)),

∂V
∂ν2

(x)=−1
2

(
ψ(x)−

∫
S
ψ(y)K (y, x) dσ(y)

)
=−

1
2
(ψ(x)−D∗ψ(x)),

where

K (x, y)= 2cn
∂

∂νy

(
1

‖x−y‖n−2

)
= c̃n
〈x − y, ν(y)〉
|x − y|n

.

It is well-known that in the scenarios considered above, the boundary operators D (and D∗) are
smoothing of order −1, and therefore compact. Furthermore, all their eigenvalues are real numbers having
absolute value strictly less than 1. Therefore, by the standard Fredholm theory, the operators I − λD,
I − λD∗ are invertible when |λ| ≤ 1. However, in our case, the domains are moving, and the evolution of
their common boundary S involves the inverse operators, making it necessary to estimate their norms in
terms of the geometry and smoothness of S.

Although there is a vast literature about single- and double-layer potentials, we have not been able to
point out a precise statement giving the information needed for our results. Therefore, in this section, we
provide arguments to prove that the norms of such inverse operators grow at most polynomially: P(|||S|||),
where |||S||| is just ‖S‖C2 plus a term of chord-arc type controlling the non-self-intersecting character of
the boundary. The term has the form r(S)−1, where r(S) is the sup over all the positive r such that S
admits tangent balls of radius r in both domains D j :

|||S||| = ‖S‖C2 + (r(S))−1.

We shall write P(|||S|||) to denote ≤ C(|||S|||p) for certain positive constants C, p which are independent
of the characters whose evolution is being controlled, but the size of both constants may change during
the proof and we shall make no effort to obtain their best values.

We will consider the case of bounded domains in Rn , n ≥ 3, because the needed modifications when
n = 2, namely taking log |x | as fundamental solution for the laplacian, as well as the changes for the
periodic or asymptotically flat domains, are left to the reader.

Let D and D∗ be the potential defined above, with kernel

K (x, y)= cn
∂

∂ν(y)
1

‖x−y‖n−2 = cn
〈x − y, ν(y)〉
|x − y|n

and K (y, x) respectively. In the study of the inverse operators (I − λD)−1, |λ| ≤ 1, it is convenient to
consider first the particular values λ=±1.
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Proposition 5.1. The following estimate holds, where P is a polynomial function:

‖(I ±D)−1
‖L2(S) = P(|||S|||).

Since the boundedness of (I ±D)−1 in L2(S) is well-known from the general theory, we can simplify
the proof, considering only functions f ∈ L2(S) whose support lies inside a region of S where the normal
ν(x) is close enough to a fixed direction. Then for a general f , an appropriate partition of unity would
allow us to add the local estimates, so long as the number of pieces is controlled by |||S|||. We shall use
the following observation, whose proof is immediate.

Lemma 5.2 (Rellich). Let u be a harmonic function and h a smooth vector field in the domain D; then
we have

(i) div(|∇u|2h)= 2 div((∇u · h)∇u)+ O(|∇u|2|∇h|),

(ii)
∫
∂D〈ν, h〉|∇u|2dσ = 2

∫
∂D(∂u/∂ν)(∇u · h)dσ + O

(∫
D |∇u|2|∇h|

)
.

Given a function f ∈ C1(S), we may define ∇τ f , choosing at each point x ∈ S an orthonormal
basis {e1, . . . , en−1} of the tangent space Tx(S) (we can consider also ∇τ f to be the gradient naturally
associated to the induced Riemannian metric by the ambient space). In both ways, although different, we
have that |∇τ f | ≡3τ f is an elliptic pseudodifferential operator of order 1 in S. Solving the Dirichlet
problem1u= 0 in D, u|S = f , we obtain the operator Dν ≡ (∂u/∂ν)|S , which is also a pseudodifferential
operator of order 1 in S.

Lemma 5.3. Let f ∈ L2(S) having support on the region 1
2 ≤ 〈ν(x), η〉 ≤ 1 (for a fixed unit vector η);

then we have ∫
S
|Dν f |2dσ '

∫
S
|∇τ f |2dσ,

where the constants involved in the stated equivalence ' are P(|||S|||).

Proof. Let u be harmonic in D so that u|S = f . Under our hypothesis about f , and since |∇u|2 =
|Dνu|2+ |∇τu|2 and ∇τu is a local operator (suppS(∇τ f )⊂ supp( f )), Lemma 5.2 yields:

1
2

∫
S
|∇τ f |2dσ ≤

∫
S
〈ν(x), η〉|∇τu|2dσ ≤ 3

∫
S
|Dνu|2dσ + 2

∫
S
|∇τu||Dνu|dσ,

from which we easily obtain ∫
S
|∇τ f |2dσ ≤ P(|||S|||)

∫
S
|Dν f |2dσ.

To get the opposite inequality we proceed as before, but since Dν f is not local, an extra argument
is needed to control the contribution of the region outside supp( f ). Let us introduce surface discs
Br (x)={y ∈ S | ‖x− y‖≤ r}, x ∈ S, 0≤ r ≤ |||S|||−1 and domains1r (x)={y+ρν(x) | y ∈ Br (x), ρ ≤ r}.
Given R = 1

2 |||S|||
−1, there exists a fixed unit vector η so that 1

2 ≤ 〈ν(y), η〉 ≤ 1 for every y ∈ BR(x),
and also a smooth vector field h such that h|1R(x) ≡ η, supp(h)⊂12R(x), and 1

2 |h(x)| ≤ 〈h(x), ν(x)〉,
‖∇h‖2 ≤ P(|||S|||)‖h‖.
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In order to obtain the estimate∫
S
|Dν f |2dσ ≤ P(|||S|||)

∫
S
|∇τ f |2dσ,

we may assume, without loss of generality, that supp( f )⊂ BR(x), for some x ∈ S, and then prove that∫
BR(y0)

|Dν f |2dσ ≤ P(|||S|||)
∫

S
|∇τ f |2dσ

uniformly on y0 ∈ S.
With the vector field h defined above in 12R(y), let us apply Rellich’s estimate to get∫

S
|Dν f |2〈h, ν(x)〉 dσ(x)=

∫
S
〈ν, h〉|∇τ f |2dσ − 2

∫
S

Dν f∇τ f · h dσ + O
(∫

D
|∇u|2|∇h|

)
,

where u satisfies 1u = 0 in D, u|S = f . We get easily∫
BR(y0)

|Dν f |2〈h, ν(x)〉 dσ(x)= O
(∫

S
|∇τ f |2dσ +

∫
D
|∇u|2|∇h| dx

)
.

Then the proof will be finished if we can show that∫
D
|∇u|2|∇h| dx ≤ P(|||S|||)

∫
S
|∇τ f |2dσ.

To see this, let us consider the parallel surfaces Sr = {x + rν(x) | x ∈ S} (0≤ r ≤ |||S|||) and observe that∫
Sr

u2dσr '

∫
S

u2(x + rν(x)) dσ

and∫
S

[
u2(x + rν(x))− u2(x)

]
dσ(x)=

∫
S

∫ r

0
∇u2(x + tν(x)) · ν(x) dt dσ

= 2
∫

Lr

u(y)∇u(y) · ν(y)≤ 2
(∫

Lr

u2(y)
)1/2(∫

Lr

|∇u|2(y)
)1/2

,

where Lr = {x + ρν(x) | x ∈ S, 0≤ ρ ≤ r}.
Let X be a smooth cut-off function. Taking

F(x + rν(x))= f (x)X(x),

as a comparison function, Dirichlet’s principle and Poincaré’s inequality give us the estimate∫
D
|∇u|2 ≤

∫
D
|∇F |2 ≤ C

(∫
S
|∇τ f |2+

∫
S
| f |2

)
= O

(∫
S
|∇τ f |2dσ

)
.

Therefore∫
Sr

u2dσr '

∫
S

u2(x + rν(x)) dσ ≤
∫

S
f 2(x) dσ +

(∫
Lr

u2(y)
)1/2(∫

S
|∇τ f |2

)1/2

.
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Integration in r in the range 0≤ r ≤ R = |||S|||−1 yields∫
Lr

u2dx ≤ R
(∫

S
f 2(x) dσ +

(∫
Lr

u2(y)
)1/2(∫

S
|∇τ f |2

)1/2)
.

That is, ∫
Lr

u2dx ≤ CR
∫

S
|∇τ f |2 dσ.

To conclude, let us observe that∫
D
|∇u|2|∇h| = 1

2

∫
D
1u2
|∇h| = 1

2

∫
D

(
1u2
|∇h| − u21(|∇h|)

)
+

1
2

∫
D

u2(|∇h|)

=
1
2

∫
S

u ∂u
∂ν
· |∇h| dσ − 1

2

∫
S

f 2 (|∇h|)
∂ν

dσ + 1
2

∫
D

u2
∇|h|

≤

(∫
S

f 2dσ
)1/2(∫ ∣∣∣∂u

∂ν

∣∣∣2|∇h|2dσ
)1/2

+C
∫

S
f 2dσ +C

∫
L R

u2. �

Proof of Proposition 5.1. As before, let f ∈ C1(S), supp( f )⊂ U0, and let u be its single-layer potential:

u(x)= cn

∫
S

f (y)
‖x − y‖n−2 d S(y).

Taking derivatives on each domain D j with respect to the normal direction and evaluating at S, we get

∂u
∂ν1
=−

1
2( f (x)+D∗ f (x)),

∂v

∂ν2
=−

1
2( f (x)−D∗ f (x)).

By Lemma 5.3, we know that∫
S

∣∣∣∣ ∂v∂ν1

∣∣∣∣2dσ '
∫

S
|∇τv|

2dσ '
∫

S

∣∣∣∣ ∂v∂ν2

∣∣∣∣2dσ,

where the constants involved in the equivalences are all controlled by above by P(|||S|||) and below by
1/P(|||S|||).

Since ∂v/∂ν1+ ∂v/∂ν2 =− f , these estimates imply that

min
(
‖ f −D∗ f ‖2, ‖ f +D∗ f ‖2

)
≥

1
P(|||S|||)

,

that is, ‖(I ±D)−1
‖ = P(|||S|||). Then using an appropriate partition of unity, that estimate extends to a

general f ∈ L2(S). �

Next we shall consider Sobolev spaces H s(S), 0≤ s ≤ 1, defined in the usual manner throughout local
coordinate charts. We have also the elliptic pseudodifferential operator 3s

= (−1)s/2 in such a way that

‖ f ‖H s(S) ' ‖ f ‖L2 +‖3s f ‖L2 .

Then H−s(S)≡ (H s(S))∗ allows us to consider the negative case by duality, under the pairing∫
S
φψ dσ, φ ∈ H−s, ψ ∈ H s,
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and we have

‖φ‖H−s = sup
‖ψ‖Hs=1

∫
S
φψ dσ.

Since both D and D∗ are compact and smoothing operators of degree −1, the commutators [3s,D],
[3s,D∗] are then bounded in L2(S) (0 ≤ s ≤ 1) with norms controlled by |||S|||, allowing us to extend
Proposition 5.1 to the chain of Sobolev spaces:

Corollary 5.4. The norm of the operators (I ±D)−1, (I ±D∗)−1 in the space H s(S), −1 ≤ s ≤ 1, is
bounded by P(|||S|||).

Estimates for (I +λD)−1, |λ| ≤ 1. With the same notation used before, we have

1− λ
2

∂V
∂ν1
+

1+ λ
2

∂V
∂ν2
=−

1
2(φ(x)−λD∗φ(x)) and

1+ λ
2

∂V
∂ν1
+

1− λ
2

∂V
∂ν2
=−

1
2(φ(x)+λD∗φ(x)),

where
V (x)= cn

∫
S

φ(y)
‖x − y‖n−2 d S(y).

Then the identity φ− λD∗φ = 0 yields

0= (1− λ)
∫
∂D1

V
∂V
∂ν1

d S+ (1+ λ)
∫
∂D2

V
∂V
∂ν2

d S = (1− λ)
∫

D1

|∇V |2+ (1+ λ)
∫

D2

|∇V |2,

which implies φ ≡ 0. Similarly for φ+ λD∗φ = 0, −1≤ λ≤ 1.

Remark. This observation can be improved applying the following fact (whose proof we skip because it
will not be used in our theorem): ∫

D1

|∇u|2 '
∫

D2

|∇u|2,

where, again, the ' is controlled by P(|||S|||). In particular, it implies that the spectral radius of the
operators D, D∗ is less than 1− (P(|||S|||))−1.

Theorem 5.5. The operator norms ‖(I+λD)−1
‖H s(S), ‖(I+λD∗)−1

‖H s(S), |s| ≤ 1, |λ| ≤ 1, are P(|||S|||)
(growth at most polynomially with |||S|||).

Proof. The identity (I−D)−1(I−λD)= I+(1−λ)(I−D)−1D shows that the conclusion of the theorem
follows easily when |1− λ| ≤ 1/P(|||S|||), and similarly when |1+ λ| ≤ 1/P(|||S|||).

Therefore, without loss of generality, we may assume that

1− |λ| ≥ 1
P(|||S|||)

.

Assume now that φ ∈ H−1/2(S) satisfies ‖φ‖H−1/2 = 1 and

‖φ− λD∗φ‖H−1/2 ≤
1

P(|||S|||)
.

Then the single-layer potential

V (x)= cn

∫
S

φ(y)
‖x − y‖n−2 d S(y)
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satisfies the inequality ∣∣∣∣∫
S

V (φ− λD∗φ) d S
∣∣∣∣≤ 1

P(|||S|||)
.

On the other hand, one has∫
S

V (φ− λD∗φ) d S = (1− λ)
∫

D1

|∇V |2+ (1+ λ)
∫

D2

|∇V |2,

implying the estimate∫
S

V (φ+ λD∗φ) d S = (1+ λ)
∫

D1

|∇V |2+ (1− λ)
∫

D2

|∇V |2 ≤ 1
P(|||S|||)

.

Adding both inequalities together, we would obtain∫
S

Vφ dσ ≤ 1
P(|||S|||)

,

which is impossible because of the following:

Lemma 5.6. If V is the single-layer potential of φ, then∫
S

V (x)φ(x) d S(x)=
∫

S

∫
S

φ(x)φ(y)
‖x − y‖n−2 d S(x) d S(y)≥ 1

P(|||S|||)
‖φ‖2H−1/2(S).

Let us first observe that∫
S

∫
S

φ(x)φ(y)
‖x − y‖n−2 dσ(x) dσ(y)=

∫
Rn

1
|ξ |2

∣∣ ̂φ dσ(ξ)
∣∣2 dξ ≥ 0,

where φ̂ d S denotes the Fourier transform of the measure φ d S supported on S. This implies that

〈φ,ψ〉 =

∫
S

∫
S

φ(x)φ(y)
‖x − y‖n−2 d S(x) d S(y)

is an inner product satisfying

|〈φ,ψ〉| ≤ 〈φ, φ〉1/2〈ψ,ψ〉1/2,

and we wish to show that

〈φ, φ〉w ‖φ‖2H−1/2(S),

where w denotes equivalence modulo a factor P(|||S|||). To see this, observe first that given φ ∈ H−1/2(S),
its single-layer potential u|S belongs to the space H 1/2(S), satisfying

‖u‖H1/2(S) ≤ P(|||S|||)‖φ‖H−1/2(S),

which can be proved easily using local coordinates. As a consequence, we have∫
S

∫
S

φ(x)φ(y)
‖x − y‖n−2 d S(x) d S(y)≤ P(|||S|||)‖φ‖2H−1/2(S).
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In the opposite direction, since H−s
= (H s)∗, we have

‖φ‖H−s = sup
f ∈H s

∫
S
φ(x) f (x) dσ(x).

Let us assume, for the moment, that given f ∈ H s , there exists g ∈ H s−1 such that

f (x)= cn

∫
S

g(y)
‖x − y‖n−2 d S(y) and ‖ f ‖H s w ‖g‖H s−1 .

Then
‖φ‖H−s w sup

‖g‖Hs−1=1
〈φ, g〉,

and taking s = 1
2 , s− 1=− 1

2 , we get

‖φ‖H−1/2 ≤ P(|||S|||)〈φ, φ〉1/2〈g, g〉1/2 ≤ P(|||S|||)〈φ, φ〉1/2‖g‖H−1/2 ≤ P(|||S|||)〈φ, φ〉1/2.

To close our argument, it remains to solve the equation

f (x)= cn

∫
S

g(y)
‖x − y‖n−2 d S(y),

that is, to prove that given f ∈ H s , there exists g ∈ H s−1 satisfying the this equation.
To see that, let us consider the solution of the Dirichlet problem{

1u = 0 in D1,

u|S = f

and the equation

−2 ∂u
∂ν1
= g−D∗g,

that is, g = (I −D∗)−1(−2∂u/∂ν1). Then we claim that such g verifies the identity

f (x)= cn

∫
S

g(y)
‖x − y‖n−2 d S(y).

This is because the function
V (x)= cn

∫
S

g(y)
‖x − y‖n−2 d S(y)

is harmonic in D1 and satisfies

−2 ∂V
∂ν1
= g−D∗g =−2 ∂u

∂ν1
,

which implies that V = u in D1, and therefore, taking limits up to the boundary, we obtain

f (x)= cn

∫
S

g(y)
‖x − y‖n−2 d S(y).

To finish the proof of Theorem 5.5, let us consider, for every 0≤ τ ≤ 1, the identity

(I − λD)−13τ =3τ (I − λD)−1
+ (I − λD)−1Cτ (I − λD)−1,
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where the commutator Cτ = [D3τ −3τD] is a pseudodifferential operator of order τ − 2 whose bounds
are controlled by |||S|||. Then

‖(I − λD)−1 f ‖H s ≤ ‖(I − λD)−1 f ‖H−1/2 +‖3s+1/2(I − λD)−1 f ‖H−1/2

. ‖ f ‖H−1/2 +‖(I − λD)−13s+1/2 f ‖H−1/2

. ‖ f ‖L2 +‖3s+1/2 f ‖H−1/2 ≤ P(|||S|||)‖ f ‖H s . �

Remark 5.7. In the particular case of the sphere S = Sn−1 (n ≥ 2), the estimate of Lemma 5.6 becomes
an identity: ∫

Sn−1

∫
Sn−1

φ(x)φ(y)
‖x − y‖n−2 d S(x) d S(y)= cn‖φ‖

2
H−1/2(Sn−1)

for n ≥ 3, and

−

∫
S1

∫
S1

log ‖x − y‖φ(x)φ(y) d S(x) d S(y)= c2‖φ‖
2
H−1/2(S1)

for n = 2.

Proof. We present the details when n ≥ 3. The case n = 2 follows similarly. Let φ(x) =
∑

akYk(x),
where Yk is a spherical harmonic of degree k, normalized so that ‖Yk‖L2(Sn−1) = 1; then we have

|a0|
2
+

∑
k≥1

|ak |
2

2k+ n− 2
= ‖φ‖2H−1/2(S) <∞.

Claim: if k 6= j , then ∫
Sn−1

∫
Sn−1

Yk(x)Y j (y)
‖x − y‖n−2 d S(x) d S(y)= 0.

Taking the Fourier transform and using Plancherel, we get∫
Sn−1

∫
Sn−1

Yk(x)Y j (y)
‖x − y‖n−2 d S(x) d S(y)=

∫
Rn

1
|ξ |2

̂Yk d S(ξ) ̂Y j d S(ξ) dξ.

But it turns out that
̂Yk d S(ξ)= 2π i−k

|ξ |(n−2)/2 J(n+2k−2)/2(|ξ |)Yk

(
ξ

|ξ |

)
,

where Jν designates Bessel’s function of order ν, implying the claim.
Therefore our estimate diagonalizes:∫

Rn

1
|ξ |2
| ̂Yk d S(ξ)|2dξ = c

∫
∞

0

1
r
|Jk+(n−2)/2(r)|2dr,

and the well-known identity for Bessel’s functions∫
∞

0

J 2
µ(r)

r
dr =

1
2µ

allows us to finish the proof. �
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Estimates for � and ω. In the following, we shall consider asymptotically flat domains, leaving to the
reader the details of the periodic case. Since we have controlled the norms of the operator relating � and
X , we are in a position to obtain the inequality

‖�‖H k ≤ P
(
‖X‖2k +‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
, (5-1)

for k ≥ 4, with P a polynomial function. Then Sobolev’s embedding implies

‖ω‖H k ≤ P
(
‖X‖2k+1+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
, (5-2)

for k ≥ 3. We will present the proof of (5-1) when k = 4, because the case k > 4 can be obtained with the
same method.

Theorem 5.5 applied to (2-6) yields

‖�‖H1 = ‖(I − AµD)−1(−2AρX3)‖H1 ≤ C‖(I − AµD)−1
‖H1 ‖X3‖H1 ≤ P(|||S|||)‖X3‖H1,

implying that
‖�‖H1 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
.

Next we will show that

‖∂2
α1
�‖L2 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
‖�‖H1, (5-3)

which together with the estimate for ‖�‖H1 above, will allow us to control ∂2
α1
� in terms of the free

boundary.
In order to do that, we start with formula (2-8) to get ∂2

α1
�= I1+ I2+ I3+ I4− 2Aρ∂2

α1
X3, where

I1 =
Aµ
2π

PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β)dβ · ∂2
α1

X (α),

I2 =
Aµ
2π

PV
∫

R2

∂α1 X (α)− ∂α1 X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β)dβ · ∂α1 X (α),

I3 =−
3Aµ
4π

PV
∫

R2
A(α, β)

X (α)− X (α−β)
|X (α)− X (α−β)|5

∧ω(α−β)dβ · ∂α1 X (α),

with A(α, β)= (X (α)− X (α−β)) · (∂α1 X (α)− ∂α1 X (α−β)), and

I4 =
Aµ
2π

PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1ω(α−β)dβ · ∂α1 X (α).

Our next objective is to introduce the operators Tk (A-5) defined in the Appendix in the analysis of
the integrals I j . Formula (2-3) gives us ω = ∂α2(�∂α1 X)− ∂α1(�∂α2 X), and from standard Sobolev’s
estimates we get

‖I j‖L2 ≤ P
(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
‖�‖H1, j = 1, 2,

and similarly with I3.
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Regarding
I4 =

∫
|β|>1

dβ +
∫
|β|<1

dβ = J1+ J2,

we integrate by parts in J1 to obtain

J1 =
Aµ
2π

∫
|β|>1

∂β1

( X (α)− X (α−β)
|X (α)− X (α−β)|3

)
∧ω(α−β)dβ · ∂α1 X (α)

−
Aµ
2π

∫
|β|=1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β) dl(β) · ∂α1 X (α).

From this last expression, it is easy to deduce the inequality

J1 ≤ C‖F(X)‖3L∞‖X − (α, 0)‖2C1

(∫
|β|>1

|ω(α−β)|

|β|3
dβ +

∫
|β|=1
|ω(α−β)| dl(β),

)
providing us with an appropriate control (see the Appendix for more details).

Next let us consider J2 = K1+ K2+ K3+ K4, where

K1 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α2�(α−β)∂
2
α1

X (α−β)dβ · ∂α1 X (α),

K2 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1∂α2�(α−β)∂α1 X (α−β)dβ · ∂α1 X (α),

K3 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1�(α−β)∂α1∂α2 X (α−β)dβ · ∂α1 X (α),

K4 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
�(α−β)∂α2 X (α−β)dβ · ∂α1 X (α).

Then the terms K1 and K3 are handled with the same approach used for I2 — see (A-13) in the Appendix —
and we rewrite K2 in the form

K2 =
Aµ
2π

∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1∂α2�(α−β)(∂α1 X (α−β)− ∂α1 X (α))dβ · ∂α1 X (α),

to show that it can be estimated via an integration by parts in the variable β1, using the identity

∂α1∂α2�(α−β)=−∂β1(∂α2�(α−β))

and the fact that the kernel in the integral K2 has degree −1.
It remains to deal with K4: to do that, let us consider K4 = L1+ L2, where

L1 =
Aµ
2π

PV
∫
|β|<1

X (α)−X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
�(α−β)

(
∂α2 X (α)− ∂α2 X (α−β)

)
dβ · ∂α1 X (α)

and

L2 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∂2
α1
�(α−β)dβ · N (α).
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The term L1 can be controlled like K2, and L2 can be rewritten in the form

L2 =
Aµ
2π

PV
∫
|β|<1

(
X (α)− X (α−β)
|X (α)− X (α−β)|3

−
∇X (α) ·β
|∇X (α) ·β|3

)
∂2
α1
�(α−β) dβ · N (α),

showing that it can be estimated as we did with T4 (A-8), that is, we obtain (5-3). Similarly, Equation (2-9)
yields

‖∂2
α2
�‖L2 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
‖�‖H1,

and then the inequality 2‖∂α1∂α2�‖L2 ≤ ‖∂2
α1
�‖L2 +‖∂2

α2
�‖L2 gives us the desired control upon ‖�‖H2 .

Next we will show that

‖∂3
α1
�‖L2 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
‖�‖H2, (5-4)

allowing us to use the estimates for ‖�‖H2 above. In order to do that, we start with formula (2-8), to get
∂3
α1
�= ∂α1 I1+ ∂α1 I2+ ∂α1 I3+ ∂α1 I4− 2Aρ∂3

α1
X3, where the most singular terms are given by

J3 =
Aµ
2π

PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β) dβ · ∂3
α1

X (α),

J4 =
Aµ
2π

PV
∫

R2

∂2
α1

X (α)− ∂2
α1

X (α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ · ∂α1 X (α),

J5 =−
3Aµ
4π

PV
∫

R2
B(α, β)

X (α)− X (α−β)
|X (α)− X (α−β)|5

∧ω(α−β) dβ · ∂α1 X (α),

with B(α, β)= (X (α)− X (α−β)) · (∂2
α1

X (α)− ∂2
α1

X (α−β)), and

J6 =
Aµ
2π

PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
ω(α−β) dβ · ∂α1 X (α),

and where the remainder terms can be estimated with the same method used before.
Now we write

J3 =
Aµ
2π

T1
(
∂α2(�∂α1 X)− ∂α1(�∂α2 X)

)
· ∂3
α1

X

to obtain

‖J3‖L2 ≤ C
∥∥T1

(
∂α2(�∂α1 X)− ∂α1(�∂α2 X)

)∥∥
L4‖∂

3
α1

X‖L4 .

Next observe that in the proof of estimate (A-9), one can replace L2 by L p for 1< p <∞ [Stein 1993].
In particular, we have

‖J3‖L2 ≤ P
(
‖X−(α, 0)‖C1,δ+‖F(X)‖L∞+‖|N |−1

‖L∞
)(
‖�∂α1 X‖L4+‖�∂α2 X‖L4+‖ω‖L4

)
‖∂3
α1

X‖L4,

and then Sobolev’s embedding in dimension two, ‖g‖L4 ≤ C‖g‖H1 , yields the desired control. Re-
garding J4, we follow the approach taken before for T3, but now using the L4 norm. That is, we
split

J4 =

∫
|β|>1

dβ +
∫
|β|<1

dβ = K5+ K6,
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and since

K5 ≤ ‖X − (α, 0)‖2C2‖F(X)‖3L∞
∫
|β|>1

|ω(α−β)|

|β|3
dβ,

that term can be estimated as above.
Next we introduce the splitting K6 = L3+ L4, where

L3 =
Aµ
2π

∫
|β|<1

(
∂2
α1

X (α)− ∂2
α1

X (α−β)
)[ 1
|X (α)−X (α−β)|3

−
1

|∇X (α)·β|3

]
∧ω(α−β) dβ · ∂α1 X (α),

L4 =
Aµ
2π

PV
∫
|β|<1

∂2
α1

X (α)− ∂2
α1

X (α−β)

|∇X (α) ·β|3
∧ω(α−β) dβ · ∂α1 X (α).

We have

L3 ≤ C‖X − (α, 0)‖3C2,δ

(
‖F(X)‖4L∞ +‖X − (α, 0)‖4C1‖|N |−1

‖
4
L∞
)∫
|β|<1

|ω(α−β)|

|β|2−δ
dβ

(see the Appendix for more details), giving us the appropriate estimate. Regarding L4, we use identity
(A-16), which, after a careful integration by parts, yields

L4 =
Aµ
2π

PV
∫
|β|<1

β · ∇β
(
(∂2
α1

X (α)− ∂2
α1

X (α−β))∧ω(α−β) · ∂α1 X (α)
)

|∇X (α) ·β|3
dβ

−
Aµ
2π

∫
|β|=1

|β|
(
∂2
α1

X (α)− ∂2
α1

X (α−β)
)
∧ω(α−β) · ∂α1 X (α)

|∇X (α) ·β|3
dl(β),

helping us to prove the inequality

‖L4‖L2 ≤ P
(
‖X − (α, 0)‖C2 +‖F(X)‖L∞ +‖|N |−1

‖L∞
)
(‖∂3

α1
X‖L4‖ω‖L4 +‖ω‖L2).

Clearly, J5 can be approached with the same method used for J4. Regarding the term J6, we have to
decompose further: first, its most singular terms, which are given by

L5 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α2�(α−β)∂
3
α1

X (α−β) dβ · ∂α1 X (α),

L6 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
∂α2�(α−β)∂α1 X (α−β) dβ · ∂α1 X (α),

L7 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1�(α−β)∂
2
α1
∂α2 X (α−β) dβ · ∂α1 X (α),

L8 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂3
α1
�(α−β)∂α2 X (α−β) dβ · ∂α1 X (α).

Second, let us observe that the remainder is easy to handle: the terms L5 and L7 can be estimated as we
did with K1 and K3, using the L4 norm and, finally, L6 and L8 are like K2 and K4, respectively. Putting
all these facts together, we obtain (5-4).
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Similarly to the case of lower derivatives, Equation (2-9) yields

‖�‖H3 ≤ P
(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
‖�‖H2 .

To finish, it remains to show the corresponding inequality for derivatives of fourth order:

‖�‖H4 ≤ P
(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
‖�‖H3 . (5-5)

Identity (2-8) allows us to point out the most singular terms in ∂4
α1
�:

M1 =
Aµ
2π

PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β) dβ · ∂4
α1

X (α),

M2 =
Aµ
2π

PV
∫

R2

∂3
α1

X (α)− ∂3
α1

X (α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ · ∂α1 X (α),

M3 =−
3Aµ
4π

PV
∫

R2
C(α, β)

X (α)− X (α−β)
|X (α)− X (α−β)|5

∧ω(α−β) dβ · ∂α1 X (α),

with C(α, β)= (X (α)− X (α−β)) · (∂3
α1

X (α)− ∂3
α1

X (α−β)), and

M4 =
Aµ
2π

PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂3
α1
ω(α−β) dβ · ∂α1 X (α).

Then, in order to estimate M1, we start with ‖M1‖L2 ≤ CK‖∂4
α1

X‖L2 , where

K = sup
α

∣∣∣∣PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β) dβ
∣∣∣∣.

Following [Córdoba and Gancedo 2007], we have

K ≤ O1+ O2+ O3+ O4+ O5,

where

O1 = sup
α

∣∣∣∣PV
∫
|β|>1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ω(α−β) dβ
∣∣∣∣,

O2 = sup
α

∣∣∣∣∫
|β|<1

X (α)− X (α−β)−∇X (α) ·β
|X (α)− X (α−β)|3

∧ω(α−β) dβ
∣∣∣∣,

O3 = sup
α

∣∣∣∣∫
|β|<1
∇X (α) ·β

[
1

|X (α)−X (α−β)|3
−

1
|∇X (α)·β|3

]
∧ω(α−β) dβ

∣∣∣∣,
O4 = sup

α

∣∣∣∣∫
|β|<1

∇X (α) ·β
|∇X (α) ·β|3

∧
(
ω(α−β)−ω(α)

)
dβ
∣∣∣∣,

O5 = sup
α

∣∣∣∣PV
∫
|β|<1

∇X (α) ·β
|∇X (α) ·β|3

∧ω(α) dβ
∣∣∣∣.
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An integration by parts in O1 yields

O1 ≤ C‖∇X‖2L∞‖F(X)‖
3
L∞ sup

α

(∫
|β|>1

|�(α−β)|

|β|3
dβ +

∫
|β|=1
|�(α−β)| dl(β)

)
≤ C‖∇X‖2L∞‖F(X)‖

3
L∞‖�‖L∞,

and Sobolev’s embedding allows us to conclude.
Regarding O2, we have

O2 ≤ ‖X − (α, 0)‖C2,δ‖F(X)‖3L∞‖ω‖L∞

∣∣∣∣∫
|β|<1
|β|2−δdβ

∣∣∣∣,
and the estimate ‖ω‖Cδ ≤ C‖ω‖H2 , for 0 < δ < 1, gives the desired control. Using (A-15) and some
straightforward algebraic manipulations, we get a similar inequality for O3. Next, we have

O4 ≤ C‖X − (α, 0)‖4C1‖|N |−1
‖

3
L∞‖ω‖Cδ

∣∣∣∣∫
|β|<1
|β|2−δdβ

∣∣∣∣,
giving us also the same estimate. Furthermore, it is easy to prove that O5 = 0.

Next we consider the term M2 with the splitting M2 = Q1+ Q2+ Q3, where

Q1 =
Aµ
2π

∫
|β|>1

∂3
α1

X (α)− ∂3
α1

X (α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ · ∂α1 X (α),

Q2 =
Aµ
2π

∫
|β|<1

∂3
α1

X (α)− ∂3
α1

X (α−β)

|X (α)− X (α−β)|3
∧ (ω(α−β)−ω(α)) dβ · ∂α1 X (α),

Q3 =
Aµ
2π

PV
∫
|β|<1

∂3
α1

X (α)− ∂3
α1

X (α−β)

|X (α)− X (α−β)|3
dβ ∧ω(α) · ∂α1 X (α).

The term Q1 can be estimated as before; regarding Q2, we can use the identity

∂3
α1

X (α)− ∂3
α1

X (α−β)=
∫ 1

0
∇∂3

α1
X (α+ (s− 1)β) ds ·β,

and the control of Q3 can be approached as we did with the operator in (A-7). Similarly with M3, while
M4 is analogous to J6, and all these observations together allow us to obtain (5-5).

6. Controlling the Birkhoff–Rott integral

Here we consider estimates for the Birkhoff–Rott integral along a non-self-intersecting surface. Let us
assume that ∇(X (α)− (α, 0)) ∈ H k(R2) for k ≥ 3, and that both F(X) and |N |−1 are in L∞, where

F(X)(α, β)= |β|
/
|X (α)− X (α−β)| and N (α)= ∂α1 X (α)∧ ∂α2 X (α).

The main purpose of this section is to prove the estimate

‖BR(X, ω)‖H k−1 ≤ P
(
‖X‖2k +‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
, (6-1)
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for k ≥ 4. Here we shall show it when k = 4, because the other cases, k > 4, follow by similar arguments.
We rewrite BR in the following manner:

BR(X, ω)(α, t)=− 1
4π

PV
∫

R2

X (α)− X (β)
|X (α)− X (β)|3

∧ (∂β2(�∂β1 X)− ∂β1(�∂β2 X))(β) dβ,

which, together with the estimates about � in Section 5 and also about the operator T1 in the Appendix,
yields

‖BR(X, ω)‖L2 ≤ P
(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
.

To estimate derivatives of order 3, we consider ∂3
αi
(BR(X, ω)), and observe that the most dangerous terms

are given by

I1 =−
1

4π
PV
∫

R2

(∂3
αi

X (α)− ∂3
αi

X (α−β))∧ω(α−β)

|X (α)− X (α−β)|3
dβ,

I2 =
3

4π
PV
∫

R2
(X (α)− X (α−β))∧ω(α−β)

(X (α)− X (α−β)) · (∂3
αi

X (α)− ∂3
αi

X (α−β))

|X (α)− X (α−β)|5
dβ,

I3 =−
1

4π
PV
∫

R2

(X (α)− X (α−β))∧ (∂3
αi
ω)(α−β)

|X (α)− X (α−β)|3
dβ.

In the Appendix, we find all the ingredients needed to estimate these terms I j , while the remainder in
∂3
αi
(BR(X, ω)) is easily bounded: in I3 we can recognize an operator with the form of T1 in (A-5), so

the estimate for ω in Section 5 gives the desired control for I3. Regarding I1, we may use the splitting
I1 = J1+ J2, where

J1 =
1

4π

∫
R2

(∂3
αi

X (α)− ∂3
αi

X (α−β))∧ (ω(α)−ω(α−β))

|X (α)− X (α−β)|3
dβ,

J2 =
ω(α)

4π
∧PV

∫
R2

(∂3
αi

X (α)− ∂3
αi

X (α−β))

|X (α)− X (α−β)|3
dβ.

Then the identity ∂3
αi

X (α)−∂3
αi

X (α−β)= β ·
∫ 1

0 ∇∂
3
αi

X (α+ (s−1)β) ds allows us to find in J1 a kernel
of degree −1 which we know how to handle (see the Appendix). One uses the estimate for T3 (A-7) to
deal with J2, and we proceed similarly to control I2.

7. In search of the Rayleigh–Taylor condition

As was pointed out in Section 4 (outline of the proof), our approach is based on energy estimates, and a
crucial step is to characterize those terms involving higher derivatives which are controlled because they
have the appropriate sign. In our terminology, they constitute the Rayleigh–Taylor condition, which is
supposed to hold at time T = 0, it being an important part of the proof to show that it prevails under the
evolution.

Let us introduce the notation

|||X |||2k = ‖X‖
2
k +‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞,
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where
‖X‖k = ‖X1−α1‖L3 +‖X2−α2‖L3 +‖X3‖L2 +‖∇(X − (α, 0))‖2H k−1 (7-1)

and

‖∇(X − (α, 0))‖2H k−1 = ‖∇(X − (α, 0))‖2L2 +‖∂
k
α1
(X − (α, 0))‖2L2 +‖∂

k
α2
(X − (α, 0))‖2L2 .

In order to justify the formula

d
dt
‖X‖2k(t)≤−

∑
i=1,2

23/2

(µ1+µ2)

∫
R2

σ(α, t)
|∇X (α, t)|3

∂k
αi

X (α, t) ·3(∂k
αi

X)(α, t) dα+ P(|||X |||k(t)),

(here k ≥ 4, although for the sake of simplicity we will present the explicit computations when k = 4,
leaving the other cases as an exercise for the interested reader), it will be convenient to make use of
the following tools, which give us different kinds of cancellations, and which constitute our particular
bestiary of formulas for this paper.

From the definition of the isothermal parametrization, we have the identities

|∂α1 X |2 = |∂α2 X |2, (7-2)

∂α1 X · ∂α2 X = 0, (7-3)

which yield
1
21(|∂α1 X |2)= |∂α1∂α2 X |2− ∂2

α1
X · ∂2

α2
X, (7-4)

∂4
α1

X · ∂α1 X =−3∂3
α1

X · ∂2
α1

X + (∂2
α1
1−1∂α1)

(
|∂α1∂α2 X |2− ∂2

α1
X · ∂2

α2
X
)
, (7-5)

∂4
α2

X · ∂α2 X =−3∂3
α2

X · ∂2
α2

X + (∂2
α2
1−1∂α2)

(
|∂α1∂α2 X |2− ∂2

α1
X · ∂2

α2
X
)
. (7-6)

Using (7-3) and (7-4), we obtain

∂4
α1

X · ∂α2 X =−2∂3
α1

X · ∂α1∂α2 X − ∂2
α1
∂α2 X · ∂2

α1
X − (∂α1∂α21

−1∂α1)
(
|∂α1∂α2 X |2− ∂2

α1
X · ∂2

α2
X
)
, (7-7)

∂4
α2

X · ∂α1 X =−2∂3
α2

X · ∂α1∂α2 X − ∂2
α2
∂α1 X · ∂2

α2
X − (∂α1∂α21

−1∂α2)
(
|∂α1∂α2 X |2− ∂2

α1
X · ∂2

α2
X
)
. (7-8)

And Sobolev inequalities imply that if ∇(X − (α, 0)) ∈ H 3, then ∂4
αi

X · ∂α j X ∈ H 3 for i, j = 1, 2.
With the help of the estimates above, we may now determine σ . There is a part that may be considered

a mere “algebraic” manipulation to detect the relevant characters and, in so doing, we disregard many
terms because they are of lower order in the sense of Sobolev spaces. At the end, we shall present how to
deal with those lower-order terms — if not for the whole collection of them, at least for the ones that we
may consider to be the most “dangerous” characters. Here it is convenient to recommend to the reader
our previous works [Córdoba and Gancedo 2007; Córdoba et al. 2011], where similar estimates were
carried out.

Low-order norms. Since X i (α)→ αi for i = 1, 2 at infinity, let us consider the evolution of the L3 norm.
That is,

1
3

d
dt
‖X1−α1‖

3
L3(t)=

∫
R2
|X1−α1|(X1−α1)X1t dα = I1+ I2+ I3,
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where

I1 =

∫
R2
|X1−α1|(X1−α1)BR1 dα,

I2 =

∫
R2
|X1−α1|(X1−α1)C1∂α1 X1dα,

I3 =

∫
R2
|X1−α1|(X1−α1)C2∂α2 X1dα.

Then we have

I1 ≤ ‖X1−α1‖
2
L3‖BR ‖L3 ≤ C

(
‖X1−α1‖

3
L3 +‖BR ‖L∞‖BR ‖2L2

)
,

and Sobolev estimates, together with (6-1), yield the appropriate control in terms of P(|||X |||k).
Next, since ∂α1 X1→ 1 as α→∞, we have

I2 ≤ ‖∂α1 X1‖L∞‖X1−α1‖
2
L3‖C1‖L3,

and it remains to get control of C1. Using (3-1), we introduce the splitting C1 =
∑4

j=1 C j
1 , where

C1
1(α)=

1
2π

∫
R2

α1−β1

|α−β|2
BRβ2 ·

Xβ2

|Xβ2 |
2 dβ, C2

1(α)=−
1

2π

∫
R2

α1−β1

|α−β|2
BRβ1 ·

Xβ1

|Xβ2 |
2 dβ,

C3
1(α)=−

1
2π

∫
R2

α2−β2

|α−β|2
BRβ1 ·

Xβ2

|Xβ1 |
2 dβ, C4

1(α)=−
1

2π

∫
R2

α1−β1

|α−β|2
BRβ2 ·

Xβ1

|Xβ1 |
2 dβ.

We shall show how to control C1
1 , because the estimates for the other terms follow by similar arguments.

Integrating by parts, one obtains C1
1 = D1+ D2, where

D1 =−
1

2π

∫
R2

α1−β1

|α−β|2
BR · ∂β2

(
Xβ2

|Xβ2 |
2

)
dβ, D2 =−

1
π

PV
∫

R2

(α1−β1)(α2−β2)

|α−β|4
BR ·

Xβ2

|Xβ2 |
2 dβ.

Regarding D1, we write D1 = E1+ E2, where

E1 =
−1
2π

∫
|β|<1

β1

|β|2
BR(α−β) · ∂β2

(
Xβ2

|Xβ2 |
2

)
(α−β) dβ,

E2 =
−1
2π

∫
|β|>1

β1

|β|2
BR(α−β) · ∂β2

(
Xβ2

|Xβ2 |
2

)
(α−β) dβ.

The Minkowski and Young inequalities yield, respectively,

‖E1‖L3 ≤ C
∥∥∥∥BR · ∂β2

(
Xβ2

|Xβ2 |
2

)∥∥∥∥
L3
≤ P(|||X |||4),

‖E2‖L3 ≤ C
∥∥∥∥BR · ∂β2

(
Xβ2

|Xβ2 |
2

)∥∥∥∥
L1
≤ C‖BR ‖L2

∥∥∥∥∂β2

(
Xβ2

|Xβ2 |
2

)∥∥∥∥
L2
≤ P(|||X |||4),

and the desired control is achieved. In the term D2, we have a double Riesz transform, and the standard
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Calderón–Zygmund theory yields

‖D2‖L3 ≤ C
∥∥∥∥BR ·

Xβ2

|Xβ2 |
2

∥∥∥∥
L3
≤ C‖|Xβ2 |

−1
‖L∞‖BR ‖L3 ≤ P(|||X |||4).

The estimate for I3 follows on a similar path, and the case of the second coordinate is also identical:

1
3

d
dt
‖X2−α2‖

3
L3(t)≤ P(|||X |||4).

Regarding the third coordinate, we have stronger decay because of the asymptotic flatness hypothesis:

1
2

d
dt
‖X3‖

2
L2(t)=

∫
R2

X3 BR3 dα+
∫

R2
X3C1∂α1 X3 dα+

∫
R2

X3C2∂α2 X3 dα

=

∫
R2

X3 BR3 dα− 1
2

∫
R2
(∂α1C1+ ∂α2C2)|X3|

2 dα,

and therefore the use of Sobolev’s embedding in the formulas for C1 (3-1) and C2 (3-2), together with
the estimates for BR (6-1), allows us to obtain:

1
2

d
dt
‖X3‖

2
L2(t)≤ P(|||X |||4).

Once we have control of higher-order derivatives, we can use the estimates of the Appendix to get

1
2

d
dt
∥∥∇(X − (α, 0))

∥∥2
L2(t)≤ P(|||X |||4).

Higher-order norms. Let us now consider

1
2

d
dt
‖∂4
α1

X‖2L2(t)

=

∫
R2
∂4
α1

X · ∂4
α1

BR(X, ω) dα+
∫

R2
∂4
α1

X · ∂4
α1
(C1∂α1 X) dα+

∫
R2
∂4
α1

X · ∂4
α1
(C2∂α2 X) dα

= I1+ I2+ I3. (7-9)

The higher-order terms in I2 and I3 are given by

J1 =

∫
R2

C1∂
4
α1

X · ∂5
α1

X dα, J2 =

∫
R2
∂4
α1

X · ∂α1 X∂4
α1

C1 dα,

J3 =

∫
R2

C2∂
4
α1

X · ∂4
α1
∂α2 X dα, J4 =

∫
R2
∂4
α1

X · ∂α2 X∂4
α1

C2 dα.

Integration by parts yields

J1+ J3 =−
1
2

∫
R2
(∂α1C1+ ∂α2C2)|∂

4
α1

X |2dα,

and therefore
J1+ J3 ≤

1
2

(
‖∂α1C1‖L∞ +‖∂α2C2‖L∞

)
‖∂4
α1

X‖2L2 ≤ P(|||X |||4).

Then in J2 we use (7-5) to get

J2 =−

∫
R2
∂α1(∂

4
α1

X · ∂α1 X)∂3
α1

C1 dα ≤ ‖∂α1(∂
4
α1

X · ∂α1 X)‖L2‖∂3
α1

C1‖L2 .
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In J4, we use (7-7) to obtain

J4 =−

∫
R2
∂α1(∂

4
α1

X · ∂α2 X)∂3
α1

C2 dα ≤ ‖∂α1(∂
4
α1

X · ∂α2 X)‖L2‖∂3
α1

C2‖L2 .

From formulas (3-1), (3-2), one realizes that C1 and C2 are at the same level as Birkhoff–Rott (2-5), and
therefore, we can use the estimates for BR (6-1) to control ‖∂3

α1
Ci‖L2 , i = 1, 2. Then formulas (7-5) and

(7-7) indicate how to estimate ‖∂α1(∂
4
α1

X · ∂αi X)‖L2 , i = 1, 2. That is, we have

J2+ J4 ≤ P(|||X |||4).

In I1, the most singular terms are given by

J5 =−
1

4π
PV
∫

R2

∫
R2
∂4
α1

X (α) ·
(∂4
α1

X (α)− ∂4
α1

X (β))∧ω(β)

|X (α)− X (β)|3
dα dβ,

J6 =
3

4π
PV
∫

R2

∫
R2
∂4
α1

X (α) · (X (α)− X (β))∧ω(β)
(X (α)− X (β)) · (∂4

α1
X (α)− ∂4

α1
X (β))

|X (α)− X (β)|5
dα dβ,

J7 =−
1

4π
PV
∫

R2

∫
R2
∂4
α1

X (α) ·
(X (α)− X (β))∧ (∂4

α1
ω)(β)

|X (α)− X (β)|3
dα dβ.

(7-10)
Let us consider now the splitting J5 = K1+ K2:

K1 =−
1

8π
PV
∫

R2

∫
R2
∂4
α1

X (α)∧ (∂4
α1

X (α)− ∂4
α1

X (β)) ·
ω(β)+ω(α)

|X (α)− X (β)|3
dα dβ,

K2 =
1

8π
PV
∫

R2

∫
R2
∂4
α1

X (α)∧ (∂4
α1

X (α)− ∂4
α1

X (β)) ·
ω(α)−ω(β)

|X (α)− X (β)|3
dα dβ,

Next we exchange α and β in K1 to get

K1 =
1

8π
PV
∫

R2

∫
R2
∂4
α1

X (β)∧ (∂4
α1

X (α)− ∂4
α1

X (β)) ·
ω(β)+ω(α)

|X (α)− X (β)|3
dα dβ,

=−
1

16π
PV
∫

R2

∫
R2
(∂4
α1

X (α)− ∂4
α1

X (β))∧ (∂4
α1

X (α)− ∂4
α1

X (β)) ·
ω(β)+ω(α)

|X (α)− X (β)|3
dα dβ,

and therefore we can conclude that K1 = 0. In K2 we find a singular integral with a kernel of degree −2:

K2 =−
1

8π
PV
∫

R2
∂4
α1

X (α) ·
∫

R2
∂4
α1

X (β)∧
ω(α)−ω(β)

|X (α)− X (β)|3
dβ dα,

and as is proved in the Appendix, we have

K2 ≤ P(|||X |||4).

Let us now decompose J6 = K3+ K 1
4 + K 2

4 + K 1
5 + K 2

5 , where

K3 =
3

4π
PV
∫

R2

∫
R2
∂4
α1

X (α) · (X (α)− X (β))∧ω(β)
A(α, β) · (∂4

α1
X (α)− ∂4

α1
X (β))

|X (α)− X (β)|5
dα dβ,
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with A(α, β)= X (α)− X (β)−∇X (α)(α−β),

K i
4 =−

3
4π

PV
∫

R2

∫
R2
∂4
α1

X (α) · (X (α)− X (β))∧ω(β)
(αi −βi )(∂αi X (α)− ∂αi X (β)) · ∂4

α1
X (β)

|X (α)− X (β)|5
dα dβ

K i
5 =

3
4π

PV
∫

R2

∫
R2
∂4
α1

X (α) · (X (α)− X (β))∧ω(β)

×
(αi −βi )(∂αi X (α) · ∂4

α1
X (α)− ∂αi X (β) · ∂4

α1
X (β))

|X (α)− X (β)|5
dα dβ.

In K3 and K i
4 we find kernels of degree −2, and as shown in the Appendix, they behave as a Riesz

transform acting on ∂4
α1

X . In K i
5 the kernels have degree −3 and act as a 3 operator on ∂αi X ·∂4

α1
X . Then

using formulas (7-5) and (7-7), we get finally the desired estimate.
We will find the R-T condition in J7. Let us take J7 = K6+ K7, where

K6 =−
1

4π
PV
∫

R2
∂4
α1

X (α) ·
∫

R2

( (X (α)− X (β))
|X (α)− X (β)|3

−
∇X (α)(α−β)
|∇X (α)(α−β)|3

)
∧ (∂4

α1
ω)(β) dβ dα,

K7 =−
1

4π
PV
∫

R2
∂4
α1

X (α) ·
∫

R2

∇X (α)(α−β)
|∇X (α)(α−β)|3

∧ (∂4
α1
ω)(β) dβ dα.

The term K6 is controlled by (A-8) in the Appendix. Using (7-2) and (7-3), we get

K7 =−
1
2 PV

∫
R2

∂4
α1

X (α)

|∂α1 X (α)|3
·
(
∂α1 X (α)∧ R1(∂

4
α1
ω)(α)+ ∂α2 X (α)∧ R2(∂

4
α1
ω)(α)

)
dα.

Formula (2-3) helps us to detect the most singular terms inside K7, which will be denoted by L i ,
i = 1, . . . , 8, and are the following:

L1 =−
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α1 X (α)
|∂α1 X (α)|3

∧ R1(∂
4
α1
∂α2�∂α1 X)(α) dα,

L2 =−
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α1 X (α)
|∂α1 X (α)|3

∧ R1(∂α2�∂
5
α1

X)(α) dα,

L3 =
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α1 X (α)
|∂α1 X (α)|3

∧ R1(∂
5
α1
�∂α2 X)(α) dα,

L4 =
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α1 X (α)
|∂α1 X (α)|3

∧ R1(∂α1�∂
4
α1
∂α2 X)(α) dα,

L5 =−
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α2 X (α)
|∂α2 X (α)|3

∧ R2(∂
4
α1
∂α2�∂α1 X)(α) dα,

L6 =−
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α2 X (α)
|∂α2 X (α)|3

∧ R2(∂α2�∂
5
α1

X)(α) dα,

L7 =
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α2 X (α)
|∂α2 X (α)|3

∧ R2(∂
5
α1
�∂α2 X)(α) dα,

L8 =
1
2 PV

∫
R2
∂4
α1

X (α) ·
∂α2 X (α)
|∂α2 X (α)|3

∧ R2(∂α1�∂
4
α1
∂α2 X)(α) dα.
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In L1 we get a kernel of degree −1 of the form

L1 =
1
2 PV

∫
R2
∂4
α1

X (α) ·
∫

R2

α1−β1

|α−β|3

∂α1 X (α)
|∂α1 X (α)|3

∧ (∂α1 X (α)− ∂α1 X (β))∂4
α1
∂α2�(β) dβ dα,

which can be estimated integrating by parts throughout ∂4
α1
∂α2�; the term L7 also follows in a similar

manner. In order to estimate L2, L4, L6 and L8, we realize that they can be written like (A-3) in the
Appendix plus commutators of the form (A-1). Next we have to deal with L3 and L5: with L3, we
proceed as follows:

L3 ≤ L̃3+‖∂α1 |X |
−2
‖L∞‖∂

4
α1

X‖L2

∥∥R1(∂
5
α1
�∂α2 X)− R1(∂

5
α1
�)∂α2 X

∥∥
L2,

where L̃3 is given by

L̃3 =
1
2 PV

∫
R2
∂4
α1

X (α) ·
N (α)

|∂α1 X (α)|3
(R1∂α1)(∂

4
α1
�)(α) dα, (7-11)

and the commutator estimates (A-1) show that it only remains to control L̃3. We now use formula (2-8)
to get L̃3 = M1+M2, where

M1 =−Aρ PV
∫

R2
∂4
α1

X (α) ·
N (α)

|∂α1 X (α)|3
(R1∂α1)(∂

4
α1

X3)(α) dα

and
M2 =−Aµ PV

∫
R2
∂4
α1

X (α) ·
N (α)

|∂α1 X (α)|3
(R1∂α1)

(
∂3
α1
(BR(X, ω) · ∂α1 X)

)
(α) dα.

Then we write M1 = O1+ O2+ O3, where

O1 =−Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
(∂α1 X2∂α2 X3− ∂α1 X3∂α2 X2)(R1∂α1)(∂

4
α1

X3) dα,

O2 =−Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
(∂α1 X3∂α2 X1− ∂α1 X1∂α2 X3)(R1∂α1)(∂

4
α1

X3) dα,

O3 =−Aρ PV
∫

R2

N3

|∂α1 X |3
∂4
α1

X3(R1∂α1)(∂
4
α1

X3) dα.

(7-12)

Next we consider O1 = P1+ P2+ P3, with

P1 =−Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2(R1∂α1)(∂α2 X3∂

4
α1

X3) dα,

P2 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2(R1∂α1)(∂α1 X3∂

4
α1

X3) dα,

P3 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2

[
(R1∂α1)(∂α2 X3∂

4
α1

X3)− ∂α2 X3(R1∂α1)(∂
4
α1

X3)
]

dα

+ Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2

[
∂α1 X3(R1∂α1)(∂

4
α1

X3)− (R1∂α1)(∂α1 X3∂
4
α1

X3)
]

dα,

and the commutator estimate allows us to control the term P3.
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Now we use (7-7) to write P1 = Q1+ Q2+ Q3:

Q1 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2(R1∂α1)(∂α2 X1∂

4
α1

X1) dα,

Q2 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2(R1∂α1)(∂α2 X2∂

4
α1

X2) dα,

Q3 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2(R1∂α1)(lower-order terms) dα.

The term Q3 is easily estimated. Regarding P2, equality (7-5) allows us to write P2 = Q4+ Q5+ Q6,
where

Q4 =−Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2(R1∂α1)(∂α1 X1∂

4
α1

X1) dα,

Q5 =−Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2(R1∂α1)(∂α1 X2∂

4
α1

X2) dα,

Q6 =−Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2(R1∂α1)(lower-order terms) dα.

Let us recall the identity P1+ P2 = (Q4+ Q1)+ (Q2+ Q5)+ (Q3+ Q6), where Q3 and Q6 are easily
estimated. With respect to Q2+ Q5, we have

Q2+ Q5 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2

[
(R1∂α1)(∂α2 X2∂

4
α1

X2)− ∂α2 X2(R1∂α1)(∂
4
α1

X2)
]

dα

+ Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2

[
∂α1 X2(R1∂α1)(∂

4
α1

X2)− (R1∂α1)(∂α1 X2∂
4
α1

X2)
]

dα,

and again the commutator estimates yield the desired control.
Next we have

Q4+ Q1 = Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α2 X2

[
∂α1 X1(R1∂α1)(∂

4
α1

X1)− (R1∂α1)(∂α1 X1∂
4
α1

X1)
]

dα

+ Aρ PV
∫

R2

∂4
α1

X1

|∂α1 X |3
∂α1 X2

[
(R1∂α1)(∂α2 X1∂

4
α1

X1)− ∂α2 X1(R1∂α1)(∂
4
α1

X1)
]

dα

− Aρ PV
∫

R2

N3

|∂α1 X |3
∂4
α1

X1(R1∂α1)(∂
4
α1

X1) dα.

The first two integrals above are easily handled, allowing us to get

O1 = P1+ P2+ P3 ≤ P(|||X |||4)− Aρ PV
∫

R2

N3

|∂α1 X |3
∂4
α1

X1(R1∂α1)(∂
4
α1

X1) dα. (7-13)

For the term O2, we proceed in a similar manner, first checking that O2 = P4+ P5+ P6:
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P4 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1(R1∂α1)(∂α2 X3∂

4
α1

X3) dα,

P5 =−Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1(R1∂α1)(∂α1 X3∂

4
α1

X3) dα,

P6 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1

[
∂α2 X3(R1∂α1)(∂

4
α1

X3)− (R1∂α1)(∂α2 X3∂
4
α1

X3)
]

dα

+ Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1

[
(R1∂α1)(∂α1 X3∂

4
α1

X3)− ∂α1 X3(R1∂α1)(∂
4
α1

X3)
]

dα.

We control P6 as before. Regarding P4, we use (7-7) to write it in the form P4 = S1+ S2+ S3, where

S1 =−Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1(R1∂α1)(∂α2 X1∂

4
α1

X1) dα,

S2 =−Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1(R1∂α1)(∂α2 X2∂

4
α1

X2) dα,

S3 =−Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1(R1∂α1)(lower-order terms) dα.

The identity (7-5) allows us to write P5 = S4+ S5+ S6, where

S4 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1(R1∂α1)(∂α1 X1∂

4
α1

X1) dα,

S5 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1(R1∂α1)(∂α1 X2∂

4
α1

X2) dα,

S6 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1(R1∂α1)(lower-order terms) dα.

Next, we reorganize the sum in the form

P4+ P6 = (S1+ S4)+ (S2+ S5)+ (S3+ S6),

where the term S3+ S6 can be easily estimated. Regarding S1+ S4, we have

S1+ S4 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1

[
∂α2 X1(R1∂α1)(∂

4
α1

X1)− (R1∂α1)(∂α2 X1∂
4
α1

X1)
]

dα

+ Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1

[
(R1∂α1)(∂α1 X1∂

4
α1

X1)− ∂α1 X1(R1∂α1)(∂
4
α1

X1)
]

dα,

and the commutator estimates give us precise control.
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Let us consider now

S2+ S5 = Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α1 X1

[
∂α2 X2(R1∂α1)(∂

4
α1

X2)− (R1∂α1)(∂α2 X2∂
4
α1

X2)
]

dα

+ Aρ PV
∫

R2

∂4
α1

X2

|∂α1 X |3
∂α2 X1

[
(R1∂α1)(∂α1 X2∂

4
α1

X2)− ∂α1 X2(R1∂α1)(∂
4
α1

X2)
]

dα

− Aρ PV
∫

R2

N3

|∂α1 X |3
∂4
α1

X2(R1∂α1)(∂
4
α1

X2) dα.

Here again the commutator estimates control the first two integrals above, allowing us to conclude that

O2 = P4+ P5+ P6 ≤ P(|||X |||4)− Aρ PV
∫

R2

N3

|∂α1 X |3
∂4
α1

X2(R1∂α1)(∂
4
α1

X2) dα. (7-14)

Furthermore, inequalities (7-13), (7-14) and (7-12) yield

M1 = O1+ O2+ O3 ≤ P(|||X |||4)− Aρ PV
∫

R2

N3

|∂α1 X |3
∂4
α1

X · (R1∂α1)(∂
4
α1

X) dα, (7-15)

and at this point we begin to recognize the Rayleigh–Taylor condition in the nonintegrable terms. Let us
return now to the term M2, which can be written in the form

M2 = Aµ PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
∂4
α1
(BR(X, ω) · ∂α1 X)) dα, (7-16)

and whose most dangerous components are given by

O4 =−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

∂4
α1

X (α)− ∂4
α1

X (β)

|X (α)− X (β)|3
∧ω(β) · ∂α1 X (α) dα,

O5 =
3Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

B(α, β)(X (α)− X (β))∧ω(β) · ∂α1 X (α) dα,

with

B(α, β)=
(X (α)− X (β)) · (∂4

α1
X (α)− ∂4

α2
X (β))

|X (α)− X (β)|5
,

O6 =−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

X (α)− X (β)
|X (α)− X (β)|3

∧ ∂4
α1
ω(β) · ∂α1 X (α) dα,

and

O7 = Aµ PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)∂α1(BR(X, ω) · ∂4

α1
X)(α) dα.

The remainder terms are less singular and can be estimated with the same methods used before.
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To deal with O4, we decompose it further as O4 = P7+ P8:

P7 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

∂4
α1

X (α)− ∂4
α1

X (β)

|X (α)− X (β)|3
·ω(β)∧ (∂α1 X (β)− ∂α1 X (α)) dβ dα,

P8 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

∂4
α1

X (α)− ∂4
α1

X (β)

|X (α)− X (β)|3
· N (β)∂α1�(β) dβ dα,

where in P8, we have used formula (2-3) to get

ω∧ ∂α1 X = N∂α1�.

In the integral (with respect to β) of P7, we have a kernel of degree −2 applied to 4 derivatives, which
can be estimated easily. Next let us consider P8 = Q7+ Q8+ Q9, where

Q7 =−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)∂4

α1
X (α) ·

∫
R2

N (α)∂α1�(α)− N (β)∂α1�(β)

|X (α)− X (β)|3
dβ dα,

Q8 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(
(∂α1�N · ∂4

α1
X)(α)− (∂α1�N · ∂4

α1
X)(β)

)
C(α, β) dβ dα,

and

C(α, β)= 1
|X (α)−X (β)|3

−
1

|∇X (α)(α−β)|3
,

Q9 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

1
|∂α1 X (α)|3

3(∂α1�N · ∂4
α1

X)(α) dα.

In Q7, we have

Q7 ≤

∥∥∥∥R1

(
∂4
α1

X · N

|∂α1 X |3

)∥∥∥∥
L2
‖∂4
α1

X‖L2 sup
α

∣∣∣∣∫
R2

N (α)∂α1�(α)− N (β)∂α1�(β)

|X (α)− X (β)|3
dβ
∣∣∣∣,

giving us the appropriate control, which can be also obtained in Q8 because the corresponding kernel has
degree −2. Regarding Q9, we have the expression

Q9 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)[
1

|∂α1 X |3
3(∂α1�N · ∂4

α1
X)−3

(
∂α1�N · ∂4

α1
X

|∂α1 X |3

)]
dα

+
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
3

(
∂α1�

∂4
α1

X · N

|∂α1 X |3

)
dα.

Then we use (A-2) to control the first integral above, and since 3= R1∂α1 + R2∂α2 by (A-4), we can also
take care of the second term.

With O5, one proceeds as we did with J6 (7-10) to get the desired estimate.
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Next, we use (2-3) to catch the most singular terms in O6, which are given by

S7 =−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(X (α)− X (β))∧ ∂α1 X (β) · ∂α1 X (α)
|X (α)− X (β)|3

∂4
α1
∂α2�(β) dα,

S8 =−
Aµ

8π2 PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(X (α)− X (β))∧ ∂α1 X (α)
|X (α)− X (β)|3

· ∂α2�(β)∂
5
α1

X (β) dα,

S9 =
Aµ

8π2 PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(X (α)− X (β))∧ ∂α2 X (β) · ∂α1 X (α)
|X (α)− X (β)|3

∂5
α1
�(β) dα,

S10 =
Aµ

8π2 PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(X (α)− X (β))∧ ∂α1 X (α)
|X (α)− X (β)|3

· ∂α1�(β)∂
4
α1
∂α2 X (β) dα.

One may write

S7=
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(X (α)− X (β))∧ (∂α1 X (α)− ∂α1 X (β)) · ∂α1 X (β)
|X (α)− X (β)|3

∂4
α1
∂α2�(β) dα,

expressing the fact that we have a kernel of degree −1 applied to ∂4
α1
∂α2�, and therefore an integration

by parts gives us the desired control, as before. To treat S8, we further decompose S8 = T1+ T2:

T1 =−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

D(α, β) · ∂α2�(β)∂
5
α1

X (β) dα,

where

D(α, β)=
(
(X (α)− X (β))
|X (α)− X (β)|3

−
∇X (α)(α−β)
|∇X (α)(α−β)|3

)
∧ ∂α1 X (α)

and

T2 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

N (α)
|∂α1 X (α)|3

· R2(∂α2�∂
5
α1

X)(α) dα.

In T1, we use the estimate for the operator (A-8). The term T2 reads as follows:

T2 =−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
N

|∂α1 X |3
· R2(∂α2∂α1�∂

4
α1

X) dα

+
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)[
N

|∂α1 X |3
· (R2∂α1)(∂α2�∂

4
α1

X)− (R2∂α1)(∂α2�
N · ∂4

α1
X

|∂α1 X |3
)

]
dα

−
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(R2∂α1)

(
∂α2�

N · ∂4
α1

X

|∂α1 X |3

)
dα.

The first integral above is easy to estimate, while for the second one we use (A-1), and (A-4) for the third.
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For the next term, one has S9 = T3+ T4, where

T3 =
Aµ
4π

PV
∫

R2
R1

(
∂4
α1

X · N

|∂α1 X |3

)
(α)

∫
R2

(X (α)− X (β)) · ∂α2 X (β)∧ (∂α1 X (α)− ∂α1 X (β))
|X (α)− X (β)|3

∂5
α1
�(β) dα,

T4 =−Aµ

∫
R2

R1

(
∂4
α1

X · N

|∂α1 X |3

)
D(∂5

α1
�) dα,

Proceeding as before, we get bounds for T3, and the double-layer potential estimates help us to control T4.
For S10, one can adapt exactly the same approach used for S8. Finally, we have to deal with O7, which

is given by

O7 =−Aµ PV
∫

R2
BR(X, ω) · ∂4

α1
X (R1∂α1)

(
∂4
α1

X · N

|∂α1 X |3

)
dα,

after an integration by parts. Let us introduce the splitting O7 =
∑3

j,k=1 U k
j , where

U k
j =−Aµ PV

∫
R2

BR j (X, ω)∂4
α1

X j (R1∂α1)

(
∂4
α1

Xk Nk

|∂α1 X |3

)
dα.

Then the commutator estimates allow us to write U k
j = V k

j + lower order terms, where

V k
j =−Aµ PV

∫
R2

BR j (X, ω)∂4
α1

X j
Nk

|∂α1 X |3
(R1∂α1)(∂

4
α1

Xk) dα.

Using (7-5) and (7-7), one has

N1∂
4
α1

X2 = N2∂
4
α1

X1+ lower-order terms,

so that V 1
2 becomes

V 1
2 =−Aµ PV

∫
R2

BR2(X, ω)N2

|∂α1 X |3
∂4
α1

X1(R1∂α1)(∂
4
α1

X1) dα− Aµ PV
∫

R2
f (R1∂α1)(∂

4
α1

X1) dα,

where f is at the level of ∂3
αi

X . Integration by parts in the last integral allows us to conclude that

V 1
2 ≤−Aµ PV

∫
R2

BR2(X, ω)N2

|∂α1 X |3
∂4
α1

X1(R1∂α1)(∂
4
α1

X1) dα+ P(|||X |||4).

With the help of (7-5) and (7-7), we also get

N1∂
4
α1

X3 = N3∂
4
α1

X1+ lower-order terms,

and therefore

V 1
3 ≤−Aµ PV

∫
R2

BR3(X, ω)N3

|∂α1 X |3
∂4
α1

X1(R1∂α1)(∂
4
α1

X1) dα+ P(|||X |||4).

Using the two inequalities above, we obtain

V 1
1 + V 1

2 + V 1
3 ≤−Aµ PV

∫
R2

BR(X, ω) · N
|∂α1 X |3

∂4
α1

X1(R1∂α1)(∂
4
α1

X1) dα+ P(|||X |||4). (7-17)
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Next, let us observe that

N2∂
4
α1

X1 = N1∂
4
α1

X2+ lower-order terms, N2∂
4
α1

X3 = N3∂
4
α1

X2+ lower-order terms,

which implies the estimate

V 2
1 + V 2

2 + V 2
3 ≤−Aµ PV

∫
R2

BR(X, ω) · N
|∂α1 X |3

∂4
α1

X2(R1∂α1)(∂
4
α1

X2) dα+ P(|||X |||4). (7-18)

Regarding V 3
1 and V 3

2 , the identities

N3∂
4
α1

X1 = N1∂
4
α1

X3+ lower-order terms, N3∂
4
α1

X3 = N2∂
4
α1

X3+ lower-order terms

yield

V 3
1 + V 3

2 + V 3
3 ≤−Aµ PV

∫
R2

BR(X, ω) · N
|∂α1 X |3

∂4
α1

X3(R1∂α1)(∂
4
α1

X3) dα+ P(|||X |||4). (7-19)

Finally (7-17), (7-18) and (7-19) imply

3∑
j,k=1

V k
j ≤−Aµ PV

∫
R2

BR(X, ω) · N
|∂α1 X |3

∂4
α1

X · (R1∂α1)(∂
4
α1

X) dα+ P(|||X |||4).

Now we put together the estimates (7-16)–(7-19) to conclude that

M2 ≤−Aµ PV
∫

R2

BR(X, ω) · N
|∂α1 X |3

∂4
α1

X · (R1∂α1)(∂
4
α1

X) dα+ P(|||X |||4),

and taking into account (7-15), we obtain

L̃3 = M1+M2 ≤−
1

µ2+µ1
PV
∫

R2

σ

|∂α1 X |3
∂4
α1

X · (R1∂α1)(∂
4
α1

X) dα+ P(|||X |||4). (7-20)

Finally, we have to work with L5, which can be written in the following manner:

L5 = L̃5−
1
2 PV

∫
R2
∂4
α1

X ·
∂α2 X
|∂α2 X |3

∧
[
R2(∂

4
α1
∂α2�∂α1 X)− R2(∂

4
α1
∂α2�)∂α1 X

]
dα,

where

L̃5 =
1
2 PV

∫
R2
∂4
α1

X ·
N

|∂α2 X |3
(R2∂α2)(∂

4
α1
�) dα.

Using the commutator estimate, once more, it remains only to consider L̃5, but let us point out that
replacing the operator R1∂α1 by R2∂α2 , the term L̃3 (7-11) becomes L̃5. Therefore, proceeding exactly as
we did before, one obtains the inequality

L̃5 ≤−
1

µ2+µ1
PV
∫

R2

σ

|∂α1 X |3
∂4
α1

X · (R2∂α2)(∂
4
α1

X) dα+ P(|||X |||4). (7-21)

Introducing now the identity 3= (R1∂α1)+ (R2∂α2) in (7-20) and (7-21), we get

L̃3+ L̃5 ≤−
1

µ2+µ1
PV
∫

R2

σ

|∂α1 X |3
∂4
α1

X ·3(∂4
α1

X) dα+ P(|||X |||4).
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Finally, all the estimates so far obtained, beginning with (7-9), allow us to write

1
2

d
dt
‖∂4
α1

X‖2L2(t)≤−
1

µ2+µ1
PV
∫

R2

σ

|∂α1 X |3
∂4
α1

X ·3(∂4
α1

X) dα+ P(|||X |||4). (7-22)

In a similar manner, now using equations (2-9), (7-6) and (7-8) instead of (2-8), (7-5) and (7-7) respectively,
we obtain

1
2

d
dt
‖∂4
α2

X‖2L2(t)≤−
1

µ2+µ1
PV
∫

R2

σ

|∂α1 X |3
∂4
α2

X ·3(∂4
α2

X) dα+ P(|||X |||4). (7-23)

The two inequalities (7-22) and (7-23) are the main purpose of this section.

8. Estimates for the evolution of ‖F(X)‖L∞ and R-T

In this section we analyze the evolution of the no-self-intersection condition of the free surface as well as
the Rayleigh–Taylor property, but in order to do that, we shall need precise bounds for both ∇X t and �t .

We shall estimate ‖∇X t‖H k by means of equality (2-4) to get

‖∇X t‖H k ≤ P
(
‖X‖2k+2+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
, (8-1)

for k ≥ 2. In fact

‖∇X t‖H k ≤ ‖∇ BR(X, ω)‖H k +‖∇(C1∂α1 X +C2∂α2 X)‖H k ,

and with the help of (6-1), we can handle both terms on the right.
Next we shall consider the norms ‖�t‖H k to obtain the inequality

‖�t‖H k ≤ P
(
‖X‖2k+1+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
, (8-2)

for k ≥ 3. To do that, let us take a time derivative in the identity (2-6) to get

�t(α, t)− AµD(�t)(α, t)= Aµ I1(α, t)− 2Aρ∂t X3(α, t),

which yields
‖�t‖H1 ≤ C‖(I − AµD)−1

‖H1
(
‖I1‖H1 +‖∂t X3‖H1

)
,

and since we have control of ‖(I − AµD)−1
‖H1 and ‖∂t X3‖H1 , it only remains to estimate ‖I1‖H1 . For

that purpose, let us consider the splitting I1 = J1+ J2+ J3, where

J1 =
1

2π
PV
∫

R2

X t(α)− X t(α−β)

|X (α)− X (α−β)|3
· N (α−β)�(α−β) dβ,

J2 =−
3

4π

∫
R2

(
X (α)− X (α−β)

)
·
(
X t(α)− X t(α−β)

) X (α)− X (α−β)
|X (α)− X (α−β)|5

· N (α−β)�(α−β) dβ,

J3 =
1

2π
PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

· Nt(α−β)�(α−β) dβ.

Proceeding as we did with the operator T2 (A-6) (with X t instead of ∂α j Xk), one gets

‖J1‖L2 +‖J2‖L2 ≤ P
(
‖X‖4+‖F(X)‖L∞ +‖|N |−1

‖L∞
)
.
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Regarding J3, we split further:

J3 =
1

2π

∫
|β|>1

dβ + 1
2π

∫
|β|<1

dβ = K1+ K2.

Since

|K1(α)| ≤ ‖F(X)‖2L∞
∫
|β|>1

|Nt(α−β)||�(α−β)|

2π |β|2
dβ,

Young’s inequality yields

‖K1‖L2 ≤ ‖F(X)‖2L∞‖Nt�‖L1 ≤ C‖F(X)‖2L∞‖Nt‖L2‖�‖L2,

and since we know that ‖Nt‖L2 ≤ ‖∇X‖L∞‖∇X t‖L2 , estimate (8-1) allows us to handle the terms K1.
The estimate for K2 is similar to the one obtained for I2 (A-13) in the Appendix.

Next we consider the most singular terms in ∂α1 I1, which are given by

J4 =
1

2π
PV
∫

R2

∂α1 X t(α)− ∂α1 X t(α−β)

|X (α)− X (α−β)|3
· N (α−β)�(α−β) dβ,

J5 =−
3

4π

∫
R2

(
X (α)− X (α−β)

)
·
(
∂α1 X t(α)− ∂α1 X t(α−β)

) X (α)− X (α−β)
|X (α)− X (α−β)|5

· N (α−β)�(α−β) dβ,

J6 =
1

2π
PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

· ∂α1 Nt(α−β)�(α−β) dβ,

because the remainder terms are easier to handle. Let us write J4 = K3+ K4, where

K3 =
1

2π
PV
∫

R2

∂α1 X t(α)− ∂α1 X t(α−β)

|X (α)− X (α−β)|3
·
(
N (α−β)�(α−β)− N (α)�(α)

)
dβ,

K4 =
1

2π
PV
∫

R2

∂α1 X t(α)− ∂α1 X t(α−β)

|X (α)− X (α−β)|3
· N (α)�(α) dβ.

In K3, the identity ∂α1 X t(α)− ∂α1 X t(α−β)=
∫ 1

0 ∇∂α1 X t(α+ (s− 1)β) ds ·β together with (8-1) gives
us the desired control. Regarding K4, we may observe its similarity with T3 (A-7), so that an application
to (8-1) yields the appropriate bound; J5 can be treated in a similar manner, and J6 is analogous to J3.
By symmetry, one could get the same estimate for ∂α2 I1, so that finally

‖�t‖H1 ≤ P
(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
. (8-3)

Next, we will show how to deal with ‖�t‖H2 . Using Equation (2-8), one gets

∂2
α1
�t =−2Aµ∂α1∂t(BR(X, ω) · ∂α1 X)− 2Aρ∂2

α1
∂t X3,
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and with the help of (8-1), the last term above is properly controlled. To continue, we shall consider the
most singular remainder terms. Namely, in −∂α1∂t(BR(X, ω) · ∂α1 X), we have

L1 =−BR(X, ω) · ∂2
α1

X t ,

L2 =
1

4π
PV
∫

R2

∂α1 X t(α)− ∂α1 X t(α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ · ∂α1 X (α),

L3 =−
3

8π
PV
∫

R2
A(α, β)

X (α)− X (α−β)
|X (α)− X (α−β)|5

∧ω(α−β) dβ · ∂α1 X (α),

where A(α, β)=
(
X (α)− X (α−β)

)
·
(
∂α1 X t(α)− ∂α1 X t(α−β)

)
,

L4 =
1

2π
PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1ωt(α−β) dβ · ∂α1 X (α).

Let us observe that ‖L1‖L2 ≤ ‖BR(X, ω)‖L∞‖∂
2
α1

X t‖L2 , where both quantities have been appropriately
controlled before. In L2 and L3, we have kernels of degree −2, and therefore operators analogous to T3

(A-7) acting on ∂α1 X t . Therefore, using (8-1), its control follows easily. In L4, we use the decomposition

L4 =
1

2π
PV
∫
|β|>1

dβ + 1
2π

PV
∫
|β|<1

dβ = M1+M2.

Thus, an integration by parts yields

‖M1‖L2 ≤ C‖F(X)‖3L∞‖∇X‖2L∞‖wt‖L2 .

Formula (2-3), together with estimates (8-1) and (8-3), provides the appropriated bound.
Next, let us expand (2-3) to obtain the most singular terms in M2, which are given by the integrals

O1 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α2�(α−β)∂
2
α1

X t(α−β) dβ · ∂α1 X (α),

O2 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1∂α2�t(α−β)∂α1 X (α−β) dβ · ∂α1 X (α),

O3 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1�(α−β)∂α1∂α2 X t(α−β) dβ · ∂α1 X (α),

O4 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
�t(α−β)∂α2 X (α−β) dβ · ∂α1 X (α).

Estimate (8-1) help us with the terms O1 and O3, which can be treated with the same approach used for
I2 (A-13) in the Appendix. Let us write O2 as

O2 =
Aµ
2π

∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂α1∂α2�t(α−β)
(
∂α1 X (α)− ∂α1 X (α−β)

)
dβ · ∂α1 X (α),

which can be estimated integrating by parts in the variable β1 using the identity

∂α1∂α2�t(α−β)=−∂β1(∂α2�t(α−β)).
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Let us point out that the kernel in the integral O2 has degree −1, and therefore one can use (8-3) to
control it. It remains to deal with O4, which is decomposed in the form O4 = P1+ P2, where

P1 =
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
�t(α−β)

(
∂α2 X (α−β)− ∂α2 X (α)

)
dβ · ∂α1 X (α),

P2 =−
Aµ
2π

PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∂2
α1
�t(α−β) dβ · N (α).

P1 is estimated like O2. We rewrite P2 as follows:

P2 =−
Aµ
2π

PV
∫
|β|<1

(
X (α)− X (α−β)
|X (α)− X (α−β)|3

−
∇X (α) ·β
|∇X (α) ·β|3

)
∂2
α1
�(α−β) dβ · N (α),

and this expression shows that the above integral can be estimated like T4 (A-8).
Using (8-3), we obtain

‖∂2
α1
�t‖L2 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
,

and the identity
∂2
α2
�t =−2Aµ∂α2∂t(BR(X, ω) · ∂α2 X)− 2Aρ∂2

α2
∂t X3

yields
‖∂2
α2
�t‖L2 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
,

that is,
‖�t‖H2 ≤ P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
. (8-4)

Next we consider third-order derivatives:

∂3
α1
�t =−2Aµ∂2

α1
∂t(BR(X, ω) · ∂α1 X)− 2Aρ∂3

α1
∂t X3.

Since (8-1) gives us control of the last term, we will concentrate on the other one, which is of a much
more difficult character. In particular, for −∂2

α1
∂t(BR(X, ω) · ∂α1 X), the most singular components are

given by
L5 =−BR(X, ω) · ∂3

α1
X t ,

L6 =
1

4π
PV
∫

R2

∂2
α1

X t(α)− ∂
2
α1

X t(α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ · ∂α1 X (α),

L7 =−
3

8π
PV
∫

R2
B(α, β)

X (α)− X (α−β)
|X (α)− X (α−β)|5

∧ω(α−β) dβ · ∂α1 X (α),

where B(α, β)=
(
X (α)− X (α−β)

)
·
(
∂2
α1

X t(α)− ∂
2
α1

X t(α−β)
)
,

L8 =
1

2π
PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ ∂2
α1
ωt(α−β) dβ · ∂α1 X (α).

Inequalities (8-1) and (8-4) show how to handle L i , i = 5, . . . , 8 as L j , j = 1, . . . , 4 respectively, and
then a similar approach for ∂3

α2
�t allows us to get finally (8-2) for k = 3. The cases k > 3 are similar to

deal with.
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Our next goal is to obtain estimates for the evolution of ‖F(X)‖L∞ and R-T. Regarding the quantity
F(X), we have

d
dt

F(X)(α, β, t)=−
|β|
(
X (α, t)− X (α−β, t)

)
·
(
X t(α, t)− X t(α−β, t)

)
|X (α, t)− X (α−β, t)|3

≤ (F(X)(α, β, t))2‖∇X t‖L∞(t). (8-5)

Then Sobolev inequalities in ‖∇X t‖L∞(t), together with (8-1), yield

d
dt

F(X)(α, β, t)≤ F(X)(α, β, t)P
(
‖X‖24(t)+‖F(X)‖

2
L∞(t)+‖|N |

−1
‖L∞(t)

)
,

and an integration in time gives us

F(X)(α, β, t + h)≤ F(X)(α, β, t) exp
(∫ t+h

t
P(s) ds

)
,

for h > 0, where

P(s)= P
(
‖X‖24(s)+‖F(X)‖

2
L∞(s)+‖|N |

−1
‖L∞(s)

)
.

Hence

‖F(X)‖L∞(t + h)≤ ‖F(X)‖L∞(t) exp
(∫ t+h

t
P(s) ds

)
.

This inequality, applied to the limit

d
dt
‖F(X)‖L∞(t)= lim

h→0+

‖F(X)‖L∞(t + h)−‖F(X)‖L∞(t)
h

,

allows us to get

d
dt
‖F(X)‖L∞(t)≤ ‖F(X)‖L∞(t)P

(
‖X‖24+‖F(X)‖

2
L∞ +‖|N |

−1
‖L∞

)
.

Next we search for an a priori estimate for the evolution of the infimum of the difference of the gradients
of the pressure in the normal direction to the interface. Let us recall the formula

σ(α, t)= (µ2
−µ1)BR(X, ω)(α, t) · N (α, t)+ (ρ2

− ρ1)N3(α, t)

to obtain
d
dt

(
1

σ(α, t)

)
=−

σt(α, t)
σ 2(α, t)

,

with σt(α, t)= I1+ I2, where

I1 =
(
(µ2
−µ1)BR(X, ω)(α, t)+ (ρ2

− ρ1)(0, 0, 1)
)
· Nt(α, t),

I2 = (µ
2
−µ1)BRt(X, ω)(α, t) · N (α, t).
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First we deal with ‖I1‖L∞ using the estimates (8-1) for ∇X t , and then we focus our attention on I2 using
the splitting I2 = J1+ J2+ J3, where

J1 =−
1

4π
PV
∫

R2

X t(α)− X t(α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ,

J2 =
3

4π
PV
∫

R2

(
X (α)− X (α−β)

)
∧ω(α−β)

(X (α)− X (α−β)) · (X t(α)− X t(α−β))

|X (α)− X (α−β)|5
dβ,

J3 =−
1

4π
PV
∫

R2

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ωt(α−β) dβ.

The terms J1 and J2 are similar and can be treated with the same method. Let us consider J1 =

K1+ K2+ K3+ K4, where

K1 =−
1

4π

∫
|β|>1

X t(α)− X t(α−β)

|X (α)− X (α−β)|3
∧ω(α−β) dβ,

K2 =
1

4π

∫
|β|<1

X t(α)− X t(α−β)

|X (α)− X (α−β)|3
∧
(
ω(α)−ω(α−β)

)
dβ,

K3 =−
1

4π

∫
|β|<1

[
1

|X (α)− X (α−β)|3
−

1
|∇X (α) ·β|3

](
X t(α)− X t(α−β)

)
∧ω(α) dβ,

K4 =−
1

4π
PV
∫
|β|<1

X t(α)− X t(α−β)

|∇X (α) ·β|3
∧ω(α) dβ.

First we have

‖K1‖L∞ ≤ C‖F(X)‖3L∞‖∇X t‖L∞‖ω‖L2

(∫
|β|>1
|β|−4dβ

)1/2

,

giving us an appropriate control. Next, we get

‖K2‖L∞ ≤ C‖F(X)‖3L∞‖∇X t‖L∞‖∇ω‖L∞

∫
|β|<1
|β|−1dβ,

and an analogous estimate for K3. Therefore, Sobolev’s embedding helps us to obtain the desired control.
Regarding K4, we have

K4 =−
1

4π

∫
|β|<1

X t(α)− X t(α−β)−∇X t(α) ·β

|∇X (α) ·β|3
∧ω(α) dβ.

Inequality (A-15) yields

‖K4‖L∞ ≤ C‖∇X‖3L∞‖|N |
−1
‖

3
L∞‖ω‖L∞‖∇X t‖Cδ

∫
|β|<1
|β|−2+δ dβ,
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and the control ‖∇X t‖Cδ follows again by (8-1) and Sobolev’s embedding. Next let us continue with
J3 = K5+ K6, where

K5 =−
1

4π
PV
∫
|β|>1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧
(
∂β1((�∂α2 X)t(α−β))− ∂β2((�∂α1 X)t(α−β))

)
dβ,

K6 =−
1

4π
PV
∫
|β|<1

X (α)− X (α−β)
|X (α)− X (α−β)|3

∧ωt(α−β) dβ.

Integration by parts yields

‖K5‖L∞ ≤ C‖F(X)‖3L∞‖∇X‖L∞
(
‖�‖L∞‖∇X t‖L∞ +‖�t‖L∞‖∇X‖L∞

)
,

where 4πC =
∫
|β|>1 |β|

−3dβ +
∫
|β|=1 dl(β), and we may use (8-2) to estimate ‖�t‖L∞ . With K6, we

introduce a similar splitting to obtain

‖K6‖L∞ ≤ P
(
‖X − (α, 0)‖C2 +‖F(X)‖L∞ +‖|N |−1

‖L∞
)
‖ωt‖Cδ .

Then it remains to estimate ‖ωt‖Cδ , for which purpose we use formula (2-3) and inequalities (8-1), (8-2).
Therefore, we have the estimate

d
dt

(
1

σ(α, t)

)
≤

1
σ 2(α, t)

P
(
‖X‖4(t)+‖F(X)‖L∞(t)+‖|N |−1

‖L∞(t)
)
,

and proceeding similarly as we did for F(X), we finally get

d
dt
‖σ−1
‖L∞(t)≤ ‖σ−1

‖
2
L∞(t)P

(
‖X‖4(t)+‖F(X)‖L∞(t)+‖|N |−1

‖L∞(t)
)
.

Remark 8.1. Having obtained the a priori bounds of the preceding sections, we are in position to
successfully implement the same approximation scheme developed in [Córdoba et al. 2011] to conclude
local existence.

Appendix

Here we prove first some helpful inequalities regarding commutators of the Riesz transform (R j , j = 1, 2)
with several differential operators. Next we analyze the singular integral operators associated to the
non-self-intersecting surface which appears throughout the paper. But the main goal of this section is to
simplify the presentation of the main result.

Lemma A.1. Consider f ∈ L2(R2) and g ∈ C1,δ(R2), with 0< δ < 1. Then for any k, l = 1, 2, we have
the estimate ∥∥(Rk∂αl )(g f )− g(Rk∂αl )( f )

∥∥
L2 ≤ C‖g‖C1,δ‖ f ‖L2 . (A-1)

An application of these inequalities to the operator 3= (R1∂α1)+ (R2∂α2) yields

‖3(g f )− g3( f )‖L2 ≤ C‖g‖C1,δ‖ f ‖L2 . (A-2)

For vector fields, we have:
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Lemma A.2. Consider f, g :R2
→R3 vector fields, where f ∈ L2(R2) and g ∈C1,δ(R2), with 0< δ < 1.

Then for any k, l = 1, 2, the following inequality holds:

∣∣∣∣∫
R2
(g∧ f ) · (Rk∂αl )( f )dα

∣∣∣∣≤ C‖g‖C1,δ‖ f ‖2L2 . (A-3)

Proof. Denoting by I the integral above, and since the operator Rk∂αl is self-adjoint, we may write

I =
∫

R2
f1
[
(Rk∂αl )(g2 f3)− g2(Rk∂αl )( f3)

]
dα

+

∫
R2

f2
[
(Rk∂αl )(g3 f1)− g3(Rk∂αl )( f1)

]
dα+

∫
R2

f3
[
(Rk∂αl )(g1 f2)− g1(Rk∂αl )( f2)

]
dα.

Then estimate (A-1) yields (A-3). �

Lemma A.3. Consider f ∈ L2(R2) and g ∈ C1,δ(R2), with 0 < δ < 1. Then for any j, k, l = 1, 2, the
following inequality holds:

∣∣∣∣∫
R2

R j ( f )(Rk∂αl )(g f ) dα
∣∣∣∣≤ C‖g‖C1,δ‖ f ‖2L2 . (A-4)

Proof. Let J be the integral to be bounded; then we have

J =
∫

R2
R j ( f )

[
(Rk∂αl )(g f )− g(Rk∂αl )( f )

]
dα

−

∫
R2

[
R j ( f g)− gR j ( f )

]
(Rk∂αl )( f ) dα+

∫
R2

R j ( f g)(Rk∂αl )( f ) dα.

Since R∗j =−R j and Rk∂αl is self-adjoint, we get

J = 1
2

∫
R2

R j ( f )
[
(Rk∂αl )(g f )− g(Rk∂αl )( f )

]
dα− 1

2

∫
R2

[
R j ( f g)− gR j ( f )

]
(Rk∂αl )( f ) dα.

An integration by parts in the second integral above yields

J = 1
2

∫
R2

R j ( f )
[
(Rk∂αl )(g f )− g(Rk∂αl )( f )

]
dα

+
1
2

∫
R2

[
(R j∂αl )( f g)− g(R j∂αl )( f )

]
(Rk)( f ) dα− 1

2

∫
R2
(∂αl g)R j ( f )Rk( f ) dα,

allowing us to conclude the proof. �
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Lemma A.4. Let us define, for any j = 1, 2 and k = 1, 2, 3, the following operators:

T1(∂α j f )(α)= PV
∫

R2

Xk(α)− Xk(α−β)

|X (α)− X (α−β)|3
∂α j f (α−β) dβ, (A-5)

T2( f )(α)= PV
∫

R2

∂α j Xk(α)− ∂α j Xk(α−β)

|X (α)− X (α−β)|3
f (α−β) dβ, (A-6)

T3( f )(α)= PV
∫

R2

f (α)− f (α−β)
|X (α)− X (α−β)|3

dβ, (A-7)

T4(∂α j f )(α)= PV
∫

R2

(
(X (α)− X (β))
|X (α)− X (β)|3

−
∇X (α) · (α−β)
|∇X (α) · (α−β)|3

)
∂α j f (β) dβ dα, (A-8)

where ∇X (α) ·β = ∂α1 X (α)β1+∂α2 X (α)β2. Assume that X (α)− (α, 0) ∈C2,δ(R2), and that both F(X)
and |N |−1 are in L∞, where

F(X)(α, β)= |β|
/
|X (α)− X (α−β)| and N (α)= ∂α1 X (α)∧ ∂α2 X (α).

Then the following estimates hold:

‖T1(∂α j f )‖L2 ≤ P
(
‖X − (α, 0)‖C1,δ +‖F(X)‖L∞ +‖|N |−1

‖L∞
)
(‖ f ‖L2 +‖∂α j f ‖L2), (A-9)

‖T2( f )‖L2 ≤ P
(
‖X − (α, 0)‖C2,δ +‖F(X)‖L∞ +‖|N |−1

‖L∞
)
‖ f ‖L2, (A-10)

‖T3( f )‖L2 ≤ P
(
‖X − (α, 0)‖C2,δ +‖F(X)‖L∞ +‖|N |−1

‖L∞
)
‖ f ‖H1, (A-11)

‖T4( f )‖L2 ≤ P
(
‖X − (α, 0)‖C2,δ +‖F(X)‖L∞ +‖|N |−1

‖L∞
)
‖ f ‖L2, (A-12)

with P a polynomial function.

Proof. To estimate the first set of operators, we first consider the splitting

T1(∂α j f )= PV
∫
|β|>1

dβ +PV
∫
|β|<1

dβ = I1+ I2, (A-13)

and an integration by parts allows us to write I1 = J1+ J2+ J3, where

J1 =

∫
|β|>1
−

∂α j Xk(α−β)

|X (α)− X (α−β)|3
f (α−β) dβ,

J2 = 3
∫
|β|>1

(
Xk(α)− Xk(α−β)

)(
X (α)− X (α−β)

)
· ∂α j X (α−β)

|X (α)− X (α−β)|5
f (α−β) dβ,

J3 =

∫
|β|=1

Xk(α)− Xk(α−β)

|X (α)− X (α−β)|3
f (α−β) dl(β).

The above decomposition shows that

|I1| ≤ C‖X − (α, 0)‖C1‖F(X)‖3L∞
(∫
|β|>1

| f (α−β)|
|β|3

dβ +
∫
|β|=1
| f (α−β)| dl(β),

)
and then Minkowski’s inequality gives the desired control.
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Regarding I2, we write I2 = J4+ J5+ J6, with

J4 =

∫
|β|<1

Xk(α)− Xk(α−β)−∇Xk(α) ·β

|X (α)− X (α−β)|3
∂α j f (α−β) dβ,

J5 =∇Xk(α) ·

∫
|β|<1

β

[
1

|X (α)−X (α−β)|3
−

1
|∇X (α)·β|3

]
∂α j f (α−β) dβ,

J6 =∇Xk(α) ·PV
∫
|β|<1

β

|∇X (α) ·β|3
∂α j f (α−β) dβ.

It is easy to see that

J4 ≤ ‖X − (α, 0)‖C1,δ‖F(X)‖3L∞
∫
|β|<1

|∂α j f (α−β)|
|β|2−δ

dβ, (A-14)

and therefore that term can also be estimated with the use of Minkowski’s inequality.
Some elementary algebraic manipulations allow us to get

J5 ≤ C‖X − (α, 0)‖2C1,δ

∫
|β|<1

(
(F(X)(α, β))4+

|β|4

|∇X (α) ·β|4

)
|∂α j f (α−β)|
|β|2−δ

dβ,

and then the inequality
|β|

|∇X (α) ·β|
≤ 2‖∇X‖L∞‖|N |−1

‖L∞ (A-15)

yields for J5 the same estimate (A-14).
The term J6 can be written as

J6 =∇Xk(α) ·PV
∫
|β|<1

6(α, β)

|β|2
∂α j f (α−β) dβ,

where

(i) 6(α, λβ)=6(α, β) for all λ > 0,

(ii) 6(α,−β)=−6(α, β),

(iii) supα |6(α, β)| ≤ 8‖∇X‖3L∞‖|N |
−1
‖

3
L∞ ,

as a consequence of (A-15).
Here we have a singular integral operator with odd kernel [Córdoba and Gancedo 2007; Stein 1993],

and therefore a bounded linear map on L2(R2), giving us

‖J6‖L2 ≤ C‖∇X‖4L∞‖|N |
−1
‖

3
L∞‖∂α j f ‖L2 .

For the family of operators T2( f )(α), we use the splitting T2( f )= I3+ I4, where

I3 =

∫
|β|>1

∂α j Xk(α)− ∂α j Xk(α−β)

|X (α)− X (α−β)|3
f (α−β) dβ.

We easily get

I3 ≤ 2‖X − (α, 0)‖C1‖F(X)‖3L∞
∫
|β|>1

| f (α−β)|
|β|3

dβ,
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while for I4, we proceed with the same method used with I2, now replacing Xk(α) by ∂α j Xk(α) and
∂α j f (α−β) by f (α−β).

Next we shall show that the operator T3 behaves like 3= (−1)1/2. To do that, we split it as I5+ I6,
where

I5 =

∫
|β|>1

f (α)− f (α−β)
|X (α)− X (α−β)|3

dβ

can be easily estimated by

I5 ≤ ‖F(X)‖3L∞
(

2π | f (α)| +
∫
|β|>1

| f (α−β)|
|β|3

dβ
)
.

The other term is written in the form I6 = J7+ J8, where

J7 =

∫
|β|<1

(
1

|X (α)−X (α−β)|3
−

1
|∇X (α)·β|3

)
( f (α)− f (α−β)) dβ.

The identity

f (α)− f (α−β)= β ·
∫ 1

0
∇ f (α+ (s− 1)β) ds

allows us to treat J7 as we did with J5. To estimate J8, the equality

1
|∇X (α) ·β|3

=−∂β1

(
β1

|∇X (α) ·β|3

)
− ∂β2

(
β2

|∇X (α) ·β|3

)
(A-16)

will be very useful. After a careful integration by parts, it yields

J8 = PV
∫
|β|<1

∇ f (α−β) ·β
|∇X (α) ·β|3

dβ −
∫
|β|=1

( f (α)− f (α−β))|β|
|∇X (α) ·β|3

dl(β).

The principal value in J8 is treated with the same method used for J6, and since the integral on the circle
is inoffensive, so long as |N |−1 is in L∞, the estimate for T3 follows.

For the remaining operator, one integrates by parts to get T4 = I7+ I8, where

I7 = PV
∫

R2
P1(α, β) f (α−β) dβ, I8 = PV

∫
R2

P2(α, β) f (α−β) dβ,

with

P1(α, β)=
∂α j X (α)
|∇X (α) ·β|3

−
∂α j X (α−β)

|X (α)− X (α−β)|3

and

P2(α, β)= 3

(
X (α)−X (α−β)

)(
X (α)−X (α−β)

)
·∂α j X (α−β)

|X (α)−X (α−β)|5
−3
∇X (α)·β

(
(∇X (α)·β)·∂α j X (α)

)
|∇X (α)·β|5

.

Next we will show how to treat I7, because the estimate for I8 follows similarly. For P1 we introduce the
decomposition P1 = Q1+ Q2, where

Q1 = ∂α j X (α)
(

1
|∇X (α)·β|3

−
1

|X (α)−X (α−β)|3

)
, Q2 =

∂α j X (α)− ∂α j X (α−β)
|X (α)− X (α−β)|3

.
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Since the kernel Q2 has already appeared in the operator T1, it only remains to control J9, which is given
by

J9 = ∂α j X (α)PV
∫

R2
Q1(α, β) f (α−β) dβ.

The decomposition

J9 = ∂α j X (α)
∫
|β|>1

dβ + ∂α j X (α)PV
∫
|β|<1

dβ = K1+ K2

shows that the term K1 trivializes. Regarding K2, let us write

Q1 =

(
|A|4+ |B|2|A|2+ |B|4

)
(A+ B) · (A− B)

|A|3|B|3(|A|3+ |B|3)
,

where
A(α, β)= X (α)− X (α−β), B(α, β)=∇X (α) ·β.

This formula shows that inside Q1 lies a kernel of degree −2. Then let us take Q1 = S1+ S2, where

S2 =
3|B|4 B · (A− B)

|B|9
=

3B · (A− B)
|B|5

.

Next we check that the kernel S1 has degree −1, and is therefore easy to handle. Finally, we have to
consider the kernel S2 appearing in the integral

L = 3∂α j X (α)PV
∫
|β|<1

(∇X (α) ·β) ·
(
X (α)− X (α−β)−∇X (α) ·β

)
|∇X (α) ·β|5

f (α−β) dβ.
To do that, we introduce a further decomposition L = M1+M2, with

M1 = 3∂α j X (α)
∫
|β|<1

(∇X (α) ·β) ·
(
X (α)− X (α−β)−∇X (α) ·β − 1

2β · ∇
2 X (α) ·β

)
|∇X (α) ·β|5

f (α−β) dβ

and

M2 =
3
2∂α j X (α)PV

∫
|β|<1

(∇X (α) ·β) · (β · ∇2 X (α) ·β)
|∇X (α) ·β|5

f (α−β) dβ,

where 1
2β ·∇

2 X (α) ·β is the second-order term in the Taylor expansion of X . It is now easy to check that

M1 ≤ C‖∇X‖5L∞‖X − (α, 0)‖C2,δ‖|N |−1
‖

4
L∞

∫
|β|<1

| f (α−β)|
|β|2−δ

dβ.

Then we also check that M2 is controlled like J6 through the estimate

‖M2‖L2 ≤ C‖∇X‖5L∞‖∇
2 X‖L∞‖|N |−1

‖
4
L∞‖ f ‖L2,

which allows us to finish the proof. �
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