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DECAY OF LINEAR WAVES ON
HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES
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We consider solutions to the linear wave equation on higher dimensional Schwarzschild black hole
spacetimes and prove robust nondegenerate energy decay estimates that are in principle required in a
nonlinear stability problem. More precisely, it is shown that for solutions to the wave equation Hg¢p =0
on the domain of outer communications of the Schwarzschild spacetime manifold (M?, g) (where
n > 3 is the spatial dimension, and m > 0 is the mass of the black hole) the associated energy flux
E[¢](X;) through a foliation of hypersurfaces X, (terminating at future null infinity and to the future
of the bifurcation sphere) decays, E[¢](Z:) < CD /72, where C is a constant depending on # and m,
and D < oo is a suitable higher-order initial energy on ¥,; moreover we improve the decay rate for
the first-order energy to E[d,¢](X8) < CDs/ 4728 for any § > 0, where %R denotes the hypersurface
¥, truncated at an arbitrarily large fixed radius R < oo provided the higher-order energy Dg on Xy is
finite. We conclude our paper by interpolating between these two results to obtain the pointwise estimate
|¢]s, R= CD§/ r%_‘s. In this work we follow the new physical-space approach to decay for the wave
equation of Dafermos and Rodnianski (2010).
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1. Introduction

The study of the wave equation on black hole spacetimes has generated considerable interest in recent
years. This stems mainly from its role as a model problem for the nonlinear black hole stability problem
[Dafermos and Rodnianski 2009a; 2012], and more recent advances in the analysis of linear waves
[Dafermos and Rodnianski 2008].

In this paper we study the linear wave equation on higher-dimensional Schwarzschild black holes.
The motivation for this problem lies — apart from the above mentioned relation to the nonlinear stability
problem (which is expected to be simpler in the higher-dimensional case [Choquet-Bruhat et al. 2006];
for work on the 5-dimensional case under symmetry see also [Dafermos and Holzegel 2006; Holzegel
2010]) —on one hand in the purely mathematical curiosity of dealing with higher dimensions and on the
other hand in its interest for theories of high energy physics [Emparan and Reall 2008].

In the philosophy of [Christodoulou and Klainerman 1993] it is understood that the resolution of the
nonlinear stability problem requires an understanding of the linear equations in a sufficiently robust setting.
In particular, we require a proof of the uniform boundedness and decay of solutions to the linear wave
equation based on the method of energy currents, which (ideally) only uses properties of the spacetime that
are stable under perturbations, and does not rely heavily on the specifics of the unperturbed metric (for an
introduction in the context of black hole spacetimes see [Dafermos and Rodnianski 2008]). Correspond-
ingly in this paper we establish on higher-dimensional Schwarzschild spacetime backgrounds boundedness
and decay results analogous to the current state of the art in the (3 + 1)-dimensional case [Luk 2010].

The decay argument presented here departs from earlier work that either makes use of multipliers
with weights in the temporal variable (notably [Christodoulou and Klainerman 1990; Blue and Sterbenz
2006; Andersson and Blue 2009; Dafermos and Rodnianski 2009b; Luk 2010]) which in one form or the
other are due to Morawetz [1962], or that relies on the exact stationarity of the spacetime (such as [Ching
et al. 1995; Tataru 2010; Donninger et al. 2012] based on Fourier analytic methods). Here we follow the
new physical-space approach to decay of [Dafermos and Rodnianski 2010], which only uses multipliers
with weights in the radial variable. Thus our work — especially the improvement of Section 5C —is of
independent interest for the (3 + 1)-dimensional Schwarzschild and Minkowski case and also for a wider
class of spacetimes including Kerr black hole exteriors.

1A. Statement of the theorems. We consider solutions to the wave equation
Ogpp =0 (1-1)

on higher-dimensional Schwarzschild black hole spacetimes; these backgrounds are a family of (n 4 1)-
dimensional Lorentzian manifolds (M?,, g) parametrized by the mass of the black hole m > 0 (n > 3).
They arise as spherically symmetric solutions of the vacuum Einstein equations, the governing equations
of general relativity, and are discussed as such in Section 2; for the relevant concepts see also [Dafermos
and Rodnianski 2008; Hawking and Ellis 1973].

More precisely, we consider solutions to (1-1) on the domain of outer communications D of M —
which comprises the exterior up to and including the event horizons of the black hole — with initial data
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Figure 1. The hypersurface X in the domain of outer communications D.

prescribed on a hypersurface X consisting of an incoming null segment crossing the event horizon to
the future of the bifurcation sphere, a spacelike segment and an outgoing null segment emerging from a
larger sphere of radius R terminating at future null infinity; see Figure 1 (the exact parametrization —
which is chosen merely for technical reasons —is given in Section 4).

In the exterior of the black hole the metric g takes the classical form in (z, r)-coordinates [Tangherlini
1963]:

2m 2m \ ! .
g= _(1 — rn—2) dr® + (1 — rn—2) dr? 4+ r?P,_1, (1-2)

where r > "/2m, t € (—o00,c0), and P,_1 denotes the standard metric on the unit (n — 1)-sphere;
however this coordinate system breaks down on the horizon r = ”_m and we shall for that reason
introduce in Section 2 the global geometry of (M?,, g) using a double null foliation, from which we
derive an alternative double null coordinate system for the exterior of the black hole:

2
g:—4(1— rnTz)du*dv* + 121, (1-3)

the so-called Eddington—Finkelstein coordinates.

In this paper both the conditions on the initial data and the statements on the decay of the solutions
are formulated using the concepts of energy and the energy momentum tensor associated to (1-1); in
particular (see Section 1B and also Appendix B),

Tyuv[p] = 0ug dvep — % guv 0% P0a¢. (1-4)

The corresponding 1-contravariant-1-covariant tensor field fulfills the physical requirement that the linear
transformation —7" : T M — T M maps the hyperboloid of future-directed unit timelike vectors into the
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closure of the open future cone at each point. Physically,
—T ‘U € TpM

is the energy-momentum density relative to an observer at p € M with 4-velocity u € T, M, and it is for
this reason that we refer to

=g(T-uu)=T(,u)=0

as the energy density at p € M relative to the observer with 4-velocity u € T, M. One may think
of a spacelike hypersurface as a collection of locally simultaneous observers with a 4-velocity given
by the normal. The hypersurfaces relative to which we establish energy decay are simply defined by
Y = ¢ (X0 N D), where ¢, denotes the 1-parameter group of isometries generated by %. The energy
flux through the hypersurface X is then given by

EWIE0 = [ (1Viglns) (1-5)
where (JN[¢],ny) = T[p](N.nx), ny is the normal' to X, and N is a timelike ¢,-invariant future
directed vector field which is constructed in Section 3 for the purpose of turning ¢V = T'(N, N) into
a nondegenerate energy up to and including the horizon. Note that the energy E[¢](X;) in particular
bounds a suitably defined H'-norm on 2.

The classes of solutions to (1-1) to which our results apply are formulated in terms of finite energy
conditions on the initial data, for which purpose we list the following quantities:

1

00 k
@) ;/ */ ] (a(r a ¢))
D7 (v0) = dv d E ro\ ——s——
2 (7o) 0+ R* gn—1 = — dv*

k=0 u*=tg
2
_ oo ! ("7 ok
o= [ a3 s (RO
4 a(r 8 ¢) 3 n(n2 1)
(MY (e

n(n 1

4

/E (Z JN[8k¢]+Z Z TN Q%] I’lz) (1-7)

=0 i=1

10On spacelike segments of X the vector ny; is indeed timelike; however, on the null segments of the hypersurfaces X, the
“normal” ny; is in fact a null vector, but the notation is kept for convenience; see Appendix A.
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o) 2 2 aqk
(4=8) - 453(r Qedkg))?
Dy ](TO)_[T d”*/gn_ld%—l{z 2. ( Jo*2

k
ok k=01a|<[4]+1

I e G G|

k=0 |o|<[2]+1 k=0 |a|<[Z]+2

5
/Z(Z >IN+ > > JN[Q"‘a’fd)],ng). (1-8)

k=0la|<[5]+1 k=0 la|<[§]+2

u*=r0

Here Q; :i = 1,...,n(n — 1)/2 are the generators of the spherical isometries of the spacetime M,
« is a multiindex, and for any radius R we denote by R* the corresponding Regge—Wheeler radius (2-17).
(See also Section 4B.)

Among the propositions on linear waves on higher-dimensional Schwarzschild black hole spacetimes

proven in this paper, we wish to highlight the following conclusions?.

Theorem 1 (energy decay). Let ¢ be a solution of the wave equation Jg¢p =0 onD C M}, wheren >3
and m > 0, with initial data prescribed on X, (1o > 0).

o IfD = Déz) (t0) < 00 then there exists a constant C(n, m) such that
CD
E[¢](Z:) = 7z (t > 70). (1-9)

o Furthermore if for some 0 < § < 5 and R > "3Y8nm/§ also D' = D§4_5)(r0) < 00 then there
exists a constant C(n,m, 8, R) such that

/

CD
E[3:9](Z}) < =5 (> ), (1-10)
T
where X, = % N{r < R}.

While each of these energy decay statements lend themselves to prove pointwise estimates for ¢ and
d; ¢ respectively (see Section 6), we would like to emphasize that, using the (refined) integrated local
energy decay estimates of Section 4, an interpolation argument allows to improve the pointwise bound

on ¢ directly in the interior>.

Theorem 2 (pointwise decay). Let ¢ be a solution of the wave equation as in Theorem 1. If for some
0<d<yz,D= = pi- )] (t0) < 00 (19 > 1) then there exists a constant C(n,m, 8, R) such that

7+[%
CD

("V2m<r <R, t>1) (1-11)

where X and R are as in Theorem 1.

2The “redshift” proposition and the “integrated local energy decay” proposition are to be found on page 526 in Section 3 and
page 532 in Section 4 respectively.

3In this paper we use the term “interior” to refer to a region of finite radius; i.e., the term “interior region” is used
interchangeably with “a region of compact r (including the horizon)”, and is of course not meant to refer to the interior of the
black hole, which is not considered in this paper.
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Remark (decay rates and method of proof). Theorems 1 and 2 extend the presently known decay results
for linear waves on (3 4 1)-dimensional Schwarzschild black holes to higher dimensions n > 3; for
(3 + 1)-dimensional Schwarzschild black holes, (1-9) was first established in [Dafermos and Rodnianski
2009b], and (1-10), (1-11) more recently in [Luk 2010]. However, both proofs use multipliers with
weights in 7, [Dafermos and Rodnianski 2009b] by using the conformal Morawetz vector field in the decay
argument, and [Luk 2010] by using in addition the scaling vector field. Here we extend (1-9) to higher
dimensions n > 3 in the spirit of [Dafermos and Rodnianski 2010] only using multipliers with weights
in r, and provide a new proof of the improved decay results (1-10) and (1-11) in the n = 3-dimensional
case in particular.

1B. Overview of the proof. In this section we give an overview of the work in this paper and present
some of the ideas in the proof that lead to Theorem 1; references to previous work are made when useful,
but for a more detailed account of previous work on the wave equation on Schwarzschild black hole
spacetimes see Section 1.3 in [Dafermos and Rodnianski 2011] and references therein.

Energy identities. Let us recall that the wave equation (1-1) arises from an action principle and that the
corresponding energy momentum tensor is conserved. Indeed, here we find (1-4) and by virtue of the
wave equation (1-1)

VAT = (Ogp)(0v) = 0. (1-12)

Moreover, the energy momentum tensor (1-4) satisfies the positivity condition, namely 7' (X, Y) > 0 for
all future-directed causal vectors X, Y at a point.
Now let X be a vector field on M. We define the energy current J X [¢] associated to the multiplier X by

T 18] = Tunlg] XY, (1-13)
Then
kX =vryX =Xz, (1-14)
where we have used that 7, is conserved and symmetric. Here
Pn(Y.2) = 3(Lx9)(Y. Z) = 3¢(Vy X. Z) + 34(Y. VzX) (1-15)
is the deformation tensor of X.

Remark. If X is a Killing field, i.e., X generates a 1-parameter group of isometries of g, X7 =0, then
KX = 0;1i.e., JX is conserved.

In the following we shall refer to

/ KX dug:/ *JX (1-16)
R oR

as the energy identity for JX (or simply X) on R, where R C M (this is of course the content of Stokes’
theorem, and *J denotes the Hodge-dual of J; see also Appendix B). Moreover we refer to X in (1-16)
as the multiplier vector field. In this paper we will largely be concerned with the construction of vector
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fields X, associated currents J ¥ and their modifications, and the application of (1-16) and various derived
energy inequalities to appropriately chosen domains R C D.

The new approach [Dafermos and Rodnianski 2010] to obtaining robust decay estimates requires us
to first establish (i) uniform boundedness of energy, (ii) an integrated local energy decay estimate and
(iii) good asymptotics towards null infinity.

Redshift effect. The reason (i) is nontrivial as compared to Minkowski space is that the energy correspond-
ing to the multiplier d; degenerates on the horizon (the vector field d; becomes null on the horizon and
no control on the angular derivatives is obtained; cf. [ibid. 2008]); it was recognized in [ibid. 2009b],
and formulated more generally in [ibid. 2008], that the redshift property of Killing horizons is the key
to obtaining an estimate for the nondegenerate energy (i.e., an energy with respect to a strictly timelike
vector field up to the horizon, which controls all derivatives tangential to the horizons). An explicit
construction of a suitable timelike vector field N is given in Section 3 which allows us to state the redshift
property in the language of multipliers and energy currents, and a proof of the uniform boundedness of
the nondegenerate energy is given (independently of other calculations in this work) in Section 5A.

Integrated local energy decay. Section 4 is devoted to establishing (ii). This is achieved by the use of
radial multiplier vector fields of the form f(r*)d,« (see Section 4A). In Section 4B a construction of
a positive definite current for the high angular frequency regime is given using a decomposition on the
sphere. In Section 4C a more general construction of a current is given using a commutation with the
angular momentum operators. We wish to emphasize that the decay results of Section 5— albeit with
a higher loss of differentiability — could be obtained solely on the basis of the latter current, without the
recourse in Section 4B to the Fourier expansion on the sphere. However, the dependence on the initial
data is significantly improved by virtue of the integrated local energy decay estimate Proposition 4.1; here
(see Section 4D.1) the results of Sections 4B and 4C are combined in order to replace the commutation
with the angular momentum operators by a commutation with the vector field d; only. The difficulty in
both constructions lies in overcoming the “trapping” obstruction, which is the insight that it is impossible
to prove an integrated local energy decay estimate on spacetime regions that contain the photon sphere
without losing derivatives (see [Dafermos and Rodnianski 2008]). In the context of the Schwarzschild
spacetime the need for vector fields whose associated currents give rise to positive definite spacetime
integrals was first recognized and used in [Blue and Soffer 2003; Dafermos and Rodnianski 2009b],
and such estimates have since then been extended by many authors [Marzuola et al. 2010; Alinhac
2009].

The p-hierarchy. In Section 5B we use a multiplier of the form r? 9, that gives rise to a weighted energy
inequality which we consequently exploit in a hierarchy of two steps; this approach — which yields
the corresponding quadratic decay rate in (1-9) — was pioneered in [Dafermos and Rodnianski 2010]
for a large class of spacetimes, including the (3 4 1)-dimensional Schwarzschild and Kerr black hole
spacetimes. In Section 5C a further commutation with d,= is carried out, which allows us to extend the
hierarchy of commuted weighted energy inequalities to four steps, yielding the corresponding decay rate
for the first-order energy. The argument involves dealing with an (arbitrarily small) degeneracy of the
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first-order energy density at infinity which corresponds to the §-loss in the decay estimate (1-10). In both
cases (iii) is ensured by the imposition of higher-order finite energy conditions on the initial data.

Interpolation. The pointwise decay of Theorem 2 then follows from Theorem 1 and the (refined) integrated
local energy decay estimates of Section 4D.2 by a simple interpolation argument given in Section 6.

Final comments. The currents in Sections 4B and 4C and the corresponding integrated local energy decay
result already appeared in [Schlue 2010]. Independently a version of integrated local energy decay was
subsequently obtained in [Laul and Metcalfe 2012]. In [Schlue 2010] there is also an alternative proof of
(1-9) of Theorem 1 using the conformal Morawetz vector field.

2. Global causal geometry of the higher-dimensional Schwarzschild solution

In this section, we give a discussion (in the spirit of Section 3 of [Christodoulou 1995]) of the global ge-
ometry of the (n + 1)-dimensional Schwarzschild black hole spacetime [Tangherlini 1963], the underlying
manifold on which the wave equation is studied in this paper.

The (n 4 1)-dimensional Schwarzschild spacetime manifold M = M}, (n >3, n € N, m > 0) is
spherically symmetric; i.e., SO(n) acts by isometry. The group orbits are (n — 1)-spheres, and the quotient
Q = M/ SO(n) is a 2-dimensional Lorentzian manifold. The metric g on M assumes the form

Q Q °
g§=8 +yr =& +r*Vn—1 @2-1)

where § is the Lorentzian metric on Q to be discussed below, y,,—1 is the standard metric on s"1 andr
is the area radius (the area of the (n — 1)-sphere at x € Q is given by w,r"~!(x), where w, = Zn%/F(%)
is the area of the unit (n — 1)-sphere); or more precisely, in local coordinates x% : @ = 1,2 on Q, and
local coordinates y4: 4=1,...,n—10nS"!,

8(x,y) = ap(¥) dx? dx® +12(x) (Jn—1) 4 p dy* dy 5.

The Schwarzschild spacetime is a solution of the vacuum Einstein equations, which in other words
means that its Ricci curvature vanishes identically. This implies in particular (see derivation in [Schlue
2012]) that the area radius function r satisfies the Hessian equations

(n—2)
2r

Vadpr = [1—(07r)(0cr)]gan- (2-2)

as a result of which the mass function m on Q defined* by

2m

- = g% dar dpr (2-3)

is constant; see [ibid.]; we take this parameter m to be positive.
On Q we choose functions u, v whose level sets are outgoing and incoming null curves, respectively,
which are increasing towards the future. These functions define a null system of coordinates, in which the

4We choose the normalization of the mass function to be independent of the dimension #; this is motivated by a consideration
of the mass equations in the presence of matter; see [Schlue 2012].
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metric 27’ takes the form
¢ =—-Q%dudv. 2-4)
The Hessian equations (2-2) in null coordinates read
0%r  20Q 0r (2-50)
—_—— ——— T = a
ou2  Q du du
9%r n—2adr dr n—2
T Q2, 2-5b
du dv + roou dv 4r ( )
?r  20Q0r
R — 2-5¢
dvz  Q dv Jv (2-5¢)
and the defining equation for the mass function (2-3) is
1 2m 4 9ror (2-6)
=2 Q2 0udv’
The system (2-5b), (2-6) can be rewritten as the partial differential equation
G 2-7)
dudv
for a new radial function r*(r) that is related to r by
dr* 1
= . 2-8
T (2-8)
-
A solution of (2-7), (2-8) is given by”
1,
r* = V2mlog [uv|, (2-9)
(n—2)
or
n—=2)r* n—2)r n—2
luv| =e”""V2m =" "2m exp /—dx )
Xn_2 —1 x= r
11—2\/%
We find more explicitly, by an elementary integration (see [Schlue 2012]), that
r_ r
eZM(l——), n=3,
2m
UV = . (1_ ; ) (2-10)
e~2m —im, n=4,
I+ 75
SHere the representation in terms of null coordinates is such that »* = —oo is contained in the (, v) plane and the metric is

nondegenerate at r = " 2m.
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and
(n—2)r r 1, n odd,
uv=e"_2«/ﬁ(l—ﬁ) r -1
2m (1 + T) , neven,
"Y2m
[n53] 2 . cos(27j 1=3)
2 > Jn=2
% 1_[ (r—z—Zcos( i ) ! : +1)
jo \@m)i n=2) (amyis
[253] —r —cos(zLj)
_3 n—2/5_— -2
X 1_[ exp| 2 sin 27rjn— arctan 2m " , n=>5. (2-11)
j=1 n=2 sin(725)

Note in particular that the ¥ = 0 and v = 0 lines are the constant r = ""v/2m curves, and that all other
curves of constant radius are hyperbolas in the (u, v) plane — timelike for r > "73/2m, spacelike for

r < "7/2m. This outlines the well-known global causal geometry of the Schwarzschild solution (see
Figure 2).

Figure 2. Global causal geometry of the Schwarzschild solution.
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It is easy to see [Schlue 2012] that for (2-9) the trapped region, the apparent horizon, the exterior, and
the antitrapped regions, respectively, are given by

) _or or B .
J=;(u,v)eQ.@<0,%<O} —{(u,v)eQ.u>O,v>O},
. _or 8;’_ _ o
&ﬁ=§(u,v)€Q.@<O,%—O} —{(u,v)eQ.u—O,v>0},
%ig(u»v)EQia—r<0,a—r>O} ={(u.v) € Q:u<0,v>0},
ou ov
*i;(u,v)EQ:g—;>0} ={(u,v) € Q:v <0}.

Note this forms a partition of @ = TUAURU T*, and that in view of (2-6), r < "2m in I,
r=""22min s and r > ""/2m in R. We shall refer to

D=R={(u,v)eQ:u<0,v=>0} (2-12)
as the domain of outer communications.
Finally,
2m)3
4( ) e 2m, n =73,

r

2 2 2 __2r

(]

r 2m

7 \2 (Zm)n% 1, , n odd,
02— J\n=-2 rn—2 . + 1) , neven, (2-13)
n—2/2m
[nz;%] 2 . 1—cos(27j 1=3)
2 : J n=2

X 1_[ (r—z —ZCOS(LJ)% + 1)
=1 \@m)i= n—2 2m
[n;3 _r COS(2 j) _

-3 n—2/5— 2 —m=2)r

X 1_[ exp[—z sin(2njn—) arctan( 2m 5 . ):|e ""Xam, n>S5.

Jj=1 n—2 Sm(nnjz)

One may now also think of r as a function of u, v implicitly defined by (2-10) and (2-11). In % where
r>""32m (and v —u > |u + v|), r may be complemented by

2
‘= Yam arctanh(“ + ”); (2-14)
n—2 v—Uu

note

dt =

" ( -t du) (2-15)

n—

and we will denote by X, the corresponding level sets in D.
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We find in these coordinates the classic expression for the Schwarzschild metric in the exterior region:

2m 5 2m \ ! 5 2.
g:—(l—rn_z)dt +(1—rn_2) dr= +r-yu—1. (2-16)
In Regge-Wheeler coordinates (z, r*), where r* is centered at the photon sphere r = "~/nm:
r 1 ,
r* = ——dr’, (2-17)
/(nm)nlz 1-— r/zn—"_lz

the metric obviously takes the conformally flat form

2m

g= (l—rn—_z)(—dt2+ dr*?) + r2p,_1. (2-18)

We shall also use the Eddington—Finkelstein coordinates
u* =10 —r*), v*=L10+r%). (2-19)

which are again double null coordinates:
2m

g= —4(1 — rn_2) du* dv* 4+ r29,_1. (2-20)

The two systems of null coordinates in 9 are related by

_m—2)u* (n—2)v*

u=—e "Xzm, y=e" Vom, (2-21)

3. The redshift effect

In this section we prove a manifestation of the local redshift effect in the Schwarzschild geometry of
Section 2 in the framework of multiplier vector fields.

Proposition 3.1 (local redshift effect). Let ¢ be a solution of the wave equation (1-1). Then there exists a
@t -invariant future-directed timelike smooth vector field N on D, two radii "2om < réN) < rfN), and a
constant b > 0 such that

KN@) =0 (V). N) ("V2m=r<rd") 3-1)
and N =T (r > rfN)).

The vector field N will be constructed explicitly with the following vector fields.

T -vector field. Here ¢; is the 1-parameter group of diffeomorphisms generated by the vector field

1 n—2 0 d
2 n—2 2m (U 81) u au) ( )
note that in ®, where r > ""/2m (recall (2-15)),
d

T=—.
dt
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T is a Killing vector field:
D =0, (3-3)

which is timelike in the exterior, spacelike in the interior of the black hole and null on the horizon:

<0, r>"32m
_2 2 2 k) k]

g(T,T)= %% uv Q? = —(1 — rn,i/lZ) =0, r="732m, (3-4)
@m)n=2 >0, r<"?2m.

In particular,

T =122 ,2 —0 (3-5)
HE T R Uy Htnp— =Y -
Y -vector field. Let us also define a vector field Y on H™ conjugate to T':
2 9
ou
Indeed,
g(T.Y)|y+ =-2 (3-7)
because
n—2
V2m19d
H n—2 vadu
Furthermore, as a consequence of (2-5b),
0%r __n- 2Qz _ la_r
0u 9V |4+ 4r wt VO |y
and we have
ad ad n—2 1 1 9%r ad
T,Y]|y+ =IT,Y “—‘ +[T.Y'—| = ——[v——— ]— =0. (3-8
(7 Y]l 7. Y] ou |+ 7. Y] Wly+ " 2m g_; g_; ou v ou |4+
E g-vector fields. We denote by E4: A =1,...,n—1 an orthonormal frame field tangential to the orbits
of the spherical isometry:
1, A=B
E4q,Ep) =645 =1 ’ 3-9
g(Ea, E) =daB {0’ A4B, (3-9a)
8(EAY)|y+ =0, g(Eq,T)=0|y+ (A=1,....,n—-1). (3-9b)

We can now state that the surface gravity of the event horizon is positive; this is essential for the
existence of the redshift effect (see more generally [Dafermos and Rodnianski 2008] and also [Aretakis
2011] for work where this is not the case).

Lemma 3.2 (surface gravity). On H™T,
VrT =k, T (3-10)
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with
1 n—2
Kn=§n_2 o > 0.
We call ky, the surface gravity.
Note. T = Kn(v% — u%).
Alternatively, «, is characterized by
V7Y =—x,Y

on H*. Clearly

g(VrY.Y)=3T-g(Y.Y)=0

since Y is null along %, and

(3-3)

3-3
g(VrY. T) 2 ¢y T.7) L —g(Vr T, V) = 2ky;

also

(3-11)

(3-12)

g(VrY, Ex) 2 g(Vy T Ex) E —g(VE,T.Y) =0 forA=1,....n—1,

because Vg, T = 0. Note, for later use, on H ™,

2
Ve, Y =—

—— E4.

(3-13)

We defined Y on H* conjugate to T, g(T, Y)|+ = —2. Next we extend Y to a neighborhood of the

horizon by

16
VyY =—o(Y +7) (o > —2(2m)n32)
}/l_

and then we extend Y to ® by Lie-transport along the integral curves of T':

[T,Y]=0.

Proposition 3.3 (redshift). For the future-directed timelike vector field

N=T+Y

there is a b > 0 such that on HT
KN >b N, N).

Proof. Let us calculate

1

n—1

= SN (Ba, ¥) T(Ea, T) + Pm(Ea, T) T(Ea, V)| +

A=1

— Z{‘Y)n(T, YT, Y)+ 20T, Y)T(Y,T) + Dr(Y,Y) T(T, T)}

(3-14)

(3-15)

(3-16)

(3-17)

n—1
> On(E4. Ep) T(E4. Ep).

A,B=1
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Now, on one hand, on H T,

DT, Ty =260, On(TY)=0., Dr¥.Y) =20,
2

Wr(Es,Y)=0, OB, T)=0, On(Es Ep) = =Ty
m
Thus
KY = i, TO.Y)+ Lo T(Y +T.T) - Z T(E4. Ey).

On the other hand, on H1,

2 3¢ \?

2 AN
T(Y,Y)= (Wﬁ) , T, T)= |V¢|r2n ., T(T,T) = (K,,v—) ,
u

av

—1

and, on HT,

T(Ea, Ep) = (Ea- §)(Eg- $)— 32m)72845|V9) 0, | —3(1-2)2m)7> z—sAB(a¢)(a¢)

ou v
Using Cauchy’s inequality, on H T,
2 VAL
=) Z P(En ) = 0=3Cm |50, + 02015 ( ()
12
> (n—3)2m) 2 T(Y, T) — iea T(Y,Y) — — ((” 2)) Qm)#2 T(T, T)
—1
> L, T(v,Y)— (2m)ﬁT(T, 7).
n
Since we have chosen ¢ > 2"’:21 (2m)n%2, KY has a sign,
KY > Lo, T(V,Y)+0' T(Y +T,T)
- _1_
for0 <o’ <5 — %(Zm)n—z, or
Y>bT(Y +T.Y +7)
for 0 <b < min{, ‘72 }. This yields the result
KN =KY>bT(N,N)y=b(VN,N). O

Finally, we find an explicit expression for Y. Consider the vector field

2 0

Yy =—— —
or
& ou
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on % U o4 formally defined by the expression for Y on H™*. In R

2 0

2m * "
1— Fn—2 du

Y =

Y generates geodesics, this being a consequence of the Hessian equations (2-5a),
vy (2Y Lotr 20970
Yoo\ I gu2 " Qou |ou
ou ou
and is Lie-transported by T':
- 2 ad ad 2 d - N
T.Y|l=——\|T.— |7 )|m/—— | T, — | = —KnY Y=0
7. Y] (a_r)Z([ 8u:| r) ou a_r[ 8u] Ko ken
ou du
because [T, %] = Ky % Y as constructed above coincides with
Y =a(r)Y +B(r)T

where

2
a(r):1+%(1—r,,’i), B(r) =

n

o ! 2m
4k, rr=2 )

Indeed, on H T,

Y| Y| 2 9
and
since
A~ o 2m - A
Y-a|H+ = m(n—Z)rn_lYW - = —o0, Y~,8|H+ =—0

and Y remains Lie-transported by 7':
[T.Y]=(T-a)Y +(T-B)T +«[T.Y]+B[T.T] =0
since
T-a=0=T-8.
Thus the vector field Y is given explicitly by

2 9

o
y— éau

- o ] 2m 2 0 n o . 2m \ 0 . R
— (1= —+—(1- — in Q.
dip m=2) 1= —r%l'fz ou* 4k, rh=2 ) ot

(3-18)

(3-19)
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Clearly, by continuity, we can choose two values "~v/2m < réN) < rl(N) < 00 and set

T +7Y, "2m<r< réN),

N
T, r> rl(N),

with a smooth ¢;-invariant transition of the timelike vector field N in r(()N)

extends to the neighborhood ""v/2m < r < r(()N)

(N)

<r =<r; "7, such that (3-17)

of the event horizon.

Remark 3.4. For a geometric interpretation of Proposition 3.3 see [Schlue 2012] and also [Dafermos
and Rodnianski 2008].

4. Integrated local energy decay

In this section we prove several integrated local energy decay statements, i.e., estimates on the energy
density of solutions to (1-1) integrated on (bounded) space-time regions; this in an essential ingredient
for the decay mechanism employed in Section 5.

Let Ryy,r (fo, t1,u7, v]) be the region composed of a trapezoid and characteristic rectangles as follows
(see Figure 3):

R (o, 11, uy, v]) ={(t, 1) ito <t <t1, ro <r <ry}
U{(t.r)ir <ro, Xt —r*) <uf, to+ry <t +r* <t +rg}
U{(l,r):r >y, %(z—i—r*) <vi,to—rf <t—r*<n —rf}. 4-1)
We define
R =) U U RGo.tr.uf o)) (4-2)

>
nzto ui>Lt—rg) viz=3@+ry)

and denote its past boundary by

T =0"RY, (to), To=3(to—r7). (4-3)

70,71

To ri

Figure 3. The region R, r, (to,t1,u}, vy).
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‘We shall first state the central estimate.

Proposition 4.1 (integrated local energy decay estimate). There exist (2m)nlfz <rop<ry<ooanda
constant C(n, m) depending only on the dimension n and the mass m, such that for any given solution ¢
of the wave equation Cg¢ = 0,

1 (ag\ 1 [(dp\ 1 om 5
/Rﬁg',,l(to){r_”(ar*) +”nJrl(E) +r_3(1_r”_2)w¢"217n—1}dug

EC(n,m)L (JT(¢)+JT(T-¢),n) (4-4)

for all tg > 0, where 19 = %(Zo —r¥).
The degeneracy at infinity can in fact be improved:

Proposition 4.2 (improved integrated local energy decay estimate). Let ¢ be a solution of the wave
equation Og¢ = 0. Then there exists a constant C(n,m, §) for each 0 < § < 1 such that

1 (3¢ )\? 1 [0\ 1
fs ol ol )
R?g.rl (IO) r r r r

2m
rn—2

)}y(b‘fzf/n—l} dﬂg
§C(n,m,8)/ (T () +IT(T-$),n) (4-5)
PR

for any ty > 0, where ro < ry are as above, and 19 = %(Zo —r).

As a consequence of the redshift effect of Section 3 and the uniform boundedness of the nondegenerate
energy (which is proven independently in Section 5A), we can infer in a more geometric formulation:

Corollary 4.3 (nondegenerate integrated local energy decay). Let ¢ be a solution of (1-1). Then for any
R > ""3/2m there exists a constant C(n,m, R) such that

/ df/ (JN(¢),n)§C(n,m,R)/ (IN(p)+JIT(T - ¢).n), (4-6)
14 A Sy

forall t" < t, where ¥, = X, N{r < R}.
Proof. Let
R(t, 1) =T () NI (Zy).

In R'(z/,7)N{r < r(()N)} we have by Proposition 3.1
1
(Y @).n) < 2 KV (@),

and in R'(/,7) N {r > rfN)} trivially (J (¢),n) < (JT (¢),n). Therefore using the energy identity
for N on R/(7/, t) the estimate (4-6) follows from Proposition 5.2 and Proposition 4.1. O

In the above, no control is obtained on a spacetime integral of ¢2 itself; however, all that is needed for
the decay argument of Section 5 is an estimate for the integral of ¢2 on timelike boundaries.
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Proposition 4.4 (zeroth-order terms on timelike boundaries). Let ¢ be solution of the wave equation
(1-1), and R > ""/8nm. Then there is a constant C(n,m, R) such that, for all T’ < t,

2t+R*
dr dus 2
/21:’+R* i1 Hin-1 9%l

2t+R* 2
<C(n,m,R) dt/gnlduyn_l{(a¢) +W¢‘2}

20+ R* ar*

+Cm,m,R) | (JT($),n). @7
R Er/

r=

The central result of Proposition 4.1 combines results for two different regimes, that of high angular
frequencies and that of low angular frequencies. First we will use radial multiplier vector fields to
construct positive definite currents to deal with the former regime, and then a more general current using

a commutation with angular momentum operators for the latter.

Remark 4.5. The specific parametrization (4-3) has technical advantages, but ¥ can in principle be
replaced by a foliation of strictly spacelike hypersurfaces terminating at future null infinity and crossing
the event horizon to the future of the bifurcation sphere.

4A. Radial multiplier vector fields. A radial multiplier is a vector field of the form
ad
ar*

We would like the associated current to be positive; however we find in general, as it is shown below:

’ 2
k¥=—I (a¢) +i(1—rTz)|Y7¢lfm1—%[f/ﬂn—l)f(l—rﬁ)]a"‘wm. (4-9)

2m * .
1— 2 or r r

X=f(r") (4-8)

Note. The prefactor to the angular derivatives vanishes at the photon sphere at r = "~/nm.

Calculation of the deformation tensor ) . It is convenient to work in Eddington—Finkelstein coordinates:

R PN P
X =3 /) =5 15 (4-10)
We then obtain for the components of the deformation tensor:
2m 2m
(X)ﬂu*u* e (1 — rn_z)f/, (X)nv*v* e (1 — rn_z)f/,
2m 2m
) 7y :_(l_rn—z)(f/"‘(n_z)rn—l ) 4-11)

(X)j'[aA:O, (X)T[AB:f}"(l—rn_z)()o/n_l)AB.
The formula (4-9) for KX is now obtained by writing out (see also Appendix B)

KX =@ g1
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and rearranging the terms so as to complete ( 0¢ ) + (aaﬂ) to ( 0¢ ) This rearrangement is also related

to the following modification of currents; for observe that, if O¢ =0,

O(¢?) = 2(3¢) (9up)- (4-12)
First modified current. With the notation

TX0 =T, X", (4-13)

n’fz))q)z. (4-14)
KXO g X0 kX, (4-15)
KXl=yrgXl=k (f +(n —1)]:(1 o ))D(¢ )— (f/+(”—1)§(1_r%fz))¢2

m

f! d¢ f nm 2 1 ) f 5
2m, (ar*) +7(1_rn—2)‘y¢‘r21‘7n_1_ZD(f +(n—1)7(1—rn_2))¢2. (4-16)

Since, for any function w,

define the first modified current by
1 f
JXt = J5’°+Z(f’+(n—1)7(

Consequently the divergences are

nTz))au<¢2>—iaM(f’+(n—l)%(

O(w) = (g~ H*'V,dhw = —ﬁau*av*w 1z _rl (Qurw —prw) + A2y, w,  (4-17)
rin—
a straightforward calculation for
w=f' +(n—1)i(1_r2m2) (4-18)
shows
D(f/+(n—1)%(1—ri'112)) = 1_1 " f+2(n— 1)f—”+(n—l)|:(n 3)+(n-1) pr 2] {2/
=

2
+(n— 1)[((;1 1)(n—2)—(n— 3))(2"1)—;15,—'112—(11—3)]%3. (4-19)

Thus we finally obtain
X1 _ f/ 3¢ 2 f 1 f/// n—lf” )
K _1 (ar)+ _nz‘yd)‘rzynl 41 2m¢_27¢
2m f
2) s —(n—3)i|r—3¢2. (4-20)

——[ e G =

Applications of the first modified current. The proofs of Proposition 4.2 and Proposition 4.4 are applications

of this formula, as it appears in the energy identity for J X! on RD;Z; see Appendix B.
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Proof of Proposition 4.4. Choose f = 1 identically. Then

x1_ 1 nm 2 n—1 2m 2m \*7 1
KXl — —(1 — rn_2)|Y7¢|r2f,n_l + T[(l’l -3) +nrn_2 —(n— ])Z(Fn_z) ]r_3¢2 (4-21)

r

Since precisely

X,18_1 o\ 1(\ 1 2m 2
o7 ) =) i) ‘5(1‘w——2)‘7¢‘r%—1
n—1 2m ¢ 2m '\ 5
+ (1— " )¢ar [1—( —1 2}(1 n_2)¢, (4-22)

we deduce from the energy identity for J sl in RD’/ that
R*+21
1(0¢\", 1(0¢\" n—1
dr d -2 — — | z—(n—1
A {4(av*)+4(au* s
n—
+ ko yre (n 3)+n 2(;5 dug
3 \?
ar*

</R*+2rdt/ P LY |V¢| u 1—
- R*4+27¢/ gn—1 Iuy"_l 2 r” ) r2 Vn— l 2 r=R

+C(n,m)/z (JT(p),n), 4-23)

—(n 1)2

where we have used Proposition C.1 for the boundary terms on BRD; \ {r = R}; note that
2
— —(n —1)2( ) >0 (R>"/8nm). O

Proof of Proposition 4.2. On one hand we need ' = O(ﬁ) in view of (4-20), while on the other we
already know from the proof of Proposition 4.4 that f = 1 generates a positive bulk term for r large

enough. We choose
R 8
f=1- ~ (4-24)

(n—3)+n 2m

(where R > ""%/2m is chosen suitably in the last step of the proof) and indeed find

R (3¢ \?
KX =8r1+8 (3;11) +§(1_ ’:z,i)'y(p‘fzfm—l
$
{ (n— 3)[ ( )(1+5)} 1(?) [2(n—1)—(2+8)}8(1+8)
[l G Troeor-2on] |3
(n—1)3 R\’1 §/R\® 1/ 2m ) 1,
() G (G- ]|(35) =0 e
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29 and the

forr > Ry > R, Ry = Ry(n,m) > "¥/2m chosen large enough. This gives control on 3

angular derivatives:

R? f(R1) nm X,1
L1D§%{8r1+8 (37 ) T ( e z)wd)‘ﬂ”” ‘} _LlpﬁK .

Here and in the following, 5 > 71 > %(to —R*). For %—‘f we use the auxiliary current (see also Appendix C)

1 2m \, R®
=3 (1 35 )8 @)

to find easily

RS (93¢ RS [ 3¢ \?
AID:%S’,H-S((%) AID;%{(?(H—I—(S)’J-M(@,*)

RS 2m
+4 1+8(1_ n— 2)|y¢‘r2 +5(l’l+5) 3+8¢ +K

Note that for r > Rj in particular

8
20- D)= @+ 8801 +8)-T 597 < KX

hence

RS ((09\* [ 3¢\
o P55t (5r) +(5)

5C(n,m,5) AIDrZ{KX’I'i_KaUX}
71

1 [\ 1
- KX’I K aux —= | = —¢° :
_C(n,m,S)AD;%{ + }+C(n,m,$) R’D:%D{R<F<Rl}% r1+8(8t) + r3¢ }

By Proposition C.1 (also (B-6)),

R*+4+21>
/ A §C(n,m,8)/ (JT(p),n) +C(n,m,$) dt/ dpy, 1" Ix
aRDr% N R*+27 sn—1

1(0p ), 1(3p) |1 2m
X{E(Bv*) +§(8u* 2 1_r"_2
and by Proposition C.8,

* yaux T
/{,RD:% J §C(n,m,8)/zrl(.l (¢).n)

R*+21 . S 1
+/ dt/ duy, "~ {——
R* 421 gm0 ! 22

1
)\W!f%_l + r_2¢2}

r=R
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Therefore, by the energy identity for JX>! and J** on RD?

71>

R*+21>
/ ] {KX’1+Ka“X}§C(n,m,8)/ (JT(¢),n)+C(n,m,8) dt/ duy, " tx
RDe3 ., R*+21) n—1

10\, 1({0p\ 1 2m 2 L,
3] +a(5e) #3017 ol - 597

. . _9_ ..
Our earlier (4-23) derived from the current J ar¥ ‘I now allows us to control the aaﬂ , 8:1 derivatives

and ¢2 on the r = R boundary together with the ¢? term in the region R < r < R in one step:

RS ((3p\* [ 3¢ \?
Jows et (o) + (55§

< C(”’m’5)/z (I7(¢).n)

r=R

R*+21, 2 —1/ 93¢ \?
u 1)1, 2m 2 n ¢
tCe.m ) R*+27) dt/gﬂ—lduyn_lr {2(1 r"_z)w(p‘rzf’"‘l-i_ 2 (37*) } r=R
1 (092
+Cn,m,d) (—) .
R’D;fﬂ{R<r<R1} rl+é \ ot
With ¢y fixed, we can now choose R by Proposition 4.1 such that
1 Ip\> , (04> T T
— <Cn,m,$ J J(T-¢),n). d
Llpﬁf pl+é (31) - (31’*) } =Cla.m )L,l( @)+ 77T ¢).n)

While it is possible to find simple functions f > 0 to ensure the positivity of KX-! asymptotically, this
is not the case in the entire domain of outer communications; the difficulty is the indefinite sign of (4-20)
at the photon sphere r = "~2/nm, which is a manifestation of the trapping effect.

In the following our strategy will be to prove nonnegativity of K*>! not pointwise but by using
Poincaré inequalities after integration over the spheres (the group orbits of SO(#n)). This is achieved
in two alternative constructions: in Section 4B with a decomposition into spherical harmonics, and in
Section 4C by a commutation with angular momentum operators.

4B. High angular frequencies. Here we construct a positive definite current for the projection of so-
lutions to the wave equation to eigenspaces corresponding to high angular frequencies in the spherical
decomposition. Since by Poincaré’s inequality the second term in (4-20) then becomes comparable to the
zeroth-order terms, the idea is to choose f such that this term dominates. We evidently need

<0, r< "%nm,

f(r*)s=0, r=""Ynm,

>0, r> "nm,
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and since f should also be bounded one may guess that

*\ (n—l)r*
f(r®) = arctan(—nW )

is a good choice; however, while it can ensure positivity at the photon sphere, it fails to do so near the

horizon and in the asymptotics. After briefly recalling the spherical decomposition, we will give a more
refined construction of f, nonetheless guided by the overall characteristics of this function.

Fourier expansion on the sphere S"~1. We recall the Fourier expansion on the sphere $"~

p=> m¢, ¢el>S"), (4-26)

>0
where 7; denotes the orthogonal projection of L2(S”~1) onto E; (see below):
Bpame =11 +n-2)m¢. (4-27)

In other words, denoting by E; € L2(S"~ 1), [ > 0, the eigenspaces of

—Apr + (n ;2)2

corresponding to the eigenvalue (I + %)2 then

LS H=PE.

>0

If we assume ;¢ =0 (0 <! < L) for some L > 0, then it is easy to show (see, e.g., [Schlue 2012]) that

1 5 2
L(L+”‘2)r_2/S,¢ dity, < /Sr}w,%_] dity,:

this is a well known Poincaré-type inequality on the sphere:

Lemma 4.6 (Poincaré inequality). Let ¢ € H'(S,), S, = (S"71, r2y,_1), have vanishing projection
to E;,0<I[ <L, forsome L €N;i.e.,

mp=0 (0<I<L).

Then |
[ 199l duy, = L4022 [ 92an
Sy r<Js,

Construction of the multiplier function for high angular frequencies. The idea is to prescribe the third
derivative of f and to find its second and first derivatives by integration with boundary values and
parameters that ensure that f remains bounded. Let

n—1

a= (4-28)

(nm)nlfz
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and y > 2, y € N. Consider

_1’ |r*| S )
1 e
111 _ *
mry=q L ” <|r*| < bya,
bya\®
( ;/:k ) ’ |r*| > b}/,a’
where
5 2
bypog==>—
Y, 6)/0[

Note that b, o is chosen so that

o0
| e —o
0

Now define
r*
o= [ Ao
Obviously f)}’la (—r*)=-— ),I,Ia (r*) and, in explicit form,
1
_r*a |r*| E )
yo
2 1
r*——, — <r*<byg,,
ya ya
fJ/I,Ia(r*) = . .
ro+—, _by,a =r<-—,
yo yo
b6
- 5:;“5 ) |r | = b%(x
The functions £}, and f%, are sketched in Figure 4.
Next define
r*
1= / .
—0oQ
Here we find
b6
V,a
W, r* <—byq,
I (I"*) — J%s“ 1, 42 2 2 * * 1
V.0 = 2—0+§(V —by,a)'i'y—a(l’ +bya), —bya=r E_y_a’
*2
LE N ~Loeco
12 (ya)? 2 yo

and f),(r*) = f}4(—r*), as sketched in Figure 5.

539

(4-29)

(4-30)

(4-31)

(4-32)

(4-33)

(4-34)

(4-35)
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540
1 1 I
L o
L L L L
1 1 *
bya—3q va bra r
-1
1
ve il
L o
11 Y
3ya/
— g L
1 1 *
va v, 11 ’
| 3ya
_1
yo

FM "and the adjusted functions (dot-dashed)

Figure 4. Sketch of the functions yHa and f,

for r* <0.

[SI[)

(ya)3

0
fy’ a

Figure 5. Sketch of the functions fylﬂ and fy?a, and the adjusted functions (dot-dashed)

for r* <0.
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Finally define
P
Fra(r™) = f fra(®)dr. (4-36)
0
Here again f,), (—r*) = — f,2, (r*) and, in particular,
1
1 va (13 1 12 1 1
0
— )= D D g = . 4-37
#ulia) = (Boar5) = gy 43D
Moreover the calculus yields
Flbya) > ——  lim £ (%) <2 (4-38)
O 2 (ya)’

The function fy(fa is sketched in Figure 5. While this function would suffice in the region r* > —yLa it

does not fall-off fast enough as r* — —oo.

Lemma 4.7. With r* defined by (2-17) we have, for all n > 3,

. 2m "
,Jff_loo(l B rn—z)H )=0.

(1_ 2m ) - (Zm)n%z‘
rn—2 — (_r*)

Proof. See Appendix B. O

In fact, for all r* <0,

Next we will make an adjustment to ! on r* < 0 that introduces faster decay while keeping the area
under the graph of f™ and f! fixed [Schlue 2012]. In other words, there are constants

4
bpa<b<—, r<c=<I (4-39)
ya 4
such that, if we redefine fyné for r* <0 as
_1’ _L S r* S 0’
yo 1
(%) — c, —-b<r*<—, (4-40)

v,a

6 6
(-2 () e
r (2m)n—2

—00 0 r* 0 —p*
[ enar =0 [ [0 poae= [ [ cpeaar,
0 —oo J0 —00 J0

The adjusted functions in comparison to the old are also sketched in Figures 4 and 5. Note in particular

then
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that, for r* <0,

) < i, (4-41)
* 13 1
A T (4-42)
and, for r* < _y%’
11 1
oI )3_|f( BIEVACRE ( o (4-43)

Remark 4.8. In order to deal with smooth functions one could use (e.g., at the level of second derivatives)
a convolution with a Gaussian on the scale given by y« (or finer); i.e., one could define

1 _ya * —(ya)2(r*—1)2 clI
e = [

and find ), = y” « by differentiation, and f; , and f, 4 by integration with the boundary values
(—o0) =0, a(O) = 0 as above. However, we choose not to do so (as it does not give further
yya Vs g
insight) and work directly with the step-functions, i.e., define

o eI
v, — Jy,ar

We are now in the position to prove a nonnegativity property of the terms occurring in (4-20), which

OKX,I:
/ 9 2
KXJ:f—( ¢) nyeas (4-44)

2m *
1325 or

we will denote by

Proposition 4.9 (positivity of the current J Xv«:1). Forn >3,
0
Xya = fy,aa_* (where we choose y = 12)
r

and ¢ € H'(S) satisfy
/ O Xy.a;l duy, >0
S

provided ;¢ = 0 for 0 < < L, where L > (6yn)? is fixed.
Proof. By Lemma 4.6,

/OKXV’Q’ldMyZ/{L(L‘i‘ _2)fy’ ( _ nm)
s s rn—2

N REY ET
41— 2m 2 r

Fn—2

—1 2m \? 2
DA B P

:|fya

r2
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We consider the five regions

4 1 1
—00 < —— < —— < — < by 4y <00.
ya ya ya

The proofs of the following four lemmas are omitted here; see [Schlue 2012].
1
Step 1 (near the photon sphere, |r*| < y—a).

Lemma 4.10. In the region |r*| < yia the corresponding value of r lies in the interval

n—2 n
Vénm<r < —
o

where § = max{% ig

Recalling fy o and its derivatives, we then find, in the region |r*| < — ya,

3

1 1« 1 1 a* 1 13 1 1o 23 1 )
> [l = — 1= —3 ~1 S d
- /;{4 25 ya dsiZan— |:(n )+3 ( ) i|12 (ya)?2 4532 8n2(ya)d ¢

n—2

_[f1_13 313(3)_
—Js 4 2y 412 y

because y = 12.

303\ .o 11 ,,
Z(;) }¢ dMyZ/SZ§¢ duy

1

Step 2 (in the intermediate region, va

. 1 * 5
Lemma 4.11. In the region ya STT=3%

1

Collecting the first term and the last, we find in this region,

X,a, 311 1 nm 2
s el 25 o G e
11 al 1 1

1
—Zl_—2+§§y—a—za - |:(I/l )+m—-1)— :|( )2}¢2duy

11 1 1 3 11
A e e S S L L i

6yn)2\?
[ o 0w

2
ya’

=
<
=
)
<
«
&y
3
=
=
8
Q
S
3
S
=
S
N
S0
S
oo
<
N
=
S
]
S
e
~

Q S

[e\[9)]

because L > (6yn)?, where we have used that, for yLa <r*<

nm 1
> .
2~ 6y(n—1)

543

Hy

_3)]
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Step 3 (in the asymptotics, r* > b, 4). Given the general fact Proposition B.1 we here only need the
weaker statement:
Lemma 4.12. Forr* > %%
r
prs <2yn.

Here

Op Xpal 4, = 1 ! 3 111 (5 2
/SK d“y—/s{<ya)3[6y(n—1>““” - 50 )] 41—%(6ya*)

to? L [(n—3)+(n—1> }20 = }¢2duy
L? L 31 r\ (52 1
e gao-2-350 ‘”"(—) (6;) @}
11 52\ 1 7 1
_12_0(_) (53) o fareo e

3 3510 o n 2 (nm)m=2Y\" ,
= [[6m* =m0y = [ (a—) = [ (—) o duy.

where in the third bound we have again used L > (6yn)? and the lemma.

v

. . . . 4
Step 4 (in the intermediate region, ~7q = r* < ——) Recall y = 12.

Lemma 4.13. Fork <y, k €N,

2m \ !
l——= <17,
r r*__VL
and, consequently,
( nm ) 11
—(1-=—= >
rn e 202y

In the region —i <r* < ——- we directly apply the lemma to see that

/ Ok Xreod dpr,
s

1 1 1 T
z/{L(L+n—2) 1 12 Ly = 0
S

(nm)i2z 12 (ya)3202y 4 T w7

n—1 1 13 1 n—1 .
_ I B d
[ D e~ a1 ”(zm)n (ya>3}¢ "

2 3
1 1 17 31 131 (n\™2 1 1 (n\"™2) ,
> L(L+n-2)—~ -2 ———=— -——(z d
/{w)‘*(n T B e 12 6 BT 71 €) M LT

Z/S{24 ——‘Ibdﬂy /¢ dyiy,
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because L > (6yn)>.

Step 5 (near the horizon, r* < —b). Finally we see for r* < —b, recalling the adjustment to faster fall-off,

(/)QKX}ﬂ,ldMy
S
1 11 1 11 1( 2)5 n—-1 1 1
> [ {L(L+n-2) = — (1) - —
/S{ (nm)mz 12 (ya)3202y 4 n 2 Qm)r= va
n-0% 1 1 n—1 1 1
- - n+(n-3)
4 amyrs (yo)? 4[ ](zm)niz

11 11 (n\"2 1 (n\"2 4 1 (n\"2) ,
z/S{(:'sy)“(11—1)3L(L+”"2)‘1_Z(5) _<zy)2(5) _nTl(w(i) }"’ ity
4, 51,2 2
2/5{2” 219 d/’Ll’Z/S¢ dpy,

where we have used that here

" 2m '\’ b \° 2\’
2m 1- n—2 1 =\1-2) =L N
-3 r (2m)n=—2 n

3
In fact, we have shown more, because all lower bounds in Steps 1-5 are minorized by %%%'

Corollary 4.14. Let ¢ be a solution of the wave equation (g ¢ = 0 satisfying
mp=0 (0<I<L)

on the standard sphere S = (S" 1, r?y,_1) for a fixed L > (6yn)?. Then

3 5 _6_ 2
112Cm)ya= , 1 1 2m \* (2m)n=2 ( d¢ / Xya0l
/_-;{48 AN T VK (n—2)2<n—1>6(1 rH) 2 (ar* = J R i

Proof. 1t remains to be shown that

1 1 1 2m 6b$,a< , ()
20 (4-5(n —2))? =2 ) g4 TN

r 2m \® r 2m \’
/ (1— mz) dr*:/ 1 (1— mz) dr,
—c0 rn— (2m)n—2 rn—

-1 - :
because dr*/dr = (1 —2m ) . Now choose ""%/2m < ro < r so close to r as to satisfy

rn—2
r—ro 1 1 ! 2m
ro  25(mn—2) =2 )

First,
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Then, by the mean value theorem,

/ 1 (1 - n1112) dr > (1 - nTz) (r—ro) > (1 — nn_12) |:1 —5(1—2)——— r ro} (r —ro)
(21’11)m r rO r 1 _ m_ 7o

1 1 2m \® 1
=451 -2) (l_rn_—z) (2m)m=2.

We conclude, for r* < —b,
b
(—1 ) *dr*
r¥=s*\ (2m)n—2

. b°
f)’a(r )_/ / ( rn— 2) 5(11 2) ( yh— 2) dr (2m)%

1
=14
2 'm 6 b6 6b6
>(45(11—2)) (1 r”‘z) (2m)nfz (4-5(n— 2))2( - 2)

Second, for r* > 0,

1 1 1 e\ L
(4-5(n=2))2r*  (4-5(n—=2))2\ r ) rp* = px4’
Since, thirdly,
bya
-

<1,

we have established (x) for the regions r* < —b, r* > by o, —b <r* < b, o, respectively. O

Remark 4.15. This estimate of the zeroth-order term ¢2 suffices to obtain an estimate for all derivatives
using a commutation with the vector field 7'; see the proof of Proposition 4.1 in Section 4D.1.

4C. Low angular frequencies and commutation. While the current constructed in Section 4B required a
decomposition into spherical harmonics, we will now altogether avoid a recourse to the Fourier expansion
on the sphere. The key to the positivity property was Poincaré’s inequality, which states in more generality:

Lemma 4.16 (Poincaré inequality). Let (S,y) be a compact Riemannian manifold, and ¢ € H'(S) a

- 1
- [ pdu,.
P fsduy/S¢M

—0)? _1 2
=7 < [ 19oP .

where A1(S) is the first nonzero eigenvalue of the negative Laplacian, — A = =YV ,, on S (Y denotes

function on S with mean value

Then

covariant differentiation on S).

Now let (S,y) = (S"71, $,—1). Then we read off from (4-27) here

(S H=n—-1. (4-46)
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Choose a basis of the Lie algebra of SO(n),

-1
Q=1 "D (4-47)
2
and apply Lemma 4.16 to the functions €2;¢ of vanishing mean:
/ 1 Q¢ duy,_, =0. (4-48)
Sl
Then we obtain
L 9P, =00 [ @, (4-49
or, on (S, y) = (S, yr) = ("1, r?Pu—1),
2 n—-
g VQipl”dpy, = — dity, . (4-50)
Also note
n(n 1)
Z (Qig)? =r2|Vg|r, . (4-51)
i=1
Second modified current. Recall we are considering vector fields of the form
Define
J ———B X, ¢°, -
M f(l - rn 2)
where 8 = B(r*) is a function to be chosen below. Then
f/
KX,Z — KX,I_,’_vM( ,BXU, ¢2)
f(l_rn 2)
(0 / nm 2
= 2m or *+'B¢ +7 l_rn—Z |y¢}r2f/n_1
1 f/// f/l |: n— 1( 2m ):| >
JE— + — —
4 1 r%rilz ¢ l—rn . IB rn—2 ¢
f 5, h—1 2m n—1 2m 5
—3pl 1- -3 1 1—
S |1 ) (e = =5 ) |4
n—1 2m 2m f
—T|:(n— )2( n_z)—nrn_z—(n—3):|r—3¢2. (4-53)

Now choose

B = (1 - rn—Z) +3. (4-54)
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Then
1 2 1 2 2
g2_p " - ,8(1 - rnTZ) n ”4r2 ((n 34— 1)rn—'i) (1 —rn—'Z) = +8  (4-55)
and
f/ a¢ 2 f nm 1 " 4 / /
K% = 1—2m_ (3r* +ﬁ¢) +7( _rn—Z) W(1)‘3217;1—1_ 1—2m_ {%f —f +(82_5 )f }¢2
Fn—2 yn—2
-1 om 2 2
_”T[(n_lf(rn’fz) —nrn}:—(n—3)i|r13¢2. (4-56)

Note. Suppose, outside a compact interval [—a, ] C R, f” is of the form f/(r*) = r% (Ir*| > «). Then
we could choose § = —rl* (Ir*| > ) so that §f" = r% >0and —§' 4+ §% =0.

Definition of the current J @ Let & > 0 and introduce a shifted coordinate

x=r*—a—+a. (4-57)
The modification we choose is
X
f=—n— 4-58
a? + x2 ( )
so that
/482 o 4-59
-8 - - _
+ (a2 + x2)2 ( )
Let
4 — ¢ C>0 4-60
fé= 2T (C>0) (4-60)
and X
(N = e U= [ (4-61)
T a2 4 x2 - o a2+ x(t%)2 )
Note that then .
2
(F4) + (1 — 1)f—(1 -2 ) 0 (4-62)
r pFn—2
and 5 5
Lopby" _goeby' 52 _sh( by = L X T )
() —8(f7) + (@ =)(") = 2 a2 (4-63)
Our current is built from the multiplier vector fields
0 d
X0=foo xb = fbar_* (4-64)

by setting

nn—1)

JO@) = 1X 0@+ Y 1X Qi) (4-65)

i=1
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and will be shown to have the property that its divergence
K® =vrj@ (4-66)
is nonnegative upon integration over the spheres.

Proposition 4.17 (positivity of the current J@®). Forn > 3 and ¢ € H'(S),

| K@ au, =0,
S

provided a is chosen sufficiently large, and C(n, m, ) set to be (x) below.

Proof. In view of (4-62) and (4-63),

K@ (f“)’( ) (i
T 1- ar*

nn—1) nn—1)
2

+ D P+ ) oo

i=1 i=1

nn—1)

2 b
) wol, > (1

i=1

" )Ivisi,

[(n—3)+n —(n—l)( )}f (Qip)?, (4-67)

where

1 x2—qg2

1
21— 21 (x2 4 a2)3

(4-68)

So, by Poincaré’s inequality (4-50) and (4-51),

o 52 e 2
fSK dMyZ/S{ a2rr \or* (n=1)

where
- 1)2(

Step I: H > 0. It is equivalent to show that

m 5 1 2
n_2)+Fr +;H]W¢\r2%_l§duy, (4-69)

2 C
) ]fb - (1 = r’i’i). (4-70)

o rn—2
H(r)=r""1H(r) 3

. n—
H =

[(n—3)+n 2m

is nonnegative. We consider H to be a function of

rn—2
P=m
SO
. C n
H = —(2mr)[(n—3),0 +np—(n—1) ]f 2 P=5 )
Note that

=”‘3/nm<:>p=g<:>r*=o
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H(E) _

Moreover we choose the constant C such that

and

dH

— =0.
dp

o=%

Then

dH n—1 n—3)2n—3 n—1 n—1)721
—_— = (2mr) ( X )p+ n—( )1 1b.
dp 4 n—2 n—2 n—2 p

n—1 2mr? r C
T [(n=3)p2 — =2t - =,
T S U R U Ve (U
where we have used
dr r dr* 1 r

dp n—2p dp  p—1n—2

Hence we choose

—1D2(%)?-(n—1 2
SO Vil i A PPN "
4(n—2) z-1 a2+ (a + o)
Note that then also
dH _o
dr r:n—%/m '

Now returning to the expression for H, let us denote by 1 < po < 5 the value of p for which

1
(n—3)po+n—n—1)>%*—=0;
0o

ie.,

B 2(n—1)2
i+ 2+ Am—1)2(n—3)

Po

We divide into the four regions

n *
1<,o0<§<,o < 00,

where p* is to be chosen large enough below.
Step la (near the horizon, 1 < p < pg). Clearly H > 0 termwise, because f b <0.

Step 1b (near the photon sphere, pg < p < %). We show H = H(r) is convex on ro <r < "72/nm, where

e 4(n—1)2m
T Nt P4 12(n-3)
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(2]

Differentiating twice yields

dzH_n—l 1
dar2 4 (1—2m)

yn—2

(Y [(n—3)+n 2m

-1 1 2

= e (n—z)[z(n—l)z n]r,,’fl

-1 1 / 2 2m \*] 2
Y -2 w-9 et -0-17( 25 ) |25

2
b |:(n—2)(n—1)ni—T—2(2n—3)(n—2)(n—1)2(’3:11) }
B (n—l)nC( _nm )+3(n—1)(n—2)C nm

an—lrn—f-l rh—2 Otn—lrn yn—1 :

Since (f? )” > 0, we further have in this region the bound

d2H>n—1 1

22m 1 1
a2 = 2 - 2m "
-

2m
2T am ((l’l — 3) + l’l
rg_z

LI —1)2(

[2(n -1

n—2

551

)]

(f")

-12 22n=-3)(n—=1)( 2
-2 + r,,’i[l— er=o )(r,,’f‘z)}

n

Since, for n > 3,

2 1 2(n—1)2 ( B _(n—l)z)
2 l)n " 22m—1)2—n—+/n24+4mn—1)2n-3) (n=3+2-|2 n =

22n—=3)(n—1)2
- n n

E _19
we finally obtain in this region

d’H _(=DHm-2)
dr2 — 2r

L (%) >o.
p—1

Step Ic (in the intermediate region, % < p < p*). We show H=H (p) is convex on % <p=<p*

r*(p = p*) <a. We have

d&?H -1?2
a2 4(81—2))2 Z;r [(n=3)2n=3)p> + np+ (n—=3)(n— D] (f?)
(n—12 2mr?
4(n—2)% (p —1)2
n—1 2m
4(n—2)? (p— 1)2

[3( —3)p? —3(n—5)p+(n—1)(n—5)—n2nn !

[(n—=3)0* +np—(n—1)*](/%)".

r2

19

for

F 3= |t
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Since, for p > % and n > 3,

3(n—3)p(p—1)+6p+ (n—1)(n—5)—n n”_ 1

1
+3n—1)—>1 and (n—3)p*>+np—(m—1)*>>0,
P

we have
/

(f%) > o,

d2H - n—12% 2mr?
dp? ~ 4(n—-2)? (p—1)?
because ( f?) > 0 for r* > 0, and (fb)// >0 for x <0.

Step 1d (in the asymptotics, p > p*). We show directly H(r) > 0 for r* > R* = r*(p = p*) and p*
chosen large enough. Let r* > R*, R* < «. Then

R B R*
b~ bd*=_f > 4-71
=Tt e = o) T8 2 5 @7
provided o > 1, and of course
1 0
fbf—arctant* fzi.
o —(H—ﬁ) o
Thus
g = =3) N (n—l)nfb C 17 2m (n—1)3fb Cn 17( 2m \?
N 4 4 aZ2mr |rn—2 4 aZdmr |\ r"—2
I1Ta=DnR* C 172m (=13 x [ 2m >
> — —_— — — >0
T a? 4 5 2mr|r"2 4 20 \rn2
for R* (and consequently «) chosen large enough.
Step 2: (4-72). Since (1 — 22) & >0 and F > 0 for |x| > «, we need to show
p yn—2
nm
(n—l)(fb)(l— rn—z) +Fr¥>0 (4-72)
for
—a<x<a<= Ja<r*<Jo+2a.
In this whole region, in view of Proposition B.1,
.r* . 2m ) nm
lim — =1, Iim [ 1— = lim | 1— =1.
a—>00 1 a—00 rn—2 a—00 pn—2
Since
r* 1 X+o
biry > dr* > 4-73
f(”—/ﬁazﬂzr—zaz’ (473)

it suffices to show

X+ o 1x2—(x2 3

L >
202 2 (x2+a?)3 r'z0,

(n—1) (4-74)
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which is implied by
_ 3
a—x(x+o+ o) - 4-75)
n—1 (x2+a?)?
For —a < x <0,
(c+atvap =1+ g
X +o o o — ~o
- Ja) 73
for o large enough; thus
_ 3
a—x (x +o+Ja) - 1 2_0:&(135& (4-76)
n—1 (x2+a?)? n—1a*3 9
For 0 < x < «, we have to show
a (x+a+ Ja)
n—1 (x24+a?)2 —
Since
1 3
Gta+val<22(1+—) (2+a?)2,
Ja
we have, for o large enough,
3 1\3
o« (tatva)® o« 2(1+ %) <23(1+ LY (4-77)
n—1 (x2+a2)?2 “n-1 (x2142)3 ~ 3 Vo '

We see that (4-76) and (4-77) fail in the case n = 3, as a consequence of which also (4-75) fails
to hold. In the case n = 3, we have to use a better approximation of (4-73); see [Dafermos and Rodnianski
2007] for details. Note also that in view of (4-75), the positivity property (4-72) is “easily” satisfied for
large values of n, which indicates that there may be yet another simplified proof in higher dimensions. [J

Given the strict inequalities proven in Step 2 of the proof of Proposition 4.17, for « chosen large
enough, we can keep a fraction of the manifestly nonnegative |Y2;¢|? term in (4-67). Furthermore we
have obtained control on the |V ¢|? term from (4-69).

Corollary 4.18. Let ¢ € H2(S) be a solution of the wave equation (1-1). Then there exists a constant
C(n,m) and a current K such that

100\ 1 [(34)* nm
[ G+

}"2
(1= 722 (1+r*?)2

SC(n,m)/ Kdpy,. (4-78)
S

2
2) }72¢|§2ﬁn_1+ W‘Nfzyn_l}dﬂy

Proof. Set K = K@ + K** and choose « large enough.
Here we retrieve the time derivatives with the auxiliary current

KX — M jaux. JAuX — JXa“",O. YAux faux d
w or*
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where [ = —rl,, satisfies
aux 2 1 2
(faux) +(n_1)f (l_rn’i/lz) = ph+l (l_rn’i/lZ);
for, in view of (4-9),
1 [3¢)? 1 2
() =2 ol :

4D. Boundary terms. In this section we first prove Proposition 4.1 and then a refinement thereof for
finite regions, which requires us to estimate the boundary terms of the currents introduced in Sections 4B
and 4C.

4D.1. Proof of Proposition 4.1. We can now combine our earlier results Corollary 4.14 and Corollary 4.18
to prove the integrated local energy decay estimate (4-4); note that there is no restriction on the spherical
harmonic number, and that no commutation with angular momentum operators is required.

Proof of Proposition 4.1. Write

p=n<1¢p+n>10 4-79)
with
L—1 00
<l = Z My, =L = Z P, (4-80)
=0 I=L

where L = (6yn)? is fixed (recall here y = 12 from Section 4B).
Step I (high spherical harmonics). By Corollary 4.14,
11@m)s
m)n—
/ 15 3 (=9’ < / KXrel (s 19). (4-81)
R(l()yt]:uakav}lk) ¥ R(IO:lly 1 ,U*)

It remains to estimate the boundary terms of the current J X»-«>1 and to use this estimate to recover all
derivatives using a commutation with the Killing vector field 7'.

Step 1a (boundary terms). We may assume |r0 1| = ==, ro,1 entering the definition (4-3). Recalling the

)/Ot’
properties of f, o away from the photon sphere, we find

‘(JX}/,O(,I(T[ZL(p)’ ai*)‘
v

i o 2

= (JXy,ot(ﬂZLqﬁ),av—*)'_i_%fy’a/_i_(n_l)f%(l_rnli’lz)

1 Sy 2m \Y

+Z'(fy’ + (=)= ( _rn—Z))
n+1 T 0 1 1 anZL(,b 2 1 1 1

- (Va)3(J (nzm)’av_*)Jr(ya)‘slr*I“( v* ) T s [1+| *J(%Lqﬁ)

n-1 4 r 1 | 2m )
+()/(x)3 |:n+(ya)6 |r*|4i|ﬁ( _,m_—z)(”zL¢) ,

o (22)

(=L9)”




DECAY OF LINEAR WAVES ON HIGHER-DIMENSIONAL SCHWARZSCHILD BLACK HOLES 555

|1 2m 2 1 N AY
i, 31 Yo = e [ (07 )

' (JXW(nzm), ai) ‘
u

Since also, by Lemma C.7 and Lemma 4.6,

and, by Lemma 4.6,

similarly for

uy 1
—1 2
/ du / d/’Lyn ) " m(néz,(ﬁ) |v*=%(to+r8<)

Lto—rd)

1 2 2 2
< 8 . ( + |r . ) / / d/”“?n—l rn—l (aJTZ—I;(b) du*
rol ro (to—rg) JSn1 du

_2_ Lp _p* 2
1+ |rg? (nm)n_z 2 (to—rg)+1 1 2 In>r¢
+2n HE I+ 6yn)? /l(to o [Sn_ldﬂfn_l " Vasp|”+ e du™,
2W0™ "o

there is a constant C(n,m) (recall y =12, a = (n—1)/(n m)ﬁ) such that

uy B P
/ du*/ de/n_lrn 1 (JXy,a,l(nZL(p)’_*)‘
%(t()—ra‘) gn—1 ou

o 0
< C(n,m)[ du*/ duy, " (JT(JTZL¢)» 3_*)
3(to—rg)  Jsn—l "

v*=%(l‘o—|—r(’)k

To establish

Yo )
[ ‘(J (=105, )

note that
0 2
N e e (B

0
(J"yﬂ’l(nzm), 5) <
0
<1yl Trs20) (5 ar)‘

—1 1 2m V27 1
#3543 (1 ) [atmaee?

R L R =10\
2 (ya)? 2 2 ya ot ’
and, by Lemma 4.6,

11 ) 1 2m \ ! / - 9
/Sr 2r2 (=19)" dpy = (6yn)* (1 rg—z) s, S5 (=L9), Y duy,

ad
r"duy, , < Cln,m) /Sn—l (JT(”2L¢), 5) "y,

>L¢) (8H>L¢)
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which suffices in view of the properties of f;,q, in particular that there is a constant 2| £, o'| < C(n,m).
For the boundary term
-1
rn dl’l’f’n—l

0
/ (JXy.tx,l(nZL(p)’a_*)
gn—1 v ”*:"T

1 11 n—1 4(nm)= - 9
S/Sn—l{(yaﬁ[”“*i(w)z+(6yn>4(”+ ()2 )](J (”z“’”’ﬁ)

1 1 yo 5 _
- 14+ £= "~lqu, .,
+(yoe>6|r*|4( T )(”ZL"” } s

we find (using the boundedness of ¢ on the horizon; see Section 5A) in the limit ui‘ — 00 a constant
C(n,m) such that

ad d
JX)/OUI n—1 d N < C , / T n—1 d N .
/gnl ( 81;*) " Hin-1 u*=o00 (n,m) gn—1 Jv* d Hin-s u*=00
We conclude that there is a constant C(n, m) such that
2m)n— =
/ M2 e 1 8) < Clnm) / (I7 (x219). 1), (4-82)
R% r (to) r
where 19 = %(to —ry’) because
Og(r=14) =0, K’ (w=1¢)=0. (4-83)
Step 1b (commutation with 7). Since
Og(T-7m218) =0, (4-84)
we also have
@m)a=2 (1) T
3 S <Cm,m) | (J'(T-n=L9).n). (4-85)
R;)(o),rl (tO) r 8t Z‘EO
This is enough to control the remaining derivatives, too; for the auxiliary current (C-10) yields
K™ = ¢ (0"h)(0u¢) +h0%¢ 0a¢. (4-86)
which, upon choosing
3
2m \ 2m)n—2
h= (1 - rn—Z)r—3’ (4-87)

presents us with

aux dh 9¢ (zm)% d¢ > (2m)% ¢ 2 (2m)ﬁ 2m
Ko = o = (5) +—(3r*) +—(1‘rn—z)w¢‘3m_l' (4-88)

r3 73
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Using Cauchy’s inequality for the first term, namely

3 o ré  Or*

- 12m)a=2 (3p\2  (n—2\*( 2m 2(2m)% 5 3 21 2m 2(2m)% 5
__Er—3(8r*) _( r )(r”—z) r3 ¢ _(;) ( _r”‘z) r3 ¢

ah 8(]5 2m (2m)n % 3¢ 3(1_ 2m )¢(2m)nzz ¢
rn—2

ERPFYEY 2 .
_1em (hp L nt @m w59)
2 3 or* (2m)n%2 r3
we obtain the bound
3
N 1(2m)n2 d¢ 2m)n—2 2m 2
o= LOI () B (12 ol
_3 2 2 _3
2m)n—=2 (0 n 2m)n—2
r t (2m)n=—2 r
Therefore

3 2 3

1 (21’/’[) n—2 87'[>L¢ (2m)n72 2m 5

— = 1— - .
/Rﬁg,n(m{Z 3 ( e ) T =z | V=19l

3 5 5 3

2 n— 2 n—

5/ {Kaux(nzLd)) n ( m)3 2 (anngb) 42 n ( m)3 3
RES.r, (t0) r ot Qmyi=z T

The boundary terms are controlled using Proposition C.8:

(”2L¢)2}- (4-91)

| k) =Com [ (7 i), (4-92)
R)O(o) r1 (tO) 2:1’0

Hence

_3_ 2
2m)n—2 o> 2m
/ ( )3 _I;¢ 1= ) W”2L¢|f2°_
RS, (o) T or rr Yn-t

§C(n,m)/ (JT (wsp.9) + I (T - 7wsp.¢),n).  (4-93)
DIFR

Step 2 (low spherical harmonics). Now recall the J @) current (4-65); we will show in a first step that

n(n 1)

(@) -
A K@) <o [ (J $+ Y ST, n) (4-94)

i=1

Then in particular, by Corollary 4.18,
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1 87‘[<L¢)2 1 (8n< L¢)2 2 }
m + + Vr<rLd
'/;Q?(()),rl(to){rn ( ar* prtl ot (l_rn 2)(1+| * 2)2‘ < ‘rzyn 1

n(n 1)

< C(n, m)/ (J (T<19) + Z JT(Qi <L), n) (4-95)

i=1

But in a second step we will show that in fact there exists a constant C(n) such that

n(n 1)

/ S (17 (@ -7er$)on) < Cn) / (T (r-10).n). (4-96)

i=1

Step 2a (boundary terms). The energy identity for J @ on the domain (4-1) implies, more explicitly,

f K(a) < /2 177y / (J(ot),i)
R(to.t1.ui.vy) B l(to+r*) sn—1 ov*
/ / (J(a),i) pn=1
(t1—rg) Jsr—1 ou*
1
+/ / ‘(‘](a)» T)| rn_1|[=t1 d}’* d'LLJ;n—l
rg n—1
+/vl / (‘](Ol)’ d ) P
Ltr+ry) Jon—t av*
Lg%
+/2(t1 rl)/ (J(a)’ i)
l(to—r;“) sn—1 ou*
Lkl
(tO ro) Sn_l 8M*
i
+/ / ‘(J(a), T)‘Vn_1|t=to dr* d'ul;n—l
r(’)k S”_l

v} 9
+/ / ‘(J(“),—) -t
Lito+ry) Jsn—1 Jv*

For the boundary integrals on the z-constant hypersurfaces, we will use (ii) of the following lemma.

n—1 *
r |u*="T dv duy,_,

*
|v*=%(t1+r(’;) du”dpy,

|u*—§(t1—r1

o du™dpy, |

|v*=%(to+r0

*
|u*=%(t0—r;’<) dv d/’lﬂ;n—l :

Lemma 4.19 (boundary terms of J @) current on z-constant hypersurfaces). On each X;,

(1) there exists a constant C(n, m, &) such that

n(n 1)

/|(J(“) T)| "t dr* < C(n,m, a)/(JT(¢)+ Z JT(Qid), T) n=1qr*,

i=1

(ii) for r = rg there exists a constant C(n,m, o, ro) such that
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nn—1)

2
(J@.,T)| < C(n,m,a, ro)(JT(¢) + > ITQig). T).
i=1
Proof. Using the definition (4-65),

(J(rx)’T) oy o
d d b
= ()5 X (55 4 o (0 o0 () e aans)
i=1
because

() +(n—1)f—b( -22)) =0

and g(T, 3%) = 0. By Cauchy’s inequality,
2 neD 2
C ¢ ¢ m[1{0R2i¢
(@) il B il
TF D = 1[ (8t) T3 (ar )]+ ; a[2( T )+

nn—1)

2 2 1 %\
2 (ﬁ””‘”g(l‘rnTz))[r—z(Qf¢)2+(T) }

i=1

+
Al—

which proves (ii) in view of

T _1(09 ?
(J (¢),T)—§(¥) +

here we have also used

= = — arctan x — (r .
0o a2+ (t*—a—a)? a —a—va T a -
To establish (i) it is enough to infer
n(n 1) n(n;l) 5
o0 o0
2 ,n-1 2 % Q¢ n—1 y.%
/oooe2+ S|Ve)?rtdr* Z/wa2+x2 i¢) dr*<C ;/_w( ar*)r dr

n(n 1)

<C Z/ (JT(Qip), T)r" Vdr*;

i=1
this is a standard Hardy inequality; cf. proof of Proposition 10.2 in [Dafermos and Rodnianski 2009b]. O

The following lemma will be applied to the boundary terms of the J @ _current on the null hypersurfaces
in the region r < ry.
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Lemma 4.20 (boundary terms of the J @ current on null hypersurfaces). (i) On any segment of the
outgoing null hypersurface u* = uj >0
n(n 1)

(19 00| = ctoman(s7 s 32 @ f Y et (V1)
i=1

where C(n,m, o) is a constant, and €(uy) — 0 as u} — 0o

(i) Let vy > 1, and ug(v*) such that r(ug(v*),v*) = ro (in particular u§(vy) > 1). Then, on the
ingoing null hypersurface v*

= v,
n(n 1)
© 0
/ (J(“),—) "~ldu* < C(n,m, a)/ (JT(¢)+ Z J )r”_ldu*.
ug; du* i=1

Proof. Using the definition (4-65) we find

n(n 1)

(J“” e ) fa (¢>(8 o )+ Z {f”m ¢)(

S
)

)

‘)

)(w) —(f)ﬂ(w)}

11
P (o v L (- 2

and therefore

d
(@ 7
(v au)' "
c d¢ 2m 2 id 2 1 'm .
S—aZ(zm)ZIé[ (au )+2(1—rn_2)|Y7¢| } ; [ ( )+—( )Wsz ¢| ]
n(nz—l)
1 r
+ 2 2(a2+ -~ ( s 2)) ( )
i=1
n—-1n n—-1 r n—1m (n—1)(n— 2)7r r 1 m .
+( 2 E+ 4 a2+x2+ 4 E(l rh— 2)+ 4 (_) 2+X2)§(_ )|V¢|
1 r 5 |x|r? )
+(Zoz2+x2+1(oﬂ+x2)2) VoI

) 62*) . (i1) now follows from

(rmave) =) 3

Q|=n

Similarly for ‘ (

o ) Ivor
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and

3 o 2m 2 3 9 9 1{ 3¢ \?
N _ e _ s v - 2 kN e
(v ’8v*)‘[1+4x(1 rH)]T( Em e ) 22998 + 3 (51 )

In case (i) we only have

r 0 0 2m 5 N 0 1 2m 2
(J " du* ) (8u ) +§(1_rn—2)|w| ’ (J ’au*)zi(l_rn—z)m" ’

but, using the Hardy inequality of Lemma C.7,

nn—1)

o0 r 5 1 2 o0 1+u 2 1 5
—— > PThdut < [ Q: du*
/1;3 Ol2+x2|y¢| —= Z=ZI u; 052+(M +Ol+\/_—v*)2 0 1+M*2( l¢)

n(n 1)

<8C(n,m,a) +M0 Z/ (89 d)) P qut

n(n 1)
(@) + ("’\Q ¢) } du*

+2x C(n,m, ) Z /
)r”_ldu*.

u+1

i=1 %o

n(n 1)

<C(n.m. a)/ (J @) +

i=1

Obviously the same bound holds for

> |x|r?
L. vl e 0
Step 2b (commutation with €2;). Since
YA (4-97)
1 at — Y,
n(n2—1) a 5 87T<L¢
> (50imas) =2y , (4-98)
= t t 291
and since also
0
[Qi, —] =0, (4-99)
ar
we have
an-l) 2 2
d
(8 Q; -7r<L¢) 2 V%{:qﬁ (4-100)
i=1 r
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Moreover _ 3
,— | =0, 4-101
_7Tl at] ( )
so that
n(n2—1) 2
0 om ar
[ (Goemes) o= [ 2|yt duy<L(L+n+2)f ( <L¢) iy
N ot Sy ot
Since also LL 2
2 +n— 2
/ WQI' ']T<L¢}r2)°/ -1 duy = —2/ (Qi '7T<L¢) dity.
Sy n r S
we have
n(n 1)
2
/S Z |VQ 7T<L¢|r2 _ dﬂny(L"‘n_z)/S {VH<L¢‘r2j7n_1 dpiy.
r l_l r

Therefore indeed,
n (n 1)

| 3 (J (@ 7<19), )

roi=1
n(n 1)

E L () 125 o

i=1

0
< 5(6yn)2(<6yn)2 +n-2) /S , (JT(n<L¢), g) dyiy,

because L = (6yn)? is fixed; similarly, of course, for (J 7, 52 9 )and (JT, 52 5oz ).
We conclude the statement of the proposition with the treatment of the two regimes in Steps 1 and

Step 2 above from

Ip\: 1 [ap\ 1 m 5
—_ - 1_ .
/Vom(tO){ (8}’ ) +r"+1(8t) +r3( rn_z)‘y(p"”zyn—l}
1 (dnepp\> 1 (dnpd)® 1 i
2 — Ly o
- /R?g,rl(m{r”( ar* )+r"+1( ot +r2W” L¢|rzy,,_1

1 (=19 > m
2 _ = - ) -
! /Rrog.rl(fo){r3( ar* ) +r3( at +r3( Fn— 2){?75 L¢‘r2)/n 1

4D.2. Refinement for finite regions. In the proof of Proposition 4.1, neither of the currents used for the
high or the low spherical harmonic regime requires the use of Hardy inequalities for the boundary integrals
in the asymptotic region; indeed in both cases the zeroth-order terms ¢? can be estimated by the angular
derivatives |V ¢|?, in the case of the current J X».«-1 for high angular frequencies by Poincaré’s inequality

Lemma 4.6, and in the case of the current J @ for low angular frequencies as a result of the commutation
with €2; in (4-65). Therefore we can in fact state a refinement of Proposition 4.1 for finite regions, i.e., an
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r=rop r=R

Figure 6. The past boundary X7 of RP7? URR 2.

integrated local energy estimate on bounded domains in terms of the flux through the past boundary of
that domain, that will be relevant in Section 5C.

Let
Rpe = R (211 + R*. 21 + R*) N {r < R}, (4-102)
Rpo ={@* v*) i1 su* <o v*—u* > R* v* <1+ R*}
=R g(211 4+ R* 212 + R* 1o + 3(R* —1§). 2 + R*) \ *PP, (4-103)

and denote by X3> the past boundary of RP7? U R 22 (see also Figure 6):
2= 8_(R73;2 URR 2)={@* v v =1+ T(R* +rd)u* =1 + 2(R* = 1)}
U {(u*,v*) Ut 0t =21+ RN <vF—ut < R*}
U™ v u* =1, R* + 1 <v* < R* + 1o}, (4-104)

Proposition 4.21 (integrated local energy decay on finite regions). Let ¢ be a solution of the wave
equation Ug¢p =0, and R > "= 2m. Then there exists a constant C(n,m, R), such that, for any v > 11,

Lpﬁf{ (83’?5)2 i (%_f)z * (1 )

2m
rn—z

|V¢}32_ dug
Yn—1
SC(n,m,R)/t (JT (@) +IT(T - $),n). (4-105)
2

In view of the remarks above, the proof of Proposition 4.21 is of course identical to the proof of
Proposition 4.1 given in Section 4D.1 by replacing the unbounded domain R7Y . (271 + R*) by the
bounded domain P72 U Ry 2.

However, this estimate does not include the zeroth-order term, which we have covered separately in
Proposition 4.4.
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Proposition 4.22 (refinement for zeroth-order terms on timelike boundaries). Let ¢ be solution of the
wave equation (1-1), and R > "Y/8nm. Then there is a constant C(n,m, R) such that forall T’ < 7,

2t+R* ) 27+ R* a¢ 2 5
dz/ iy, 0| _ §C(n,m,R)%/ dt/ dpy, ;(—) + }
L‘E’-l—R* sn—1 /Ly 1¢ ‘V—R 2¢/+R* gn—1 My ! ar* ‘Vd)‘ r=R

T —
+ /E (J7(¢).n) + [S g, 7T e +,)}. (4-106)

The proof remains the same as for Proposition 4.4 on page 534 with the exception that we consider the
energy identity for J %> on R}y 7, in place of RD; and use Proposition C.5 instead of Proposition C.1.

5. The decay argument

We will here prove energy decay of the solutions to the wave equation and higher-order energy decay of
their time derivatives in the interior based on the integrated local energy decay statements of Section 4,
following the new physical-space approach to decay of [Dafermos and Rodnianski 2010].

Remark 5.1. Instead one could use the conformal Morawetz vector field

d d
2 *x2
du* v dv*

to prove energy decay of solutions to the wave equation with a rate corresponding to the weights in Z;

Z=u"*

this is done in [Schlue 2010]. Similarly the use of the scaling vector field

8+u*8
av* Ju*

should provide an alternative approach to prove higher-order energy decay [Luk 2010]. Here however,

S =v*

we shall avoid the use of multipliers with weights in ¢.

5A. Uniform boundedness. A preliminary feature of the solutions to the wave equation (1-1) that is
necessary to employ the decay mechanism of [Dafermos and Rodnianski 2010] is the uniform boundedness
of their (nondegenerate) energy; this is a consequence of the conservation of the degenerate energy
associated to the multiplier T, and the redshift effect of Section 3, which allows us to control the
nondegenerate energy on the horizon.

Let X be a (spherically symmetric) spacelike hypersurface in M, ¥’ = X N {r < R} and N the
outgoing null hypersurface emerging from 9%’ (Figure 7). Moreover, let

Tr=¢:((Z'UN)ND), =, =% .N{r<R}, T, =3p,NI ().

Proposition 5.2 (uniform boundedness). Let ¢ be a solution of the wave equation (1-1) with initial data
on Xg. Then there exists a constant C(Xg) such that

[uY@erm=c [ tY@rm @>o. (5-1)
> s

T
0
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Figure 7. The construction of the surfaces X’ from X.

Proof. One can proceed in analogy to the local observer’s energy estimate of [Dafermos and Rodnianski
2008]; indeed, from the energy identity for N on the domain R(7’, t) = Uy <z<c 2T it follows

[ UNJ0+/‘ KN < | N, (5-2)
h2A R(T,7) =7,

since (J N, ny) >0, and (J N n ~) > 0. By Proposition 3.3, namely the redshift effect, K N is bounded
from below by (JV,n) near the horizon, and from above by (J T, n) away from the horizon; since also
the lapse of the foliation of ‘R is bounded from above and below we conclude that there are constants
0 < b < B only depending on ¥ and N such that

T T
(JN,n)+b/ dT (JN,n)fB/ df/ (JT,n)+[ JN . n)
A v zz v zz z7,
SB(r—t/)/ (JT,n)+/ JN.n), (5-3)
=7, z7,

where in the last step we have used the energy identity for 7 on R(z’, 7) and KT = 0. Thus the desired
energy bound follows from the elementary Lemma 5.3. O

Lemma 5.3. Let f : R — R be a nonnegative function, f > 0, such that for all t; <t and two positive
constants 0 < ¢ < C,

15
fve [ f0dr = Cla=m)+ £,
n
Then c
f(t2) < f(t) + = (t2 > 11).
Proof. See, e.g., [Schlue 2012]. O
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5B. Energy decay. In this section we prove quadratic decay of the nondegenerate energy.
Let

S = 0RY glt0), 10 = 5(to— R), (5-4)
with R > ""/8nm, to > 0 and ro = r(gN) according to Proposition 3.1.
Proposition 5.4 (energy decay). Let ¢ be a solution of the wave equation (1-1) with initial data on X,
satisfying
1

00 ar'"T kg2
D ﬁ/ dv/ duy,_, Z r2(r—*t¢)
0+ R* gn—1 k=0 81)

Then there exists a constant C(n, m, R) such that

2
+/ (Z JN(Tk-qS),n) <o0o. (5-5)

U=10 Ero k=0

[ omn =3 @ (5-6)

T

The proof is based on a weighted energy inequality, derived from the energy identity for the current (5-8)
on the domain

RDE = {(u* V)it <ut <n v -ut> R*}. (5-7)

Weighted energy identity. Consider the current

7u(9) = T @)V, (5-8)

where
v =r"7¢, (5-9)
V:rqa?)*’ g=p+1—n, peil2}. (5-10)

This may also be viewed as the current to the multiplier vector field r? avi*, modified by the following terms:

r P v 1 2 o)
JM<¢>=TW(¢>;~P(80*) +(” . ) rp_z(l—rnTz)(BMr)gbz

_ 0p? 1n—1 __ 2m
e Rl =) [0

_1(n—1 zrp—z [ — 2m 0 > In—1(9 rp_I%.
2\ 2 rn=2 J\dv* J, 2 2 \ov*), or*

If Og¢ = 0 then we calculate

+1n—1
2 2

2m \ 7! n—19y 1,
Dgw:—(l—rn_z) Oy D + ; ar*+r—2¢n_lw

_n—l(n—3 n—1 2m)1 n—1 0

— . 5-11
2 2+2r”_2r2+r8r*w G-11)
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So the wave equation for ¢,

Og¢p =0,

is equivalent to the following equation for :

2m

9 .9 1 . n—1(n-3 n—12m 1 2m .
oY (1= ) SheV = | 5+ 5z )|z JY =0 12

Now,

K($)=V*I (@) =0 Vv + K" (), (5-13)
where
KV () =D7h Ty (9).
Since
2m \?
) — qg—1{1 _
Ty*yx = 2q71 (1 rn—2) ,
(V)T[v*v* =0,
2m _ 2m
O e = —(1— rn—2)rq 1[¢1+(ﬂ—q—2)rn__2}’ -14)
(V)ﬂaA =0,
2
(V)nAB _rq_l(l_ n’i/lz)gAB’
we find
roo n—1(n=3 n—12m\rPoy2 p _ (0v)>
K-r 1 = i Lop-1[ 7
' 4 ( 7 T rn—Z)r2 o 2" (8v*)

2
r,,Z]}W\fzpn_. (5-15)

1

- %rp—l[(z—p) +(p—n)

One may integrate the first term by parts to obtain

/oo qorioprt 2123 o 2m AR
vV K-r = -
u* 4+ R* 4 2 2 =2 )2 u*+R*
o n—1 n—-3 n-—1 2m | rP 2m
|- - Pz | 31— :
+/u*+R* ’ {[ U T p)r"—z}ﬂ( r”‘z)w
2
p 0V 1 . 2m 2
T3 1(31)*) 3" 1[2_1)Hp—”)rn—z}‘w"%—‘}' e

We can now write down the energy identity for the current J (see also Appendix B):
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Kdpg = *J
[2@2 e /aRDEf

Dropping the positive zeroth-order terms, we obtain

dv*/ duy ( )
/r2+R* st " 12 * ) | eee,
12 o0
4 —1 EW 1
du* d */ dus Eyp p=1|y_
+/r] ! [u*+R* o My"_l%2r (av ) a7 [ P+ (p=n) 5 2]W‘Nr2 _ }
© 1 2
%
+/ﬂ du /gn_lduf’"—lirpwwr2ﬁn_l
2 -1 o P 2
(2 U oo o ()
R T+ R sn-l 2 dv u*=rt
21+ R* 81,0' 1
dr d P
+/2r|+R* /Sn— Ky 1|:4r (av*) }V‘/",zyn .

lpn3n—12m 1.2
+42 (2+2R"2)r2w]

Note that the powers of r that appear in the bulk term are 1 less than those that appear in the boundary

v*¥—>00

}. (5-17)
r=R

terms. This allows for a hierarchy of inequalities (5-17) for different values of p, the so-called p-hierarchy.

Proof of Proposition 5.4. In a first step the decay of the solutions at future null infinity will be deduced
from the weighted energy inequality, and in a second step the continuation to the event horizon will be
inferred from the redshift effect.

Step 1. The p-hierarchy consists of two steps which exploits (5-17) first with p = 2, then with p = 1; but
in a zeroth step we need to obtain control on the angular derivatives from (5-17) with p = 1:

Since

2m 1

we have from the weighted energy inequality for p = 1 on the domain " </)D§, fort>1' >19= %(lo —R*),

T . o] . 1 5
d d duy i
/f/ ! /uma* ’ /gn—l Rina g PV L2y,

2m \7' @ 1 (v
1— dv* duy _ ~r|—
( RH) /;/+r6* ’ /g,n—l : V”‘12r(8v*

IA

i

-1
) JT@)+IT(T-¢)n): (5-18)
S

u*=rt’/
2m
Rn—2

—I—C(n,m,R)(l—

here we have estimated the boundary integrals as follows.
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Choose r(, € (R*, R* + 1) such that
R*+1 o0 2
/ dr*/ dt/ duy, (1— rfz)r"—l
R* l‘()-l-(r*—R*) gn—1 r”
106\ 1 (o) 1
X{r_”(ar*) +r”+1(§) +_3( B 2)W¢|r R 1}
= d,bL — ( ) 1 1X
/tlH—(rO _R¥) / VYn—1 /n -2

1 1 a¢p 1 2m 2 )
() () (- o )
then

2t+rg" 1 oy 2 2 n—11 n—3 n—12m) 1
dr dus —rP| = —rP , ~pP 2
/21/+r6* Ln—l /"L)’n—l |:4r (81}*) +4r |yw|r2yn—l—|_ 4 2)" ( 2 + 2 ph— 2) 2wi|
</2t+r6 dt/ dM ,p z[l(n—l) 1 /2(
= 2t/+r(/)* sn—1 Yn— 1 2 2
1,2 n—11(n-3 n—1 2m
+r0|Y7¢},ynl 45(2+2Rn2

sc(n,m,R)/E (T @) +IT(T-§).n).

)

because, by (4-23),

ro +2t 1/ 3\ n—1 2m
—1 2
//* , dt/ _ d“f’n—l rn [Z(Bv*) + (4}’/)2 (1 - rn—2)¢ i|
I’O +2t sn 0 r=r(/)

ro 2t 1 2m 2 n—1 d¢
< dr dus =l — . 1—
- ];6*4-21" /§"_l K T |:2( rn—Z) ‘V(ﬂrzyn_l - 2 ( rt- 2) (ar ) ] r=rg

+C(n,m, R)/E (JT(p).n),

and by Proposition 4.1 (and the choice of (),

o0 1 (3p\2 1 2m ’
o [, s () + s (1= ol
»/1;0+(r6*—R*) sn—1 Y r(/)n ar* r(/) r(’)"_z | }rzyn_l r=r|

0

< C(n,m)/E (T @)+ IT(T-$).n).

Note that for the use of (4-23) that, with our choice of R,

—(n—l)(

m 2
(n—3)+n ) >0 (r>R).
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For p =2, (5-17) reads
d d WY L) 2 gy 2
" ur4r* sn—1 Hvnmi | "\ o= —2r(n— )r”—ZWI/I"zfnf1
2m o0 1,(0v\
S( _R”—2) [ *dv*/ duy,_ 17 2(8 *)
t/+r6 gn—1 v

Thus, with the previous estimate (5-18),

v\
du / */ duy, r(—)
/ *‘Ho sn—1 My ! av*
-1 *
<com | [T on [, o 3(5)

Let us define

+C(n,m,R)fZ (T () +IT(T-¢),n).

u*=t’

+/
u*=t’ P

ti+1 =21 (j €No), 70=3(to—R").

(JT(¢)+JT(T-¢),n)}. (5-19)

0

Then there is a sequence (TJ,‘)jGN() with rj’- € (tj,tj+1) (j € Np) such that

oo 9 2
[l w2)
'L’j/-‘l'r(/)* n—1 av

1 o0 VAN
§—C(n,m,R)|:/ dv*/ duy, rz(_‘ﬂ*)
Tj r.+r6* n—1 dv

J

+/ (T () +JT(T- d)),n)},
>

*— .
u =, 0

and again by (5-17),

[ore] P 2
.,:4_;,_,.(/)* gn—1 2 v

J
0 9 2
<C(n,m, R)[/ dv*/ diy, rz(_‘ﬁ*)
t0+r)" sn—1 v

: 1 1 %41 _
Since T S =
J j J

o0 a 2
/ . dv*/ d“?n—l r(a—w*)
T+ sn—l v
00
ccemk) U dv*[ g, (aw)
T; t0+r(’)* sn—1 ov*

J

(JT(¢)+JT(T-¢),n)].

we have

'\H\l N

[ wT@ @] s

u*=t() z 0
In order to deal with the timelike boundary integrals analogously to the above choose

it e gt + )
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such that

2t) 4] 1 (ap\> 1 [dp)\> 1 2m 2
dt dpy  r" 7 — — —(1-== i
/2r}+r}/* /;"—1 FPna © [r”(ar*) +”n+l(at) +r3( "n_z)‘yqj‘rzyn_]iHr:r}/

< C(n,m)/E (JT (@) +IT(T - §),n).

Then, proceeding as before,

2f;+1+rj{’* 1 8W 2 1 ) n—11 n_3 n—1 2m .
/2‘.5{_'_’.//* dli/gn—lCIILL)}H_1 |:Zr(8’l}_*) +Zr‘yw‘72?n—l + 4 Er( 2 + 2 yrh— 2) r2 w :|
J J

§C(n,m,R)/E (T () +IT(T-$),n). (5-21)

”
r=r’
J

Now apply (5-17) to the region rJ/'/D:{:“ to obtain
J

T}+1 * * * 1 3%” 2 1 2
/r} du /u*+r;/* dv /Sn_ld/*ffnlx[i To* +71V¥ 2y,
2m \ ' [ 9
E(_ sz) / dv*/ diey, 11 ( W)
R" o sn—1 2 \9

By virtue of the result (5-20) from the case p = 2, this yields

i1 o oy
du* d d
e L e[S il
C R * 0
= (n,rfl’ )|:/ *dv*/ dpy, 1 (aw)
i T0+7} sn—1 v

+C(n,m,R)/E (JT()+IT(T-¢),n). (5-22)

+C(n,m,R)/Z (T (@) +IT(T-¢),n).

. __/
U=t

+/ (JT(¢)+JT(T-¢),n)]
u*=tg X1

Step 2. Our aim is to prove decay for the nondegenerate energy. Let us first find an estimate for

Tt Tt Tt
/ dr/ (JN (p),n) =/ dr/ (JN(¢),n)+/ dr[ (JT(¢),n).
7 Ze 7 Zenir=rjy Z Tentrzrjy

The estimate of the first term is exactly the content of Corollary 4.3, and for the second term

T
/ de / (47 (¢).n)
T Z/,ﬂ{r>r”}

J
2
X n—1| 1 ¢ 1 2m 2
/ du /*+r”* /S'l—ld'u);"_]r [ (av*) +§(1_r”_2)w¢"2f’n—li|

NS
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we can use (5-22) once we have turned it into an estimate for the derivatives of ¢. Note that
o AN —1 2 n=3 0, n= AN
[rot G = [ [ () e oo ()
W v w* )" 2 r v v
== (1 =) ) rtce

o0 n— 2m 2m n-3 2m \ 1 3 \2
N e e e G T (o R

and, by Lemma C.2,

o0 1 . o (LAY 1,2
/u dv*r—qu r"- §C(n,m)/u dv*( ) +C(n,m)yr" "¢ |(u*,v*=u*+r(,)*).

*trg* *trp* dv*

o0 a¢ 2 _ 00 81// 2
d [ 7 n—1 <C , ,R 2 . s [ d * ,
/u*+rg)* v (Bv*) ' =Cn,m )[¢ s rg ™y + o L e

and finally, in view of (5-21),

I/-+1 o0 a 2
/J du*/ dv*/ dpy, (_(i) rl
.[; u*—‘,—r_;-’* gn—1 av

rj’- . 1) 2
<C(n,m, R)/ i du*/ dv*/ d,u);n_l(a—w) +C(n,m, R) (JT(¢)+JT(T.¢),n). (5-23)
rj’. u*—f-rj’/* sn—1

3
dv Er}

Thus

Therefore, putting the estimates for the two terms back together,

Tt
/ dr / (I (¢).n)
‘E; PP
L7 o oy 2 2
<comm [ [T ar [ J(2E) s
= (i’l m )[EJ/ u L*+r;/* v o /Lyn—l{(av*) +Ww‘r2yn—1}

+C(n,m)/)S (IN(@)+IT(T-¢),n)

Cn.m,R)[ [ v \?
< Ca.mR) ]Zq )[/ dv*/ dpg, r2( W*) +/
Tj -co_l’_r(’)* gn—1 8v u*=tg ho

+C(n,m,R)/Z (IN () +IT(T-¢),n), (5-24)

(JT<¢)+JT(T-¢),n)}

0

where we have now used (5-22). The same inequality holds for fj’. 4 In place of rj’- 41- by adding the

inequalities corresponding to the intervals [fj/., rJ’- 4] and [rj’- 410 TJ{ 4] and using Proposition 5.2 for the
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last term. So there is a sequence
" " / /
(Tj )j eN, T; < (Tj, Tj+2)
such that

/rn“rz df/Er(JN(qs),n) zrj+1/ (JN(¢)’n)’

! 7
T
J

. 1 17
and since < 213 = 2 we have

7

/ (V@n) = i,/rj dr /E/T(JN(qb),n). (5-25)

. Y

Now for any given t > 79 we may choose
j*=max{j eN:t/ <7}
so that, by (5-1),

/ (N (@).n) < C f (7N @).n)
X ”

T.
J*

Tix
with J, < JT ,,+1 < 2%, In particular we may estimate the last integral in (5-24),
N T C [T+ N N
VY@ +IT-¢)n)= 5 | - dr g (I @)+ IN(T - $).n),
2 J VT T
J

to see that in fact we have

N C(n m,R) N u ’ 8r%¢ S 37%3—(1’
/ d‘L’/ (J (). n |:/t0+r0*dv /n_lduyn_l{r ( e )—i—r (—Bv )}

+/E (JN(¢)+JN(T~¢)+JT(T2¢),n)] (5-26)

70

Again, with the sequence (z;”);en,

[ IV (@).n) <

Tji+1

/+ df/ (/¥ (@).n) (5-27)

23
_2

L1
Ti+1 T '

and since =z we obtain by virtue of Proposition 5.2 our final result:
Y
1

n—1 n—la 2
Cn,m,R)[ [ ar'z ¢\2 or 2z ==
JN d * d 5 2 2 ot
LT( (¢),7’l)§ ‘L'2 |:/L’0+R* v én—l Mynl{r ( ov* +r ov*
<.
X

(N (@) +IN(T-¢) + JT(T2-¢),n)}. O

0
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5C. Improved interior decay of the first-order energy. In this section we prove an energy estimate for
the first-order energy which improves the decay rate as compared to Proposition 5.4 in a bounded radial
region.

Remark 5.5. The argument largely depends on the asymptotic properties of the spacetime, and is similar
and slightly easier in Minkowski space [Schlue 2012].

Proposition 5.6 (improved interior first-order energy decay). Ler0 <8 < 2, R > "2 8”'" , and let ¢ be
a solution of the wave equation (1-1) with initial data on X+, (t1 > 0) satisfying

1

D= /riR*dv*/gn_ldM"—l % Z (8(Tk x))

nn—1)

Z:: (8(Tk w)) Xi: 2:: (aTkQ w)}

n(n 1)
/Et] (

ZJN(T" ¢)+Z Z JN(TkQ; ). n) <o0. (5-28)
Then there exists a constant C(n,m, 8, R) such that

u*=11

k=0 k=0 i=1

CD
/E/ (JN(T-¢).n) < e (r>1n), (5-29)

T

where ¥ = X N{r < R}.

In addition to the weighted energy identity arising from the multiplier rp 3.+ that was used to prove

8

Proposition 5.4, we will here also use a commutation with 3 = to obtain the energy decay for 8? of

Proposition 5.6.

Weighted energy and commutation. Consider the current

Ju(¢) = Tuv(X)Vv’ (5-30)
where now
n—1
0 0
Xzav*‘ﬁ:(r—zw, V=rq_a qu_(n_l)’ 2<p<4’ 8=4_p (5_31)
Jv* ov*

Notation. To make the dependence on p explicit, we define

Kp (@)= VT ,4(8). (5-32)
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The error terms for K arise from the fact that y is not a solution of (1-1); here, similarly to (5-11), we find

n—1 2m of 2m 2
Dg)(=—2r3 (n—=3)+n n—z_(”_l) - 1
n— 1 n—1 dy
+ 172 [(n— ])H— |:2 n :|4le e (5-33)
Hence
Kp (@) =0V -x+K" (1)
1 a1 Y, 1 2m |
=§prq 1(8152‘) +§|:(2—p)—(n—p)rn_2}rq IWX‘z (5-34)
-1 2m 27 92y
5 ri— 3|:(n—3)—|-n 5 — (=1 ( ):|w8v*2 (5-35)
1 ad
L= Lo z[(n_ }aﬁ (5-36)
— m X
+rf 1|:2_nrn—2:|($w)(av*)’ (5-37)
which is not positive definite. However, we have
1 o V2 -1, 1 2m |,
i (G) <K@ 1+§[(p—2)+<n—p) n_z]rp 'yl
—1)%(n—2)2
" (n )2(11 ) H(p=2)-1 ‘/’ + A(p—2)—1 2(4AW)
n—1 ad
-Srr 2[( ]ax*’ (5-38)
where we have used that
2m L 2m \?
n—2>n—3+n — —(n=1) >n—3 (5-39)

(is decreasing) on r > ""¥/4nm. The keyr insight here is that we are able to control all other terms on the
right-hand side of (5-38) by the current J of Section 5B with p — 2 in the role of p; i.e.,

ax \?
duy, rp_l(—)
/.;1 /*+R* ‘/gn—l Yn—1 av*
nn—1)

v r 2 r
<com s ®) [ VK @k @+ Y Kpea )]
71 i=1
nn—1) n(n 1)

)+Z<Q V) +Z}$m V| }

i=1

21+ R*
+Cm,m,8, p,R) dz/ dpy,_ I%W +( . (5-40)
S

271+ R* n—1
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Indeed the first term |V d,+1|? can be integrated by parts twice (such that we can absorb the resulting
v* x term in the left-hand side):

/ / / Ay, P |V |
*+R* gn—1
= [l [T [ w7 By
7 * 4 R* =1
2 1 Iy |%
_/;ldu /gn ldﬂyn1rp %Wav R
(%) o0 2
/ du*/*+R* */n_ dpiy, 1{(p—1)r1’ 2(1— nmz)@w)( ‘”)
+rP” 1(4W) P 1i( )
<[ [ o rren (39|

-2
+/ / */ dpty, {(p—1+—n +2)r(1’_2)‘1(41w)2r2
T u*+R* sn—1 )4

o1 ( OV 2 1p 2 _1( Ox 2
_ (p—2)—-1 1 r-1 -
+(p—1+2)r ( ) ta " (av*) } (5-41)

_l’_

o

ov*
The second term in (5-38) is controlled by the Hardy inequality
1 [ x (p-2-1 1 2
2 \/;»« +R* I"2 w

1 1 1 " | 2
- 4 p R4 pl Zm (u*, *+R*) ( _p)2(1_

2
) [ dv* r(P 2)— l(aalli) , (5_42)
* 4 R* v

and the third term simply by the following commutation with €2;:

Rn2

Lemma 5.7. For any function ¢ € H*(S,) we have L2y PE L2(S,), and there exists a constant C > 0
such that

nn—1)
2
2 2
[ e o <c [ 1Y peml+yelan, . o)
i=1
The last term in (5-38) we can rearrange as follows:
n— lrp o[, 8)(
8 v*
d (n—1 oy
- _ p—2 _
5 [(ﬂ wro-n 2% ()]

2
+ '%lr(l’—z)—l [(p —) =3+ (-1 ((p—2)+ (1 —2)) ri’fz} (1 . ri’fz) (;}l*) . (5-44)
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Therefore (see also Appendix B),

(%) o0 2
1, OX

du*/ dv*/ duy  =prP 1(—)

/‘L’] u*+R* gn—1 Yn—1 8 81)*

1 1 / v
T Sm Kp (¢)du
2 2m_ RD? p g

R” 1

2 * -2 22 -2 Iy 2 2
+C(n,p,5,R) | du f ldwn_l{r” (Ay) r* +rP (—8v*) +y }
T1 Sl

(%) o0
+C(p,n,8,R)/ du*/ dv*/ duy,
T1 u*+R* sn—1

nn—1)
2

X{r(”‘”‘l > \Vsziw\z+r<l’—”‘llwf+r<P—2>—1(a—‘/’)2}

. av*
i=1

_ 1 (%) oo 8
_n / du*/ dv*/ duy, L (5-45)
8 J u*+R* sn—1 "

Jv*
Now, recall (5-15), and note that
] n_oldnm
— , 5-46
> > (r > 3 ) ( )

v¥=u*+4+R*

—(n—(2—-9) jfz

to see that
nn—1)
—1
F(p—2)-1 Z vz

i=1
nn—1) nn—1)

n—1

4 2 4 K n—1[n=3 n—12m 8(r 2 Q-¢)2
- 2 Q)12 2 (p=2)—2"\ =~ "WV (547
8 £ -2 ( l¢)r § Pt 4 |: ) + ) rn—2j|r Ju* (5 )

So

[ 0o P 2
/ du*/ dv/ dpy,_, prf~ 1( X)
7 u* 4+ R* gn—1 av*
nn—1)

<comsp ) [ K@+ K@+ 2 Ky @0

i=1

(%) o0 n— 1 m
—C(n,m,&,p)/ du*/ dv*/ duy, —[n— ]
7] u*+R* sl g n-2
nn—1)

X{rp—z gy rr2 22: 3(Qiv)’ L axz}

+
r2 ov* r2

‘ av* 72 gu*
i=1
n(n 1)
21+ R*
+C(n,m.,8, p,R) dz/ dwn_l{ Z Vo> +|V9| +( )+w } , (5-48)
271+ R* sn—1 r=R

i=1
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which, upon integration by parts, yields (5-40); note that the 9+ and 9+ (S2;¥)? terms generate
boundary terms at infinity and zeroth-order bulk terms with the right sign by (5-16), while the 3, y? is
reduced to a (d,+1/)? term by (5-44).

By virtue of Stokes’ theorem (B-5) and in view of (B-6), we conclude that

00 aX 2
dv*/ dpy, {rp( ) +rP-
»/';2+R* gn—1 Yn—1 81)*

nn—1)
3lﬂ 2 2 B aQw 2
21 7Y p—2 !
(7e) + = (%) | -
i=1 2

% . o) . e aX 2
+/ du / dv / duy,_, rf~ (—)
o u*+R* g1 ! Jv*

nn—1)

AN VA C R o RVAL
Arae) (G + X ()

i=1

21+ R* 3 2 82 2
+C(n,m,8, p,R) dt/ lduﬁn_,{wu( W) +( W)
sn—

271+ R* v av*Z

o0
<C(,m,8,p,R) dv*/ diy,
T1+R* sn—1 '

u*=t

nn—1)
Ry A2, v\
+ ) [(Qﬂﬁ)2+( avf) ]+\w|2+(w)2
i=1
n(n—1)

+ZWW\}

i=1

(5-49)

Proof of Proposition 5.6. We shall use this weighted energy inequality for y to proceed in a hierarchy of
four steps.

Let 71 > 0 and 741 = 27; (j € N). In a first step we use (5-49) with p =4 —§ and (5-17)
with p = 2 as an estimate for the spacetime integral of 9, y, dy*V, and 9, (£2; ) on RDg *! andina
second step as an estimate for the corresponding integral on the future boundary of RD;{ :

nn—1)

Tj+1 o] 3 8){ 2 81// 2 2 8Q'¢/ 2
d * d * d N 3 8 _~ !
/;j u L*+R* v Ln—l /'l’)’n—l %r (81}*) +r(8v*) * ; r( av*

1

nn—1)

00 s Y WA ST (LAY
* ] 4—8 2(9¥ 2(22% ¥
= C(fl, m,$§, R) Ij+R*dU Lnld“Y11—l {r (av*) +r (81)*) T ;r ( av* ) }

1

2tj 41 +R* Y 32y 2 Y 2

C(n,m,8, R d d 2 -

+Com o [ [ l{w +(av ) +(8v*2) vyl +'Vav*
n(n 1)

s [(sz V)?+ ( "/’)+|$m w}]}

i=1

e .
U=t

r=R
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n(n 1)

o ax )2 v\ ITAY
<C(n,m,8, R aw [ dpy, At (R ) 4
= (I’l m ) AR v /;n—l /’Lyn—l {r (av* +r 31)* T [:ZIV av u*=rt

2t 41+ R* 2 2
+C(n,m,5, R) ! dt/gn lduyn 1{1& +(81ﬁ) +(8vlﬂ2) +(7W)2+‘Y7

271 +R* av*

av*

n(n—l)

+ Z [(sz ¥)* + ( )+Wsz 2 ]}

i=1

. (5-50)

r=R

Thus by the mean value theorem of integration we obtain a sequence rj’. € (7j,tj+1) (j € N) such that
the corresponding integral from the left-hand side on u™ = rj/. is bounded by ‘L'j_l times the right-hand
side of (5-50).

:| Next we shall use (5-49) with p =3 —8 on R/ D DI (with R¥ e (R*.R* +1) (j €N)
2/ 1

chosen appropriately below). However, the quantity we are actually 1nterested in is not dy* y, but rather
' TT-9\ (AT -r"T e\ 1a2w+1 P2y \2
dv* B dv* S\ 209v*2 2 9u*dv*
(5-12) 1 0%y —1/m-3 n—-12m\ 1 2m 2
(28v*2+2( "Z)Aw_i 2 2 + 2 rn2 r_zl_r"__zw

92 —1 1
= (avﬁ) + (49)* + 20 —-2) v (5-51)

Using the simple Hardy inequality

2u*+R*

1 2 o0 1 (v \?
5—1_ — r1+5l/f (u*, u*+R* )+—1 - )2/ dv*r_5(8v*) (5-52)

Rn—2 ( ——Rn_2 u*+R*

and again the commutation introduced in Lemma 5.7, we obtain

/ —1
41 oo ar”z X 2
* * 2—6
// du /* *dv /nld,u;,n_l r (—av* )
i1 u +Rj S
‘L'é 1 00 2
5/ ’ du*/ dv*/ dpyg, , {r?73 9
oy u*+R;* sn—1 du*

2j—1

n(n 1)

. _ 2
D I )zr_g(aw)}

i=1 2 (1 - Rznn—12

| ey [ v
+—— ‘ i | ==
| — 225 Jaxy, +rE Jon—1 1S




580 VOLKER SCHLUE

Tt S Iy \2
<Coms) [ e [ ar [ ay, { “(5%)
T u*+R;* sn—1 v -
nin=1)
+ K15 @)+ Y Kios (Qup)r" !
27! R n(nz—l) i=1
j+1TR;
+Comd) [ *af/ dwn_l%wer > (w)z} , (5-53)
2172]-_1+Rj sn—1 = =R,

where in the last step we have again used (5-16). Furthermore, by now applying (5-49) with p =3 —§,

/. n—1 2
Ty o0 o' T

/ y du*/ dv*/ iy, | rz—B(r—¢)
’ * L n—1 n av*

T u*+R; S

2j—1
J nn—1)

% _s( O W\ = [0
=C(n,m,8, R dv*/ dpy, {r38(—) ( )_|_ ( )}
( ) ;1 R} sn—1 Hns ov* av* Z

i=1 U=t
2%, ;41 + R oy 2 3210 3W
+C(n’m781R) dt/ d/"Lﬂn—l{wz—i_(a *) +( *2) +(yw)2 a
2ty +Ry Jsn! v ov v
n(n 1)
+ Z [(Q V)2 +( ”/f) +|y7£z,-w\2]} . (5-54)
8 *
i=1 r=R;
we obtain a sequence ‘E € (13, -1 12y j .+1) (J € N) such that, in view of the previous step,
o0 0 T
ot Lo b (52
r}’-i—R;‘ sn—1
2 2 M5 2
C(n,m,8,R) [ d 092
nmnf o o) E
2jT2j—1 Jr +R* gn—1 av = v ur=1
2

2041+ R 2 2
| Clnm bR [ dr/gn_ldwn] {w2+(aw) +(8 w) +(V )+ ‘y] Dy

2/ 12j—1 J2r,4+R* Ju*?

v 3 [@wr+ (B svanp]]

275 +RT
+C(n,m,8,R) ! d’/Sn ldw”_l{w +(§w) +( W) +(Vy)*+ ‘V

2t} | +R} ov*

r=R

(5-55)

r=R;
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n(n 1)

Now, by writing out the derivatives of ¥ = r%qb, and using (5-12), we calculate that
0y
[ (22 pmor]

oy v\ 2,
L l{w +(av )+(3 *2) Y] ‘ >

2 L AN2
<C(R)/ ALy, 1{¢ +(a¢) +(aaf) +(83Tv*¢) +|vo[*

n(n 1)

.S 7o+ (G ¢) i

i=1

r=

; (5-56)
r=R

by applying Proposition 4.1 first to the domain " D;fj e Reor Qui+r] *) where r; > "7/ ‘”’Tm to fix
the radius R, and then to the domain

r(r* R*-i—l):Dth-l-l \RD 21+1 C Rro R(2‘Eéj_1 + R*)
2

1’-2/ 1 J—

to fix the radii R; (j € N) by using the mean value theorem for the integration in r*, this yields (see also
Appendix B)

00 a-l 2
[ o (52)]
t/+R} sn—1 v
n(n 1)
Cn,m,8,R)( [ . as( 00\ aszyf
= (_[}/)2 {/;1+R*dv /;”_l d//“yn—l r m +V Z

u*=t
n(n2 1)
+/ (JT(¢)+JT(T-¢)+JT(T2-¢)+ > [JT(Q,-¢)+JT(T.Q,-¢)],n)}
B n(nz—ll)=1
+C(n,m,8,R)/ (JT(¢)+JT(T-¢)+JT(T2~¢)+Z [JT(Q,-¢)+JT(T-S2,-¢)],n). (5-57)
Ly i=1
Therefore, by Proposition 5.4,
) n_l 2
Lot e (F55)
T/+R} sn—1 v o
C(n,m,58,R) *© " as( Ox 2 5 ATk .y 2
— d dits A
= (tj)? {[CH-R* 0 /nl Hm {r dv* +1§)r ov*
5 n(nz—l) k 5
T Q¢
225
k=0 i=1 31) ur=1
4 3 n(n2—1)
+/ (Z INTE- )+ > JN(Tinqf)),n)}. (5-58)
T \g=o k=0 i=1
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Remark 5.8. This statement should be compared to the assumptions of Proposition 5.4 (5-5), from which
all that one can deduce with (5-17) is

oo (2

We shall now proceed along the lines of the proof of Proposition 5.4 in Section 5B, just that we have
(5-58) as a starting point for the solution 7" - ¢ of (1-1) (and (5-6)); however, as opposed to Proposition 5.4
the hierarchy does not descend from p = 2 but p < 2, which introduces a degeneracy in the last step, and

<oo (1> 19). (5-59)

u*=rt

requires the refinement of Proposition 4.1 to Proposition 4.21, and Proposition 4.4 to Proposition 4.22;
see Section 4D.2.

Lemma 5.9 (pointwise decay under special assumptions). Let ¢ be a solution of the wave equation (1-1),
with initial data on X1, (71 > 0) satisfying

nn—1)

e [ (B AT o (e,

u*=t
4 3 n(n2 1)
+/ (Z JN(T"-¢)+Z > JN(Tin¢),n)<oo
X \k=o k=0 i=1
for some § > 0 and
C(n m,8, R)D

o0 T -y \?
/ dv / d/-’Ly,l 1 8 ( *w)
'+ R* gn—1 81)

for some t’ > 11. Then there is a constant C(n, m,§, R) such that, for all T > 1/,

-1-4 2 CD
/;n_ld,uf/n—l r" 2 (T ¢) |(u*=T/’v*=R*+r) =2

Remark 5.10. Note the gain in powers of r in comparison to the boundary term arising in Proposition 4.22.

2 (+)

u*=r’

Proof. First, integrating from infinity,

* a(T¢)d *

/4 R* aU*

(T-p)',R*+7') = —/

and then, by Cauchy’s inequality,

L (TP R4

o0 1 o0 AT -¢)\?
S/ — dv” x/ [ d,u,,;n_l( ( *¢)) A
R¥4+7¢/ T R+1/ Jsn—1 81)

2 B B o0 AT -$)\>
< l 1— m C(m,n) dv*/ d,lLy » rn—l ( ¢) .
2 P2 =y =R*+1) ) N—21"72 R*+1/ sn—1 ! Jv*
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Therefore, by Proposition 5.4,

C(n, C(n,m,R
/ d'u“)a/n—l (rn_z(T '¢)2)(T/’ R* + T/) = (n—zn/lm) (JT(T ¢)’ n) = %D (**)
gn—1 1— W Zr’ .[/
Now
[ (TR R )
R*+1.' 8T'
= / duy,_, (/"N (T -¢)?) (<, R* +z’)+/ dv*/ dpy, 2Ty *w
sn—1 R*+1/ sn—1 av

<R"! /gn_ld,%l (T-¢)*(r', R*+7)

5 o0 1 o0 3T‘1ﬁ 2
+2r2 | =y / dv*/ duy, —(T-gb)zr”_l\// dv*/ dpy, , r2=8 (—) ,
|flli=1§*’+r)\/ *47/ gn—1 ¥ 17'2 R*+1/ gn—1 Yn—1 81)*

which proves the pointwise estimate of the lemma in view of the Hardy inequality of Lemma C.2,

Proposition 5.4, the assumption () and (). O

By the weighted energy inequality with p =2 —§ and T ¢ in the role of ¥ (see (5-16)

in particular),

2 00 aT - 2
’ du™ dv* duy, pl-s L4
« Yn—1 Ju*
o/ u*+R/; sn—1 v

2j—1

I " o0 " r
<C(n,m) du dv i 1duj;n_l Kos (T 9)
u n—=

T *+R”
2t£/j+l+R;‘* )
+Cmy | /*dt/ Ay, A(T¥) g
215, _|+R) n— J
o0 AT - v \?
<C(n,m,R) dv*/ diy,_, {rz—a (_*E/f) }
ré/j_l_{_R/j* sn—1 81) ”*:féqu
2t +R” 5 T -y 2 5
+Clnm) a [ dm,l_I{(T-w) +( . ) |97y } . (560)
2t); | +R) sn—1 v r=R

where we choose R/j * € (R* + 1, R* +2) such that Proposition 4.1 applied to the domain
r(r*=R*+2),DTé/j+l \r(r*=R*+1),DT§/j+1
L2 L2

yields an estimate for the integral on the timelike boundary above in terms of the first- and second-
order energies on Erﬁ’. o which in turn decays by Proposition 5.4. Therefore there exists a sequence
i
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”’ € (121 1 2/j+1) (j € N) such that

o0 T - \?
/ d[ d“f"-l{rl_g( 5 *w) }
/4R sn—1 v

u*=t}”
_C.m 8. R /°° d*/ ‘ as O 2+Z 2(AT*- Y)Y’
—_—_— v o r — r —_—
- (t}”)3 71+ R* sn—1 Fnr dv* = ov*
nn—1)
2 2 k 2
ITkQ, v
Z 2 i
" ' ( dv* ) } u*=t
k=0 i=1 1

n(n 1)

/ (Z JN(T*. )+Z Z IN(T*Q;¢), n)} (5-61)
Er1 =0 i=1
Since, by integrating by parts,
o0 1 [0y
e G
wi+R*  ro \ov*

o0
u*4R*

1n-1 2m
= 11— ——Jy?
ré 2r ( r”—z)w

+/°°d* 5 n—1(, 2;7121//2
v —
w*+R* rli+é 2r rn—2

1 n—1 2m 5 2m \n—3

tga (1 )V -2+ (125 ) 57 |+ 55
we have by (5-15) that also (with R’Jf* € (R*+2,R*+3))

T o0 aT - ¢ 2]
du*/ dv*[ dpy {(—) +|VT-¢ }r" !
/;/// u*-{-R/j{* gn—1 Yn—1 7‘8 av* | |

2j—1
Qi+t [ . u r ne1
<C(n,m) du dv 1d,u,,n_1 Ki_s(T-¢)-r
T n—

" * 1 *
27—1 u*+R’

d¢ 1
) e

2f) _H-i-R”
S PR I Y1 [ M B

1" 7%
;1 +R;

By virtue of Stokes’ theorem (B-5), (B-6) and our previous result (5-61), we obtain
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ZIE o0 1 ad
/ du*/ dv*/ diy, =5 r Fl
o u*_l_R/j{* gn—1 r Jv*

2j—1

00 T. 2
=< C(n,m){/ dv*/ iy, {rl_g(a(—*w)) }
o R Jen v wi=ci_,

205 +R)” T -y) 2 2 2
w0 [ {((G) e vy

u 1%
Y. 1+Rj

C(n,m,S,R) o0 * 4—4 aX 2 3 5 a(Tkw) 2
==y d dis oTk 9
- (1;}//)3 { »/l’l—i—R* v /;n—l KT J0* + kEZO r ( P

nn—1)

(]

—_ //}
r—Rj

u*=t

4 3 n(nz—l)

+/ (Z JINTE 9+ Y JN(Tkszi¢),n)}
ZriN k=0 k=0 i=1
+C(n,m, R);/ /'+1 (JT(T.¢)+JT(T2.¢),n)
2(2j DH—1 2
+/n—1 dMJO’n—lrn_z(T'(p) ’(”*:rg(ZJ H—1° }’ -0
S V=R 1))

where in the last inequality we have used Proposition 4.22, and then chosen R;f (j € N) suitably by
Proposition 4.21; furthermore the inequality still holds if we add the integral of the nondegenerate energy

77 ,2,/’ *1 on the left-hand side and replace J7 by J¥ in the first term of the integral on E:’ +
22j—1)—1
on the rlght hand side. The last two terms on the right-hand side of (5-64) in fact decay with almcj>st the
same rate as the first; for first note here that we could have used Proposition 4.4 and Corollary 4.3 instead,

and then employed Proposition 5.4 to obtain in any case that

it 1
/ dr/ —(IN(T -¢).n)
T > r

7
2j—1

C.m8.R)( [® o d(T*- V)
=T {/MR*‘*” /gn—ld“ V"‘{r ( ) ( )

nn—1)

2:: 2:: (BTkQ w)}

3
+ATI (Z JINTE ¢+ > Z IN(T*Q;¢), n)} (5-65)

k=0 k=0 i=1

u*=rt

It then follows that there exists a sequence 7" € () _,, 7% ;) such that

J 2j—1° 2J+
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N
/%MJ’”W”

’ 1
‘(u _r///r L (JN(T ¢) n)

Y
// i ””
V=R T o)

C(n,m,8,R) / [ { 4_5(31 )2 3 2(a(Tk-l//))z
<0 d dis e RS, 24
(t}///)3_5 o +R* v Sn—1 /‘Lyn—l r ov* +kz=0r Jv*
nn—1)
2 2 ko . 2
EEA)
= o v ur=1,
n(n 1)
/ (Z JN(Tk. ¢)+Z Z IN(TkQ; ). n)} (5-66)
Erl k=0 i=1

because r”” ( é’éj 41— r}”’ )~! < 1. Secondly, the assumptions of Lemma 5.9 are satisfied in view of

(5-58) on u =7/ (j € N), which yields

_ 2
dpy " 2(T -
/Sn—l Hon (T"-¢) }(“ "=t 1oV =R+ )

C ) ’87R o0 _ 8 2 3 3Tk- 2
COnR g (55 ()
(sz_l) 5 1+ R* sn—1 v k=0 v

nn—1)

22 aTkQ v
+kX_: Z: ( ) } u*=rty
3
/ (ZJN(T" )+ZJN(T’<Q,-¢),n)}, (5-67)
Ze,

k=0

because also

" n " —1
11T 41— Tz(zj—1)—1) =C.

We shall now return to (5-64) — and its extension, which includes the nondegenerate energy on o —
to find that, after inserting (5-66) and using Proposition 5.2,

[ YT 9 +IT@ )
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C(n,m,8,R)( [*® Iy )2 W) < Tk - y)\?
= ((W = 8) /Tl_'_R*dv*/Sn_ld“f"—l {r4—8(av_X*) _|_r4—3( (8U*X)) +I§r2( (av*lﬁ))
n(nz—l) 8 k 5
BT A,
k=0 i=1 dv ur=t

n(n 1)

4
/E (Z INTE- )+ > Z IN(TkQ; ). n)} (5-68)

k=0 i=1

and using (5-67), that there exists (another) sequence f””

/ ris(JN(Twp),n)

J

< (ng/—l’ é///.g_l) (j € N) such that

1

comSRON™ v o s (AT Y 2 (AT )\
SW{/;I+R*C1U /n_ld““—l{zr (81)—*) +Zr (81)—*)

k=0 k=0
nn—1)

> 2 IT*Q v
AR
n(n 1)

4
/E (Z JN(T*k. ¢>)+Z Z IN(TkQ;9), n)} (5-69)

i=1

u*=11

So for any T > 71 we can choose j € N such that € (ré/;._l, é/]’ 1) to obtain finally by Proposition 5.2 that

/ (JN(T-¢),n)
Y. N{r<R}

1
< / fé/j/' (JN(T ¢) n) <r }(u _t//// / r8 (JN(T ¢) n)
r;///1 v _R*+ré/j/+l) )2 /]///1

1

s (ATE 0N o
Zr4 8(—81)* )-i-kz

S (NTE-y) )
("5%")
k=0 0

nn—1)

3 2 k
"‘Z . (8T Q; W) }
k=0
n(n 1)

4
/E (Z IN@TE- )+ > Z IN(T*Q;¢), n)} O (5-70)

k=0 i=1

~

C(n 9’ m9 87 R) o *
< 7 .
A {[E1+R*dv /gnlduy"_l

u*=rt

Remark 5.11. For the removal of the restriction to dyadic sequences in the last step of the proof, (5-69) and
(5-70), we could have equally obtained a decay estimate for the energy flux through ¥, N {r* < R* 4 )

/// //// k

(with k € N) by replacing X ,,i,“ by X {,,,1 in the first estimate in (5-70); if § > O for a chosen k € N

j 1
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is restricted to § < (1 +k)~! we then still obtain a decay rate of r4~(11K)8 for the energy flux through
Y. N{r* < R* + k).

6. Pointwise bounds

In this section we first prove pointwise estimates on |¢| and |d;¢| separately based on the energy decay
results Propositions 5.4 and 5.6. Then we give the interpolation argument to improve the pointwise decay
on |¢|. As we shall see in view of the nondegenerate energy estimates of Section 5 we may restrict
ourselves in the first place to a radial region away from the horizon. Recall the definition (4-3) of X,

(ri = R > ""¥/8nm).

Proposition 6.1 (pointwise decay). (i) Let ¢ be a solution of the wave equation (1-1), with initial data
on Xy, (to > 0) such that

~ [4]+1 9T\ [41+2
D= dv*/ iy, > r2( . ) +/ ( > JN(Tk.¢),n) <o0. (6-1)
0+ R* gn—1 k=0 v u*=tp E’"O k=0

Then there is a constant C(n,m) such that, for ro <r < R,

C(n,m)~'D
T

g, r)| < (TI%(I—R*)>1:0). (6-2)

(i) If, moreover, the initial data satisfies

[51+1

L[ s (TF- 0N
D= dv* [ dyy 4 3(—)
LO+R* v /Sn_] /"l’yn—l{ ];) r 8v*
[51+4 [51+3 250
ATk . w) ATkQ; v
G R e G S 1
— l_l U =T
[ ]+5 [/1]+4 n(n2_])
/ (Z INTE g+ D Y JN(T"szi¢),n)<oo (6-3)
Zro k=0 i=1

for some 0 <8 <L and R> "72/88M thep there is a constant C(n,m, 8, R) such that for ro <r < R,

C
[0:p(t,7)] < ;/; (r= %(z — R*) > 19). (6-4)

The pointwise bounds are obtained from the energy estimates of Section 5 using Sobolev inequalities
and elliptic estimates; the former provide the link between pointwise and integral quantities, and the latter
allow for the expression of these integral quantities in terms of higher-order energies.

Sobolev embedding. By the extension theorem applied to the Sobolev embedding H¥ (R") C L*°(R")
(s > 5) we have, for ro <7 < R,
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le|<[5]+1

|¢6’7)|2§C(”)/* dr*/gn_ld“fn—l{fﬁer > W%}Z}r"—l

oe|>1

o (6'5)

where V denote the tangential derivatives to the hypersurface X;, and o denotes a multiindex of order 7.
Elliptic estimates. Note that for any solution ¢ of the wave equation we have

02 2m \n—10 2m .
T2. ¢ = 5,2 + (1 - rn—2) 4 + (1 — rn—_z) L2y, p=L-¢, (6-6)

r or*

where the operator

2 L
L= (135 )&V, (©7)

is clearly elliptic. (Here g; = glgf denotes the restriction of g to the spacelike hypersurfaces X;, a
Riemannian metric on E,, and i, j =1,...,n.) In view of the standard higher-order interior elliptic
regularity estimate

19niog,y < CUL Bl + 1#la,). Sc=Sintro<r<RL  (68)
we conclude with (6-5) that, in the case where [5] + 1 is even,

[51+1

R*
|p|? < C(n,m) / dr* / dpy,_, > (T L)Y (6-9)
ry sn—1

=0
in general we have:

Lemma 6.2 (pointwise estimate in terms of higher-order energies). Let ¢ be a solution of the wave
equation (1-1), and n > 3. Then there exists a constant C(n, m) such that, forall ro <r < R,

[5]
|¢<r,r)|zsc<n,m>[||¢||2 - Z(JT(T’-@,n)] (6-10)

2E) g, &

Proof of Proposition 6.1. In view of the Lemma 6.2 and the energy decay estimates of Section 5 it remains

to control the zeroth order term ||¢ ||L2 &) We multiply the integrand by (§)2 > 1 and extend the integral
t

tou*=1=30—R*),v*> 11 +R").
(i) By Lemma C.2 we can then estimate ||¢ ”12}(/2\,) by the energy flux through ¥__ L(t—R*) and apply
Proposition 5.4 to the higher-order energies of Lemma 6.2.

(ii) Here we extend the integral only to 7 + R* < v* < v 4+ R* + ¢3 and apply Lemma C.4 to obtain

[ [ w02t < comr [ (IT@:9).n)
ry sn—1 S N{r*<R*+13}

R? -
+C(n’m)7/§n_1 )| e RE ey (611
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As in the proof of Lemma 5.9 we obtain by integrating from infinity and Cauchy’s inequality that

C(n,m)
2m

/g 09 (e R < (IT@:$).n). (6-12)

T

which decays by Proposition 5.4 with a rate T—2. Moreover, as in the proof of Lemma 5.9,

-1 2
/;n—l d'uﬁn—lrn (at(‘b) ‘(u*=f’v*=r+R*+r3)

—/ dpag,_, "1 (0:4)?| +/r+R*+§3*/ dpey,_,20 aa,yf (6-13)
- P I’Lyn_l t¢ (u*=t,v*=14+R*) T+ R* v - Myn 1 tw S
and
T+ R* 413 99 w
[R5
T+ R* sn—1 u*=rt

'
/ / duy,_, 2(8,(}5)2}"” 1 \// / duy,_ lrz( i " t¢) , (6-14)
r+R* Jsn-1 t+R* Jon-1 v

the first factor decaying with a rate —! by Lemma C.2 and Proposition 5.4, and the second factor bounded
by the weighted energy inequality for r'z 9 +¢ in place of Y with p = 2. Therefore

- C(n,m) D

1 2

/Sn—l ) }(”*:f’”*:f+R*+f3) = W T (6-15)
Rn—

By virtue of Proposition 5.6 (compare in particular Remark 5.11 on page 587), the first term on the

right-hand side of (6-11) decays with a rate of p4—4d

, and this is matched by the second term in view of
the prefactor r —! = (R* + t3)~1, which is the result of our choice of powers of T in the extension of the
integral Lemma 6.2 applied to the solution d;¢ of (1-1) then yields the pointwise decay result (6-4) after

having applied Proposition 5.6 to the higher-order energies on the right-hand side of (6-10). O

Interpolation. We shall now interpolate between the results (i) and (ii) of Proposition 6.1 to improve the
pointwise estimate for |¢|. Our argument can in some sense be compared to the proof of improved decay
in [Luk 2010]. The basic observation underlying this argument is that, for ro <r < R and #; > to,

202 (r 1) = 1293 (r 1o) + / 20(t,7) ¢(r r) 2 de

to

1 2
(a_¢) (t,r)r"2dt. (6-16)

_ 1 h _ _
<r"202(r, 1) + =Y, d2(t,r)r" 2 dt —H(} 28/ o

0 to to
Moreover, as a consequence of Lemma 6.3,

—1 R* 2
2¢%(t,r) < R"72¢%(t, R) + (1 - 2’112) / (8—¢) Pl dr*, 6-17)
rk r* ar*

0
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we obtain an estimate for the timelike integrals in terms of the corresponding integrals at r = R and
spacetime integrals, using the Sobolev inequality on the sphere:

31 1
/ Vn_2¢2(t’ r) d[f/ dtf d'uf/n—l Z Rn_2(9a¢)2(l, R)
to to sn—1 el <[A]+1
2m\" 1 * Q2%
+(1- ) / dt/ dr*/ duy, "1 ( ) (t,r). (6-18)
( 61_2 to ¥ sn—1 Yn—1 Z ar*
Lemma 6.3. Leta <b € Rand ¢ € C'([a, b]). Then, foralln > 3,

le|<[5]+1
b 2
d
(—¢) x"1dx. (6-19)
dx

"2 (a) < b2 (b) + /

a

Proof. Since, by integration by parts,

b

it clearly follows, with Cauchy’s inequality,

brag\? b | o
(a) X 1dx+[1—(n—2)]/a ﬁ(j)z(x)x Ldx. O

Proposition 6.4 (improved interior pointwise decay). Let ¢ be a solution of the wave equation (1-1), with
initial data on ¢, (to > 1) satisfying

00 2 k o 2
) _s{O(T*-Q%y)
- i 2 : 4—6
b= / d"*/gn—ld“y"“ { 2 ' ( v )

*
0+R k=0 |ar|<[4]+1

BT )

"2 (a) < b2 (b) + /

a

k=0 |a|<[4]+1 |<[2]+2 u*=1p
5
/ (Z >ooaNakergy + > N JN(TkQ“¢),n)<oo (6-20)
o Ng= 0la|<[5]+1 k=0 |a|<[2]+2

or some 0 < § < z, where R > "~ —2/80m 4 > 3 Then there exists a constant C(n,m, 8, R) such that,
5
for "/2m <rg<r <R,

n— CD
P gl r) < ——

T (6-21)

Proof. Let tog = 2(t9 + t0) + R* and t1 = o + 27¢. Then by (6-18), Proposition 4.4 and Proposition 4.1,

f 1
¢2(t,r)r"_2dt§C(n,m,R)/ (Z > JT[TkQ"‘d)],n); (6-22)
z

fo k=0 la|<[4]+1
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hence by Proposition 5.4 there exists #, € (f, 1) such that

C(n,m,R)D
221G, 7) < (’1’;’1—3) (6-23)
0
Now set 7) = %(Z(’)—R*) and 7} =27;_, (j €N),and 7} =27} +R* (j €N); note that ¢}, —1/ = %(tj’-—R*).

Now consider (6-16) with #; = tJ’- +1- fo = t}; since by (6-18), together with Propositions 4.1 and 4.4,

ti !
[” r”_2¢2(t,r)dZ§C(n,m,R)/ (Z > JT[T"Q“d)],n), (6-24)
t;- Er(

; k=0la|<[5]+1

and by Propositions 4.21 and 4.22,

2
(Z > JT[TkQ"‘qS],n)

k=1le|<[5]+1

/tj+lr”_2(8t¢)2(t, rydt < C(n,m, R) {/
th b))

’ o DU <R ()%}

+/ d,LLf,n_l E rn_2(9a3t¢)2}(u*=r/_ v*=R*+r’-+(r/~)3)}’ (6-25)
gn—1 7’ J J
le|<[5]+1

which decays with the rate 74748 a5 is shown in the proof of Proposition 6.1(ii), we obtain
_ - C(n,m,R) D _
TR ) S PTTRR(na) + +Cnm, 8, R — e
Jj+1 (,})1—28 (-L—J{)Z J (TJ{)4—48
_ C(n,m,§, R)D
<r"72¢3(r.1}) + U/)T (6-26)
J
In fact, by induction on j € N using (6-23) for j = 0, we have shown
C(n,m,8,R)D )
r"T2e (1)) < Ca.m.8 R)D (j e NU{0Y). (6-27)

1y3—26
@)

Finally for any 7 > 7, we may choose j € NU {0} such that 7 € (¢/,/ ;) and conclude the proof by
applying (6-27) and (6-26), which holds with ¢ in place of tj/- 41 O
Extension to the horizon. Note that for ""%/2m < r < rg, the same interpolation (6-16) by integration
along lines of constant radius r < r can be carried out. However, on the right-hand sides of (6-17) and
(6-18) a new term results from the integration on v* = %(zo + ra‘ ) from the radius r < rg to r = rp; but
we infer from the explicit construction (3-19) that the resulting integrand

2 3¢ \?
(Waf) <T[pI(Y.Y) < (JN[¢].N) (6-28)

is controlled by Corollary 4.3, and the proof of Proposition 6.4 above extends to that of Theorem 2 by
replacing J r by J N on the right-hand sides of (6-22), (6-24) and (6-25).
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Appendix A: Notation
Contraction. We sum over repeated indices. Also we use interchangeably
gV,N)y=(WV,N)=V,N*, J-N=(J,N)=J,N", (A-1)
where V', N are vector fields, and J is a 1-form.

Integration. Let D in M be a domain bounded by two homologous hypersurfaces, ¥ and ¥, being its
past and future boundary, respectively. We then write |, N (J, n) for the boundary terms on X; arising
from a general current J in the expression [y, *J. If S C X is spacelike, then (J,n) = g(J, n) is in fact
the inner product of J with the timelike normal n to X1; e.g., on constant ¢-slices X; (see Section 2) we
have n = (1 — r%—'fz -3 % If U/ C X1 is an outgoing null segment then fu('] ,n) denotes an integral of the
form [ dv fs duyg(J, %); e.g., on the outgoing null segments of the hypersurfaces X (see Section 4),

we have
*© 0
/ (J,n) = / dv*/ duy, ,r* ! (J, *) (A-2)
Z:N{r=R} 74+ R* sn—1 v

The volume form is usually omitted:

[r=] raus @cm.

Appendix B: Formulas for reference

In this appendix we summarize a few formulas for reference.

The wave equation. The d’ Alembert operator in (1-1) can we written out in any coordinate system
according to

Ogop = (g~ )" V0,9, (B-1)

where V denotes the covariant derivative of the Levi-Civita connection of g.

Components of the energy momentum tensor. The components of the energy momentum tensor

Tyv(9) = 0,0 dvp — 2 g0 0% 0agp

tangential to Q are given in (u™*, v*)-coordinates by

3 \? 3o \* 2m 2
Tyrur = (au) o Tyrpr = (8v*) . Turpr = (1 — rn_z)%\,%. (B-2)

We also refer to (B-2) as the null decomposition of the energy momentum tensor. Note here that

o 1 d¢ \ ( ¢
%¢ dap = _W(au*) (av*) +|Vel2y,_,

yn—2

L, 2
TP Tan = V8|72, — 51— D% bag.
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Integration. A typical domain of integration that we use is
RD% = {(u*, V)it <ut<m, v -ut> R*}. (B-3)

In local coordinates we have, by calculating the volume form from (2-20), that

/ dug:/tzdu*/oo dv*/ d,%_,z(l— 2’112)#"1- (B-4)
R'sz 7 u* 4+ R* sn—1 rh

For a general current J the energy identity on this domain reads

X _ * _
/ ey K s = / i (B-5)

where the right-hand side is given more explicitly by

IRD?
=-— v Ay — | du My 778\ 5
R*+1» sn—1 Yn—1 dv* u*=t1 71 sn—1 Yn—1 ou*

o0 . . 9 R*+21, ) P
+/ dv / duy, ,r"" g(], —) —/ dt/ " g(J, —)
R*+14 n—1 Vn—1 Jv* ur=1, R*+27; gn—1 ar*

Radial functions. In this appendix we summarize some statements on the relation between r and

r 1
r* = / ——dr. (B-7)
(nmyz 1 — 22

The proofs are omitted here, but can be found in [Schlue 2012].

v*¥—>00

. (B-6)
r=R

Proposition B.1. Foralln > 3,

,

7”7%_)00 r

log x
X

While this fact concerns the region r* > 0 and is essentially due to limy_— o =0, the next concerns

r* <0 and is similarly due to limy_,¢ x logx = 0.

Proposition B.2. Foralln > 3,

2
lim (1 - n’i)(—r*) —0.
"_%/ﬁ_)l r

In fact we have:

Proposition B.3. For r* <0,

(1_ 2m ) - (Zm)n%2‘
rn—2 — (_r*)

This being an upper bound on (—r*), we will also need a lower bound:
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Proposition B.4. Forr* <0,

1 _1_ —_r
(rmyz EW 1og((%)"_2 T 1)
- 1 r _ .
=2\ 1y

Dyadic sequences. In our argument, Section 5C in particular, we construct a hierarchy of dyadic se-
quences, beginning with a sequence of real numbers (7;);en Where 71 > 0 and 741 = 27; (j € N).
We then obtain (by the mean value theorem of integration) a sequence (rj/. )jen With T]/- in the interval
(tj, j+1) of length 7; for all j € N. We then built up on these values another sequence (rj’./ )jen Which
takes values (as selected by the mean value theorem) in the intervals () -1 ‘L’él i+1) 2 7/ note that their
length is at least 7} i1 T 120241 -T2 =12;. In the same fashion the sequence (rj/-” )jen is built

upon (r]’.’)jeN, etc.
Appendix C: Boundary integrals and Hardy inequalities

In this appendix we prove appropriate Hardy inequalities that are needed in our argument to estimate
boundary terms that typically arise in the energy identities.

X -type currents. Let X = f(r*) a?*
Proposition C.1 (boundary terms near null infinity). Let f = O(1), f' = (9( ),and f" = O( 2) Then

there exists a constant C(n, m) such that

/ * X1 §C(n,m)/ (JT(¢),n). (C-1)
IRD2\{r=R} Zy

Proof. For the boundary integrals on the null segments u* = 71, 7, we find

d
* d JXl 7 ) ,n-1
/R*Jrr, /n— - 1g( )

a /
SC(fl) R* 41 *\/;n dlu“)/n 1 n 1{(%) +‘W¢‘ [fl |fr:|

and, in view of the Hardy inequality Lemma C.2,

2 n 1
/ / Winor (2
*41; sn—1 r

note that the corresponding zero order terms vanish at future null 1nﬁn1ty; cf. Remark C.3. Then (C-1)

and recall the modification (4-14).

+ |f”|]¢2}, (C-2)

wr=g =€, m)/ (T (¢).n):; (C-3)

follows from the energy identity for 7" on RDE. O

Lemma C.2 (Hardy inequality). Let ¢ € Cl([a, 00)), a > 0, with |¢(a)| < oo and
lim x"Z ¢(x) = 0. (C-4)
X—>00

Then a constant C(n) > 0 exists such that

o0 o) 2
/ xl—zqﬁz(x) x" SC(n)/ (j—f) " ldx. (C-5)
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Proof. This is a consequence of the Cauchy—Schwarz inequality; after integration by parts

001 o0
| spwatan= [ s ar

a

with x

gw=[ »ar 0
a

Remark C.3. The conditions of Lemma C.2 on ¢ are in fact satisfied for any solution of the wave
equation (1-1). By a density argument we may assume without loss of generality that the initial data is
compactly supported. Then for a fixed r, and v* large enough, ¢ (z,v*) =0, and for u™* > t,

*

¢(u*,v*)=/u 9¢ du™.

ou*
Thus

*

sz ([ (o) ([ o)
/ru*[gﬂ l( ¢) P Vdpy, | du® </>:,(JT(¢)’H)<°°

whereas on the other hand,

On one hand,

*

ut o] 1 2m \! 9 1
du* = 1-— du*
/; pn—1 " n—Z/T ( r"_z) 8u*(r"‘2) "
1 2m \ ! ru*, )V 2\ 1
< 1-— 1— )
“n-2 Rn—2 r(z,v*) rn—2

if we restrict u* > 7 to r(u™*,v*) > R. Hence

lim r'2 d)—O

v*—00

Instead of (C-5), which requires (C-4), one can prove the corresponding Hardy inequality for finite
intervals:

Lemma C.4 (Hardy inequality for finite intervals). Let 0 < a < b, and ¢ € C'((a,b)). Then

b 2 b 2
1 [P n—1 [T Ye 2 A
EL ﬁﬁb (x)x dx < mb ¢~ (b) +2(m) /L; (a) X dx. (C-6)

X

Proof. Let
1 -2

X
g(x) =f Y3 dy = "
a n—2

Then, by integration by parts and using Cauchy’s inequality,
b b
1 _ b do
| Serwrtar =gl - [ et P ax
a a

b 2
Sg(b)¢2(b)+2€/ z¢ ()" 1dx+2e/ x("X)3 (dx) .
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where € > 0; (C-6) follows for € = % because

2 2(n—2)
gy < L2, BT 2 (1+(g) )XH' -
n—2 X

X3 “p-2

Recall the domain (4-103); by using Lemma C.4 instead of Lemma C.2 we can prove the following
refinement of Proposition C.1 to bounded domains:

Proposition C.5 (boundary terms on bounded domains). Let f = O(1), f' = (9(%), and " = (9(%2).
Then there exists a constant C(n, m) such that

* 1 X,1 T . n—=2 ;2 -
/aRﬂﬁ%\{uR} / §C(n,m){/22(J (¢)’n)+/gnlduy"“r ¢ |(u*=r1,v*=R*+r2) - (D)

Recall the domain (4-2).

Proposition C.6 (boundary terms near the event horizon). Let f = O(1), f' = O(|ri\ z), and [ =

O(#) and

7TI¢=O (OSI<L),

for some L € N. Then there exists a constant C(n, m, L) such that
/ * g%l §C(n,m,L)/ (T (¢),n), (C-8)
RSy (20) Xz

where 19 = %(to —r).
The proof is given in Section 4D.1 in the special case f = f o using the following lemma.

Lemma C.7 (Hardy inequality). Leta > 0, ¢ € C([a, 00)) with

lim |¢(x)| < oo.
X—>00

oo 2 poo 2 a+1 2
/a 1_:x2¢2(x)dx§81:2a /a (%) dx+2n/a {¢2+(%) }dx. (C-9)

Proof. Let us first assume that ¢(a) = 0. Define

o0 1
X)) =— ——dy.
¢(x) / et

Then

Then

© 1 0o N - ;
/a 1+x2¢2(x)dx:/ g' (1P (x) dx = g(x)$*(x)], —2/a g(X)d)(x)d_idx

a

© g(x)2 (AN \I( [* . 5
=[G () @) ([ vorema).
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Since |g(x)| < ; we have
2 2 2
g(x) <1+x <1+a,
g/(x) - x2 = 42

and therefore

R ST g(x)* 2 1+a? [®(dp)?
/a r2? (")d““/a g(x)( )d = f (E)d

Without the assumption ¢(a) = 0 this applied to the function ¢ (x) — ¢ (a) yields

o0

/a 1+x2¢2(x)dx§2/a T x 2(¢(x) $(a)) dx-|—2/a H_xij(a)zdx

2
§8l+2a /‘; (%) dx + ¢ (a)?.

a

We conclude the proof with the following pointwise bound: on one hand, for some a’ € (a,a + 1),

a+1
/ $(x)? dx = p(a')?

and on the other hand,

’

a a’ 2
p@r-p@? = [ Towrars [ oer s (E) far
Hence

a d¢ 2 a+1 a+1 d¢p 2
¢(a)® < / p(x)*+ (-] ¢ dx +/ $(x)?dx < 2/ d(x)+(—) tdx. O
a dx a a dx
Auxiliary currents. We have the same results for auxiliary currents of the form
T = 5h(r)du($?). (C-10)

Proposition C.8. Let h = (’)(%). Then there exists a constant C(n, m) such that

/ *Ja”xSC(",m)/ (IT(@).n). (C-11)
IRD\{r=R} Iy
and moreover, for a constant C(n, m), we have the refinement

*J*‘“XSC(n,m){/ JT(p).n +/ diy, 7" 202 e . (C-12)

/aRM%\{rzR} zif( ) g1 "7 R e
Proof. Note that here, in comparison to the proof of Proposition C.1,
g Jaux’ i < 2¢ + 8¢ ]
ov* v*
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Proposition C.9. Let h = O( 1 ) Then there exists a constant C(n, m) such that

[r*]

/ *Ja < C(n,m)/ (JT(¢).n), (C-13)
IR, (t0) 2

where 19 = %(lo —r).

Remark C.10. In view of Proposition B.3, the function & = %(1 — r%,—'fz) satisfies the assumption of the

proposition.
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