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The classical Stein–Tomas restriction theorem is equivalent to the fact that the spectral measure dE(λ) of
the square root of the Laplacian on Rn is bounded from L p(Rn) to L p′(Rn) for 1≤ p ≤ 2(n+ 1)/(n+ 3),
where p′ is the conjugate exponent to p, with operator norm scaling as λn(1/p−1/p′)−1. We prove a
geometric, or variable coefficient, generalization in which the Laplacian on Rn is replaced by the
Laplacian, plus a suitable potential, on a nontrapping asymptotically conic manifold. It is closely related
to Sogge’s discrete L2 restriction theorem, which is an O(λn(1/p−1/p′)−1) estimate on the L p

→ L p′

operator norm of the spectral projection for a spectral window of fixed length. From this, we deduce
spectral multiplier estimates for these operators, including Bochner–Riesz summability results, which are
sharp for p in the range above.

The paper divides naturally into two parts. In the first part, we show at an abstract level that restriction
estimates imply spectral multiplier estimates, and are implied by certain pointwise bounds on the Schwartz
kernel of λ-derivatives of the spectral measure. In the second part, we prove such pointwise estimates
for the spectral measure of the square root of Laplace-type operators on asymptotically conic manifolds.
These are valid for all λ > 0 if the asymptotically conic manifold is nontrapping, and for small λ in
general. We also observe that Sogge’s estimate on spectral projections is valid for any complete manifold
with C∞ bounded geometry, and in particular for asymptotically conic manifolds (trapping or not), while
by contrast, the operator norm on dE(λ) may blow up exponentially as λ→∞ when trapping is present.
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1. Introduction

The aim of this article is to prove some L p multiplier properties for the Laplacian, and a Stein–Tomas-type
restriction theorem for its spectral measure, on a class of Riemannian manifolds which include metric
perturbations of Euclidean space. One of the first natural questions in harmonic analysis is to understand
the L p boundedness of Fourier multipliers M on Rn , defined by

M( f )(x)= 1
(2π)n

∫
Rn

ei x .ξm(ξ) f̂ (ξ) dξ,

where m is a measurable function. Notice that for radial multipliers m(ξ) = F(|ξ |), this amounts to
study the L p boundedness of F(

√
1), where 1 is the nonnegative Laplacian. Of course, for p = 2, the

necessary and sufficient condition on m for M to be bounded on L2 is that m ∈ L∞(Rn), but the case
p 6= 2 is much more difficult. The first results in this direction were given by Mikhlin [1965]: M acts
boundedly on L p(Rn) for all 1< p <∞ if

m ∈ C∞(Rn
\ {0}) and |ξ |k |∇km(ξ)| ∈ L∞, ∀k, 0≤ k ≤ 1

2 n+ 1.

This was sharpened by Hörmander [1960; 1983, Theorem 7.9.5]: Let ψ ∈ C∞0 (
1
2 , 2) be not identically

zero, then M acts boundedly on L p(Rn)) for all 1< p <∞ if

sup
t>0
‖m(t · )ψ‖H s(Rn) <∞,

1
2 n < s ∈ N.

More generally, let L be a self-adjoint operator acting on L2 of some measure space. Using the spectral
theorem, “spectral multipliers” F(L) can be defined for any bounded Borel function F , and they act
continuously on L2. A question which has attracted a lot of attention during the last thirty years is to
find some necessary conditions on the function F to ensure that the operator F(L) extends as a bounded
operator for some range of L p spaces for p 6= 2. Probably the most natural and concrete examples are
functions of the Laplacian on complete Riemannian manifolds, or functions of Schrödinger operators
with real potential 1+ V , but these problems are also studied for abstract self-adjoint operators. Some
particular families of functions F are also investigated in the theory of spectral multipliers: some of the
most important examples include oscillatory integrals ei(t L)α (Id+(t L)α)−β and Bochner–Riesz means
(2-18). The subject of Bochner–Riesz means and spectral multipliers is so broad that it is impossible to
provide a comprehensive bibliography here, so we refer the reader to [Anker 1990; Christ and Sogge
1988; Clerc and Stein 1974; Cowling and Sikora 2001; Mauceri and Meda 1990; Müller and Stein 1994;
Seeger and Sogge 1989; Sogge 1987; 1993; Taylor 1989; Thangavelu 1993], where further literature can
be found.

The theory of Fourier multipliers and Bochner–Riesz analysis in this setting is related to the so-called
sphere restriction problem for the Fourier transform: find the pairs (p, q) for which the sphere restriction
operator SR(λ), defined by

SR(λ) f (ω) := f̂ (λω), ω ∈ Sn−1, λ > 0,

acts boundedly from L p(Rn) to Lq(Sn−1); see [Fefferman 1970; 1973]. Of course, the dependence
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in λ is trivial here since SR(λ) f = λ−nSR(1)( f (λ−1
· )), but this parameter λ will be important later

on. There is a long list of results on this problem, but the first ones for general dimensions are due
to Stein and Tomas. The theorem of Tomas [1975], improved by Stein [1993, Chapter IX, Section 2]
for the endpoint p = 2(n+ 1)/(n+ 3) is the following: SR(1) maps L p(Rn) boundedly to Lq(Sn−1) if
p≤ 2(n+1)/(n+3) and q ≤ n−1

n+1
p

p−1 (notice that q = 2 when p reaches the endpoint). On the other hand,
a necessary condition (based on the Knapp example) for boundedness is only given by p< 2n/(n+1) and
this leads to the conjecture that p < 2n/(n+ 1) and q ≤ n−1

n+1
p

p−1 is a necessary and sufficient condition.
In fact, this has been shown by Zygmund [1974] in dimension 2, improving a result of Fefferman [1970]
(by obtaining the endpoint estimate), but the conjecture is still open for n > 2. For more references and
new results in this direction, we refer the interested reader to the survey by Tao [2003] on the subject.

Like the L p multiplier problem, the sphere restriction problem has a corresponding natural generaliza-
tion to certain types of manifolds (at least if we think of Fourier transform as a spectral diagonalization
for the Laplacian), and in particular those which have similar structure at infinity as Euclidean space. On
Rn , the Schwartz kernel of the spectral measure dE√1(λ) of

√
1 is given by

dE√1(λ; z, z′)= λn−1

(2π)n

∫
Sn−1

ei(z−z′).λωdω, z, z′ ∈ Rn,

therefore dE√1(λ) = (λ
n−1)/((2π)n)SR(λ)∗SR(λ) and the restriction theorem for q = 2 is equivalent

to finding the largest p < 2 such that dE√1 maps L p to L p′ . There is a natural class of Riemannian
manifolds, called scattering manifolds or asymptotically conic manifolds, for which the spectral measure
of the Laplacian admits an analogous factorization. Such manifolds, introduced by Melrose [1994], are
by definition the interior M◦ of a compact manifold with boundary M , such that the metric g is smooth
on M◦ and has the form

g = dx2

x4 +
h(x)
x2 (1-1)

in a collar neighborhood near ∂M , where x is a smooth boundary defining function for M and h(x)
is a smooth one-parameter family of metrics on ∂M ; the function r := 1/x near x = 0 can be thought
of as a radial coordinate near infinity and the given metric is asymptotic to the exact conic metric
((0,∞)r × ∂M, dr2

+ r2h(0)) as r→∞. Associated to the Laplacian on such a manifold is the family
of Poisson operators P(λ) defined for λ > 0. These form a sort of distorted Fourier transform for the
Laplacian: they map L2(∂M) into the null space of 1g − λ

2 and satisfy dE√1g (λ)= (2π)
−1 P(λ)P(λ)∗

[Hassell and Vasy 1999]. Thus (λ/2π)−(n−1)/2 P(λ)∗ is an analogue of the restriction operator in this
setting. The corresponding restriction problem is therefore to study the L p(M)→ Lq(∂M) boundedness
of P(λ)∗, and its norm in terms of the frequency λ (the dependence of P(λ) in λ is no longer a scaling as
it is for Rn).

The aim of the present work is to address these multiplier and restriction problems in the geometric
setting of asymptotically conic manifolds. In fact, we shall first show, in an abstract setting, that restriction-
type estimates on the spectral measure of an operator imply spectral multiplier results for that operator.
Then we will prove such restriction estimates for a class of operators which are 0-th order perturbations
of the Laplacian on asymptotically conic manifolds. In particular, our results cover the following settings:
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• Schrödinger operators, i.e., 1+ V on Rn , where V is smooth and decaying sufficiently at infinity.

• The Laplacian with respect to metric perturbations of the flat metric on Rn , again decaying sufficiently
at infinity.

• The Laplacian on asymptotically conic manifolds.

Our first main result is that restriction estimates imply spectral multiplier estimates:

Theorem 1.1. Let L be a nonnegative self-adjoint operator on L2(X, dµ), where (X, d, µ) is a metric
measure space such that the volume of balls satisfy the uniform bound C2 > µ(B(x, ρ))/ρn > C1 for
some C2 > C1 > 0. Suppose that the operator cos(t

√
L) satisfies finite speed propagation property (2-2),

that the spectrum of L is absolutely continuous and that there exists 1 ≤ p < 2 such that the spectral
measure of L satisfies

‖dE√L(λ)‖p→p′ ≤ Cλn(1/p−1/p′)−1, (1-2)

where p′ is the exponent conjugate to p. Let s > n(1/p− 1/2) be a Sobolev exponent. Then there exists
C depending only on n, p, s, and the constant in (2-3) such that, for every even F ∈ H s(R) supported in
[−1, 1], F(

√
L) maps L p(X)→ L p(X), and

sup
α>0
‖F(α

√
L)‖p→p ≤ C‖F‖H s . (1-3)

Remark 1.2. As noted above, the hypothesis (1-2) is valid on the Euclidean space Rn and for exponents
1 ≤ p ≤ 2(n + 1)/(n + 3). In this case, the result is sharp in the sense that the hypothesis cannot be
weakened to F ∈ H s′ for any s ′ < n(1/p − 1/2); see [Stein 1993, Section IX.2]. In fact, the proof
shows that the theorem is true if we only assume F ∈ Bn(1/p−1/2)

1,2 , which is slightly weaker, and gives an
endpoint result. The result is sharp also in the sense that H s cannot be replaced by the Lq Sobolev space
W s

q and Bn(1/p−1/2)
1,2 cannot be replaced by Bn(1/p−1/2)

1,q for any q < 2; see Remark 2.11 below.

In the second part of the paper, we prove (1-2) for the spectral measure of the Laplacian 1g, plus a
suitable potential, on asymptotically conic manifolds.

Theorem 1.3. Let (M, g) be an asymptotically conic manifold of dimension n ≥ 3, and let x be a smooth
boundary defining function of ∂M. Let H :=1g+V be a Schrödinger operator on M , with V ∈ x3C∞(M),
and assume that H is a positive operator and that 0 is neither an eigenvalue nor a resonance. Then:

(A) For any λ0 > 0 there exists a constant C > 0 such that the spectral measure dE(λ) for
√

H satisfies

‖dE√H(λ)‖L p(M)→L p′ (M) ≤ Cλn(1/p−1/p′)−1 (1-4)

for 1≤ p ≤ 2(n+ 1)/(n+ 3) and 0< λ≤ λ0.

(B) If (M, g) is nontrapping, then there exists C > 0 such that (1-4) holds for all λ > 0.

(C) If (M, g) is trapping and has asymptotically Euclidean ends, there exists χ ∈ C∞0 (M
◦) and C > 0

such that

‖(1−χ)dE√H(λ)(1−χ)‖L p(M)→L p′ (M) ≤ Cλn(1/p−1/p′)−1, ∀λ > 0, (1-5)
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for 1 < p ≤ 2(n + 1)/(n + 3). However, (1-4) need not hold for all λ > 0: there exist (trapping)
asymptotically Euclidean manifolds (M, g), sequences λn→∞ and C, c > 0 such that

‖dE√1g
(λn)‖L p(M)→L p′ (M) ≥ Cecλn . (1-6)

(D) On the other hand, the Sogge-type spectral projection estimate

‖1[λ,λ+1](
√
1g)‖L p(M)→L p′ (M) ≤ Cλn(1/p−1/p′)−1, ∀λ≥ 1, (1-7)

holds for 1 ≤ p ≤ 2(n + 1)/(n + 3) for all asymptotically conic manifolds, trapping or not, and
indeed for the much larger class of complete manifolds with C∞ bounded geometry.

Remark 1.4. When the spectral measure estimate (1-4) holds, it trivially implies the Sogge-type spectral
projection estimate (1-7), by integrating over a unit interval in λ. On the other hand, parts (C) and (D) of
Theorem 1.3 show that the Sogge estimate holds in far greater generality than (1-4).

Remark 1.5. Probably the nontrapping condition is not necessary to obtain the estimate (1-4) for all
λ > 0; it seems likely that asymptotically conic manifolds with a hyperbolic trapped set of sufficiently
small dimension will also satisfy (1-4), by analogy with [Burq et al. 2010]. However, manifolds with
elliptic trapping will typically have sequences of λ for which the norm on the left hand side of (1-4)
grows superpolynomially; see Section 8C.

Remark 1.6. The spatially cut-off estimate (1-5) can be compared to the nontrapping L2 estimate proved
by Cardoso and Vodev [2002]

‖(1−χ)(L − λ2
+ i0)−1(1−χ)‖L2

α→L2
−α
= O(λ−1), ∀λ > 1, ∀α > 1

2 ,

where L2
α := 〈r〉

−αL2(M). As a matter of fact, we use this estimate to prove (1-5).

Since H in Theorem 1.3 also satisfies the finite speed of propagation property (2-2), we deduce from
the two theorems above

Corollary 1.7. Let L = H , where H is as in Theorem 1.3, and assume that (M, g) in Theorem 1.3 is
nontrapping. Then L satisfies (1-3), where F and s are as in Theorem 1.1 and p ∈ [1, 2(n+ 1)/(n+ 3)].

Remark 1.8. As far as we are aware, the restriction estimates for the spectral measure in Theorem 1.3
were previously known only for H being the Laplacian in the Euclidean space Rn . As for the spectral
multiplier result of Corollary 1.7, this was previously known for s > n(1/p− 1/2)+ 1/2 [Duong et al.
2002]. Thus, for p ∈ [1, 2(n + 1)/(n + 3)], we gain half a derivative over the best results previously
known. The region in the (1/p, s)-plane in which we improve previous results is illustrated in Figure 1.
The lower threshold of n(1/p− 1/2) for the Sobolev exponent s in Corollary 1.7 is known to be sharp in
Euclidean space, and it is not hard to see that it is sharp for any asymptotically conic manifold.

Remark 1.9. There are not many examples of sharp spectral multiplier results in the literature. Those
known to the authors are as follows. The sharp multiplier result in (1-3) for p = 2(n+ 1)/(n+ 3) (the
other p are obtained by interpolation) was proved for the Laplacian on any compact manifold by Seeger
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Figure 1. Map of where the statement of (1-3) has been established on nontrapping
asymptotically conic manifolds, for different values of s and p. In region A this was
previously known ([Duong et al. 2002]; see also Proposition 2.9). In the present paper
we establish (1-3) also for region B (previously this was known only in the classical
case of flat Euclidean space and the flat Laplacian). In region C it is known to be false,
while region D is still unknown. For comparison with the Bochner–Riesz multiplier
Fδ(λ)= (1−λ2)δ

+
observe that Fδ is in H s for s>δ+1/2. For F = Fδ , part of region D is

known for flat Euclidean space [Lee 2004], and the celebrated Bochner–Riesz conjecture
is that, for flat Euclidean space, (1-3) is true for F = Fδ in the whole of D.

and Sogge [1989]. In fact, they only needed the integrated estimate (1-7) to obtain the multiplier theorem
in that setting. In the setting of the twisted Laplacian operator

1x +1y +
1
4(‖x‖

2
+‖y‖2)− i

n∑
j=1
(x j∂y j − y j∂x j ),

the sharp multiplier result of (1-3) was proved by Stempak and Zienkiewicz [1998]. However, in this
setting the required form of restriction estimates differs from both (1-4) and (1-7); see [Koch and Ricci
2007]. The last case of a sharp multiplier theorem known to us, although with a slightly different range
of p, is for the harmonic oscillator; see [Karadzhov 1994; Koch and Tataru 2005; Thangavelu 1993].

Remark 1.10. A multiplier theorem of the type (1-3) does not hold for manifolds with exponential
volume growth (like negatively curved complete manifolds); a necessary condition on the multiplier F in
that case is typically a holomorphic extension of F into a strip. See for instance the work of Clerc and
Stein [1974] or Anker [1990] for the case of noncompact symmetric spaces, or Taylor [1989] in the case
of manifolds with bounded geometry, where sufficient conditions are also given.
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Remark 1.11. Theorems 1.1 and 1.3 imply Bochner–Riesz summability for a range of exponents similar
to those proved for the Euclidean Laplacian in [Stein 1993, page 390; Sogge 1993, Theorem 2.3.1] and
for compact manifolds by Christ and Sogge [1988] and Sogge [1987]. See Corollary 2.10 below.

The heuristics one can extract from Theorem 1.3 and the last two remarks can be summarized as
follows:

• The sharp restriction estimate on dE(λ) at bounded and low frequencies λ only depends on the
geometry near infinity.

• The high frequency restriction estimate on dE(λ) also depends strongly on global dynamical proper-
ties (trapping/nontrapping).

• The integrated estimate (1-7) for all frequencies λ > 1 only depends on having uniform local
geometry.

The proof of Theorem 1.1, given in Section 2, is based on a principle common to the proofs of most
Fourier and spectral multiplier theorems. The rough idea is that one can control the L p to L p norm
of operators with singular integral kernels by estimating the L p to Lq norm of the operator for some
q > p (usually q = 2) and showing that a large part of the corresponding kernel is concentrated near the
diagonal; see [Fefferman 1970; 1973; Seeger and Sogge 1989; Sogge 1987]. For calculations starting
from L1

→ L2 estimates this principle can be equivalently stated in terms of weighted L2 norms of the
kernel; see [Cowling and Sikora 2001; Hörmander 1960; Mauceri and Meda 1990]. Our implementation
of this principle in the proof of Theorem 1.1 is based on finite speed propagation of the wave equation,
following [Cheeger et al. 1982; Cowling and Sikora 2001; Sikora 2004]. In the proof, we decompose the
operator F(α

√
L) as a sum over ` ∈ N of multipliers F`(α

√
L) satisfying some finite speed propagation

properties with F` Schwartz. The L p
→ L p norms for F`(α

√
L) are controlled by C(α2`)n(1/p−1/2)

times the L p
→ L2 norms and then the T T ∗ argument reduces the problem to the bound of the L p

→ L p′

norms of |F`|2(α
√

L), which can be obtained using the restriction estimate of the spectral measure.
The proof of Theorem 1.3 proceeds in two steps. In the first step we suppose that we have an abstract

operator L whose spectral measure can be factorized as dE√L(λ)= (2π)
−1 P(λ)P(λ)∗ (see the discussion

below (1-1)), where the initial space of P(λ) is a Hilbert space. We then prove the following result in
Section 3:

Proposition 1.12. Let (X, d, µ) and L be as in Theorem 1.1, and assume dE√L(λ)= (2π)
−1 P(λ)P(λ)∗

as described above. Also assume that for each λ we have an operator partition of unity on L2(X),

Id=
N (λ)∑
i=1

Qi (λ), (1-8)

where the Qi are uniformly bounded as operators on L2(X) and N (λ) is uniformly bounded. We assume
that for 1≤ i ≤ N (λ), and some nonnegative function w(z, z′) on X × X , the estimate∣∣(Qi (λ)dE ( j)

√
H
(λ)Qi (λ)

)
(z, z′)

∣∣≤ Cλn−1− j(1+ λw(z, z′)
)−(n−1)/2+ j (1-9)
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holds for j = 0 and for j = n/2− 1 and j = n/2 if n is even, or for j = n/2− 3/2 and j = n/2+ 1/2 if
n is odd. Here dE ( j)

√
L
(λ) means (d/dλ) j dE√L(λ), and C is independent of λ and i . Then the restriction

estimates ∥∥dE√L(λ)
∥∥

L p(X)→L p′ (X) ≤ C ′λn(1/p−1/p′)−1, 1≤ p ≤ 2(n+1)
n+3

, (1-10)

hold for all λ > 0. Moreover, if the estimates above hold only for 0 < λ ≤ λ0, then (1-10) holds for
0< λ≤ λ0.

The key point here is that we only need to consider operators Qi (λ)dE ( j)
√

L
(λ)Qk(λ) for i = k, which

effectively means that we only need to analyze the kernel of dE ( j)
√

L
(λ) close to the diagonal. The proof of

this is based on the complex interpolation idea of Stein [1956] and appears in Section 3.
The second step is to prove estimates (1-9) in the case where L is the Laplacian or a Schrödinger

operator on an asymptotically conic manifold:

Theorem 1.13. Let (M, g) and H be as in Theorem 1.3. Then there exists an operator partition of unity,
(1-8), where the Qi are uniformly bounded as operators on L2(X) and N (λ) is uniformly bounded, such
that the estimates (1-9) hold for all integers j ≥ 0 and for 0< λ≤ λ0, where w(z, z′) is the Riemannian
distance between points z, z′ ∈ M◦. Moreover, if (M, g) is nontrapping, then estimates (1-9) hold for all
0< λ <∞.

In the free Euclidean setting, this estimate is obvious (with the trivial partition of unity) by using the
explicit formula of the spectral measure, but in our general setting it turns out to be quite involved and we
really need to choose the partition of unity carefully. We use some results of [Hassell and Vasy 2001] on
the resolvent of L on the spectrum, the high-energy (semiclassical) version of this [Hassell and Wunsch
2008] and the low energy estimates of our previous work [Guillarmou et al. 2012]. These three articles
on which we build our estimates describe the Schwartz kernel of the spectral measure as a Legendrian
distribution (a Fourier integral operator, in a sense) on a desingularized version of the compactification of
the space M ×M , and this was done in a sort of uniform way with respect to the spectral parameter λ.
The operators Qi in the partition of unity will be pseudodifferential operators of a particular sort; see
Section 6C for the estimate (1-9) for small λ, and Section 7D for the same estimate for large λ. By our
discussion above, this establishes parts (A) and (B) of Theorem 1.3. Part (C) of Theorem 1.3 is proved in
Section 8B and part (D) is proved in Section 8A.

Part I. Abstract self-adjoint operators

2. Restriction estimates imply spectral multiplier estimates

Let L be an abstract positive self-adjoint operator on L2(X), where X is a metric measure space with
metric d and measure µ. We make the following assumptions about L and (X, d, µ):

• The space X is separable and has dimension n in the sense of the volume growth of balls: that is,
there exist constants 0< c1 < c2 <∞ such that

c1ρ
n
≤ µ(B(x, ρ))≤ c2ρ

n (2-1)
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for every x ∈ X and ρ > 0;

• cos(t
√

L) satisfies finite speed propagation in the sense that

supp cos(t
√

L)⊂ Dt := {(z1, z2)⊂ X × X | d(z1, z2)≤ |t |}. (2-2)

This statement says that 〈 f1, cos(t
√

L) f2〉 = 0 whenever supp f1 ∈ B(z1, ρ1), supp f2 ∈ B(z2, ρ2)

and |t | + ρ1+ ρ2 ≤ d(z1, z2).

• L satisfies restriction estimates, which come in a strong and a weak form. We say that L satisfies L p

to L p′ restriction estimates for all energies if the spectral measure dE√L(λ) maps L p(X) to L p′(X)
for some p satisfying 1≤ p < 2 and all λ > 0, with an operator norm estimate∥∥dE√L(λ)

∥∥
L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1 for all λ > 0. (2-3)

We also consider a weaker form of these estimates: we say that L satisfies low energy L p to L p′

restriction estimates if dE√L(λ) maps L p(X) to L p′(X) for some p satisfying 1 ≤ p < 2 and all
λ ∈ (0, λ0], with an operator norm estimate∥∥dE√L(λ)

∥∥
L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1, 0< λ≤ λ0, (2-4)

for some C , together with weaker estimates for λ≥ λ0,∥∥E√L[0, λ]
∥∥

L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′), λ≥ λ0, (2-5)

with a uniform C . (Here E√L[0, λ] is the same as 1[0,λ](
√

L).)

Remark 2.1. The assumptions (with restriction estimates for all energies) are satisfied by taking X = Rn

with the standard metric and measure, and L to be the (positive) Laplacian on Rn (with domain H 2(Rn)).
As we shall see, the assumptions are also satisfied for asymptotically conic manifolds, with the low energy
restriction estimates holding unconditionally, and restriction estimates for all energies satisfied if the
manifold is nontrapping.

Remark 2.2. Clearly, (2-5) follows from (2-3) by integrating over the interval [0, λ]. However, in
Remark 8.8 we give an example where we have, by Proposition 8.1,

‖E√L[λ, λ+ 1]‖L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1, λ≥ λ0,

(which implies (2-5)), but the pointwise estimate on the L p
→ L p′ operator norm of dE(λ) grows

exponentially for a subsequence of λ tending to infinity.

Remark 2.3. Spectral projection estimate (2-5) is implied by a heat kernel bound

‖e−t L
‖L p→L p′ ≤ Ct−n(1/p−1/p′)/2, t ≤ 1

λ0
. (2-6)

This follows from short-time Gaussian bounds for the heat kernel, which hold for the Laplacian on any
complete Riemannian manifold with bounded curvature and injectivity radius bounded below [Cheng
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et al. 1981, Theorem 4]. Estimate (2-6) implies, using T ∗T , that ‖e−t L
‖L p→L2 ≤ Ct−n(1/p−1/p′)/4. We

then compute, using T ∗T again,

E√L[0, λ] = E√L[0, λ] e
L/λ2

e−L/λ2

=⇒ ‖E√L[0, λ]‖p→p′ = ‖E√L[0, λ]‖
2
p→2 ≤

∥∥E√L[0, λ]e
L/λ2∥∥2

2→2 ·
∥∥e−L/λ2∥∥2

p→2.

Conversely, (2-5) implies the heat kernel bound (2-6), which can be seen by writing e−t L as in integral
over the spectral measure, and then integrating by parts.

2A. The main result. The following theorem is the main result of this section.

Theorem 2.4. Suppose that (X, d, µ) and L satisfy (2-1) and (2-2), and that L satisfies L p to L p′

restriction estimates for all energies, (2-3), for some p with 1≤ p< 2. Let s > n(1/p−1/2) be a Sobolev
exponent. Then there exists C depending only on n, p, s, and the constant in (2-3) such that, for every
even F ∈ H s(R) supported in [−1, 1], F(

√
L) maps L p(X)→ L p(X), and

sup
α>0
‖F(α

√
L)‖p→p ≤ C‖F‖H s . (2-7)

If L only satisfies the weaker estimates (2-4), (2-5), i.e., low energy L p to L p′ restriction estimates, then
for all F as above, we have

sup
α≥4/λ0

‖F(α
√

L)‖p→p ≤ C‖F‖H s , (2-8)

where C depends on n, p, s, λ0, and the constants in (2-4) and (2-5).

Remark 2.5. Notice that if p > 2n/(n + 1) then s = 1/2 satisfies s > n(1/p− 1/2). However, H 1/2

functions need not be bounded, and such functions cannot be L p multipliers even for p= 2, and a fortiori
for p 6= 2. We deduce that, under the assumptions of Theorem 2.4, estimate (2-3), or even (2-4), is
impossible for p > 2n/(n+ 1).

In preparation for the proof of Theorem 2.4, we have (following [Cheeger et al. 1982]):

Lemma 2.6. Assume that L satisfies (2-2) and that F is an even bounded Borel function with Fourier
transform F̂ satisfying supp F̂ ⊂ [−ρ, ρ]. Then

supp KF(
√

L) ⊂ Dρ .

Proof. If F is an even function, then by the Fourier inversion formula,

F(
√

L)= 1
2π

∫
+∞

−∞

F̂(t) cos(t
√

L) dt.

But supp F̂ ⊂ [−ρ, ρ] and Lemma 2.6 follows from (2-2). �

The next lemma is a crucial tool in using restriction type results, i.e., L p
→ Lq continuity of spectral

projectors, to obtain spectral multiplier type bounds, i.e., L p
→ L p estimates.
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Lemma 2.7. Suppose that (x, d, µ) satisfies (2-1) and S is a bounded linear operator from L p(X) to
Lq(X) such that

supp S ⊂ Dρ

for some ρ > 0. Then for any 1≤ p < q ≤∞ there exists a constant C = C p,q such that

‖S‖p→p ≤ Cρn(1/p−1/q)
‖S‖p→q .

Proof. We fix ρ > 0. Then we first choose a sequence xn ∈ M such that d(xi , x j ) > ρ/10 for i 6= j and
supx∈X infi d(x, xi )≤ ρ/10. Such sequence exists because M is separable. Second, we define B̃i by the
formula

B̃i = B
(
xi ,

1
10ρ

)
−

(⋃
j<i

B
(
x j ,

1
10ρ

))
, (2-9)

where B (x, ρ)= {y ∈ M : d(z, z′)≤ ρ}. Third, we put χi = χB̃i
, where χB̃i

is the characteristic function
of set B̃i . Fourth, we define the operator Mχi by the formula Mχi g = χi g.

Note that for i 6= j , B(xi ,
1

20ρ)∩ B(x j ,
1

20ρ)=∅. Hence

K = sup
i

# { j; d(xi , x j )≤ 2ρ} ≤ sup
x

|B(x, 2ρ)|

|B(x, 1
20ρ)|

<
40nc2

c1
<∞.

It is not difficult to see that if we set I = {i, j | d(xi , x j ) < 2ρ}, then

Dρ ⊂

⋃
i, j∈I

B̃i × B̃ j ⊂ D4ρ, so S f =
∑
i, j∈I

Mχi SMχ j f.

Hence, if we set Ji = { j | d(xi , x j ) < 2ρ} for a given i , then by the Hölder inequality

‖S f ‖p
p =

∥∥∥∥ ∑
i, j∈I

Mχi SMχ j f
∥∥∥∥p

L p

=

∑
i

∥∥∥∥∑
j∈Ji

Mχi SMχ j f
∥∥∥∥p

p

≤

∑
i

|B̃i |
p(1/p−1/q)

∥∥∥∥∑
j∈Ji

Mχi SMχ j f
∥∥∥∥p

q

≤ Cρnp(1/p−/q)
∑

i

∥∥∥∥∑
j∈Ji

Mχi SMχ j f
∥∥∥∥p

q

≤ C K p−1ρnp(1/p−1/q)
∑

i

∑
j∈Ji

∥∥Mχi SMχ j f
∥∥p

q

≤ C K pρnp(1/p−1/q)
∑

j

∥∥SMχ j f
∥∥p

q

≤ C K pρnp(1/p−1/q)
‖S‖p

p→q

∑
j

∥∥Mχ j f
∥∥p

p

= C K pρnp(1/p−1/q)
‖S‖p

p→q‖ f ‖p
p.

This finishes the proof of Lemma 2.7. �
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Proof of Theorem 2.4. We first assume that L satisfies L p to L p′ restriction estimates for all energies. We
take η ∈ C∞c (−4, 4) even and such that∑

l∈Z

η
( t

2l

)
= 1 for all t 6= 0.

Then we set φ(t)=
∑

l≤0 η(2
−l t),

F0(λ)=
1

2π

∫
+∞

−∞

φ(t)F̂(t) cos(tλ) dt,

and

Fl(λ)=
1

2π

∫
+∞

−∞

η
( t

2l

)
F̂(t) cos(tλ) dt. (2-10)

Note that by virtue of the Fourier inversion formula,

F(λ)=
∑
l≥0

Fl(λ),

and by Lemma 2.6,

supp Fl(α
√

L)⊂ D2l+2α.

Now by Lemma 2.7,

‖F(α
√

L)‖p→p ≤
∑
l≥0

‖Fl(α
√

L)‖p→p ≤ C
∑
l≥0

(2lα)n(1/p−1/2)
‖Fl(α

√
L)‖p→2. (2-11)

Unfortunately, Fl is no longer compactly supported. To remedy this we choose a function ψ ∈C∞c (−4, 4)
such that ψ(λ)= 1 for λ ∈ (−2, 2) and note that

‖Fl(α
√

L)‖p→2 ≤ ‖(ψFl)(α
√

L)‖p→2+‖((1−ψ)Fl)(α
√

L)‖p→2.

To estimate the norm ‖ψFl(α
√

L)‖p→2 we use our restriction estimates (2-3). Using a T ∗T argument
and the fact that suppψ ⊂ [−4, 4], we note that

‖ψFl(α
√

L)‖2p→2 = ‖|ψFl |
2(α
√

L)‖p→p′ ≤

∫ 4/α

0
|ψFl(αλ)|

2
‖dE√L(λ)‖p→p′ dλ

≤
C
α

∫ 4

0
|ψFl(λ)|

2
‖dE√L(λ/α)‖p→p′ dλ. (2-12)

It follows from the above calculation and (2-3) that

αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤ C‖ψFl‖2 (2-13)

for all α > 0. As a consequence, we obtain∑
l≥0

2ln(1/p−1/2)αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤

∑
l≥0

2ln(1/p−1/2)
‖ψFl‖2
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for all α > 0. Now let us recall that by the definition of a Besov space,∑
l≥0

2ln(1/p−1/2)
‖ψFl‖2 ≤

∑
l≥0

2ln(1/p−1/2)
‖Fl‖2 = ‖F‖Bn(1/p−1/2)

1,2
.

See [Triebel 1992, Chapters I and II] for more details. We also recall that if s > s ′ then H s
⊂ Bs′

1,2 and
‖F‖Bn(1/p−1/2)

1,2
≤ Cs‖F‖H s for all s > n(1/p− 1/2) [ibid.]. Therefore, we have shown that∑

l≥0

2ln(1/p−1/2)αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤ C‖F‖H s . (2-14)

Next we obtain bounds for the part of estimate (2-11) corresponding to the term ‖(1−ψ)Fl(α
√

L)‖p→2.
This only requires the spectral projection estimates (2-5). We write

|(1−ψ)Fl |
2(α
√

L)=
∫
∞

0
|(1−ψ)(αλ)Fl(αλ)|

2dE√L(λ)

=−

∫
∞

0

( d
dλ
|(1−ψ)(αλ)Fl(αλ)|

2
)

E√L(λ) dλ

=−

∫
∞

0

( d
dλ
|(1−ψ)(λ)Fl(λ)|

2
)

E√L(λ/α) dλ.

Hence, using (2-5),

‖(1−ψ)Fl(α
√

L)‖2p→2 ≤ C
∫
∞

0

( d
dλ
|(1−ψ)(λ)Fl(λ)|

2
)(
λ

α

)n(1/p−1/p′)
dλ. (2-15)

We write

Fl(λ)=
1

2π

∫
ei t (λ−λ′)η

( t
2l

)
F(λ′) dλ′ dt,

use the identity
ei t (λ−λ′)

= i−N (λ− λ′)−N (d/dt)N ei t (λ−λ′),

and integrate by parts N times. Note that if λ ∈ supp 1−ψ and λ′ ∈ supp F then λ≥ 2 and λ′ ≤ 1, and
hence λ− λ′ ≥ λ/2. It follows that

|((1−ψ)Fl)(λ)| ≤ Cλ−N 2−N (l−1)
‖F‖2,

with C independent of N . Similarly,∣∣∣ d
dλ
((1−ψ)Fl)(λ)

∣∣∣≤ Cλ−N 2−N (l−1)2l
‖F‖2.

Using this in (2-15) with N sufficiently large and l ≥ 2, we obtain

(2lα)n(1/p−1/2)
‖((1−ψ)Fl)(α

√
L)‖p→2 ≤ C2−l

‖F‖2.

Therefore, we have∑
l

(2lα)n(1/p−1/2)
‖((1−ψ)Fl)(α

√
L)‖p→2 ≤ C‖F‖2 ≤ C‖F‖H s . (2-16)
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Equations (2-11), (2-14) and (2-16) prove (2-7).
The proof in the case that L satisfies low-energy restriction estimates (2-4) and (2-5) proceeds the

same way, except that we require the condition α ≤ 4/λ0 at the step (2-12) in order that we can use the
pointwise estimate (2-4) on the spectral measure in this integral. �

Remark 2.8. Note that if we only assume that (2-5) holds for all λ > 0 then we still have

αn(1/p−1/2)
‖ψFl(α

√
L)‖p→2 ≤ α

n(1/p−1/2)∥∥ψFl(α
√

L)eα
2 L∥∥

2→2 ·
∥∥e−α

2 L∥∥
p→2

≤ C‖ψFl‖∞,

Now the above estimate is just a version of (2-13) with norm ‖ψFl‖2 replaced by ‖ψFl‖∞. Next if we
replace the Besov space Bn(1/p−1/2)

1,2 by Bn(1/p−1/2)
1,∞ then we can still follow the proof of Theorem 2.4.

Recall also that if s > s ′ then W s
∞
⊂ Bs′

1,∞ and ‖F‖Bn(1/p−1/2)
1,∞

≤Cs‖F‖W s
∞

for all s > n(1/p−1/2), where
‖F‖W s

∞
= ‖(I − d2/dx2)s/2 F‖∞; see again [Triebel 1992]. This implies that (2-14) holds with the norm

‖F‖H s replaced by the norm ‖F‖W s
∞

. As the rest of the proof of Theorem 2.4 does not require (2-3), the
above argument proves the following proposition.

Proposition 2.9. Suppose that (X, d, µ) and L satisfy (2-1) and (2-2), and that L satisfies (2-5) for
all λ > 0. Let s > n|1/p − 1/2| be a Sobolev exponent. Then there exists C depending only on n, p,
s, and the constant in (2-5) such that, for every even F ∈ W s

∞
(R) supported in [−1, 1], F(

√
L) maps

L p(X)→ L p(X), and

sup
α>0
‖F(α

√
L)‖p→p ≤ C‖F‖W s

∞
. (2-17)

Note also that if s> s ′ then ‖F‖W s′
∞
≤C‖F‖H s+1/2 . That is, the multiplier result with exponent one-half

bigger then the optimal exponent does not require (2-3) and holds just under assumption (2-5), which is
equivalent with the standard heat kernel bounds (2-6) (for all t). For p = 1, Proposition 2.9 was proved
in [Christ and Sogge 1988] and can be alternatively proved using Theorem 3.5 in the same paper and
interpolation, see also [Duong et al. 2002, Theorem 3.1].

From this point of view, the key point about Theorem 2.4 is the gain of half a derivative over the more
elementary (2-17).

2B. Bochner–Riesz summability. We use Theorem 2.4 to discuss boundedness of Bochner–Riesz means
of the operator L. Bochner–Riesz summability is technically speaking a slight weakening of Theorem 2.4
but is very close, and it allows us to compare our results with results described in [Stein 1993; Sogge
1993]. Let us recall that Bochner–Riesz means of order δ are defined by the formula

(1− L/λ2)δ
+
, λ > 0. (2-18)

For δ = 0, this is the spectral projector E√L([0, λ]), while for δ > 0 we think of (2-18) as a smoothed
version of this spectral projector; the larger δ, the more smoothing. Bochner–Riesz summability describes
the range of δ for which the above operators are bounded on L p uniformly in λ.



RESTRICTION AND SPECTRAL MULTIPLIER THEOREMS 907

Corollary 2.10. Suppose that (X, d, µ) is as above, and that restriction estimates (2-3) for exponents
1≤ p ≤ 2(n+ 1)/(n+ 3) and finite speed propagation property (2-2) hold for operator L. Then for all

p ∈
[
1, 2(n+1)

n+3

]
∪

[2(n+1)
n−1

,∞
]

and δ > n
∣∣∣ 1

p
−

1
2

∣∣∣− 1
2
,

we have
‖(1− L/λ2)δ

+
‖p→p ≤ C for all λ > 0. (2-19)

For all p ∈
(
2(n+ 1)/(n+ 3), 2(n+ 1)/(n− 1)

)
these estimates hold if δ > 1

2(n− 1)|1/p− 1/2|.

Proof. Note that (1−λ2)δ
+
∈ H s if and only if δ > s−1/2. Now for p < 2(n+1)/(n+3) Corollary 2.10

follows from Theorem 2.4. For 2(n + 1)/(n + 3) < p < 2 Corollary 2.10 follows from interpolating
between (2-19) with p = 2(n+ 1)/(n+ 3) and the trivial estimate for p = 2. For p > 2 the results follow
by duality. �

Remark 2.11. We noted in the proof above that Corollary 2.10 follows from Theorem 2.4. In fact the
Corollary 2.10 is slightly but essentially weaker than Theorem 2.4. Indeed Corollary 2.10 is equivalent to
the version of Theorem 2.4 in which the H s norm of a compactly supported function F is replaced by
the L1 norm of F s

:= F ∗χ−s−1
+ , where χ+ is as in Section 3. To prove this we note that

F(α
√

L)=
∫
χν−1
+

(λ−α
√

L)Fν(λ) dλ, ν ≥ 0;

see (3-3) and (3-4). Hence if estimates (2-19) hold for some exponent δ then ‖F(α
√

L)‖p→p ≤ ‖Fδ+1
‖1

and Bochner–Riesz summability of order δ implies Theorem 2.4 with the norm ‖Fδ+1
‖1. Note that if F ,

supported in [−1, 1], is such that F s+1/2 is in L1(R), then F is in H s′(R) for all s ′ < s with an estimate
‖F‖H s′ ≤ C‖F s+1/2

‖L1 . Hence, conversely, Theorem 2.4 with the stronger hypothesis F s+1/2
∈ L1

implies Bochner–Riesz summability of order δ for all δ > s− 1/2.

2C. Singular integrals. Finally we will discuss a singular integral version of our spectral multiplier
result. The following theorem is just reformulation of [Cowling and Sikora 2001, Theorem 3.5]. We write
Dκ for the scaling operator DκF(x)= F(κx).

Theorem 2.12. Suppose that operator L satisfies finite speed propagation property (2-2), that s > n/2
and that

‖dE√L(λ)‖1→∞ ≤ λ
n−1 for all λ > 0. (2-20)

Next let η be a smooth compactly supported nonzero function. Then for any Borel bounded function F
such that supκ>0 ‖η DκF‖W p

s
<∞ the operator F(

√
L) is of weak type (1, 1) and is bounded on Lq(X)

for all 1< q <∞. In addition,

‖F(
√

L)‖L1→L1,∞ ≤ Cs

(
sup
κ>0
‖ηDκF‖W p

s
+ |F(0)|

)
. (2-21)

Remark 2.13. It is a standard observation that up to equivalence the norm

sup
κ>0
‖η DκF‖W p

s



908 COLIN GUILLARMOU, ANDREW HASSELL AND ADAM SIKORA

does not depend on the auxiliary function η as long as η is not identically equal zero.

Proof. Using T ∗T trick we note that by (2-20) one has

‖F(
√

L)‖21→2 = ‖|F |
2(
√

L)‖1→∞ ≤
∫
∞

0
|F(λ)|2‖dE√L(λ)‖1→∞ dλ≤ C

∫
∞

0
|F(λ)|2λn−1dλ.

Hence if supp F ⊂ [0, R) then

‖F(
√

L)‖21→2 ≤ C Rn
‖DR F‖22,

that is, the estimates (3.22) of Theorem 3.5 of [Cowling and Sikora 2001] hold. Now Theorem 2.12
follows from the same Theorem 3.5. �

Remark 2.14. Theorem 2.12 is a singular integral version of Theorem 2.4 for p = 1. We expect that
a similar extension to a singular integral version is possible for all p. That is if one assumes that
s > n|1/2−1/p| then one can prove weak-type (p, p) version of estimates (2-21). However the proof of
such results seems to be more complex and not directly related to the rest of this paper, so we will not
pursue this idea further here.

3. Kernel estimates imply restriction estimates

The goal of this section is to prove Proposition 1.12; that is, we show that restriction estimates (2-3)
or (2-4) follow from certain pointwise estimates of λ-derivatives of the kernel of the spectral measure.
We first prove a simplified version of Proposition 1.12 in which the partition of unity does not appear. We
work in the same abstract setting as the previous section.

Proposition 3.1. Let (X, d, µ) be a metric measure space and L an abstract positive self-adjoint operator
on L2(X, µ). Assume that the spectral measure dE√L(λ) for

√
L has a Schwartz kernel dE√L(λ)(z, z′)

that satisfies, for some nonnegative function w on X × X and some n ≥ 3, the estimate∣∣∣( d
dλ

) j
dE√L(λ)(z, z′)

∣∣∣≤ Cλn−1− j (1+ λw(z, z′))−(n−1)/2+ j (3-1)

for j = 0 and for j = n/2− 1 and j = n/2 if n is even, or for j = n/2− 3/2 and j = n/2+ 1/2 if n is
odd. Then (2-3) holds for all p in the range [1, 2(n+ 1)/(n+ 3)]. Moreover, if the estimates above hold
only for 0< λ < λ0, then (2-4) hold for the same range of p.

We prove this proposition via complex interpolation, embedding the derivatives of the spectral measure
in an analytic family of operators, following the original (unpublished) proof of Stein in the classical
case. To do this we use the distributions χa

+
, defined by

χa
+
= xa
+
/0(a+ 1),

where 0 is the gamma function and {
xa
+
= xa if x ≥ 0,

xa
+
= 0 if x < 0.
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The xa
+

are clearly distributions for Re a >−1, and we have for Re a > 0,

d
dx

xa
+
= axa−1

+
=⇒

d
dx
χa
+
= χa−1
+

, (3-2)

which we use to extend the family of functions χa
+

to a family of distributions on R defined for all a ∈ C;
see [Hörmander 1983] for details. Since χ0

+
(x)= H(x) is the Heaviside function, it follows that

χ−k
+
= δ

(k−1)
0 , k = 1, 2, . . . , (3-3)

and therefore

χ0
+
(λ−
√

L)= E√L((0, λ]) and χ−k
+
(λ−
√

L)=
( d

dλ

)k−1
dE√L(λ), k ≥ 1.

A standard computation shows that for all w, z ∈ C,

χw
+
∗χ z
+
= χw+z+1
+

, (3-4)

where χw
+
∗χ z
+ is the convolution of the distributions χw

+
and χ z

+ see [Hörmander 1983, (3.4.10)]. We
can use this relation to define the operators χ z

+(λ−
√

L) for Re z < 0, provided that the spectral measure
of
√

L satisfies estimates of the type in Proposition 3.1:

Definition 3.2. Suppose that X , L and w are as in Proposition 3.1, and that L satisfies the kernel estimate∣∣∣( d
dλ

)k
dE√L(λ)(z, z′)

∣∣∣≤ Cλl(1+ λw(z, z′))β (3-5)

for some k ≥ 0, l ≥ 0 and β. Then, for −(k+ 1) < Re a < 0 we define the operator χa
+
(λ−
√

L) to be
that operator with kernel

χ k+a
+
∗χ
−(k+1)
+ (λ−

√
L)(z, z′)= (−1)k

∫ λ

0

σ k+a

0(k+ a+ 1)

( d
dσ

)k
dE√L(λ− σ)(z, z′) dσ. (3-6)

Notice that the integral converges, since Re(k+ a) >−1 and l ≥ 0 in (3-5). It is also independent of
the choice of integer k >−Re a− 1 (provided (3-5) holds), as we check by integrating by parts in σ in
the integral above, and using (3-2). Note that the kernel χa

+
(λ−
√

L)(z, z′) is analytic in a, and as an
integral operator maps L1

comp(X) to L∞loc(X). Therefore, for each fixed λ > 0, the family χa
+
(λ−
√

L) is
an analytic family of operators in the sense of Stein [1956] in the parameter a, for Re a >−k.

In the proof of Proposition 3.1 we will need the following:

Lemma 3.3. Suppose that k ∈ N, that −k < a < b < c and that b = θa+ (1− θ)c. Then there exists a
constant C such that for any Ck−1 function f : R→ C with compact support, one has

‖χb+is
+
∗ f ‖∞ ≤ C(1+ |s|)eπ |s|/2‖χa

+
∗ f ‖θ

∞
‖χ c
+
∗ f ‖1−θ

∞

for all s ∈ R.

Remark 3.4. The convolution χa
+
∗ f , for a>−k and f ∈Ck−1

c (R), may be defined to be χa+k−1
+ ∗ f (k−1);

this is independent of the choice of k.
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Proof. Set, for ζ ∈ C,

Iζ f = χ ζ+ ∗ f

and consider the operator Ib+is(σ Ic+ Ia)
−1, where the number σ ∈ C such that |σ | = 1 will be specified

later. By (3-4)

Ib+is(σ Ic+ Ia)
−1
= Iβ+is(σ I−1+ Iα)−1

= Iβ+is(σ I + Iα)−1,

where β = b− c−1 and α = a− c−1. Note that α < β <−1. A standard calculation [Hörmander 1983,
Example 7.1.17, page 167 and (3.2.9) page 72] shows that for Re ζ ≤−1,

χ̂
ζ
+(ξ)= e−iπ(ζ+1)/2(ξ − i0)−ζ−1.

It follows that Iβ+is(σ I + Iα)−1 f = f ∗ ηs , where η̂s is the locally integrable function

η̂s(ξ)=
−ie−iπ(β+is)/2ξ

−(β+is)−1
+ + ieiπ(β+is)/2ξ

−(β+is)−1
−

σ − ie−iπα/2ξ−α−1
+ + ieiπα/2ξ−α−1

−

.

Here ξ+ =max(0, ξ) and ξ− =−min(0, ξ). Note that if |σ | = 1 and σ /∈ {ie−iπα/2,−ie−iπα/2
} then∣∣∣ d

dξ
η̂s(ξ)

∣∣∣≤ C(1+ |s|)eπ |s|/2 min
(
|ξ |−β−2, |ξ |−β+α−1)

and −β +α− 1<−1<−β − 2. It follows from these estimates that the function d
dξ η̂s is in an L p(R)

space for some 1 < p < 2 and is also in some weighted space L1((1+ |x |)εdx,R). By the Sobolev
embedding and Hausdorff–Young theorems, the function x → xηs(x) is in L p′(R) for the conjugate
exponent p′ <∞ and in Cε′(R) for some ε′ > 0. Hence ηs is in L1 and we have

‖ηs‖1 ≤ C(1+ |s|)eπ |s|/2.

Hence the operator Ib+is(σ Ic+ Ia)
−1
= Iβ+is(σ I + Iα)−1 is bounded on L∞(R) and

‖Ib+is f ‖∞ ≤ C(1+ |s|)eπ |s|/2‖σ Ic f + Ia f ‖∞ ≤ C(1+ |s|)eπ |s|/2(‖Ic f ‖∞+‖Ia f ‖∞).

Now if we set Dκ f (x)= f (κx) then for all ζ ∈ C,

Iζ Dκ f = κ−ζ−1 Dκ Iζ f,

so

κ−b
‖Ib+is f ‖∞ = κ−b

‖Dκ Ib+is f ‖∞ = κ‖Ib+is Dκ f ‖∞.

Hence

κ−b
‖Ib+is f ‖∞ = κ‖Ib+is Dκ f ‖∞ ≤ C(1+ |s|)eπ |s|/2

(
κ‖Ia(Dκ f )‖∞+ κ‖Ic(Dκ f )‖∞

)
= C(1+ |s|)eπ |s|/2

(
κ−a
‖Ia f ‖∞+ κ−c

‖Ic f ‖∞
)
.

Putting κa−c
= ‖Ia f ‖∞‖Ic f ‖−1

∞
in this estimate yields Lemma 3.3. �
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Proof of Proposition 3.1. To prove (2-3) in the range 1≤ p ≤ 2(n+1)/(n+3), it suffices by interpolation
to establish the result for the endpoints p = 1 and p = 2(n+ 1)/(n+ 3). The endpoint p = 1 is precisely
(3-1) for j = 0, so it remains to obtain the endpoint p = 2(n+ 1)/(n+ 3). This we will obtain through
complex interpolation, applied to the analytic (in the parameter a) family χa

+
(λ −
√

L) in the strip
−(n+ 1)/2≤ Re a ≤ 0.

On the line Re a = 0, we have the estimate

‖χ is(λ−
√

L)‖L2→L2 ≤

∣∣∣∣ 1
0(1+is)

∣∣∣∣=
√

sinhπs
πs

≤ Ceπ |s|/2.

On the line Re a =−(n+ 1)/2, we will prove an estimate of the form

∥∥χ−(n+1)/2+is(λ−
√

L)
∥∥

L1→L∞ ≤ C(1+ |s|)eπ |s|/2λ(n−1)/2 for all s ∈ R. (3-7)

Then, since we can write

dE√L(λ)= χ
−1
+
(λ−
√

L)

and

−1= n−1
n+1

· 0+ 2
n+1

·

(
−

n+1
2

)
and n+3

2(n+1)
=

n−1
n+1

·
1
2
+

2
n+1

· 1,

we obtain (2-3) at p = 2(n+ 1)/(n+ 3) by complex interpolation.
It remains to prove (3-7). Let η ∈ C∞c (R) be a function such that 0 ≤ η(x) ≤ 1 for all x ∈ R and

η(x)= 1 for |x | ≤ 2 and η(x)= 0 for |x | ≥ 4. Set

F s,3
z,z′ (λ)= χ

−3/2−is
+ ∗

(
η( · /3)χ−k

+
( · −
√

L)(z, z′)
)
(λ),

F s,3
z,z′ (λ)= χ

−2−is
+

∗
(
η( · /3)χ−k

+
( · −
√

L)(z, z′)
)
(λ),

n = 2k,

n = 2k+ 1.

Note that supp(χ z
+)⊂ [0,∞) for all z, and L ≥ 0. It follows that for λ≤3 and n = 2k,

F s,3
z,z′ (λ)= χ

−3/2−is
+ ∗χ−k

+
(λ−
√

L)(z, z′)= χ−(n+1)/2−is
+ (λ−

√
L)(z, z′)

and for λ≤3 and n = 2k+ 1,

F s,3
z,z′ (λ)= χ

−2−is
+

∗χ−k
+
(λ−
√

L)(z, z′)= χ−(n+1)/2−is
+ (λ−

√
L)(z, z′),

i.e., the cutoff function η has no effect for λ≤3. Hence

∥∥χ−(n+1)/2−is
+ (3−

√
L)
∥∥

1→∞ ≤ sup
z,z′
|F s,3

z,z′ (3)|.
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We consider first the odd-dimensional case n = 2k+ 1. By Lemma 3.3 and (3-3),∣∣F s,3
z,z′ (3)

∣∣≤ ∥∥F s,3
z,z′
∥∥
∞

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣(χ−1
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

× sup
λ>0

∣∣(χ−3
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣η(λ/3)χ−k
+
(λ−
√

L)(z, z′)
∣∣1/2

× sup
λ>0

∣∣∣ d2

dλ2η(λ/3)χ
−k
+
(λ−
√

L)(z, z′)
∣∣∣1/2, (3-8)

where the presence of the η cutoff is now crucial. It follows from (3-1) with j = n/2 − 3/2 and
j = n/2+ 1/2, i.e., j = k− 1 and j = k+ 1, that

sup
λ>0
|η(λ/3)χ−k

+
(λ−
√

L)(z, z′)| ≤ C3k+1(1+3w(z, z′))−1.

(Here we used the fact that the function λk(1+λw)β is an increasing function of λ provided λ≥ 0, w≥ 0,
k ≥ 0 and k+β ≥ 0.) Similarly,

sup
λ>0

∣∣∣ d2

dλ2η(λ/3)χ
−k
+
(λ−
√

L)(z, z′)
∣∣∣≤ sup

λ>0

∣∣η(λ/3)χ−k−2
+

(λ−
√

L)(z, z′)
∣∣

+
1
3

sup
λ>0

∣∣η′(λ/3)χ−k−1
+

(λ−
√

L)(z, z′)
∣∣

+
1
32 sup

λ>0

∣∣η′(λ/3)χ−k
+
(λ−
√

L)(z, z′)
∣∣

≤ C3k−1(1+3w(z, z′)).

Our estimate (3-7) for n = 2k+ 1 follows now from these two estimates and (3-8).
If n = 2k is even, then by Lemma 3.3 and (3-3),∣∣F s,3
z,z′ (3)

∣∣≤ ∥∥F s,3
z,z′
∥∥
∞

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣(χ−1
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

× sup
λ>0

∣∣(χ−2
+
∗ (η(·/3)χ−k

+
(· −
√

L)(z, z′))
)
(λ)
∣∣1/2

≤ C(1+ |s|)eπ |s|/2 sup
λ>0

∣∣η(λ/3)χ−k
+
(λ−
√

L)(z, z′)
∣∣1/2

× sup
λ>0

∣∣∣ d
dλ
η(λ/3)χ−k

+
(λ−
√

L)(z, z′)
∣∣∣1/2, (3-9)

and we follow the same argument as in the odd-dimensional case to establish (3-7) for n = 2k. �

In some situations, including the case of Laplace-type operators on asymptotically conic manifolds
discussed later in this paper, we can express the spectral measure dE(λ) in the form P(λ)P(λ)∗, where
the initial space of P(λ) is an auxiliary Hilbert space H . In this case, we can use a T T ∗ argument to
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show that the conclusions of Proposition 3.1 follow from localized estimates on dE(λ), that is, on kernel
estimates on Qi dE(λ)Qi , with respect to a operator partition of unity

Id=
N (λ)∑
i=1

Qi (λ), 1≤ i ≤ N (λ).

Notice that we allow the partition of unity to depend on λ. However, we shall assume that N (λ) is
uniformly bounded in λ.

Remark 3.5. Here we assume that Qi (λ)dE ( j)
√

L
(λ)Qi (λ) can be defined somehow and has a Schwartz

kernel; for example, we might know that there is some weight function ω on X such that dE ( j)
√

L
(λ) is a

bounded map from ω j+1L2(X) to ω− j−1L2(X), and that Qi (λ) maps ωa L2(X) boundedly to itself for
any a. This is the case in our application to asymptotically conic manifolds, with ω = x (where x is as in
(1-1)).

Proof of Proposition 1.12. Observe that Proposition 1.12 reduces to Proposition 3.1 in the case that the
partition of unity Qi is trivial. We apply the argument in the proof of Proposition 3.1 to the operators
Qi (λ)dE(λ)Qi (λ), i.e., we replace dE√L(λ) by Qi (λ)dE√L(λ)Qi (λ)

∗ in (3-6). The conclusion is that

‖Qi (λ)dE√L(λ)Qi (λ)
∗
‖L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1 for all λ > 0.

Using the fact that dE√L(λ)= P(λ)P(λ)∗ and the T T ∗ trick, we deduce that

‖Qi (λ)P(λ)‖L2(X)→L p′ (X) ≤ Cλn(1/2−1/p′)−1/2 for all λ > 0.

Now we can sum over i , and find that

‖P(λ)‖L2(X)→L p′ (X) ≤ Cλn(1/2−1/p′)−1/2 for all λ > 0.

Finally, we use dE√L(λ)= P(λ)P(λ)∗ and the T T ∗ trick again to deduce that

‖dE√L(λ)‖L p(X)→L p′ (X) ≤ Cλn(1/p−1/p′)−1 for all λ > 0,

yielding (2-3). Moreover, if the estimates hold only for 0< λ≤ λ0, then we obtain (2-4) instead. �

Remark 3.6. We acknowledge and thank Jared Wunsch for suggesting to us that the T T ∗ trick would be
useful here.

Part II. Schrödinger operators on asymptotically conic manifolds

In this second part of the paper, we specialize to the case that (X, d, µ) is an asymptotically conic
manifold (M◦, g) with the Riemannian distance function d and Riemannian measure µ, and L is a
Schrödinger operator H on L2(M◦, g), that is, an operator of the form H =1g + V , where 1g is the
positive Laplacian associated to g and V ∈ C∞(M) is a potential function vanishing to third order at the
boundary of the compactification M of M◦. We assume that H has no L2-eigenvalues (which implies
that it is positive as an operator) and that zero is not a resonance.
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The goal in this part of the paper is to show that H satisfies the low energy spectral measure estimates
(2-4), and the full spectral measure estimates (2-3) provided that (M◦, g) is nontrapping. To do this,
we will establish the estimates (1-9) for a suitable partition of unity Qi (λ). In the case of low energy
estimates, i.e., λ ∈ (0, λ0] for λ0 <∞, these Qi will be pseudodifferential operators, lying in the calculus
of operators introduced in [Guillarmou and Hassell 2008]. Thus our first task is to determine the nature of
the operator Qi dE(λ)Qi for such Qi , which is the subject of Section 5. Before this, however, we recall
some of the geometric preliminaries from [Guillarmou et al. 2012; Hassell and Wunsch 2008].

4. Geometric preliminaries

The Schwartz kernel of the spectral measure was constructed in [Guillarmou et al. 2012] for low energies
and in [Hassell and Wunsch 2008] for high energies on a compactification of the space [0, λ0]× (M◦)2,
respectively [0, h0]×(M◦)2, where we use h = λ−1 in place of λ for high energies. We use the definitions
and machinery from these papers extensively, and we do not review this material comprehensively here,
since that would double the length of this paper. Nevertheless, we shall describe these compactifications,
review some of their geometric properties, and define some coordinate systems that we shall use in the
following sections.

Recall from the introduction that (M◦, g) is asymptotically conic if M◦ is the interior of a compact
manifold M with boundary, such that in a collar neighborhood of the boundary, the metric g takes the form
g = dx2/x4

+ h(x)/x2, where x is a boundary defining function and h(x) is a smooth family of metrics
on the boundary ∂M . We use y = (y1, . . . , yn−1) for local coordinates on ∂M , so that (x, y) furnish local
coordinates on M near ∂M . Away from ∂M , we use z = (z1, . . . , zn) to denote local coordinates.

4A. The low energy space M2
k,b. In [Guillarmou and Hassell 2008; Guillarmou et al. 2012], following

unpublished work of Melrose and Sá Barreto, the low energy space M2
k,b is defined as follows: starting

with [0, λ0]×M2, we define submanifolds C3 := {0}× ∂M × ∂M and

C2,L := {0}× ∂M ×M, C2,R := {0}×M × ∂M, C2,C := [0, 1]× ∂M × ∂M.

The space M2
k,b is then defined as [0, λ0]×M2 with the codimension 3 corner C3 blown up, followed by

the three codimension 2 corners C2,∗:

M2
k,b := [[0, 1]×M ×M;C3,C2,R,C2,L ,C2,C ].

The new boundary hypersurfaces created by these blowups are labeled bf0, rb0, lb0 and bf, respectively,
and the original boundary hypersurfaces {0}×M2, [0, λ]×M × ∂M and [0, λ]× ∂M ×M are labeled
zf, rb, lb, respectively. We remark that zf is canonically diffeomorphic to the b-double space

M2
b = [M

2
; ∂M × ∂M].

Also, each section M2
k,b ∩ {λ= λ∗}, for fixed 0< λ∗ < λ0 is canonically diffeomorphic to M2

b .
We define functions x and y on M2

k,b by lifting from the left copy of M (near ∂M), and x ′, y′ by lifting
from the right copy of M ; similarly z, z′ (away from ∂M). We also define ρ = x/λ, ρ ′ = x ′/λ, and
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σ = ρ/ρ ′ = x/x ′. Near bf and away from rb, we use coordinates y, y′, σ, ρ ′, λ, while near bf and away
from lb, we use y, y′, σ−1, ρ, λ. We also use the notation ρ•, where •= bf0, lb0, . . ., to denote a generic
boundary defining function for the boundary hypersurface •.

This space has a compressed cotangent bundle k,bT ∗M2
k,b, defined in [Guillarmou et al. 2012, Section 2].

A basis of sections of this space is given, in the region ρ, ρ ′ ≤ C (which includes a neighborhood of bf),
by

dρ
ρ2 ,

dρ ′

ρ ′2
,

dyi

ρ
,

dy′i
ρ ′
,

dλ
λ
. (4-1)

Therefore, any point in k,bT ∗M2
k,b lying over this region can be written as

ν
dρ
ρ2 + ν

′
dρ ′

ρ ′2
+µi

dyi

ρ
+µ′i

dy′i
ρ ′
+ T dλ

λ
. (4-2)

This defines local coordinates (y, y′, σ, ρ ′, λ, µ,µ′, ν, ν ′, T ) in k,bT ∗M2
k,b, near bf and away from rb,

where (µ,µ′, ν, ν ′, T ) are linear coordinates on each fiber.
The compressed density bundle �k,b(M2

k,b) is defined to be that line bundle whose smooth nonzero
sections are given by the wedge product of a basis of sections for k,bT ∗(M2

k,b). Using the coordinates
above, we can write a smooth nonzero section ω as

ω =

∣∣∣∣dρdρ ′dydy′dλ

ρn+1ρ ′n+1λ

∣∣∣∣∼ λ2n
∣∣∣∣dg dg′dλ

λ

∣∣∣∣ in the region ρ, ρ ′ ≤ C. (4-3)

For ρ, ρ ′ ≥ C , we can take ω = (xx ′)n|dgdg′dλ/λ|. Here dg, respectively dg′, denotes the Riemannian
density with respect to g, lifted to M2

k,b by the left, respectively right, projection.
The boundary of k,bT ∗M2

k,b lying over boundary hypersurface • is denoted by k,bT ∗• M2
k,b. The space

k,bT ∗lb M2
k,b fibers over the space scT ∗∂M M × [0, λ] (the scattering cotangent bundle scT ∗M over M is

defined in [Melrose 1994; Hassell and Vasy 1999; 2001], and scT ∗∂M M is that part of the bundle lying
over ∂M). This fibration is given in local coordinates by

(y, y′, σ, λ, µ,µ′, ν, ν ′, T )→ (y, µ, ν, λ). (4-4)

Similarly there is a natural fibration from k,bT ∗rb M2
k,b to scT ∗∂M M ×[0, λ0], which takes the form

(y, y′, σ, λ, µ,µ′, ν, ν ′, T )→ (y′, µ′, ν ′, λ). (4-5)

We also note that there are natural maps πL , πR mapping scT ∗bf M
2
b × [0, λ0] (see [Hassell and Vasy

1999; 2001]) to scT ∗∂M M × [0, λ0] which are induced by the projections T ∗M2
→ T ∗M onto the left,

respectively right, factor. In local coordinates, these are given by

πL(y, y′, σ, µ,µ′, ν, ν ′, λ)= (y, µ, ν, λ), πR(y, y′, σ, µ,µ′, ν, ν ′, λ)= (y′, µ′, ν ′, λ). (4-6)

We use these maps in Section 5.
The space k,bT ∗bf M

2
k,b is canonically diffeomorphic to s8T ∗bf M

2
b × [0, λ0], where s8T ∗bf M

2
b is the

scattering-fibered cotangent bundle of M2
b defined in [Hassell and Vasy 1999]. The space s8T ∗bf M

2
b has

a natural contact structure, and Legendre submanifolds with respect to this structure play an important
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role in encoding the oscillations of the spectral measure at the boundary of M2
k,b. In fact, three Legendre

submanifolds of s8T ∗bf M
2
b arise in the identification of the spectral measure as a Legendre distribution

(see [Guillarmou et al. 2012, Section 3]), which we now briefly describe. One is denoted scN ∗∂diagb,
which in coordinates used in (4-2) is given by

scN ∗∂diagb = {(y, y′, σ, µ,µ′, ν, ν ′) | y = y′, σ = 1, µ=−µ′, ν =−ν ′}; (4-7)

it is a sort of conormal bundle to the boundary of the diagonal ∂diagb,

∂diagb = {(y, y′, σ ) | y = y′, σ = 1}, (4-8)

in M2
b , and carries the “operator wavefront set” or “microlocal support” of scattering pseudodifferential

operators. Another is the incoming/outgoing Legendrian submanifold L], which in the coordinates used
in (4-2) is given by

L] = {(y, y′, σ, µ,µ′, ν, ν ′) | µ= µ′ = 0, ν =±1, ν ′ =−ν}. (4-9)

It has two components (corresponding to the sign of ν) and describes oscillations that are purely radial, that
is, purely incoming or outgoing. The third and most interesting Legendre submanifold is the propagating
Legendrian, denoted by Lbf. To describe it, let G denote the characteristic variety of H − λ2. Then
Lbf is given by the flowout from scN ∗∂diagb ∩ G by the bicharacteristic flow of H . It connects the
incoming and outgoing components of L] and has a conic singularity at each. As shown in [Hassell
and Vasy 1999, Proposition 7.1], (Lbf, L]) is a Legendre conic pair, and has an associated class of
polyhomogeneous-conormal Legendre distributions [Guillarmou et al. 2012, Section 3.2]

I m,p;rlb,rrb;B(M2
k,b, (L

bf, L],bf);�
1/2
k,b ) (4-10)

of order m at Lbf and p at L], and with polyhomogeneous expansion with respect to the index family B

at the boundary hypersurfaces at λ= 0. In terms of these space of half-densities we have:

Theorem 4.1 [Guillarmou et al. 2012, Theorem 3.10]. The spectral measure dE√H(λ), for 0<λ≤ λ0, is
a conormal Legendre distribution in the space (4-10) tensored with |λdλ|1/2 (this makes it a full density,
i.e., a measure, in λ), with m =− 1

2 , p = (n− 2)/2, rlb = rrb = (n− 1)/2, and where B is an index family
with index sets at the faces bf0, lb0, rb0, zf starting at order −1, n/2− 1, n/2− 1, n− 1, respectively.

4B. The high energy space X. The high energy space X is defined by X = [0, h0]×M2
b . The boundary

hypersurfaces [0, h0]×M × ∂M , [0, h0]× ∂M ×M and {0}×M2
b are denoted by rb, lb and mf (“main

face”), respectively, and the boundary hypersurface arising from [0, h0] × ∂M × ∂M is denoted by bf.
Notice that this space fits together with the low energy space: in the range λ ∈ (C−1,C) (where λ= 1/h),
the spaces both have the form (C−1,C)×M2

b , and the labeling of boundary hypersurfaces is consistent.
As before, we write σ = x/x ′. We use the coordinates (y, y′, σ, x ′, h) near bf and away from rb, and
the coordinates (y, y′, σ−1, x, h) near bf and away from lb. Away from bf, lb, rb we use the coordinates
(z, z′, h).
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The compressed cotangent bundle s8T ∗X is described in [Hassell and Wunsch 2008]. A basis of
sections of this bundle is given in the region x, x ′ ≤ ε by

dyi

xh
,

dy′i
x ′h

, d
( 1

xh

)
, d

( 1
x ′h

)
, d

(1
h

)
.

In terms of this basis, any point in s8T ∗X lying over this region can be written as

µ ·
dy
xh
+µ′ ·

dy′

x ′h
+ νd

( 1
xh

)
+ ν ′d

( 1
x ′h

)
+ τd

(1
h

)
. (4-11)

This defines local coordinates (y, y′, σ, x ′, h, µ, µ′, ν, ν ′, τ ), where (µ,µ′, ν, ν ′, τ ) are local coordinates
on each fiber. In the region x, x ′ ≥ ε, a basis of sections is

dzi

h
,

dz′i
h
, d

(1
h

)
,

and in terms of this basis, any point in s8T ∗X lying over this region can be written as

ζ ·
dz
h
+ ζ ′ ·

dz′

h
+ τd

(1
h

)
. (4-12)

This defines local coordinates (z, z′, h, ζ, ζ ′, τ ) on s8T ∗X over this region.
This compressed density bundle s8�(X) is defined to be that line bundle whose smooth nonzero sections

are given by a wedge product of a basis of sections for s8T ∗X . We find that |dg dg′dh/h2
| = |dg dg′dλ|

is a smooth nonzero section of this bundle.
We also note that there are natural maps from s8T ∗mf X→ scT ∗M , which (abusing notation) we will

also denote by πL , πR , which are induced by the projections onto the left, respectively right, factor
T ∗M2

→ T ∗M . In local coordinates, these are given by

πL(z, z′, ζ, ζ ′, τ )= (z, ζ ), πR(z, z′, ζ, ζ ′, τ )= (z′, ζ ′), (4-13)

away from the boundary hypersurface bf, or near bf by

πL(x, y, x ′, y′, µ, µ′, ν, ν ′, τ )= (x, y, µ, ν), πR(x, y, x ′, y′, µ, µ′, ν, ν ′, τ )= (x ′, y′, µ′, ν ′). (4-14)

The space s8T ∗mf X has a natural contact structure, as described in [Hassell and Wunsch 2008]. Legendre
submanifolds with respect to this contact structure are important in describing the singularities of the
spectral measure at high energies. We need to define three Legendre submanifolds s8N ∗diagb and L in
order to describe the spectral measure at high energies as a Legendre distribution on X (see [ibid.]). The
first of these, s8N ∗diagb, is associated to the diagonal submanifold diagb ⊂ {0}×M2

b , defined using the
coordinates above by

s8N ∗diagb = {(z, z′, h, ζ, ζ ′, τ ) | z = z′, ζ =−ζ ′, h = 0, τ = 0} (4-15)

away from bf, and

s8N ∗diagb = {(y, y′, σ, x ′, h, µ, µ′, ν, ν ′, τ ) | y = y′, σ = 1, h = 0, µ=−µ′, ν =−ν ′, τ = 0} (4-16)



918 COLIN GUILLARMOU, ANDREW HASSELL AND ADAM SIKORA

near bf. The second, L], lives at s8T ∗bf∪mf X and is defined in (4-9). The third, L , is obtained just as Lbf

was obtained from scN ∗∂diagb in the previous subsection, namely as the flowout by the bicharacteristic
flow of H starting from the intersection of s8N ∗diagb and the characteristic variety of h2 H − 1. Indeed,
the submanifolds Lbf and scN ∗∂diagb are essentially the boundary hypersurfaces of L and s8N ∗diagb

lying over bf∩mf. Associated to (L , L]) is a class of Legendre distributions [ibid., Section 6.5.2]

I m,p;rbf,rlb,rrb(X, (L , L#); s8�1/2). (4-17)

In terms of this space of half-densities, we have:

Theorem 4.2 [Hassell and Wunsch 2008, Corollary 1.2]. Suppose that (M, g) is nontrapping. Then
the spectral measure dE√H(λ) is a Legendre distribution on X , lying in the space (4-17) tensored with
|dλ|1/2, with m = 1

2 , p = (n− 2)/2, rbf =−
1
2 , rlb = rrb = (n− 1)/2. Here we use the order conventions

in Remark 4.3.

Remark 4.3. We use different order conventions from [Hassell and Wunsch 2008], to agree with those
used in [Guillarmou et al. 2012]. In terms of Equation (4.15) of [Hassell and Wunsch 2008], the order
convention in the present paper corresponds to taking N = 2n (not 2n + 1 as in [ibid.]), that is, the
total space dimension, but not including the λ dimension, and taking the fiber dimensions fbf = 0 and
flb = frb = n, again not including the λ dimension. This has the effect that the orders in the present paper
are 1

4 larger at mf= M2
b ×{h = 0}, and 1

4 smaller at bf, lb and rb, compared to [ibid.], and explains the
discrepancies in the orders above compared to those given in Corollary 1.2 of [ibid.]. (An advantage of
the ordering convention used here is that a semiclassical pseudodifferential operator of (semiclassical)
order m, multiplied by |dh/h2

|
1/2
= |dλ|1/2 becomes a Legendre distribution of the same order m at the

conormal bundle of the diagonal in mf.)

5. Microlocal support

Recall from the end of Section 1 our strategy for proving Theorem 1.3, involving estimates (1-9). The
elements Qi of our partition of unity will be chosen to be pseudodifferential operators lying in the calculus
of operators introduced in [Guillarmou and Hassell 2008, Definition 2.7]. In view of Theorem 4.1, we
need to understand what happens when a conormal Legendre distribution F ∈ I m,rlb,rrb,B(M2

k,b,3;�
1/2
k,b )

is pre- and postmultiplied by such operators. We shall use the notation 9m
k (M, �

1/2
k,b ) to denote what

in [ibid.] was written 9m,E(M, �̃1/2
b ), where the index family E assigns the C∞ index family at sc, bf0

and zf and the empty index family at all other boundary hypersurfaces. Such operators have kernels
defined on the space M2

k,sc, defined in [ibid.], that are conormal of order m to the diagonal, uniformly to
the boundary, smooth away from the diagonal, and rapidly vanishing at all boundary hypersurfaces not
meeting the diagonal. As shown in [ibid., Proposition 2.10], 90(M, �1/2

k,b ) is an algebra. It follows, using
Hörmander’s “square root trick” [1985, Section 18.1] that such kernels act as uniformly bounded (in λ)
operators on L2(M).

In this section, we shall work exclusively on the low energy space M2
k,b; the corresponding high energy

estimates are given in Section 7A. We consider operators Q, Q′ such that:
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• Q, Q′ are of order −∞, i.e., Q, Q′ ∈9−∞k (M, �1/2
k,b ), with compactly supported symbols. (5-1)

• Q, Q′ have kernels supported close to the diagonal, inside the region {σ := x/x ′ ∈ [1/2, 2]}. (5-2)

With these assumptions, the kernels of Q, Q′ are smooth (across the diagonal) on the space M2
k,sc.

Viewed as distributions on M2
k,b (which has one fewer blowup than M2

k,sc) the kernels have a conic
singularity at the boundary of the diagonal, ∂diagb. As shown in [Hassell and Vasy 2001, Section 5.1], this
means that they are Legendre distributions in I 0,∞,∞;(0,0,∅,∅)(M2

k,b,
scN ∗∂diagb;�

1/2
k,b ), i.e., Legendre

distributions of order 0 associated to scN ∗∂diagb (see (4-7)), with the C∞ index set 0 at bf0 and zf, and
vanishing in a neighborhood of lb, rb, lb0 and rb0 (which is of course a trivial consequence of (5-2)).

Remark 5.1. The composition QF or F Q′ is always well-defined when F is a Legendre distribution
on M2

k,b and Q, Q′ are as above, since F can be regarded as a map from xa L2(M) to x−a L2(M) for
sufficiently large a ∈ R, depending smoothly on λ ∈ (0, λ0), while pseudodifferential operators of order 0
are bounded on xa L2(M) (uniformly in λ) for any a.

To state our results, we need to introduce some notation and define the notion of the microlocal support
of F . Let 3 ⊂ scT ∗bf M

2
b be the Legendre submanifold associated to F . We always assume that 3 is

compact. Recall from [Hassell and Wunsch 2008, Section 4] that 3 determines two associated Legendre
submanifolds 3lb and 3rb that are the bases of the fibrations on ∂lb3 and ∂rb3, respectively. These may
be canonically identified with Legendre submanifolds of scT ∗M . We also define 3′ by negating the fiber
coordinates corresponding to the right copy of M , i.e.,

q ′ = (y, y′, x/x ′, µ, µ′, ν, ν ′) ∈3′ ⇐⇒ q = (y, y′, x/x ′, µ,−µ′, ν,−ν ′) ∈3. (5-3)

Similarly we define 3′rb by negating the fiber coordinates:

q ′ = (y′, µ′, ν ′) ∈3′rb ⇐⇒ q = (y′,−µ′,−ν ′) ∈3rb.

We also define 3′, 3lb, 3′rb by

3′ =3′×[0, λ0], 3lb =3
′

lb×[0, λ0], 3′rb =3
′

rb×[0, λ0]. (5-4)

To define the microlocal support, WF′(F), of F we first recall from [Guillarmou et al. 2012] that
F ∈ I m,rlb,rrb,B(M2

k,b,3;�
1/2
k,b ) means F can be decomposed as F = F1+ F2+ F3+ F4+ F5+ F6, where

• F1 is supported near bf and away from lb, rb;

• F2 is supported near bf∩ lb;

• F3 is supported near bf∩ rb;

• F4 is supported near lb and away from bf;

• F5 is supported near rb and away from bf;

• F6 vanishes rapidly at bf, lb, rb and is polyhomogeneous on M2
k,b with index family B;

and each Fi , 1≤ i ≤ 5 has an oscillatory representation as follows:
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• F1 is a finite sum of terms of the form (up to rapidly vanishing terms which may be included in F6)

ρm−k/2+n/2
∫

Rk
ei8(y,y′,x/x ′,v)/ρa(λ, ρ, y, y′, σ, v) dv ω, (5-5)

where 8 locally parametrizes 3, ω is a nonzero section of the half-density bundle �1/2
k,b , compactly

supported in v, and

a is polyhomogeneous conormal in λ with index set Bbf0 and smooth in all other variables. (5-6)

• F2 is a finite sum of terms of the form (up to rapidly vanishing terms which may be included in F6)

σ rlb−k/2ρ ′m−(k+k′)/2+n/2
∫

Rk+k′
ei81(y,v)/ρei82(y,y′,σ,v,w)/ρ′a(λ, ρ ′, y, y′, σ, v,w) dv dw ω, (5-7)

where 8=81+ σ82 locally parametrizes 3 (in particular, 81 locally parametrizes 3lb), and a satisfies
(5-6).

• F3 is a finite sum of terms of the form (up to rapidly vanishing terms which may be included in F6)

ρm−(k+k′)/2+n/2σ̃ rrb−k/2
∫

Rk+k′
ei8′1(y

′,v)/ρ′ei8′2(y,y
′,σ̃ ,v,w)/ρa(λ, ρ, y, y′, σ̃ , v, w) dv dw ω, (5-8)

where σ̃ = ρ ′/ρ = σ−1 and 8=8′1+ σ̃8
′

2 locally parametrizes 3 (in particular, 8′1 locally parametrizes
3rb), and a satisfies (5-6).

• F4 is a finite sum of terms of the form

ρrlb−k/2
∫

Rk
ei81(y,v)/ρa(λ, ρ, y, z′, v) dv ω, (5-9)

where 8 parametrizes 3lb and a is polyhomogeneous at bf0 and lb0 with index sets Bbf0,Blb0 .

• F5 is a finite sum of terms

(ρ ′)rrb−k/2
∫

Rk
ei8′1(y

′,v′)/ρ′a(λ, ρ ′, y′, z, v) dv ω, (5-10)

where 8′ parametrizes 3rb and a is polyhomogeneous at bf0 and rb0 with index sets Bbf0,Brb0 .

Then we define the microlocal support WF′(F) of F to be a closed subset of 3′∪3lb∪3
′

rb as follows:
We say that (q ′, λ)∈3′ is not in WF′(F) if there is a neighborhood of (q, λ)∈3×[0, λ0] in which F has
order∞. In terms of the oscillatory integral representation (5-5), say, the condition that F has order infinity
at (q, λ) is equivalent to a vanishing rapidly in a neighborhood of the point (λ, 0, y, y′, σ, v) which corre-
sponds under (5-3) to (q, λ) in the sense that dy,y′,σ,ρ(8(y, y′, x/x ′, v)/ρ)=q and dv8(y, y′, x/x ′, v)=0
(by nondegeneracy there is only one v with this property). Similar considerations apply to (5-7) and
(5-8). Likewise, we say that (q, λ) ∈ 3lb is not in WF′(F) if there is a neighborhood of the fiber (see
(4-4)) of (q, λ) ∈ 3lb × [0, λ0] in which F has order ∞, and (q ′, λ) ∈ 3′rb is not in WF′(F) if there
is a neighborhood of the fiber of (q, λ) ∈ 3rb × [0, λ0] in which F has order ∞. The fiber here is
a copy of M . In terms of the oscillatory integral representation (5-7), the condition that F has order
infinity in a neighborhood of the fiber of (q, λ)= (y, µ, ν, λ) ∈3lb is equivalent to a vanishing rapidly
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in a neighborhood of the point (λ, ρ ′, y, y′, 0, v, w) for all (ρ ′, y′, v, w) such that dy,ρ(81/ρ)= q and
dv81 = 0. Similarly, in (5-9) the condition is that a vanishes rapidly in a neighborhood of the point
(λ, 0, y, z′, v) for all (z′, v) such that dy,ρ(81/ρ)= q and dv81 = 0.

These components of WF′(F) will be denoted by WF′bf(F), WF′lb(F) and WF′rb(F), respectively.
Note that if F ∈ I m,rlb,rrb,B(3), then F is rapidly decreasing at bf, lb and rb if and only if WF′(F) is

empty. Also note that if WF′lb(F) is empty, then ∂lb3×[0, λ0] is disjoint from WF′bf(F), but the converse
need not hold: if the kernel of F is supported away from bf then certainly WF′bf(F) will be empty, but
WF′lb(F) need not be.

This definition makes sense also for pseudodifferential operators Q of order−∞, with compact operator
wavefront set. In the case of a pseudodifferential operator, the Legendre submanifold is scN ∗∂diagb,
defined in (4-7), and the components 3lb∪3

′

rb are empty. Since scN ∗∂diagb is canonically diffeomorphic
to scT ∗∂M M , we will always consider the microlocal support WF′(Q) of a pseudodifferential operator Q
of differential order −∞ to be a subset of scT ∗∂M M ×[0, λ0].

Lemma 5.2. Assume that F ∈ I m,rlb,rrb;B(M2
k,b,3;�

1/2
k,b ) is associated to a compact Legendre submanifold

3 and that Q ∈9−∞k (M;�1/2
k,b ) is of differential order −∞, with compact operator wavefront set. Then

QF is also a Legendre distribution in the space I m,rlb,rrb;B(M2
k,b,3;�

1/2
k,b ) and we have

WF′lb(QF)⊂WF′(Q)∩WF′lb(F),

WF′bf(QF)⊂ π−1
L WF′(Q)∩WF′bf(F),

WF′rb(QF)⊂WF′rb(F),

(5-11)

where πL , πR are as in (4-6). Moreover, if Q is microlocally equal to the identity on πL(WF′bf(F)) and
WF′lb(F), then QF − F ∈ I∞,∞,rrb;B(M2

k,b,3;�
1/2
k,b ), i.e., it vanishes to infinite order at lb and bf.

There is of course a corresponding theorem for composition in the other order, which is obtained by
taking the adjoint of the lemma above. Combining the two we obtain:

Corollary 5.3. Suppose that F and Q, Q′ are as above. Then

WF′lb(QF Q′)⊂WF′(Q)∩WF′lb(F),

WF′bf(QF Q′)⊂ π−1
L WF′(Q)∩π−1

R WF′(Q′)∩WF′bf(F),

WF′rb(QF Q′)⊂WF′(Q′)∩WF′rb(F).

(5-12)

Proof of Lemma 5.2. We decompose as above F = F1+ F2+ F3+ F4+ F5+ F6, and consider each piece
Fi separately.

• F1 term. Using the notation in (5-5), the composition QF1 takes the form

(2π)−n
∫
∞

0

∫
ei((y−y′′)·µ+(1−ρ/ρ′′)ν)/ρq(λ, ρ, y, µ, ν)

× (ρ ′′)m−k/2+n/2ei8(y′′,y′,ρ′/ρ′′,v)/ρ′′a(λ, ρ ′, y′′, y′, ρ ′/ρ ′′, v) dv dµ dν
dy′′ dρ ′′

ρ ′′n+1 ω. (5-13)
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Here the measure λndg′′, which arises from the combination of half-densities in Q and F , is equal
to dy′′dρ ′′/ρ ′′n+1 times a smooth nonzero factor, which has been absorbed into the a term. Writing
σ ′′ = ρ/ρ ′′, this can be expressed as

(2π)−nρm−k/2−n+n/2
∫

ei((y−y′′)·µ+(1−σ ′′)ν+σ ′′8(y′′,y′,σ ′′/σ,v))/ρq(λ, ρ, y, µ, ν)(σ ′′)m−k/2+n/2−n−1

× a(λ, ρ ′, y′′, y′, σ ′′σ−1, v) dv dµ dν dy′′ dσ ′′ ω.

For ρ ≥ ε > 0 the phase is not oscillating and this is polyhomogeneous conormal at bf0 with the same
index set Bbf0 as for a. For ρ small, we perform stationary phase in the (y′′, σ ′′, µ, ν) variables. The
phase has a nondegenerate stationary point where y′′ = y, σ ′′ = 1, µ= dy8, ν =8+ σ

−1dσ8, and we
obtain an asymptotic expansion as ρ→ 0 of the form

ρm−k/2+n/2
∫

Rk
ei8(y,y′,σ,v)/ρ ã(λ, ρ, y, y′, σ, v) dv ω, (5-14)

where

ã(λ, ρ, y, y′, σ, v)

= λ
−

n
2

M∑
j=0

ρ j
(
(∂y′′ ·∂µ+∂σ ′′∂ν)

j

i j j !
q(λ,ρ,y,µ,ν)(σ ′′)m−

k
2+

n
2−n−1a(λ,ρ ′,y′′,y′,σ ′′/σ,v)

)
g
∣∣∣∣y=y′′,σ ′′=1
µ=dy8
ν=8+σ−1dσ8

+ O(ρM+1). (5-15)

In particular, this is a Legendre distribution associated to 3 of the same order, and with the same
index family, as F . Moreover, we see from (5-14) and (5-15) that the microlocal support WF′bf(QF1) is
contained in WF′bf(F), as well as contained in π−1

L WF′(Q).
If q = 1+ O(ρ∞) on πL(WF′bf(F)), then in the sum over j in (5-15), only the j = 0 term is nonzero,

because in all other terms, either a=0 or q=1+O(ρ∞) (implying that any derivative of q is O(ρ∞)) when
evaluated at y = y′′, σ ′′ = 1, µ= dy8, ν =8+ σdσ8. Therefore, in this case, QF1 = F1 mod O(ρ∞).

• F2 term. In the notation (5-7), the composition QF2 takes the form

(2π)−n
∫

ei((y−y′′)·µ+(1−σ ′′)ν)/ρq(λ, ρ, y, µ, ν)ρ ′′rlb−k/2
ρ ′

m−rlb−k′/2+n/2ei81(y,v)/ρ′′ei82(y′′,y′,σ ′′/σ,v,w)/ρ′

× a(λ, ρ ′, y′′, y′, σ/σ ′′, v, w) dv dw dµ dν
dy′′ dρ ′′

ρ ′′n+1 ω.

This can be written as

(2π)−nρrlb−k/2−nρ ′
m−rlb−k′/2+n/2

×

∫
ei((y−y′′)·µ+(1−σ ′′)ν+σ ′′81(y′′,v)+σ82(y′′,y′,σ/σ ′′,v,w))/ρ

× q(λ, ρ, y, µ, ν)(σ ′′)−rlb+k/2+n−1a(λ, ρ ′, y′′, y′, σ/σ ′′, v, w) dv dw dµ dν dy′′ dσ ′′ ω.

Now we perform stationary phase in the (y′′, σ ′′, µ, ν)-variables. The phase has a nondegenerate stationary
point where y′′ = y, σ ′′ = 1, µ= dy81, ν =81−dσ8, and the rest of the argument to bound WF′bf(QF)
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is the same as for F1. We also see from the stationary phase expansion that WF′lb(QF) is contained in
both WF′(Q) and WF′lb(F).

• F4 term. This works just as for the F2 term.

• F3 term. In the notation (5-8), the composition QF3 takes the form

(2π)−n
∫

ei((y−y′′)·µ+(1−σ ′′)ν)/ρq(λ, ρ, y, µ, ν)(ρ ′′)m−(k+k′)/2+2n/4(σ̃ σ ′′)rrb−k/2

×

∫
ei8′1(y

′,v)/ρ′ei8′2(y
′,y′′,σ̃ σ ′′,v,w)/ρ′′a(λ, ρ ′′, y′′, y′, σ̃ σ ′′, v, w) dv dw dµ dν

dy′′ dρ ′′

(ρ ′′)n+1 ω.

This can be written as

(2π)−n
∫

ei((y−y′′)·µ+(1−σ ′′)ν+σ ′′8′2(y
′,y′′,σ̃ σ ′′,v,w))/ρq(λ, ρ, y, µ, ν)(ρ/σ ′′)m−(k+k′)/2

× (σ̃ σ ′′)rrb−k/2ei8′1(y
′,v)/ρ′a(λ, ρ/σ ′′, y′′, y′, σ̃ σ ′′, v, w) dv dw dµ dν

dy′′ dσ ′′

σ ′′
ω.

To investigate the behavior of this integral locally near a point (x = 0, σ̃ = 0, y, y′) ∈ bf∩ rb, we perform
stationary phase in the (y′′, σ ′′, µ, ν)-variables. The phase has a nondegenerate stationary point where
y′′ = y, σ ′′ = 1, µ= dy8

′

2, ν =8
′

2+ σ̃dσ̃8′2, and we get an asymptotic expansion as ρ→ 0 of the form

ρm−(k+k′)/2+2n/4σ̃ rrb−k/2
∫

ei8′1(y
′,v)/ρ′ei8′2(y,y

′,σ̃ ,v,w)/ρ ã(λ, ρ, y, y′, σ̃ , v, w) dv dw ω,

where ã(λ, ρ, y, y′, σ̃ , v, w) is given by

M∑
j=0

ρ j
(
(−i(∂y′′ · ∂µ+ ∂σ ′′∂ν))

j

j !
q(λ, ρ, y, µ, ν)

× (σ ′′)−m+rrb+k′/2a(λ, ρ ′′, y′′, y′, σ̃ σ ′′, v, w)
)

g
∣∣∣∣y=y′′,σ ′′=1
µ=dy8

′

1
ν=8′2+σ̃dσ̃8′2

+ O(ρM+1). (5-16)

This is a Legendre distribution associated to 3 of the same order as F , and with the same index family.
Moreover, we see from the last two formulas that the microlocal support WF′bf(QF3) is contained in
WF′bf(F), as well as contained in π−1

L WF′(Q). Finally, if q=1+O(ρ∞) on πL(WF′bf(F)), then in the sum
over j in (5-16), only the j = 0 term is nonzero, because in all other terms, either a= 0 or q = 1+O(ρ∞)
(implying that any derivative of q is O(ρ∞)) when evaluated at y= y′′, σ ′′=1, µ=dy8

′

2, ν=8
′

2+σdσ8′2.
Therefore, in this case, QF3 = F3 mod O(x∞).

• F5 term. Writing F5 in the form (5-10), we investigate QF5 near a point (z, ρ ′, y′), where z ∈ M◦. In
this case, we can find a neighborhood W of z with W ⊂ M◦, and then the set

{(z, z′) ∈ supp Q | z ∈W }

is contained in W ×W ′ for some W ′ with W ′ ⊂ M◦, since the support of Q is contained in the set where
σ ∈ [1/2, 2]. But in W ×W ′, the kernel of Q is smooth since Q has differential order −∞. Therefore, in
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this region the composition is given by an integral∫
Q(z, z′′)(ρ ′)rrb−k/2

∫
ei81(y′,v)/ρ′a(λ, z′′, y′, ρ ′, v) dv dz′′ ω,

with Q(z, z′′) smooth, and this has the form

(ρ ′)rrb−k/2
∫

ei81(y′,v)/ρ′ ã(λ, z, y′, ρ ′, v) dv ω

for some ã depending polyhomogeneously on λ and smoothly in its other arguments. Moreover, if for a
fixed (λ, y′, v), a is O((ρ ′)∞) in a neighborhood of {(λ, z, y′, 0, v) | z ∈ M}, then the same is true of ã.
Therefore, WF′rb(QF5) is contained in WF′rb(F5) but is (in general) no smaller.

• Since WF′(F6)=WF′(QF6)=∅, the F6 term makes no contribution to the wavefront set.

This completes the proof. �

A similar result holds if F is associated to a Legendre conic pair rather than a single Legendre
submanifold. However, rather than giving a full analogue of the result above, we give the following
special cases which suffice for our needs.

Lemma 5.4. (i) Suppose that F ∈ I m,p;rlb,rrb;B(M2
k,b, (3,3

]);�
1/2
k,b ) is a Legendre distribution on

M2
k,b associated to a conic Legendrian pair (3,3]), and suppose that Q ∈ 9−∞k (M;�1/2

k,b ) is a scat-
tering pseudodifferential operator such that Q is microlocally equal to the identity operator near
πL(3 ∪ 3

]). Then QF − F ∈ I∞,∞;∞,rrb;B(M2
k,b, (3,3

]);�
1/2
k,b ), so it vanishes to infinite order

at lb and bf. Similarly, if Q is microlocally equal to the identity operator near πR(3 ∪ 3
]), then

F Q− F ∈ I∞,∞;rlb,∞;B(M2
k,b, (3,3

]);�
1/2
k,b ) vanishes to infinite order at bf and rb.

(ii) Suppose that F is as above, and that Q, Q′ are scattering pseudodifferential operators as above. If

π−1
L WF′(Q)∩π−1

R WF′(Q′)∩3] =∅, (5-17)

then QF Q′ ∈ I m,rlb,rrb;B(M2
k,b,3;�

1/2
k,b ); in particular, WF′bf(QF Q′) is disjoint from (3])′.

Proof. The proof of (i) is similar to the one above. To prove (ii), decompose F = F3 + F], where
F3 ∈ I m,r (M2

k,b,3;�
1/2
k,b ) is a Legendre distribution associated only to 3 and F] is localized sufficiently

close to 3]. Here, sufficiently close means that when we write down QF]Q′ as a (sum of) integral(s),
using a phase function that locally parametrizes of (3,3]), then (5-17) implies that the total phase is
nonstationary on the support of the integrand. The usual integration-by-parts argument then shows that
this kernel is rapidly decreasing at bf, lb, rb and hence trivially satisfies the conclusion of the lemma. On
the other hand, Lemma 5.2 applies to F3 and completes the proof. �

6. Low energy estimates on the spectral measure

6A. Pointwise bounds on Legendre distributions. Now we give a pointwise estimate on Legendre
distributions of a particular type. We begin with a trivial estimate.
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Proposition 6.1. Let 3⊂ scT ∗bf(M
2
b ) be a Legendre submanifold that projects diffeomorphically to bf.

Suppose that u ∈ I−n/2−α,−α,−α;B(M2
k,b,3;�

1/2
k,b ). Let

b =min(min Bbf0 + n, min Blb0 + n/2, min Brb0 + n/2, min Bzf). (6-1)

Then, as a multiple of the half-density |dg dg′dλ/λ|1/2, we have a pointwise estimate

|u| ≤ Cλb(ρ−1
+ (ρ ′)−1)α.

This is trivial since in this case, u may be written as an oscillatory function with no integration, and
the order of vanishing/growth at the boundary may be determined by inspection from (5-5)–(5-10). (The
discrepancies of n and n/2 in (6-1) come about from comparing the nonvanishing half-density ω on M2

k,b
with the metric half-density |dg dg′dλ/λ|1/2 = ρ−n/2

lb0
ρ
−n/2
rb0

ρ−n
bf0

ω.)
Now consider a situation in which the Legendre submanifold does not project diffeomorphically to

bf. Let ∂diagb denote the boundary of the diagonal in M2
b , as in (4-8). Recall that we have coordinates

(y, y′, σ ) on bf near ∂diagb. Let w= (y− y′, σ−1), and let κ be the corresponding scattering coordinates
dual to w. Then ∂diagb is given by {w = 0} as a submanifold of bf and the contact form on scT ∗bf M

2
b

takes the form
dν−µ · dy− κ · dw. (6-2)

In these coordinates, the Legendre submanifold scN ∗∂diagb is given by {w= 0, µ= 0, ν = 0}. Let 3bf be
a Legendre submanifold contained in scT ∗bf M

2
b , denote by π the natural projection from scT ∗bf M

2
b → bf,

and for any q ∈3bf denote by dπ the induced map from Tq3
bf
→ Tπ(q)bf. We consider the following

situation in which the rank of dπ is allowed to change.

Proposition 6.2. Let3bf be as above. Suppose that3bf intersects scN ∗∂diagb at Gbf
=3bf

∩
scN ∗∂diagb

which is of codimension 1 in 3bf, and suppose that π |Gbf is a fibration, with (n− 1)-dimensional fibers, to
∂diagb. Assume further that dπ has full rank on 3bf

\Gbf, while

det dπ vanishes to order exactly n− 1 at Gbf. (6-3)

Suppose u ∈ I−n/2−α,−α,−α;B(M2
k,b,3

bf
;�

1/2
k,b ), and suppose that the (full) symbol of u vanishes to

order (n − 1)/2+ α on Gbf
× [0, λ0], where (n − 1)/2+ α ∈ {0, 1, 2, . . . }. Then as a multiple of the

scattering half-density |dg dg′dλ/λ|1/2, we have a pointwise estimate

|u| ≤ Cλb
(

1+ |w|
ρ

)α
∼ Cλb(1+ λd(z, z′))α, (6-4)

with b as in (6-1). Here d(z, z′) is the Riemannian distance between z, z′ ∈ M◦.

Remark 6.3. Notice that the condition on π at Gbf implies that dπ has corank at least n − 1 on Gbf,
hence that det dπ must vanish to order at least n− 1 there. Condition (6-3) is therefore that the order of
vanishing at Gbf is the least possible, which is a nondegeneracy assumption concerning the manner in
which the rank of the projection changes at Gbf. It implies, in particular, that 3bf intersects scN ∗∂diagb

cleanly.
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Proof. Let q be an arbitrary point in Gbf. By rotating in thew variables, we can ensure that dκ1|Gbf vanishes
at q (since κ1, . . . , κn are coordinates on the fibers of scN ∗∂diagb→∂diagb, and since π |Gbf :Gbf

→∂diagb

has (n−1)-dimensional fibers). We claim that (y, w1, κ2, . . . , κn) furnish coordinates on 3bf locally near
q. To see this, first note that dκ2|Gbf, . . . , dκn|Gbf are linearly independent at q, and furnish coordinates
on the fibers of Gbf

→ ∂diagb. Next, since ∂diagb is (n− 1)-dimensional, Gbf is 2(n− 1)-dimensional,
and the fibers of Gbf

→ ∂diagb are (n− 1)-dimensional, it follows that Gbf
→ ∂diagb is a submersion.

Since yi are local coordinates on the base ∂diagb, we see that (y, κ2, . . . , κn) furnish coordinates on Gbf

locally near q . Since w1 = 0 on Gbf, to prove the claim it suffices to show that dw1|3bf 6= 0 at q .
To see this, we use (6-3) which implies that dπ has corank exactly n − 1 at q, and hence there is

a tangent vector V ∈ Tq3
bf such that dπ(V ) is not tangent to ∂diagb. Therefore, it has a nonzero

∂w j component, which means that some dw j does not vanish at q when restricted to 3bf. But since
3bf is Legendrian, the form (6-2) vanishes when restricted to 3bf, which implies that its differential
ω ≡ dµ · dy+ dκ · dw also vanishes on 3bf. Hence ω(∂κ j , V )= 0 at q , j ≥ 2, since ∂κ j and V are both
tangent to 3bf. But this implies that dw j (V )= 0 for j ≥ 2, i.e., V has no ∂w j component for j ≥ 2. It
follows that dw1(V ) 6= 0, showing that dw1|3bf 6= 0 at q . It follows that (y, w1, κ2, . . . , κn) indeed furnish
coordinates on 3bf locally near q. We will use the notation w = (w2, . . . , wn) and κ = (κ2, . . . , κn).
Notice that w1|3bf is a boundary defining function for Gbf, as a submanifold of 3bf, locally near q .

Now we write the other coordinates on 3bf as functions of (y, w1, κ) as follows:

wi =Wi (y, w1, κ), µi = Mi (y, w1, κ), κ1 = K (y, w1, κ), ν = N (y, w1, κ) on 3bf. (6-5)

Notice that the vanishing of (6-2) on 3bf implies that

dN =
n−1∑
i=1

Mi dyi + K dw1+

n∑
j=2

κ j dW j on 3bf. (6-6)

By equating the coefficients of dκ , dy and dw1 on each side of (6-6), we obtain the identities
n∑

j=2

v j
∂W j (y, w1, v)

∂vi
=
∂N (y, w1, v)

∂vi
, i = 2, . . . , n,

n∑
j=2

v j
∂W j (y, w1, v)

∂yi
+Mi (y, w1, v)=

∂N (y, w1, v)

∂yi
, i = 1, . . . , n− 1,

n∑
j=2

v j
∂W j (y, w1, v)

∂w1
+ K (y, w1, v)=

∂N (y, w1, v)

∂w1
.

(6-7)

We claim that the function

8(y, w1, w, v)=

n∑
j=2

(w j −W j (y, w1, v))v j + N (y, w1, v) (6-8)

parametrizes 3bf locally near q . Notice that W , M and N are all O(w1) at q . Hence, 8=w ·v+O(w1),
so the dv j8 = w j + O(w1), where 2 ≤ j ≤ n, have linearly independent differentials at the point
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q̃= (y(q), w=0, ν=0, µ=0, κ1=0, κ(q)) corresponding to q , i.e.,8 is a nondegenerate parametrization
of 3bf near q . Next, using the first equation in (6-7) we find that

dv j8= w j −W j (y, w1, v). (6-9)

So w =W when dv8= 0. The Legendrian submanifold parametrized is then given by (using (6-7)){(
y, w1,W,−v · ∂W

∂y
+
∂N
∂y
,−v ·

∂W
∂w1
+
∂N
∂w1

, v, N
)}
= {(y, w1,W,M, K , v, N )} =3bf. (6-10)

Notice that the second derivative matrix d2
vv8 vanishes atw1=0, so we can write d2

vv8=w1 A+O(w2
1),

where A is a smooth (n− 1)× (n− 1) matrix function of (y, v), where we write y = (y, w1, w). We
claim that A is invertible at (and therefore, near) q̃ . To see this, we start from the fact that the map

{(y, v)} → {(y, dy8,8, dv8)}

is locally a diffeomorphism onto its image. (This follows from the nondegeneracy condition on 8, that the
differentials d(∂8/∂v j ) are linearly independent.) Note that the determinant of the differential of the map

{(y, dy8,8, dv8)} → {(y, dv8)}

is equal to the determinant of the differential of the map

{(y, dy8,8, dv8) | dv8= 0} → y,

and this map is π |3bf (in local coordinates). It follows that the order of vanishing of det dπ at q is the
same as the order of vanishing of the determinant of the differential of the map

{(y, v)} → {(y, dv8)}

at q̃ . But this determinant is simply det d2
vv8. It follows from (6-3) that det d2

vv8 vanishes to order exactly
n− 1 at q̃ . But this implies that the matrix A is invertible at q̃, as claimed.

Now we write u as an oscillatory integral. It suffices to prove the proposition assuming that u has
symbol supported close to q and that u itself is supported close to ∂diagb, since away from ∂diagb the
result follows from Proposition 6.1. It can then be written with respect to the phase function 8: modulo a
smooth term vanishing to order O(ρ∞), u is a multiple of the scattering half-density |dg dg′dλ/λ|1/2

given by

ρ−(n−1)/2−αλn
∫

ei8(y,w,v)/ρa(λ, ρ, y, v) dv|dg dg′dλ/λ|1/2. (6-11)

Moreover, we may assume that a is a function only of λ, ρ, y, w1 and v, polyhomogeneous conormal
in λ with index set Bbf0 , smooth and compactly supported in the remaining variables, and vanishing to
order (n− 1)/2+α at ρ = w1 = 0. It can therefore be written as

a =
(n−1)/2+α−1∑

j=0

ρ jw
(n−1)/2+α− j
1 a j (λ, y, w1, v)+ ρ

(n−1)/2+αb(λ, ρ, y, w1, v), (6-12)

with a j and b polyhomogeneous in λ.
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We begin with the easy case |w1| ≤ ρ. In this case, a in (6-12) is uniformly bounded. We split into
the regions where |w1| ≥ c|w| for some c > 0, and |w1| ≤ c|w|. The first region, where |w1| ≥ c|w|, is
trivial since then |w|/ρ is bounded, so all we are required to show is that the integral (6-11) is bounded
by a multiple of λb, b =min Bbf0 + n, which is clear since the integrand has this property pointwise. On
the other hand, if |w1| ≤ c|w|, then |w1| ≤ (n− 1)c|w j | for some j ≥ 2. For suitably small c this means
that dv j8 6= 0 sufficiently close to q̃, as dv j8= w j + O(w1) using (6-8). Then, by integrating by parts
N times with respect to v j in (6-11), we can gain a factor of CN (1+ |w|/ρ)−N for any N , showing that
a much stronger estimate than (6-4) holds.

From now on, then, we will assume that |w1| ≥ ρ. We begin by estimating the a0 term. The case
|w1| ≤ c|w| is treated just as above: by integrating by parts N times with respect to v j in (6-11) we gain
a factor CN (|w|/ρ)

N . With N = M + (n− 1)/2+α the resulting integrand enjoys a pointwise estimate
λb(|w|/ρ)−M for any desired M . So we assume in the rest of the proof that |w1| ≥ c|w|, and therefore
we can replace the RHS (1+ |w|/ρ)α in (6-4) by the equivalent quantity (|w1|/ρ)

α.
For fixed w1 6= 0, let us change variable from v1, . . . , vn−1 to θ1, . . . , θn−1, where

θi = w
−1/2
1 dvi8. (6-13)

Then
∂θi

∂v j
= w

−1/2
1 d2

viv j
8= w

1/2
1 Ai j , (6-14)

where Ai j is nonsingular as we have noted above. Therefore,

∂8

∂θ
=

(
∂θ

∂v

)−1 ∂8

∂v
= A−1θ. (6-15)

This shows that the θ coordinates are suitable coordinates in which to perform stationary phase computa-
tions. We proceed with a standard argument, which can be found in Sogge’s book [1993], for example.
We use the identity

ei8/ρ
=

(
ρ

w
1/2
1 iθ j

∂

∂v j

)
ei8/ρ,

which can be written as

ei8/ρ
=

(∑
k

ρ

iθ j
A jk

∂

∂θk

)
ei8/ρ . (6-16)

We also need the following observation: by applying (6-14) repeatedly, we obtain∣∣∣∣∂ |α|A∂αθ

∣∣∣∣≤ C |w1|
−|α|/2

≤ Cρ−|α|/2. (6-17)

In the θ coordinates, we are trying to prove the estimate∣∣∣∣ρ−(n−1)/2−α
∫

Rn−1
wα1 ei8(y,w,θ)/ρ ã0(λ, ρ, y, w1, θ) dθ

∣∣∣∣≤ C
(
w1
ρ

)α
λb. (6-18)
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Here the w(n−1)/2
1 factor was absorbed as a Jacobian factor, and ã0 is again smooth. Clearly this is

equivalent to a uniform bound on∣∣∣∣ρ−(n−1)/2λ−b
∫

Rn−1
ei8(y,w,θ)/ρ ã0(λ, ρ, y, w1, θ) dθ

∣∣∣∣. (6-19)

We introduce a partition of unity in (ρ, θ)-space, 1= χ0+
∑n−1

j=1 χ j , where χ0 is a compactly supported
function of θ/

√
ρ, and χ j is supported where |θ | ≥

√
ρ, and where θ j ≥ |θ |/(n−1). We can do this with

derivatives estimated by

|∇
(k)
θ χk | ≤ Cρ−k/2. (6-20)

The integral with χ0 inserted is trivial to estimate since it occurs on a set of measure ρ(n−1)/2. With χ j

inserted, we use the identity (6-16) M times, for M a sufficiently large integer. Thus we consider

ρ−(n−1)/2
∫
χ j

(∑
k

ρ

iθ j
A jk(y, θ)

∂

∂θk

)M

ei8(y,w,θ)/ρ ã0(λ, ρ, y, w1, θ) dθ

and integrate by parts M times. The result can be estimated by

Cρ−(n−1)/2+M
M∑

k=0

ρ−(M−k)/2
∫
|θ |≥
√
ρ

1supp χ j θ
−M−k
j dθ, (6-21)

where M − k derivatives fall on the χ j or A jk terms (via (6-17) and (6-20)), and at most k fall on a
θ
−p
j term. Note that on the support of χ j , we can estimate θ−1

j ≤ c|θ |−1. The θ integral is absolutely
convergent for M > n− 1, and∫

|θ |≥
√
ρ

|θ |−M−k dθ = Ckρ
−(M+k)/2+(n−1)/2

since dim θ = n− 1. Substitution of this into (6-21) gives a uniform bound since ã is polyhomogeneous
in λ with index set Bbf0+n. Moreover, since 8 and ã are smooth in w1, the bound is uniform as w1→ 0.

To treat the terms ai for i > 0 and b in (6-12), we perform the same manipulations as above, and we
end up with a uniform bound times Cρiw−i

1 , which is bounded for ρ ≤ w1. This completes the proof. �

6B. Geometry of Lbf. We collect here some facts concerning the geometry of the Legendre submanifold
Lbf (see Section 4A). We begin by defining

Gbf
= {(y, y′, σ, µ,µ′, ν, ν ′) ∈ scN ∗∂diagb | ν

2
+ hi jµiµ j = 1}

= {(y, y, 1, µ,−µ, ν,−ν) | ν2
+ hi jµiµ j = 1}.

Clearly, Gbf is an Sn−1-bundle over ∂diagb.

Lemma 6.4. The Legendre submanifold scN ∗∂diagb intersects Lbf cleanly at Gbf, and the projection
π : Lbf

→ bf satisfies (6-3).
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Proof. According to [Hassell and Vasy 2001], the Legendre submanifold Lbf is given by the flowout from
Gbf by the vector field

Vl =−ν

(
σ
∂

∂σ
+µ

∂

∂µ

)
+ h ∂

∂ν
+
∂h
∂µi

∂

∂yi
−
∂h
∂yi

∂

∂µi
, h =

∑
i, j

hi j (y)µiµ j (6-22)

(see [Guillarmou et al. 2012, Section 3.1]). Observe that at least one of the coefficients of ∂σ or ∂ν is
nonvanishing, so either σ̇ 6= 0 or ν̇ + ν̇ ′ 6= 0 under the flowout by Vl . Since σ = 1 and ν + ν ′ = 0 at
scN ∗∂diagb, we see that Vl is everywhere transverse to scN ∗∂diagb, so Gbf has codimension 1 in Lbf, and
intersects Lbf cleanly.

It remains to show that the projection π from Lbf to bf satisfies (6-3). First we choose coordinates on
Lbf. Near a point on Lbf at which |µ|2h := hi jµiµ j < 1, and therefore ν 6= 0, we can choose coordinates
(µ, y′, ε), where ε is the flowout time from Gbf along the vector field Vl . Coordinates on the base are
(y, y′, σ ). With the dot indicating derivative along the flow of Vl , i.e., d/dε, we have

σ̇ =−ν and ẏi
= 2hi jµ j on Gbf.

It follows that
σ = 1− νε+ O(ε2),

yi
= (y′)i + 2hi jµ jε+ O(ε2),

and we see that near Gbf,
∂σ

∂ε
6= 0,

∂yi

∂µ j
= εhi j

+ O(ε2),

which, using the positive-definiteness of hi j , shows that det dπ , where π is the map

Lbf
3 (µ, y′, ε) 7→ (y(µ, y′, ε), y′, σ (µ, y′, ε)),

vanishes to order exactly n− 1 as ε→ 0.
On the other hand, near a point on Lbf at which |µ|= 1, we can choose a coordinate µi which is nonzero.

Without loss of generality we suppose that i = 1. Then write y = (y2, . . . , yn−1) and µ= (µ2, . . . , µn−1).
We can take (ν, µ, y′, ε) as coordinates on Lbf. Calculating as above, we find that

y1
= y′1+ 2h1 jµ jε+ O(ε2),

yi
= (y′)i + 2hi jµ jε+ O(ε2), i ≥ 2,

σ = 1− νε+ O(ε2),

which shows that
∂y1

∂ε
> 0,

∂ yi

∂µ j
= εhi j

+ O(ε2),
∂σ

∂ν
=−ε+ O(ε2).

Again we find that det dπ , where π is the map

Lbf
3 (ν, µ, y′, ε) 7→ (y(ν, µ, y′, ε), y′, σ (ν, µ, y′, ε)),
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vanishes to order exactly n− 1 as ε→ 0. �

Lemma 6.5. There exists δ > 0 such that, if

q = (y, y′, σ, µ,µ′, ν, ν ′) ∈ Lbf and |ν+ ν ′|< δ,

then either q ∈ Gbf, or dπ : Tq Lbf
→ Tπ(q)bf is invertible, and hence π : L → bf is a diffeomorphism

locally near q.

Proof. We use the explicit description of Lbf given in [Hassell and Vasy 2001, Section 4]:

Lbf
=


( y, y′, σ,
ν, ν ′, µ, µ′

) ∣∣∣∣∣∣∣∣∣
∃(y0, µ̂0) ∈ S∗(∂M), s, s ′ ∈ (0, π), such that

σ = sin s/sin s ′, ν =− cos s, ν ′ = cos s ′,
(y, µ)= sin s exp(s H 1

2 h)(y0, µ̂0),

(y′, µ′)=− sin s ′ exp(s ′H 1
2 h)(y0, µ̂0),

∪T+∪T−∪F+∪F−, (6-23)

where
T± = {(y, y, σ,±1,∓1, 0, 0) | σ > 0, y ∈ ∂M},

F± = {(y, y′, σ,±1,±1, 0, 0) | σ > 0, ∃ geodesic of length π connecting y, y′}.

We see that ν = −ν ′ on Lbf only on Gbf
∪ T+ ∪ T−. A compactness argument shows that for any

neighborhood U of Gbf
∪ T+ ∪ T−, the set

{(y, y′, σ, µ,µ′, ν, ν ′) ∈ Lbf
| |ν+ ν ′|< δ}

is contained in U if δ is sufficiently small. So it is enough to show that Lbf projects diffeomorphically to
bf in some neighborhood of Gbf

∪ T+ ∪ T−, except at Gbf itself. Lemma 6.4 shows that Lbf
⊂

scT ∗bf M
2
b

projects diffeomorphically to the base bf in a sufficiently small deleted neighborhood of Gbf. Now
consider a neighborhood of T+ ∩ {σ ≤ 1− ε} for some small ε. As shown in [Hassell and Vasy 2001],
near this set, (y′, µ′, σ ) are smooth coordinates. Also, we have from (6-23) that

(y, µ)= σ exp
(

s ′− s
sin s ′

H 1
2 h

)
(y′, µ′).

Using the expression (6-22) for the Hamilton vector field, we find that, near T+,

yi
= y′i + s ′−s

sin s ′
hi jµ′j + O(|µ′|2)= (1− σ)hi jµ′j + O

(
(sin s)2+ (sin s ′)2+ |µ′|2

)
,

which shows that at T+, where sin s = sin s ′ = µ′ = 0, we have

∂yi

∂µ′j

∣∣∣∣
y′,σ
= (1− σ)hi j .

Since (y′, µ′, σ ) furnish smooth coordinates near T+, this equation and the positive-definiteness of hi j

show that also (y, y′, σ ) furnish smooth coordinates in a neighborhood of T+ when σ < 1−ε. (Of course,
we know from Lemma 6.4 that this cannot hold uniformly up to σ = 1). A similar argument holds for
σ > 1+ ε and for T−. �
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Remark 6.6. These lemmas will be applied to distributions of the form

Q(λ)dE√L(λ)Q(λ), (6-24)

where Q is a pseudodifferential operator with small microsupport. Notice that by taking the microsupport
sufficiently small, we can localize the microsupport of (6-24) to points (y, y′, σ, µ,µ′, ν, ν ′) such that y
is close to y′, µ is close to µ′ and ν is close to ν ′. However, we cannot localize so that σ is close to 1,
simply because if x, x ′ ∈ (0, ε), then σ = x/x ′ can take any value in (0,∞). Therefore, it is important to
understand the properties of π on L near the whole of the sets T±, not just close to scN ∗∂diagb.

6C. Proof of Theorem 1.3, part (A). By Proposition 1.12, to prove part (A) of Theorem 1.3 it is sufficient
to prove Theorem 1.13 for L = H and for λ≤ λ0, that is, to prove the estimates∣∣(Qi (λ)dE ( j)

√
H
(λ)Qi (λ))(z, z′)

∣∣≤ Cλn−1− j (1+ λd(z, z′))−(n−1)/2+ j , j ≥ 0. (6-25)

Our starting point is Theorem 4.1. As an immediate consequence of this theorem, the j -th λ-derivative
dE ( j)
√

H
(λ) is a Legendre distribution in the space

I m− j,p− j;rlb− j,rrb− j;B( j)
(M2

k,b, (L
bf, L],bf);�

1/2
k,b ),

where B( j) is an index family with index sets at the faces bf0, lb0, rb0, zf starting at order −1 − j ,
n/2− 1− j , n/2− 1− j , n− 1− j respectively.

Next we choose a partition of unity. We choose Q0 to be multiplication by the function 1− χ(ρ),
where χ(ρ)= 1 for ρ ≤ ε and χ(ρ)= 0 for ρ ≥ 2ε, for some sufficiently small ε. Then Q0dE ( j)

√
H
(λ)Q0

is polyhomogeneous on M2
k,b, with index sets as above at bf0, lb0, rb0, zf and supported away from

the remaining boundary hypersurfaces. Now recall that |dg dg′dλ/λ|1/2 is equal to ρ−n
bf0
ρ−n/2

lb0
ρ−n/2

rb0

multiplied with a smooth nonvanishing section of the half-density bundle �1/2
k,b . It is then immediate that

Q0dE ( j)
√

H
(λ)Q0 is bounded, as a multiple of |dg dg′dλ/λ|1/2 by λn−1− j , which yields (6-25) for i = 0

since in this region we have λd(z, z′)≤ C .
Next, we choose Q′1 such that Id−Q′1 is microlocally equal to the identity for |µ|2h + ν

2
≤

3
2 , and

microsupported in |µ|2h + ν
2
≤ 2. Let Q1 = χ(ρ)Q′1. Then, we claim that Q1dE ( j)

√
H
(λ)Q1 has empty

wavefront set, and is therefore polyhomogeneous with index sets at the faces bf0, lb0, rb0, zf starting at
order −1, n/2− 1, n/2− 1, n− 1 respectively. To see this, we write

Q1dE ( j)
√

H
(λ)Q1

= dE ( j)
√

H
(λ)− (Id−Q1)dE ( j)

√
H
(λ)− dE ( j)

√
H
(λ)(Id−Q1)+ (Id−Q1)dE ( j)

√
H
(λ)(Id−Q1). (6-26)

Since Id−Q1 is microlocally equal to the identity on πL(WF′bf dE ( j)
√

H
(λ)) and on WF′lb(dE ( j)

√
H
(λ)),

Lemma 5.2 shows that the sum of the first two terms on the right hand side above vanishes to infinite
order at lb and bf, and similarly the sum of the third and fourth terms vanishes to infinite order at lb and
bf. Now consider the multiplication of Id−Q1 on the right, and group together the first and third terms,
and the second and fourth terms on the right-hand side. We see, using the adjoint of Lemma 5.2 (since
Id−Q1 is also microlocally equal to the identity on WF′rb(dE ( j)

√
H
(λ))), that the sum of the first and third
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terms vanishes to infinite order at rb, and similarly the sum of the second and fourth terms vanishes at rb.
Hence Q1dE ( j)

√
H
(λ)Q1 vanishes to all orders at bf, lb, rb and has empty wavefront set as claimed. This

piece therefore also satisfies (6-25).
We now further decompose Id−Q0 − Q1 = χ(Id−Q′1), which has compact microsupport, into a

sum of terms. Choosing δ as in Lemma 6.5, we partition the interval [−2, 2] into N − 1 intervals Bi

each of length δ/2, and choose a decomposition Id−Q1 =
∑N

i=2 Qi , where Qi , and hence also Q∗i , is
microsupported in the set {|µ|2h + ν

2
≤ 2, ν ∈ 2Bi } (where 2Bi is the interval with the same center as Bi

and twice the length). It follows that if q ′ = (y, y′, σ, µ,µ′, ν, ν ′) ∈ (Lbf)′ is such that πL(q ′) ∈WF′(Qi )

and πR(q ′) ∈WF′(Q∗i ), then |ν− ν ′| ≤ δ. Together with Lemma 5.4, this means that Qi dE ( j)
√

H
(λ)Q∗i is

associated only to the Legendrian Lbf and not to L],bf, since on (L],bf)′ we have |ν− ν ′| = 2> δ.
Next, by Lemma 6.5, if q ′= (y, y′, σ, µ,µ′, ν, ν ′)∈ (Lbf)′ is such that πL(q ′) is in WF′(Qi ) and πR(q ′)

is in WF′(Q∗i ), then due to our choice of δ, either q ∈Gbf, or locally near q , Lbf projects diffeomorphically
to bf. Therefore, the microsupport of Qi dE ( j)

√
H
(λ)Q∗i , i ≥ 2, is a subset of (Lbf)′ which satisfies the

conditions of either Proposition 6.1 or Proposition 6.2.
In the case of Proposition 6.1, we have b= n−1− j , α =−(n−1)/2+ j and estimate (6-25) follows

directly. Next consider the case of Proposition 6.2. In this case, we have to determine the order of
vanishing of the symbol of Qi dE ( j)

√
H
(λ)Q∗i at Gbf. Locally near q ∈ Gbf

∩ Lbf, Lbf can be parametrized
by a phase function 8 that vanishes at Gbf when dv8 = 0; see (6-8). The kernel Qi dE√H(λ)Q

∗

i is a
Legendrian of order−1/2. Each time we apply a λ derivative to dE√H(λ), it hits either the phase function
or the symbol. If it hits the phase, then the order of the Legendrian is reduced by 1, but it brings down a
factor of 8 that vanishes at Gbf

× [0, λ0]. If it hits the symbol, then the order of the Legendrian is not
reduced. Therefore, as a Legendrian of order −1/2− j , the full symbol of Qi dE ( j)

√
H
(λ)Q∗i vanishes to

order j at Gbf
×[0, λ0]. Therefore, we can apply Proposition 6.2 with b=n−1− j and α=−(n−1)/2+ j ,

and we deduce (6-25) in this case. This concludes the proof of (6-25) and hence establishes Theorem 1.13
for low energies λ≤ λ0.

7. High energy estimates (in the nontrapping case)

In the previous section we proved estimates on the spectral measure dE√H(λ) for λ ∈ (0, λ0]. We
now prove high energy estimates, i.e., estimates for λ ∈ [λ0,∞). For convenience, we introduce the
semiclassical parameter h = λ−1, so that we are interested in estimates for h ∈ (0, h0], where h0 = λ

−1
0 .

To do this, we use the description of the high-energy asymptotics of the spectral measure from [Hassell
and Wunsch 2008]. The structure of the argument will be the same as in the previous section, and our
main task is to adapt each of the intermediate results — Lemmas 5.2 and 5.4, Propositions 6.1 and 6.2,
Lemma 6.4 and Lemma 6.5 — to the high-energy setting. Throughout this section we assume that the
manifold (M, g) is nontrapping.

7A. Microlocal support. We begin by defining, by analogy with the discussion in Section 5, the notion
of microlocal support of a Legendre distribution on X .



934 COLIN GUILLARMOU, ANDREW HASSELL AND ADAM SIKORA

Let 3⊂ scT ∗mf X be the Legendre submanifold associated to F . We assume that 3 is compact. Recall
from [Hassell and Wunsch 2008, Section 3] that 3 determines associated Legendre submanifolds 3bf,
3lb and 3rb which are the bases of the fibrations on ∂bf3, ∂lb3 and ∂rb3, respectively. The Legendre
submanifold 3bf can be canonically identified with a Legendre submanifold of scT ∗bf M

2
b , while ∂lb3 and

∂rb3 may be canonically identified with Legendre submanifolds of scT ∗∂M M . We define 3′ by negating
the fiber coordinates corresponding to the right copy of M , i.e.,

q ′ = (z, z′, ζ, ζ ′) ∈3′ ⇐⇒ q = (z, z′, ζ,−ζ ′) ∈3.

Similarly we define 3′bf and 3′rb as in the previous section.
Then we define the microlocal support WF′(F) of F ∈ I m(3) to be a closed subset of

3′ ∪ (3′bf×[0, h0])∪ (3lb×[0, h0])∪ (3
′

rb×[0, h0])

in the same way as before: we say that q ′ ∈3′ is not in WF′(F) if there is a neighborhood of q ∈3 in
which F has order −∞, in the sense of Section 5. That is, in a local oscillatory representation for F of
the form (for simplicity, where q lies over the interior of M2

b ),

hm−k/2−n
∫

Rk
eiψ(z,v)/ha(z, v, h) dv|dgdg′dh/h2

|
1/2,

where q = (z∗, dzψ(z∗, v∗)) and dvψ(z∗, v∗)= 0 (these conditions determining (z∗, v∗) locally uniquely
provided that ψ is a nondegenerate parametrization of 3), the condition that F has order −∞ in a
neighborhood of q is equivalent to a being O(h∞) in a neighborhood of the point (z∗, v∗, 0). Similarly,
q ′ ∈3′bf×[0, h0] is not in WF′(F) if there is a neighborhood of q ∈3bf×[0, h0] in which F has order
−∞.

Similarly, (q̃, h) ∈3lb×[0, h0] is not in WF′(F) if F can be written modulo (hxx ′)∞C∞(M2
b ) using

local oscillatory integral representations with symbols that vanish in a neighborhood of the fiber in
their domain corresponding to (q̃, h), and (q̃ ′, h) ∈ 3′rb× [0, h0] is not in WF′(F) if F can be written
modulo (hxx ′)∞C∞(M2

b ) using local oscillatory integral representations with symbols that vanish in a
neighborhood of the fiber in their domain corresponding to (q̃, h). These components of WF′(F) will be
denoted WF′mf(F), WF′lb(F), WF′bf(F) and WF′rb(F), respectively.

If F ∈ I m(3), then F ∈ (hxx ′)∞C∞(M2) if and only if WF′(F) is empty. Also note that if WF′
∗
(F)

is empty, then ∂∗3′ is disjoint from WF′mf(F), but the converse need not hold: if the kernel of F is
supported away from mf then certainly WF′mf(F) will be empty, but WF′

∗
(F) need not be.

Particular examples of Legendre distributions on X are the kernels of semiclassical scattering pseudo-
differential operators Q of differential order −∞ with compact operator wavefront set. In the case of such
a pseudodifferential1 operator, the Legendre submanifold 3 is a compact subset of s8N ∗diagb, defined
in (4-15), and the components 3lb ∪3

′

rb are empty. Thus in this case we may (and will) identify the
microlocal support WF′mf(Q) with a compact subset of scT ∗M , and WF′bf(Q) may be identified with a
compact subset of scT ∗∂M M ×[0, h0).

1Throughout this section we deal with semiclassical scattering pseudodifferential operators. The words “semiclassical
scattering” will usually be omitted.
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In the next lemma, πL and πR denote the maps defined in either (4-6) or (4-14), as the case may be.

Lemma 7.1. Suppose that F is a Legendre distribution on X and Q is a semiclassical scattering pseudo-
differential operator. Assume that F ∈ I m;rbf,rlb,rrb(X,3; s8�1/2) is associated to a compact Legendre
submanifold 3 and that Q is of differential order −∞ and semiclassical order 0, with compact operator
wavefront set. Then QF is also a Legendre distribution in I m;rbf,rlb,rrb(X,3; s8�1/2) and we have

WF′mf(QF)⊂ π−1
L WF′mf(Q)∩WF′mf(F),

WF′bf(QF)⊂ π−1
L WF′bf(Q)∩WF′bf(F),

WF′lb(QF)⊂WF′bf(Q)∩WF′lb(F),

WF′rb(QF)⊂WF′rb(F).

(7-1)

Moreover, if Q is microlocally equal to the identity on πL(WF′mf(F)), πL(WF′bf(F)) and WF′lb(F), then
QF − F ∈ I∞,∞,∞,rrb(X,3; s8�1/2), i.e., it vanishes to infinite order at mf, lb and bf.

We omit the proof, as it is essentially identical to that of Lemma 5.2. There is of course a corresponding
theorem for composition in the other order, which is obtained by taking the adjoint of the lemma above.
Combining the two we obtain:

Corollary 7.2. Suppose that F and Q, Q′ are as above. Then

WF′mf(QF Q′)⊂ π−1
L WF′mf(Q)∩π

−1
R WF′mf(Q

′)∩WF′mf(F),

WF′bf(QF Q′)⊂ π−1
L WF′bf(Q)∩π

−1
R WF′bf(Q

′)∩WF′bf(F),

WF′lb(QF Q′)⊂WF′bf(Q)∩WF′lb(F),

WF′rb(QF Q′)⊂WF′bf(Q
′)∩WF′rb(F).

(7-2)

A similar result holds if F is associated to a Legendre conic pair rather than a single Legendre
submanifold.

Lemma 7.3. (i) Suppose that F ∈ I m,p;rbf,rlb,rrb(X, (3,3]); s8�1/2) is a Legendre distribution on X
associated to a conic Legendrian pair (3,3]), and suppose that Q is a pseudodifferential opera-
tor such that Q is microlocally equal to the identity operator near πL(3 ∪ 3

]). Then QF − F ∈
I∞,∞;∞,∞,rrb(X, (3,3]), s8�1/2), so it vanishes to infinite order at mf, lb and bf. If Q′ is microlocally
equal to the identity operator near πR(3 ∪3

]), then F Q′ − F ∈ I∞,∞;∞,rlb,∞(X, (3,3]), s8�1/2)

vanishes to infinite order at mf, bf and rb.

(ii) Suppose that F is as above, a Legendre distribution on M2
b associated to a conic Legendrian pair

(3,3]) of order (m, p; rbf, rlb, rrb), and suppose that Q, Q′ are pseudodifferential operators. If

π−1
L WF′bf(Q)∩π

−1
R WF′bf(Q

′)∩3] =∅, (7-3)

then QF Q′ ∈ I m;rbf,rlb,rrb(M2
b ,3;

s8�1/2); in particular, WF′bf(QF Q′) is disjoint from (3])′.

We omit the proof, which is a straightforward modification of the arguments in Section 5.
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7B. Pointwise estimates on Legendre distributions. Now we give a pointwise estimate on Legendre
distributions of a particular type. First we begin with the trivial case.

Proposition 7.4. Let 3 ⊂ scT ∗mf(X) be a Legendre distribution that projects diffeomorphically to mf.
Suppose that u ∈ I m,rbf,rlb,rrb(X,3; s8�1/2) with

m = n/2− l, rbf =−n/2−α, rlb = rrb =−α.

Then, as a multiple of the half-density |dg dg′dλ|1/2, we have a pointwise estimate

|u| ≤ Cλl(x−1
+ (x ′)−1)α.

Generalizing Proposition 6.2 to the case of X = M2
b ×[0, h0] is straightforward.

Proposition 7.5. Let 3 be a Legendrian submanifold of s8T ∗mf X . Assume that 3 intersects s8N ∗diagb,
defined in (4-15), at G =3∩ s8N ∗diagb which is codimension 1 in 3 and transversal to the boundary
at bf, and that dπ has full rank on 3 \G, while π |G is a fibration G→ diagb with (n− 1)-dimensional
fibers, with condition (6-3) holding at G.

Assume that u ∈ I m,rbf,rlb,rrb(X,3; s8�1/2), with m, rbf, rlb, rrb as in Proposition 7.4 and that the full
symbol of u vanishes to order (n− 1)/2+α both at G ⊂3 and at ∂bfG×[0, h0] ⊂ ∂bf3×[0, h0]. Then,
as a multiple of the half-density |dg dg′dλ|1/2, we have a pointwise estimate

|u| ≤ Cλl−α(1+ λd(z, z′))α. (7-4)

Proof. First consider u on a neighborhood of X disjoint from diagb. In that case, the result follows from
Proposition 7.4.

Next consider u near diagb, but away from bf. Then if u is microlocally trivial at s8N ∗diagb, the result
follows from Proposition 7.4. If not, then the geometry is the same as that considered in Proposition 6.2
(with ρ replaced by h; also note that the estimate in Proposition 6.2 is respect to the half-density
λn
|dg dg′dλ|1/2), and the result follows from that proposition.
So we are reduced to the case where we are microlocally close to 3 ∩ ∂bf

s8N ∗diagb = ∂bfG. Let
q ∈ ∂bfG. In a neighborhood of ∂bfdiagb, we have coordinates (x, y, w), where w = (y− y′, σ − 1) as
before. In terms of these we can write points in s8T ∗mf X in the form

κ ·
dw
xh
+µ ·

dy
xh
+ τ ·

dx
xh
+ νd

( 1
xh

)
,

and this defines local coordinates (x, y, w; τ, µ, κ, ν) on s8T ∗mf X . Then, contracting the symplectic
form with xh2∂h and restricting to s8T ∗mf X gives the contact form on s8T ∗mf X , which in these coordinates
takes the form

dν− τdx −µ · dy− κ · dw. (7-5)

Using the transversality of 3 to s8T ∗bf∩mf X we see, as in the proof of Proposition 6.2 that (x, y, w1, κ)

form coordinates on 3. Then as in the proof of Proposition 6.2, we can write the remaining coordinates
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as functions of (x, y, w1, κ) on 3:

wi =Wi (x, y, w1, κ), µi = Mi (x, y, w1, κ), i = 2, . . . , n,

κ1 = K (x, y, w1, κ), ν = N (x, y, w1, κ), τ = T (x, y, w1, κ).

In the same way as before, we find that

8̃(x, y, w, v)=
n∑

j=2

(w j −W j (x, y, w1, v))v j + N (x, y, w, v), v = (v2, . . . , vn),

parametrizes 3 locally, and has the properties that 8̃= O(w1) when dv8̃= 0, and 8̃=8+O(x), where
8 is precisely as in the proof of Proposition 6.2. We can then follow the proof given there, where (6-11)
is replaced by

x−(n−1)/2−αλ(n−1)/2+k
∫

ei8̃(x,y,w,v)/xh ã(x, y, w1, v, h) dv, (7-6)

in which the function ã vanishes to order (n−1)/2+α at x = 0 and at w1 = 0. In effect we have replaced
the large parameter 1/x in the phase of (6-11) by 1/xh, while x plays the role of a smooth parameter.

The rest of the argument is parallel to the proof of Proposition 6.2. We deal with the cases |w1| ≤ xh
and |w1| ≤ c|w| exactly as in the previous proof. Assuming then that |w1| ≥ xh and |w1| ∼ |w|, we make
the change of variables (6-13). By continuity, the matrix A in (6-15) remains nonsingular, and (6-17)
remains valid, for small x . Hence, we can integrate by parts using the identity

ei8̃/x
=

(∑
k

xh
iθ j

A jk
∂

∂θk

)
ei8̃/x ,

analogous to (6-16).
In the θ coordinates, we are trying to prove the estimate∣∣∣∣x−(n−1)/2−αh−(n−1)/2−l

∫
Rn−1

wα1 ei8̃(x,y,w,θ)/xh ã0(x, y, w1, θ) dθ
∣∣∣∣≤ Ch−l

(
w1
x

)α
,

since when |w| ≥ xh,
|w|

xh
∼ λd(z, z′)∼ 1+ λd(z, z′).

As before, the w(n−1)/2
1 factor was absorbed as a Jacobian factor, and ã is again smooth. This estimate is

equivalent to a uniform bound on∣∣∣∣(xh)−(n−1)/2
∫

Rn−1
ei8̃(x,y,w,θ)/x ã0(x, y, w1, θ) dθ

∣∣∣∣. (7-7)

We introduce a modified partition of unity in (x, θ)-space, 1= χ0+
∑n−1

j=1 χ j , where χ0 is a compactly
supported function of θ/

√
xh, and χ j is supported where |θ | ≥

√
xh, and where θ j ≥ |θ |/(n− 1), with

derivatives estimated by ∣∣∇(k)θ χk
∣∣≤ C(xh)−k/2. (7-8)

Then the rest of the argument proceeds just as before, leading to (7-7). �
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7C. Geometry of the Legendre submanifold L. We prove results analogous to Lemmas 6.4 and 6.5.
First, we define

G = {q ∈ s8N ∗diagb | σ(h
21g)(q)= 1},

where σ is the semiclassical principal symbol. This is an Sn−1-bundle over diagb.

Lemma 7.6. The Legendre submanifold L introduced in Section 4B intersects s8N ∗diagb cleanly at G,
and the projection π : L→mf satisfies (6-3).

Proof. This is proved just as for Lemma 6.4. As shown in [Hassell and Wunsch 2008], L can be obtained
as the flowout from G by a vector field Vl , which is obtained from the Hamilton vector field of 1g − λ

2

by dividing by boundary defining function factors (see [ibid., Section 11]), so that it becomes smooth up
to the boundary of s8T ∗X . This vector field takes the form (6-22) up to O(x) near bf, and repeating the
argument below (6-22) with x as a smooth parameter establishes the lemma in a neighborhood of ∂bfG,
i.e., for x + x ′ ≤ ε for some small ε > 0.

Away from bf, we can use coordinates (z, z′) on mf, and writing points in s8T ∗mf X in the form

ζ ·
dz
h
+ ζ ′ ·

dz′

h
+ τd

(1
h

)
defines fiber coordinates (ζ, ζ ′, τ ) on s8T ∗mf X . In terms of these coordinates, we have

Vl = gi j (z)ζi
∂

∂z j −
1
2
∂gi j (z)
∂zk

ζiζ j
∂

∂ζk
+ gi j (z)ζiζ j

∂

∂τ
. (7-9)

We recognize the equations for (z, ζ ) as equations for geodesic flow. Moreover, letting |ζ |g = gi j (z)ζiζ j ,
we find that (|ζ |2g )̇= 0 and |ζ |g = 1 on G, hence |ζ |g = 1 on L; similarly |ζ ′|g = 1 on L . Finally, τ̇ = 1
and τ = 0 on G. It follows that near a point on G where (say) ζ1 6= 0, we can use coordinates (ζ , z′, τ )
as coordinates on L , where ζ = (ζ2, . . . , ζn), z = (z2, . . . , zn). We then find, from (7-9), that

z1
= (z′)1+ gi jζ jτ + O(τ 2),

zi
= (z′)i + gi jζ jτ + O(τ 2), i ≥ 2,

and we see that near G,
∂z1

∂τ
6= 0, ∂zi

∂ζ j
= τgi j ,

which shows that det dπ , where π is the map

L 3 (ζ , z′, τ ) 7→ (z1(ζ , z′, τ ), ζ (ζ , z′, τ ), z′),

vanishes to order exactly n− 1 at G. �

Lemma 7.7. (i) There exists 0 < δ < 1 and ε > 0 such that the Legendre submanifold L ⊂ s8T ∗mf X
projects diffeomorphically to the base mf locally near all points (x, y, x ′, y′, µ, µ′, ν, ν ′, τ ) ∈ L \G such
that x + x ′ < 2ε and |ν+ ν ′|< δ.

(ii) For any ε > 0 there exists ι > 0 such that L projects diffeomorphically to the base near all points
(z, z′, ζ, ζ ′, τ ) ∈ L \G such that x + x ′ > ε and |τ |< ι.
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Proof. (i) A topological argument shows that for sufficiently small ε, depending on δ, the subset of L
where x + x ′ < 2ε and |ν+ ν ′|< δ is contained in a small neighborhood of the set G ∪ T+ ∪ T−, where
T± ⊂ ∂bfL = Lbf are as in (6-23). Lemma 7.6 shows that L projects diffeomorphically to mf in a deleted
neighborhood of G. Near the sets T±, we use Lemma 6.5 and the fact, proved in [Hassell and Wunsch
2008], that L is transverse to the boundary at bf to show that (y, y′, σ, ρbf) form coordinates locally near
T± away from G. Here ρbf is a boundary defining function for bf and can be taken to be x for σ > 1 or
x ′ for σ < 1. Therefore, L projects diffeomorphically to mf locally near T± and away from G.

(ii) The calculation above shows that if τ is small, then d(z, z′) is small and |ζ + ζ ′| is small, i.e.,
(z, ζ, z′, ζ ′, τ ) is close to G. So by taking ι sufficiently small, we restrict attention to a small neighborhood
of G ∩ {x + x ′ ≥ ε}. The result then follows directly from Lemma 7.6. �

Remark 7.8. In fact, we can take ι to be the injectivity radius of M .

Let M ′ be the compact subset of M◦ given by {x ≥ ε}, where ε is as in Lemma 7.7, and let ι be the
injectivity radius of M . For any z0 ∈ M ′, let z denote the Riemannian normal coordinates centered at z0,
and ζ the corresponding dual coordinates. Define the quantity

η = inf
z0∈M ′

min{|z− z′| + |ζ − ζ ′| : |z− z0| ≤ ι/4, |z′− z0| ≤ ι/4, γ (0)= (z, ζ ), γ (t)= (z′, ζ ′), t ≥ ι},

where the minimum is taken over all geodesics γ : R→ M◦ that are arc-length parametrized.

Lemma 7.9. The quantity η is strictly positive.

Proof. We use the nontrapping assumption; then there is no geodesic γ with γ (0) = (z, ζ ) = γ (t), if
t > ι. Therefore, by compactness, the minimum for a fixed z0 in the expression above is strictly positive.
This minimum varies continuously with z0 and therefore the inf over all z0 in the compact set M ′ is also
strictly positive. �

7D. Proof of Theorem 1.3, part (B). We now assemble our results to prove (1-9) for λ≥ λ0, i.e., h ≤ h0,
which by Proposition 1.12 and Section 6C is sufficient to prove part (B) of Theorem 1.3.

We now choose a partition of unity consisting of pseudodifferential operators. This is done similarly to
the previous section. In particular, we will choose Q1 to have microsupport disjoint from the characteristic
variety of h2 H−1, while the others will have compact microsupport, that is, they will be pseudodifferential
operators of differential order −∞. In detail, we choose Q1 such that Id−Q1 is microlocally equal to the
identity where σ(h21g)≤ 3/2, and microsupported where σ(h21g)≤ 2 (here σ denotes the semiclassical
principal symbol). Then, we claim that dE ( j)

√
H
(λ) is in (hxx ′)∞C∞(M2). To see this, we write

Q1dE ( j)
√

H
(λ)Q1 = dE ( j)

√
H
(λ)− (Id−Q1)dE ( j)

√
H
(λ)− dE ( j)

√
H
(λ)(Id−Q1)+ (Id−Q1)dE ( j)

√
H
(λ)(Id−Q1)

and use Theorem 4.2 and the microlocal support estimates as in the discussion below (6-26) to show that
WF′(dE ( j)

√
H
(λ)) is empty. This piece therefore is in (hxx ′)∞C∞(M2), and trivially satisfies (6-25).

We now further decompose Id−Q1, which has compact microsupport, into a sum of terms. We first
choose a function m ∈ C∞(M2

b ) that is equal to 1 in a neighborhood of ∂M2
b and supported where

x + x ′ < 2ε, where ε is as in Lemma 7.7. Choosing δ as in Lemma 7.7, we divide up the interval
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[−2, 2] into N −1 intervals Bi each of width ≤ δ/4, and choose a decomposition (Id−Q1)m =
∑N

i=2 Qi ,
where the operators Qi , and hence also Q∗i , are supported on the set x + x ′ < 2ε and microsupported
in the set {σ(h21g) ≤ 2, ν ∈ 2Bi }. It follows that if q ′ = (x, y, x ′, y′, µ, µ′, ν, ν ′, τ ) ∈ L ′ is such that
πL(q ′) ∈ WF′mf(Qi ) and πR(q ′) ∈ WF′mf(Q

∗

i ), then |ν − ν ′| ≤ δ/2. Together with Theorem 4.2 and
Lemma 7.3, this means that Qi dE ( j)

√
H
(λ)Q∗i is a Legendrian distribution associated only to L and not to

L], since on (L])′ we have |ν − ν ′| = 2 > δ/2. Then Lemma 7.6 guarantees that on the microsupport
of Qi dE ( j)

√
H
(λ)Q∗i , the projection π to mf is either a diffeomorphism or satisfies the conditions of

Proposition 7.5.
We finally decompose (Id−Q1)(1−m) as

∑N+N ′
i=N+1 Qi , where Qi is microsupported in a sufficiently

small set so that WFmf(Qi ) is a subset of

{(z, ζ ) | |z− z0| + |ζ − ζ0|< η/2} (7-10)

for some z0 ∈ M ′ = {x ≥ ε} ⊂ M◦ and some ζ0 (where we use Riemannian normal coordinates as in
Lemma 7.9). By construction, then, if q ′ = (z, z′, ζ, ζ ′, τ ) ∈WF′mf(Qi dE ( j)

√
H
(λ)Q∗i ), then we must have

|z− z′| + |ζ − ζ ′| < η from (7-10), and also γ (0) = (z, ζ ), γ (t) = (z′, ζ ′) for some geodesic γ . From
Lemma 7.9 we conclude t < ι, thus γ is the short geodesic between z and z′. Consequently, τ < ι and by
Lemma 7.7 either L locally projects diffeomorphically to mf, or q ′ ∈ scN ∗diagb.

We next consider the symbol of Qi dE ( j)
√

H
(λ)Q∗i . As in the previous section, this symbol vanishes to

order j both at G ⊂mf and at ∂G×[0, h0] ⊂ bf, due to the vanishing of the phase function 8̃ at G when
dv8̃= 0. Therefore, in all cases, Qi dE ( j)

√
H
(λ)Q∗i satisfies the conditions of Proposition 7.5 with l = j ,

and the required estimate (6-25) follows from this proposition. This completes the proof of (1-4) for
λ0 ≤ λ <∞.

8. Trapping results

8A. Spectral projection estimates. In this section we study the Laplacian on a manifold N with C∞

bounded geometry, in the sense that the local injectivity radius ι(z), z ∈ N has a positive lower bound, say
ε; the metric gi j , expressed in normal coordinates in the ball of radius ε/2 around any point z is uniformly
bounded in C∞(B(0, ε/2)), as z ranges over N ; and the inverse metric gi j is uniformly bounded in
supremum norm. (In fact, we only need gi j to be bounded in Ck for some k depending on dimension n,
but k tends to infinity as n→∞.) This implies that the distance function d(q, q ′) satisfies the n × n
Carleson–Sjölin condition (see [Sogge 1993, Section 2.2]) uniformly over all z ∈ N and q, q ′ ∈ B(z, ε/2)
with d(q, q ′)≥ ε/4.

Then the following Sogge-type restriction theorem holds:

Proposition 8.1. Let N be a complete Riemannian manifold of dimension n with C∞ bounded geometry.
Then the Laplacian 1N on N satisfies for λ≥ 1∥∥1[λ,λ+1](

√
1N )

∥∥
L p(N )→L p′ (N ) ≤ Cλn(1/p−1/p′)−1, 1≤ p ≤

2(n+ 1)
n+ 3

. (8-1)

This is quite likely well-known to experts, but to our knowledge such a result has not appeared in the
literature, so we sketch a proof.
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Proof. It is enough to prove (8-1) for the endpoints p= 1 and p= 2(n+1)/(n+3), and use interpolation.
We adapt Sogge’s argument. Let ε be as above. We then choose an nonzero Schwartz function χ such
that its Fourier transform χ̂ is nonnegative and supported in [ε/4, ε/2]. It follows that χ(0) > 0, and by
taking ε sufficiently small, we can arrange that Reχ ≥ c > 0 on [0, 1].

Now let χ ev
λ (σ )= χ(σ −λ)+χ(−σ −λ). This is an even function, and since χ is rapidly decreasing,

for sufficiently large λ we have

Reχ ev
λ ≥

1
2 c on [λ, λ+ 1].

That is,

(Reχ ev
λ )

2
−

1
8 c2
= Fλ, where Fλ ≥ 0 on [λ, λ+ 1].

Then for f ∈ L p,

1
8 c2∥∥1[λ,λ+1](

√
1N ) f

∥∥2
L2 =

〈
1[λ,λ+1](

√
1N ) f,

(
Reχ ev

λ (
√
1N )

)2
− Fλ(

√
1N ) f

〉
=
〈
1[λ,λ+1](

√
1N )Reχ ev

λ (
√
1N ) f,Reχ ev

λ (
√
1N ) f

〉
−
〈
Fλ(
√
1N )1[λ,λ+1](

√
1N ) f, 1[λ,λ+1](

√
1N ) f

〉
≤
∥∥Reχ ev

λ (
√
1N ) f

∥∥2
L2

≤
∥∥χ ev

λ (
√
1N ) f

∥∥2
L2 .

So it is enough to estimate the operator norm of the operator χ ev
λ (
√
1N ) from L p to L2. To do this we

express χ ev
λ (
√
1N ) in terms of the half-wave group ei t

√
1N :

χ ev
λ (
√
1N )=

1
π

∫
ei t
√
1N χ̂ ev

λ (t) dt. (8-2)

Since χ̂ ev
λ = e−i tλχ̂(t)+ ei tλχ̂(−t) is even in t , we can write this as

χ ev
λ (
√
1N )=

1
π

∫
cos t
√
1N

(
e−i tλχ̂(t)+ ei tλχ̂(−t)

)
dt. (8-3)

Using the fact that the kernel of cos t
√
1N is supported in Dt for any complete Riemannian manifold, we

see that χ ev
λ (
√
1N ) is supported in Dε/2. The estimate (8-1) for p = 1 then follows from [Sogge 1993,

Lemma 4.2.4], or alternatively from the kernel bound Cλ(n−1)/2 that follows from the description of
cos t
√
1N as a Fourier integral operator of order 0 associated to the conormal bundle of {d(x, y)= t}.

For the other endpoint p = 2(n + 1)/(n + 3), the argument in [Sogge 1993, Section 5.1] shows that
χ ev
λ (
√
1N ) maps any f ∈ L p(N ) and supported in a ball of radius ε/2 to L2(N ) with a bound

‖χ ev
λ (
√
1N ) f ‖2 ≤ Cλn(1/p−1/2)−1/2

‖ f ‖p,

where C is uniform over N due to the bounded geometry. We then choose a sequence of balls B(xi , ε/2)
that cover N , such that B(xi , ε) have uniformly bounded overlap, i.e., such that

∑
i 1B(xi ,ε) is uniformly

bounded. Then for any f ∈ L p(N ), and using the continuous embedding from l p
→ l2 for 1≤ p < 2,
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λ (
√
1N ) f

∥∥2
2 ≤

∑
i

∥∥χ ev
λ (
√
1N ) f

∥∥2
L2(B(xi ,ε/2))

≤ Cλ2n(1/p−1/2)−1
∑

i

‖ f ‖2L p(B(xi ,ε))

≤ Cλ2n(1/p−1/2)−1
(∑

i

‖ f ‖p
L p(B(xi ,ε))

)2/p

≤ Cλ2n(1/p−1/2)−1
‖ f ‖2L p , (8-4)

showing that χ ev
λ (
√
1N ), and hence also 1[λ,λ+1](

√
1N ), maps from L p(N ) to L2(N ) with a bound

Cλn(1/p−1/2)−1/2. Using the T ∗T trick we obtain (8-1). �

8B. Spatially localized results for trapping manifolds. Let us assume now that M◦ is asymptotically
Euclidean and has several ends E1, . . . ,Ek . By an end here we mean a connected component Ei of
{x < 2ε}, where x is a boundary defining function and ε > 0 is a small fixed number, so that Ei is
diffeomorphic to (ri ,∞)× Sn−1 with a metric of the form dr2

+ r2h(y, dy, 1/r), with h smooth, and
such that the projection of the trapped set to M◦ is disjoint from Ei .

Proposition 8.2. Assume M◦ is asymptotically Euclidean, possibly with several ends. Let χ ∈ C∞(M)
be supported in {x < ε} and let H be as in Theorem 1.3. Then one has∥∥χdE√H(λ)χ

∥∥
L p→L p′ ≤ Cλn(1/p−1/p′)−1 for 1< p ≤ 2(n+1)

n+3
. (8-5)

Proof. As in [Hassell and Vasy 1999], we can write dE√H(λ)= (2π)
−1 P(λ)P(λ)∗, where P(λ) is the

Poisson operator associated to H . Hence one needs to get L p(M)→ L2(∂M) bounds for P(λ)∗χ . The
Schwartz kernel of P(λ)∗ is given by

P∗(λ; y, z′)= [x−(n−1)/2eiλ/x R(λ; x, y; z′)]|x=0. (8-6)

Let χ1, χ2, χ3 ∈ C∞(M) be supported in {x < 2ε} and equal to 1 in {x < ε}, and χiχ j = χ j if j < i .
Let (Mi , gi ) be a nontrapping asymptotically Euclidean manifold with one unique end isometric to Ei .
The existence of such a manifold can be easily proved if one takes ε small enough. There is a natural
identification ι j : M j ∩ {x < 2ε} → M ∩ {x < 2ε}, and so functions supported in {x < 2ε} can be
considered as functions on M or

⋃
j M j . To simplify notations, we shall implicitly use this identification

in what follows, instead of writing ι∗j , ι j ∗. Let H j =1M j + V j , where V j is equal to V in the identified
region, such that H j satisfies the conditions of Theorem 1.3 (which can always be achieved by making
V j sufficiently positive in a compact set away from the identified region). For λ ∈ {z ∈ C; Im λ > 0},
we define the resolvent R j (λ) := (H j − λ

2)−1, and by [Hassell and Vasy 2001] the Schwartz kernel of
this operator extends continuously to λ ∈ R as a Legendre distribution. For λ > 0 it corresponds to the
outgoing resolvent while for λ < 0 it is the incoming resolvent. For what follows, we consider Re λ > 0
to deal with the outgoing case. We have the following identities for Im λ > 0:

(H j − λ
2)
∑

j

χ2 R j (λ)χ1 = χ1+
∑

j

[H j , χ2]R j (λ)χ1,∑
j

χ2 R j (λ)χ3(H j − λ
2)= χ2+

∑
j

χ2 R j (λ)[χ3, H j ],
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which can be also written as∑
j

χ2 R j (λ)χ1 = R(λ)χ1+
∑

j

R(λ)[H j , χ2]R j (λ)χ1,∑
j

χ2 R j (λ)χ3 = χ2 R(λ)+
∑

j

χ2 R j (λ)[χ3, H j ]R(λ).

Multiplying the second identity by χ1 on the right and combining with the first one, we deduce that

χ2 R(λ)χ1 =
∑

j

χ2 R j (λ)χ1+
∑
i, j

χ2 Ri (λ)[χ3, H]R(λ)[H, χ2]R j (λ)χ1. (8-7)

Since R j (λ), R(λ) extend to λ ∈R as operators mapping C∞0 (M) to C∞(M), (8-7) also extends to λ ∈R

as a map from C∞0 (M) to C∞ (since [H, χi ] is a compactly supported differential operator). Now to
obtain the Poisson operator P(λ)∗, we use (8-6) and deduce from (8-7) that

P(λ)∗χ1 =
∑

j

Pj (λ)
∗χ1+

∑
i, j

P∗i (λ)[χ3, H]R(λ)[H, χ2]R j (λ)χ1, (8-8)

where Pj (λ)
∗ is the adjoint of the Poisson operator for H j on (M j , g j ) (mapping to ∂M by the natural

identification of ∂Mi with ∂M). Since∇χ2 and∇χ3 are compactly supported, we can choose η∈C∞0 (M
◦),

supported in {x < 2ε}, such that η = 1 on supp∇χ2 ∪ supp∇χ3, and write (8-8) in the form

P(λ)∗χ1 =
∑

j

Pj (λ)
∗χ1+

∑
i, j

P∗i (λ)η[χ3, H]ηR(λ)η[H, χ2]ηR j (λ)χ1. (8-9)

In [Cardoso and Vodev 2002, Equation (1.5)],2 Cardoso and Vodev prove the following L2 estimate:
If η ∈ C∞0 (M) (respectively η j ∈ C∞0 (M j )) is supported in {x < 2ε}, then for ε small enough, there is
C > 0 such that, for all λ > 1,

‖ηR(λ)η‖L2→L2 ≤ Cλ−1

‖ηR(λ)η‖H−1→H1 ≤ Cλ

(respectively ‖η j R j (λ)η j‖L2→L2 ≤ Cλ−1),

(respectively ‖η j R j (λ)η j‖H−1→H1 ≤ Cλ).
(8-10)

Since the spectral measure dE j (λ) for
√

H j on (M j , g j ) satisfies

dE j (λ)=
λ

π i
(R j (λ)− R j (−λ))=

1
2π

Pj (λ)Pj (λ)
∗,

we deduce by the T T ∗ argument and (8-10) that

‖η j Pj (λ)‖L2(∂M j )→L2(M j ) ≤ C (8-11)

2In [Cardoso and Vodev 2002, Theorem 1.1], for λ ∈ R∗ and |λ| � 1, only the ‖ηR(λ)η‖L2
→L2 = O(|λ|−1) norm appears

but it is a direct consequence of [ibid., Equation (4.9)] that ‖ηR(λ)η‖L2
→H1 = O(1) if η has support far enough in the

end. (Note that the H1 space in [ibid.] involves a semiclassical scaling, unlike our standard H1 space.) Then combining
with 1ηR(λ)η = η2

+ ([1, η] + λ2η)R(λ)η, we get ‖ηR(λ)η‖L2
→H2 = O(|λ|) for all λ ∈ R∗ and taking adjoints give

‖ηR(λ)η‖H−2
→L2 , which by interpolating show that the H−1

→ H1 norm is O(|λ|).
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if η j is as above. Now since M j is nontrapping, we also know from Theorem 1.3 and the T T ∗ argument
that for p ∈ [1, 2(n+ 1)/(n+ 3)] we have

‖Pj (λ)
∗χ1‖L p(M j )→L2(∂M j ) ≤ Cλn(1/p−1/2)−1/2. (8-12)

We now use the following:

Lemma 8.3. Assume that M j is asymptotically Euclidean and nontrapping. Let χ ∈ C∞(M j ) be equal to
1 in {x < ε} and supported in {x < 2ε} and let η ∈ C∞0 (M j ) be supported in {x < 2ε} such that

inf{x | ∃ (x, y) ∈ supp η} ≥ γ sup{x | ∃ (x, y) ∈ suppχ} (8-13)

for some γ > 1; in particular, the distance between the support of η and χ is positive. Then the following
estimate holds for 1< p ≤ 2(n+ 1)/(n+ 3) and λ≥ 1:

‖ηR j (λ)χ‖L p(M j )→L2(M j ) ≤
C
λ
‖η dE j (λ)χ‖L p(M j )→L2(M j )+ O(λ−∞).

Assuming for a moment the validity of Lemma 8.3, we complete the proof of Proposition 8.2. Since
ηdE j (λ)χ = ηPj (λ)Pj (λ)

∗χ , we deduce from Lemma 8.3 and equations (8-11) and (8-12) that

‖ηR j (λ)χ‖L p(M j )→L2(M j ) ≤ Cλn(1/p−1/2)−1/2−1, λ≥ 1. (8-14)

Now we can analyze the boundedness of the right-hand term of (8-9) as follows: ηR j (λ)χ maps
L p(M j )→ L2(M j ) with norm Cλn(1/p−1/2)−1/2−1 by (8-14); [H, χ2] maps L2(M j ) to H−1(M) with
norm independent of λ; ηR(λ)η maps H−1(M) to H 1(M) with norm Cλ by (8-10); [χ3, H] maps
H 1(M j ) to L2(M) with norm independent of λ; and P∗i (λ)η maps L2(M) to L2(M) with uniformly
bounded norm by (8-12). This concludes the proof of Proposition 8.2. �

Proof of Lemma 8.3. Recall that R j (±λ) is the sum of a pseudodifferential operator and of Legendre
distributions associated to the Legendre submanifolds (s8N ∗diagb, L±) and to (L±, L]±). Since the
distance between the supports of η and χ is positive, we see that ηR j (±λ)χ are, like dE j (λ), both
Legendre distributions (conic pairs) associated to (L , L]) with disjoint microlocal support; indeed, the
nontrapping assumption implies that L+ and L− intersect only at G, which is contained in s8N ∗diagb,
while L]+ and L]− are disjoint. We claim that we can choose a microlocal partition of unity,

N∑
i=1

Qi = Id,

where the Qi are semiclassical scattering pseudodifferential operators, such that for each pair (i, k),
either QiηR j (λ)χQk or QiηR j (−λ)χQk is microlocally trivial. This does not quite follow from the
disjointness of the microlocal supports of ηR j (±λ)χ ; we must also check that at T±, there are no points
(y, y′, σ, µ,µ′, ν, ν ′), (y, y′, σ ∗, µ, µ′, ν, ν ′) ∈ s8T ∗bf X , differing only in the σ coordinate, such that
the first point is in WF′bf(ηR j (λ)χ) and the second point is in WF′bf(ηR j (−λ)χ) (see Remark 6.6). This
follows from (6-23); in fact, the coordinates (ν, ν ′) determine σ except on the sets T±. However, on T±,
we find that (y, y′, σ, µ= 0, µ′ = 0, ν =±1, ν ′ =∓1) is in L+ if and only if σ ≤ 1 and ν = 1, or σ ≥ 1
and ν =−1, while it is in L− if and only if σ ≤ 1 and ν =−1, or σ ≥ 1 and ν = 1. But condition (8-13)



RESTRICTION AND SPECTRAL MULTIPLIER THEOREMS 945

implies that σ ≥ γ > 1 on the support of the kernel of ηR j (±λ)χ , so we see that indeed it is not possible
to have (y, y′, σ, µ,µ′, ν, ν ′) ∈WF′bf(ηR j (λ)χ) and (y, y′, σ ∗, µ, µ′, ν, ν ′) ∈WF′bf(ηR j (−λ)χ).

Now let N be the set of pairs (i, k), with 1 ≤ i, k ≤ N , such that QiηR j (λ)χQk is not microlocally
trivial. This means that if (i, k)∈N, then QiηR j (−λ)χQk is microlocally trivial. Let us also observe that
as the Qi are uniformly bounded as operators L2

→ L2, and as they are Calderón–Zygmund operators
in a uniform sense as h→ 0, then they are uniformly bounded as operators L p

→ L p for 1< p <∞.
Therefore we can compute that

‖ηR j (λ)χ‖L p(M j )→L2(M j ) ≤

N∑
i,k=1

‖QiηR j (λ)χQk‖L p(M j )→L2(M j )

=

∑
(i,k)∈N

‖QiηR j (λ)χQk‖L p(M j )→L2(M j )+ O(λ−∞)

=

∑
(i,k)∈N

‖Qiη(R j (λ)− R j (−λ))χQk‖L p(M j )→L2(M j )+ O(λ−∞)

=
1

2πλ

∑
(i,k)∈N

‖Qiη dE j (λ)χQk‖L p(M j )→L2(M j )+ O(λ−∞)

≤
C N 2

λ
‖η dE j (λ)χ‖L p(M j )→L2(M j )+ O(λ−∞), (8-15)

proving the lemma. �

Remark 8.4. Observe that we missed the endpoint p = 1 due to our use of Calderón–Zygmund theory.
In the case that M is exactly Euclidean for x < 2ε we can take M j to be flat Euclidean space and then it
is straightforward to check that ηR j (λ)χ is bounded L1(M j )→ L2(M j ) with norm O(λ(n−3)/2), which
gives us Proposition 8.2 for p = 1 in this case.

In [Seeger and Sogge 1989], spectral multiplier estimates are proved for compact manifolds for the
same exponents as in Theorem 1.1. This was done using Sogge’s discrete L2 restriction theorem, i.e.,
Proposition 8.1. One may suspect that, since spectral multiplier estimates can be proved in the compact
case, and since we have localized restriction estimates outside the trapped sets, that one should be able to
prove spectral multiplier estimates on asymptotically conic manifolds unconditionally, i.e., without any
nontrapping assumption. We have not been able to prove this, however, but have the following localized
results:

Proposition 8.5. Let M◦ be a manifold with Euclidean ends, and let p ∈ [1, 2(n+ 1)/(n+ 3)]. Let H
be as in Theorem 1.3, let χ be a cutoff function as in Proposition 8.2, let F be a multiplier satisfying the
assumption of Theorem 1.1, i.e., F ∈ H s for some s >max

(
n
( 1

p −
1
2

)
, 1

2

)
. Then we have

sup
α>0
‖F(α

√
H)χ‖p→p ≤ C‖F‖H s .

This is proved by following the proof of Theorem 1.1, using (8-5) in place of (2-3).



946 COLIN GUILLARMOU, ANDREW HASSELL AND ADAM SIKORA

Proposition 8.6. Let ω ∈ C∞c (M
◦) be compactly supported and let H and F be as above. Then the

following estimate holds:
sup
α>0
‖ωF(α

√
H)‖L p→L p ≤ ‖F‖H s .

This is proved by following the method of [Seeger and Sogge 1989], using the compact support of ω
to obtain the embedding from L2 to L p as in [ibid., Equation (3.11)].

8C. Examples with elliptic trapping. Here we show that the restriction estimate at high frequency
generically fails for asymptotically conic manifolds with elliptic closed geodesics. Indeed, it has been
proved by Babich and Lazutkin [1968] and Ralston [1977] that if there exists a closed geodesic γ in
M such that the eigenvalues of the linearized Poincaré map of γ are of modulus 1 and are not roots of
unity, then there exists a sequence of quasimodes u j ∈ C∞0 (K ) with K a fixed compact set containing the
geodesic, a sequence of positive real numbers λ j →∞ such that for all N > 0 there is CN > 0 such that

‖u j‖L2 = 1, ‖(1g − λ
2
j )u j‖L2 ≤ CNλ

−N
j . (8-16)

Proposition 8.7. Assume that (M, g) is an asymptotically conic manifold with an elliptic closed geodesic
such that the eigenvalues of the linearized Poincaré map of γ are of modulus 1 and are not roots of unity.
Then for all p ∈ [1, 2) and M ≥ 0 the spectral measure dE√1g

(λ) does not satisfy the restriction estimate

∃C > 0, ∃λ0 > 0, ∀λ≥ λ0, ‖dE√1g
(λ)‖L p→L p′ ≤ CλM .

Proof. Let u j be the quasimodes above. Then the inequality

‖(1g − λ
2
j )u j‖L2 ≤ CNλ

−N
j

implies that ∥∥1R\[λ2
j−2CNλ

−N
j ,λ2

j+2CNλ
−N
j ]
(1g)u j

∥∥
L2 ≤

1
2

since ‖(1g − λ
2
j )v‖ ≥ c‖v‖ if v is in the range of the spectral projector 1R\[λ2

j−c,λ2
j+c](1g). Therefore

∥∥1
[λ2

j−2CNλ
−N
j ,λ2

j+2CNλ
−N
j ]
(1g)u j

∥∥
L2 ≥

√
3

2
, (8-17)

and using the fact that 1
[λ2

j−2CNλ
−N
j ,λ2

j+2CNλ
−N
j ]
(1g) is a projection,〈

u j ,1[λ2
j−2CNλ

−N
j ,λ2

j+2CNλ
−N
j ]
(1g)u j

〉
≥

3
4
. (8-18)

This implies that for large enough λ we have〈
u j ,1[λ j−2CNλ

−N−1
j ,λ j+2CNλ

−N−1
j ]

(
√
1g)u j

〉
≥

3
4
. (8-19)

Now assume that there exists C such that ‖dE√1g (λ)‖L p→L p′ ≤ CλM . Then using the continuous
embeddings from L2(K )→ L p(K ) and L p′(K ) to L2(K ), we see that there is C ′ > 0 such that

〈u j , dE√1g
(λ)u j 〉 ≤ C ′λM

‖u j‖L2 ≤ 2C ′λM .
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By integrating this on the interval [λ j − 2CNλ
−N−1
j , λ j + 2CNλ

−N−1
j ], we contradict (8-19) if N + 1 is

chosen larger than M and j is large enough. �

Remark 8.8. In fact, one can construct examples where the spectral measure blows up exponentially
with respect to the frequency λ. Consider a Riemannian manifold (M, g) which is a connected sum of
flat Rn and a sphere Sn , so that it contains an open set S isometric to part of a round sphere Sn , namely

S = {x = (x1, x2, . . . , xn+1) ∈ Rn+1
; |x | = 1, x2

1 + x2
2 >

1
4}.

Consider the functions uN (x) := (x1+ i x2)
N (as functions on Rn+1). These restrict to eigenfunctions on

Sn with corresponding eigenvalue N (N + n− 1) and with norm ‖uN‖L2 ∼ cN−1/4 for some c > 0 as
N→∞. Let χ ∈C∞0 (S) be equal to 1 on S∩{x2

1+ x2
2 ≥ 1/2} and extend it by 0 on M \ S. The modified

function vN = χuN/‖χuN‖L2 satisfies

(1g − N (N + n− 1))vN = [1g, χ]uN/‖χuN‖L2 .

But since |x1+ i x2|< 1/2 on the support of [1g, χ] and since ‖χuN‖> C N−1/4 for some C > 0 when
N is large, we deduce that (1g−N (N+n−1))vN = OL2(e−αN ) for some α > 0. Applying the argument
of Proposition 8.7, we deduce that there exist C > 0, β > 0 and a sequence λN ∼

√
N (N + n− 1) such

that ‖dE(λN )‖L p→L p′ ≥ CeβλN .

9. Conclusion: application and open problems

The restriction theorem can be applied to prove Sobolev estimates. Recall that the Hardy–Littlewood–
Sobolev theorem tells us the inverse of the Laplacian, i.e., the resolvent at zero energy, on Rn is bounded
from L p(Rn) to L p′(Rn) when n ≥ 3 and p = 2n/(n+ 2); this holds true on any asymptotically conic
manifold. Since the resolvent looks like the spectral measure microlocally away from the diagonal, and
since this value of p is in the range [1, 2(n + 1)/(n + 3)] in which the spectral measure is bounded
L p
→ L p′ by Theorem 1.3, this suggests that the resolvent kernel (1− (λ± i0)2)−1 on an asymptotically

conic manifold should be bounded from L p(Rn) to L p′(Rn) when p = 2n/(n+ 2). This result has been
recently proved in [Guillarmou and Hassell 2012] and if in addition the metric is nontrapping, we have the
following uniform Sobolev estimate: For p= 2n/(n+2), p′ = 2n/(n−2) there exists C > 0 independent
of λ ∈ C such that

∀u ∈W 2,p(M), ‖(1− λ2)u‖L p ≥ C‖u‖L p′ .

This was proved by Kenig–Ruiz–Sogge [1987] for constant coefficient operators on Rn . The boundedness
of the resolvent for p ∈ [2n/(n + 2), 2(n + 1)/(n + 3)] is also satisfied for λ 6= 0 but the constant is
O(|λ|n(1/p−1/p′)−2)).

We mention several ways in which the investigations of this paper could be extended.
Theorem 1.3 is only stated for dimensions n ≥ 3. This is because the proof relies on the analysis

of [Guillarmou and Hassell 2008; Guillarmou et al. 2012], which is only done for n ≥ 3. It would be
interesting to treat also the case n = 2. The main difficulty in doing this is to write down a suitable inverse
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for the model operator at the zf face in the construction of [Guillarmou and Hassell 2008, Section 3],
which is not invertible as an operator on L2(M) in two dimensions as it is in all higher dimensions.

One could also extend Theorem 1.3 by allowing potential functions which are O(x2) instead of only
O(x3) at infinity, i.e., inverse-square decay near infinity. This should be relatively straightforward, because
all the analysis has been done in the two papers cited above. For potentials of the form V = V0x2, with V0

strictly negative at ∂M , this would have the effect of changing the “numerology”, i.e., the range of p and
the power of λ in (1-4), for example. Here we preferred not to treat this case, in order not to complicate
the statement of Theorem 1.3, but rather to keep the numerology as it is in the familiar setting of the
classical Stein–Tomas theorem, and in Sogge’s discrete L2 restriction theorem.

Another way to extend Theorem 1.3 would be to allow operators H with eigenvalues. In this case,
we would consider the positive part 1(0,∞)(H) of the operator H . We expect such a generalization to
be straightforward, as the analysis has been carried out in [Guillarmou and Hassell 2008; Guillarmou
et al. 2012], with the only complication being that 1(0,∞)(H) does not satisfy the finite speed propagation
property (2-2).

We close by posing, as open problems, some possible generalizations that seem to be a little less
straightforward:

• Prove (or disprove) the restriction theorem for high energies in the presence of trapping, in the case
that the trapped set is hyperbolic and the topological pressure assumption of [Nonnenmacher and
Zworski 2009] and [Burq et al. 2010] is satisfied.

• Prove (or disprove) the spectral multiplier result for high energies in the trapping case, i.e., Proposi-
tions 8.5 and 8.6 without the cutoff functions.
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