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SECOND ORDER STABILITY FOR THE MONGE–AMPÈRE EQUATION
AND STRONG SOBOLEV CONVERGENCE OF OPTIMAL TRANSPORT MAPS

GUIDO DE PHILIPPIS AND ALESSIO FIGALLI

The aim of this note is to show that Alexandrov solutions of the Monge–Ampère equation, with right-hand
side bounded away from zero and infinity, converge strongly in W 2,1

loc if their right-hand sides converge
strongly in L1

loc. As a corollary, we deduce strong W 1,1
loc stability of optimal transport maps.

1. Introduction

Let �⊂ Rn be a bounded convex domain. In [De Philippis and Figalli 2013], we showed that convex
Alexandrov solutions of {

det D2u = f in �,
u = 0 on ∂�,

(1-1)

with 0 < λ ≤ f ≤ 3, are W 2,1
loc (�). More precisely, they were able to prove uniform interior L log L-

estimates for D2u. This result has also been improved in [De Philippis et al. 2013; Schmidt 2013], where
it is actually shown that u ∈W 2,γ

loc (�) for some γ = γ (n, λ,3) > 1: more precisely, for any �′ b�,∫
�′
|D2u|γ ≤ C(n, λ,3,�,�′). (1-2)

A question which naturally arises in view of the previous results is the following: choose a sequence
of functions fk with λ ≤ fk ≤ 3 which converges to f strongly in L1

loc(�), and denote by uk and u
the solutions of (1-1) corresponding to fk and f , respectively. By the convexity of uk and u and the
uniqueness of solutions to (1-1), it is immediately deduced that uk → u uniformly, and ∇uk →∇u in
L p

loc(�) for any p <∞. What can be said about the strong convergence of D2uk? Due to the highly
nonlinear character of the Monge–Ampère equation, this question is nontrivial. (Note that weak W 2,1

loc
convergence is immediate by compactness, even under the weaker assumption that fk converges to f
weakly in L1

loc(�).)
The aim of this short note is to prove that strong convergence holds. Our main result is the following:

Theorem 1.1. Let �k ⊂ Rn be a family of convex domains, and let uk :�k→ R be convex Alexandrov
solutions of {

det D2uk = fk in �k,

uk = 0 on ∂�k,
(1-3)
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with 0< λ≤ fk ≤3. Assume that �k converges to some convex domain � in the Hausdorff distance, and
fkχ�k converges to f in L1

loc(�). Then, if u denotes the unique Alexandrov solution of{
det D2u = f in �,
u = 0 on ∂�,

for any �′ b�, we have
‖uk − u‖W 2,1(�′)→ 0 as k→∞. (1-4)

(Obviously, since the functions uk are uniformly bounded in W 2,γ (�′), this gives strong convergence in
W 2,γ ′(�′) for any γ ′ < γ .)

As a consequence, we can prove the following stability result for optimal transport maps:

Theorem 1.2. Let �1, �2 ⊂ Rn be two bounded domains with �2 convex, and let fk, gk be a family of
probability densities such that 0< λ≤ fk, gk ≤3 inside �1 and �2, respectively. Assume that fk→ f
in L1(�1) and gk → g in L1(�2), and let Tk : �1→ �2 (resp. T : �1→ �2) be the (unique) optimal
transport map for the quadratic cost sending fk onto gk (resp. f onto g). Then Tk→ T in W 1,γ ′

loc (�1) for
some γ ′ > 1.

We point out that, in order to prove (1-4) and the local W 1,1 stability of optimal transport maps, the
interior L log L-estimates from [De Philippis and Figalli 2013] are sufficient. Indeed, the W 2,γ -estimates
are used just to improve the convergence from W 2,1

loc to W 2,γ ′
loc with γ ′ < γ .

This paper is organized as follows: in the next section, we collect some notation and preliminary
results. Then in Section 3 we prove Theorem 1.1, and in Section 4 we prove Theorem 1.2.

2. Notation and preliminaries

Given a convex function u :�→ R, we define its Monge–Ampère measure as

µu(E) := |∂u(E)| for all E ⊂� Borel

(see [Gutiérrez 2001, Theorem 1.1.13]), where

∂u(E) :=
⋃
x∈E

∂u(x).

Here ∂u(x) is the subdifferential of u at x , and |F | denotes the Lebesgue measure of a set F . In case
u ∈ C1,1

loc , by the area formula [Evans and Gariepy 1992, Paragraph 3.3], the following representation
holds:

µu = det D2u dx .

The main property of the Monge–Ampère measure we are going to use is the following (see [Gutiérrez
2001, Lemmas 1.2.2 and 1.2.3]):

Proposition 2.1. Let uk : �→ R be a sequence of convex functions converging locally uniformly to u.
Then the associated Monge–Ampère measures µuk converge to µu in duality with the space of continuous
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functions compactly supported in �. In particular,

µu(A)≤ lim inf
k→∞

µuk (A)

for any open set A ⊂�.

Given a Radon measure ν on Rn and a bounded convex domain �⊂Rn , we say that a convex function
u :�→ R is an Alexandrov solution of the Monge–Ampère equation

det D2u = ν in �

if µu(E)= ν(E) for every Borel set E ⊂�.
If v :�→ R is a continuous function, we define its convex envelope inside � as

0v(x) := sup{`(x) : `≤ v in �, ` affine}. (2-1)

In case � is a convex domain and v ∈ C2(�), it is easily seen that

D2v(x)≥ 0 for every x ∈ {v = 0v} ∩� (2-2)

in the sense of symmetric matrices. Moreover, the following inequality between measures holds in �:

µ0v ≤ det D2v1{v=0v}dx (2-3)

(here 1E is the characteristic function of a set E).1

We recall that a continuous function v is said to be twice differentiable at x if there exists a (unique)
vector ∇v(x) and a (unique) symmetric matrix ∇2v(x) such that

v(y)= v(x)+∇v(x) · (y− x)+ 1
2∇

2v(x)[y− x, y− x] + o(|y− x |2).

In case v is twice differentiable at some point x0 ∈ {v = 0v}, it is immediate to check that

∇
2v(x0)≥ 0. (2-5)

1To see this, let us first recall that by [Gutiérrez 2001, Lemma 6.6.2], if x0 ∈� \ {0v = v} and a ∈ ∂0v(x0), then the convex
set

{x ∈� : 0v(x)= a · (x − x0)+0v(x0)}

is nonempty and contains more than one point. In particular,

∂0v
(
� \ {0v = v}

)
⊂ {p ∈ Rn

: there exist distinct x, y ∈� such that p ∈ ∂0v(x)∩ ∂0v(y)}.

This last set is contained in the set of nondifferentiability of the convex conjugate of 0v , so it has zero Lebesgue measure (see
[Gutiérrez 2001, Lemma 1.1.12]), and hence ∣∣∂0v(� \ {0v = v})∣∣= 0. (2-4)

Moreover, since v ∈ C1(�), for any x ∈ {0v = v} ∩�, we have ∂0v(x)= {∇v(x)}. Thus, using (2-4) and (2-2), for any open
set A b�, we have

µ0v (A)=
∣∣∂0v(A∩ {0v = v}

)∣∣= ∣∣∇v(A∩ {0v = v}
)∣∣≤ ∫

A∩{0v=v}
| det D2v| =

∫
A∩{0v=v}

det D2v,

as desired. (The inequality above follows from the area formula in [Evans and Gariepy 1992, Paragraph 3.3.2] applied to the C1

map ∇v.)
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By the Alexandrov theorem, any convex function is twice differentiable almost everywhere (see, for
instance, [Evans and Gariepy 1992, Paragraph 6.4]). In particular, (2-5) holds almost everywhere on
{v = 0v} whenever v is the difference of two convex functions.

Finally we recall that, in case v ∈ W 2,1
loc , the pointwise Hessian of v coincides almost everywhere

with its distributional Hessian [Evans and Gariepy 1992, Sections 6.3 and 6.4]. Since in the sequel we
are going to deal with W 2,1

loc convex functions, we will use D2u to denote both the pointwise and the
distributional Hessian.

3. Proof of Theorem 1.1

We are going to use the following result:

Lemma 3.1. Let �⊂ Rn be a bounded convex domain, and let u, v :�→ R be two continuous strictly
convex functions such that µu = f dx and µv = gdx , with f, g ∈ L1

loc(�). Then

µ0u−v ≤
(

f 1/n
− g1/n)n1{u−v=0u−v}dx . (3-1)

Proof. In case u, v are of class C2 inside �, by (2-2) we have

0≤ D2u(x)− D2v(x) for every x ∈ {u− v = 0u−v},

so using the monotonicity and the concavity of the function det1/n on the cone of nonnegative symmetric
matrices, we get

0≤ det(D2u− D2v)≤
(
(det D2u)1/n

− (det D2v)1/n)n on {u− v = 0u−v},

which, combined with (2-3), gives the desired result.
Now, for the general case, we consider a sequence of smooth uniformly convex domains �k increasing

to � and two sequences of smooth functions fk and gk converging respectively to f and g in L1
loc(�),

and we solve {
det D2uk = fk in �k,

uk = u ∗ ρk on ∂�k,

{
det D2vk = gk in �k,

vk = v ∗ ρk on ∂�k,

where ρk is a smooth sequence of convolution kernels. In this way, both uk and vk are smooth on �k

[Gilbarg and Trudinger 2001, Theorem 17.23], and ‖uk − u‖L∞(�k)+‖vk − v‖L∞(�k)→ 0 as k→∞.2

Hence, 0uk−vk also converges locally uniformly to 0u−v . Moreover, it follows easily from the definition
of a contact set that

lim sup
k→∞

1{uk−vk=0uk−vk }
≤ 1{u−v=0u−v}. (3-2)

We now observe that the previous step applied to uk and vk gives

µ0uk−vk
≤
(
(det D2uk)

1/n
− (det D2vk)

1/n)n1{uk−vk=0uk−vk }
dx .

Thus, letting k→∞ and taking into account Proposition 2.1 and (3-2), we obtain (3-1). �

2 Indeed, it is easy to see that uk and vk converge uniformly to u and v, respectively, both on ∂�k and in any compact
subdomain of �. Then, using for instance a contradiction argument, one exploits the convexity of uk (resp. vk ) and �k and the
uniform continuity of u (resp. v) to show that the convergence is actually uniform on the whole �k .
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Proof of Theorem 1.1. The L1
loc convergence of uk (resp. ∇uk) to u (resp. ∇u) is easy and standard, so

we focus on the convergence of the second derivatives.
Without loss of generality, we can assume that �′ is convex, and that �′ b�k (since �k→� in the

Hausdorff distance, this is always true for k sufficiently large). Fix ε ∈ (0, 1), let 0u−(1−ε)uk be the convex
envelope of u− (1− ε)uk inside �′ (see (2-1)), and define

Aεk :=
{

x ∈�′ : u(x)− (1− ε)uk(x)= 0u−(1−ε)uk (x)
}
.

Since uk→ u locally uniformly, 0u−(1−ε)uk converges uniformly to 0εu = εu (as u is convex) inside �′.
Hence, by applying Proposition 2.1 and (3-1) to u and (1− ε)uk inside �′, we get that

εn
∫
�′

f = µ0εu (�
′)≤ lim inf

k→∞
µ0u−(1−ε)uk

(�′)≤ lim inf
k→∞

∫
�′∩Aεk

(
f 1/n
− (1− ε) f 1/n

k

)n
.

We now observe that, since fk converges to f in L1
loc(�), we have∣∣∣∣∫

�′∩Aεk

(
f 1/n
− (1− ε) f 1/n

k

)n
−

∫
�′∩Aεk

εn f
∣∣∣∣≤ ∫

�′

∣∣( f 1/n
− (1− ε) f 1/n

k

)n
− εn f

∣∣→ 0

as k→∞. Hence, combining the two estimates above, we immediately get∫
�′

f ≤ lim inf
k→∞

∫
�′∩Aεk

f,

or equivalently,

lim sup
k→∞

∫
�′\Aεk

f = 0.

Since f ≥ λ inside � (as a consequence of the fact that fk ≥ λ inside �k), this gives

lim
k→∞
|�′ \ Aεk | = 0 for all ε ∈ (0, 1). (3-3)

We now recall that, by the results in [Caffarelli 1990; De Philippis and Figalli 2013; De Philippis et al.
2013; Schmidt 2013], both u and (1− ε)uk are strictly convex and belong to W 2,1(�′). Hence we can
apply (2-5) to deduce that

D2u− (1− ε)D2uk ≥ 0 almost everywhere on Aεk .

In particular, by (3-3), ∣∣�′ \ {D2u ≥ (1− ε)D2uk}
∣∣→ 0 as k→∞.

By a similar argument (exchanging the roles of u and uk),∣∣�′ \ {D2uk ≥ (1− ε)D2u}
∣∣→ 0 as k→∞.

Hence, if we set Bεk := {x ∈�
′
: (1− ε)D2uk ≤ D2u ≤ (1/(1− ε))D2uk}, we have

lim
k→∞
|�′ \ Bεk | = 0 for all ε ∈ (0, 1).
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Moreover, by (1-2) applied to both uk and u, we have3∫
�′
|D2u− D2uk | =

∫
�′∩Bεk

|D2u− D2uk | +

∫
�′\Bεk

|D2u− D2uk |

≤
ε

1−ε

∫
�′
|D2u| + ‖D2u− D2uk‖Lγ (�′)|�

′
\ Bεk |

1−1/γ

≤ C
(

ε

1−ε
+ |�′ \ Bεk |

1−1/γ
)
.

Hence, first letting k→∞ and then sending ε→ 0, we obtain the desired result. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we will need the following lemma (note that for the next result we do not
need to assume the convexity of the target domain):

Lemma 4.1. Let �1, �2 ⊂Rn be two bounded domains, and let fk, gk be a family of probability densities
such that 0< λ≤ fk, gk ≤3 inside �1 and �2, respectively. Assume that fk→ f in L1(�1) and gk→ g
in L1(�2), and let Tk : �1 → �2 (resp. T : �1 → �2) be the (unique) optimal transport map for the
quadratic cost sending fk onto gk (resp. f onto g). Then

fk

gk ◦ Tk
→

f
g ◦ T

in L1(�1).

Proof. By stability of optimal transport maps (see, for instance, [Villani 2009, Corollary 5.23]) and the
fact that fk ≥ λ (and so f ≥ λ), we know that Tk→ T in measure (with respect to Lebesgue) inside �.

We claim that g ◦ Tk → g ◦ T in L1(�1). Indeed, this is obvious if g is uniformly continuous
(by the convergence in measure of Tk to T ). In the general case, we choose gη ∈ C(�2) such that
‖g− gη‖L1(�2) ≤ η, and we observe that (recall that fk, f ≥ λ, gk, g ≤3, and that by the definition of
transport maps, we have T# fk = gk , T# f = g)∫

�1

|g ◦ Tk − g ◦ T | ≤
∫
�1

|gη ◦ Tk − gη ◦ T | +
∫
�1

|gη ◦ Tk − g ◦ Tk |
fk

λ
+

∫
�1

|gη ◦ T − g ◦ T |
f
λ

=

∫
�1

|gη ◦ Tk − gη ◦ T | +
∫
�2

|gη− g|
gk

λ
+

∫
�2

|gη− g|
g
λ

≤

∫
�1

|gη ◦ Tk − gη ◦ T | + 23
λ
η.

Thus
lim sup

k→∞

∫
�1

|g ◦ Tk − g ◦ T | ≤ 23
λ
η,

and the claim follows by the arbitrariness of η.

3If instead of (1-2) we only had uniform L log L a priori estimates, in place of Hölder’s inequality we could apply the
elementary inequality t ≤ δt log(2+ t)+ e1/δ with t = |D2u− D2uk | inside �′ \ Bεk , and we would first let k→∞ and then
send δ, ε→ 0.
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Since ∫
�1

|gk ◦ Tk − g ◦ T | ≤
∫
�1

|gk ◦ Tk − g ◦ Tk |
fk

λ
+

∫
�1

|g ◦ Tk − g ◦ T |

=

∫
�2

|gk − g|
gk

λ
+

∫
�1

|g ◦ Tk − g ◦ T |

≤
3

λ
‖gk − g‖L1(�2)+

∫
�1

|g ◦ Tk − g ◦ T |,

from the claim above we immediately deduce that also gk ◦ Tk→ g ◦ T in L1(�1).
Finally, since gk, g ≥ λ and f ≤3,∫

�1

∣∣∣∣ fk

gk ◦ Tk
−

f
g ◦ T

∣∣∣∣≤ ∫
�1

∣∣∣∣ fk − f
gk ◦ Tk

∣∣∣∣+ ∫
�1

f
∣∣∣∣ 1
gk ◦ Tk

−
1

g ◦ T

∣∣∣∣
≤

1
λ
‖ fk − f ‖L1(�1)+3

∫
�1

|gk ◦ Tk − g ◦ T |
gk ◦ Tk g ◦ T

≤
1
λ
‖ fk − f ‖L1(�1)+

3

λ2 ‖gk ◦ Tk − g ◦ T ‖L1(�1),

from which the desired result follows. �

Proof of Theorem 1.2. Since Tk are uniformly bounded in W 1,γ (�′1) for any �′1 b�, it suffices to prove
that Tk→ T in W 1,1

loc (�1).
Fix x0 ∈�1 and r > 0 such that Br (x0)⊂�1. By compactness, it suffices to show that there is an open

neighborhood Ux0 of x0 such that Ux0 ⊂ Br (x0) and∫
Ux0

|Tk − T | + |∇Tk −∇T | → 0.

It is well known [Caffarelli 1992] that Tk (resp. T ) can be written as ∇uk (resp. ∇u) for some strictly
convex function uk : Br (x0)→ R (resp. u : Br (x0)→ R). Moreover, up to subtracting a constant from uk

(which will not change the transport map Tk), one may assume that uk(x0)= u(x0) for all k ∈ N.
Since the functions Tk = ∇uk are bounded (as they take values in the bounded set �2), by classical

stability of optimal maps (see for instance [Villani 2009, Corollary 5.23]) we get that ∇uk → ∇u in
L1

loc(Br (x0)). (Actually, if one uses [Caffarelli 1992], ∇uk are locally uniformly Hölder maps, so they
converge locally uniformly to ∇u.) Hence, to conclude the proof we only need to prove the convergence
of D2uk to D2u in a neighborhood of x0.

To this aim, we observe that, by strict convexity of u, we can find a linear function `(z) = a · z+ b
such that the open convex set Z := {z : u(z) < u(x0)+ `(z)} is nonempty and compactly supported inside
Br/2(x0). Hence, by the uniform convergence of uk to u (which follows from the L1

loc convergence of the
gradients, the convexity of uk and u, and the fact that uk(x0)= u(x0)), and the fact that ∇u is transversal
to ` on ∂Z , we get that Zk := {z : uk(z) < uk(x0)+ `(z)} are nonempty convex sets which converge in
the Hausdorff distance to Z .
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Moreover, by [Caffarelli 1992], the maps vk := uk − ` solve in the Alexandrov sensedet D2vk =
fk

gk ◦ Tk
in Zk,

vk = 0 on ∂Zk

(here we used that the Monge–Ampère measures associated to vk and uk are the same). Therefore, thanks
to Lemma 4.1, we can apply Theorem 1.1 to deduce that D2uk→ D2u in any relatively compact subset
of Z , which concludes the proof. �
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