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A CODIMENSION-TWO STABLE MANIFOLD
OF NEAR SOLITON EQUIVARIANT WAVE MAPS

IOAN BEJENARU, JOACHIM KRIEGER AND DANIEL TATARU

We consider finite-energy equivariant solutions for the wave map problem from R2+1 to S2 which are
close to the soliton family. We prove asymptotic orbital stability for a codimension-two class of initial
data which is small with respect to a stronger topology than the energy.

1. Introduction

We consider wave maps U : R2+1
→ S2 which are equivariant with corotation index 1. In particular, they

satisfy U (t, ωx)=ωU (t, x) for ω ∈ SO(2,R), where the latter group acts in standard fashion on R2, and
the action on S2 is induced from that on R2 via stereographic projection. Wave maps are characterized by
being critical with respect to the functional

U →
∫

R2+1
〈∂αU, ∂αU 〉dσ, α = 0, 1, 2,

where Einstein’s summation convention is in force, ∂α =mαβ∂β , mαβ = (mαβ)−1 is the Minkowski metric
on R2+1, and dσ is the associated volume element. Also, 〈 · , · 〉 refers to the standard inner product on
R3 if we use ambient coordinates to describe u, ∂αu, etc. Recall that the energy is preserved:

E(u)= 1
2

∫
R2
〈DU ( · , t), DU ( · , t)〉dx = const.

The problem at hand is energy critical, meaning that the conserved energy is invariant under the natural
re-scaling U →U (λt, λx).

We focus on a particular subset of equivariant maps characterized by the additional property that
U (t, r, θ)= (u(t, r), θ) in spherical coordinates, where, on the right-hand side, u stands for the longitudinal
angle and θ stands for the latitudinal angle, while on the left-hand side, r, θ are the polar coordinates
on R2. Now u(t, r), a scalar function, satisfies the equation

−ut t + urr +
ur

r
=

sin(2u)
2r2 . (1-1)
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Then the energy has the form

E(u)= π
∫

R2

(
|ut |

2
+ |ur |

2
+

sin2 u
r2

)
r dr. (1-2)

We shall be interested in corotational maps that are topologically nontrivial, that is, with

u(t, 0)= 0, u(t,∞)= π.

A natural space adapted to the elliptic part of this energy is Ḣ 1
e :

‖ f ‖2Ḣ1
e
= ‖∂r f ‖2L2 +

∥∥∥∥ f
r

∥∥∥∥2

L2
.

This is the equivariant translation of the usual two-dimensional space Ḣ 1. The size of the elliptic part of
the energy of u in (1-2) and its Ḣ 1

e norm are comparable, provided that u is small pointwise. This is not
true directly for u, but it is true after we subtract from u the “nearby” soliton that we describe below.

The solitons for (1-1) have the form

Qλ(r)= Q(λr), Q(r)= 2 arctan r, λ ∈ R+ = (0,∞),

and are global minimizers of the energy E within their homotopy class, E(Qλ)= 4π .
We consider solutions u which are close to the soliton in the sense that

E(u)−E(Q)� 1. (1-3)

As it turns out, such solutions must stay close to the soliton family {Qλ}, due to the bound

inf
λ
‖(u(t)− Qλ)‖

2
Ḣ1

e
+‖ut(t)‖2L2 ∼ E(u)−E(Q). (1-4)

Indeed, this follows, for example, from [Cote 2005]. Thus at any given t , one can choose some λ(t) such
that

‖(u(t)− Qλ)‖
2
Ḣ1

e
+‖ut(t)‖2L2 ∼ E(u)−E(Q). (1-5)

Such a parameter λ is uniquely determined up to an error of size O((E(u)−E(Q))1/2). One can, for
instance, choose λ to be the minimizer in (1-4), though there are no obvious benefits to be derived from
that. Another equivalent choice is more direct, namely by the relation

u(t, λ−1(t))= π
2
, (1-6)

and this still satisfies (1-5); see, for instance, [Bejenaru and Tataru 2014]. Since this problem is locally
well-posed in the energy space, scaling considerations show that (for well-chosen λ(t)), we have∣∣∣ d

dt
λ(t)

∣∣∣. λ−2, (1-7)

so at least locally λ stays bounded. Then the main question to ask is as follows:

Open problem. What is the behavior of the function λ(t) for equivariant maps satisfying (1-3)?
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We can distinguish several interesting plausible scenarios:

• Type 1: λ(t) → ∞ as t → t0 (finite time blow-up). By (1-7), this can only happen at rates
λ(t) & |t − t0|−1. The above extreme corresponds to self-similar concentration; this can also be
thought of as a consequence of the finite speed of propagation. In effect, by the important work
[Struwe 2003], it is known that such a blow-up can only occur with speed strictly faster than
self-similar:

λ(t)|t − t0| →∞.

• Type 2: λ(t)→∞ as t→∞ (infinite time focusing).

• Type 3: λ(t)→ 0 as t →∞ (infinite time relaxation). By (1-7), this can only happen at rates
λ(t)& t−1, which corresponds to self-similar relaxation.

• Type 4: λ(t) stays in a compact set globally in time. Then we have a global solution, and possibly a
resolution into a soliton plus a dispersive part.

Blow-up solutions of Type 1 were constructed not long ago in two quite different papers, [Krieger
et al. 2008] and [Rodnianski and Sterbenz 2010], and the result of the latter paper was significantly
strengthened and generalized in [Raphaël and Rodnianski 2012]. The behavior of λ(t) in [Krieger et al.
2008] as t→ 0 is given by

λ(t)= t−1−ν, ν ≥ 1

(here the restriction ν ≥ 1 seems technical, and should really be ν > 0), while that in [Raphaël and
Rodnianski 2012] is

λ(t)∼ t−1ec
√

log t .

The latter solutions were also proved to be stable with respect to a class of small smooth perturbations. It
is not implausible that the set of all blow-up solutions is open in a suitable topology, although numerical
evidence in [Bizoń et al. 2001] appears to suggest the existence of a codimension-one manifold of data
leading to an unstable blow-up, which separates scattering solutions from a stable regime of finite time
blow-up solutions.

Up to this point we are not aware of any examples of solutions of Type 2, 3 or 4 other than the Qλ’s in
the wave maps context, although recent work [Gustafson et al. 2010] revealed unusual solutions of this
type in the context of the Landau–Lifshitz equation. Earlier work [Krieger and Schlag 2007] showed the
existence of Type 4 solutions for the critical focusing nonlinear wave equation on R3+1.

Understanding the general picture for data in the energy space seems out of reach for now. However,
there is a simpler question one may ask, namely, what happens for data which is close to a soliton in a
stronger topology which includes both extra regularity and extra decay at infinity. Neither the results of
[Krieger et al. 2008] nor of [Raphaël and Rodnianski 2012] apply in this context. A good starting point
for this investigation is the following:

Conjecture. There exists a codimension-one set of (small) data leading to Type 4 solutions, which
separates Type 1 and Type 3 solutions.
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One should take this only as a rough guide; some fine adjustments may be needed. Our main result is
to construct a large class of Type 4 solutions:

Theorem 1.1. There exists a codimension-two set of Type 4 equivariant wave maps satisfying (1-3).

For a more precise formulation of the theorem, see page 834. Compared with the conjecture above,
one can see that we are one dimension short. At this point it is not clear if this is a technical issue, or if
something new happens. A plausible scenario might be that the missing dimension may include Type 2
solutions, as well as slowly relaxing Type 4 solutions.

One should also compare this result with the related problem for Schrödinger maps. Although the
solitons are the same and the operator H arising below in the linearization is also the same for Schrödinger
maps, in [Bejenaru and Tataru 2014] it is shown that the solitons are stable with respect to small localized
perturbations. One way to explain this is that the linear growth in the resonant direction occurring in
the H -wave equation has a stronger destabilizing effect than the corresponding lack of decay in the
H -Schrödinger equation.

Notation. Here we introduce some notation which will be used throughout the paper. We slightly modify
the use of 〈 · 〉 in the following sense:

〈x〉 =
√

4+ x2, x ∈ R.

For a real number a, we define a+ =max{0, a} and a− =min{0, a}.
We will use a dyadic partition of R+ into sets {Am}m∈Z given by

Am = {2m−1 < r < 2m+1
}.

For given M > 0, we use smooth localization functions χ.M , χ&M forming a partition of unity for R+

and such that
|(r∂r )

αχ.M | + |(r∂r )
αχ&M |.α 1.

2. The gauge derivative and linearizations

The linearized equation (1-1) around the soliton Q has the form

−vt t − Hv = 0, H =−∂2
r −

1
r
∂r +

cos(2Q)
r2 . (2-1)

The elliptic operator H admits the factorization

H = L∗L , L = h1∂r h−1
1 = ∂r +

h3

r
, L∗ =−h−1

1 ∂r h1−
1
r
=−∂r +

h3− 1
r

, (2-2)

where1 h1 = sin Q = 2r
1+r2 , h3 =− cos Q = r2

−1
r2+1

. H is nonnegative and has a zero resonance

φ0 = h1 =
2r

1+ r2 .

1Throughout this paper we use sin Q, cos Q instead of h1, h3; however, the reader may need this correspondence in order to
relate this work to [Bejenaru and Tataru 2014].
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This resonance is the reason why (2-1) does not have good dispersive estimates. Since φ0 fails to be an
eigenvalue, we cannot project it away as is usually done in standard modulation theory. This suggests
that working with the variable u and its equation (1-1) runs into problems due to the lack of good linear
estimates needed to treat the nonlinearity. Therefore, instead of working with the solution u, we introduce
a new variable

w = ∂r u− 1
r

sin u, (2-3)

which has the nice property that
w = 0⇐⇒ u = Qλ

for some λ ∈ R+. Indeed, by rearranging (1-2) and using u(0)= 0, u(∞)= π , we obtain

E(u)= π
∫
∞

0
(|ut |

2
+ |w|2)r dr +π

∫
∞

0
2 sin u · ∂r u dr = π

∫
∞

0
(|ut |

2
+ |w|2)r dr + 4π,

from which the above observation follows. This type of change of variables originates at least with the
work [Gustafson et al. 2008]. If λ(t) is chosen such that (1-5) holds, then using (1-3), a direct computation
shows that

‖u− Qλ‖Ḣ1
e
≈ ‖w‖2L2 . (2-4)

Then a direct computation shows that w solves

wt t −1w+
2(1+ cos u)

r2 w =
1
r

sin u(u2
t −w

2). (2-5)

The function u appears in this equation, but it can be recovered from w by solving the ODE (2-3) with
Q-like “data” at r =∞.

We remark that the linearized form of (2-3) near Q is

z =
(
∂r −

1
r

cos Q
)
v = Lv, (2-6)

where L was introduced above in (2-2).
On the other hand, the linearized equation for w near Q has the form

zt t −1z+
2(1+ cos Q)

r2 z = 0. (2-7)

This wave equation is governed by the operator

H̃ =−1+
2(1+ cos Q)

r2 =−1+
4

r2(1+ r2)
= L L∗.

This operator is better behaved than H ; in particular, its zero mode ψ0 grows logarithmically at infinity.
The plan is to treat (2-5) in a perturbative manner for the most part. To fix things, we will rewrite it in

the form
(∂2

t + H̃)w =
2(cos Q− cos u)

r2 w+
1
r

sin u(u2
t −w

2) := N (w, u) (2-8)

and work with this from here on. Equation (2-8) for w is preferable due to the nice dispersive properties of
its linear part. However, as u occurs in the w equation, one has to also keep track of it through the elliptic
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equation (2-3). In addition, ut also appears in the above equation. This is related to wt by differentiating
(2-3):

wt =

(
∂r −

1
r

cos u
)

ut . (2-9)

In order to study this equation, we need to understand better the structure of its linear part, and, in
particular, the spectral theory for the operator H̃ . This is the subject of Section 3.

Setup of the problem. The starting point is to consider w̄ to be an exact real solution to the linear
homogeneous equation

(∂2
t + H̃)w̄ = 0, w(0)= w0, wt(0)= w1, (2-10)

where w0 and w1 are real Schwartz functions which are assumed to satisfy the nonresonance conditions

〈w0, ψ0〉 = 0, 〈w1, ψ0〉 = 0. (2-11)

We denote by ū the corresponding map, see (2-3) (this will be made precise in Proposition 5.2), obtained
by solving the ODE

∂r ū− 1
r

sin ū = w̄, ū ∼ Q as r→∞. (2-12)

Now we seek a solution to the nonlinear equation u and its associated gauge derivative w close to ū, w̄
respectively,

u = ū+ ε, w = w̄+ γ, (2-13)

so that u and w match ū and w̄ asymptotically as t→∞.
By a slight abuse of notation, we use ‖ · ‖S to denote a norm obtained by adding sufficiently many

seminorms of the Schwartz space S. We also use .S for inequalities where the implicit constant depends
on ‖(w0, w1)‖S . Modulo defining the X and L X norms, we are now in a position to restate our main
result in a more detailed fashion.

Theorem 2.1. Let w0, w1 be Schwartz functions satisfying the nonresonance conditions (2-11). Let ū
and w̄ be defined as above. Then there exist T .S 1 and a unique wave map u in [T,∞) so that u and w
match ū and w̄ as t→∞ in the following asymptotic fashion for t ∈ [T,∞):

‖γ (t)‖L X .S t−3/2, ‖∂tγ (t)‖L X .S t−5/2, ‖γ (t)‖Ḣ1 .S t−5/2, (2-14)

respectively
‖ε(t)‖X .S t−3/2, ‖∂tε(t)‖L X .S t−5/2. (2-15)

Furthermore, the map u and its corresponding gauge derivative w have a Lipschitz dependence on
(w0, w1) with respect to the above norms.

One would expect the above result to be in terms of L2 and Ḣ 1
e spaces. However, these spaces are

very disconnected from the spectral structure of H and H̃ , particularly at low frequencies, and this makes
them unsuitable. The spaces X ⊂ Ḣ 1

e and L X ⊂ L2 have been introduced in [Bejenaru and Tataru 2014]
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to address exactly this issue: they are low-frequency corrections of Ḣ 1
e , respectively L2. Their exact

definition is provided in the next section.
In view of (2-8), the function γ solves

(∂2
t + H̃)γ = N (w̄+ γ, ū+ ε) (2-16)

with zero Cauchy data at infinity. By (2-3), (2-9), (2-13) and (2-12), the functions ε and εt are determined
from the equations

γ = ∂rε−
sin(ε+ ū)− sin ū

r
,

γt =

(
∂r −

cos(ε+ ū)
r

)
εt −

cos(ε+ ū)− cos ū
r

ūt .

(2-17)

We proceed as follows. In the next section we recall from [Bejenaru and Tataru 2014] the spectral theory
for H (which in fact originates in [Krieger et al. 2008]) and H̃ and the definitions and some properties of
the spaces X and L X . Then, in Section 4, we provide linear estimates for the linear (inhomogeneous)
wave equation corresponding to (2-10). In Section 5, we analyze the first approximations w̄ and ū using
(2-12). Then, in Section 6, we continue with the study of the relation between ε and γ based on (2-17).
All the analysis carried out in Sections 4–6 is done in the context of X and L X spaces. In the end, in
Section 7, we study the solvability of Equation (2-16) using perturbative methods in L X based spaces.

3. The modified Fourier transform

In this section, we recall the spectral theory associated with the operators H, H̃ . The spectral theory for
H was developed in [Krieger et al. 2008], and the one for H̃ was derived from the one for H in [Bejenaru
and Tataru 2014]. In this paper, we follow closely the exposition in [Bejenaru and Tataru 2014].

Generalized eigenfunctions. We consider H acting as an unbounded self-adjoint operator in L2(rdr).
Then H is nonnegative, and its spectrum [0,∞) is absolutely continuous. H has a zero resonance, namely
φ0 = h1:

Hh1 = 0.

For each ξ > 0, one can choose a normalized generalized eigenfunction φξ ,

Hφξ = ξ 2φξ .

These are unique up to a ξ dependent multiplicative factor, which is chosen as described below.
To these one associates a generalized Fourier transform FH defined by

FH f (ξ)=
∫
∞

0
φξ (r) f (r)r dr,

where the integral above is considered in the singular sense. This is an L2 isometry, and we have the
inversion formula

f (r)=
∫
∞

0
φξ (r)FH f (ξ)dξ.



836 IOAN BEJENARU, JOACHIM KRIEGER AND DANIEL TATARU

The functions φξ are smooth with respect to both r and ξ . To describe them, one considers two distinct
regions, rξ . 1 and rξ & 1.

In the first region, rξ . 1, the functions φξ admit a power series expansion of the form

φξ (r)= q(ξ)
(
φ0+

1
r

∞∑
j=1

(rξ)2 jφ j (r2)

)
, rξ . 1, (3-1)

where φ0 = h1 and the functions φ j are analytic and satisfy

|(r∂r )
αφ j |.α

C j

( j−1)!
log (1+ r). (3-2)

This bound is not spelled out in [Krieger et al. 2008], but it follows directly from the integral recurrence
formula for the f j given on p. 578 of that paper. The smooth positive weight q satisfies

q(ξ)≈


1

ξ 1/2| log ξ |
if ξ � 1,

ξ 3/2 if ξ � 1,
|(ξ∂ξ )

αq|.α q. (3-3)

Defining the weight

m1
k(r)=

min
{

1, r2k log (1+ r2)

〈k〉

}
if k < 0,

min{1, r323k
} if k ≥ 0,

(3-4)

it follows that the nonresonant part of φξ satisfies∣∣(ξ∂ξ )α(r∂r )
β
(
φξ (r)− q(ξ)φ0(r)

)∣∣.αβ 2k/2m1
k(r), ξ ≈ 2k, rξ . 1. (3-5)

In the other region, rξ & 1, we begin with the functions

φ+ξ (r)= r−1/2eirξσ(rξ, r), rξ & 1, (3-6)

solving
Hφ+ξ = ξ

2φ+ξ ,

where for σ , we have the asymptotic expansion

σ(q, r)≈
∞∑
j=0

q− jφ+j (r), φ+0 = 1, φ+1 =
3i
8
+ O

(
1

1+ r2

)
,

with supr>0 |(r∂r )
kφ+j |<∞ in the following sense:

sup
r>0

∣∣∣∣(r∂r)α(q∂q)
β

(
σ(q, r)−

j0∑
j=0

q− jφ+j (r)
)∣∣∣∣≤ cα,β, j0q− j0−1.

Then we have the representation

φξ (r)= a(ξ)φ+ξ (r)+ a(ξ)φ+ξ (r), (3-7)
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where the complex-valued function a satisfies

|a(ξ)| =

√
2
π
, |(ξ∂ξ )

αa(ξ)|.α 1. (3-8)

The spectral theory for H̃ is derived from the spectral theory for H due to the conjugate representations

H = L∗L , H̃ = L L∗.

This allows us to define generalized eigenfunctions ψξ for H̃ using the generalized eigenfunctions φξ for
H ,

ψξ = ξ
−1Lφξ , L∗ψξ = ξφξ . (3-9)

It is easy to see that ψξ are real and smooth, vanish at r = 0, and solve

H̃ψξ = ξ 2ψξ .

With respect to this frame, we can define the generalized Fourier transform adapted to H̃ by

FH̃ f (ξ)=
∫
∞

0
ψξ (r) f (r)r dr,

where the integral above is considered in the singular sense. This is an L2 isometry, and we have the
inversion formula

f (r)=
∫
∞

0
ψξ (r)FH̃ f (ξ)dξ. (3-10)

To see this, we compute, for a Schwartz function f ,

FH̃ L f (ξ)=
∫
∞

0
ψξ (r)L f (r)r dr =

∫
∞

0
L∗ψξ (r) f (r)r dr =

∫
∞

0
ξφξ (r) f (r)r dr = ξFH f (ξ).

Hence
‖FH̃ L f ‖2L2 = ‖ξFH f (ξ)‖2L2 = 〈H f, f 〉L2(rdr) = ‖L f ‖2L2,

which suffices, since L f spans a dense subset of L2.
The representation ofψξ in the two regions rξ .1 and rξ &1 is obtained from the similar representation

of φξ . In the first region, rξ . 1, the functions ψξ admit a power series expansion of the form

ψξ = ξq(ξ)
(
ψ0(r)+

∑
j≥1

(rξ)2 jψ j (r2)

)
, (3-11)

where
ψ j (r)= (h3+ 1+ 2 j)φ j+1(r)+ r∂rφ j+1(r).

From (3-2), it follows that

|(r∂r )
αψ j |.α

C j

( j−1)!
log (1+ r2).

In addition, ψ0 solves L∗ψ0 = φ0, and therefore a direct computation shows that
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ψ0 =
1
2

(
(1+ r2) log(1+ r2)

r2 − 1
)
.

In particular, defining the weights

mk(r)=

min
{

1,
log (1+ r2)

〈k〉

}
if k < 0,

min{1, r222k
} if k ≥ 0,

(3-12)

we have the pointwise bound for ψξ∣∣(r∂r )
α(ξ∂ξ )

βψξ (r)
∣∣.αβ 2k/2mk(r), ξ ≈ 2k, rξ . 1. (3-13)

On the other hand, in the regime rξ & 1, we define

ψ+ = ξ−1Lφ+,

and we obtain the representation

ψξ (r)= a(ξ)ψ+ξ (r)+ a(ξ)ψ+ξ (r). (3-14)

For ψ+, we obtain the expression

ψ+ξ (r)= r−1/2eirξ σ̃ (rξ, r), rξ & 1, (3-15)

where σ̃ has the form

σ̃ (q, r)= iσ(q, r)− 1
2q−1σ(q, r)+ ∂

∂q
σ(q, r)+ ξ−1Lσ(q, r),

and therefore it has exactly the same properties as σ . In particular, for fixed ξ , we obtain that

σ̃ (rξ, r)= i − 7
8r−1ξ−1

+ O(r−2). (3-16)

We conclude our description of the generalized eigenfunctions and of the associated Fourier transforms
with a bound on the H̃ Fourier transforms of Schwartz functions.

Lemma 3.1. If f is a Schwartz function satisfying 〈 f, ψ0〉 = 0, then

∣∣(ξ∂ξ )αFH̃ f (ξ)
∣∣.α,N


ξ 5/2

〈log ξ〉
if ξ . 1,

〈ξ〉−N if ξ & 1.
(3-17)

Proof. We start from the definition of the modified Fourier transform and use that 〈 f, ψ0〉 = 0:

|FH̃ f (ξ)|.
(∣∣∣∣∫ ξ−1

0
ψξ (r) f (r)r dr

∣∣∣∣+ ∣∣∣∣∫ ∞
ξ−1

ψξ (r) f (r)r dr
∣∣∣∣)

. ξq(ξ)
(∫

∞

ξ−1

∣∣ψ0(r) f (r)
∣∣r dr +

∫ ξ−1

0

∑
j≥1

(rξ)2 jψ j (r2) f (r)r dr
)
+

∫
∞

ξ−1
| f (r)|r1/2 dr

. ξ 3q(ξ).

A similar argument takes care of the case α > 0. �
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The spaces X and L X. The operator L maps Ḣ 1
e into L2. Conversely, one would like that, given some

f ∈ L2, we could solve Lu = f and obtain a solution u which is in Ḣ 1
e and satisfies

‖u‖Ḣ1
e
. ‖ f ‖L2 .

However, this is not the case. The first observation is that the solution is only unique modulo a multiple of
the resonance φ0. Moreover, the inequality above is not expected to be true, even assuming that somehow
we choose the “best” u from all candidates.

The spaces X and L X are in part introduced in order to remedy both the ambiguity in the inversion of
L and the failing inequality.

Definition 3.2. (a) The space X is defined as the completion of the subspace of L2(r dr) for which the
following norm is finite:

‖u‖X =

(∑
k≥0

22k
‖P H

k u‖2L2

)1/2

+

∑
k<0

1
|k|
‖P H

k u‖L2,

where P H
k is the Littlewood–Paley operator localizing at frequency ξ ≈ 2k in the H calculus.

(b) L X is the space of functions of the form f = Lu with u ∈ X , with norm ‖ f ‖L X = ‖u‖X . Expressed
in the H̃ calculus, the L X norm is written as

‖ f ‖L X =

(∑
k≥0

‖P H̃
k f ‖2L2

)1/2

+

∑
k<0

2−k

|k|
‖P H̃

k f ‖L2 .

In this article we work with equivariant wave maps u for which ‖u− Q‖X � 1. This corresponds to
functions w which satisfy ‖w‖L X � 1. The simplest properties of the space X are summarized as follows
(see Proposition 4.2 in [Bejenaru and Tataru 2014]):

Proposition 3.3. The following embeddings hold for the space X :

H 1
e ⊂ X ⊂ Ḣ 1

e . (3-18)

In addition, for f in X , we have the bounds

‖
〈
r〉1/2 f

∥∥
L∞ . ‖ f ‖X , (3-19)∥∥∥∥ f

log(1+ r)

∥∥∥∥
L2
. ‖ f ‖X , (3-20)∥∥〈r〉1/2 f

∥∥
L4 . ‖ f ‖X . (3-21)

Now we turn our attention to the space L X . From [Bejenaru and Tataru 2014, Lemma 4.4 and
Proposition 4.5], we have:

Lemma 3.4. If f ∈ L2 is localized at H̃ -frequency 2k , then

| f (r)|. 2kmk(r)(1+ 2kr)−1/2
‖ f ‖L2 . (3-22)
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Proposition 3.5. The following embeddings hold for L X :

L1
∩ L2
⊂ L X ⊂ L2. (3-23)

4. Linear estimates for the H̃ wave equation

In this section, we prove estimates for the linear equation

(∂2
t + H̃)ψ = f, (4-1)

with zero Cauchy data at infinity. The solution is given by ψ = K f , where

K f (r, t)=−F−1
H̃

∫
∞

t

sin(t − s)ξ
ξ

FH̃ f (ξ, s)ds. (4-2)

We also need its time derivative, which is given by

∂t K f =−F−1
H̃

∫
∞

t
cos(t − s)ξ ·FH̃ f (ξ, s)ds.

Finally, we need the following formula, which follows from (3-9):

L∗K f =−F−1
H

∫
∞

t
sin(t − s)ξ ·FH̃ f (ξ, s)ds.

The following result is a modification of the standard energy estimate for the wave equation:

Lemma 4.1. Assume that f (s) ∈ L X. Then for every α > 0, the solution of (4-1) with zero data at∞
satisfies

tα‖ψ(t)‖L X + tα+1(
‖∂tψ(t)‖L X +‖ψ(t)‖Ḣ1

e

)
. sup

s
sα+2
‖ f (s)‖L X . (4-3)

Proof. The solution of (4-1) with zero data at∞ is given by ψ = K f . The estimate for the first term
follows from the bound

∣∣(sin(t− s)ξ)/ξ
∣∣. |t− s| and the representation of the spaces L X on the Fourier

side. The estimate for the second term is similar.
The argument for the third term is more involved. We define g by

FH̃ g(t, ξ)=−
∫
∞

t
sin((t − s)ξ)FH̃ f (ξ, s)ds.

Then
ξFH̃ψ(t, ξ)= FH̃ g(t, ξ).

We estimate, as above,

‖g(t)‖L X .
∫
∞

t
‖ f (s)‖L X ds . t−α−1 sup

s
sα+2
‖ f (s)‖L X .

Hence it suffices to show that for ψ and g related as above, we have

‖ψ‖Ḣ1
e
. ‖g‖L X . (4-4)
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Here the time variable plays no role and is discarded. Recalling the form of L∗ from (2-2), namely
L∗ =−∂r + (h3− 1)/r , it follows that

‖ψ‖Ḣ1
e
. ‖L∗ψ‖L2 +

∥∥∥∥ψr
∥∥∥∥

L2
.

For the first term, we use Plancherel to write

‖L∗ψ(t)‖2L2 = 〈ψ(t), H̃ψ(t)〉 = ‖ξFH̃ψ(ξ)‖
2
L2 = ‖g‖L2 . ‖g‖2L X .

For the second term, the L2 bound for g no longer suffices, and we need to use the L X norm of g. We
consider a Littlewood–Paley decomposition for both ψ and g, and denote their dyadic pieces by ψk ,
respectively gk . Then

‖ψk‖L2 ≈ 2−k
‖gk‖L2 .

By using (3-13)–(3-14) and the Cauchy–Schwartz inequality, we obtain pointwise bounds for ψk , namely,

|ψk |.
mk(r)
〈2kr〉1/2

2k
‖ψk‖L2 .

mk(r)
〈2kr〉1/2

‖gk‖L2,

with mk as in (3-12). For k ≥ 0, the contributions are almost orthogonal, and we obtain∥∥∥∥ψ≥0

r

∥∥∥∥
L2
. ‖g≥0‖L2 .

However, if k < 0, then the weaker logarithmic decay for small r no longer suffices for such an argument.
Instead, by direct computation, we obtain a weaker bound,∥∥∥∥ψk

r

∥∥∥∥
L2
. |k|1/2‖gk‖L2 . |k|3/22k

‖g‖L X .

Then the k summation is easily accomplished. �

5. Analysis of the first approximations w̄ and ū

Pointwise bounds for w̄. We define f0 and f1 by f0 = FH̃w0 and f1 = FH̃w1. Then for w̄, we have
the representation

w̄(t, r)=
∫
∞

0
ψξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
dξ.

Since w0, w1 are Schwartz functions satisfying (2-11), from (3-17) we obtain

∣∣(ξ∂ξ )α f0(ξ)
∣∣+ ∣∣(ξ∂ξ )α f1(ξ)

∣∣.α,N ‖(w0, w1)‖S


ξ 5/2

〈log ξ〉
if ξ . 1,

〈ξ〉−N if ξ & 1.
(5-1)

Here, by a slight abuse of notation, we use ‖ . ‖S to denote a finite collection of the S seminorms. This
will allow us to obtain pointwise bounds for w̄:
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Lemma 5.1. If w0, w1 are Schwartz functions satisfying the moment conditions (2-11), then w̄ satisfies

|w̄(r, t)|.
log(1+ r2)

log〈r + t〉
1

〈t + r〉1/2〈t − r〉5/2 log〈r − t〉
‖(w0, w1)‖S. (5-2)

Proof. We fix k and consider

w̄k(t, r)=
∫
∞

0
ψξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
χk(ξ)dξ.

For ψξ (r), we use the representation (3-11) in the region {rξ . 1}, respectively (3-14) in the region
{rξ & 1}. Then via a standard stationary phase argument, we obtain

|wk(r, t)|.N
2k/2
〈2kr〉−1/2mk(r)
〈2k |r − t |〉N 〈k−〉

25k/22−Nk+ .

The desired estimate (5-2) follows by summing these bounds with respect to k. �

Bounds for ū, ūt . Next we consider ū, which is recovered from w̄ via (2-12). This equation contains a
nonlinear part coming from the sine function. Consequently, we split ū into a linear and a nonlinear part:

ū = Q+ ūl
+ ūnl,

where ūl solves the linear part of (2-12),
Lūl
= w̄,

and ūnl solves
Lūnl
= N (ūl, ūnl), (5-3)

where
N (u, v)= 1

r
[
sin Q ·

(
cos(u+ v)− 1

)
+ cos Q ·

(
sin(u+ v)− (u+ v)

)]
.

Both of the above ODE’s are taken with zero Cauchy data at infinity or, equivalently, can be interpreted
via the diffeomorphism L : X→ L X . The linear part, ūl , is recovered from the explicit formula

ūl
:= L−1w̄ =

∫
∞

0
ξ−1φξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
dξ,

and will be split into a resonant and a nonresonant part: ūl
= ūl,r

+ ūl,nr .
For the nonlinear part, we use an iterative argument based on the fact that there is enough decay on the

right-hand side that we can recover it via

ūnl
= h1(r)

∫
∞

r

N (ūl, ūnl)

h1(s)
ds. (5-4)

At this stage, we also want to keep track of the differences of solutions. For this, we denote by δw0, δw1,
δw̄, δū the corresponding differences.

Proposition 5.2. (a) Assume that w0, w1 are Schwartz functions satisfying (2-11). Then

ūl
= ūl,r

+ ūl,nr , (5-5)
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where ūl,r and ūl,nr satisfy the bounds

|ūl,r
| + r |∂r ūl,r

| + 〈r + t〉|∂t ūl,r
|.

h1(r)

〈t + r〉 log2
〈t + r〉

‖(w0, w1)‖S,

|ūl,nr
| +

r〈r − t〉
〈t + r〉

|∂r ūl,nr
| + 〈r − t〉|∂t ūl,nr

|.
r

r +〈t〉
1

〈t + r〉1/2〈t − r〉3/2 log〈t − r〉
‖(w0, w1)‖S.

(5-6)
In addition, ∣∣∣(∂r + ∂t)ūl

+
1
2r

ūl
∣∣∣. 1

t5/2〈r − t〉1/2 log〈t − r〉
‖(w0, w1)‖S, r ∼ t. (5-7)

(b) For t &S 1, the nonlinear part ūnl satisfies the bounds

|ūnl(r, t)|.S h1(r)t−1.5
‖(w0, w1)‖S,

∣∣∂t ūnl
+

1
12 h1(ūl)3

∣∣.S h1(r)t−2
‖(w0, w1)‖S. (5-8)

(c) The above estimates hold true for δūnl and δ∂t ūl :

|δūnl(r, t)|.S h1(r)t−1.5
‖(δw0, δw1)‖S,

∣∣δ∂t ūnl
+

1
12 h1δ(ūl)3

∣∣.S h1(r)t−2
‖(δw0, δw1)‖S. (5-9)

Remark 5.3. By finite speed of propagation arguments, it is not difficult to show that ūl decays rapidly
outside the cone. However, for our purposes, the decay established in the above proposition suffices.

Remark 5.4. The bound (5-7) shows that a double cancellation occurs on the light cone, as opposed to
the expected single cancellation. This is a consequence of the exact decay properties at infinity for the
potential in H̃ .

Remark 5.5. The second estimate in part (b) is the outcome of a more subtle nonlinear cancellation,
rather then a brute force computation.

Proof. (a) We first split ūl into two parts,

ūl(r, t)=
∑

k

ūl
k(r, t)=

∑
2k.r−1

ūl
k(r, t)+

∑
2k& r−1

ūl
k(r, t) := ūl

low(r, t)+ ūl
hi(r, t),

where

ūl
k =

∫
ξ−1φξ (r)χk(ξ)

(
cos(tξ) · f̂0(ξ)+

sin(tξ)
ξ

f̂1(ξ)

)
dξ.

The functions f̂0(ξ) and f̂1(ξ) belong to the same class, and for large ξ they are smooth and rapidly
decaying. Hence the first term in the above formula is better than the second, and will be neglected in the
sequel. Then using the power series (3-1), we can write

ūl
k =

∫
ξ−2q(ξ) sin(tξ)

(
φ0(r)+

1
r

∑
j≥1

(rξ)2 jφ j (r2)

)
f̂1(ξ)χk(ξ)dξ, 2kr . 1,

which leads to a corresponding decomposition

ūl
low = ūl,0

low+
∑
j≥1

ūl, j
low.
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Then we set

ūl,r
= ūl,0

low, ūl,nr
= ūl

hi+
∑
j≥1

ūl, j
low, (5-10)

and proceed to estimate all of the above components of ūl .
The terms in ūl

hi are estimated by stationary phase using (5-1) and the φξ representation in (3-7). This
yields

|ūl
k |.

r−1/223k/2

〈2k |r − t |〉N 〈k−〉
2−Nk+, 2kr & 1, (5-11)

which, after summation with respect to k, gives the bound

|ūl
hi|.

∑
2k&r−1

|ūl
k(r, t)|.

(
r
〈r + t〉

)N 1
〈r + t〉1/2〈r − t〉3/2 log〈r − t〉

.

The bounds for the time derivative are obtained from the explicit formula

∂t ūl
=

∫
∞

0
φξ (r)

(
− f0(ξ) sin(tξ)+ 1

ξ
f1(ξ) cos(tξ)

)
dξ,

which shows that we produce an extra 2k factor in (5-11). Similarly, an r derivative applied to φξ yields
an additional 2k factor in the asymptotic expansion. Thus we obtain

|∂t ūl
k | + |∂r ūl

k |.
r−1/225k/2

〈2k |r − t |〉N 〈k−〉
2−Nk+, 2kr & 1, (5-12)

which leads to

|∂t ūl
hi | + |∂r ūl

hi |.

(
r
〈r + t〉

)N 1
〈r + t〉1/2〈r − t〉5/2 log〈r − t〉

.

We now consider the terms in ūl, j
low. The main contribution comes from f1, so we take f0 = 0 for

convenience. For j = 0, we have

ūl,0
low = φ0(r)

∑
k

χ.2−k (r)
∫
ξ−2q(ξ) sin(tξ) f̂1(ξ)χk(ξ)dξ := φ0(r)

∑
k

χ.2−k (r)g0
k (t) := φ0(r)g0(r, t).

Using stationary phase and the properties of q , we have

|g0
k (t)| + 2−k

|∂t g0
k (t)|.

2k

〈k−〉2〈2k t〉N
2−Nk+ .

By summing with respect to k, we obtain

|g0(r, t)| + 〈t + r〉
(
|∂r g0(r, t)| + |∂t g0(r, t)|

)
.

1

〈t + r〉 log2
〈t + r〉

, (5-13)

which yields the ūl,r bound in (5-6).
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For j ≥ 1, we have

ul, j
low =

∑
k

χ{r.2−k}
1
r

∫
ξ−2q(ξ) sin(tξ)

∑
j≥1

(rξ)2 jφ j (r2) f̂1(ξ)χk(ξ)dξ

:= r2 j−1φ j (r2)
∑

k

χ.2−k (r)g j
k (t) := r2 j−1φ j (r2)g j (r, t).

By stationary phase and the properties of q and f̂1, we have

|g j
k (r, t)| + 2−k(

|∂t g
j
k (r, t)| + |∂r g j

k (r, t)|
)
.

2(2 j+1)k

〈k−〉2〈2k t〉N
2−Nk+ .

Summing up over k, we obtain

|g j (r, t)| + 〈t + r〉
(
|∂r g j (r, t)| + |∂t g j (r, t)|

)
.

1

〈t + r〉2 j+1 log2
〈t + r〉

. (5-14)

Hence, using the bound (3-2) for φ j , we obtain a bound for ūl, j
low, namely

|ūl, j
low(r, t)| + |r∂r ūl, j

low(r, t)| + 〈t + r〉|∂t ū
l, j
low(r, t)|.

C j

j !
r2 j−1 log(1+ r2)

〈t + r〉2 j+1 log2
〈t + r〉

. (5-15)

Thus these contributions satisfy the bounds required of ūl,nr .
We now turn our attention to the estimate (5-7), which applies in the region where r ≈ t . By (5-6)

(for ūl) and (5-15), the contributions of the term ūl
low are all below the required threshold, so it remains

to consider ūl
hi. We have

ūl
hi(r, t)=

∫
∞

0
χ&r−1(ξ)ξ−1φξ (r)

(
f0(ξ) cos(tξ)+ 1

ξ
f1(ξ) sin(tξ)

)
dξ.

For φξ , we use the representation (3-7), with φ+ξ as in (3-6),

φξ = r−1/2(a(ξ)σ (rξ, r)eirξ
+ ā(ξ)σ̄ (rξ, r)e−irξ ), rξ & 1.

We notice that the operator ∂r + ∂t kills the resonant factors e±i(r−t)ξ . Precisely, we have(
∂r + ∂t +

1
2r

)
φξ (r) sin(tξ)= 2r−1/2

<
(
eiξ(r+t)ξa(ξ)σ (rξ, r)

)
+ 2r−1/2

<
(
eirξa(ξ)∂rσ(rξ, r)

)
sin(tξ),

and a similar computation where sin(tξ) is replaced by cos(tξ). This leads to(
∂r + ∂t +

1
2r

)
ūl

hi

=

∫
∞

0
χ&r−1(ξ)r−1/2

<
(
2ξei(r+t)ξa(ξ)σ (rξ, r)+ 2eirξa(ξ)∂rσ(rξ, r) cos(tξ)

) f0(ξ)

ξ
dξ

+

∫
∞

0
χ&r−1(ξ)r−1/2

<
(
2ξei(r+t)ξa(ξ)σ (rξ, r)+ 2eirξa(ξ)∂rσ(rξ, r) sin(tξ)

) f1(ξ)

ξ 2 dξ.

The two integrals above are treated as before, using stationary phase. The first term in each of the last
integrals has a nonresonant phase; therefore each integration by parts gains a factor of (ξ t)−1. Thus,
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taking (5-1) into account, their contributions can be estimated by∫
∞

0
χ&t−1(ξ)t−1/2ξ(tξ)−N ξ 5/2

ξ 2 log ξ
dξ ≈

1
t3 log t

.

The second term contains the expression ∂rσ(rξ, r), which (see the description of σ in Section 3) brings
an additional factor of r−1(rξ)−1

≈ t−2ξ−1. The contribution of the part with phase eiξ(r+t) is better than
above, while the contribution of the part with phase eiξ(r−t) is of the form∫

∞

0
χ&t−1(ξ)a(ξ)t−1/2t−1(tξ)−1eiξ(t−r) ξ 5/2

ξ 2 log ξ
dξ ≈

1
t5/2〈t − r〉1/2 log〈t − r〉

,

as desired.

(b) We find unl from (5-4) using a fixed point argument in the Banach space Znl with norm

‖ f ‖Znl = ‖h−1
1 t1.5 f ‖L∞ .

Denoting by Z l the Banach space of functions of the form ūl,r
+ ūl,nr with norm as in (5-5)–(5-6), we

will show that the map

T : (u, v)→ L−1 N (u, v)= h1(r)
∫
∞

r

N (u, v)
h1(s)

ds

is locally Lipschitz from Z l
× Znl into Znl , and that in addition, the Lipschitz constant with respect to

the second variable v can be made small if either both arguments are small or if u and v are in a bounded
set B and the time t is large enough, depending on the size of B. This would imply the existence and
uniqueness of ūnl , as well as its Lipschitz dependence on ūl and, implicitly, on (w0, w1). Recall that

N (u, v)= 1
r
[
sin Q ·

(
cos(u+ v)− 1

)
+ cos Q ·

(
sin(u+ v)− (u+ v)

)]
Then

|N (u, v)|.
1

r2+ 1
(|u|2+ |v|2)+

1
r
(|u|3+ |v|3),

|∇N (u, v)|.
1

r2+ 1
(|u| + |v|)+

1
r
(|u|2+ |v|2).

Hence, it remains to show that∫
∞

0

1
r
(|u|2+ |v|2)+

r2
+ 1

r2 (|u|3+ |v|3)dr . t−1.5(
‖u‖2Z l +‖v‖

2
Znl +‖u‖3Z l +‖v‖

3
Znl

)
.

For u, we have two components ur and unr , and therefore we need to consider the six integrals∫
∞

0

1
r
|ur
|
2dr .

∫
∞

0

1
r

h2
1(r)

(t log2 t)2
dr · ‖u‖2Z l ≈

1

t2 log4 t
‖u‖2Z l ,∫

∞

0

1
r
|unr
|
2dr .

∫
∞

0

1
r

r2

(t + r)2t〈t − r〉3 log2
〈t − r〉

dr · ‖u‖2Z l ≈
1
t2 ‖u‖

2
Z l ,∫

∞

0

1
r
|v|2dr .

∫
∞

0

1
r

h2
1(r)t

−3dr · ‖v‖2Znl ≈
1
t3 ‖v‖

2
Znl ,
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∞

0

r2
+ 1

r2 |u
r
|
3dr .

∫
∞

0

r2
+ 1

r2

h3
1(r)

(t log2 t)3
dr · ‖u‖3Z l ≈

1

t3 log6 t
‖u‖3Z l ,∫

∞

0

r2
+ 1

r2 |u
nr
|
3dr .

∫
∞

0

r2
+ 1

r2

r3

(t + r)3t3/2〈t − r〉9/2 log3
〈t − r〉

dr · ‖u‖3Z l ≈
1

t1.5 ‖u‖
3
Z l ,∫

∞

0

r2
+ 1

r2 |v|
3dr .

∫
∞

0

r2
+ 1

r2 h3
1(r)t

−4.5dr · ‖v‖3Znl ≈
1

t4.5 ‖v‖
3
Znl .

We remark that the worst decay t−1.5 comes from the penultimate integral above; all other terms are
better. Furthermore, this term comes solely from the u dependence of N (u, v). Thus, with our choice of
norms, the Lipschitz constant for L−1 N (u, v) with respect to u cannot be made small by taking t large;
however, the Lipschitz constant with respect to v does have a negative power of t in it.

The argument for ∂t ūnl is more involved. Differentiating (5-3), we obtain

L
(
∂t ūnl
+

h1

12
(ūl)3

)
= Nu(ūl, ūnl)∂t ūl

+ Nv(ūl, ūnl)∂t ūnl
+

h1

12
∂r (ūl)3

= Nv(ūl, ūnl)

(
∂t ūnl
+

h1

12
(ūl)3

)
+

[
Nu(ūl, ūnl)−

h1

4
(ūl)2

]
∂t ūl

−
1
12 Nv(ūl, ūnl)h1(ūl)3+

h1

12
(∂t + ∂r )(ūl)3. (5-16)

We interpret this as a linear equation for w = ∂t ūnl
+ (h1/12)(ūl)3, namely,

Lw = Nv(ūl, ūnl)w+ N1(ūl, ūnl).

The approach is similar to what we have done before. We adjust the base space to

‖ f ‖Z̃nl = ‖h−1
1 t2 f ‖L∞

and prove that w→ L−1(Nv(ūl, ūnl)w) is bounded from Z̃nl to Z̃nl with small norm, and also Lipschitz
with respect to (ūl, ūnl) ∈ Z l

× Znl (but not necessarily with small Lipschitz constant), and also that
L−1 N1 is Lipschitz from Z l

× Znl to Z̃nl (no smallness needed).
The first bound above follows from the previous computation. The main cancellation occurs in the first

term in N1, where the (ūl)2 term disappears. Precisely, we have

Nu(u, v)− 1
4 h1u2

=−
2

1+ r2 sin(u+ v)−
1− r2

r(1+ r2)

(
1− cos(u+ v)

)
−

r
2(1+ r2)

u2,

and therefore∣∣Nu(u, v)− 1
4 h1u2∣∣. 1

1+ r2 (|u| + |v|)+
1
r

(
|u|3+ |u||v| + |v|2

)
+

1
r(1+ r2)

|u|2.

For ∂t ūl , we use the same bounds as for ūl . Then, compared with the previous computation, we need to
reestimate the terms involving |u|3, |u||v| and |u|2. The resonant part of u yields better bounds, so we
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only estimate terms involving unr :∫
∞

0

r2
+1

r2 |u
nr
|
4dr . ‖u‖4Z l ·

∫
∞

0

r2
+1

r2

r4

(t+r)4t2〈t−r〉6 log4
〈t−r〉

dr ≈
1
t2 ‖u‖

4
Z l ,∫

∞

0

r2
+1

r2 |u
nr
|
2
|v|dr . ‖u‖2Z l‖v‖Znl

∫
∞

0

r2
+1

r2

r2

(t+r)2t2.5〈t−r〉3 log2
〈t−r〉

dr ≈
1

t2.5 ‖u‖
2
Z l‖v‖Znl ,∫

∞

0

1
r2 |u

nr
|
3dr . ‖u‖3Z l ·

∫
∞

0

1
r2

r3

(t+r)3t1.5〈t−r〉4.5 log3
〈t−r〉

dr ≈
1

t3.5 ‖u‖
4
Z l .

The third term on the right in (5-16) is better behaved than the second. Finally, for the last term in (5-16),
we invoke (5-7) so that we use the same bounds for (∂t + ∂r )(ūl) as for r−1ūl . Then the integral to
estimate is ∫

∞

0

1
r
|u|3dr .

1
t2.5 ‖u‖

3
Z l .

(c) In the case of ūl , this part follows from the linearity. In the case of ūnl , the Lipschitz dependence on
ūl has already been discussed above. An additional argument is required for δ∂t ūnl . However, nothing
new happens there, and the details are left for the reader. �

6. The transition between γ and ε

In this section, we study the transition from γ to ε, which were both introduced in (2-13). This transition
is described by (2-17), which we recall for convenience:

γ = ∂rε−
sin(ε+ ū)− sin ū

r
.

The main result of this section is the following:

Proposition 6.1. (a) Assume that γ ∈ L X is small and ū, w̄ are as in Proposition 5.2. Then for t large
enough, there exists a unique solution ε ∈ X of (2-17) which satisfies

‖ε‖X .S ‖γ ‖L X . (6-1)

Furthermore, ε has a Lipschitz dependence on both γ and the linear data (w0, w1) for w̄:

‖δε‖X .S ‖δγ ‖L X +
1

t log2 t
‖(δw0, δw1)‖S‖γ ‖L X . (6-2)

(b) Also, if γ is a function of t , then

‖∂tε‖X .S ‖∂tγ ‖L X +
1

t log2 t
‖γ ‖L X , (6-3)

with the corresponding Lipschitz dependence

‖δ∂tε‖X .S ‖δ∂tγ ‖L X +
1

t log2 t
‖δγ ‖L X +‖(δw0, δw1)‖S

(
‖∂tγ ‖L X +

1

t log2 t
‖γ ‖L X

)
. (6-4)
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(c) Assume in addition that γ ∈ L∞. Then

|ε(r)|.S r log r‖γ ‖L X∩L∞, r � 1, (6-5)

with a similar Lipschitz dependence.

Proof. (a) Equation (2-17) is rewritten as

Lε = γ +
sin(ε+ ū)− sin ū− cos Q · ε

r
:= γ + F(ε, ū− Q). (6-6)

Hence, in order to prove both (6-1) and (6-2), it suffices to show that at fixed large enough time, the map
F is Lipschitz:

F : X × (Z l
+ Znl)→ L X,

with a small Lipschitz constant in the second variable. For the X norm, we use the embeddings (3-18)–
(3-21). For the L X norm, we use (3-23), which shows that it is enough to estimate F(ū, ε) in L1

∩ L2.
We expand F as follows:

F(β, v)=
sin(β + Q+ v)− sin(Q+ v)− cos Q ·β

r

=
(cos(Q+ v)− cos Q) ·β

r
−

sin(Q+ v) ·β2

2r
+

O(β3)

r

=−
sin Q · vβ

r
−

sin Q ·β2

2r
+

O(v2β)

r
+

O(β3)

r
.

Hence

|F(β, v)|.
|v||β|

1+ r2 +
|β|2

1+ r2 +
|β|3

r
+
|v|2|β|

r
. (6-7)

By using (3-20), (3-18) and (5-6), we bound this first in L2,

‖F(β, v)‖L2 .

∥∥∥∥ β

log(1+ r)

∥∥∥∥
L2

(
‖β‖L∞ +‖β‖

2
L∞ +

∥∥∥∥ v

1+ r

∥∥∥∥
L∞
+

∥∥∥∥v2 log(1+ r)
r

∥∥∥∥
L∞

)
. ‖β‖2X +‖β‖

3
X +‖β‖X

(
1

t log2 t
‖v‖Z l+Znl +

log t
t2 ‖v‖

2
Z l+Znl

)
,

and then in L1,

‖F(β, v)‖L1 .

∥∥∥∥ β

log(1+ r)

∥∥∥∥2

L2
(1+‖β‖L∞)

+

∥∥∥∥ β

log(1+ r)

∥∥∥∥
L2

(∥∥∥∥v log(1+ r)
1+ r2

∥∥∥∥
L2
+

∥∥∥∥v2 log(1+ r)
r

∥∥∥∥
L2

)
. ‖β‖2X +‖β‖

3
X +‖β‖X

(
1

t log2 t
‖v‖Z l+Znl +

log t
t3/2 ‖v‖

2
Z l+Znl

)
.
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Hence we obtain

‖F(β, v)‖L X . ‖β‖
2
X +‖β‖

3
X +‖β‖X

(
1

t log2 t
‖v‖Z l+Znl +

log t
t3/2 ‖v‖

2
Z l+Znl

)
.

A similar analysis yields

‖β1 Fβ(β, v)‖L X . ‖β1‖X

(
‖β‖X +‖β‖

2
X +

1

t log2 t
‖v‖Z l+Znl +

log t
t3/2 ‖v‖

2
Z l+Znl

)
,

‖v1 Fv(β, v)‖L X . ‖v1‖Z l+Znl‖β‖X

(
1

t log2 t
+

log t
t3/2 ‖v‖Z l+Znl

)
.

By the contraction principle, this proves both (6-1) and (6-2). The time decaying factors guarantee that
for any size of ū− Q, the problem can be solved for large enough time.

(b) To prove (6-3), we differentiate with respect to t in (6-6):

L∂tε = ∂tγ + Fε(ε, ū)∂tε+ Fū(ε, ū)∂t ū.

Since ∂t ū satisfies the same pointwise bounds as ū, the last two estimates above show that the contraction
principle still applies.

(c) Due to the embedding X ⊂ Ḣ 1
e ⊂ L∞, we already have a small uniform bound for ε. We solve the

ODE (6-6) in [0, 1] with Cauchy data at r = 1. Making the bootstrap assumption

|ε| ≤ Mr
∣∣∣log r

2

∣∣∣, (6-8)

we rewrite (6-6) in the form

|Lε− γ | ≤ M3r2
∣∣∣log3 r

2

∣∣∣+C, C ≈S ‖ε‖L∞ .

Then solving the linear L evolution, we have

|ε|. r(|γ (1)| +M3)+Cr
∣∣∣log

r
2

∣∣∣.S M3r + r
∣∣∣log r

2

∣∣∣‖ε‖L∞ .

If ‖ε‖L∞ is sufficiently small, then we can choose M small enough that the above bound is stronger than
our bootstrap assumption (6-8). The proof of (6-5) is concluded. �

7. Perturbative analysis in the γ equation

Our main goal is to solve (2-16) for γ with zero Cauchy data at t = ∞. Using the backward linear
parametrix K introduced in (4-2), Equation (2-16) is rewritten in the form

γ = K N (ū+ ε, w̄+ γ ), (7-1)

where the auxiliary function ε and its time derivative εt are uniquely determined by γ and γt via
Proposition 6.1.

Our strategy is to solve (7-1) using the contraction principle in the space E with norm

‖γ ‖E = sup
t>t0

t1.5
‖γ ‖L X + t2.5(

‖∂tγ ‖L X +‖γ ‖Ḣ1
e

)
,
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for a suitably chosen t0. By Proposition 6.1, this yields control for ε in the space G with norm

‖ε‖G = sup
t>t0

t1.5(
‖ε‖X +‖r−1/2ε‖L∞

)
+ t2.5

‖∂tε‖L X .

For the linear H̃ wave equation, we use the L X bounds in Lemma 4.1 with α = 1.5. Thus we need to
estimate the nonlinearity N (ū+ ε, w̄+ γ ) in the space N with norm

‖N‖N = sup
t>t0

t3.5
‖N (t)‖L X .

Finally, all the implicit constants in our estimates depend on ‖(w0, w1)‖S and need not be small. Thus
we need a different source of smallness, which is an additional time decay factor, incorporated in the
stronger norm N] defined by

‖N‖N] = sup
t>t0

t3.5(log t)2‖N (t)‖L X .

With this notation, our main estimates for the nonlinearity N (ū+ ε, w̄+ γ ) are as follows:

Proposition 7.1. Assume that the Schwartz functions (w0, w1) satisfy the nonresonance conditions (2-11).
Then:

(a) The map (w0, w1)→ N (ū, w̄) is locally Lipschitz from S to N .

(b) The map (w0, w1, γ, ε)→ N (ū+ ε, w̄+ γ )− N (ū, w̄) is locally Lipschitz from S× E× G to N].

In view of Lemma 4.1 and Proposition 6.1, the above result allows us to solve (7-1) for γ in the ball

B = {‖γ − K N (ū, w̄)‖E},

for t > t0, via the contraction principle, provided that t0 is chosen to be sufficiently large. This concludes
the proof of Theorem 2.1.

We note that in terms of time decay we gain only logarithms, whereas the implicit constants in our
estimates are all polynomial in ‖(w0, w1)‖S . This implies that for large Schwartz data (w0, w1) in the
linear equation, our solutions are only defined for t > T , with T exponentially large.

Proof of Proposition 7.1. We recall that N is given by

N (w, u)=
2(cos Q− cos u)

r2 w+
1
r

sin u(u2
t −w

2).

We split the difference N (w̄+ γ, ū+ ε)− N (w̄, ū) as

N (w, u)− N (w̄, ū)= N l(w̄, ū, γ, ε)+ N n(w̄, ū, γ, ε).

The term N l contains the linear contributions in ε, γ in the difference N (w, u)− N (w̄, ū):

N l
=

2(cos Q− cos ū)
r2 γ +

2 sin ū · ε
r2 w̄+

sin ū(2ūtεt − 2w̄γ )+ cos ū · ε(ū2
t − w̄

2)

r
.
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The remaining term N n contains the genuinely nonlinear contributions in ε, γ in the difference N (w, u)−
N (w̄, ū):

N n
=

2(cos ū− cos u− sin ū · ε)
r2 w̄+

2(cos ū− cos(ū+ ε))
r2 γ +

sin ū(ε2
t − γ

2)

r

+
(sin u− sin ū)(2ūtεt − 2w̄γ + ū2

t − w̄
2)

r
+
(sin u− sin ū− cos ū · ε)(ū2

t − w̄
2)

r
.

We will consider separately the expressions N (ū, w̄), N l and N n .

The term N(w̄, ū). Our main goal here is to prove the estimate

‖N (w̄, ū)‖L X .S t−3.5. (7-2)

We also need to show that N (w̄, ū) has a Lipschitz dependence on (w0, w1). However, as the leading
order part of N (w̄, ū) is multilinear, the proof of that follows the same lines as below and is omitted.

To establish (7-2), we split

N (w̄, ū)= χr�t N (w̄, ū)+χr�t N (w̄, ū)+χr≈t N (w̄, ū)= N1+ N2+ N3.

For the first two terms, it suffices to use a direct estimate:

|N (w̄, ū)|.
sin Q

r2 |ū− Q||w̄| +
1
r2 |ū− Q|2|w̄| +

1
r
(sin Q+ |ū|)(|ūt |

2
+ |w̄|2).

Using the bounds (5-6) and (5-8) for ū− Q, as well as the bound (5-2) for w̄, this gives

|N1(w̄, ū)|.S χr�t
1
〈r〉4t4 ,

where the leading contribution comes from ul,r . This implies that

‖N1‖L1∩L2 .S t−4,

which suffices for (7-2) in view of the embedding (3-23). Similarly,

|N2|.S χr�t
1
〈r〉8

,

which also gives
‖N2‖L1∩L2 .S t−4.

However, a similar direct computation for N3 only gives

|N3(w̄, ū)|.S χr∼t
1

t2.5〈t − r〉5.5
,

which fails by two units,
‖N3‖L1∩L2 .S t−1.5.
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Hence, in order to conclude the proof of (7-2), we need to better exploit the structure of N and capture a
double cancellation on the null cone. In the computations below (through the end of the subsection), we
work in the regime r ≈ t . We expand N (w̄, ū) as

N (w̄, ū)= 2
sin Q

r2 (ū− Q)w̄+
cos Q

r2 (ū− Q)2w̄+
sin Q

r
(ū2

t − w̄
2)+

cos Q
r

(ū2
t − w̄

2)(ū− Q)

+
sin Q

r2 wO((ū− Q)3)+
cos Q

r2 wO((ū− Q)4)

+
sin Q

r
(ū2

t − w̄
2)O((ū− Q)2)+

cos Q
r

(ū2
t − w̄

2)O((ū− Q)3).

The terms on the second line are already acceptable; i.e., it can be estimated by t−4.5
〈t − r〉−3.5. For

further progress, we observe that by (5-8) we have

ūnl
= OS(t−2.5), ∂t ūnl

= OS
(
t−2.5
〈t − r〉−0.5),

and that by (5-7), we can write

∂t ū+ w̄ = ∂t ūnl
+ ∂t ūl

+ ∂r ūl
+

cos Q
r

ūl
= OS

(
t−1.5
〈t − r〉−1.5). (7-3)

The first relation above allows us to dispense with ūnl everywhere and replace ū − Q by ūl , and the
second allows us to estimate the third line in N (w̄, ū). We are left with

N (w̄, ū)=2
sin Q

r2 ūlw̄+
cos Q

r2 (ūl)2w̄+
sin Q

r

(
(ūl

t)
2
−w̄2)

+
cos Q

r

(
(ūl

t)
2
−w̄2)ūl

+OS
(
t−4.5
〈t−r〉−3.5).

To advance further, we substitute w̄ = ∂r ūl
− (cos Q/r)ūl everywhere. The (cos Q/r)ūl is acceptable in

the first two terms of N , that is, it gives contributions of OS(t−4.5
〈t − r〉−3.5), and we discard it. For the

last two terms, we use the better approximation from (5-7):

ūl
t =−∂r ūl

−
1
2r

ūl
+ O

(
t−2.5
〈t − r〉−0.5).

Then we can write

(ūl
t)

2
− w̄2

=

(
∂r ūl
+

1
2r

ūl
)2
−

(
∂r ūl
−

cos Q
r

ūl
)2
+ OS

(
t−3
〈t − r〉−3)

=−
1
r

ūl∂r ūl
+ OS

(
t−3
〈t − r〉−3).

It is also harmless to replace sin Q by r−1 and cos Q by −1 everywhere. Returning to N , we obtain

N (w̄, ū)=
2
r3 ūl∂r ūl

−
1
r2 (ū

l)2∂r ūl
−

1
r3 ul∂r ul

+
1
r2 (ū

l)2∂r ūl
+ OS

(
〈t〉−4.5

〈t − r〉3.5
)

=
1

2r3 ∂r (ūl)2+ OS
(
t−4.5
〈t − r〉−3.5)

in the region r ≈ t , which we rewrite as

N3 = Lg+χr≈t OS
(
t−4.5
〈t − r〉−3.5), g = χr≈t

1
2r3 (ū

l)2.
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The last term can be directly estimated in L1
∩ L2. For the leading term Lg, we estimate g in H 1

e and use
the embedding (3-18). We have

|g|.S
1

t4〈t − r〉3
, |∂r g|.S

1
t4〈t − r〉4

,

and therefore
‖g‖H1

e
.S

1
t3.5 .

This concludes the proof of (7-2).

The bound for N l . Our goal here is to establish the bound

‖N l(t)‖L X .S
1

t3.5 log2 t

(
‖γ ‖G +‖ε‖E

)
. (7-4)

The proof of the Lipschitz dependence on (w0, w1) is again similar and therefore omitted.
We recall that

N l
=

2(cos Q− cos ū)
r2 γ +

2 sin ū · ε
r2 w̄+

sin ū(2ūtεt − 2w̄γ )+ cos ū · ε(ū2
t − w̄

2)

r
.

The pointwise estimate ∣∣∣∣2(cos Q− cos ū)
r

∣∣∣∣. 1
r2+ 1

|ū− Q| +
1
r
|ū− Q|2,

combined with the pointwise bounds for ū from (5-6), leads to∥∥∥∥2(cos Q− cos ū)
r

∥∥∥∥
L∞∩L2

.S
1

t log2 t
,

with the worst contribution arising from the resonant part of ū. From (3-23), it follows that∥∥∥∥2(cos Q− cos ū)
r2 γ

∥∥∥∥
L X
.

∥∥∥∥2(cos Q− cos ū)
r

∥∥∥∥
L∞∩L2

·

∥∥∥∥γr
∥∥∥∥

L2
.S

1

t3.5 log2 t
‖γ ‖G.

Next, from (5-6) and (5-2), it follows that∥∥∥ ū · w̄
r2 log(2+ r)

∥∥∥
L∞∩L2

.S
log t
t2.5 ,

which, combined with ∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2
. ‖ε‖X . t−1.5

‖ε‖E

(recall (3-20)), gives ∥∥∥∥2 sin ū · ε
r2 w̄

∥∥∥∥
L X
.S

log t
t4 ‖ε‖E .

Using (5-6), we obtain ∥∥∥∥ ūūt

r
log(2+ r)

∥∥∥∥
L∞∩L2

.S
log t
t1.5 ,
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and therefore, by invoking (3-23) and (3-20), it follows that∥∥∥∥sin(ū) · ūtεt

r

∥∥∥∥
L X
.

∥∥∥∥ ūūt

r
log(2+ r)

∥∥∥∥
L∞∩L2

∥∥∥∥ εt

log(2+ r)

∥∥∥∥
L2
.S

log t
t4 ‖ε‖E .

The following term in N l requires some extra work. Using (5-6) and (5-2), we note that away from
the cone, we have | sin(ū)|. sin Q, and continue with∥∥∥∥χr 6≈t

w̄ sin ū
r

∥∥∥∥
L1∩L2

.S t−2,

followed by ∥∥∥∥χr 6≈t
sin(ū) · w̄γ

r

∥∥∥∥
L X
.

∥∥∥∥χr 6≈t
ūw̄
r

∥∥∥∥
L1∩L2
‖γ ‖L∞ .S t−4.5

‖γ ‖G.

Near the cone, we write

χr≈t
w̄ sin ū

r
= χr≈t

(
2w̄

1+ r2 −
w̄(ū− Q)

r
cos Q+

w̄O((ū− Q)2)
1+ r2 +

w̄O((ū− Q)3)
r

)
= χr≈t

w̄(ū− Q)
r

+ OS
(
t−2.5
〈t − r〉−2.5)

= L
(
χr≈tr−1(ūl)2

)
+ OS

(
t−2.5
〈t − r〉−2.5).

The output of the second term is estimated as above in L1
∩ L2, and yields a contribution of t−4

‖ε‖E to
the ‖N l

‖L X bound. For the first term, we write its contribution to N l in the form

L
(
χr≈tr−1(ūl)2

)
γ = L

(
χr≈tr−1(ūl)2γ

)
+χr≈tr−1(ūl)2∂rγ.

Then, using (3-18) for the first term and (3-23) for the second term, we have∥∥L
(
χr≈tr−1(ūl)2

)
γ
∥∥

L X .
∥∥χr≈tr−1(ūl)2γ

∥∥
H1

e
+
∥∥χr≈tr−1(ūl)2∂rγ

∥∥
L1∩L2

.
∥∥χr≈tr−1(ūl)2

∥∥
H1

e
‖γ ‖Ḣ1

e
+
∥∥χr≈tr−1(ūl)2

∥∥
L2∩L∞‖∂rγ ‖L2

.S t−1.5
‖γ ‖Ḣ1

e
.S t−4

‖γ ‖G.

It remains to bound the last term in N l . For this, we take advantage of the first-order cancellation on the
cone in the expression ūt − w̄ (see (7-3)), which, combined with (5-6) and (5-2), gives∥∥∥∥cos ū(ū2

t − w̄
2) log(2+ r)

r

∥∥∥∥
L2∩L∞

.S
log t
t2.5 .

This leads to∥∥∥∥ε cos ū(ū2
t − w̄

2)

r

∥∥∥∥
L1∩L2

.S
log t
t2.5

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2
.S

log t
t2.5 ‖ε‖X .S

log t
t4 ‖ε‖E .

This concludes the proof of the N l bound (7-4).
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The bound for Nn. Our goal here will be to prove the bound

‖N n
‖L X .S

log t
t4 (M2

+M3), M = ‖γ ‖G +‖ε‖E, (7-5)

which is almost t−.5 better than what we need. The corresponding Lipschitz dependence argument is
similar and thus omitted. We recall the expression of N n:

N n
=

2(cos ū− cos u− sin ū · ε)
r2 w̄+

2(cos ū− cos(ū+ ε))
r2 γ +

sin u(ε2
t − γ

2)

r

+
(sin u− sin ū)(2ūtεt − 2w̄γ )

r
+
(sin u− sin ū− cos ū · ε)(ū2

t − w̄
2)

r
.

We successively consider the terms on the right. For the first one, we start with∣∣∣∣2(cos ū− cos u− sin ū · ε)
r2 w̄

∣∣∣∣. ε2
|w̄|

r2 .

Then, using (5-2) and (3-20), we obtain∥∥∥∥ε2w̄

r2

∥∥∥∥
L1∩L2

.

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L∞∩L2

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2

∥∥∥∥ w̄r2 log2(2+ r)
∥∥∥∥

L∞
.S

log2 t
t5.5 M2.

The second term in N n is estimated by∣∣∣∣cos ū− cos(ū+ ε)
r2 γ

∣∣∣∣. | sin ū · εγ |
r2 +

|ε2γ |

r2 .
|εγ |

r〈r〉2
+
|(ū− Q)εγ |

r2 +
|ε2γ |

r2 .

The first two terms can be estimated in L1
∩ L2 as before:∥∥∥∥ εγ

r〈r〉2

∥∥∥∥
L1∩L2

.

∥∥∥∥γr
∥∥∥∥

L2

∥∥∥∥ ε

〈r〉2

∥∥∥∥
L∞∩L2

.S t−4 M2,∥∥∥∥(ū− Q)εγ
r2

∥∥∥∥
L1∩L2

.

∥∥∥∥γr
∥∥∥∥

L2

∥∥∥∥ ū− Q
r

∥∥∥∥
L2∩L∞

‖ε‖L∞ .S t−5 M2.

For the last term, we first get the L1 bound∥∥∥∥ε2γ

r2

∥∥∥∥
L1
. ‖ε‖L∞

∥∥∥∥εr
∥∥∥∥

L2

∥∥∥∥γr
∥∥∥∥

L2
.

1
t5.5 M3.

However, getting the L2 bound is more delicate:∥∥∥∥ε2γ

r2

∥∥∥∥
L2
.

∥∥∥∥ ε
√

r

∥∥∥∥2

L∞

∥∥∥∥γr
∥∥∥∥

L2
.

1
t5.5 M3,

where the pointwise bound for ε/
√

r near r = 0 comes from (6-5).
The third term in N is estimated by using (5-6):∣∣∣∣sin u(ε2

t − γ
2)

r

∣∣∣∣. |εt |
2

1+ r
+
|γ 2
|

1+ r
.
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We successively consider all terms:∥∥∥∥ |εt |
2

1+ r

∥∥∥∥
L1∩L2

.

∥∥∥∥ εt

log(2+ r)

∥∥∥∥
L2∩L∞

∥∥∥∥ εt

log(2+ r)

∥∥∥∥
L2
.

1
t5 M2,∥∥∥∥ |γ |21+ r

∥∥∥∥
L1∩L2

. ‖γ ‖L2∩L∞

∥∥∥∥γr
∥∥∥∥

L2
.

1
t4 M2.

Next we estimate the fourth term in N n:∣∣∣∣(sin u− sin ū)(2ūtεt − 2w̄γ )
r

∣∣∣∣. |ε|
(
|ūtεt | + |w̄γ |

)
r

.

On behalf of (5-2), (5-6) and (3-20), we have∥∥∥∥εūtεt

r

∥∥∥∥
L1∩L2

. ‖εt‖L∞

∥∥∥∥ ε

log(2+ r)

∥∥∥∥
L2

∥∥∥∥ ūt

r
log(2+ r)

∥∥∥∥
L∞∩L2

.S
log t

t4 M2,∥∥∥∥εw̄γr

∥∥∥∥
L1∩L2

. ‖ε‖L∞‖w̄‖L2∩L∞

∥∥∥∥γr
∥∥∥∥

L2
.S t−4 M2.

Finally we consider the last term in N n ,∣∣∣∣(sin u− sin ū− cos ū · ε)(ū2
t − w̄

2)

r

∣∣∣∣. ε2(ū2
t + w̄

2)

r
,

which, by using (5-2), (5-6) and (3-20), we further bound as follows:∥∥∥∥ε2(ū2
t +w̄

2)

r

∥∥∥∥
L1∩L2

.

∥∥∥∥ ε

log(2+r)

∥∥∥∥
L2

∥∥∥∥ ε

log(2+r)

∥∥∥∥
L2∩L∞

∥∥∥∥ ū2
t +w̄

2

r
log2(2+r)

∥∥∥∥
L∞
.S

log2 t
t5 M2. �
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[Bizoń et al. 2001] P. Bizoń, T. Chmaj, and Z. Tabor, “Formation of singularities for equivariant (2+ 1)-dimensional wave maps
into the 2-sphere”, Nonlinearity 14:5 (2001), 1041–1053. MR 2003b:58043 Zbl 0988.35010

[Cote 2005] R. Cote, “Instability of non-constant harmonic maps for the 2+ 1-dimensional equivariant wave map system”,
preprint, 2005, Available at www.math.polytechnique.fr/~cote/preprints/wavemapinstability.pdf.

[Gustafson et al. 2008] S. Gustafson, K. Kang, and T.-P. Tsai, “Asymptotic stability of harmonic maps under the Schrödinger
flow”, Duke Math. J. 145:3 (2008), 537–583. MR 2009k:58030 Zbl 1170.35091

[Gustafson et al. 2010] S. Gustafson, K. Nakanishi, and T.-P. Tsai, “Asymptotic stability, concentration, and oscillation
in harmonic map heat-flow, Landau–Lifshitz, and Schrödinger maps on R2”, Comm. Math. Phys. 300:1 (2010), 205–242.
MR 2011j:58020 Zbl 1205.35294

[Krieger and Schlag 2007] J. Krieger and W. Schlag, “On the focusing critical semi-linear wave equation”, Amer. J. Math. 129:3
(2007), 843–913. MR 2009f:35231 Zbl 1219.35144

[Krieger et al. 2008] J. Krieger, W. Schlag, and D. Tataru, “Renormalization and blow up for charge one equivariant critical
wave maps”, Invent. Math. 171:3 (2008), 543–615. MR 2009b:58061 Zbl 1139.35021

[Raphaël and Rodnianski 2012] P. Raphaël and I. Rodnianski, “Stable blow up dynamics for the critical co-rotational wave maps
and equivariant Yang–Mills problems”, Publ. Math. Inst. Hautes Études Sci. (2012), 1–122. MR 2929728 Zbl 1195.35205

http://msp.org/idx/arx/1009.1608
http://dx.doi.org/10.1088/0951-7715/14/5/308
http://dx.doi.org/10.1088/0951-7715/14/5/308
http://msp.org/idx/mr/2003b:58043
http://msp.org/idx/zbl/0988.35010
http://dx.doi.org/10.1215/00127094-2008-058
http://dx.doi.org/10.1215/00127094-2008-058
http://msp.org/idx/mr/2009k:58030
http://msp.org/idx/zbl/1170.35091
http://dx.doi.org/10.1007/s00220-010-1116-6
http://dx.doi.org/10.1007/s00220-010-1116-6
http://msp.org/idx/mr/2011j:58020
http://msp.org/idx/zbl/1205.35294
http://dx.doi.org/10.1353/ajm.2007.0021
http://msp.org/idx/mr/2009f:35231
http://msp.org/idx/zbl/1219.35144
http://dx.doi.org/10.1007/s00222-007-0089-3
http://dx.doi.org/10.1007/s00222-007-0089-3
http://msp.org/idx/mr/2009b:58061
http://msp.org/idx/zbl/1139.35021
http://dx.doi.org/10.1007/s10240-011-0037-z
http://dx.doi.org/10.1007/s10240-011-0037-z
http://msp.org/idx/mr/2929728
http://msp.org/idx/zbl/1195.35205


858 IOAN BEJENARU, JOACHIM KRIEGER AND DANIEL TATARU

[Rodnianski and Sterbenz 2010] I. Rodnianski and J. Sterbenz, “On the formation of singularities in the critical O(3) σ -model”,
Ann. of Math. (2) 172:1 (2010), 187–242. MR 2011i:58023 Zbl 1213.35392

[Struwe 2003] M. Struwe, “Equivariant wave maps in two space dimensions”, Comm. Pure Appl. Math. 56:7 (2003), 815–823.
MR 2004c:58061 Zbl 1033.53019

Received 27 Sep 2011. Revised 27 Aug 2012. Accepted 27 Sep 2012.

IOAN BEJENARU: ibejenar@ucsd.edu
Department of Mathematics, University of California at San Diego, 9500 Gilman Dr., La Jolla 92093-011, United States

JOACHIM KRIEGER: joachim.krieger@epfl.ch
Batiment des Mathématiques, École Polytechnique F’ed’erale de Lausanne, Station 8, CH-1015 Lausanne, France

DANIEL TATARU: tataru@math.berkeley.edu
Department of Mathematics, University of California at Berkeley, Evans Hall, Berkeley, CA 94720, United States

mathematical sciences publishers msp

http://dx.doi.org/10.4007/annals.2010.172.187
http://msp.org/idx/mr/2011i:58023
http://msp.org/idx/zbl/1213.35392
http://dx.doi.org/10.1002/cpa.10074
http://msp.org/idx/mr/2004c:58061
http://msp.org/idx/zbl/1033.53019
mailto:ibejenar@ucsd.edu
mailto:joachim.krieger@epfl.ch
mailto:tataru@math.berkeley.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
zworski@math.berkeley.edu

University of California
Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
aizenman@math.princeton.edu nicolas.burq@math.u-psud.fr

Luis A. Caffarelli University of Texas, USA Sun-Yung Alice Chang Princeton University, USA
caffarel@math.utexas.edu chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA Charles Fefferman Princeton University, USA
mchrist@math.berkeley.edu cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany Nigel Higson Pennsylvania State Univesity, USA
ursula@math.uni-bonn.de higson@math.psu.edu

Vaughan Jones University of California, Berkeley, USA Herbert Koch Universität Bonn, Germany
vfr@math.berkeley.edu koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada Gilles Lebeau Université de Nice Sophia Antipolis, France
ilaba@math.ubc.ca lebeau@unice.fr

László Lempert Purdue University, USA Richard B. Melrose Massachussets Institute of Technology, USA
lempert@math.purdue.edu rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France William Minicozzi II Johns Hopkins University, USA
Frank.Merle@u-cergy.fr minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany Yuval Peres University of California, Berkeley, USA
mueller@math.uni-bonn.de peres@stat.berkeley.edu

Gilles Pisier Texas A&M University, and Paris 6 Tristan Rivière ETH, Switzerland
pisier@math.tamu.edu riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA Wilhelm Schlag University of Chicago, USA
irod@math.princeton.edu schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA Yum-Tong Siu Harvard University, USA
serfaty@cims.nyu.edu siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
tao@math.ucla.edu met@math.unc.edu

Gunther Uhlmann University of Washington, USA András Vasy Stanford University, USA
gunther@math.washington.edu andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA Steven Zelditch Northwestern University, USA
dvv@math.berkeley.edu zelditch@math.northwestern.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2013 is US $160/year for the electronic version, and $310/year (+$35, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.berkeley.edu/apde
mailto:zworski@math.berkeley.edu
mailto:aizenman@math.princeton.edu
mailto:nicolas.burq@math.u-psud.fr
mailto:caffarel@math.utexas.edu
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:higson@math.psu.edu
mailto:vfr@math.berkeley.edu
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:lempert@math.purdue.edu
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:peres@stat.berkeley.edu
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:production@msp.org
http://msp.berkeley.edu/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 6 No. 4 2013

751Cauchy problem for ultrasound-modulated EIT
GUILLAUME BAL

777Sharp weighted bounds involving A∞

TUOMAS HYTÖNEN and CARLOS PÉREZ

819Periodicity of the spectrum in dimension one
ALEX IOSEVICH and MIHAL N. KOLOUNTZAKIS

829A codimension-two stable manifold of near soliton equivariant wave maps
IOAN BEJENARU, JOACHIM KRIEGER and DANIEL TATARU

859Discrete Fourier restriction associated with KdV equations
YI HU and XIAOCHUN LI

893Restriction and spectral multiplier theorems on asymptotically conic manifolds
COLIN GUILLARMOU, ANDREW HASSELL and ADAM SIKORA

951Homogenization of Neumann boundary data with fully nonlinear operator
SUNHI CHOI, INWON C. KIM and KI-AHM LEE

973Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity
THIERRY GALLAY and YASUNORI MAEKAWA

993Second order stability for the Monge–Ampère equation and strong Sobolev convergence of
optimal transport maps

GUIDO DE PHILIPPIS and ALESSIO FIGALLI

A
N

A
LY

SIS
&

PD
E

Vol.6,
N

o.4
2013


	1. Introduction
	2.  The gauge derivative and linearizations
	3. The modified Fourier transform
	4. Linear estimates for the  wave equation
	5. Analysis of the first approximations  and 
	6. The transition between  and 
	7. Perturbative analysis in the  equation
	References
	
	

