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WITH GEOMETRIC CONTROL CONDITION

ROMAIN JOLY AND CAMILLE LAURENT

In this article, we prove the exponential stabilization of the semilinear wave equation with a damping
effective in a zone satisfying the geometric control condition only. The nonlinearity is assumed to be
subcritical, defocusing and analytic. The main novelty compared to previous results is the proof of a unique
continuation result in large time for some undamped equation. The idea is to use an asymptotic smoothing
effect proved by Hale and Raugel in the context of dynamical systems. Then, once the analyticity in time
is proved, we apply a unique continuation result with partial analyticity due to Robbiano, Zuily, Tataru
and Hörmander. Some other consequences are also given for the controllability and the existence of a
compact attractor.

Dans cet article, on prouve la décroissance exponentielle de l’équation des ondes semilinéaires avec
un amortissement actif dans une zone satisfaisant seulement la condition de contrôle géométrique. La
nonlinéarité est supposée sous-critique, défocalisante et analytique. La principale nouveauté par rapport
aux résultats précédents est la preuve d’un résultat de prolongement unique en grand temps pour une
solution non amortie. L’idée est d’utiliser un effet régularisant asymptotique prouvé par Hale et Raugel
dans le contexte des systèmes dynamiques. Ensuite, une fois l’analyticité en temps prouvée, on applique
un théorème de prolongement unique avec analyticité partielle dû à Robbiano, Zuily, Tataru et Hörmander.
Des applications à la contrôlabilité et à l’existence d’attracteur global compact pour l’équation des ondes
sont aussi données.

1. Introduction

In this article, we consider the semilinear damped wave equation
�u+ γ (x)∂t u+βu+ f (u)= 0 (t, x) ∈ R+×�,

u(t, x)= 0 (t, x) ∈ R+× ∂�,

(u, ∂t u)= (u0, u1) ∈ H 1
0 (�)× L2(�),

(1-1)

where �= ∂2
t t −1, with 1 being the Laplace–Beltrami operator with Dirichlet boundary conditions. The

domain � is a connected C∞ three-dimensional Riemannian manifold with boundaries, which is either:

(i) Compact.

(ii) A compact perturbation of R3, that is R3
\ D, where D is a bounded smooth domain, endowed with

a smooth metric equal to the euclidean one outside of a ball.

Lauren was financed by the ERC grant GeCoMethods and by the project EMAQS ANR-2011-BS01-017-01 during part of the
writing of this article.
MSC2010: primary 35B40, 35B60, 35B65, 93D20, 35L71; secondary 35B41.
Keywords: damped wave equation, stabilization, analyticity, unique continuation property, compact attractor.

1089

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2013.6-5
http://msp.org


1090 ROMAIN JOLY AND CAMILLE LAURENT

(iii) A manifold with periodic geometry (cylinder, R3 with a periodic metric, . . . ).

The nonlinearity f ∈ C1(R,R) is assumed to be defocusing, energy subcritical and such that 0 is an
equilibrium point. More precisely, we assume that there exists C > 0 such that

f (0)= 0, s f (s)≥ 0, | f (s)| ≤ C(1+ |s|)p, | f ′(s)| ≤ C(1+ |s|)p−1, (1-2)

with 1≤ p < 5.
We assume β ≥ 0 to be such that 1−β is a negative-definite operator, that is that we have a Poincaré

inequality
∫
�
|∇u|2+β|u|2 ≥ C

∫
�
|u|2 with C > 0. In particular, this may require β > 0 if ∂�=∅ or

if � is unbounded.
The damping γ ∈ L∞(�) is a nonnegative function. We assume that there exist an open set ω ⊂�,

α ∈ R, x0 ∈� and R ≥ 0 such that

� \ B(x0, R)⊂ ω and γ (x)≥ α > 0 for all x ∈ ω. (1-3)

Moreover, we assume that ω satisfies the geometric control condition introduced in [Rauch and Taylor
1974; Bardos et al. 1992]:

(GCC) There exists L > 0 such that any generalized geodesic of � of length L meets the set ω where the
damping is effective.

The associated energy E ∈ C0(X,R+) is given by

E(u) := E(u, ∂t u)=
1
2

∫
�

(|∂t u|2+ |∇u|2+β|u|2)+
∫
�

V (u), (1-4)

where V (u)=
∫ u

0 f (s)ds. Due to assumption (1-2) and the Sobolev embedding H 1(�) ↪→ L6(�), this
energy is well defined and, if u solves (1-1), we have, at least formally,

∂t E(u(t))=−
∫
�

γ (x)|∂t u(x, t)|2 dx ≤ 0. (1-5)

The system is therefore dissipative. We are interested in the exponential decay of the energy of the
nonlinear damped wave equation (1-1), that is, the property:

(ED) For any E0≥ 0, there exist K > 0 and λ> 0 such that, for all solutions u of (1-1) with E(u(0))≤ E0,

E(u(t))≤ K e−λt E(u(0)) for all t ≥ 0.

Property (ED) means that the damping term γ ∂t u stabilizes any solution of (1-1) to zero, which is an
important property from the dynamical and control points of view.

Our main theorem is as follows.

Theorem 1.1. Assume that the damping γ satisfies (1-3) and the geometric control condition (GCC). If f
is real analytic and satisfies (1-2), then the exponential decay property (ED) holds.

Theorem 1.1 applies for nonlinearities f that are globally analytic. Of course, the nonlinearities
f (u) = |u|p−1u are not analytic if p 6∈ {1, 3}, but we can replace these usual nonlinearities by similar
ones as f (u) = (u/ th(u))p−1u, which are analytic for all p ∈ [1, 5). Note that the estimates (1-2) are
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only required for s ∈ R, so that they do not imply that f is a polynomial. Moreover, we can show that
(ED) holds in fact for almost all the nonlinearities f satisfying (1-2), including nonanalytic ones.

More precisely, we set

C1(R)= { f ∈ C1(R) | there exist C > 0 and p ∈ [1, 5) such that (1-2) holds} (1-6)

and endow this set with the Whitney topology (or any other reasonable topology). We recall that the
Whitney topology is the topology generated by the neighborhoods

Nf,δ =
{
g ∈ C1(R) |max

(
| f (u)− g(u)|, | f ′(u)− g′(u)|

)
< δ(u) for all u ∈ R

}
, (1-7)

where f is any function in C1(R) and δ is any positive continuous function. The set C1(R) is a Baire
space, which means that any generic set, that is, any set containing a countable intersection of open and
dense sets, is dense in C1(R) (see Proposition 7.1). The Baire property ensures that the genericity of a set
in C1(R) is a good notion for “the set contains almost all nonlinearities f ”.

Theorem 1.2. Assume that the damping γ satisfies (1-3) and the geometric control condition (GCC).
There exists a generic set G⊂ C1(R) such that the exponential decay property (ED) holds for all f ∈G.

The statements of both theorems lead to some remarks.

• Of course, our results and their proofs should easily extend to any space dimension d ≥ 3 if the exponent
p of the nonlinearity satisfies p < (d + 2)/(d − 2).

• Actually, it may be possible to get λ > 0 in (ED) uniform with respect to the size of the data. We can
take for instance λ = λ̃− ε, where λ̃ is the decay rate of the linear equation. The idea is that once we
know the existence of a decay rate, we know that the solution is close to zero for a large time. Then,
for small solutions, the nonlinear term can be neglected to get almost the same decay rate as the linear
equation. We refer for instance to [Laurent et al. 2010] in the context of KdV equation. Notice that the
possibility to get the same result with a constant K independent of E0 is an open problem.

• The assumption on β is important to ensure some coercivity of the energy and to preclude the spatially
constant functions to be undamped solutions for the linear equation. It has been proved in [Dehman and
Gérard 2002] for R3 and in [Laurent 2011] for a compact manifold that exponential decay can fail without
this term β.

• The geometric control condition is known to be not only sufficient but also necessary for the exponential
decay of the linear damped equation. The proof of the optimality uses some sequences of solutions which
are asymptotically concentrated outside of the damping region. We can use the same idea in our nonlinear
stabilization context. First, the observability for a certain time eventually large is known to be equivalent
to the exponential decay of the energy. This was for instance noticed in [Dehman and Gérard 2002,
Proposition 2] in a similar context; see also Proposition 2.5 of this paper. Then we take as initial data the
same sequence that would give a counterexample for the linear observability. The linearizability property
(see [Gérard 1996]) allows to obtain that the nonlinear solution is asymptotically close to the linear one.
This contradicts the observability property for the nonlinear solution as it does for the linear case. Hence
the geometric control condition is also necessary for the exponential decay of the nonlinear equation.
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•Our geometrical hypotheses on�may look strange, however they are only assumed for sake of simplicity.
In fact, our results should apply more generally for any smooth manifold with bounded geometry, that
is, such � that can be covered by a set of C∞ charts αi : Ui 7→ αi (Ui ) ⊂ R3 such that αi (Ui ) is equal
either to B(0, 1) or to B+(0, 1) = {x ∈ B(0, 1), x1 > 0} (in the case with boundaries) and such that,
for any r ≥ 0 and s ∈ [1,∞], the W r,s norm of a function u in W r,s(�,R) is equivalent to the norm(∑

i∈N ‖u ◦α
−1
i ‖

s
W r,s(αi (Ui ))

)1/s .
The stabilization property (ED) for Equation (1-1) has been studied in [Haraux 1985a; Zuazua 1990;

1991; Dehman 2001] for p < 3. For p ∈ [3, 5), our main reference is the work of Dehman, Lebeau and
Zuazua [Dehman et al. 2003]. This work is mainly concerned with the stabilization problem previously
described on the Euclidean space R3 with flat metric and stabilization active outside of a ball. The main
purpose of this paper is to extend their result to a nonflat geometry where multiplier methods cannot be
used or do not give the optimal result with respect to the geometry. Other stabilization results for the
nonlinear wave equation can be found in [Aloui et al. 2011] and the references therein. Some works have
been done in the difficult critical case p = 5; we refer to [Dehman and Gérard 2002; Laurent 2011].

The proofs in these articles use three main ingredients:

(i) The exponential decay of the linear equation, which is equivalent to the geometric control condition
(GCC).

(ii) A more or less involved compactness argument.

(iii) A unique continuation result implying that u ≡ 0 is the unique solution of{
�u+βu+ f (u)= 0,
∂t u = 0 on [−T, T ]×ω.

(1-8)

The results are mainly of the type “geometric control condition” plus “unique continuation” implies
“exponential decay”. This type of implication is even stated explicitly in some related works for the
nonlinear Schrödinger equation [Dehman et al. 2006; Laurent 2010].

In the subcritical case p < 5, the less understood point is the unique continuation property (iii). In the
previous works as [Dehman et al. 2003], the authors use unique continuation results based on Carleman
estimates. The resulting geometric assumptions are not very natural and are stronger than (GCC). Indeed,
the unique continuation was often proved with some Carleman estimates that required some strong
geometric conditions. For instance for a flat metric, the usual geometric assumption that appear are often
of “multiplier type” that is ω is a neighborhood of {x ∈ ∂� | (x − x0) · n(x) > 0} which are known to be
stronger than the geometric control condition (see [Miller 2002] for a discussion about the links between
these assumptions). Moreover, on curved spaces, this type of condition often needs to be checked by
hand in each situation, which is mostly impossible.

Our main improvement in this paper is the proof of unique continuation in infinite time under the
geometric control condition only. We show that, if the nonlinearity f is analytic (or generic), then one
can use the result of Robbiano and Zuily [1998] to obtain a unique continuation property (iii) for infinite
time T =+∞ with the geometric control condition (GCC) only.
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The central argument of the proof of our main result, Theorem 1.1, is the unique continuation property
of [Robbiano and Zuily 1998] (see Section 3). This result applies for solutions u of (1-8) being smooth
in space and analytic in time. If f is analytic, then the solutions of (1-1) are of course not necessarily
analytic in time since the damped wave equations are not smoothing in finite time. However, the damped
wave equations admit an asymptotic smoothing effect, i.e., are smoothing in infinite time. Hale and
Raugel [2003] have shown that, for compact trajectories, this asymptotic smoothing effect also concerns
the analyticity (see Section 5). In other words, combining [Robbiano and Zuily 1998] and [Hale and
Raugel 2003] shows that the unique solution of (1-8) is u ≡ 0 if f is analytic and if T = +∞. This
combination has already been used by dynamicists for p < 3 (Hale and Raugel, private communication;
[Joly 2007]).

One of the main interests of this paper is the use of arguments coming from both the dynamical study
and the control theory of the damped wave equations. The reader familiar with the control theory could
find interesting the use of the asymptotic smoothing effect to get unique continuation property with
smooth solutions. The one familiar with the dynamical study of PDEs could be interested in the use of
Strichartz estimates to deal with the case p ∈ [3, 5). The main part of the proof of Theorem 1.1 is written
with arguments coming from the dynamical study of PDEs. They are simpler than the corresponding ones
of control theory, but far less accurate since they do not give any estimation for the time of observability.
Anyway, such accuracy is not important here since we use the unique continuation property for (1-8) with
T =+∞. We briefly recall in Section 8 how these propagation of compactness and regularity properties
could have been proved with some arguments more usual in the control theory.

Moreover, we give two applications of our results in both contexts of control theory and dynamical
systems. First, as it is usual in control theory, some results of stabilization can be coupled with local
control theorems to provide global controllability in large time.

Theorem 1.3. Assume that f satisfies the conditions of Theorem 1.1 or belongs to the generic set G
defined by Theorem 1.2. Let R0 > 0 and ω satisfying the geometric control condition. Then there exists
T > 0 such that for any (u0, u1) and (ũ0, ũ1) in H 1

0 (�)× L2(�) with

‖(u0, u1)‖H1×L2 ≤ R0 and ‖(ũ0, ũ1)‖H1×L2 ≤ R0

there exists g ∈ L∞([0, T ], L2(�)) supported in [0, T ]×ω such that the unique strong solution of{
�u+βu+ f (u)= g on [0, T ]×�,
(u(0), ∂t u(0))= (u0, u1),

satisfies (u(T ), ∂t u(T ))= (ũ0, ũ1).

The second application of our results concerns the existence of a compact global attractor. A compact
global attractor is a compact set, which is invariant by the flow of the PDE and which attracts the bounded
sets. The existence of such an attractor is an important dynamical property because it roughly says that
the dynamics of the PDE may be reduced to dynamics on a compact set, which is often finite-dimensional.
See [Hale 1988; Raugel 2002] for reviews of this concept. Theorems 1.1 and 1.2 show that {0} is a global
attractor for the damped wave equation (1-1). Of course, it is possible to obtain a more complex attractor



1094 ROMAIN JOLY AND CAMILLE LAURENT

by considering an equation of the type
∂2

t t u+ γ (x)∂t u =1u−βu− f (x, u) (x, t) ∈�×R+,

u(x, t)= 0 (x, t) ∈ ∂�×R+,

(u, ∂t u)= (u0, u1) ∈ H 1
0 × L2,

(1-9)

where f ∈ C∞(�×R,R) is real analytic with respect to u and satisfies the following properties. There
exist C > 0, p ∈ [1, 5) and R > 0 such that for all (x, u) ∈�×R,

| f (x, u)| ≤ C(1+ |u|)p, | f ′x(x, u)| ≤ C(1+ |u|)p, | f ′u(x, u)| ≤ C(1+ |u|)p−1, (1-10)

x ∈ ∂� H⇒ f (x, 0)= 0, (1-11)

(x 6∈ B(x0, R) or |u| ≥ R) H⇒ f (x, u)u ≥ 0, (1-12)

where x0 denotes a fixed point of the manifold.

Theorem 1.4. Assume f is as above. Then the dynamical system generated by (1-9) in H 1
0 (�)× L2(�)

is gradient and admits a compact global attractor A.

Of course, we would get the same result for f in a generic set similar to the one of Theorem 1.2.
We begin this paper by setting our main notations and recalling the basic properties of Equation (1-1)

in Section 2. We recall the unique continuation property of Robbiano and Zuily in Section 3, whereas
Sections 4 and 5 are concerned by the asymptotic compactness and the asymptotic smoothing effect of
the damped wave equation. The proofs of our main results, Theorem 1.1 and 1.2, are given in Sections 6
and 7, respectively. An alternative proof, using more usual arguments from control theory, is sketched in
Section 8. Finally, Theorems 1.3 and 1.4 are discussed in Section 9.

2. Notations and basic properties of the damped wave equation

In this paper, we use the following notations:

U = (u, ut), F = (0, f ), A =
(

0 Id
1−β −γ

)
.

In this setting, (1-1) becomes
∂tU (t)= AU (t)+ F(U ).

We set X = H 1
0 (�)× L2(�) and for s ∈ [0, 1], we denote by X s the space

X s
= D

(
(−1+β)(s+1)/2)

× D
(
(−1+β)s/2

)
= (H 1+s(�)∩ H 1

0 (�))× H s
0 (�).

Notice that X0
= X and X1

= D(A) (even if γ is only in L∞).
We recall that E denotes the energy defined by (1-4). We also emphasize that (1-2) and the invertibility

of 1− β implies that a set is bounded in X if and only if its energy E is bounded. Moreover, for all
E0 ≥ 0, there exists C > 0 such that

E(u, v)≤ E0 for all (u, v) ∈ X =⇒
1
C
‖(u, v)‖2X ≤ E(u, v)≤ C ‖(u, v)‖2X . (2-1)
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To simplify some statements in the proofs, we assume without loss of generality that 3< p < 5. This will
avoid some meaningless statements with negative Lebesgue exponents since p = 3 is the exponent where
Strichartz estimates are not necessary and can be replaced by Sobolev embeddings.

We recall that � is endowed with a metric g. We denote by d the distance on � defined by

d(x, y)= inf{l(c) | c ∈ C∞([0, 1], �) with c(0)= x and c(1)= y},

where l(c) is the length of the path c according to the metric g. A ball B(x, R) in � is naturally defined
by

B(x, R)= {y ∈�, d(x, y) < R}.

For instance, if �= R3
\ BR3(0, 1), the distance between (0, 0, 1) and (0, 0,−1) is π (and not 2) and the

ball B((0, 0, 1), π) has nothing to do with the classical ball BR3((0, 0, 1), π) of R3.

Cauchy problem. The global existence and uniqueness of solutions of the subcritical wave equation (1-1)
with γ ≡ 0 has been studied in [Ginibre and Velo 1985; 1989]. Their method also applies for γ 6= 0 since
this term is linear and well defined in the energy space X . Moreover, their argument to prove uniqueness
also yields the continuity of the solutions with respect to the initial data.

The central argument is the use of Strichartz estimates.

Theorem 2.1 (Strichartz estimates). Let T > 0 and (q, r) satisfy

1
q
+

3
r
=

1
2
, q ∈ [7/2,+∞]. (2-2)

There exists C = C(T, q) > 0 such that for every G ∈ L1([0, T ], L2(�)) and every (u0, u1) ∈ X , the
solution u of {

�u+ γ (x)∂t u = G(t),

(u, ∂t u)(0)= (u0, u1),

satisfies the estimate

‖u‖Lq ([0,T ],Lr (�)) ≤ C
(
‖u0‖H1(�)+‖u1‖L2(�)+‖G‖L1([0,T ],L2(�))

)
.

The result was stated in the Euclidean space R3 by Strichartz [1977] and Ginibre and Velo with
q ∈ (2,+∞]. Kapitanskiı̆ [1990] extended the result to variable coefficients. On a bounded domain,
the first estimates were proved by Burq, Lebeau and Planchon [Burq et al. 2008] for q ∈ [5,+∞] and
extended to a larger range by Blair, Smith and Sogge in [Blair et al. 2009]. Note that, thanks to the
counterexamples of Ivanovici [2012], we know that we cannot expect some Strichartz estimates in the
full range of exponents in the presence of boundaries.

From these results, we deduce the estimates for the damped wave equation by absorption for T small
enough. We can iterate the operation in a uniform number of steps. Actually, for the purpose of the
semilinear wave equation, it is sufficient to consider the Strichartz estimate L2p/(p−3)([0, T ], L2p(�)),
which gives u p

∈ L2/(p−3)([0, T ], L2(�))⊂ L1([0, T ], L2(�)) because 1< 2/(p− 3) <+∞.
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Theorem 2.2 (Cauchy problem). Let f satisfy (1-2). Then for any (u0, u1) ∈ X = H 1
0 (�)× L2(�) there

exists a unique solution u(t) of the subcritical damped wave equation (1-1). Moreover, this solution is
defined for all t ∈ R and its energy E(u(t)) is nonincreasing in time.

For any E0 ≥ 0, T ≥ 0 and (q, r) satisfying (2-2), there exists a constant C such that if u is a solution
of (1-1) with E(u(0))≤ E0, then

‖u‖Lq ([0,T ],Lr (�)) ≤ C
(
‖u0‖H1(�)+‖u1‖L2(�)

)
.

In addition, for any E0 ≥ 0 and T ≥ 0, there exists a constant C such that if u and ũ are two solutions
of (1-1) with E(u(0))≤ E0 and E(ũ(0))≤ E0, then

sup
t∈[−T,T ]

‖(u, ∂t u)(t)− (ũ, ∂t ũ)(t)‖X ≤ C‖(u, ∂t u)(0)− (ũ, ∂t ũ)(0)‖X .

Proof. The existence and uniqueness for small times is a consequence of the Strichartz estimates and
of the subcriticality of the nonlinearity; see [Ginibre and Velo 1989]. The solution can be globalized
backward and forward in time thanks to the energy estimates (1-5) for smooth solutions. Indeed,

E(t)≤ E(s)+C
∫ s

t
E(τ ) dτ,

and thus Gronwall inequality for t ≤ s and the decay of energy for t ≥ s show that the energy does not
blow up in finite time. This allows us to extend the solution for all times since the energy controls the
norm of the space X by (2-1).

For the uniform continuity estimate, we notice that w = u− ũ is solution of{
�w+βw+ γ (x)∂tw =−wg(u, ũ),
(w, ∂tw)(0)= (u, ∂t u)(0)− (ũ, ∂t ũ)(0),

where g(s, s̃) =
∫ 1

0 f ′(s + τ(s̃ − s)) dτ fulfills |g(s, s̃)| ≤ C(1+ |s|p−1
+ |s̃|p−1). Let q = 2p/(p− 3),

then the Strichartz and Hölder estimates give

‖(w, ∂tw)(t)‖L∞([0,T ],X)∩Lq ([0,T ],L2p) ≤ C‖(w, ∂tw)(0)‖X +C‖wg(u, ũ)‖L1([0,T ],L2)

≤ C‖(w, ∂tw)(0)‖X +CT ‖w‖L∞([0,T ],L2)

+ T θ
‖w‖Lq ([0,T ],L2p)

(
‖u‖p−1

Lq ([0,T ],L2p)
+‖ũ‖p−1

Lq ([0,T ],L2p)

)
with θ = (5− p)/2> 0. We get the expected result for T small enough by absorption since we already
know a uniform bound (depending on E0) for the Strichartz norms of u and ũ. Then we iterate the
operation to get the result for large T . �

Exponential decay of the linear semigroup. In this paper, we will strongly use the exponential decay
for the linear semigroup in the case where γ may vanish but satisfies the geometric assumptions of this
paper. In this case, (1-3) enables us to control the decay of energy outside a large ball and the geometric
control condition (GCC) enables to control the energy trapped in this ball.
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Proposition 2.3. Assume that γ ∈ L∞(�) satisfies (1-3) and (GCC). There exist two positive constants C
and λ such that

|||eAt
|||L(X s) ≤ Ce−λt for all s ∈ [0, 1] and all t ≥ 0.

The exponential decay of the damped wave equation under the geometric control condition is well
known since the works of Rauch and Taylor [1974] on a compact manifold and Bardos, Lebeau and
Rauch [Bardos et al. 1988; 1992] on a bounded domain. Yet we did not find any reference for unbounded
domains ([Aloui and Khenissi 2002; Khenissi 2003] concern unbounded domains but local energy only).
It is noteworthy that the decay of the linear semigroup in unbounded domains seems not to have been
extensively studied for the moment.

We give a proof of Proposition 2.3 using a microlocal defect measure as done in [Lebeau 1996; Burq
1997a] (see also [Burq and Gérard 1997] for the proof of the necessity). The only difference with respect
to these results is that the manifold that we consider may be unbounded. Since a microlocal defect
measure only reflects the local propagation, we thus have to use the property of equipartition of the energy
to deal with the energy at infinity and to show a propagation of compactness (see [Dehman et al. 2003]
for the flat case).

Lemma 2.4. Let T > L , where L is given by (GCC). Assume that (Un,0) ⊂ X is a bounded sequence,
which weakly converges to 0 and assume that Un(t)= (un(t), ∂t un(t))= eAtUn,0 satisfies∫ T

0

∫
�

γ (x)|∂t un|
2
→ 0. (2-3)

Then (Un,0) converges to 0 strongly in X.

Proof. Let µ be a microlocal defect measure associated to (un) (see [Gérard 1991; Tartar 1990; Burq
1997b] for the definition). Note that (2-3) implies that µ can also be associated to the solution of the wave
equation without damping, so the weak regularity of γ is not problematic for the propagation and we get
that µ is concentrated on {τ 2

− |ξ |2x = 0}, where (τ, ξ) are the dual variables of (t, x). Moreover, (2-3)
implies that γ τ 2µ= 0 and so µ≡ 0 on S∗(]0, T [×ω). Then, by using the propagation of the measure
along the generalized bicharacteristic flow of Melrose–Sjöstrand and the geometric control condition
satisfied by ω, we obtain µ≡ 0 everywhere. We do not give more details about propagation of microlocal
defect measures and refer to the Appendix of [Lebeau 1996] or Section 3 of [Burq 1997b] (see also
[Gérard and Leichtnam 1993] for some close propagation results in a different context). Since µ≡ 0, we
know that

Un→ 0 on H 1
× L2(]0, T [×B(x0, R))

for every R > 0.
To finish the proof, we need the classical equipartition of the energy to get the convergence to 0 in

the whole manifold �. Since γ is uniformly positive outside a ball B(x0, R), (2-3) and the previous
arguments imply that

∂t un→ 0 in L2([0, T ]×�).
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Let ϕ ∈ C∞0 (]0, T [) with ϕ ≥ 0 and ϕ(t)= 1 for t ∈ [ε, T − ε]. We multiply the equation by ϕ(t)un and
we obtain

0=−
∫∫
[0,T ]×�

ϕ(t)|∂t un|
2
−

∫∫
[0,T ]×�

ϕ′(t)∂t unun +

∫∫
[0,T ]×�

ϕ(t)|∇un|
2

+

∫∫
[0,T ]×�

ϕ(t)β|un|
2
+

∫∫
[0,T ]×�

ϕ(t)γ (x)∂t unun.

The L2 norm of un(t) is bounded, while ∂t un→ 0 in L2([0, T ]×�), so the first, second and fifth terms
converge to zero. Then the above equation yields∫∫

[0,T ]×�
ϕ(t)

(
β|un|

2
+ |∇un|

2)
→ 0.

Finally, notice that the energy identity ‖Un,0‖
2
X = ‖Un(t)‖2X +

∫ T
0

∫
�
γ (x)|∂t un|

2 shows that∫∫
[0,T ]×�

ϕ(t)
(
β|un|

2
+ |∇un|

2)
∼ ‖Un,0‖

2
X

∫ T

0
ϕ(t),

and thus that ‖Un,0‖X goes to zero. �

Proof of Proposition 2.3. Once Lemma 2.4 is established, the proof follows the arguments of the classical
case, where � is bounded. We briefly recall them.

We first treat the case s = 0. As in Proposition 2.5, the exponential decay of the energy is equivalent
to the observability estimate, that is, the existence of C > 0 and T > 0 such that, for any trajectory
U (t)= eAtU0 in X , ∫ T

0

∫
�

γ (x)|∂t u|2 ≥ C‖U (0)‖2X . (2-4)

We argue by contradiction: Assume that (2-4) does not hold for any positive T and C . Then there
exists a sequence of initial data Un(0) with ‖Un(0)‖X = 1 and such that∫ n

0

∫
�

γ (x)|∂t un(t, x)|2dtdx→ 0 as n→+∞,

where (un, ∂t un)(t)=Un(t)= eAtUn(0). Let Ũn =Un(n/2+ · ). We have∫ n/2

−n/2

∫
�

γ (x)|∂t ũn(t, x)|2dtdx→ 0 as n→+∞,

and, for any t ∈ [−n/2, n/2],

‖Ũn(t)‖2X = ‖Ũn(−n/2)‖2X −
∫ t

−n/2

∫
�

γ (x)|∂t ũn(s, x)|2dsdx→ 1 as n→+∞.

We can thus assume that Un(0) converges to U∞(0)∈ X , weakly in X . For any T >0, Un(t) and ∂tUn(t) are
bounded in L∞([−T, T ], X) and L∞([−T, T ], L2(�)×H−1(�)), respectively. Thus, by using Ascoli’s
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theorem, we may also assume that Un(t) strongly converges to U∞(t) in L∞([−T, T ], L2(K )×H−1(K )),
where K is any compact of �. Hence (u∞, ∂t u∞)(t)=U∞(t)= eAtU∞(0) is a solution of{

�u∞+βu∞ = 0 on R×�,

∂t u∞ = 0 on R×ω.
(2-5)

in L2
× H−1. Since U∞(0) ∈ X belongs to X , we deduce that, in fact, U∞(t) solves (2-5) in X .

To finish the proof of Proposition 2.3, we have to show that U∞ ≡ 0. Indeed, applying Lemma 2.4,
we would get that Un converges strongly to 0, which contradicts the hypothesis ‖Un(0)‖X = 1. Note
that U∞ ≡ 0 is a direct consequence of a unique continuation property as in Corollary 3.2. However,
Corollary 3.2 requires � to be smooth, whereas Proposition 2.3 could be more general. Therefore, we
recall another classical argument to show that U∞ ≡ 0.

Denote by N the set of functions U∞(0) ∈ X satisfying (2-5), which is obviously a linear subspace of
X . We will prove that N = {0}. Since γ (x)|∂t u∞|2 ≡ 0 for functions u∞ in N and since N is a closed
subspace, Lemma 2.4 shows that any weakly convergent subsequence of N is in fact strongly convergent.
By the Riesz theorem, N is therefore finite-dimensional. For any t ∈ R, et A applies N into itself and thus
A|N is a bounded linear operator. Assume that N 6= {0}, then A|N admits an eigenvalue λ with eigenvector
Y = (y0, y1) ∈ N . This means that y1 = λy0 and that (1−β)y0 = λ

2 y0. Moreover, we know that y1 = 0
on ω and so, if λ 6= 0, that y0 = 0 on ω. This implies y0 ≡ 0 by the unique continuation property of
elliptic operators. Finally, if λ= 0, we have (1−β)y0 = 0 and y0 = 0, because, by assumption, 1−β is
a negative definite operator.

So we have proved N = {0} and therefore U∞ = 0, that is, Ũn(0) converges to 0 weakly in X . We can
then apply Lemma 2.4 on any interval [−n/2,−n/2+ T ], where L is the time in the geometric control
condition (GCC) and obtain a contradiction to ‖Un(0)‖X = 1.

Let us now consider the cases s ∈ (0, 1]. The basic semigroup properties (see [Pazy 1983]) show that,
if U ∈ X1

= D(A), then eAtU belongs to D(A) and

‖eAtU‖X1 = ‖AeAtU‖X +‖eAtU‖X = ‖eAt AU‖X +‖eAtU‖X

≤ Ce−λt (‖AU‖X +‖U‖X )= Ce−λt
‖U‖D(A).

This shows Proposition 2.3 for s = 1. Notice that we do not have to require any regularity for γ to obtain
this result. Then Proposition 2.3 for s ∈ (0, 1) follows by interpolating between the cases s = 0 and s = 1
(see [Tartar 2007]). �

First nonlinear exponential decay properties. Theorem 2.2 shows that the energy E is nonincreasing
along the solutions of (1-1). The purpose of this paper is to obtain the exponential decay of this energy in
the sense of property (ED) stated above. We first recall the well-known criterion for exponential decay.

Proposition 2.5. The exponential decay property (ED) holds if and only if there exist T and C such that

E(u(0))≤ C(E(u(0))− E(u(T )))= C
∫∫
[0,T ]×�

γ (x)|∂t u(x, t)|2 dtdx (2-6)

for all solutions u of (1-1) with E(u(0))≤ E0.



1100 ROMAIN JOLY AND CAMILLE LAURENT

Proof. If (ED) holds then (2-6) holds for T large enough since E(u(0))−E(u(T ))≥ (1−K e−λT )E(u(0)).
Conversely, if (2-6) holds, using E(u(T )) ≤ E(u(0)), we get E(u(T )) ≤ C/(C + 1)E(u(0)) and thus
E(u(kT ))≤ (C/(C+1))k E(u(0)). Using again the decay of the energy to fill the gaps t ∈ (kT, (k+1)T ),
this shows that (ED) holds. �

First, we prove exponential decay in the case of positive damping, which will be helpful to study what
happens outside a large ball since (1-3) is assumed in the whole paper. Note that the fact that −1+β is
positive is necessary to avoid for instance the constant undamped solutions.

Proposition 2.6. Assume that ω =�, that is that γ (x)≥ α > 0 everywhere. Then (ED) holds.

Proof. We recall here the classical proof. We introduce a modified energy

Ẽ(u)=
∫
�

1
2(|∂t u|2+ |∇u|2+β|u|2)+ V (u)+ εu∂t u

with ε > 0. Since
∫
�
|∇u|2 + β|u|2 controls ‖u‖2L2 , Ẽ is equivalent to E for ε small enough and it is

sufficient to obtain the exponential decay of the auxiliary energy Ẽ . Using γ ≥ α > 0 and u f (u)≥ 0, a
direct computation shows for ε small enough that

Ẽ(u(T ))− Ẽ(u(0))=
∫ T

0

∫
�

−γ (x)|∂t u|2+ ε|∂t u|2+ εγ (x)u∂t u− ε(|∇u|2+β|u|2)− εu f (u)

≤−C
∫ T

0
‖(u, ∂t u)‖2H1×L2 ≤−C

∫ T

0
Ẽ(t) dt ≤−CT Ẽ(T ),

where C > 0 is a constant that may change from line to line. Thus, Ẽ(u(0))− Ẽ(u(T ))≥ CT Ẽ(u(T ))
with CT > 0 and therefore Ẽ(u(0))≥ µẼ(u(T )) with µ> 1. As in the proof of Proposition 2.3, this last
property implies the exponential decay of Ẽ and thus the one of E . �

3. A unique continuation result for equations with partially holomorphic coefficients

Comparatively to previous articles on the stabilization of the damped wave equations as [Dehman et al.
2003], one of the main novelties of this paper is the use of a unique continuation theorem requiring partially
analyticity of the coefficients, but very weak geometrical assumptions as shown in Corollary 3.2. We use
here the following result of Robbiano and Zuily [1998]. This result has also been proved independently
by Hörmander [1997] and has been generalized by Tataru [1999]. Note that the idea of using partial
analyticity for unique continuation was introduced by Tataru [1995] but it requires some global analyticity
assumptions that are not fulfilled in our case. All these results use very accurate microlocal analysis
and hold in a much more general framework than the one of the wave equation. However, for sake of
simplicity, we restrict the statement to this case.

Theorem 3.1. Let d≥1, (x0, t0)∈Rd
×R and let U be a neighborhood of (x0, t0). Let (Ai, j (x, t))i, j=1,...,d ,

b(x, t), (ci (x, t))i=1,...,d) and d(x, t) be bounded coefficients in C∞(U,R). Let v be a strong solution of

∂2
t tv = div(A(x, t)∇v)+ b(x, t)∂tv+ c(x, t)∇v+ d(x, t)v, (x, t) ∈U⊂ Rd

×R. (3-1)

Let ϕ ∈ C2(U,R) such that ϕ(x0, t0)= 0 and (∇ϕ, ∂tϕ)(x, t) 6= 0 for all (x, t) ∈U. Assume that:
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(i) The coefficients A, b, c and d are analytic in time.

(ii) A(x0, t0) is a symmetric positive definite matrix.

(iii) The hypersurface {(x, t) ∈ U, ϕ(x, t) = 0} is not characteristic at (x0, t0), that is, that we have
|∂tϕ(x0, t0)|2 6= 〈∇ϕ(x0, t0) | A(x0, t0)∇ϕ(x0, t0)〉.

(iv) v ≡ 0 in {(x, t) ∈U, ϕ(x, t)≤ 0}.

Then v ≡ 0 in a neighborhood of (x0, t0).

Proof. We only have to show that Theorem 3.1 is a direct translation of Theorem A of [Robbiano and
Zuily 1998] in the framework of the wave equation. To use the notations of [ibid.], we let xa be the time
variable and xb the space variable and we set (x0, t0)= x0

= (x0
b , x0

a). Equation (3-1) corresponds to the
differential operator

P = ξ 2
a −

tξb A(xb, xa)ξb− b(xb, xa)ξa − c(xb, xa)ξb− d(xb, xa)

with principal symbol p2 = ξ
2
a −

tξb A(xb, xa)ξb.
All the statements of Theorem 3.1 are obvious translations of Theorem A of [ibid.], except maybe

for the fact that hypothesis (iii) implies the hypothesis of pseudoconvexity of [ibid.]. We compute
{p2, ϕ} = 2ξaϕ

′
a − 2tξb A(xa, xb)ϕ

′

b. Let us set ζ = (x0
a , x0

b , iϕ′a(x
0), ξb+ iϕ′b(x

0)), then {p2, ϕ} (ζ )= 0
if and only if

i(ϕ′a(x
0))2− i tϕ′b(x

0))A(x0)ϕ′b(x
0)−t ξb A(x0)ϕ′b(x

0)= 0.

This is possible only if (ϕ′a(x
0))2= tϕ′b(x

0)A(x0)ϕ′b(x
0), that is if the hypersurface ϕ= 0 is characteristic

at (x0, t0). Thus, if this hypersurface is not characteristic, then the pseudoconvexity hypothesis of
Theorem A of [ibid.] holds. �

The previous theorem allows us to prove some unique continuation result with some optimal time and
geometric assumptions. This allows us to prove unique continuation where the geometric condition is
only, roughly speaking, that we do not contradict the finite speed of propagation.

Corollary 3.2. Let T > 0 (or T =+∞) and let b, (ci )i=1,2,3 and d be coefficients in C∞(�×[0, T ],R).
Assume moreover that b, c and d are analytic in time and that v is a strong solution of

∂2
t tv =1v+ b(x, t)∂tv+ c(x, t)∇v+ d(x, t)v, (x, t) ∈�× (−T, T ). (3-2)

Let O be a nonempty open subset of � and assume that v(x, t)= 0 in O× (−T, T ). Then v(x, 0)≡ 0 in
OT = {x0 ∈�, d(x0,O) < T }.

As consequences:
(a) If T =+∞, then v ≡ 0 everywhere.
(b) If v ≡ 0 in O× (−T, T ) and OT =�, then v ≡ 0 everywhere.

Proof. Since � is assumed to be connected, both consequences are obvious from the first statement.
Let x0 be given such that d(x0,O) < T . There is a point x∗ ∈ O linked to x0 by a smooth curve of

length l < T that stays away from the boundary. We introduce a sequence of balls B(x0, r), . . . , B(xK , r)
with r ∈ (0, T/K ), xk−1 ∈ B(xk, r) and xK = x∗, such that B(xk, r) stays away from the boundary and is
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Figure 1. The proof of Corollary 3.2.

small enough such that it is diffeomorphic to an open set of R3 via the exponential map. Note that such a
sequence of balls exists because the smooth curve linking x0 to xK is compact and of length smaller than
T . We also notice that it is sufficient to prove Corollary 3.2 in each ball B(xk, r). Indeed, this would
enable us to apply Corollary 3.2 in B(xK , r)× (−T, T ) to obtain that v vanishes in a neighborhood
of xK−1 for t ∈ (−T + r, T − r) and then to apply it recursively in B(xK−1, r)× (−T + r, T − r), . . . ,
B(x1, r)× (−T + (K − 1)r, T − (K − 1)r) to obtain that v(x0, 0)= 0.

From now on, we assume that x0 ∈ B(x∗, r) and that v vanishes in a neighborhood O of x∗ for
t ∈ (−r, r). Since d(x0, x∗) < r , we can introduce a nonnegative function h ∈ C∞([−r, r ],R) such that
h(0) > d(x0, x∗), h(±r) = 0 and |h′(t)| < 1 for all t ∈ [−r, r ]. We set U = B(x∗, r)× (−r, r) and for
any λ ∈ [0, 1], we define

ϕλ(x, t)= d(x, x∗)2− λh(t)2.

Since r is assumed to be smaller than the radius of injectivity of the exponential map, ϕλ is a smooth
well-defined function. We prove Corollary 3.2 by contradiction. Assume that v(x0, 0) 6= 0. We denote
by Vλ the volume {(x, t) ∈U, ϕλ(x, t)≤ 0}. We notice that Vλ1 ⊂ Vλ2 if λ1 < λ2, that for small λ, Vλ is
included in O× (−r, r) where v vanishes, and that V1 contains (x0, 0) where v does not vanish. Thus

λ0 = sup{λ ∈ [0, 1] : v(x, t)= 0 for all(x, t) ∈ Vλ}

is well defined and belongs to (0, 1). For t close to −r or r , h(t) is small and the section {x, (x, t) ∈ Vλ0}

of Vλ0 is contained in O where v vanishes. Therefore, by compactness, the hypersurface Sλ0 = ∂Vλ0 must
touch the support of v at some point (x1, t1) ∈U (see Figure 1).

In local coordinates, 1 can be written as div(A(x)∇. )+ c(x) · ∇. Moreover,

〈∇ϕλ|A∇ϕλ〉 = |∇gd( · , x∗)|2g = 1,
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where the index g means that the gradient and norm are taken according to the metric. Therefore, the
hypersurface Sλ0 is noncharacteristic at (x1, t1) in the sense of hypothesis (iii) of Theorem 3.1 since
|∂tϕλ(x, t)| = |λh′(t1)|< 1. Thus, we can apply Theorem 3.1 with ϕ = ϕλ0 at the point (x1, t1), mapping
everything in the three-dimensional Euclidean frame via the exponential chart. We get that v must vanish
in a neighborhood of (x1, t1). This is obviously a contradiction since (x1, t1) has been taken in the support
of v. �

4. Asymptotic compactness

As soon as t is positive, a solution u(t) of a parabolic PDE becomes smooth and stays in a compact set.
The smoothing effect in finite time of course fails for the damped wave equations. However, these PDEs
admit in some sense a smoothing effect in infinite time. This effect is called asymptotic compactness if
one is interested in extracting asymptotic subsequences as in Proposition 4.3, or asymptotic smoothness if
one uses the regularity of globally bounded solutions as in Proposition 4.4. For the reader interested in
these notions, we refer to [Hale 1988]. The proof of this asymptotic smoothing effect is based on the
variation of constant formula U (t)= eAtU0+

∫ t
0 eA(t−s)F(U (s))ds and two properties:

• The exponential decay of the linear group (Proposition 2.3), which implies that the linear part eAtU0

asymptotically disappears.

• The regularity of the nonlinearity F implying the compactness of the nonlinear term
∫ t

0 eA(t−s)F(U (s))ds
(Corollary 4.2 below). Note that the subcriticality of f is the key point of this property and that our
arguments cannot be extended as they stand to the critical case p = 5.

The purpose of this section is to prove some compactness and regularity results about undamped
solutions as (1-8). Note that these results could also have been obtained with a more “control theoretic”
proof (see Section 8 for a sketch of the alternative proof) based on propagation results or observability
estimates. Here, we have chosen to give a different one using asymptotic regularization, which is more
common in dynamical systems. The spirit of the proof remains quite similar: we prove that the nonlinearity
is more regular than it seems a priori and use some properties of the damped linear equation.

Regularity of the nonlinearity. Since f is subcritical, it is shown in [Dehman et al. 2003] that the
nonlinear term of (1-1) yields a gain of smoothness.

Theorem 4.1 (Dehman, Lebeau and Zuazua [2003]). Let χ ∈C∞0 (R
3,R), R> 0 and T > 0. Let s ∈ [0, 1)

and let ε=min(1−s, (5− p)/2, (17−3p)/14) > 0 with p and f as in (1-2). There exist (q, r) satisfying
(2-2) and C > 0 such that the following property holds: If v ∈ L∞([0, T ], H 1+s(R3)) is a function with
finite Strichartz norms ‖v‖Lq ([0,T ],Lr (R3)) ≤ R, then χ(x) f (v) ∈ L1([0, T ], H s+ε(R3)) and moreover

‖χ(x) f (v)‖L1([0,T ],H s+ε(R3)) ≤ C‖v‖L∞([0,T ],H1+s(R3)).

The constant C depends only on χ , s, T , (q, r), R and the constant in estimate (1-2).

Theorem 4.1 is a copy of Theorem 8 of [Dehman et al. 2003], except for two points.



1104 ROMAIN JOLY AND CAMILLE LAURENT

First, we would like to apply the result to a solution v of the damped wave equation on a manifold
possibly with boundaries, where not all Strichartz exponents are available. This leads to the constraint
q ≥ 7

2 for the Strichartz exponents (q, r) of (2-2) (see Theorem 2.2). In the proof of Theorem 8 of [ibid.],
the useful Strichartz estimate corresponds to r = 3(p− 1)/(1− ε) and q = 2(p− 1)/(p− 3+ 2ε) and it
is required that q ≥ p− 1, which yields ε ≤ (5− p)/2. In this paper, we require also that q ≥ 7/2, which
yields in addition ε ≤ (17− 3p)/14. Notice that p < 5 and thus both bounds are positive.

The second difference is that, in [ibid.] the function f is assumed to be of class C3 and to satisfy

| f ′′(u)| ≤ C(1+ |u|)p−2 and | f (3)(u)| ≤ C(1+ |u|)p−3 (4-1)

in addition of (1-2). Since Theorem 4.1 concerns the L1(H s′) norm of χ(x) f (v) for s ′ = s+ ε ≤ 1, we
can omit assumption (4-1). Actually, we make the assumption ε ≤ 1− s which is not present in [ibid.]
and a careful study of their proof shows that (1-2) is not necessary under that assumption.

Indeed, let f̃ (u) = th3(u)|u|p. The function f̃ is of class C3 and satisfies (1-2) and (4-1). Hence
Theorem 8 of [ibid.] can be applied to f̃ and we can bound the L1(H s′) norm of f̃ as in Theorem 4.1.
On the other hand, we notice that

| f̃ (u)| ∼
±∞
|u|p, f̃ ′(u) ∼

±∞
p|u|p−1, f̃ ′(u)≥ 0.

Then, since f satisfies (1-2), there exists C>0 such that | f (u)|≤C(1+| f̃ (u)|) and | f ′(u)|≤C(1+ f̃ ′(u)).
Thus, if we assume that v > u to fix the notations,

| f (v)− f (u)| ≤ (v− u)
∫ 1

0
| f ′(u+ τ(v− u))| dτ

≤ C(v− u)+C(v− u)
∫ 1

0
f̃ ′(u+ τ(v− u)) dτ

≤ C(v− u)+C( f̃ (v)− f̃ (u))≤ C |v− u| +C | f̃ (v)− f̃ (u)|.

For 0< s < 1, using the above inequalities and the definition of the H s′ norm as

‖χ f (u)‖2H s′ = ‖χ f (u)‖2L2 +

∫∫
R6

|χ(x) f (u(x))−χ(y) f (u(y))|2

|x − y|2s′ dxdy,

we obtain

‖χ f (u)‖L1(H s′ ) ≤ C‖u‖L∞(H1)+C‖χ̃ f̃ (u)‖L1(H s′ ),

where χ̃ is another cut-off function with larger support. Hence for 0< s<1, the conclusion of Theorem 4.1
holds not only for f̃ but also for f . If s ′ = 1, we just apply the chain rule and the proof is easier.

Note that the above arguments show that the constant C depends on f through estimate (1-2) only.
Notice in addition that since f is only C1, we cannot expect χ f (v) to be more regular than H 1 and that
is why we also assume ε ≤ 1− s.

In this paper, we use a generalization of Theorem 8 of [Dehman et al. 2003] for noncompact manifolds
with boundaries.
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Corollary 4.2. Let R > 0 and T > 0. Let s ∈ [0, 1) and let ε =min(1− s, (5− p)/2, (17− 3p)/14) > 0
with p as in (1-2). There exist (q, r) satisfying (2-2) and C > 0 such that the following property holds: If
v ∈ L∞([0, T ], H 1+s(�)∩ H 1

0 (�)) is a function with finite Strichartz norms ‖v‖Lq ([0,T ],Lr (�)) ≤ R, then
f (v) ∈ L1([0, T ], H s+ε

0 (�)) and moreover

‖ f (v)‖L1([0,T ],H s+ε
0 (�)) ≤ C‖v‖L∞([0,T ],H s+1(�)∩H1

0 (�))
.

The constant C depends only on �, (q, r), R and the constant in estimate (1-2).

Proof. Since we assumed that � has a bounded geometry in the sense that � is either compact or
a compact perturbation of a manifold with periodic metric, � can be covered by a set of C∞ charts
αi :Ui → αi (Ui )⊂ R3 such that αi (Ui ) is equal either to B(0, 1) or to B+(0, 1)= {x ∈ B(0, 1), x1 > 0}
and such that, for any s ≥ 0 the norm of a function u ∈ H s(�) is equivalent to the norm(∑

i∈N

‖u ◦α−1
i ‖

2
H s(αi (Ui ))

)1/2

.

Moreover, the Strichartz norm Lq([0, T ], Lr (αi (Ui )) of v ◦α−1
i is uniformly controlled from above by

the Strichartz norm Lq([0, T ], Lr (Ui )) of v, which is bounded by R.
Therefore, it is sufficient to prove that Corollary 4.2 holds for � being either B(0, 1) or B+(0, 1).

Say that � = B+(0, 1), the case � = B(0, 1) being simpler. To apply Theorem 4.1, we extend v in a
neighborhood of B+(0, 1) as follows. For x ∈ B+(0, 2), we use the radial coordinates x = (r, σ ) and we
set

ṽ(x)= ṽ(r, σ )= 5v(1− r, σ )− 20v(1− r/2, σ )+ 16v(1− r/4, σ ).

Then, for x = (x1, x2, x3) ∈ B−(0, 2), we set

ṽ(x)= 5v(−x1, x2, x3)− 20v(−x1/2, x2, x3)+ 16v(−x1/4, x2, x3).

Notice that ṽ is an extension of v in B(0, 2), which preserves the C2 regularity, and that the H s norm for
s ≤ 2 as well as the Strichartz norms of ṽ are controlled by the corresponding norms of v. Let χ ∈C∞0 (R

3)

be a cut-off function such that χ ≡ 1 in B+(0, 1) and χ ≡ 0 outside B(0, 2). Applying Theorem 4.1
to χ(x) f (χ(x)ṽ) yields a control of ‖ f (v)‖L1([0,T ],H s+ε(B+(0,1))) by ‖v‖L∞([0,T ],H s+1(�)). Finally, notice
that f (0)= 0 and thus the Dirichlet boundary condition on v naturally implies the one on f (v). �

Asymptotic compactness and regularization effect. As explained in the beginning of this section, using
the Duhamel formula U (t)= eAtU0+

∫ t
0 eA(t−s)F(U (s))ds and Corollary 4.2, we obtain two propositions

related to the asymptotic smoothing effect of the damped wave equations.

Proposition 4.3. Let f ∈ C1(R) satisfy (1-2), let (un
0, un

1) be a sequence of initial data which is bounded
in X = H 1

0 (�)× L2(�) and let (un) be the corresponding solutions of the damped wave equation (1-1).
Let (tn) ∈ R be a sequence of times such that tn→+∞ when n goes to +∞.

Then there exist subsequences (uψ(n)) and (tψ(n)) and a global solution u∞ of (1-1) such that

(uψ(n), ∂t uψ(n))(tψ(n)+ . )→ (u∞, ∂t u∞)( · ) in C0([−T, T ], X) for all T > 0.
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Proof. We use the notations of Section 2. Due to the equivalence between the norm of X and the energy
given by (2-1) and the fact that the energy is decreasing in time, we know that Un(t) is uniformly bounded
in X with respect to n and t ≥ 0. So, up to taking a subsequence, it weakly converges to a limit U∞(0)
which gives a global solution U∞. We notice that, due to the continuity of the Cauchy problem with
respect to the initial data stated in Theorem 2.2, it is sufficient to show that Uψ(n)(tψ(n))→U∞(0) for
some subsequence ψ(n). We have

Un(tn)= eAtn Un(0)+
∫ tn

0
es A F(Un(tn − s)) ds

= eAtn Un(0)+
btnc−1∑

k=0

ek A
∫ 1

0
es AF(Un(tn − k− s)) ds+

∫ tn

btnc
es A F(Un(tn − s)) ds

= eAtn Un(0)+
btnc−1∑

k=0

ek A Ik,n + In. (4-2)

Theorem 2.2 shows that the Strichartz norms ‖un(tn − k− . )‖Lq ([0,1],Lr (�)) are uniformly bounded since
the energy of Un is uniformly bounded. Therefore Corollary 4.2 and Proposition 2.3 show that the terms
In,k =

∫ 1
0 es A F(Un(tn− k− s))ds, as well as In , are bounded by some constant M in H 1+ε(�)× H ε(�)

uniformly in n and k. Using Proposition 2.3 again and summing up, we get that the last terms of (4-2)
are bounded in H 1+ε(�)× H ε(�) uniformly in n by∥∥∥∥∥

btnc−1∑
k=0

ek A Ik,n + In

∥∥∥∥∥
X ε

≤

btnc−1∑
k=0

Ce−λk M +M ≤ M
(

1+
C

1− e−λ

)
.

Moreover, Proposition 2.3 shows that eAtn Un(0) goes to zero in X when n goes to +∞. Therefore, by a
diagonal extraction argument and the Rellich theorem, we can extract a subsequence Uψ(n)(tψ(n)) that
converges to U∞(0) in H 1

0 (B)× L2(B) for all bounded set B of �.
To finish the proof of Proposition 4.3, we have to show that this convergence holds in fact in X and not

only locally. Let η> 0 be given. Let T > 0 and let Ũn be the solution of (1-1) with Ũn(0)=Un(tn−T ) and
with γ being replaced by γ̃ , where γ̃ (x)≡ γ (x) for large x and γ̃ ≥α> 0 everywhere. By Proposition 2.6,
‖Ũn(T )‖X ≤ η if T is chosen sufficiently large and if n is large enough so that tn − T > 0. Since the
information propagates at finite speed in the wave equation, Un(tn) ≡ Ũn(T ) outside a large enough
bounded set and thus Uψ(n)(tψ(n)) has a X norm smaller than η outside this bounded set. On the other
hand, we can assume that the norm of U∞(0) is also smaller than η outside the bounded set. Then,
choosing n large enough, ‖Uψ(n)(tψ(n))−U∞(0)‖X becomes smaller than 3η. �

The trajectories U∞ appearing in Proposition 4.3 are trajectories which are bounded in X for all times
t ∈R. The following result shows that these special trajectories are more regular than the usual trajectories
of the damped wave equation.

Proposition 4.4. Let f ∈ C1(R) satisfying (1-2) and let E0 ≥ 0. There exists a constant M such
that if u is a solution of (1-1) that exists for all times t ∈ R and satisfies supt∈R E(u(t)) ≤ E0, then
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t 7→U (t)= (u(t), ∂t u(t)) is continuous from R into D(A) and

sup
t∈R

‖(u(t), ∂t u(t))‖D(A) ≤ M.

In addition, M depends only on E0 and the constants in (1-2).

Proof. We use a bootstrap argument. For any t ∈ R and n ∈ N,

U (t)= en AU (t − n)+
n−1∑
k=0

ek A
∫ 1

0
es A F(U (t − k− s)) ds.

Using Proposition 2.3, when n goes to +∞, we get

U (t)=
+∞∑
k=0

ek A
∫ 1

0
es A F(U (t − k− s)) ds. (4-3)

Moreover, arguing exactly as in the proof of Proposition 4.3, we show that Proposition 2.3 and Corollary 4.2
imply that (4-3) also holds in X ε. Hence, U (t) is uniformly bounded in X ε. Then, using again
Proposition 2.3 and Corollary 4.2, (4-3) also holds in X2ε, and so on. Repeating the arguments and noting
that, until the last step, ε only depends on p, we obtain that U (t) is uniformly bounded in X1

= D(A).
Since the constant C of Corollary 4.2 only depends on f through estimate (1-2), the same holds for

the bound M here. �

Proposition 4.5. The Sobolev embedding H 2(�) ↪→ C0(�) holds and there exists a constant K such that

sup
x∈�
|u(x)| ≤ K‖u‖H2 for all u ∈ H 2(�).

In particular, the solution u in the statement of Proposition 4.4 belongs to C0(�×R,R) and

sup
(x,t)∈�×R

|u(x, t)| ≤ KM.

Proof. Proposition 4.5 follows directly from the fact that � has a bounded geometry and from the classical
Sobolev embedding H 2 ↪→ C0 in the ball B(0, 1) of R3. �

5. Smoothness and uniqueness of nondissipative complete solutions

In this section, we consider only a nondissipative complete solution, that is, a solution u∗ existing for all
times t ∈ R for which the energy E is constant. In other words, u∗(t) solves

∂2
t t u
∗
=1u∗−βu∗− f (u∗)

u∗(x, t)= 0
∂t u∗(x, t)= 0

(x, t) ∈�×R,

(x, t) ∈ ∂�×R,

(x, t) ∈ supp γ ×R.

(5-1)

Since the energy E is not dissipated by u∗(t), we can write E(u∗) instead of E(u∗(t)). Yet, an interesting
fact that will be used several times in the sequel is that such u∗ is, at the same time, solution of both
damped and undamped equations.

The purpose of this section is:
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• First show that u∗ is analytic in time and smooth in space. The central argument is to use a theorem
of J. K. Hale and G. Raugel [2003].

• Then use the unique continuation result of L. Robbiano and C. Zuily stated in Corollary 3.2 to show
that u∗ is necessarily an equilibrium point of (1-1).

• Finally show that the assumption s f (s)≥ 0 implies that u∗ ≡ 0.

We point out that the first two steps are valid and very helpful in a more general framework than the
one of our paper.

Smoothness and partial analyticity of u∗. First we recall here the result of Section 2.2 of [Hale and
Raugel 2003], adapting the statement to suit our notations:

Theorem 5.1. Let Y be a Banach space. Let Pn ∈ L(Y ) be a sequence of continuous linear maps and let
Qn = Id−Pn . Let A : D(A)→ Y be the generator of a continuous semigroup et A and let G ∈ C1(Y ). We
assume that V is a complete mild solution in Y of

∂t V (t)= AV (t)+G(V (t)) for all t ∈ R.

We further assume that:

(i) {V (t), t ∈ R} is contained in a compact set K of Y .

(ii) For any y ∈ Y , Pn y converges to y when n goes +∞ and (Pn) and (Qn) are sequences of L(Y )
bounded by K0.

(iii) The operator A splits as A = A1+ B1, where B1 is bounded and A1 commutes with Pn .

(iv) There exist M and λ > 0 such that ‖eAt
‖L(Y ) ≤ Me−λt for all t ≥ 0.

(v) G is analytic in the ball BY (0, r), where r is such that r ≥ 4K0 supt∈R ‖V (t)‖Y . More precisely,
there exists ρ > 0 such that G can be extended to an holomorphic function of BY (0, r)+ i BY (0, ρ).

(vi) {DG(V (t))V2 |t ∈ R, ‖V2‖Y ≤ 1} is a relatively compact set of Y .

Then the solution V (t) is analytic from t ∈ R into Y .

More precisely, Theorem 5.1 is Theorem 2.20 (which relates to Theorem 2.12) of [Hale and Raugel
2003] applied with hypotheses (H3mod) and (H5).

Proposition 4.4 shows that u∗ is continuous in both space and time variables. We apply Theorem 5.1
to show that because f is analytic, u∗ is also analytic with respect to the time.

Proposition 5.2. Let f ∈ C1(R) satisfying (1-2) and let E0 ≥ 0. Let K and M be the constants given
by Propositions 4.4 and 4.5. Assume that f is analytic in [−4KM, 4KM]. Then for any nondissipative
complete solution u∗(t) solving (5-1) and satisfying E(u∗)≤ E0, t 7→ u∗( · , t) is analytic from R into Xα

with α ∈ (1/2, 1). In particular, for all x ∈�, u∗(x, t) is analytic with respect to the time.

Proof. Theorem 5.1 uses strongly some compactness properties. Therefore, we need to truncate our
solution to apply the theorem on a bounded domain (of course, this is not necessary and easier if � is
already bounded).
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Let χ ∈ C∞0 (�) be such that ∂χ/∂ν = 0 on ∂�, χ ≡ 1 in {x ∈�, γ (x)= 0} and suppχ is included
in a smooth bounded subdomain O of �. Since Proposition 4.4 shows that u∗ ∈ C0(R, D(A)) and since
u∗ is constant with respect to the time in supp γ , (1−χ)u∗ is obviously analytic from R into D(A). It
remains to obtain the analyticity of χu∗.

In this proof, the damping γ needs to be more regular than just L∞(�). We replace γ by a damping
γ̃ ∈ C∞(�), which has the same geometrical properties (GCC) and (1-3) and which vanishes where γ
does. Notice that γ ∂t u∗ ≡ 0≡ γ̃ ∂t u∗, therefore replacing γ by γ̃ has no consequences here.

Let v = χu∗, we have{
∂2

t tv+ γ̃ (x)∂tv =1v−βv+ g(x, v) (x, t) ∈ O×R+,

v(x, t)= 0 (x, t) ∈ ∂O×R+,
(5-2)

with g(x, v)=−χ(x) f (v+ (1−χ)u∗(x))− 2(∇χ ∇u∗)(x)− (u∗1χ)(x). We apply Theorem 5.1 with
the following setting: Let Y = Xα

= H 1+α(O)∩H 1
0 (O)×Hα

0 (O) with α ∈ (1/2, 1). Let V = (v, ∂tv) and
let G(v)= (0, g(., v)). We set

A = A1+ B1 =

(
0 Id

1−β 0

)
+

(
0 0
0 −γ̃

)
.

Let (λk)k≥1 be the negative eigenvalues of the Laplacian operator on O with Dirichlet boundary conditions
and let (ϕk) be corresponding eigenfunctions. We set Pn to be the canonical projections of X on the
subspace generated by ((ϕk, 0))k=1,...,n and ((0, ϕk))k=1,...,n .

To finish the proof of Proposition 5.2, we only have to check that the hypotheses of Theorem 5.1 hold.
The trajectory V is compact since we know by Proposition 4.4 that it is bounded in X1, which gives (i).
Hypothesis (ii) and (iii) hold with K0 = 1 by construction of Pn and because B1 is bounded in Y since

γ̃ belongs to C∞(�). Hypothesis (iv) follows from Proposition 2.3.
We recall that u∗(x, · ) is constant outside χ−1(1) and belongs locally to H 1+α since u∗ ∈ D(A).

Therefore, the terms (1 − χ)u∗(x), ∇χ ∇u∗ and u∗1χ appearing in the definition of g are in H 1.
Moreover, they satisfy Dirichlet boundary condition on ∂� since u∗ ≡ 0 and ∂νχ ≡ 0 there. Of course,
they also satisfy Dirichlet boundary condition on the other parts of ∂O since χ ≡ 0 outside O. Notice that
α > 1/2 and thus H 1+α(O)∩ H 1

0 (O) is an algebra included in C0. Therefore (1-2) shows that G is of
class C1 in the bounded sets of Y . Since u ∈ [−4KM, 4KM] 7→ f (u) ∈ R is analytic, it can be extended
to a holomorphic function in [−4KM, 4KM] + i[−ρ, ρ] for small ρ > 0. Using again the embedding
H 1+α(O) ↪→ C0(O) and the definitions of K and M , we deduce that (v) holds.

Finally, for V2 = (v2, ∂tv2) with ‖V2‖Y ≤ 1, DG(V (t))V2 = (0,−χ(x) f ′(v(t)+ (1− χ)u∗(x))v2)

is relatively compact in Y since v(t) is bounded in H 2
∩ H 1

0 due to Proposition 4.4 and therefore
v2 ∈ H 1+α

7→ χ(x) f ′(v(t)+ (1−χ)u∗(x))v2 ∈ Hα is a compact map. This yields (vi). �

Once the time-regularity of u∗ is proved, the space-regularity follows directly.

Proposition 5.3. Let f and u∗ be as in Proposition 5.2. Then u∗ ∈ C∞(�×R).
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Proof. Proposition 5.2 shows that u∗ and all its time-derivatives belong to Xα with α ∈ (1/2, 1). Due to
the Sobolev embeddings, this implies that any time-derivative of u∗ is Hölder continuous. Writing

1u∗ = ∂2
t t u
∗
+βu∗+ f (u∗) (5-3)

and using the local elliptic regularity properties (see [Miranda 1970] and the references therein), we get
that u∗ is locally of class C2,λ in space for some λ ∈ (0, 1). Thus, u∗ is of class C2,λ in both time and
space. Then we can use a bootstrap argument in (5-3) to show that u∗ is of class C2k,λ for all k ∈ N. �

Identification of u∗. The smoothness and the partial analyticity of u∗ shown in Propositions 5.2 and 5.3
enable us to use the unique continuation result of [Robbiano and Zuily 1998].

Proposition 5.4. Let f and u∗ be as in Proposition 5.2. Then u∗ is constant in time, i.e., u∗ is an
equilibrium point of the damped wave equation (1-1).

Proof. Setting v = ∂t u∗, we get ∂2
t tv = 1v − βv − f ′(u∗)v. Propositions 5.2 and 5.3 show that u∗ is

smooth and analytic with respect to the time and moreover v≡ 0 in supp γ . Thus, the unique continuation
result stated in Corollary 3.2 yields v ≡ 0 everywhere. �

The sign assumption on f directly implies that 0 is the only possible equilibrium point of (1-1).

Corollary 5.5. Let f ∈ C1(R) satisfying (1-2) and let E0 ≥ 0. Let K and M be the constants given by
Propositions 4.4 and 4.5 and assume that f is analytic in [−4KM, 4KM]. Then the unique solution u∗ of
(5-1) with E(u∗)≤ E0 is u∗ ≡ 0.

Proof. Due to Proposition 5.4, u∗ is solution of 1u∗ − βu∗ = f (u∗). By multiplying by u∗ and
integrating by parts, we obtain

∫
�
|∇u∗|2+β|u∗|2 dx =−

∫
�

u∗ f (u∗) dx , which is nonpositive due to
assumption (1-2). Since β ≥ 0 is such that 1−β is negative definite, this shows that u∗ ≡ 0. �

6. Proof of Theorem 1.1

Due to Proposition 2.5, Theorem 1.1 directly follows from the following result.

Proposition 6.1. Let f ∈ C1(R) satisfy (1-2) and let E0 ≥ 0. Let K and M be the constants given by
Propositions 4.4 and 4.5. Assume that f is analytic in [−4KM, 4KM] and that γ is as in Theorem 1.1.
Then there exist T > 0 and C > 0 such that any u solution of (1-1) with E(u)(0)≤ E0 satisfies

E(u)(0)≤ C
∫∫
[0,T ]×�

γ (x) |∂t u|2 dtdx .

Proof. We argue by contradiction: we assume that there exists a sequence (un) of solutions of (1-1) and a
sequence of times (Tn) converging to +∞ such that∫∫

[0,Tn]×�

γ (x) |∂t un|
2 dtdx ≤ 1

n
E(un)(0)≤

1
n

E0. (6-1)

Set αn = (E(un)(0))1/2. Since α ∈ [0,
√

E0], we can assume that αn converges to a limit α when n goes
to +∞. We distinguish two cases: α > 0 and α = 0.
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First case. αn→ α > 0. Notice that, due to (2-1), ‖(un, ∂t un)(0)‖X is uniformly bounded from above and
from below by positive numbers. We set u∗n = un(Tn/2+ . ). Due to the asymptotic compactness property
stated in Proposition 4.3, we can assume that u∗n converges to a solution u∗ of (1-1) in C0([−T, T ], X)
for all time T > 0. We notice that

E(un(0))≥ E(u∗n(0))= E(un(0))−
∫∫
[0,Tn/2]×�

γ (x) |∂t un|
2
≥ (1− 1/n)E(un(0))

and thus E(u∗(0))= α2 > 0. Moreover, (6-1) shows that γ ∂t u∗n converges to zero in L2([−T, T ], L2(�))

for any T > 0 and thus ∂t u∗ ≡ 0 in supp γ . In other words, u∗ is a nondissipative solution of (1-1), i.e., a
solution of (5-1) with E(u∗)= α2

≤ E0. Corollary 5.5 shows that u∗ ≡ 0, which contradicts the positivity
of E(u∗(0)).

Second case. αn→ 0. The assumptions on f allow to write f (s)= f ′(0)s+ R(s) with

|R(s)| ≤ C(|s|2+ |s|p) and |R′(s)| ≤ C(|s| + |s|p−1). (6-2)

Let us make the change of unknown wn = un/αn . Then wn solves

�wn + γ (x)∂twn + (β + f ′(0))wn +
1
αn

R(αnwn)= 0 (6-3)

and ∫∫
[0,Tn]×�

γ (x) |∂twn|
2 dtdx ≤ 1

n
. (6-4)

Set Wn = (wn, ∂twn). Due to the equivalence between norm and energy given by (2-1), the scaling
wn = un/αn implies that ‖(wn(0), ∂twn(0))‖X is uniformly bounded from above and from below by
positive numbers. Moreover, (6-1) implies

‖Wn(t)‖X =
‖(Un(t))‖X

αn
≥ C

E(un(t))1/2

αn
≥ C

(E(un)(0)−α2
n/n)1/2

αn
≥

C
2
> 0 (6-5)

for any t ∈ [0, Tn] and n large enough.
We set fn = 1/αn R(un) and Fn = (0, fn). The stability estimate of Theorem 2.2 implies that
‖un‖Lq ([k,k+1],Lr ) ≤ Cαn uniformly for n, k ∈ N. In particular, combined with (6-2), this gives

‖ fn‖L1([k,k+1],L2) =

∥∥∥ 1
αn

R(αnwn)

∥∥∥
L1([k,k+1],L2)

≤ C(αn +α
p−1
n ).

We can argue as in Proposition 4.3 and write

Wn(Tn)= e ÃTn Wn(0)+
bTnc−1∑

k=0

e Ã(Tn−k)
∫ 1

0
e− Ãs Fn(k+ s) ds

+ e Ã(Tn−bTnc)

∫ Tn−bTnc

0
e− Ãs Fn(bTnc+ s) ds, (6-6)

where Ã is the modified damped wave operator

Ã =
(

0 Id
1−β− f ′(0) −γ

)
.
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Notice that e Ãt decays exponentially, like eAt in Proposition 2.3, since (1-2) implies f ′(0) ≥ 0. By
summing up as in Proposition 4.3, we get

‖Wn(Tn)‖X ≤ Ce−λTn +C(αn +α
p−1
n ),

which goes to zero, in a contradiction with (6-5). �

As a direct consequence of Proposition 6.1, we obtain a unique continuation property for nonlinear
wave equations. Notice that the time of observation T required for the unique continuation is not explicit.
Thus, this result is not so convenient as a unique continuation property. But it may be useful for other
nonlinear stabilization problems as �u+ γ (x)g(∂t u)+ f (u)= 0.

Corollary 6.2. Let f ∈ C1(R) satisfy (1-2) and let E0 ≥ 0. Assume that f is analytic in R and that ω is
an open subset of � satisfying (GCC). Then there exist T > 0 such that the only solution u of{

�u+βu+ f (u)= 0 on [−T, T ]×�,
∂t u ≡ 0 on [−T, T ]×ω,

(6-7)

with E(u)(0)≤ E0 is u ≡ 0.

Proof. Corollary 6.2 is a straightforward consequence of Proposition 6.1 since we can easily construct a
smooth damping γ supported in ω and such that supp γ satisfies (GCC). We only have to remark that a
solution u of (6-7) is also solution of (1-1). �

7. Proof of Theorem 1.2

Before starting the proof of Theorem 1.2 itself, we prove that C1(R) is a Baire space, that is, that any
countable intersection of open dense sets is dense. This legitimizes the genericity in C1(R) as a good
notion of large subsets of C1(R). We recall that C1(R) is defined by (1-6) and endowed by the Whitney
topology, the open sets of which are generated by the neighborhoods Nf,δ defined by (1-7).

Proposition 7.1. The space C1(R) endowed with the Whitney topology is a Baire space.

Proof. The set C1(R) is not an open set of C1(R), and neither a submanifold. It is a closed subset of
C1(R), but C1(R) endowed with the Whitney topology is not a completely metrizable space, since it is
not even metrizable (the neighborhoods of a function f are not generated by a countable subset of them).
Therefore, we have to go back to the basic proof of Baire property as in [Golubitsky and Guillemin 1973].

Let U be an open set of C1(R) and let (On)n∈N be a sequence of open dense sets of C1(R). By
density, there exists a function f0 ∈ C

1(R) in U∩O0 and by openness, there exists a positive continuous
function δ0 such that the neighborhood Nf0,δ0 is contained in U ∩ O0. By choosing δ0 small enough,
one can also assume that Nf0,2δ0 ⊂U∩O0 and that supu∈R |δ0(u)| ≤ 1/20. By recursion, one constructs
similar balls Nfn,δn ⊂Nfn−1,δn−1 ⊂Nf0,δ0 such that Nfn,2δn ⊂U∩On and that supu∈R |δn(u)| ≤ 1/2n . Since
C1([−m,m],R) endowed with the uniform convergence topology is a complete metric space, the sequence
( fi ) converges to a function f ∈ C1(R,R) uniformly in any compact set of R. By construction, the limit
f satisfies

max
(
| f (u)− fn(u)|, | f ′(u)− f ′n(u)|

)
≤ δn(u) < 2δn(u) for all n ∈ N and all u ∈ R, (7-1)
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as well as f (0)= 0 and u f (u)≥ 0 since any fn satisfies (1-2). Moreover, there exist C > 0 and p ∈ [1, 5)
such that f0 satisfies

| f0(u)| ≤ C(1+ |u|)p and | f ′0(u)| ≤ C(1+ |u|)p−1. (7-2)

Since max(| f (u)− f0(u)|, | f ′(u)− f ′0(u)|)≤ δ0(u)≤ 1, f also satisfies (7-2) with a constant C ′=C+1.
Therefore, f satisfies (1-2) and thus belongs to C1(R). In addition, f satisfying (7-1) and Nfn,2δn being
contained in U∩On , we get f ∈U∩On for all n. This shows that ∩n∈NOn intersects any open set U and
therefore is dense in C1(R). �

Proof of Theorem 1.2. We denote by Gn the set of functions f ∈ C1(R) such that the exponential decay
property (ED) holds for E0 = n. Obviously, G=∩n∈NGn and hence it is sufficient to prove that Gn is an
open dense subset of C1(R). We sketch here the main arguments to prove this last property.

Gn is a dense subset. Let N be a neighborhood of f0 ∈ C
1(R). Up to choosing N smaller, we can assume

that the constant in (1-2) is independent of f ∈ N. Due to Propositions 4.4 and 4.5, there exist constants
K and M such that, for all f ∈ N, all the global nondissipative trajectories u of (1-1) with E(u)≤ n are
such that ‖u‖L∞(�×R) ≤KM . We claim that we can choose f ∈N as close to f0 as wanted such that f
is analytic on [−4KM, 4KM] and still satisfies (1-2). Then Proposition 6.1 shows that f satisfies (ED)
with E0 = n, i.e., that f ∈Gn .

To obtain this suitable function f , we proceed as follows. First, we set a = 4KM and notice that it is
sufficient to explain how we construct f in [−a, a]. Indeed, one can easily extend a perturbation f of
f0 in [−a, a] satisfying f (s)s ≥ 0 to a perturbation f̃ of f0 in R, equal to f0 outside of [−a− 1, a+ 1]
and such that f (s)s ≥ 0 in [−a− 1, a+ 1]. We construct f in [−a, a] as follows. Since f0(s)s ≥ 0, we
have that f ′0(0)≥ 0. We perturb f0 to f1 such that f1(0)= 0, f ′1(s)≥ ε > 0 in a small interval [−η, η]
and s f1(s) ≥ 2ε in [−a,−η] ∪ [η, a], where ε could be chosen as small as needed. Then we perturb
f1 to obtain a function f2 which is analytic in [−a, a] and satisfies f ′2(s) > 0 in [−η, η], s f2(s)≥ ε in
[−a,−η] ∪ [η, a] and | f2(0)|< ε/a. Finally, we set f (s)= f2(s)− f2(0) and check that f is analytic
and satisfies s f (s)≥ 0 in [−a, a]. Moreover, up to choosing ε very small, f is as close to f0 as wanted.

Gn is an open subset. Let f0 ∈ Gn . Proposition 2.3 shows the existence of a constant C and a time T
such that for all solution u of (1-1),

E(u(0))≤ E0 H⇒ E(u(0))≤ C
∫ T

0

∫
�

γ (x)|∂t u(x, t)|2dxdt. (7-3)

The continuity of the trajectories in X with respect to f ∈ C1(R) is not difficult to obtain: using the
strong control of f given by Whitney topology, the arguments are the same as the ones of the proof of
the continuity with respect to the initial data, stated in Theorem 2.2. Thus, (7-3) holds also for any f in a
neighborhood N of f0, replacing the constant C by a larger one. Therefore, Proposition 2.3 shows that
N⊂Gn and hence that Gn is open. �
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8. A proof of compactness and regularity with the usual arguments of control theory

In this section, we give an alternative proof of the compactness and regularity properties of Propositions 4.3
and 4.4. We only give its outline since it is redundant in light of the previous results of the article. Moreover,
it is quite similar to the arguments of [Dehman et al. 2003]. Yet the arguments of this section are interesting
because they do not require any asymptotic arguments and they show a regularization effect through an
observability estimate with a finite time T , which can be explicit. However, for the moment, it seems
impossible to obtain an analytic regularity similar to Proposition 5.2 with these kind of arguments.

Instead of using a Duhamel formula with an infinite interval of time (−∞, t) as in (4-3), the main
idea is to use as a black box an observability estimate for T large enough, T being the time of geometric
control condition,

‖U0‖
2
X s ≤ C‖Bet AU0‖

2
L2([0,T ],X s)

, (8-1)

where

A =
(

0 Id
1−β −γ

)
and B =

(
0 0
0 −γ

)
.

The first aim is to prove that a solution of (5-1), globally bounded in energy, is also globally bounded
in X s for s ∈ [0, 1]. We proceed step by step. First, let us show that it is bounded in X ε.

• We fix T > large enough to get the observability estimate (8-1). By the existence theory on each
[t0, t0 + T ], u|[t0,t0+T ] is bounded in Strichartz norms, uniformly for t0 ∈ R. Since the nonlinearity is
subcritical, Corollary 4.2 gives that f (u) is globally bounded in L1([t0, t0+ T ], H 1+ε).

• We decompose the solution into its linear and nonlinear part by the Duhamel formula,

U (t)= eA(t−t0)U (t0)+
∫ t

t0
eA(t0−τ) f (U (τ )) dτ =Ulin+UNlin.

Since f (u) is bounded in L1([t0, t0+ T ], H 1+ε), UNlin is uniformly bounded in C([t0, t0+ T ], X ε).

• We will now use the linear observability estimate (8-1) with s = ε, applying it to Ulin:

‖U (t0)‖2X ε = ‖Ulin(t0)‖2X ε ≤ C
∫ t0+T

t0
‖γ (x)∂t ulin‖

2
H ε . (8-2)

Then, using the triangular inequality, we get∫ t0+T

t0
‖γ (x)∂t ulin‖

2
H ε ≤ 2

∫ t0+T

t0
‖γ (x)∂t u‖2H ε + 2

∫ t0+T

t0
‖γ (x)∂t uNlin‖

2
H ε

≤ 2
∫ t0+T

t0
‖γ (x)∂t uNlin‖

2
H ε ≤ C,

where we have used that ∂t u ≡ 0 on ω and that UNlin is bounded in C([t0, t0+ T ], X ε). Combining this
with (8-2) for any t0 ∈ R, we obtain that U is uniformly bounded in X ε on R.
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Repeating the arguments, we show that u is bounded in X2ε, X3ε and so on, until X1. Similar ideas
allow us to prove a theorem of propagation of compactness in finite time, replacing the asymptotic
compactness property of Proposition 4.3.

As said above, an advantage of this method, compared to the one used in Propositions 4.3 and 4.4, is
that it allows us to propagate the regularity or the compactness on some finite interval of fixed length.
Yet, it seems that such propagation results are not available in the analytic setting. Indeed, it seems that,
for nonlinear equations, the propagation of analytic regularity or of nullity in finite time is much harder
to prove. We can for instance refer to the weaker (with respect to the geometry) result of Alinhac and
Métivier [1984] or the negative result of Métivier [1993].

9. Applications

Control of the nonlinear wave equation. In this subsection, we give a short proof of Theorem 1.3, which
states the global controllability of the nonlinear wave equation. The first step consists in a local control
theorem.

Theorem 9.1 (local control). Let ω satisfying the geometric control condition for a time T . Then there
exists δ such that for any (u0, u1) in H 1

0 (�)× L2(�) with

‖(u0, u1)‖H1
0×L2 ≤ δ

there exists g ∈ L∞([0, T ], L2) supported in [0, T ]×ω such that the unique strong solution of{
�u+βu+ f (u)= g on [0, T ]×�,
(u(0), ∂t u(0))= (u0, u1),

satisfies (u(T ), ∂t u(T ))= (0, 0).

Proof. The proof is exactly the same as that of Theorem 3 of [Dehman et al. 2003] or Theorem 3.2
of [Laurent 2011]. The main argument consists in seeing the problem as a perturbation of the linear
controllability, which is known to be true in our setting. �

Now, as is very classical, we can combine the local controllability with our stabilization theorem to get
global controllability.

Sketch of the proof of Theorem 1.3. In a first step, we choose as a control g = −γ (x)∂t ũ, where ũ is
solution of (1-1) with initial data (u0, u1). By uniqueness of solutions, we have u = ũ. Therefore, thanks
to Theorem 1.1, for a large time T1, only depending on R0, we have ‖(u(T1), ∂t u(T1))‖H1×L2 ≤ δ. Then
Theorem 9.1 allows to find a control that brings (u(T1), ∂t u(T1)) to 0. In other words, we have found a
control g supported in ω that brings (u0, u1) to 0. We obtain the same result for (ũ0, ũ1) and conclude,
by reversibility of the equation, that we can also bring 0 to (ũ0, ũ1). �

Existence of a compact global attractor. In this subsection, we give the modification of the proofs of
this paper necessary to get Theorem 1.4 about the existence of a global attractor.
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The energy associated to (1-9) in X = H 1
0 (�)× L2(�) is given by

E(u, v)=
∫
�

1
2(|∇u|2+ |v|2)+ V (x, u) dx,

where V (x, u)=
∫ u

0 f (x, ξ) dξ .
The existence of a compact global attractor for (1-9) is well known for the Sobolev subcritical case

p < 3. The first proofs in this case go back to 1985 [Hale 1988; Haraux 1985b]; see [Raugel 2002]
for other references. The case p = 3 as been studied in [Babin and Vishik 1992; Arrieta et al. 1992].
For p ∈ (3, 5), Kapitanski [1995] proved the existence of a compact global attractor for (1-9) if � is a
compact manifold without boundary and if γ (x)= γ is a constant damping. Using the same arguments
as in the proof of our main result, we can partially deal with the case p ∈ (3, 5) with a localized damping
γ (x) and with unbounded manifold with boundaries.

Assume that f satisfies the assumption of Theorem 1.4. Then the arguments of this paper show the
following properties.

(i) The positive trajectories of bounded sets are bounded. Indeed, (1-12) implies that for x 6∈ B(x0, R), we
have V (x, u)=

∫ u
0 f (x, ξ)dξ ≥ 0. Moreover, for x ∈ B(x0, R), V (x, · ) is nonincreasing on (−∞,−R)

and nondecreasing on (R,∞). Thus, V (x, u) is bounded from below for x ∈ B(x0, R) and

E(u, v)≥ 1
2‖(u, v)‖

2
X + vol(B(x0, R)) inf V for all (u, v) ∈ X

The Sobolev embeddings H 1(�) ↪→ L p+1(�) show that the bounded sets of X have a bounded energy.
Since the energy E is nonincreasing along the trajectories of (1-9), we get that the trajectory of a bounded
set is bounded.

(ii) The dynamical system is asymptotically smooth. The asymptotic compactness exactly corresponds
to the statement of Proposition 4.3. Let us briefly explain why it can be extended to the case where f
depends on x . The key point is the extension of Corollary 4.2. First notice that we assumed f (x, 0)= 0
on ∂� in order to guarantee the Dirichlet boundary condition for f (x, u) if u ∈ H 1

0 (�). Then it is not
difficult to see that the discussion following Theorem 4.1 can be extended to the case f depending on x
by using estimates (1-10). Corollary 4.2 follows then, except for a small change: since it is possible that
f (x, 0) 6= 0 for some x ∈�, the conclusion of Corollary 4.2 should be replaced by

‖ f (x, v)‖L1([0,T ],H s+ε
0 (�)) ≤ C

(
1+‖v‖L∞([0,T ],H s+1(�)∩H1

0 (�))

)
.

Then the proof of Proposition 4.3 is based on Corollary 4.2, the boundedness of the positive trajectories
of bounded sets (both could be extended to the case where f depends on x as noticed above) and
an application of Proposition 2.6 outside of a large ball. We conclude by noticing that, for x large,
f (x, u)u ≥ 0 and γ (x)≥ α > 0 and thus Proposition 2.6 can still be applied exactly as in the proof of
Proposition 4.3.

(iii) The dynamical system generated by (1-9) is gradient. That is, that the energy E is nonincreasing in
time and is constant on a trajectory u if and only if u is an equilibrium point of (1-9). This last property is
shown in Proposition 5.4 for f independent of x but can be easily generalized for f = f (x, u). Notice that
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the proof of this property is the one where the analyticity of f is required since the unique continuation
property of Section 3 is used. Finally, we remark that the gradient structure of (1-9) is interesting from
the dynamical point of view since it implies that any trajectory u(t) converges when t goes to +∞ to the
set of equilibrium points.

(iv) The set of equilibrium points is bounded. The argument is similar to the one of Corollary 5.5: if e is
an equilibrium point of (1-9) then (1-12) implies that∫

1
2 |∇e|2+β|e|2 =−

∫
�

f (x, e)e dx ≤− vol(B(x0, R)) inf{ f (x, u)u | (x, u) ∈�×R},

where we have bounded f (x, u)u from below exactly as we have done for V (x, u) in (i).

It is well known (see [Hale 1988] or Theorem 4.6 of [Raugel 2002]) that properties (i)–(iv) yield the
existence of a compact global attractor. Hence, we obtain the conclusion of Theorem 1.4.
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