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ON THE SPECTRUM OF DEFORMATIONS OF
COMPACT DOUBLE-SIDED FLAT HYPERSURFACES

DENIS BORISOV AND PEDRO FREITAS

We study the asymptotic behavior of the eigenvalues of the Laplace–Beltrami operator on a compact
hypersurface in RnC1 as it is flattened into a singular double-sided flat hypersurface. We show that
the limit spectral problem corresponds to the Dirichlet and Neumann problems on one side of this flat
(Euclidean) limit, and derive an explicit three-term asymptotic expansion for the eigenvalues where the
remaining two terms are of orders "2 log " and "2.

1. Introduction

In recent years there have been several papers studying the effect that flattening a domain has on the
eigenvalues of the Laplace operator [Borisov and Cardone 2011; Borisov and Freitas 2009; 2010;
Friedlander and Solomyak 2009]; see also [Nazarov 2001; Panasenko 2005] and the references therein
for similar problems with boundary conditions other than Dirichlet. In these papers the main objective
has been the derivation of the asymptotics of these eigenvalues in terms of a scalar parameter measuring
how thin the domain becomes in one direction, as this parameter approaches zero. As far as we are aware,
almost if not all such existing examples in the literature are concerned with domains in Euclidean space
where the limiting problem degenerates to a domain of zero measure and therefore eigenvalues approach
infinity.

A slightly different set of problems which has been considered consists of domains which are perturba-
tions of singular sets such as thin tubular neighborhoods of graphs, i.e., domains which locally are like
thin tubes — see [Exner and Post 2005; 2009], for instance, and also [Grieser 2008] for a review. As in
the papers cited above, again the limiting domains have zero measure and the spectrum behaves in quite a
different way from the model considered here.

In this paper we study a situation which, although different from that described in the first paragraph,
has in common with it the process by which the limiting domain is approached. More precisely, consider
the case of a given domain � in RnC1 satisfying certain restrictions which for the purpose here may be
stated roughly as being bounded from above and below by the graphs of two functions — see Section 2
for a precise formulation. The domain � is then flattened towards a domain ! in Rn via a (continuous)
one-parameter family of domains �". These domains are obtained as the functions mentioned above are
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multiplied by the parameter ". The problem that shall concern us here is the study of the evolution of the
eigenvalues of the Laplace–Beltrami operator on the one-parameter family of compact hypersurfaces S"
which are the boundaries of the domains �" described above, as " approaches zero. One of the differences
in this instance is that while the domain �0 has zero .nC 1/-measure as stated above, S0 retains positive
n-measure, developing instead a singularity on the boundary of the domain ! (when considered as a
domain in Rn). We thus expect these eigenvalues to remain finite as the parameter " approaches zero, and
to converge to a limiting spectral problem on the double-sided flat hypersurface. This is indeed the case,
and the relevant spectral problems turn out to be the Dirichlet and Neumann problems on the domain !,
with the two next asymptotic terms after that being of orders "2 log " and "2. These results have been
announced in [Borisov and Freitas 2012].

In order to understand the origin of the "2 log " term in the expansion, it turns out that it is sufficient to
consider the case where n equals one, that is when the boundary is basically S1. Because of this, it is
not necessary to take into consideration the geometric intricacies of the problem which appear in higher
dimensions and it is possible to obtain the full description of eigenvalues in terms of elliptic integrals.

More precisely, for an ellipse of radii 1 and " we have that the eigenvalues are given by

�k."/D
k2�2

4E2.1� "2/
for k 2 Z; where E.m/D

Z �=2

0

q
1�m sin2.�/ d�

is the complete elliptic integral of the second type yielding one quarter of the perimeter of the ellipse
for mD 1� "2.

Combining the above with the asymptotic expansion for E yields

�k."/D
k2�2

4
C

k2�2

4
"2 log "C

k2�2

2

�
1

4
� log 2

�
"2
CO."2C�/; � 2 .0; 1/:

In some sense, the purpose of the analysis that we shall carry out in what follows is to show that the
above result may actually be extended to higher dimensions. It should be noted here that this expansion
depends on the relation between the different variables at the endpoints of the segment, which in this
case is of the form x2

1
C "2x2

2
D 1. Clearly different relations between the leading powers will lead to

different expansions.
More generally, the issue is that the points of the boundary of� where there is a tangent in the direction

along which the domain is being flattened will play a special role. Throughout the paper we assume this
set of points to be contained in a hyperplane orthogonal to the scaling direction, and that this tangency is
simple. In the vicinity of these points we take the cross-section of our surface as indicated in Figure 1
which, with the assumptions made, will be similar to the one-dimensional ellipse described above. Our
results then state that in the higher-dimensional case the asymptotics for the eigenvalues still behave in a
similar fashion and thus the logarithmic terms appearing above persist in this more general setting.

Apart from the intrinsic interest of the behavior of the spectrum close to double-sided flat domains, we
point out that such manifolds have appeared in the literature in connection with eigenvalues as maximizers
of the invariant eigenvalues among all surfaces isometric to surfaces of revolution in R3 [Abreu and
Freitas 2002] and for hypersurfaces of revolution diffeomorphic to a sphere and isometrically embedded
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∂Ω

Figure 1. Surface S" with a cross-section at the edge.

in RnC1 [Colbois et al. 2008]. In fact, it is shown in those papers that these optimal singular double flat
disks maximize the whole invariant spectrum and not just a specific eigenvalue. Another source of interest
for such asymptotic expansions lies with the fact that, in some cases, they turn out to be fairly good
approximations for low eigenvalues also for values of the parameter " away from zero — see [Borisov
and Freitas 2009; 2010; Freitas 2007].

We remark in passing that another problem for which it is conjectured that the optimal shape is given
by a double-sided flat disk is Alexandrov’s conjecture relating the area and diameter of surfaces of
nonnegative curvature.

The structure of the paper is as follows. In the next section we give a precise formulation of the
problem under consideration and state our main results, namely, the nature of the limiting problem and the
relation of the limit and approximating operators. This includes the form of the asymptotic expansion and
the expressions for the first three coefficients and an application to the case of the surface of an ellipsoid.
Section 3 is then devoted to several preliminaries and auxiliary material used in Sections 4 and 5, where
the proofs of the main results are presented.

2. Problem formulation and main results

Let x0D .x1; : : : ;xn/, x D .x0;xnC1/ be Cartesian coordinates in Rn and RnC1, respectively, n> 2, and
let ! be a bounded domain in Rn with infinitely smooth boundary. Let also h˙Dh˙.x

0/2C1.!/\C.!/

denote two arbitrary functions and define the manifold

S" WD fx W x
0
2 !;xnC1 D "hC.x

0/g[ fx W x0 2 !;xnC1 D�"h�.x
0/g; (2-1)

where " is a small positive parameter. We assume S" to be infinitely differentiable and to have no
self-intersections. To ensure this, we make the following assumptions on h˙, the first of which ensures
the absence of self-intersections:

(A1) The following relations hold true:

hC.x
0/C h�.x

0/ > 0; x0 2 !; hC.x
0/D h�.x

0/D 0; x0 2 @!:
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To state the second assumption we need to introduce some additional notation. Let � D �.P /, P 2 @!,
be the inward normal to @!, and denote by � the distance to a point measured in the direction of �.
Consider the equations

t D hC.P C ��.P //; t > 0; t D�h�.P C ��.P //; t < 0: (2-2)

Our second assumption concerns the solvability of these equations with respect to � and implies the
smoothness of S" in a neighborhood of @!:

(A2) There exists t0 > 0 such that for all t 2 Œ�t0; t0�, P 2 @!, the equations (2-2) have a unique solution
given by

� D a.t;P / 2 C1.Œ�t0; t0�� @!/;

such that
@2a

@t2
> 0 for all P 2 @!: (2-3)

We observe that assumptions (A1) and (A2) imply that

hC.x
0/> 0; h�.x

0/6 0 in a small neighborhood of @!:

The main object of our study is the Laplace–Beltrami operator H" on S". We introduce it rigorously
as the self-adjoint operator associated with a symmetric lower-semibounded sesquilinear form

h"Œu; v� WD .ru;rv/L2.S"/ on W 1
2 .S"/:

We recall that on an arbitrary manifold with metric tensor g this may be written in local coordi-
nates y D .y1; : : : ;yn/ as

� det�
1
2 g

nX
i;jD1

@

@yi
gij det

1
2 g

@

@yj
;

where gij are the entries of the inverse to the metric tensor. If in our case we take x0 as local coordinates
on S", then on each side S˙" the operator H" may be written in the form

H" D�.1C "
2
jrx0h˙j

2/�
1
2 divx0.1C "

2
jrx0h˙j

2/
1
2 .EC "2Q˙/�1

rx0 ; (2-4)

where E is the n� n identity matrix and Q˙ is the matrix with entries @h˙
@xi

@h˙
@xj

. On the boundary @!
the coefficients of such operator have singularities, and this is why in a neighborhood of @! it is more
convenient to employ the coordinates .�; s/, where s are some local coordinates on @!. We do not give
here the expression of the operator H" in such coordinates, as it requires the introduction of additional
(cumbersome) notation. These two parametrizations are discussed in detail in Section 3.

The purpose of the present paper is to describe the asymptotic behavior of the resolvent and the spectrum
of H" as "!C0. In this limit, the hypersurface S" collapses to a flat two-sided domain !D .!C; !�/,
where !˙ are two copies of ! understood as the upper and lower sides of !. Because of this, it is natural
to expect that the limiting operator for H" as "!C0 is the Laplacian on !, i.e., that on !˙ subject to
certain boundary conditions. Indeed, this is true, and it is our first main result. Namely, we introduce
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the space L2.!/ as consisting of the vectors uD .uC;u�/, where the functions u˙ are defined on !˙
and u˙ 2L2.!˙/. We can naturally identify L2.!/ with L2.!/˚L2.!/. In the same way we introduce
the Sobolev spaces W

j
2
.!/ assuming that for each u 2W

j
2
.!/ the functions u˙ 2W

j
2
.!˙/ satisfy the

boundary conditions
@iuC

@� i

ˇ̌̌̌
@!

D .�1/i
@iu�

@� i

ˇ̌̌̌
@!

; i D 0; 1; : : : ; j � 1: (2-5)

The meaning of these boundary conditions is that the functions u˙ should be “glued smoothly” while
moving from !C to !� via @! D @!˙. We observe that W

j
2
.!/ is embedded into W

j
2
.!/˚W

j
2
.!/,

but does not coincide. It is also clear that for any u 2W 1
2
.!/ the function u WD .u;u/ belongs to W 1

2
.!/.

Similarly, if u 2W 2
2
.!/, uj@! D 0, or, respectively, u 2W 2

2
.!/, @u

@�
j@! D 0, then uD .u;�u/ 2W 2

2
.!/,

or, respectively, uD .u;u/ 2W 2
2
.!/.

Let H0 be the self-adjoint operator in L2.!/ associated with the closed symmetric lower-semibounded
sesquilinear form

h0Œu; v� WD .ru;rv/L2.!/ on W 1
2 .!/:

By D. � / we denote the domain of an operator, and the symbol k � kX!Y indicates the norm of an operator
acting from the Hilbert space X to a Hilbert space Y .

Given any vector uD .uC;u�/ defined on !, by I"u we denote the function on S" being uC.x
0/ on

fx W x0 2 !;xnC1 D "hC.x
0/g and u�.x

0/ on fx W x0 2 !;xnC1 D�"h�.x
0/g. And vice versa, given any

function u defined on S", by I�1
" u we denote the vector uD .uC;u�/, where u˙ D u˙.x

0/ WD u.x0/,
x0 2 !, xnC1 D "h˙.x

0/.

Theorem 2.1. For each z 2 C nR there exists C.z/ > 0 such that the following estimate holds true:

.H"� z/�1
�I".H0� z/�1I�1

"




L2.S"/!W 1

2
.S"/
6 C.z/"2=3: (2-6)

Remark 2.2. The statement of this theorem includes the fact that the operator I".H0 � z/�1I�1
" is

well-defined as a bounded one from L2.S"/ into W 1
2
.S"/.

In view of the embedding of W 1
2
.!/ into W 1

2
.!/˚W 1

2
.!/, and the compact embedding of the

latter into L2.!/˚L2.!/ D L2.!/, the operator H" has a compact resolvent. Hence, it has a pure
discrete spectrum accumulating only at infinity. The same is true for the Dirichlet and Neumann
Laplacians ��.D/! and ��.N /! on !. Recall that ��.D/! is the Friedrichs extension in L2.!/ of ��
from C1

0
.�/, and ��.N /! is the self-adjoint operator in L2.!/ associated with the sesquilinear form

.ru;rv/L2.�/ on W 1
2
.!/. In what follows �d . � / denotes the discrete spectrum of an operator.

Our next result follows from Theorem 2.1 and [Reed and Simon 1980, Theorems VIII.23, VIII.24].

Theorem 2.3. The eigenvalues of H" converge to those of H0 as " goes to zero. In particular, if
� 62 �d .H0/, then � 62 �d .H"/ for " small enough. For each m-multiple eigenvalue � 2 �d .H0/ there
exist exactly m eigenvalues (counting multiplicities) of H" converging to � as "!C0. Let P0 be the
projector on the eigenspace associated with �, P" be the total projector associated with the eigenvalues
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of H" converging to �. Then the following convergence holds true:

kP"�I"P0I�1
" kL2.S"/!W 1

2
.S"/
! 0; "!C0:

Let now � be an eigenvalue of H0 with multiplicity m and iD . 
.i/
C ;  

.i/
� / be associated eigenfunctions

orthonormalized in L2.!/. It will be shown in the next section in Lemma 4.2 that the asymptotics

 
.i/
˙
.x0/D‰

.0/
i .P /˙‰

.1/
i .P /� CO.�2/; P 2 @!; � !C0; (2-7)

hold true, where

‰
.0/
i D  

.i/
C

ˇ̌
@!
D  .i/�

ˇ̌
@!
2 C1.@!/; ‰

.1/
i D

@ 
.i/
C

@�

ˇ̌̌̌
@!

D�
@ .i/�
@�

ˇ̌̌̌
@!

2 C1.@!/:

By ��@! we denote the Laplace–Beltrami operator on @!, where the metric G@! on @! is induced
by the Euclidean one in Rn. For any smooth functions u, v on @!, we shall denote the pointwise scalar
product of their gradients by ru � rv.

Let
!ı WD ! n fx0 W 0< � < ıg: (2-8)

Employing the coefficients of the asymptotics (2-7), we introduce two real symmetric matrices ƒ.0/, ƒ.1/

with entries

ƒ
.0/
ij WD

Z
@!

1

a2

�
�‰

.0/
i ‰

.0/
j �r‰

.0/
i � r‰

.0/
j C‰

.1/
i ‰

.1/
j

�
d!; (2-9)

ƒ
.1/
ij WD � lim

ı!C0

�
1

2

Z
!ı
jrx0hCj

2
�
� 

.i/
C  

.j/
C � .rx0 

.i/
C ;rx0 

.j/
C /Rd

�
dx0

C
1

2

Z
!ı
jrx0h�j

2
�
� .i/�  

.j/
� � .rx0 

.i/
� ;rx0 

.j/
� /Rd

�
dx0

C

Z
!ı
.rx0hC;rx0 

.i/
C /Rd .rx0hC;rx0 

.j/
C /Rd dx0

C

Z
!ı
.rx0h�;rx0 

.i/
� /Rd .rx0h�;rx0 

.j/
� /Rd dx0

C ln ı
Z
@!

1

4a2

�
‰
.1/
i ‰

.1/
j C�‰

.0/
i ‰

.0/
j �r‰

.0/
i � r‰

.0/
j

�
ds

�
�

Z
@!

1C 4 ln 2C ln a2

4a2

�
‰
.1/
i ‰

.1/
j C�‰

.0/
i ‰

.0/
j �r‰

.0/
i � r‰

.0/
j

�
ds; (2-10)

where

a2.P / WD
1

2

@2a

@t2
.0;P /:

It will be shown in Section 4 that the matrix ƒ.1/ is well-defined. By the theorem on simultaneous
diagonalization of two quadratic forms, in what follows the eigenfunctions  i are supposed to be
orthonormalized in L2.!/ and the matrix ƒ.0/C 1

ln "ƒ
.1/ to be diagonal. The eigenfunctions  i chosen
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in this way depend on ", but it is clear that the norms k .i/
˙
kC k.!/ are bounded uniformly in " for

all k > 0, i D 1; : : : ;m.

Theorem 2.4. Let � be an m-multiple eigenvalue of H0 and  i , i D 1; : : : ;m, be the associated eigen-
functions of H0 chosen as described above. Then there exist exactly m eigenvalues �k."/, k D 1; : : : ;m

(counting multiplicity) of H" converging to �. These eigenvalues satisfy the asymptotic expansions

�k."/D �C "
2 ln "�k

�
1

ln "

�
CO."2C�/; (2-11)

where �k are the eigenvalues of the matrix ƒ.0/ C 1
ln "ƒ

.1/, and � is any constant in .0; 1=2/. The
eigenvalues �k

�
1

ln "

�
are holomorphic in 1

ln " and converge to the eigenvalues of ƒ.0/ as "! 0.

In addition to the asymptotic expansions for the eigenvalues �i."/ given in this theorem, we also obtain
the asymptotics for the total projector associated with these eigenvalues. However, to formulate this result
we have to introduce additional notation and it is thus more convenient to postpone its statement which
will then be made at the end of Section 5 — see Theorem 5.3.

Let us describe briefly the main ideas employed in the proofs of the main results. The proof of
the uniform resolvent convergence in Theorem 2.1 is based on the analysis of the quadratic forms
associated with the perturbed and the limiting operators and on the accurate estimates of the functions in
certain weighted Sobolev spaces. The proof of the first theorem uses essentially the method of matching
asymptotic expansions [Il0in 1992] for formal construction of the asymptotics for the eigenfunctions
associated with �k."/. These asymptotics are constructed as a combination of outer and inner expansions.
The former depends on x0 and its coefficients have singularities at @!. In the vicinity of @! we introduce
a special rescaled variable � WD a1=2.xnC1"

�1;P /"�1 as xnC1 > 0 and � WD �a1=2.xnC1"
�1;P /"�1

as xnC1<0. This variable then describes the slope of S" in the vicinity of "— see also the equations (3-11)
giving the parametrization of S" in the vicinity of @!. After rewriting the eigenvalue equation in the
variables .�; s/, where s are local coordinates on @!, its leading term is in fact the Laplace–Beltrami
operator on the ellipse giving rise to the logarithmic terms in the asymptotics for both the eigenvalues and
the eigenfunctions.

Despite the fact that we are only presenting the leading terms of the asymptotics for �k."/ and for the
associated total projector in Theorems 2.4 and 5.3, respectively, our approach also allows us to construct
the complete asymptotic expansions if required. Although this would need to be checked in a way similar
to what was done here for the first few terms, the ansatzes (5-1) and (5-39) suggest that the complete
asymptotic expansion for the eigenvalues should be

�k."/D �C "
2 ln "�k."/C

1X
iD2

"2i lni "�
.i/

k

�
1

ln "

�
;

where �.i/
k

are functions holomorphic in 1
ln " . These higher-order terms would then still reflect the behavior

observed in the ellipse example given in the Introduction.
Although the above formulas for ƒ.0/ij and (especially) ƒ.1/ij may look quite cumbersome at a first

glance, they will actually simplify when computed for particular cases as some of the terms involved will
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vanish depending on whether we are considering Dirichlet or Neumann boundary conditions on @!. We
note that a similar effect was already present when computing the coefficients in the expansions obtained
in [Borisov and Freitas 2009; 2010]. This is particularly clear in the second of these papers dealing with
dimensions higher than two, where the general expression is quite complicated and needs to be computed
specifically in each case. When this is done for general ellipsoids in any dimension, for instance, it yields
a much simpler one-line expression.

We shall illustrate this by considering a thin ellipsoidal surface. To this end take ! to be the unit disk
centered at the origin with

h˙.x
0/ WD

p
1� r2; r D jx0j; � D 1� r; a2 D

1
2
: (2-12)

Under such definition this surface converges to the unit disk ! regarded as a double-sided surface. In this
instance the limiting eigenvalues may be found via separation of variables and they will be of the form �2,
where � are the zeroes of the Bessel function J� and its derivative J 0� , corresponding to eigenfunctions
satisfying Dirichlet and Neumann boundary conditions on @!, respectively. The following examples
illustrating both cases are taken from [Borisov and Freitas 2012], where the details may be found.

We consider the case of Dirichlet boundary conditions first; i.e.,

J0.�/D 0; �D �2;  .x/D�
J0.�r/
p

2�J1.�/
;  D . ;� /; ‰.0/ D 0; ‰.1/ D�

�
p

2�
:

Substituting these formulas and (2-12) into (2-9) and (2-10), we then obtain

ƒ
.0/
11
D 2� and ƒ

.1/
11
D�

�

J 2
1
.�/

Z 1

0

r3

1� r2

�
J 2

0 .�r/CJ 2
1 .�r/�J 2

1 .�/
�

dr �� ln 2:

The asymptotics (2-11) thus become

��."/D �C "
2.2� ln "Cƒ.1/

11
/CO."2C�/

and, for a particular eigenvalue, the remaining integral may be computed numerically. We illustrate this
by considering the case corresponding to the first Dirichlet eigenvalue on the disk which yields

�1."/D j 2
0;1C "

2.2j 2
0;1 ln "Cƒ.1/

11
/CO."2C�/� 5:7831C 11:5664 "2 ln "� 6:0871 "2

CO."2C�/:

As an example of a limiting multiple eigenvalue we consider the first nontrivial Neumann eigenvalue
of the disk. In two dimensions this is a double eigenvalue with associated (normalized) eigenfunctions

 1.x/D
J1.�

0r/ cos �

J0.�0/

q
�.�02� 1/

;  2.x/D
J1.�

0r/ sin �

J0.�0/

q
�.�02� 1/

;

where � is the polar angle corresponding to x and �0 is the first nontrivial zero of J 0
1
.

The eigenfunctions in L2.!/ are then given by  i D . i ;  i/, i D 1; 2, from which we have

‰
.0/
1
D

J1.�
0/ cos �

J0.�0/

q
�.�02� 1/

; ‰
.0/
2
D

J1.�
0/ sin �

J0.�0/

q
�.�02� 1/
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and ‰.1/i D 0, i D 1; 2. Proceeding as before, we have

ƒ0
11 Dƒ

0
22 D

2J 2
1
.�0/

J 2
0
.�0/

D 2�0
2
D 2� and ƒ0

ij D 0 .i ¤ j /:

For the next term we now obtain

ƒ
.1/
ii D�

�0
2

J 2
0
.�0/.�02�1/

Z 1

0

r3

1�r2

�
J 2

1 .�
0r/�J 2

1 .�
0/CJ 2

0 .�
0r/CJ 2

0 .�
0/�

2

�0r
J0.�

0r/J1.�
0r/

�
dr�� ln 2

for i D 1; 2 and ƒij D 0 for i ¤ j .
From this, and again computing the relevant integrals numerically, we obtain

�i."/D .j
0
1;1/

2
C"2.2� ln "Cƒ.1/ii /CO."2C�/�3:3900C6:7799 "2 ln "�1:8555 "2

CO."2C�/; iD1; 2:

Due to the radial symmetry of !, it is clear that these two eigenvalues should coincide, and the associated
eigenfunctions converge to  1 and  2.

3. Preliminaries

In this section we discuss two parametrizations of the surface S" and prove three auxiliary lemmas which
will be used in the next sections for proving Theorems 2.1, 2.4.

First parametrization of S". The first parametrization is that used in the definition of S" in (2-1); i.e.,
each point on S" is described as xnC1 D˙"h˙.x

0/, x0 2 !, where the sign corresponds to the upper or
lower part of S". Let us first calculate the metrics on S" in terms of the variables x0.

The tangential vectors to S" at the point x0 2 !, xnC1 D "h˙.x
0/ are�

0; : : : ; 0; 1; 0; : : : ; 0; "
@h˙

@xi

�
; i D 1; : : : ; n;

where “1” stands on i -th position. Thus, the metric tensor has the form

G˙.x0; "/ WD

0BBBBBBBB@

1C "2
�@h˙
@x1

�2
"2 @h˙
@x1

@h˙
@x2

"2 @h˙
@x1

@h˙
@x3

: : : "2 @h˙
@x1

@h˙
@xn

"2 @h˙
@x2

@h˙
@x1

1C "2
�@h˙
@x2

�2
"2 @h˙
@x2

@h˙
@x3

: : : "2 @h˙
@x2

@h˙
@xn

"2 @h˙
@x3

@h˙
@x1

"2 @h˙
@x3

@h˙
@x2

1C "2
�@h˙
@x3

�2
: : : "2 @h˙

@x3

@h˙
@xn

:::
:::

:::
: : :

:::

"2 @h˙
@xn

@h˙
@x1

"2 @h˙
@xn

@h˙
@x2

"2 @h˙
@xn�1

@h˙
@x3

� � � 1C "2
�@h˙
@xn

�2

1CCCCCCCCA
:

It easy to see that

G˙.x0; "/D EC "2Q˙; Q˙ WD .rx0h˙/.rx0h˙/
�; (3-1)

where rx0h˙ is treated as a column vector, and “�” denotes transposition.
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Lemma 3.1. The matrix G˙ has two eigenvalues, the .n � 1/-multiple eigenvalue 1, and the simple
eigenvalue .1C "2jrx0h˙j

2/. The following identity holds true:

d S" D J˙" dx0; J˙" WD

q
1C "2jrx0h˙j2; dx0 D dx1 dx2 � � � dxn: (3-2)

Proof. From (3-1) we may write the eigenvalue problem for the matrix G˙ as

.EC "2vv�/uD zu and .z� 1/uD "2vv�u;

where vDrx0h˙. We thus see that any vector orthogonal to v is an eigenvector for the above equation with
eigenvalue z equal to one. This yields an eigenvalue of multiplicity n� 1 if v is not zero, and n in case v
vanishes. In the former case, we easily see that v is also an eigenvector, now with eigenvalue 1C "2jvj2,
which will have multiplicity one. The determinant of G˙ is thus g˙ D 1C "2jvj2, yielding the volume
element to be

p
1C "2jvj2 as desired. �

In what follows we shall make use of the differential expression for the operator H", namely, its
expansion with respect to ". The expression itself is given by (2-4), while using (3-1) allows us to expand
some of the terms in this expression in powers of ":

.EC "2Q˙/�1
D E� "2Q˙CO."4/; .1C "2

jrx0h˙j
2/˙

1
2 D 1˙ "2 jrx0h˙j

2

2
CO."4/;

where the plus and minus signs correspond to the upper and lower parts of S", respectively. We substitute
these formulas into (2-4) and get

H" D��x0 � "
2

�
jrx0h˙j

2

2
�x0 C divx0

�
jrx0h˙j

2

2
�Q˙

�
rx0

�
CO."4/: (3-3)

The disadvantage of the parametrization by the variables x0 is that the functions h˙ are not smooth
in a vicinity of @! and their derivatives blow up at the boundary @!. We shall show this below while
introducing the second parametrization. The main idea of the second parametrization is to use special
coordinates in a vicinity of @! so that they involve smooth functions only; this parametrization is purely
local and will be used only in a vicinity of @!. It is natural to expect the existence of such coordinates
since the surface S" is infinitely differentiable.

Second parametrization of S". In a neighborhood of @! we introduce new coordinates .�; s/, where
s D .s1; : : : ; sn�1/ are local coordinates on @! corresponding to a C1-atlas, and � , we remind, is the
distance to a point measured in the direction of the inward normal � D �.s/ to @!. Let r D r.s/ be the
vector-function describing @!. We have

x0 D r.s/C ��.s/; r.�;s/ DM.�; s/rx0 ; MDM.�; s/D

0BBBB@
�

@r
@s1
C � @�

@s1

:::
@r

@sn�1
C � @�

@sn�1

1CCCCA ; (3-4)

where �.s/ and the other vectors in the definition of M are treated as rows. The vectors @r
@si

are tangential
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to M and linearly independent, while �.s/ is orthogonal to @!. Thus, the matrix M is invertible for all
sufficiently small � and all s 2 @!. The inequalities

C1 6M.�; s/6 C2; C�1
2 6M�1.�; s/6 C�1

1 ; s 2 @!; � 2 Œ��0; �0� (3-5)

are valid, where C1, C2 are positive constants independent of .�; s/. It follows from these estimates
and (3-4) that the matrix M�1.�; s/ is infinitely differentiable in the neighborhood fx W j� j< �0g of @!.

Consider now the equations (2-2). By assumption (A2) they have the smooth solution � D a.xnC1;P /

and, for small xnC1, the function a behaves as

a.xnC1;P /D a2.P /x
2
nC1CO.x3

nC1/:

Hence,

h˙.P C ��.P //D xnC1 D˙a
� 1

2

2
.P /�

1
2 CO.�/; � !C0; rx0h˙ DM�1

r.�;s/h˙;

C3�
�1 6 jrx0h˙j

2 6 C4�
�1; � 2 .0; �0�; (3-6)

where C3, C4 are positive constants independent of .�; s/. As we see from the last estimates, the
functions h˙ are not smooth at the point � D 0, i.e., at @!.

We employ once again assumption (A2) and pass from the equations xnC1 D˙"h˙.x
0/ to

� D a.t;P /; xnC1 D "t; x0 D r.s/C ��.s/: (3-7)

It follows from (2-3) that the function a.t;P / can be represented as t2za.t;P /, where za2C1.Œ�t0; t0��@!/

and za> 0 for sufficiently small t0.
We introduce a new variable � D tza

1
2 .t;P /. From assumption (A2) we conclude that

t D b.�;P / 2 C1.Œ��0; �0�� @!/ (3-8)

for a fixed small constant �0, and the Taylor series for a and b read

a.t;P /D

1X
iD2

ai.P /t
i ; t !C0; (3-9)

b.�;P /D

1X
iD1

bi.P /�
i ; �! 0; b1 WD a

� 1
2

2
; (3-10)

where ai , bi 2 C1.@!/. We define a rescaled variable � WD �"�1. The final form of the second
parametrization for S" is

x0 D r.s/C "2�2�.s/; xnC1 D "
2b".�; r.s//; � 2 Œ��0"

�1; �0"
�1�; (3-11)

where b".�;P / WD "
�1b."�;P / and �0 is a fixed sufficiently small number. We observe that, by the

definition of �,

� D a.t;P /D �2
D "2�2: (3-12)



1062 DENIS BORISOV AND PEDRO FREITAS

As in (3-3), we shall also employ the expansion in " of the differential expression for H" corre-
sponding to the second parametrization. We find first the tangential vectors to S" corresponding to the
parametrization (3-11):

Tsi
D

�
@r

@si
C "2�2 @�

@si
; "2 @b"

@si

�
; T� D "

2

�
2��;

@b"

@�

�
: (3-13)

It is clear that the vectors @r
@si

, @�
@si

belong to the tangential plane and are orthogonal to �. Employing this
fact and (3-13), we calculate the metric tensor:

.T� ;T�/RnC1 D "4

�
4�2
C

�
@b"

@�

�2�
; .T� ;Tsi

/RnC1 D "4 @b"

@�

@b"

@si
;

.Tsi
;Tsj /RnC1 D

�
@r

@si
C "2�2 @�

@si
;
@r

@sj
C "2�2 @�

@sj

�
RnC1

C "4 @b"

@si

@b"

@sj
:

By the Weingarten equations we see that

..Tsi
;Tsj /RnC1/i;jD1;n D A;

where
A WD G@! � 2"2�2BC "4�4BG�1

@!BC "4.rsb"/.rsb"/
�

D G@!.E� "
2�2G�1

@!B/2C "4.rsb"/.rsb"/
�; (3-14)

G@! is the metric tensor of @! associated with the coordinates s, B is the second fundamental form of @!
corresponding to the orientation defined by �. Hence, the metric tensor G" of S" associated with the
parametrization (3-11) reads

G" D

 
"4
�
4�2C

�
@b"
@�

�2�
"4p�

"4p A

!
; p WD

@b"

@�
rsb":

By direct calculations we check that

G�1
" D

�
"�4ˇ�ˇp�A�1

�ˇA�1pA�1C "4ˇA�1pp�A�1

�
; ˇ WD

�
4�2
C

�
@b"

@�

�2

� "4p�A�1p
��1

: (3-15)

The quantities in (3-15) are well-defined provided �0 is sufficiently small. Indeed, by (3-9),

AD G@! CO.�2/; pD O.1/;
@b

@�
.�;P /D O.1/; �! 0;

which implies the existence of A�1 and ˇ. In what follows we assume that �0 is chosen in such a way.
By Ki DKi.s/, i D 1; : : : ; n� 1, we denote the principal curvatures of @!, and K WD

Pn�1
iD1 Ki . We

note that .n� 1/�1K is the mean curvature of @! and let

a WD det
�
.E� "2�2G�1

@!B/2C "4G�1
@!.rsb"/.rsb"/

�
�
:
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Lemma 3.2. The following identities hold true:

b" D

1X
iD1

bi.P /"
i�1�i ; A�1

D G�1
@! CO."2�2/; pD �b1rsb1CO."�2/; (3-16)

det G" D "4ˇ�1 det A; (3-17)

det AD a det G@! ; aD
2X

iD0

"2i˛2i CO."4�4/; (3-18)

˛0 WD 1; ˛2 WD �2�2K: (3-19)

Proof. The identities (3-16) follow directly from the definitions of b", A, and p.
We make linear transformations in (3-15) to calculate the determinant of G":

.det G"/�1
D det�1 G" D

ˇ̌̌̌
"�4ˇ �ˇp�A�1

0 A�1

ˇ̌̌̌
D "�4ˇ det�1 A;

which proves (3-17).
It is easy to see that

det AD a det G@! : (3-20)

In view of (3-14) we get

aD det
�
EC "4.E� "2�2G�1

@!B/�2G�1
@!.rsb"/.rsb"/

�
�

det.E� "2�2G�1
@!B/2

D
�
1C "4 Tr.E� "2�2G�1

@!B/�2G�1
@!.rsb"/.rsb"/

�
CO."8�2/

� n�1Q
iD1

.1� "2�2Ki/
2

D
�
1C "4 Tr G�1

@!.rsb"/.rsb"/
�
CO."6�4/

��
1� 2"2�2KCO."4�4/

�
D
�
1C "4

jrb"j
2
CO."6�4/

��
1� 2"2�2KCO."4�4/

�
:

We substitute the obtained formula and (3-10) into (3-20) and arrive at (3-18). �

Employing (3-14), (3-16), by direct calculations we check

p�A�1pD
�
@b"

@�

�2

.rsb"/
�G�1

@!.rsb"/CO."2�2/D

�
@b"

@�

�2

jrb"j
2
CO."2�2/D b2

1�
2
jrb1j

2
CO."�2/:

Hence, by (3-17), (3-18) and the definition of ˇ,

"�2 det
1
2 G" D ˇ�

1
2 det

1
2 AD ˇ�1ˇA det

1
2 G@! ; ˇA WD ˇ

1
2 a

1
2 D

4X
iD0

"iˇi�4CO
�
"5.j�j2C �4/

�
;

where ˇi D ˇi.�;P / 2 C1.R� @!/ are some functions. In particular,

ˇ�4 WD
1

.4�2C b2
1
/

1
2

; ˇ�3 WD �
2b1b2�

.4�2C b2
1
/

3
2

;

ˇ�2 WD �
3b1b3�

2

.4�2C b2
1
/

3
2

�
4�2.2�2� b2

1
/b2

2

.4�2C b2
1
/

5
2

�
�2K

.4�2C b2
1
/

1
2

; (3-21)
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while the functions ˇ�1, ˇ0 satisfy the uniform in � and P estimates

jˇ�1j6
C j�j3

1Cj�j3
; jˇ0j6 C �2.1Cj�j/:

The obtained formulas, Lemma 3.2, and (3-15) allow us to write the expansion for G�1
" :

"�2.det
1
2 G"/G�1

" D det
1
2 G@!

0X
iD�4

"iGi CO."/; (3-22)

Gi WD

�
ˇi 0

0 0

�
; i D�4; : : : ;�1; G0 WD

�
ˇ0 �b1�ˇ�4.rsb1/

�G�1
@!

�b1�ˇ�4G�1
@!
rsb1 ˇ�1

�4
G�1
@!

�
: (3-23)

Taking into account (3-17), (3-18), we write the operator H" in terms of the variables .s0; s/, where
s0 WD �:

H" D�
1

det
1
2 G"

n�1X
i;jD0

@

@si
Gij
" det

1
2 G"

@

@sj
D�

"�2ˇA

a det
1
2 G@!

n�1X
i;jD0

@

@si
Gij
" det

1
2 G"

@

@sj
; (3-24)

and G
ij
" are the entries of the inverse matrix in (3-15). It follows from the last formula and (3-15) that

H" D "
�4a�1ˇA

@

@�
ˇA

@

@�
CO.1/:

We employ the obtained equation, (3-24), (3-22) and (3-23), and expand the coefficients of H" in powers
of " leading us to the identities

H" D

0X
iD�4

"iLi CO."/; (3-25)

L�4 WD L.�4/; L�3 WD L.�3/; L�2 WD L.�2/
C˛.2/L.�4/;L�1 WD L.�1/

C˛.2/L.�3/;

L0 WD L.0/C˛.2/L.�2/
C˛.4/L.�4/; ˛.2/ WD 2�2K; ˛.4/ D ˛.4/.�; s/; (3-26)

L.i/ WD �

iC4X
jD0

ǰ�4

@

@�
ˇi�j

@

@�
; i D�4; : : : ;�1; (3-27)

L.0/ WD �

4X
lD0

ˇl�4

@

@�
ˇ�l

@

@�
C b1ˇ�4

@

@�
�ˇ�4.rsb1/

�G�1
@!rs

Cˇ�4 det�
1
2 G@! divs b1ˇ�4� det

1
2 G@!.rsb1/

�G�1
@!

@

@�

�ˇ�4 det�
1
2 G@! divs ˇ

�1
�4.det

1
2 G@!/G

�1
@!rs: (3-28)

Auxiliary lemmas. We proceed to the auxiliary lemmas which will be used for proving Theorem 2.4.
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Lemma 3.3. In a vicinity of @! the identities

det MD .det
1
2 G@!/

n�1Y
iD1

.1� �Ki/; ��x0 D�
1

det M
div.�;s/.det M/ yMr.�;s/ (3-29)

hold true, where

yM WD .M�1/�M�1
D

�
1 0

0 .E� �G�1
@!

B/�2G�1
@!

�
: (3-30)

Proof. It follows from (3-4) and the Weingarten formulas that

MD

 
�

@r
@si
� �

Pn�1
kD1 Bk

i
@r
@sk

!
;

where Bk
i are the entries of the matrix G�1

@!
B, and all vectors are treated as rows.

A straightforward direct calculation allows us to check that the inverse matrix M�1 reads

M�1
D

 
�Pn�1

kD1 ck
i
@r
@sk

!�
; (3-31)

where � indicates matrix transposition, and ck
i are the entries of the matrix CD .E� �G�1

@!
B/�1G�1

@!
.

Let u1, u2 2 C1
0
.!/ be any two functions with the corresponding supports located in a neighborhood

of @!, where the coordinates .�; s/ are well-defined. We integrate by parts:

.��x0u; v/L2.!/ D .rx0u;rx0v/L2.!/ D .M
�1
r.�;s/u; .det M/M�1

r.�;s/v/L2..0;�0/�@!/

D
�
� div.�;s/.det M/.M�1/�.M�1/r.�;s/u; v

�
L2..0;�0/�@!/

D
�
�.det�1 M/ div.�;s/.det M/.M�1/�M�1

r.�;s/u; v
�
L2.!/

:

Hence,

��x0 D�.det�1 M/ div.�;s/.det M/.M�1/�M�1
r.�;s/: (3-32)

In view of (3-31) we have

.M�1/�M�1
D

 
�Pn�1

kD1 ck
i
@r
@sk

! 
�Pn�1

kD1 ck
i
@r
@sk

!�
D

�
1 0

0 CG@!C

�
D

�
1 0

0 .E� �G�1
@!

B/�2G�1
@!

�
;

det�2 MD det.M�1/�M�1
D det.E� �G�1

@!B/�2 det G�1
@! ;

det MD det
1
2 G@! det.E� �G�1

@!B/D det
1
2 G@!

n�1Y
iD1

.1� �Ki/:

The obtained formulas and (3-32) imply the statement of the lemma. �

We recall that the set !ı was introduced in (2-8).
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Lemma 3.4. Let the functions f˙ 2 C1.!˙/ satisfy the differentiable asymptotics

f˙.x
0/D

1X
jD�4

f ˙j=2.P /�
j
2 ; � !C0 (3-33)

uniformly in P 2 @!˙, where f ˙
j=2
2 C1.@!˙/, and V .0/, V .1/ 2 C1.@!/ are some functions. Suppose

the condition

lim
ı!C0

�
.fC;  

.i/
C /L2.!ı/

C .f�;  
.i/
� /L2.!ı/

� ı�1

Z
@!

.f C
�2
Cf �
�2/‰

.0/
i ds

� 2ı�1=2

Z
@!

.f C
�3=2
Cf �
�3=2/‰

.0/
i ds

� ln ı
Z
@!

�
.K.f C

�2
Cf �
�2/�f

C

�1
�f �
�1

�
‰
.0/
i � .f

C

�2
�f �
�2/‰

.1/
i

�
ds

�
�

Z
@!

.f C
�2
�f �
�2/‰

.1/
i dsC

Z
@!

.f C
�2
Cf �
�2/‰

.0/
i K ds

C 2

Z
@!

�
V .0/‰

.1/
i �V .1/‰

.0/
i

�
ds D 0; i D 1; : : : ;m; (3-34)

holds true. Then there exist the unique solutions u˙ 2 C1.!˙/ to the equations

.��x0 ��/u˙ D f˙; x 2 !˙; (3-35)

these solutions satisfy differentiable asymptotics

u˙.x
0/D f ˙

�2.P / ln � CU .0/.P /˙V .0/.P /C 4f ˙
�3=2.P /�

1=2
C �.V .1/.P /˙U .1/.P //

C �.1� ln �/
�
f ˙
�1.P /�K.P /f ˙

�2.P /
�
CO.�3=2/; � ! 0; (3-36)

uniformly in P 2 @!˙, where U .0/, U .1/ 2 C1.@!˙/ are some functions, and the condition

.U0; ‰
.0/
i /L2.@!/C .U1; ‰

.1/
i /L2.@!/ D 0; i D 1; : : : ;m; (3-37)

holds true.

Proof. Let �.�/ be the cut-off function introduced in the proof of Lemma 4.4. We introduce the functions

yu˙.x
0/ WD

�
f ˙
�2.P / ln � ˙V .0/.P /C 4f ˙

�3=2.P /�
1=2
C �.1� ln �/

�
f ˙
�1.P /�K.P /f ˙

�2.P /
�

C �V .1/.P /� 4
3
�3=2

�
f ˙
�1=2.P /� 2K.P /f ˙

�3=2.P /
��
�.�/:

Employing Lemma 3.3, one can check that

.��x0 ��/yu˙.x
0/D �.�/

�1X
jD�4

f ˙j=2.P /�
j
C yf˙.x

0/; (3-38)

where yf˙ 2 C1.!˙/\L2.!˙/.
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We construct the solutions to (3-35) as

u˙ D yu˙C zu˙:

Substituting this identity and (3-38) into (3-35), we obtain the equations for zu˙:

.��x0 ��/zu˙ D zf˙; zf˙ WD f˙��

�1X
jD�4

f ˙j=2�
j
� yf˙; (3-39)

and by (3-33) we have zf˙ 2L2.!˙/. Hence, we can rewrite these equations as

.H0��/zuD zf ; zu WD .zuC; zu�/; zf WD . zfC; zf�/: (3-40)

Since � is a discrete eigenvalue of H0, the solvability condition of the last equation is

. zf ; i/L2.!/ D 0; k D 1; : : : ;m;

which can be rewritten as

. zfC;  
.i/
C /L2.!/C .

zfC;  
.i/
C /L2.!/ D 0; k D 1; : : : ;m;

or, equivalently,

lim
ı!0

�
. zfC;  

.i/
C /L2.!ı/

C . zf�;  
.i/
� /L2.!ı/

�
D 0; k D 1; : : : ;m: (3-41)

Integrating by parts and taking into account (3-38), (3-39), we get

. zf˙; 
.i/
˙
/L2.!ı/

D
�
f˙C.�x0C�/zu˙; 

.i/
˙

�
L2.!ı/

D.f˙; 
.i/
˙
/L2.!ı/

�

Z
@!ı

�
 
.i/
˙

@zu˙

@�
�zu˙

@ 
.i/
˙

@�

�
ds:

Here we have used that the normal derivative on @!ı is that with respect to � up to the sign. We parametrize
the points of @!ı by those on @! via the relation x0D r.s/C ı�.s/. In view of (3-4) and (3-29) we haveZ

@!ı
� ds D

Z
@!

�

n�1Y
jD1

.1� �Kj / ds: (3-42)

Taking this formula into account, we continue the calculations:

. zf˙;  
.i/
˙
/L2.!ı/

D .f˙;  
.i/
˙
/L2.!ı/

�

Z
@!

�
 
.i/
˙

@zu˙

@�
� zu˙

@ 
.i/
˙

@�

�ˇ̌̌̌
x0Dr.s/Cı�.s/

n�1Y
jD1

.1� �Kj / ds

D .f˙;  
.i/
˙
/L2.!ı/

� ı�1

Z
@!

f ˙
�2‰

.0/

k
ds� 2ı�1=2

Z
@!

f ˙
�3=2‰

.0/

k
ds

� ln ı
Z
@!

�
.Kf ˙

�2�f
˙
�1/‰

.0/
i �f

˙
�2‰

.1/
i

�
ds

C

Z
@!

f ˙
�2

�
‰
.0/
i K�‰

.1/
i

�
dsC

Z
@!

�
V .0/‰

.1/
i �V .1/‰

.0/
i

�
dsCO.ı1=2/:
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We substitute the last identities into (3-41) and arrive at (3-34). Thus, the condition (3-34) implies the
existence of solutions to (3-35).

The functions zu˙ 2W 2
2
.!˙/ satisfy (2-5) in the sense of traces. Define

U .0/
WD zu˙j@! ; U .1/

WD
@zu˙

@�

ˇ̌̌̌
@!

; U .0/;U .1/
2L2.@!/:

The solution to (3-40) is defined up to a linear combination of the eigenfunctions. In view of the
belongings U .0/, U .1/ 2L2.@!/ we can choose the mentioned linear combination of the eigenfunctions
so that the condition (3-37) is satisfied. Then the solution to (3-40) is unique and the same is obviously
true for (3-35). To prove the asymptotics (3-36) it is sufficient to study the smoothness of zu˙ at @!.

By standard smoothness improving theorems we conclude that zu˙ 2 C1.!/. Moreover, given
any N > 0, it is easy to construct the function yu.N /

˙
similar to yu˙ such that

yu
.N /
˙
.x0/D yu˙.x

0/CO.�2/; � ! 0; .��x0 ��/yu
.N /
˙
.x0/D �.�/

NX
jD�4

f ˙j=2.P /�
j
C yf

.N /
˙

.x0/;

where yf .N /
˙
2 C1.!˙/\C N1.!˙/, and N1 DN1.N /!C1, N !C1. Then, proceeding as above,

we can construct the solutions to (3-35) as u˙ D zu˙ C yu˙, where zu.N / WD .zu
.N /
C ; zu.N /� / solves the

equation

.H0��/zu
.N /
D zf .N /; zf .N / WD . zf

.N /
C ; zf .N /� /; zf

.N /
˙

.x0/ WDf˙.x
0/��.�/

NX
jD�4

f ˙j=2.P /�
j
� yf

.N /
˙

:

It is clear that zf .N /
˙

belongs to C N2.!˙/, where N2 D N2.N /!C1 as N !C1. Hence, by the
smoothness improving theorems, zu.N /

˙
2 C N3.!˙/, N3 D N3.N /!C1, N !C1. Choosing N

large enough, we arrive at the asymptotics (3-36). �

Lemma 3.5. For all u, v 2 C1.!/ in a small vicinity of @! the identities

divx0 Q˙rx0uD
1

det M
div.�;s/.det M/ yMr.�;s/h˙.r.�;s/h˙/

� yMr.�;s/u; (3-43)

.rx0u;rx0v/Rd D
@u

@�

@v

@�
Cru � .E� �BG�1

@!/
�2
rv (3-44)

hold true.

Proof. Let u, v 2 C1.!/ be two arbitrary functions with supports in a small vicinity fx0 W 06 � < �0g,
where �0 is a small fixed number. We choose �0 so that in this vicinity the coordinates .�; s/ are
well-defined.
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Taking (3-1) and (3-4) into account, we pass to the variables .�; s/ and integrate by parts to obtainZ
!

v divx0 Q˙rx0u dx0D�

Z
!

.rx0v;rx0h˙.rx0h˙/
�
rx0u/Rn dx0

D�

Z
Œ0;�0/�@!

�
M�1
r.�;s/v;M

�1
r.�;s/h˙.r.�;s/h˙/

� yMr.�;s/u
�

Rn.det M/ d� ds

D

Z
Œ0;�0/�@!

v div.�;s/.det M/ yMr.�;s/h˙.r.�;s/h˙/
� yMr.�;s/u d� ds

D

Z
!

v.det�1M/ div.�;s/.det M/ yMr.�;s/h˙.r.�;s/h˙/
� yMr.�;s/u dx0;

which proves (3-43).
The identity (3-44) follows from (3-4) and (3-30):

.rx0u;rx0v/Rn D .M�1
rx0u;M�1

rx0v/Rn D .rx0u; yMrx0v/Rn

D
@u

@�

@v

@�
C
�
rsu; .E��G�1

@!B/�2G�1
@!rsu

�
Rn D

@u

@�

@v

@�
Cru �.E��BG�1

@!/
�2
rv: �

4. Uniform resolvent convergence

In this section we prove Theorem 2.1. We begin with two auxiliary lemmas.

Lemma 4.1. The identity D.H0/ D W 2
2
.!/ holds true and for each u 2 D.H0/ the operator H0 acts

as H0.u/D .��x0uC;��x0u�/. For each z 2 C nR the estimate

k.H0� z/�1
kL2.!/!W 2

2
.!/ 6

C

jIm.z/j
(4-1)

holds for some constant C , where Im.z/ denotes the imaginary part of z.

Proof. The first part follows from the definitions and the considerations above for the space W 2
2
.!/.

The second part of the statement follows from the fact that the operator H0 is self-adjoint with compact
resolvent. �

The description of the spectrum of H0 as being made up of the union of the Dirichlet and Neumann
spectra is given in the following lemma, together with some properties which will be useful in the sequel.

Lemma 4.2. The spectrum of H0 coincides with the union of spectra of ��.D/! and ��.N /! counting
multiplicities. Namely, if � is an m.D/-multiple eigenvalue of ��.D/! with the associated eigenfunc-
tions  .D/i , i D 1; : : : ;m.D/, and is an m.N /-multiple eigenvalue of ��.N /! with the associated eigenfunc-
tions  .N /i , i D 1; : : : ;m.N /, then � is an .m.D/Cm.N //-multiple eigenvalue of H0 with the associated
eigenfunctions  i D . 

.D/
i ;� 

.D/
i / and  i D . 

.N /
i ;  

.N /
i /. For any eigenfunction  D . C;  �/

of H0 we have  ˙ 2 C1.!/ and the asymptotics

 ˙.x
0/D‰.0/.P /˙ �‰.1/.P /CO.�2/; P 2 @!;
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where

‰.0/ D  Cj@! D  �j@! 2 C1.@!/; ‰.1/ D
@ C

@�

ˇ̌̌̌
@!

D�
@ �

@�

ˇ̌̌̌
@!

2 C1.@!/

and
x0 D P C ��.P / for small positive �:

Proof. Clearly if � is an eigenvalue of ��.D/! with eigenfunction u, then � is an eigenvalue of H0 with
eigenfunction .u;�u/. Similarly, an eigenvalue of ��.N /! with eigenfunction v will also be an eigenvalue
of H0 with eigenfunction .v; v/.

Assume now that .u; v/ is an eigenfunction of H0 and consider the functionsw1Du�v andw2DuCv.
Then, provided they do not vanish identically, w1 and w2 will be eigenfunctions of ��.D/! and ��.N /! ,
respectively. In case w1 vanishes identically, then uD v and u will be an eigenfunction of ��.N /! , while
if w2 vanishes uD�v and this will be an eigenfunction of ��.D/! .

The remaining part of the lemma follows from standard arguments. �

By L2.!;J" dx0/ we indicate the subspace of L2.!/ consisting of the functions u with the finite norm

kuk2L2.!;J"dx0/DkuCk
2

L2.!C;J
C
" dx0/

Cku�k
2
L2.!�;J

�
" dx0/; ku˙k

2

L2.!;J
˙
" dx0/

D

Z
!˙

ju˙.x
0/j2J˙" .x

0/dx0:

In the same way we introduce the space W 1
2
.!;J" dx0/ as consisting of u 2W 1

2
.!/ with the finite norm

kuk2
W 1

2
.!;J" dx0/

D krx0uk
2
L2.!;J" dx0/Ckuk

2
L2.!;J" dx0/;

where rx0uD .rx0uC;rx0u�/.

Lemma 4.3. The spaces L2.S"/ and L2.!;J" dx0/ are isomorphic and the isomorphism is the operator
I" W L2.!;J" dx0/! L2.S"/. If u 2 W 1

2
.!;J" dx0/, then I"u 2 W 1

2
.S"/, and if u 2 W 1

2
.S"/, then

I�1
" u 2W 1

2
.!;J" dx0/. The inequality

kJ
� 1

2
" rx0ukL2.!/ 6 krI"ukL2.S"/ 6 krx0ukL2.!;J" dx0/ (4-2)

holds true, where J
� 1

2
" rx0u WD ..J

C
" /
� 1

2rx0uC; .J
�
" /
� 1

2rx0u�/, uD .uC;u�/.

Proof. The fact that I" is a bijection between the two spaces follows directly from its definition.
Regarding the inequalities we have

kJ
� 1

2
" rx0uk

2
L2.!/

D

Z
!C

.JC" /
�1
jrx0uCj

2 dx0C

Z
!�

.J�" /
�1
jrx0u�j

2 dx0

D

Z
!C

JC" .J
C
" /
�2
jrx0uCj

2 dx0C

Z
!�

J�" .J
�
" /
�2
jrx0u�j

2 dx0

�

Z
!C

JC" .rx0uC/
�G�1
C rx0uC dx0C

Z
!�

J�" .rx0u�/
�G�1
� rx0u� dx0

DkrI"ukL2.S"/�

Z
!C

JC" jrx0uCj
2 dx0C

Z
!�

J�" jrx0u�j
2 dx0Dkrx0ukL2.!;J" dx0/;
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where we have used the knowledge of the eigenvalues of G˙ and the fact that 1� J˙" . �

Define !ı WD ! \ fx0 W 0 < � < ıg. We recall that the set !ı was introduced in (2-8), and in what
follows !ı is !ı considered as a two-sided domain.

Lemma 4.4. If u 2 W 1
2
.!/, or, respectively, u 2 W 2

2
.!/, then u 2 L2.!;J" dx0/, or, respectively,

u 2W 1
2
.!;J" dx0/. The inequalities

kukL2.!;J" dx0/ 6 CkukW 1
2
.!/; (4-3)

kukL2.!"4=3 ;J" dx0/ 6 C "2=3
kukW 1

2
.!/; (4-4)

kukL2.!"4=3 / 6 C "2=3
kI"ukW 1

2
.S"/

; (4-5)

kukW 1
2
.!;J" dx0/ 6 CkukW 2

2
.!/;

kukW 1
2
.!
"4=3 ;J" dx0/ 6 C "2=3

kukW 2
2
.!/ (4-6)

hold true, where C denotes positive constants independent of " and u.

Proof. Let u 2 W 1
2
.!/; then u˙ 2 W 1

2
.!/, and for almost all P 2 @! the function u˙.P C � �.P //

belongs to W 1
2
.0; �0/. Let �D �.�/ be an infinitely differentiable cut-off function vanishing as � > �0

and being one as � 6 �0=2. Then u˙ D u˙� for � 2 Œ0; �0=2�, and

u˙ D

Z �

�0

@.u˙�/

@�
d�; ju˙.P C ��.P //j

2 6 Cku˙.P C � �.P //k
2

W 1
2
.0;�0/

; � 2 Œ0; �0=2�;

where C is a positive constant independent of P and u˙. We multiply the last inequality by J˙" , integrate
over @!, and take into account (3-5) to obtainZ

@!

ˇ̌
u˙.P C ��.P //

ˇ̌2
jdet�1 Mj d! 6 Cku˙k

2

W 1
2
.!�0 /

;

where C is a positive constant independent of P 2 @! and u˙. The above estimate, inequality (3-6), the
definition (3-2) of J˙" and the smoothness of h˙ implyZ

!

ju˙j
2J˙" dx0D

Z
!ı

ju˙j
2J˙" dx0C

Z
!ı
ju˙j

2J˙" dx0; ı2.0; �0=2�;Z
!ı
ju˙j

2J˙" dx06C.ı/ku˙k
2
L2.!ı/

;Z
!ı

ju˙j
2J˙" dx0D

Z ı

0

d�

Z
@!

ju˙j
2J˙" jdet�1 Mj d!6Cku˙k

2

W 1
2
.!/

Z ı

0

q
1CC4"2��1 d�; (4-7)

where the constants C and C.ı/ are independent of " and u˙, and C is independent of ı. Taking ıD �0=2,
we see that u 2L2.!;J" dx0/ and thus the estimate (4-3) holds. If we now take ıD "4=3 in (4-7) instead
and use the identityZ ı

0

q
1C "2C4��1 d� D VJ˙" .ı/ WD

q
ı2CC4"2ıC

C4

2
"2 ln

C4"
2C 2ıC 2

p
ı2CC4"2ı

C4"2
;
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we obtain (4-4).
Let us prove (4-5). We integrate by parts as follows:Z
!
"4=3

ju˙j
2J˙" dx0 6 C

Z
@!

d!

Z "4=3

0

ju˙j
2J˙" d�;

Z "4=3

0

ju˙j
2J˙" d� D ju˙j

2 VJ˙"
ˇ̌�D"4=3

�D0
� 2

Z "4=3

0

VJ˙" .�/Re u˙
@u˙

@�
d�

6 VJ˙" ."4=3/

�
ju˙j

2
ˇ̌
�D"4=3 C

Z "4=3

0

ju˙j
2J˙" d� C

Z "4=3

0

1

J˙"

ˇ̌̌̌
@u˙

@�

ˇ̌̌̌2
d�

�
;Z

!
"4=3

ju˙j
2J˙" dx0 6 C "4=3

�Z
@!

ju˙j
2
ˇ̌
�D"4=3 d!C

Z
!
"4=3

�
1

J˙"
jrx0u˙j

2
CJ˙" ju˙j

2

�
dx0

�
:

By the embedding of W 1
2
.!"

4=3

/ into L2.fx W � D "
4=3g/ we have the estimateZ

@!

ju˙j
2
ˇ̌
�D"4=3 d! 6 Cku˙k

2

W 1
2
.!"

4=3
/
6 CkI"uk

2

W 1
2
.S"/

;

where the constants C are independent of " and u. These two last estimates together with (4-2) yield (4-5).
To prove the second part of the lemma related to the case u 2 W 2

2
.!/ it is sufficient to note that

since u˙, rx0u˙ 2W 1
2
.!/, by the first part of the lemma these functions belong to L2.!;J

˙
" dx0/, and

the estimates (4-3), (4-4) are valid for u replaced by rx0u. This completes the proof. �

Proof of Theorem 2.1. Let f 2L2.S"/; thenf WDI"f 2L2.!;J" dx0/�L2.!/. Let u."/ WD .H"�z/�1f ,
u.0/ WD .H0� z/�1I�1

" f . By the definitions of H" and H0 we have

h"Œu
."/; '�� z.u."/; '/L2.S"/ D .f; '/L2.S"/ for each ' 2W 1

2 .S"/; (4-8)

h0Œu
.0/;'�� z.u.0/;'/L2.!/ D .f ;'/L2.!/ for each ' 2W 1

2 .!/: (4-9)

Since u.0/ 2W 2
2
.!/, by Lemmas 3.1 and 4.4, u.0/ WD I"u

.0/ 2W 1
2
.S"/. Hence, v."/ WD u."/ � u.0/ 2

W 1
2
.S"/ and this can be used as a test function in (4-8):

h"Œu
."/; v."/�� z.u."/; v."//L2.S"/ D .f; v

."//L2.S"/:

The identity u."/ D v."/Cu.0/ yields

krv."/k2L2.S"/
� zkv."/k2L2.S"/

D .f; v"/L2.S"/� .ru.0/;rv."//L2.S"/C z.u.0/; v."//L2.S"/: (4-10)

We parametrize S" as x0 D x0, xnC1 D˙"h˙.x
0/, and use the definition of the scalar product of ru.0/

and rv."/ in L2.S"/. It implies

.f; v."//L2.S"/� .ru.0/;rv."//L2.S"/C z.u.0/; v."//L2.S"/

D .fC;J
C
" v

."/
C /L2.!C/C .f�;J

�
" v

."/
� /L2.!�/�

�
.JC" G�1

C rx0u
.0/
C ;rx0v

."/
C /L2.!C/

C .J�" G�1
� rx0u

.0/
� ;rx0v

."/
� /L2.!�/

�
C z.u

.0/
C ;J

C
" v

."/
C /L2.!C/C z.u.0/� ;J

�
" v

."/
� /L2.!�/;
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where v."/ D .v."/C ; v
."/
� /D I�1

" v."/ and G
ij
˙

are the entries of the inverse matrix G�1
˙

. We substitute the
last formula into (4-10) and then sum it with (4-9), where we take 'D v."/ 2W 1

2
.!;J" dx0/�W 1

2
.!/:

krv."/k2L2.S"/
� zkv."/k2L2.S"/

DRCCR�; (4-11)

R˙ WD .f˙; .J
˙
" � 1/v

."/
˙
/L2.!/� .J

˙
" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!˙/

� .rx0u
.0/
˙
;rx0v

."/
˙
/L2.!/C z.u

.0/
˙
; .J˙" � 1/v

."/
˙
/L2.!/:

Let us estimate R˙ which we shall write as

R˙ DR˙1 CR˙2 ; (4-12)

where

R˙1 WD .f˙; .J
˙
" � 1/v

."/
˙
/L2.!ı/

� .J˙" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

� .rx0u
.0/
˙
;rx0v

."/
˙
/L2.!ı/

C z.u
.0/
˙
; .J˙" � 1/v."//L2.!ı/

;

R˙2 WD .f˙; .J
˙
" � 1/v

."/
˙
/L2.!ı/

� .J˙" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

� .rx0u
.0/
˙
;rx0v

."/
˙
/L2.!ı/

C z.u
.0/
˙
; .J˙" � 1/v

."/
˙
/L2.!ı/

;

and ı WD "4=3. As x0 2 !ı, by (3-6) we have

"2
jrx0h˙j

2 6 C "2=3; kG�1
˙ �Ek6 C "2=3; jJ˙" � 1j6 C "2=3; j.J˙" /

�1
� 1j6 C "2=3:

Hereinafter by C we indicate nonessential positive constants independent of ", u."/, u.0/, and f . Hence,
by Lemmas 3.1, 4.4 and Schwarz’s inequality,ˇ̌
.f˙;.J

˙
" �1/v

."/
˙
/L2.!ı/

ˇ̌
6C "2=3

kf˙kL2.!;J
˙
" dx0/

kv
."/
˙
k

L2.!;J
˙
" dx0/

6C "2=3
kf kL2.S"/kv

."/
kL2.S"/;ˇ̌

z.u
.0/
˙
; .J˙" � 1/v

."/
˙
/L2.!ı/

ˇ̌
6 C "2=3

ku.0/kL2.!/kv
."/
kL2.S"/;ˇ̌

.rx0u
.0/
˙
;rx0v

."/
˙
/L2.!ı/� .J

˙
" G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 C "2=3

ku.0/kW 1
2
.!/krx0v

."/
˙
kL2.!ı/ 6 C "2=3

ku.0/kW 1
2
.!/kJ

� 1
2

" rx0v
."/
kL2.!ı/

6 C "2=3
ku.0/kW 1

2
.!/kJ

�1
" rx0v

."/
kL2.!ı;J" dx0/ 6 C "2=3

ku.0/kW 1
2
.!/krv

."/
kL2.S"/;

and therefore
jRC

1
CR�1 j6 C "2=3

ku.0/kW 1
2
.!/kv

."/
kW 1

2
.S"/

: (4-13)

To estimate R˙
2

we employ (4-3), (4-4), (4-5). We begin with the first term in R˙
2

applying again
Schwarz’s inequality and (4-5) to obtain

j.f˙; .J
˙
" � 1/v

."/
˙
/L2.!ı/

j6 kf˙kL2.!ı;J
˙
" dx0/

k
�
1� .J˙" /

�1
�
v
."/
˙
k

L2.!ı;J
˙
" dx0/

6 kf kL2.S"/kv
."/
˙
k

L2.!ı;J
˙
" dx0/

6 C "2=3
kf kL2.S"/kv

."/
kW 1

2
.S"/

: (4-14)
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Employing (4-2), (4-3) and (4-5) in the same way we get two more estimates:ˇ̌
z
�
u
.0/
˙
; .J˙" � 1/v."//

�
L2.!ı/

ˇ̌
6 Cku

.0/
˙
k

L2.!ı;J
˙
" dx0/

kv
."/
˙
k

L2.!ı;J
˙
" dx0/

6 C "2=3
ku.0/kW 1

2
.!/kv

."/
kW 1

2
.S"/

;ˇ̌
.rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 k.J˙" /

1
2rx0u

.0/
˙
kL2.!ı/

k.J˙" /
� 1

2rx0v
."/
˙
kL2.!ı/

6 C "2=3
ku.0/kW 2

2
.!/krv

."/
kL2.S"/: (4-15)

Since
.G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/Rn DrI"u

.0/
� rv."/;

by Schwarz’s inequality we haveˇ̌
.G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 krv."/kL2.S"/.G

�1
˙ rx0u

.0/
˙
;rx0u

.0/
˙
/

1
2

L2.!ı/

6 krv."/kL2.S"/k.J
˙
" /

1
2rx0u

.0/
˙
kL2.!ı/

:

Here we have used the inequality
nX

i;jD1

G
ij
˙
�i�j 6

nX
iD1

j�i j
2;

which follows from Lemma 3.1. Using (4-6) we getˇ̌
.G�1
˙ rx0u

.0/
˙
;rx0v

."/
˙
/L2.!ı/

ˇ̌
6 krv."/kL2.S"/ku

.0/
kW 1

2
.!ı/ 6 C "2=3

krv."/kL2.S"/ku
.0/
kW 2

2
.!/;

which with (4-14) and (4-15) yields

jRC
2
CR�2 j6 C "2=3

ku.0/kW 2
2
.!/kv

."/
kW 1

2
.S"/

:

Together with (4-1), (4-11), (4-12), (4-13) it follows thatˇ̌
krv."/k2L2.S"/

� zkv."/k2L2.S"/

ˇ̌
6 C "2=3

ku.0/kW 2
2
.!/kv

."/
kW 1

2
.S"/
6 C "2=3

kf kL2.!/kv
."/
kW 1

2
.S"/

:

Since ˇ̌
krv."/k2L2.S"/

� zkv."/k2L2.S"/

ˇ̌
> Ckv."/k2

W 1
2
.S"/

;

we arrive at (2-6), completing the proof. �

Remark 4.5. The proof above uses the estimates from Lemma 4.4 which include a measure of the
boundary behavior by means of the weight function J". A different approach which may also be used to
prove convergence of the resolvent in similar situations is based on inequalities of Hardy type instead,
possibly allowing for a better control of the behavior near the boundary — see [Krejčiřík and Zuazua
2010] for an illustration of this principle.

In the proof of Theorem 2.4 in the next section we shall use the following auxiliary lemma which is
convenient to prove in this section.
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Lemma 4.6. Let � be a m-multiple eigenvalue of H0, and �i."/, i D 1; : : : ;m, be the eigenvalues of H"

taken counting multiplicity and converging to �, and .i/" be the associated eigenfunctions orthonormalized
in L2.S"/. For z close to � the representation

.H"� z/�1
D

mX
iD1

 
.i/
"

�i."/� z
. � ;  .i/" /L2.S"/CR".z/

holds true, where the operator R".z/ W L2.S"/!W 1
2
.S"/ is bounded uniformly in " and z. The range

of R".z/ is orthogonal to all  .i/" , i D 1; : : : ;m.

Proof. We choose a fixed ı so that the disk Bı.�/ WD fz W jz � �j < ıg contains no eigenvalues of H0

except � and

distf@Bı.�/; �d .H0/g> ı:

Then, by Theorem 2.3, for sufficiently small " this disk contains the eigenvalues �i."/, i D 1; : : : ;m, and
no other eigenvalues of H", and

dist
˚
Bı.�/; �d .H"/ n f�i."/; i D 1; : : : ;mg

	
> ı

2
: (4-16)

Denote by V" the orthogonal complement to  .i/" , i D 1; : : : ;m, in L2.S"/. By [Kato 1966, Chapter V,
Section 3.5, Equations (3.21)] the representation (3-29) holds true, where R".z/ is the part of the
resolvent .H"� z/�1 acting in V" and

kR".z/kV"!V" 6
1

dist
˚
Bı.�/; �d .H"/ n f�i."/; i D 1; : : : ;mg

	 6 2

ı
(4-17)

for z 2Bı.�/, where we have used (4-16). Hence, the range of R".z/ is orthogonal to  .i/" , i D 1; : : : ;m.
It is easy to check that the function u" WDR".z/f , f 2L2.S"/, solves the equation

.H"� z/u" D f"; f" WD f �

mX
iD1

 .i/" .f;  .i/" /L2.S"/; kf"kL2.S"/ 6 kf kL2.S"/:

Hence, by the definition of H" and (4-17),

kru"k
2
L2.S"/

Dzku"k
2
L2.S"/

C.f";u"/L2.S"/6 jzjku"k
2
L2.S"/

Ckf"kL2.S"/ku"kL2.S"/6C.ı/kf k2L2.S"/
;

where the constant C.ı/ is independent of " and f . The last estimate and (4-17) complete the proof. �

5. Asymptotic expansions

In this section we give the proof of Theorem 2.4 which will be divided into two parts. We first build the
asymptotic expansions formally, where the core of the formal construction is the method of matching
asymptotic expansions [Il0in 1992]. The second part is devoted to the justification of the asymptotics, i.e.,
obtaining estimates for the error terms.
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The formal construction consists of determining the outer and inner expansions on the base of the
perturbed eigenvalue problem and the matching of these expansions. The outer expansion is used to
approximate the perturbed eigenfunctions outside a small neighborhood of @!. It is constructed in terms
of the variables x0 using the first parametrization of S" given in the previous sections. In a vicinity of @!
the perturbed eigenfunctions are approximated by the inner expansion which is based on the second
parametrization of S" and is constructed in terms of the variables .�; s/.

Outer expansion: First term. By Theorem 2.3 there exist exactly m eigenvalues of H" converging to �
counting multiplicities. We denote these eigenvalues by �k."/, k D 1; : : : ;m, while the symbols  .k/"

will denote the associated eigenfunctions. We construct the asymptotics for �k."/ as

�k."/D �C "
2 ln "�k

�
1

ln "

�
C � � � : (5-1)

Hereinafter terms like ln "A are understood as .ln "/A. In accordance with the method of matching
asymptotic expansions we form the asymptotics for  .k/" as the sum of outer and inner expansions. The
outer expansion is built as

 .k/"; ex D I". k C "
2 ln "�k C � � � /; (5-2)

where �k D .�
.k/
C ; �.k/� /, �.k/

˙
D �

.k/
˙
.x0; "/, and the eigenfunctions  k are chosen as described before

the statement of Theorem 2.4. We also recall that these functions depend on " in the case where � is a
multiple eigenvalue.

We substitute the identities (5-1), (5-2), and (3-3) into the eigenvalue equation

H" 
.k/
" D �k."/ 

.k/
" ; (5-3)

and take into account the eigenvalue equations for  i . It implies the equations for �k , namely,

.��x0 ��/�
.k/
˙
D

1

ln "
f
.k/

2;˙
C�k 

.k/
˙
; x0 2 !˙; f

.k/
2;˙
WDH

.2/
˙
 
.k/
˙
;

H
.2/
˙
WD � divx0 Q˙rx0 �

jrx0h˙j
2

2
�x0 C

1
2

divx0 jrx0h˙j
2
rx0 : (5-4)

The functions  .i/
˙

are infinitely differentiable in !˙, and thus

 
.k/
˙
.x0; "/D‰

.0/

k
.P; "/˙‰

.1/

k
.P; "/� C‰

.2;˙/

k
.P; "/�2

CO.�3/; P 2 @!; (5-5)

as � !C0, where, by the definition of the domain of H0,

‰
.0/

k
WD  

.k/
C

ˇ̌
@!
D  .k/�

ˇ̌
@!
; ‰

.1/

k
WD

@ 
.k/
C

@�

ˇ̌̌̌
@!

D�
@ .k/�
@�

ˇ̌̌̌
@!

; ‰
.2;˙/

k
WD

1

2

@2 
.k/
˙

@�2

ˇ̌̌̌
@!

;

‰
.j/

k
; ‰

.2;˙/

k
2 C1.@!/:

The functions‰.i/
k

depend on " only if � is a multiple eigenvalue, since the same is true for the functions k .
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In view of the identity (3-12) we rewrite (5-5) as

 
.k/
˙
.x0; "/D‰

.0/

k
.P; "/˙‰

.1/

k
.P; "/�2

C‰
.2;˙/

k
.P; "/�4

CO.�6/; �!C0:

 
.k/
˙
.x0; "/D‰

.0/

k
.P; "/˙ "2‰

.1/

k
.P; "/�2

C "4‰
.2;˙/

k
.P; "/�4

CO."6�6/; "�! 0: (5-6)

Inner expansion. In accordance with the method of matching asymptotic expansions the identities (5-2),
(5-6) yield that the inner expansion for the eigenfunctions  .k/" should read

 
.k/
"; in.�;P; "/D

4X
iD0

"iv
.k/
i .�;P; "/C � � � ; (5-7)

where the coefficients must satisfy the following asymptotics as �!˙1:

v
.k/
0
.�;P; "/D‰

.0/

k
.P; "/C o.1/; (5-8)

v
.k/
1
.�;P; "/D o.j�j/; (5-9)

v
.k/
2
.�;P; "/D˙‰

.1/

k
.P; "/�2

C o.j�j2/; (5-10)

v
.k/
3
.�;P; "/D o.j�j3/;

v
.k/
4
.�;P; "/D‰

.2;˙/

k
.P; "/�4

C o.j�j4/:

These asymptotics mean that the first term of the outer expansion is matched with the inner expansion.
We substitute (5-1), (5-7), (3-25), (3-21) into the eigenvalue equation (5-3) and equate the coefficients

of "�4. This implies the equation for v.k/
0

:

L�4v
.k/
0
��

1q
4�2C b2

1

@

@�

1q
4�2C b2

1

@v
.k/
0

@�
D 0 on R� @!:

The solution to the last equation satisfying (5-8) is obviously

v
.k/
0
.�;P; "/�‰

.0/

k
.P; "/: (5-11)

We then substitute this identity and (5-1), (5-7), (3-25), (3-26), (3-27), (3-25) into (5-3) and equate the
coefficients at "i , i D�3; : : : ; 0, leading us to the equations for v.k/i , i D 1; : : : ; 4:

L�4v
.k/
1
D 0 on R� @!; (5-12)

L�4v
.k/
2
D 0 on R� @!; (5-13)

L�4v
.k/
3
CL�3v

.k/
2
CL�2v

.k/
1
D 0 on R� @!; (5-14)

L�4v
.k/
4
CL�3v

.k/
3
CL�2v

.k/
2
CL�1v

.k/
1
CL0v

.k/
0
D �v

.k/
0

on R� @!; (5-15)

where we have used that

Liv
.k/
0
� 0; i D�3; : : : ;�1;
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due to (3-26), (3-27), (5-11). The only solution to (5-12) satisfying (5-9) is independent of �:

v
.k/
1
.�;P; "/� C

.k;0/
1

.P; "/; (5-16)

where C
.k;0/
1

is an unknown function to be determined.
Equation (5-13) can be solved, and the solution satisfying (5-10) is

v
.k/
2
.�;P; "/D‰

.1/

k
.P; "/X1.�; b1.P //CC

.k;0/
2

.P; "/; (5-17)

X1.�; b/ WD
1
2
�.4�2

C b2/
1
2 C

b2

4
ln
�
2�C .4�2

C b2/
1
2

�
�

b2

4
ln b; (5-18)

where C
.k;0/
2

is an unknown function to be determined.
In view of (5-16), (5-17), (3-26), (3-27) and (5-13), Equation (5-14) may be written as

ˇ�4

@

@�
ˇ�4

@v
.k/
3

@�
D�ˇ�4

@

@�
ˇ�3

@v
.k/
2

@�
on R� @!:

Employing the formulas (3-21), (5-17) and (5-18), we solve the last equation:

v
.k/
3
.�;P; "/D

‰
.k;1/
0

.P; "/b1.P /b2.P /

2ˇ�4.�;P /
CC

.k;1/
3

.P; "/X1.�/CC
.k;0/
3

.P; "/

D
1
2
‰
.1/

k
.P; "/b1.P /b2.P /.4�

2
C b2

1.P //
1
2 CC

.k;1/
3

.P; "/X1.�/CC
.k;0/
3

.P; "/; (5-19)

where C
.k;1/
3

and C
.k;0/
3

are unknown functions to be determined.
We substitute (5-16), (5-17), (5-18), (5-19), (3-26), (3-27), (3-28), (3-19) and (3-21) into (5-15) and

then solve it to obtain

v
.k/
4
D

1
16
‰
.k;1/
0

�

�
K.4�2

C b2
1/

3
2 C 12b1b3.4�

2
C b2

1/
1
2 C

8b2
2
.8�2C 3b2

1
/

.4�2C b2
1
/

1
2

�
C

1
2
C
.k;1/
3

b1b2.4�
2
C b2

1/
1
2 �

1
2
X 2

1 .�@! C�/‰
.0/

k
C

1
2
X2b1rb1 � r‰

.0/

k
CC

.k;1/
4

X1CC
.k;0/
4

;

where X1 DX1.�; b1.P //,

X2DX2.�; b/ WD�
2
�b2X3

�
2�C

p
4�2Cb2

b

�
; X3.z/ WD

1
8

ln2 zC
1

16

�
z2
�

1

z2

�
ln z�

1

32

�
z2
C

1

z2

�
;

and C
.k;0/
4

D C
.k;0/
4

.P; "/ and C
.k;1/
4

D C
.k;1/
4

.P; "/ are unknown functions to be determined.

To determine the coefficient �.k/ in the outer expansion and the functions C
k;j
i in the inner one, we

should match the constructed functions v.k/i with the outer expansion. In order to do it, we must find the
asymptotics for the functions v.k/i as �!˙1. We observe that the functions X1, X2 2C1.R�.0;C1//

satisfy the identities

X1.�; b/D˙�
2
˙

b2

8
.2 ln j�jC 1C 4 ln 2� 2 ln b/CO.��2/; �!˙1;

X2.�; b/D �
2
�

3
2
� 2 ln 2C ln b� ln j�j

�
CO.ln2

j�j/; �!˙1;
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uniformly in b > b0 > 0, with b0 any fixed constant. Taking these asymptotics into account, we write the
asymptotics for v.k/i as �!˙1 and then pass to the variables .�;P /:

4X
iD0

"iv
.k/
i .�;P;"/D‰

.0/

k
.P;"/˙‰

.1/

k
.P;"/�C1

2

�
˙‰

.1/

k
.P;"/K.P /��@!‰

.0/

k
.P;"/��‰

.0/

k
.P;"/

�
�2

C".˙C
.k;1/
3

.P;"/�CC
.k;0/
1

/C"2
�
ln"W .k/

2;1;˙
.x0;"/CW

.k/
2;0;˙

.x0;"/
�
CO."3

C"4��1/;

where

W
.k/

2;1;˙
WD

1

4
b2

1

�
�‰

.1/

k
C�

�
�@!C

2

b1

rb1�rC�

�
‰
.0/

k

�
; (5-20)

W
.k/

2;0;˙
WD ˙

1
8
b2

1‰
.1/

k
ln �˙

b2
1

8
.1C4 ln 2�2 ln b1/‰

.1/

k
CC

.k;0/
2
C‰

.1/

k
b1b2�

1=2

�
1
8
b2

1� ln �
�
�@!C

2

b1

rb1�rC�

�
‰
.0/

k
C�
�
�

1
8
b2

1.1C4 ln 2�2 ln b1/.�@!C�/‰
.0/

k

�
1
2

�
2 ln 2�ln b1�

3
2

�
b1rb1�r‰

.0/

k
˙

1
16
.3Kb2

1C32b2
2C24b1b3/‰

.1/

k
˙C

.k;1/
4

�
: (5-21)

Taking into account the obtained formulas and (5-2), in accordance with the method of matching asymptotic
expansions we conclude that

C
.k;1/
3

.P; "/D C
.k;0/
1

.P; "/� 0; (5-22)

while the solutions to (5-4) should satisfy the asymptotics

�
.k/
˙
.x0; "/DW

.k/
2;1;˙

.x0; "/C
1

ln "
W
.k/

2;0;˙
.x0; "/C o.�/; � ! 0: (5-23)

Moreover, the identity
1
2

�
˙‰

.1/

k
K��@!‰

.0/

k
��‰

.0/

k

�
D‰

.2;˙/

k
(5-24)

should hold.

Outer expansion: Second term. We substitute (3-29) and (5-5) into the eigenvalue equation for  .k/
˙

and equate the coefficient of �0. This leads us to identity (5-24).
We proceed to the problem (5-4), (5-23). To study its solvability we shall make use of one more

auxiliary lemma. Recall that the matrices M and yM are defined in (3-4) and (3-30), respectively.

Lemma 5.1. The functions f .k/
2;˙

introduced in (5-4) satisfy the hypothesis of Lemma 3.4. In particular,
the asymptotics (3-33) holds true with

f ˙
�2D˙

b2
1

8ln"
‰
.1/

k
; f ˙

�3=2D
b1b2

4ln"
‰
.1/

k
; f ˙

�1D�
b2

1

4ln"

�
‰
.2;˙/

k
�

1

b1

rb1 �r‰
.0/

k
�K‰

.1/

k

�
: (5-25)

Proof. We begin with an obvious identity:

f
.k/

2;˙
D

1

ln "

�
� divx0 Q˙rx0 

.k/
˙
C

1
2

�
rx0 jrx0h˙j

2;rx0 
.k/
˙

�
Rn

�
; (5-26)
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which follows from the definition of f .k/
2;˙

in (5-4). To prove the lemma, we shall pass to the variables .�; s/
in the obtained identity. It follows from (3-7), (3-12) and the definition of S" that

h˙.x
0/D t; ˙t > 0:

Hence, by (3-8), (3-10),

h˙.x
0/D b.˙

p
�;P /D

1X
iD1

bi.P /.˙
p
�/i ; � !C0: (5-27)

Thus, employing (3-4) and (5-26), we conclude that the functions f .k/
2;0;˙

satisfy the hypothesis of
Lemma 3.4 and in particular the asymptotics (3-33) holds true. It remains to prove the identities (5-25).

It follows from (3-44) that

jrx0h˙j
2
D

ˇ̌̌̌
@h˙

@�

ˇ̌̌̌2
Crh˙ � .E� �BG�1

@!/
�2
rh˙: (5-28)

We substitute (5-27) into the obtained identity and arrive at the asymptotics for jrx0h˙j
2:

jrx0h˙j
2
D

1X
jD�2

h˙j=2.P /�
j=2; h˙

�1 D
1
4
b2

1 ; h˙
�1=2 D˙b1b2; � !C0: (5-29)

Employing these formulas and (3-4), (3-30), (5-5) and (3-44) we rewrite the second term in the right-hand
side of (5-26) as

1
2

�
rx0 jrx0h˙j

2;rx0 
.k/
˙

�
Rn D

1

2

@jrx0h˙j
2

@�

@ 
.k/
˙

@�
C

1
2
rjrx0h˙j

2
� .E� �BG�1

@!/
�2
r 

.k/
˙

D

1X
jD�4

f
˙;2

j=2
�j=2; (5-30)

where f ˙;2
j=2
2 C1.@!/ are some functions, and, in particular,

f
˙;2
�2
D�

1

8ln"
b2

1‰
.1/

k
; f

˙;2
�3=2
D�

1

4ln"
b1b2‰

.1/

k
; f

˙;2
�1
D�

b2
1

4ln"

�
‰
.2;˙/

k
C

1

b1

rb1 �r‰
.0/

k

�
: (5-31)

To obtain the same asymptotics for the first term in the right-hand side of (5-26), we employ first (3-43):

� divx0 Q˙rx0 
.k/
˙
D�

1

det M
div.�;s/.det M/r.�;s/h˙.r.�;s/h˙/

� yMr.�;s/ 
.k/
˙
: (5-32)

It follows from the equations (3-29), (3-30), (5-27) that

.r.�;s/h˙/
� yMr.�;s/ 

.k/
˙
D
@h˙

@�

@ 
.k/
˙

@�
Crh˙ � .E� �BG�1

@!/
�2
r 

.k/
˙
D

1X
jD�1

c˙j=2�
j=2; � !C0;

.det M/ yMr.�;s/h˙ D
1X

jD�1

c˙j=2�
j=2; � !C0;
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where c˙
j=2
D c˙

j=2
.P /2C1.@!/ are some functions, c˙

j=2
D c˙

j=2
.P /2C1.@!/ are some n-dimensional

vector-functions, and

c˙
�1=2 D

1
2
b1; c˙0 D˙b2‰

.1/

k
; c˙

�1=2 D˙
1
2
b1e1; c˙0 D b2e1;

and e1 D .1; 0; : : : ; 0/
�. We substitute the last identities into (5-32), which yields

� divx0 Q˙rx0 
.k/
˙
D

1X
jD�4

f
˙;1

j=2
�j=2; � !C0;

f
˙;1
�2
D˙

1

4 ln "
b2

1‰
.1/

k
; f

˙;1
�3=2

D
1

2 ln "
b1b2‰

.1/

k
; f

˙;1
�1
D˙

1

4 ln "
b2

1K‰
.1/

k
:

The last identity, (5-30), (5-31), (5-26) imply the formulas (5-25). �

Taking into account (5-5), we apply Lemma 5.1 to problem (5-4). It implies that the right-hand side
of (5-4) satisfies the hypothesis of Lemma 3.4 with the first four coefficients given by (5-25).

Given some functions V
.0/

k
, V

.1/

k
2C1.@!/, suppose the solvability condition (3-34) holds true. Then

by (3-36), (5-24), (5-25) there exists the unique solution to (5-4) with the asymptotics

�
.k/
˙
D

1

ln"

�
˙

1
8
b2

1‰
.1/

k
ln�Cb1b2‰

.1/

k
�1=2
C�.1�ln�/

�
�

1
4
b2

1‰
.2;˙/

k
C

1
4
b1rb1�r‰

.0/

k
˙

1
8
Kb2

1‰
.1/

k

��
CU

.0/

k
˙V

.0/

k
C�.V

.1/

k
˙U

.1/

k
/CO.�3=2/

D
1

ln"

�
˙

1
8
b2

1‰
.1/

k
ln�Cb1b2‰

.1/

k
�1=2
C�.1�ln�/

�
�@!C

2

b1

rb1�rC�

�
‰
.0/

k

�
CU

.0/

k
˙V

.0/

k
C�.V

.1/

k
˙U

.1/

k
/; �!C0; (5-33)

where U
.0/

k
, U

.1/

k
2 C1.@!/ are some functions satisfying (3-37). We compare the last asymptotics

with (5-20), (5-21), (5-23), take into consideration the identity (5-24) and arrive at the formulas
for V

.0/

k
, V

.1/

k
, C

.k;0
2

and C
.k;1/
4

:

V
.0/

k
D�

b2
1

4
‰
.1/

k
C

b2
1

8 ln "
.1C 4 ln 2� 2 ln b1/‰

.1/

k
; C

.k;0/
2

D ln "U
.0/

k
;

V
.1/

k
D

b2
1

4

�
�@! C

2

b1

rb1 � r C�

�
‰
.0/

k

�
b2

1

4 ln "

�
.2 ln 2� ln b1C 1/.�@! C�/‰

.0/

k
C

4 ln 2� 2 ln b1� 2

b1

rb1 � r‰
.0/

k

�
;

C
.k;1/
4

D ln "U
.1/

k
�

1
16
.3Kb2

1 C 32b2
2 C 24b1b3/‰

.1/

k
:

In what follows the functions V
.0/

k
, V

.1/

k
, C

.k;0
2

and C
.k;1/
4

are supposed to be chosen in accordance with
the above given formulas. Bearing these formulas, (5-24) and (5-25) in mind, we write the solvability
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conditions (3-34) for (5-4):

1

ln "
lim
ı!C0

�
.f
.k/

2;C
;  

.i/
C /L2.!ı/

C.f
.k/

2;�
;  .i/� /L2.!ı/

�ı�1=2

Z
@!

b1b2‰
.1/

k
‰
.0/
i ds

Cln ı
Z
@!

b2
1

4

�
‰
.1/
i ‰

.1/

k
C‰

.0/
i

�
�@!C

2

b1

rb1 �rC�

�
‰
.0/

k

�
ds

�
C

Z
@!

b2
1

2 ln "
.2 ln 2�ln b1C1/‰

.0/
i .�@!C�/‰

.0/

k
ds

C

Z
@!

b1

ln "
.2 ln 2�ln b1�1/‰

.0/
i rb1 �r‰

.0/

k
dsC

Z
@!

b2
1

2 ln "
.2 ln 2�ln b1/‰

.1/

k
‰
.1/
i ds

�

Z
@!

b2
1

2

�
‰
.1/

k
‰
.1/
i C‰

.0/
i

�
�@!C

2

b1

rb1 �rC�

�
‰
.0/

k

�
dsC�kıikD0; i; kD1; : : : ;m: (5-34)

Let us simplify the obtained identity. We first rewrite the formulas (5-4) of f .k/
2;˙

in a more convenient
form employing the eigenvalue equation for  .k/

˙
and the definition of the matrix Q˙:

f
.k/

2;˙
D�divx0ˆ

.k/
˙
rx0h˙C

�

2
jrx0h˙j

2 
.k/
˙
C

1
2

divx0 jrx0h˙j
2
rx0 

.k/
˙
; ˆ

.k/
˙
WD.rx0h˙;rx0 

.k/
˙
/Rn :

Employing this representation, we integrate by parts to obtain

.f
.k/

2;˙
; 
.i/
˙
/L2.!ı/

D

Z
@!ı

�
ˆ
.k/
˙

@h˙

@�
�

1

2
jrx0h˙j

2 @ 
.i/
˙

@�

�
 
.i/
˙

dsC

Z
!ı
ˆ
.i/
˙
ˆ
.k/
˙

dx0

C
�

2

Z
!ı
jrx0h˙j

2 
.i/
˙
 
.k/
˙

dx0�
1

2

Z
!d

jrx0h˙j
2.rx0 

.i/
˙
;rx0 

.k/
˙
/Rd dx0: (5-35)

Applying (3-44), we have

ˆ
.k/
˙
D
@h˙

@�

@ 
.k/
˙

@�
Crh˙ � .E� �BG�1

@!/
�2
r 

.k/
˙

in a vicinity of @!. Hence, by (5-5), (5-27) and (5-28),

ˆ
.k/
˙
D

b1

2
p
�
‰
.1/

k
CO.1/; � !C0; (5-36)

�
ˆ
.k/
˙

@h˙

@�
�

1

2
jrx0h˙j

2 @ 
.i/
˙

@�

�
 
.i/
˙

n�1Y
jD1

.1� �Kj / ds

D˙
1

8�
b2

1‰
.1/
i ‰

.1/

k
C

1

2
p
�

b1b2‰
.0/
i ‰

.1/

k
C

1
8
b2

1‰
.1/
i ‰

.1/

k
�

1
8
b2

1K‰
.0/
i ‰

.1/

k

C
1
4
.b2

1‰
.2;˙/

k
˙ 3b1b3‰

.1/

k
˙ 2b2

2‰
.1/

k
C 2b1rb1 �‰

.0/

k
/‰

.0/
i CO.

p
�/; � !C0:
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Substituting the last identity into (5-35) and using (3-42) and (5-24), we get

.f
.k/

2;C
;  

.i/
C /L2.!ı/

C .f
.k/

2;�
;  .i/� /L2.!ı/

D

Z
!ı

jrx0hCj
2

2

�
� 

.i/
C  

.k/
C � .rx0 

.i/
C ;rx0 

.k/
C /Rd

�
dx0

C

Z
!ı

jrx0h�j
2

2

�
� .i/�  

.k/
� � .rx0 

.i/
� ;rx0 

.k/
� /Rd

�
dx0

C

Z
!ı
.ˆ
.i/
C ˆ

.k/
C Cˆ

.i/
� ˆ

.k/
� / dx0C ı�1=2

Z
@!

b1b2‰
.0/
i ‰

.0/

k
ds

C

Z
@!

b2
1

4
‰
.1/
i ‰

.1/

k
ds�

Z
@!

b2
1

4
‰
.0/
i .�@! C�/‰

.0/

k
ds

C

Z
@!

b1‰
.0/
i rb1 � r‰

.0/

k
dsCO.ı1=2/; ı!C0:

We integrate by parts once again, this time over @!, and we haveZ
@!

b2
1‰

.0/
i

�
�@! C

2

b1

rb1 � r C�

�
‰
.0/

k
ds D

Z
@!

b2
1

�
�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k

�
ds: (5-37)

Substituting the last two identities into (5-34) yields

1

ln "
lim
ı!C0

�Z
!ı

jrx0hCj
2

2

�
� 

.i/
C  

.k/
C � .rx0 

.i/
C ;rx0 

.k/
C /Rd

�
dx0

C

Z
!ı

jrx0h�j
2

2

�
� .i/�  

.k/
� �.rx0 

.i/
� ;rx0 

.k/
� /Rd

�
dx0C

Z
!ı
.ˆ
.i/
C ˆ

.k/
C Cˆ

.i/
� ˆ

.k/
� /dx0

C ln ı
Z
@!

b2
1

4

�
‰
.1/
i ‰

.1/

k
C�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k

�
ds

�
C

Z
@!

b2
1

4 ln "
.1C 4 ln 2� 2 ln b1/

�
‰
.1/
i ‰

.1/

k
C‰

.0/
i .�@! C�/‰

.0/

k

�
ds

C

Z
@!

b1

ln "
.2 ln 2� ln b1/‰

.0/
i rb1 � r‰

.0/

k
ds

�

Z
@!

b2
1

2

�
‰
.1/

k
‰
.1/
i C‰

.0/
i

�
�@! C

2

b1

rb1 � r C�

�
‰
.0/

k

�
dsC�kıik D 0; (5-38)

as i; k D 1; : : : ;m. It follows from (5-36), (5-29) and (5-5) that

jrx0hCj
2
�
� 

.i/
C  

.k/
C � .rx0 

.i/
C ;rx0 

.k/
C /Rd

�
Cjrx0h�j

2
�
� .i/�  

.k/
� � .rx0 

.i/
� ;rx0 

.k/
� /Rd

�
D

b2
1

2�
.�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k
/CO.��1=2/; � !C0;

ˆ
.i/
˙
ˆ
.k/
˙
D

b2
1

4�
‰
.1/
i ‰

.1/

k
CO.��1=2/; � !C0:
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Hence, the limit in (5-38) is finite. To calculate the boundary integrals in (5-38) we integrate by parts:Z
@!

b2
1

4
.1C4 ln 2�2 ln b1/

�
‰
.1/
i ‰

.1/

k
C‰

.0/
i .�@!C�/‰

.0/

k

�
dsC

Z
@!

b1.2 ln 2�ln b1/‰
.0/
i rb1�r‰

.0/

k
ds

D

Z
@!

b2
1

4
.1C 4 ln 2� 2 ln b1/

�
‰
.1/
i ‰

.1/

k
C�‰

.0/
i ‰

.0/

k
�r‰

.0/
i � r‰

.0/

k

�
ds:

Due to this identity, (5-37), the definition of b1 in (3-10) and the definitions (2-9) and (2-10) of the
matrices ƒ.0/ and ƒ.1/, respectively, we can rewrite (5-38) in the final form

�kıik Dƒ
.0/

ik
C

1

ln "
ƒ
.1/

ik
:

Since the matrix on the right-hand side of the last identity is diagonal, we conclude that the solvabil-
ity condition for the problem (5-4), (5-23) is satisfied provided �k are the eigenvalues of the matrix
ƒ.0/C 1

ln "ƒ
.1/. It follows from [Kato 1966, Chapter II, Section 6.1, Theorem 6.1] that the eigenvalues

of this matrix are holomorphic in 1
ln " and converge to those of ƒ.0/ as "! 0.

In view of the choice of �i the problems (5-4), (5-33) are solvable. We observe that each of the
functions �.k/

˙
is defined up to a linear combination of the eigenfunctions  .i/

˙
. The exact values of the

coefficients of these linear combinations can be determined while constructing the next terms in the
asymptotic expansions for �k."/ and  .k/" . The formal constructing of the asymptotic expansions is
complete.

Justification of the asymptotics. In order to justify the obtained asymptotics, one has to construct ad-
ditional terms. This is a general and standard situation for singularly perturbed problems. In our case
one should construct the terms of order up to O."4/ in the outer expansion for the eigenfunctions and for
the eigenvalues, and the terms of order up to O."6/ in the inner expansion for the eigenfunctions. The
asymptotics with the additional terms read

�k."/D �C "
2 ln "�k

�
1

ln "

�
C "4 ln2 " �k."/C � � � ;

 .k/"; ex D I". k C "
2 ln "�k C "

4 ln2 "�k C � � � /;  
.k/
"; in D v

.k/
0
C

6X
iD2

"iv
.k/
i C � � � ; (5-39)

where �k D .�
.k/
C ; � .k/� /, � .k/

˙
D �

.k/
˙
.x0; "/, v.k/i D v

.k/
i .�;P; "/, and we used that v.k/

1
D 0 by (5-16),

(5-22). The equations for � .k/
˙

are

.��x0 ��/�
.k/
˙
D

1

ln "
H
.2/
˙
�
.k/
˙
C

1

ln2 "
H
.4/
˙
 
.k/
˙
C�k�

.k/
˙
C �k 

.k/
˙
; x0 2 !˙;

H
.4/
˙
WD

3
8
jrx0h˙j

4�x0 �
1
2
jrx0h˙j

2 divx0
�

1
2
jrx0h˙j

2E�Q˙
�
rx0

� divx0
�

1
8
jrx0h˙j

4EC 1
2

Q˙jrx0h˙j
2
CQ2

˙

�
rx0 :
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The functions � .k/
˙

should satisfy the asymptotics

�
.k/
˙
.x0; "/DW

.k/
4;2;˙

.x0; "/C
1

ln "
W
.k/

4;1;˙
.x0; "/C

1

ln2 "
W
.k/

4;0;˙
.x0; "/C o.1/; � !C0;

W
.k/

4;2;˙
D�

1
32

b3
1

�
b1.�@! C�/‰

.0/

k
C 2rb1 � r‰

.0/

k

�
;

W
.k/

4;1;˙
D

1
32

b3
1.ln � C 1C 4 ln 2� 2 ln b1/

�
b1.�@! C�/‰

.0/

k
C 2rb1 � r‰

.0/

k

�
;

W
.k/

4;0;˙
D˙

1

128

‰
.1/

k
b4

1

�
C

1

8

‰
.1/

k
b3

1
b2

p
�

�
1

128
b3

1

�
b1.�@! C�/‰

.0/

k
C 2rb1 � r‰

.0/

k

�
.ln � C 4 ln 2� 2 ln b1C 1/2

�
1

128
b3

1

�
b1.�@! C�/‰

.0/

k
� 2rb1 � r‰

.0/

k

�
˙

1
256
‰
.1/

k
.3Kb4

1 C 48b3
1b3C 128b2

1b2
2/:

The equations for the functions v.k/
5

, v.k/
6

are obtained in the same way as those for v.k/i , i D 0; : : : ; 4,
from

L�4v
.k/
5
C

�1X
iD�3

Liv
.k/
1�i

L1v
.k/
0
D 0 on R� @!;

L�4v
.k/
6
C

0X
iD�3

Liv
.k/
2�i
CL2v

.k/
0
D �v

.k/
2
C ln " �kv

.k/
0

on R� @!;

where the operators L1, L2 are the next terms in the expansion (3-25). It can be shown that the problem
for � .k/

˙
is solvable for some �k."/. The equations for v.k/

5
and v.k/

6
can be solved explicitly. The arbitrary

coefficients C
.k/
5;1

, C
.k/
5;0

, C
.k/
6;1

, C
.k/
6;0

appearing in v.k/
5

, v.k/
6

can be determined while matching the inner
and outer expansions.

We now introduce the partial sums

y�.k/" D �C "
2 ln "�k

�
1

ln "

�
C "4 ln2 " �k."/;

y .k/"; ex D I". k C "
2 ln "�k C "

4 ln2 "�k/; y 
.k/
"; in D v

.k/
0
C

6X
iD2

"iv
.k/
i

and define the final approximation for the eigenfunctions as

y .k/" .x/D y .k/"; ex.x/�

�
�

"˛

�
C y 

.k/
"; in.�;P /

�
1��

�
�

"˛

��
;

where ˛ 2 .0; 1/ is a fixed constant, and � is the cut-off function introduced in the proof of Lemma 4.4.

Lemma 5.2. The function y .k/" 2 C1.S"/ satisfies the convergence

k y .k/" �I" kkL2.S"/! 0; "!C0; (5-40)

and the equation
.H"�

y�.k/" / y .k/" D F .k/" ; (5-41)
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where for the right-hand side the uniform in " estimate

kF .k/" kL2.S"/ 6 C "5˛=2 (5-42)

holds true. The relations
.I" i ;I" j /L2.S"/! ıij ; "!C0; (5-43)

are valid.

The proof of this lemma is not very difficult and is based on lengthy and rather technical, but straight-
forward, calculations. Because of this, and in order not to overload the text with long technical formulas,
we shall skip these here.

It follows from Lemma 4.6 and (5-41) that

y .k/" D

mX
iD1

 
.i/
"

�i."/��k."/
.F .k/" ;  .i/" /L2.S"/CR".�k."//F

.k/
" ; (5-44)

and, by (5-42),
kR".�k."//F

.k/
" kW 1

2
.S"/
6 C "5˛=2; k D 1; : : : ;m; (5-45)

where the constant C is independent of ". We calculate the scalar products of the functions y .k/" in L2.S"/

taking into consideration (5-44) and the properties of the operator R" described in Lemma 4.6:

. y .k/" ; y .p/" /L2.S"/ D

mX
iD1



.k/
i ."/


.p/
i ."/C

�
R".�k."//F

.k/
" ;R".�

.p/
" /F .p/"

�
L2.S"/

;


 .k/" ."/ WD
1

�i."/�y�
.k/
"

.F .k/" ;  .i/" /L2.S"/:

The identities obtained and (5-45), (5-40), (5-43) yield
mX

iD1



.k/
i ."/


.p/
i ."/! ıkp; "!C0: (5-46)

In particular, as p D k it implies
j

.k/
i ."/j6 3

2
(5-47)

for sufficiently small ". We introduce the matrix R" WD .

.k/
i ."// and rewrite (5-46) as R"R�"!E, "!C0,

where � denotes matrix transposition. Thus, jdet R"j ! 1 as "!C0. Therefore, for each sufficiently
small " there exists a permutation .i1."/; i2."/; : : : ; im."// such thatˇ̌̌̌ mY

iD1



.k/

ik."/
."/

ˇ̌̌̌
> 1

2m!
: (5-48)

For a given " we rearrange the eigenvalues �i."/ so that ik."/D k, which by (5-47), (5-48) yields

j

.i/
i ."/j> 2m�2

3m�1m!
; i D 1; : : : ;m:
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In view of the definition of 
 .k/
k
."/, (5-42), and the normalization of  .i/" it follows that

j�i."/�y�i."/j6
3m�1m!

2m�2

ˇ̌
.F .i/" ;  .i/" /L2.S"/

ˇ̌
6 C "5˛=2:

Choosing ˛ > 4=5, we arrive at the asymptotics (2-11).
Define now

z .k/" D I". k C "
2 ln "�k/�

�
�

"˛

�
C

�
v
.k/
0
C

4X
iD2

"iv
.k/
i

��
1��

�
�

"˛

��
:

By direct calculations one can check that

k y .k/" �
z .k/" kW 1

2
.S"/
D O."

5˛
2 /:

This identity and (5-45) imply

mX
iD1



.k/
i ."/ .i/" D  

.k/
" CO."

5˛
2 /; k D 1; : : : ;m:

Since the right-hand sides of these identities are linearly independent, the functions
Pm

iD1 

.k/
i ."/ 

.i/
"

form a basis spanned over the eigenfunctions  .i/" , i D 1; : : : ;m. Hence, we arrive at:

Theorem 5.3. Let P" be the total projector associated with the eigenvalues �i."/, i D 1; : : : ;m, and zP"
be the projector on the space spanned over z .i/" , i D 1; : : : ;m. Then

P" D zP"CO."2C�/;

where � is any constant in .0; 1=2/.

References

[Abreu and Freitas 2002] M. Abreu and P. Freitas, “On the invariant spectrum of S1-invariant metrics on S2”, Proc. London
Math. Soc. .3/ 84:1 (2002), 213–230. MR 2003a:58041 Zbl 1015.58012

[Borisov and Cardone 2011] D. Borisov and G. Cardone, “Complete asymptotic expansions for eigenvalues of Dirichlet Laplacian
in thin three-dimensional rods”, ESAIM Control Optim. Calc. Var. 17:3 (2011), 887–908. MR 2012h:35034 Zbl 1223.35248

[Borisov and Freitas 2009] D. Borisov and P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigen-
functions of the Laplacian on thin planar domains”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26:2 (2009), 547–560.
MR 2010b:35059 Zbl 1168.35401

[Borisov and Freitas 2010] D. Borisov and P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian
on thin domains in Rd ”, J. Funct. Anal. 258:3 (2010), 893–912. MR 2011a:35362 Zbl 1180.35397

[Borisov and Freitas 2012] D. I. Borisov and P. Freitas, “Eigenvalue asymptotics for almost flat compact hypersurfaces”, Dokl.
Akad. Nauk 442:2 (2012), 151–155. In Russian; translated in Dokl. Math. 85:1 (2012), 18–22. MR 2962172 Zbl 1247.58009

[Colbois et al. 2008] B. Colbois, E. B. Dryden, and A. El Soufi, “Extremal G-invariant eigenvalues of the Laplacian of
G-invariant metrics”, Math. Z. 258:1 (2008), 29–41. MR 2008m:58066 Zbl 1127.58026

[Exner and Post 2005] P. Exner and O. Post, “Convergence of spectra of graph-like thin manifolds”, J. Geom. Phys. 54:1 (2005),
77–115. MR 2006a:58038 Zbl 1095.58007

http://dx.doi.org/10.1112/plms/84.1.213
http://msp.org/idx/mr/2003a:58041
http://msp.org/idx/zbl/1015.58012
http://dx.doi.org/10.1051/cocv/2010028
http://dx.doi.org/10.1051/cocv/2010028
http://msp.org/idx/mr/2012h:35034
http://msp.org/idx/zbl/1223.35248
http://dx.doi.org/10.1016/j.anihpc.2007.12.001
http://dx.doi.org/10.1016/j.anihpc.2007.12.001
http://msp.org/idx/mr/2010b:35059
http://msp.org/idx/zbl/1168.35401
http://dx.doi.org/10.1016/j.jfa.2009.07.014
http://dx.doi.org/10.1016/j.jfa.2009.07.014
http://msp.org/idx/mr/2011a:35362
http://msp.org/idx/zbl/1180.35397
http://dx.doi.org/10.1134/S1064562412010085
http://msp.org/idx/mr/2962172
http://msp.org/idx/zbl/1247.58009
http://dx.doi.org/10.1007/s00209-007-0154-z
http://dx.doi.org/10.1007/s00209-007-0154-z
http://msp.org/idx/mr/2008m:58066
http://msp.org/idx/zbl/1127.58026
http://dx.doi.org/10.1016/j.geomphys.2004.08.003
http://msp.org/idx/mr/2006a:58038
http://msp.org/idx/zbl/1095.58007


1088 DENIS BORISOV AND PEDRO FREITAS

[Exner and Post 2009] P. Exner and O. Post, “Approximation of quantum graph vertex couplings by scaled Schrödinger operators
on thin branched manifolds”, J. Phys. A 42:41 (2009), 415305. MR 2011a:81098 Zbl 1179.81080

[Freitas 2007] P. Freitas, “Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi”, J. Funct.
Anal. 251:1 (2007), 376–398. MR 2008k:35339 Zbl 1137.35049

[Friedlander and Solomyak 2009] L. Friedlander and M. Solomyak, “On the spectrum of the Dirichlet Laplacian in a narrow
strip”, Israel J. Math. 170 (2009), 337–354. MR 2010f:35271 Zbl 1173.35090

[Grieser 2008] D. Grieser, “Thin tubes in mathematical physics, global analysis and spectral geometry”, pp. 565–593 in Analysis
on graphs and its applications, edited by P. Exner et al., Proc. Sympos. Pure Math. 77, Amer. Math. Soc., Providence, RI, 2008.
MR 2010g:58025 Zbl 1158.58001

[Il0in 1992] A. M. Il0in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathemati-
cal Monographs 102, American Mathematical Society, Providence, RI, 1992. MR 93g:35016 Zbl 0754.34002

[Kato 1966] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften 132,
Springer, New York, 1966. MR 34 #3324 Zbl 0148.12601
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