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DYNAMICAL IONIZATION BOUNDS FOR ATOMS

ENNO LENZMANN AND MATHIEU LEWIN

We study the long-time behavior of the 3-dimensional repulsive nonlinear Hartree equation with an
external attractive Coulomb potential —Z/|x|, which is a nonlinear model for the quantum dynamics of
an atom. We show that, after a sufficiently long time, the average number of electrons in any finite ball is
always smaller than 4Z (2Z in the radial case). This is a time-dependent generalization of a celebrated
result by E.H. Lieb on the maximum negative ionization of atoms in the stationary case. Our proof
involves a novel positive commutator argument (based on the cubic weight |x|*) and our findings are
reminiscent of the RAGE theorem.

In addition, we prove a similar universal bound on the local kinetic energy. In particular, our main
result means that, in a weak sense, any solution is attracted to a bounded set in the energy space, whatever
the size of the initial datum. Moreover, we extend our main result to Hartree—Fock theory and to the linear
many-body Schrodinger equation for atoms.

1. Introduction and main result

Rigorous attempts to answer the question How many electrons can a nucleus bind? have appeared in
the literature over the last decades [Ruskai 1981; 1982; Sigal 1982; 1984; Lieb 1984; Lieb et al. 1988;
Solovej 1991; 2003; Nam 2012]. So far, the question has only been addressed in a time-independent
setting, that is, the absence of bound states was shown when the number of electrons in the atom is too
large. In the present paper we shall rigorously formulate and provide an answer to a similar question in
the time-dependent setting: How many electrons can a nucleus keep in its neighborhood for a long time?

Our main purpose is therefore the rigorous understanding of the long-time behavior of atoms. We
shall prove, for instance, that, in the Hartree approximation, a nucleus of charge Z cannot bind in a
time-averaged sense more than 4Z electrons (2Z in the radial case). In particular, we will recover some
of the known time-independent results (nonexistence of bound states), but by different arguments. One
key ingredient in our paper turns out to be a new commutator estimate leading to a novel monotonicity
formula, which may be of independent interest for both linear and nonlinear Schrodinger equations.

As a model for the quantum dynamics of an atom, let us first consider the time-dependent nonlinear
Hartree equation with an external Coulomb potential:
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i%u(t,x):( A—ﬂ+|u| >x<|—1|>u(t x),

u(0, x) = up(x) € H'(R?).

(1-1)

Here u(t, x) describes the quantum state of the electrons (which are treated as bosons for simplicity) in
an atom [Hartree 1928a; 1928b; Slater 1930]. The terms in the parentheses are, respectively, the kinetic
energy operator of the electrons, the electrostatic attractive interaction with the nucleus of charge Z, and
the mutual repulsion between the electrons themselves (in units such that m =2 and i = e = 1). The
total number of electrons in the system is a conserved quantity, which is given by

/ |u(t,x)|2dx:/ luo(xX)|>dx =: N
R3 R3

In physical applications, the number N is an integer, but it is convenient to allow any positive real number
here. Note that, in Section 4 below, we will also consider the physically more accurate Hartree—Fock
model as well as the full many-body Schrédinger equation describing atoms. But for the time being, we
deal with the Hartree equation.

The nonlinear equation (1-1) and many variations thereof have been studied extensively in the literature.
The existence of a unique strong global-in-time solution to (1-1) with an initial datum uo € H'(R?) goes
back to Chadam and Glassey [1975]. Their argument is based on a fixed point argument combined with
the conservation of the Hartree energy, defined by

2 2
€ (1) :=/ |Vu(x)|2dx—Z/ uCl”, / / Ju@POE dy. (1-2)
R3 Ry |x] wlw  x—yl

In fact, the global well-posedness result for (1-1) can be extended to initial data in L*(R%); see, for
instance, [Hayashi and Ozawa 1989; Castella 1997]. However, in what follows, we will always assume
that ug lies in the energy space H'(R3) so that its corresponding energy is well-defined.

When Z < 0, the solution u#(¢) to the Hartree equation (1-1) exhibits a purely dispersive behavior,
which has been studied by many authors. Here, some works were devoted to the understanding of the
dispersive effects for any initial datum [Glassey 1977a; Dias and Figueira 1981; Hayashi and Ozawa
1987; Hayashi 1988; Gasser et al. 1998; Sanchez and Soler 2004], whereas several others dealt with the
construction of (modified) scattering [Ginibre and Velo 1980; Ginibre and Ozawa 1993; Hayashi et al.
1998; Hayashi and Naumkin 1998; Ginibre and Velo 2000a; 2000b; Lépez and Soler 2000; Wada 2001;
Nakanishi 2002].

In this paper, we are interested in the physically more relevant case when Z > 0 holds, which corresponds
to having an external attractive long-range potential due to the presence of a positively charged atomic
nucleus. The electrons can (and will) now be bound by the nucleus, and the problem of understanding the
long-time behavior of solutions is much more delicate. For instance, it was already noticed by Chadam
and Glassey [1975, Theorem 4.1] that the solution u(¢) cannot tend to zero in L™ (R?) as t — oo for
negative energies €z (ug) < 0, which can occur if Z > 0 holds.

When Z > 0, there exist nonlinear bound states that are solutions of (1-1) taking the simple form
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it where u € H'(R?) solves the nonlinear eigenvalue equation

Z ,
—A— — +|ul"* — Ju=Au. (1-3)
|x] | x|

For any fixed 0 < N < Z, it is known that (1-3) has infinitely many solutions such that fR3 |u|> = N.

u(x)e”

Moreover, there is a unique positive solution, which minimizes the Hartree energy (1-2) [Lieb and Simon
1977; Bader 1978] subject to N fixed, and the other (sign-changing) solutions can be constructed by
min-max methods [Wolkowisky 1972/73; Stuart 1973; Lions 1981]. The interpretation of the condition
0 < N < Z is that the atom is neutral (if N = Z) or positively ionized (if N < Z). In this situation, it
is not energetically favorable to send a positive fraction of L2-mass u > 0, say, to spatial infinity, since
the remaining charge is Z — (N — u) > 0 positive and thus attractive far away from the origin. A more
precise mathematical statement is that the Palais—Smale sequences with a bounded Morse index cannot
exhibit a lack of compactness when N < Z, and this implies the existence of infinitely many critical
points [Berestycki and Lions 1983; Lions 1987; Ghoussoub 1993].

It is known that there are bound states in the case of negative ionization, that is, when N > Z holds.
By [Lieb 1981, Theorem 7.19] (see also [Benguria 1979; Benguria et al. 1981]), there is a minimizer of
the Hartree functional for N slightly larger than Z. However, it is physically clear that there should not
be any bound state when N is too large compared to Z, because a given nucleus is not expected to bind
too many electrons compared to its nuclear charge. In [Benguria 1979; Lieb 1981; 1984], it was proved
that there exists a universal critical constant 1 < y, < 2 such that (1-3) has no solution for N > y.Z, but
has at least one for N < y.Z. That y, is independent of Z follows from a simple scaling argument.

Let us now collect some basic facts about the set of solutions of the time-independent problem (1-3).
For any u € H'(R?), the self-adjoint operator

Z , 1
—A— — +|ul"x—
|x| |x|
has no positive eigenvalue, by the Kato—Agmon—Simon theorem [Reed and Simon 1978, Theorem XIII.58].
This shows that, necessarily, A < 0 in (1-3). Furthermore, we can derive an upper bound on ||Vu||2
which only depends on Z as follows. If u € H'(R?) solves (1-3), then, by taking the scalar product with
u, we find that

2
ux
/ |Vu<x>|2dx<2/ WO e < Z0Vull ol o
R3 RS x|

Here we have used the inequality

/ MO e < min S s [ IVUR ) = g 192
R3 |x| z>0 2 R3 22 R3

which follows from the value of the hydrogen ground state energy, inf Spec(—A /2 — z|x|~!) = —z%/2.
We conclude that any solution u € H L(R3?) to (1-3) must satisfy the bound

/3 VP <y 2.
R
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Recalling that fR3 lu|*> < y.Z, we conclude that the set of all stationary states
Az :={u e HI(IR3) : u solves (1-3) for some A < 0} (1-4)

is bounded in H'(R?). Elementary arguments show that {7 is weakly compact in H 1(R3). But we note
that the set s{ is not compact in the strong H'-topology.

Supported by physical reasoning and rigorous results in linear scattering theory about asymptotic
completeness (see Remark 2 below), it is common belief for infinite-dimensional Hamiltonian systems
such as (1-1) that any of its solutions should behave for large times as a superposition of one or several
states getting closer to the global attractor sz, plus a dispersive part. This is what has already been
shown for Z < 0, in which case sdz = {0}. Not much is known in this direction for nonlinear Schrédinger
equations [Tao 2007; 2008], and solving this problem (also known as soliton resolution) constitutes a
major mathematical challenge. For the Hartree equation (1-1) studied in this paper, the situation is even
less clear because of possible modified scattering due to the long-range effects of the Coulomb potential.
We can, however, formulate a simpler (but weaker) conjecture as follows.

Conjecture 1 (the global attractor). Let u(¢) be the unique solution to the Hartree equation (1-1) for
some ug € H'(R?). Take any sequence of times #, — oo such that u(z,) — u, weakly in H'(R?). Then
Uy € ﬂz.

Remark 2 (the many-body Schrodinger case). Let us recall that the Hartree equation (1-1) is a nonlinear
approximation of the linear many-body Schrodinger equation
N
a z 1
i—‘I‘(t)=( (_Ax-__)+ —)\I/(t),
ot ; Tl K,;@, |k — x| (1-5)
W(0) = ¥y € H'((RHN).

Contrary to the Hartree case where we can allow N = fR3 |u|?> to take any positive real value, the
number N of electrons must of course be an integer for (1-5). The Hartree equation (1-1) is obtained by
constraining the solution W (#) to stay on the manifold of product states of the form W (¢, x1, ..., xy) =
¥(t, x1) X --- x (¢, xy) and using the Dirac-Frenkel principle. Then u(t) = VN Y (t) solves (1-1). Let
us remark that (1-5) can be rewritten after a simple rescaling as

19 N 1 1 1
lﬁaw(t):(z(_Axf_W)Jrf 2 ka—le)\y(t)’ (1-6)

Jj=1 1<k<t<N
W (0) =¥ e H (RHV).

Thus the limit of large N — oo with N /Z fixed corresponds to the usual mean-field limit. In this regime,
Hartree’s theory is known to properly describe (bosonic) atoms, both for ground states [Benguria and
Lieb 1983] and in the time-dependent case [Erd6s and Yau 2001; Bardos et al. 2000]. See also [Schlein
2008; Frohlich and Lenzmann 2004] for a review on mean-field limits and the Hartree approximation.
The many-body equation (1-5) looks complicated, but it has the advantage of being linear. In particular,
the RAGE theorem tells us that the only possible nonzero weak limits of W (¢) when t — oo are bound
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states of the Hamiltonian H (/) in the parentheses [Ruelle 1969; Amrein and Georgescu 1973/74; Enss
1978; Reed and Simon 1979]. This is not a very precise description of the solution for large times because
if some particles stay close to the nucleus while other escape to infinity, we will always get W (¢) — 0
weakly in H!(R3*V); see [Lewin 2011]. However, asymptotic completeness is known to hold for the
linear evolution equation (1-5). This exactly says that any solution W (¢) is, in an appropriate sense, a
superposition of bound states of the operators H (k) with 1 < k < N and of scattering states [Derezifiski
1993; Sigal and Soffer 1994; Hunziker and Sigal 2000]. Because of the behavior of the underlying
many-body system, it is reasonable to believe that the same should be true for the Hartree equation (1-1).

A somewhat weaker property that would follow from Conjecture 1 (at least for (1-7)) is that, for large
times, the local mass of any solution has to be smaller than y.Z.

Conjecture 3 (asymptotic number of electrons and kinetic energy). Let u(¢) be the unique solution to
the Hartree equation (1-1) for some uo € H'(R?). Then

limsup/ lu(t, x)>dx < sup [ |ul>=v.Z (1-7)
t—o0 J|x|<r uesdz JR3
and
limsup/ IVu(t, x)>dx < sup | |Vul* <y.Z> (1-8)
t—00 lx|<r uesdy JR3
for all » > 0.

The upper bound y, Z? is certainly not optimal here. In physical terms, the conjecture says that whatever
the number of electrons we start with (and whatever their kinetic energy), we will always end up with at
most . Z electrons having a universally bounded total kinetic energy. The other electrons have to scatter
because the attraction of the nucleus with positive charge Z is not strong enough to keep all the electrons
in its neighborhood. It could be that proving the weaker Conjecture 3 is not much easier than proving the
stronger Conjecture 1. We actually have very little information on y,.

In this paper, we are interested in Conjecture 3. We will prove a time-averaged version of (1-7), with
. replaced by 2 in the radial case, and by 4 in the general case. Our main result is as follows.

Theorem 4 (long-time behavior of atoms in Hartree theory). Suppose Z > 0, let uy be an arbitrary initial
datum in H'(R3), and denote by u(t) the unique solution of (1-1). Then, for any R > 0, we have the

estimate
2 2
2VKNR
—/ dt/ 2 \4Z+— (1-9)
R 1+|x|2/R2 7T
with
N = / ol
R3
and
Ki=sup | IVu(@)]> < Z>N + 2] Vuol| 32 gy + NI Vaoll 2@y - (1-10)

>0
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In particular, we have

1 T
limsup—/ dt/ dx|u(t, x)|> <4Z (1-11)
0 |x|<r

T—o0

for every r > 0. Similarly, we have the following estimate on the local kinetic energy:

[Vu(t,x)|? A 2z lu(t,x)|> 2RVK~N
_/ d’/Rs <1+|x|/R>2<(_+ ) / /R Trepet

Therefore

1 T
limsup—/ dt/ dx|Vu(t, x)|> < Z° (1-13)
T—o00 0 [x|<r
for everyr > Q.

If the initial datum uy = uo(|x|) is radial, u(t) is radial for all times and the same estimate (1-9) holds
true with 4Z replaced by 2Z. Similarly, the estimate (1-13) holds true with Z3 replaced by 73 2.

Note that we do not exactly get that the limiting mass is < 4Z for large times, but we only know it
in the sense of time averages of the form (f)r = T~ fOT f dt. Such a statement is reminiscent of the
celebrated RAGE theorem [Ruelle 1969; Amrein and Georgescu 1973/74; Enss 1978; Reed and Simon
1979] for linear time evolutions generated by self-adjoint operators. The constants in the error terms
of (1-9) and (1-12) are probably not optimal at all, but they are displayed here to emphasize that our
method can provide simple and explicit bounds. However, we have not tried to optimize these constants
too much.

In the radial case, we are able to get the same numerical value of 2 as the best known estimate on ..
However, we use a virial-type argument that seems to be quite different from Lieb’s celebrated proof
[1984] in the stationary case (which, for radial solutions, goes back to [Benguria 1979]). In particular,
our approach provides an alternative proof of the fact that y, < 2 in the stationary radial case.

Strategy of the proof. Now we explain the main ideas used in the proof of Theorem 4. To this end, we
start by quickly recalling Lieb’s proof [1984] that y. < 2 holds. His idea is to take the scalar product of
the stationary Hartree equation (1-3) with |x|u(x), leading to the estimate

B 3 2 2
<M’ lx[(=A) +( A)leu>_ZN+/ (x4 yDlu) " lu(y)l dx dy <0,
RS JR3

2 2x =yl

using that A < 0 holds. To conclude, it suffices to notice that we have

|x|(_A)+(_A)|x| =|X|l/2 A |x|1/2>0’
2 4|x|?

by Hardy’s inequality, and that
x| + 1yl >
lx —yl
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by the triangle inequality. Combining these estimates, we obtain that —ZN + N2/2 < 0, which implies
the bound N < 2Z for the stationary problem (1-3). (Note that the inequality is strict, since there is no
optimizer in Hardy’s inequality.)

In view of Lieb’s argument for the stationary problem (1-3), it appears to be a viable strategy in the
time-dependent setting to consider the quantity M(¢) = f |x||u(z, x)|? dx (or some spatially localized
version thereof). Indeed, if we take the second time derivative of M(¢), we are (formally) led to the
well-known Morawetz—Lin—Strauss estimate for nonlinear Schrodinger (NLS) equations, which has proved
to be of enormous value in the setting of NLS equations with purely repulsive interactions. However,
due to presence of the attractive term —Z/|x| with Z > 0 in the Hartree equation (1-1), the use of the
classical Morawetz—Lin—Strauss bounds does not yield any dispersive information about u(¢, x), even in
the case when N is large compared to Z.

In our situation, it turns out that it is more natural to study the time evolution of the third moment
M@t)= [ |x|u(t, x)|> dx. If we compute its second time derivative, we obtain

3a’t2/ |x| lu(t, x)| dx—j(u(t) Au(t)) = 2§h<£u(t) Au(t)>
= (@), i[-A, Alu(®)) + (u@), i[Vy, Alu(?))

with A := —i(V-x|x|+ |x|x-V) and V, = —Z|x|~" + |u|? % |x|~'. This is the same as multiplying
the time-dependent equation (1-1) by Au(¢) and taking the imaginary part. Our key observation is the
positivity of the commutator

i[—A, Al=—1[A[A, xP11 >0 (1-14)

(see also (2-6) below), combined with the fact that

(u(®), i[Vi, Alu(t)) = —2/ x|x - VV, (0 [ue(2, %)

/ /(IXIX—Iny) E |3Iu(t ) lu(t, y)|*dxdy —2ZN
>KkNZ—2ZN,

where x = 1 if u(¢) is radial and x = % otherwise (see Lemma 9 below). Hence, when N > 2Z/k, we
deduce the lower bound

3dt2/ x|} |u(z, x)? dx— d (u(t) Au(t)) 2 NkN —-2Z) > 0. (1-15)

Therefore the quantity ng lx3lu(t, x)|> dx grows at least like 12 for large ¢ and in particular (u(t), Au(t))
is a monotone increasing quantity. This growth is a strong indication that some dispersion takes place and
some particles have to escape to infinity. (A regularized version of the previous estimate will indeed show
this claim for any H !-solution.) Note also that, in the time-independent case when u is a nonlinear bound
state (and hence the left side in (1-15) must be zero), this is also a new proof of Lieb’s inequality y, < 2
in the radial setting, since k = 1 holds under this symmetry assumption.
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Let us generally remark that virial or positive commutator arguments are very common in the literature
[Killip and Visan 2008; Colliander et al. 2003]. When |x|? is replaced by |x|, this leads to the famous
Morawetz inequalities [1968], as already mentioned, whereas the case of |x|? gives the virial identity
used by Glassey [1977b] to prove finite-time blowup for NLS equations. Tao [2008] advocated the use of
|x|* for some nonlinear Schrodinger equations in dimension d > 7 in order to get a universal bound on
the mass of the solution. We are not aware of any use of the multiplier |x|? in the literature.

In fact, using the cubic weight |x|? is rather natural from a dimensional point of view in our situation:
if the potential term [V, A] should be O (1), the virial function must behave like the third power of a
length to compensate the Laplacian and the Coulomb potential.

For the proof of our main result, we will in fact derive a whole class of double commutator estimates
of the same kind as (1-14), which we think is of independent interest too. In particular, we will show
in (2-6) below that, in any dimension d > 1, we have the commutator bound

—[A, 1A, 1xIP1] = B(B+d —4)(d - B)Ix|P, (1-16)

provided that 8 > max(1, 4 —d). Note that the right side is > 0 when 8 < d. In spite of the fact that (1-16)
turns out to be equivalent to a general version of Hardy’s inequality, we have not found it explicitly
written (let alone systematically treated) in the literature. Notice that the bound (1-16) contains the usual
inequalities for § =1, 2, as well as Tao’s estimate for § = 4. In the present application, we shall use
(1-16) in dimension d = 3 with 8 = 3, or rather a regularized version thereof. However, the positivity of
this commutator does not directly follow as in the “classical” cases when 8 =1, 2. To wit, ford = 8 =3,
a calculation (which will be detailed below) yields the identity

3 3 24 T
—[A A, 1xPP]] = —AAJx]P = V - (Hess )V = e 12V - [|x|(1 + @ 0,)]V,
where w, = x/|x| denotes the unit vector in direction x € R3. Obviously, the first term on the right side is
negative definite. Nevertheless, when combined with the second term, the generalized Hardy’s inequality
(see (2-7) below) shows that the whole right-hand side is indeed nonnegative, and hence the estimate
(1-16) follows in the particular case d = 8 = 3.

Ultimately, we are interested in general H '-solutions u(¢) without imposing any spatial weight condition.
Therefore, the strategy of proving Theorem 4 explained above needs to be further refined. In particular,
the desired bound (1-9) on a ball of radius R cannot be obtained by only looking at the second derivative
of the third moment as we have just explained. Our method to extend (1-9) to any H !-valued solution
u(t) is to replace the function |x|> by a radial function fz(|x|) which behaves like |x|3 on the ball of
radius R and like |x| at infinity. This will imply that A ;, = —i[A, fr] defines a bounded operator from
H'(R?) to L*(R?). Furthermore, we will need to derive a sufficiently good lower bound on the double
commutator —[A, [A, fr]] in order to imitate the previous argument on the ball only. In Section 2, we
explain how to do this for a general function f. Finally, the bound (1-12) on the local kinetic energy is
itself obtained by considering another virial function gz which behaves like |x|? on the ball of radius R
and like |x| at infinity. The complete proof of Theorem 4 is given in Section 3.
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Extensions: Hartree—Fock and many-body Schriodinger theory. In physical reality electrons are fermions,
which means that the many-body wave function W = W (¢, x1, ..., xy) in (1-5) must be antisymmetric
with respect to exchanges of its spatial variables xi, ..., xy. The Hartree state (¢, x1) - - - ¥ (¢, xy) is
symmetric, and it is therefore not allowed for physical electrons. This is why one speaks about bosonic
atoms. The simplest product-like antisymmetric wave function is a Hartree—Fock state, sometimes also
called a Slater determinant:

1
W(t, x1,...,XN) = ﬁgg e(@)ur(t, xoy) -~ un(t, Xony)s  (Uj, k) ;2 = 8.
N
In Section 4.1 below, we extend Theorem 4 to the corresponding time-dependent Hartree—Fock equations;
see Theorem 13 for a precise statement. Finally, we also consider the full many-body Schrédinger equation
(1-5) in Section 4.2 below, where our findings are summarized in Theorem 15.

2. Estimating the commutator —[A, [A, f(x)]]

Throughout this section, we use the convenient notation
p:=—iV,

and, in particular, we have p?> = —A in what follows. In this section, we investigate how to get lower
bounds for a double commutator of the form —[ p2, [ pz, f(x)]] in general space dimensions d > 1. Such
a double commutator always arises when computing the second derivative of the expectation value of
f(x) in a nonrelativistic system based on the Laplacian. We always assume that f is smooth enough
(possibly only outside of the origin) such that the double commutator can be at least properly interpreted
as a quadratic form on CL‘,’O([Rd) or on Cf,’o(IRd \ {0]).

Our starting point is the well-known formula for the double commutator, which follows from a tedious
but simple calculation:

—[p*, [p?, F()N] = —(AAf)(x) +4p - (Hess f(x))p. 2-1)

Since the Hessian of f appears on the right side, it is natural to restrict to convex functions f. Then the
second term is nonnegative in the sense of operators. One can use this term to control the bi-Laplacian
of f by resorting to Hardy’s trick, which is based on writing

p-(Hess f(x))p=(p+iF(x))-(Hess f(x))(p —iF(x))

+i(p- (Hess f(x)) F(x) — F(x) - (Hess f(x))p) — F(x) - (Hess f(x)) F(x)
> div(Hess f (x)F (x)) — F(x) - (Hess f(x))F(x) (2-2)

for any sufficiently smooth real vector field F : R> — R>. Here we have only used that (p + i F(x)) -
(Hess f(x))(p —iF(x)) = 0 holds, which simply follows from the assumed convexity Hess f(x) > 0
and the self-adjointness (p +i F'(x))* = p —i F (x). For dimensional reasons, it is natural to take F' of
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the form F (x) = ax|x|~2 with some constant & € R. We thus obtain the lower bound

—[p* [p*, )]l =4 <p+za| |2> (Hessf(x))( —ia |%)

T
+ 4 diV(Hess F(x) |2> 4022 (Hﬁjf(x))x — (AAS)(x)
T
> 4 diV(Hess f(x)i> gep X ST e (2-3)
|x|2 |x|4

for a sufficiently smooth convex function f and any o € R. By using Hardy’s trick we are able to obtain a
lower bound which does not contain the differential operator p. Our estimate only involves a multiplication
operator. By varying o, we can try to make the negative part of this function as small as possible.

Let us now restrict ourselves to a radial function f(|x|) and use the notation r = |x| and w, := x/|x|
for simplicity. Some tedious calculations show that

Hess f(|x]) = (1 — w )

d1V<(Hess f(x))| |2) =div<
x"(Hess f(x))x _ f"(r)

xf T

ol f'(r),
() > VAR f"(r)
wy | = )
r r2

[’
r

+(d—-2)

Moreover, we recall the formula for the Bi-Laplacian of a radial function:

(3) ©) ’
f ()—i-(d—l)(d 3)f ) (d—l)(d—3)fr(3r).

AAf(xD = fP ) +2(d —
Therefore we can rewrite the equality in (2-3) for a radial function f as

—[p* 1P, fUxD]]

:4(p+ia&) . ((1 —wyw!) f/r( Wy, f”(r))( — la%) — 90

(3) _ _ 1%
+4(a—d71>f r(r) 4<a(d—2)—a2—(d 1)4(d 3))f()+(d f(r). (2-4)

The operator on the first line is > 0 when x — f(|x|) is convex. In dimension d = 3, we already get a
simple estimate.

Lemma 5 (a lower bound for d = 3). Let f : [0, 00) — R be a convex nondecreasing function such that
X > f(4)(|x|) e Ll (R3). Then we have

loc

—[pz,[p%fﬂxnn:4<p+i%)-((1—wxw,{) 24 waf”(r)>< ) FO(xD

>—fD(x) (2-5)

in the sense of quadratic forms on C2° (R3).
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Proof. Take @ = 1 in (2-4). Il

Coming back to (2-4) and taking now the convex function f(|x|) = |x|# with 8 > 1, we obtain the
following general result.

Lemma 6 (estimate on —[p?, [p?, |x|f1]). Forall B > max(1, 4 — d), we have

—[p* [p* 1xIP11 = B(B+d — 4)(d — B)|x|P~* (2-6)

in the sense of quadratic forms on C° (R?) (or on cx (R4 \{0}) if B =4 —d). The right side of (2-6) is
nonnegative for max(1,4 —d) < g <d.

Proof. Take f(r) = r? in (2-4) and optimize with respect to « (the optimum is o = (8 +d — 4)/2). We
need B > 1 to make sure that f is nondecreasing and convex, and 8 > 4 — d to ensure that all the terms
are in Llloc([Rd). For B =4 —d > 1, the right side of (2-4) vanishes and the bound stays correct by a
simple limit argument. We remark that, in the borderline case 8 =4 — d, there is a positive §-measure
occurring at the origin x = 0, which we do not see when using functions of Cfo([Rd \ {0}). O

Remark 7. From (2-1) we immediately get the special formula —[ pz, [ pz, [x]?]1 =8 p2 > 0, valid in any
dimension d > 1. For d > 3 and 8 = 2, the lower bound given in Lemma 6 is then a direct consequence
of Hardy’s inequality 4p® > (d —2)?|x|~2. In fact, we shall see below that the bound in Lemma 6 is
equivalent to a generalized version of Hardy’s inequality.

We conclude this section with some general observations. First, we note that Lemma 6 gives a
nonnegative lower bound in (2-6) in dimension d = 2 for the choice 8 = 2 only. In higher dimensions
d > 3, the right side is nonnegative for any 1 < 8 < d. When 8 = 4, we get the simple lower bound

—[p?, [p% 1x|*] = 4d(d —4) ford >

which was used for the first time by Tao [2008].
As we have seen, the bound (2-6) is equivalent to the operator inequality

<p+ioz&> ((1— f( ) a)xa);f”(r))<p—ioz&> >0
r r
with f(r) = rP. This can also be written for the optimal « = (B +d —4)/2 as
/ P2 (1PEVU@) P+ (B 1) |- Vato) + EEE=2 >0,
Rd 2le

where PL =1 —w,w! is the projection on the two-dimensional space orthogonal to w,. Saying that the
second term is nonnegatlve is equivalent, for 8 > 1, to the (generalized) Hardy inequality

i (B+d—4y i
[l VP d > T/R P4 o) dx. 2-7)

Hence we see that (2-6) is nothing else but a reformulation of Hardy’s inequality (2-7).
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Remark 8 (fractional Laplacians). Using the integral representation

(70 00
xezsm(n )/ ol s?lds for0 <0 <1,
T 0o X+s

we can easily transpose most of our estimates to fractional powers |p 1% = (=AY and (p)* = (|p|*+1)?
with 6 € (0, 1). For instance, for the pseudorelativistic kinetic energy operator / p2 + 1, we have, at least
formally,

Vi A V142 F0]]
1 I

R I *© 2 2
_n2/0 */Eds/o ‘/;dt<1+p2+s)(1+p2+z)( P T O T a2

In particular, we find

~[V1+p [V1+p% 1xIF]] = 0

for max(1,4 —d) < B < d. For a general convex radial function f and in d = 3 dimensions, we obtain
the estimate

V1402 [V1+ 0% £0xD]] = =51 P o

with ff) denoting the positive part of f®.

3. Proof of Theorem 4

In this section, we provide the proof of our main result given by Theorem 4. We always assume that the
initial datum u( is smooth and decays fast enough, such that our calculations are justified. As we will see
below, our estimates only involve the H' (R3) norm of uy, and thus the general case can be obtained by a
simple limiting argument, which we do not detail here.

Proof of Theorem 4. Step I: the virial identity. Consider a smooth radial convex function f. We define
the corresponding virial operator

Api=p-Vf+Vf-p=p o f(xD)+ fxDoyp. (3-1)
Using (2-5), we get
d 1), A t
5 @, Agu) 2
=4 [ EEPipivu o dcra [ fo Vuton + S0 ax
RS x| R3 x|

—/ f<4>(|x|)|u<z,x>|2dx—2/ FAxDlu(t, X)Pwe-V Vi (t, x)dx, (3-2)
R3 IR3
with

Z 5 1 Z
Vu(t, x) = N + lu @) x| = o + W, x).
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The first potential term is just

=3 f/<|x|>|u<r,x>|2wx-V<—£)dx=—22/ LD 6, 0.
R3 | x| R3S |x]

The second potential term can be expressed as

—2/ F(xDu(t, x)Pwy - VW, (¢, x) dx
RS

—2/ / f(IXI)wx- |3Iu(t X)Pluz, y)I* dx dy
(fUxDwx = fryDwy) - (x —y)
=/ S xDenx f S e, 1P lute, )P dx dy,
R3 JR3 lx =yl
where in the last line we have just exchanged the role of x and y. Inserting in (3-2), we arrive at the
expression
d t,
St Ay =4 [ f('x')uﬂv P4 [ G o Ve, + 40 lx) dx

—/W FOUxD|u(, x)|> dx —2Z R3f(||2|)| (t, x)| dx

/ (f'(xDwx — f'(yDwy) - (x = y)
+
R3 JR3 Ix —yP?

lu(t, )| |u(t, y)|*dxdy. (3-3)

For dimensional reasons, it is natural to take f(|x|) = |x|?/3. The following lemma allows us to deal
with the last potential term in this special case.

Lemma 9 (lower bound on the nonlinear term for f(r) = r3/ 3). We have

(x oy — y)Pwy) - x=y

|X _ y|3 / 2 (3'4)
forall x # y € R3. In the radial case we have
20 vl ) (r —
][ (Ix[“wx — 1yl a)y) (x—1y) do, da)y -1 (3-5)
2 Js2 lx —yI3

where JESZ dw, = (4m)~! f 52 dwy denotes the (normalized) angular integration.
Proof. We compute

(xPox = yPoy) x—y) P+ =0+ oo, 1+ — u+u?)o
lx —yP? T (242 —2rswy wy)2 (14 u? —2ub)

with x =rw,, y = sw,, u := min(r, s) max(r, s)~1e0, 1], and 0 := w, -wy € [—1, 1]. Differentiating
with respect to 6, we find

d (1+ud—wu+u?o u(l+u)u? +(1—u)(2—u))—9u2(1+u)
_<(1+u2 2u9)3/2> (1+u?—2ub)5
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We have u? 4+ (1 —u)(2 — u) = u +2(u — 1)?> > u and therefore the numerator is nonnegative for u > 0

and 6 € [—1, 1]. We conclude that the minimum is attained for 6 = —1. The value is
1+u3+u+u2: _ 2u S 1
(14u)? (I4+u?” %

where the minimum is attained for # = 1. All in all, we find that

(xPoy —|yPoy) - =y

= 2

x —y]?
as was claimed. In the radial case we find by explicit integration

(Ix]Pwx — [yloy) - (x —y) 1 M1 +ud—u+uo
do,dw, = = d
52 s lx —y[3 2 )1 (1 +u?—2u6)3?

=1 g

For f(r) =r3/3, the previous estimates give
d
——(u(t), Aru(t))

dt
tv
:4/ |x||ij(z,x)|2dx+8/ x| u(t, %)
R3 R3

wy - Vu(t,x)+ ———
x|
where k = 1 in the radial case and x = % otherwise. If u is a stationary state, the left side is independent
of ¢ and this is a new proof that N <4Z (N < 2Z in the radial case) for bound states. Equation (3-6) is
a new monotonicity formula for the Coulombic Hartree equation, when N > 4Z (N > 2Z in the radial

2
dx +kN*>—=2ZN, (3-6)

case).

Step 2: the localized virial estimate. We now use a localized virial estimate, which means that we choose
a virial function fz which behaves like |x|?/3 on a ball of radius R and like |x| at infinity. We will take
fr of the form

fr(xD) =R f(Ix|/R)
for
f(@r)=r —arctanr, (3-7)

which we have chosen to have

]”(r):i:l— ! .
1472 1472

(3-8)

Clearly, the first derivative f’ is nondecreasing and positive. Hence x — f(|x|) is a convex function on
R3. The following lemma gathers some important properties of f, which are the ‘localized’ equivalent of
Lemma 9 above.

Lemma 10 (the virial function f). Let f be as in (3-7). We have

(f"(xDwx = f'(yDwy) - (x = y) > 1f'0xD f'AyD (3-9)
Ix —y? 2 |x2 Iyl
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forall x # y € R3. In the radial case, we get

][ (f'(xDwx — f(yDwy) - (x =) don do
52 /s lx —y[3
_ f'(max(lx], [yD) _ 1 _ f0xD fAyD
max(|x|, [yD? — 14+max(x|2, [y[>) = |x]2  |y]?

Proof. As in Lemma 9, we write

(f'(xDox — f'(yDwy) - (x —y)  rf'(r)+sf'(s) =0 f' (r) +rf'(s))
lx —y|3 B (r2 4 s —2rs6)3/2

with r = |x|, s = |y|, and 6 = w, - wy € [—1, 1]. Differentiating with respect to 6, we find

r(2rr —s?) f'(r) 4+ s(2s* —r?) f'(s) — Ors(sf'(r) +rf'(s))
(r2 +s2—2rsh)3/2 ’

1197

(3-10)

(3-11)

Since f’ > 0, the numerator is positive for 0 < 6. and negative for 0 > 0.. Regardless of whether
6. € [—1, 1] or not, the minimum of the function in (3-11) is attained at & = 1. For 6 = —1, we find

')+ f'(s) B r2 452+ 2r%s?
r+s)? A+ 450 +5)7

Now we remark that
r? 452 +2r%s? 1 N (r —s)>+4r%s? S 1
(r+s)?2 2 20r +5)2 T2

and therefore
KGRSO I
(r+s)2 72041452’

For 6 =1, we find

lf'(r) = () r2(1 453 —s2(1 +7r2)| _r+s f1(r) f(s)
(r —s)?2 T 0+)A+sDr =952 |r—s| 2 s2

We have, with u = min(r, s) max(r, s) !,

r+s 14u 2u
= +

r—s| 1—u l—u’

We conclude that
(f'(xDwx = f'(yDwy) - (x = y) <1 fAxD fAyD

> 1
x —y]? 2oxP P

for all x # y € R?, as was stated.
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In the radial case we have to compute the integral over the angle explicitly. We use the notation
r- :=min(r, s) and r~ := max(r, s), and we get

][ (f"(xDwx = f'(IyDwy) - (x = y)
5252

Ix—yP?

do,dw,

1 /1 ) +5f'6) = 0GF ) +rf'6)
2/, (r2 452 —2rs0)3/2
) +sfi) 1 /1 i 1 @+ 1 /1 " 0
B r3 2/ (I+u?—-2up)3? r3 2 /-0 (1 +u?—2up)’?
_rff+sfis) 1 f @) +sf) u
N r3 1 —u? r3 1 —u?
1
:—(r>f/(r>)—|—r<f/(r<)—(r<f/(r>)—i—r>f/(r<))r</r>)

r>(r§—ri)

1 "(rs
e [ =2y = L0

r>(r§_ri) >

This calculation is valid for an arbitrary radial differentiable function f, not just the specific f chosen
above. The proof of Lemma 10 is now complete. U

We apply (3-3) for fg = R3f(-/R) with f given by (3-7). We get the expression

d
o 1), Agpu(®)

u(t, x) 2

|x|

wy - Vu(t,x)+ dx

=4R/ ijwu,x)ﬁdxﬂle/ £"(1x|/R)
R3 R3

|x|

R?f'(|x|/R)

P lu(t, x)|* dx

—l/ f(4)(|X|/R)|u(t,x)|2dx—ZZ/
R R3

R3
+R2/ (f"(xl/ Ry — f'(Iyl/Rwy) - (x = y)
R3 JR3

: lu(t, x)[lu(t, y)|*dx dy. (3-12)
|x =yl

We now define the localized mass by

JrUxD

Mp(t) = |x|2

1
lu(t, x)|* dx = /3 HR—_2|x|2|u(t,x)|2dx. (3-13)
R

Using (3-9) (or (3-10) in the radial case), we get the lower bound
d 1 ) 2 2
5(u(t), Afu(t)) = . S Ux/ R u(t, x)|”"dx —2ZMg(t) + kMg () (3-14)
R

with « = 1 in the radial case and x = % otherwise. Finally we remark that

1—r? r3 3 1)
O =24 > 24— 1 >1)>— =3
77w ATE=T (1+4r2)* =D 1+r2 r
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(the best numerical constant is 1.33 instead of 3) and we get our final lower bound

%(u(r), Apu()) > — <2z + %)MR (1) + Kk Mg (1), (3-15)

To conclude our proof of (1-9), we average (3-15) over a time interval [0, 7] and use Jensen’s inequality,

1T > 1T 2

— Mrt)“dt > | = Mgp(t)dt) ,

T/o r(1) (T/o r(1) )
to get

. _ T 2 T
<”(T)’AfR“(T)>T w(©, A 0) ZK(%/ MR(t)dt) —(22+3/R)<%/ MR(t)dt). (3-16)
0 0

Note that
(@), Ageu®)] = [(u@). (p-V fr(x) +V fr(x]) - Pu@)| <2VEVN| frlle =2VKVN R,
since sup, o f'(r) = 1, and where we recall that K = sup, |[Vu(t)|| ;2. In summary, we conclude that

1 T 2 1 T R2
K(—/ MR(t)dt) —(2Z+3/R)<—/ MR(t)dt> <4vKN—.
T Jo T Jo T

Using /14 u < 1+ u/2, this implies

1 [T 2Z+3/R 2Z+3/R 16x+/K N R?
7/ Mp(ydr < 223K 2245 \/1+ «
0

2K 2K (2Z+3/R)?T
<2 3 4 /KN R? <2z 3+2«/KNR2

R (2Z+3/RT ~ « R ZT
which ends the proof of (1-9).

Remark 11. Our proof works unchanged for a more general time average based on a positive function u
such that fooo w =1 and u’ is a bounded Borel measure. More precisely, we have the estimate

© u(t)T t, x)|? 27 3 A/KNR? [
/ wu(t/ )dt/ lu(t, x)| <23 / .
0 R 0

T -

——= aX
s1+x2/R2 = kR ZT

For instance, one could take () =e™".

Step 3: estimate on the local kinetic energy. We show here that the kinetic energy also has a universal
upper bound in average, on any ball of radius R. This time, we use a localized virial identity based on the
function

gr(Ix) = R*g(1x|/R),
which behaves like |x|> on By and like |x| at infinity. More precisely, we take

gr)y=r—log(1+r) (3-17)
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which is such that

‘o) r ! 1
r)=——=1-— .
& 1+r 1+r

Clearly g’ is positive and nondecreasing, therefore x — g(|x|) is convex on R3.
We use the lower bound (2-4) with o« = 0 and we get, by the same calculations as before,

i(u@, Agu(t)) =4 / |PEVu(t, x))* +&"(Ix|/R)|w, - Vult, x)|2)dx

(Rg/(|x|/R)
dt R3

|x|

Rg®(Ix|/R)

(g(4)(|x|/R)+4 )Iu(t,x)lzdx

R J x|
Vg(x/R)—Vg(y/R)) - (x —

+R/ (Vg(x/R) g(y/3 ) - (x y)|u(t,x)|2|u(t,y)|2dxdy

R3 JRe lx — yl

Rg'(Ix|/R

—22/ REWVR) ot )P . (3-18)

R3 |x|?

We denote by
|Vu(r, x)I*

. 1 2 frd - - 1. A
Kg(t) := /ng (Ixl/ R Vu(, x)|” dx = w (1+ R-1x|)2

the local kinetic energy. Since x — g(|x|) is convex,
(Vg(x) =Vg(y) - (x—y) =0

for all x, y € R3. Also, we notice that

1 1 _g’(r)_

g'(r)= =
(I+r2 " 14+r r
Finally, we compute
2
By = — <0
g7 (r) TETER
and
!/
2@ () = 6 6 _ SO

(I+r* " 1+r2 12
So we arrive at the estimate

Rg'(IxI/R)

X7 lu(t, x)|* dx. (3-19)

d 6
), Agyu(0) > 4K (1) — = My(s) ~ 27 /[R

In order to control the negative term, we again use Hardy’s trick:
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0< [ ¢ eI/ RITutt.x) + awnutt. 0P dx
R3
= / & xI/R)IVu(t, x) P dx —a / div(oxg"(1x1/R) (e, ) dx + o / & (xl/R)lute, ) dx
R R R
_ " 2 2 /" 2
= | &"(xl/R)Vult, )P dx +e? | g (Ixl/R)lu(t, x)*dx
R R3

1 R

- 2“/ I g/ @ (xI/R)lu(e,x)* dx.
RS |x] R Jgs

Therefore, using that —g® (r) =2(1+r)2 <2(1 +r>)~' =2f'(r)r~% and that g"(r) = (1 +r) 2 <

(1+r3)~" = f/(r)r2, we find

g"(IxI/R) > ! L
/R3 T @ 0P dr < ZKR(t)‘i'(E'i_E)MR(t)'

Coming back to the negative term in (3-18), we write

RO [
/R3 PE lu(t, x)|”dx = . |x|(1—|—|x|/R)|u(t’x)| dx

1 1
lu(t, )P dx +— | —————|u(t, x)|* dx

1
_/R3 lxI(1+ |xI/R)? R Jrs (1+1x]/R)?

< L Kr)+ (3 + E)MR(I).
20 2 R
Inserting in (3-19) gives
i(u(t), Agpu(t)) = (4 — E)KR(I) — Z(a + 4 + i)MR(I). (3-20)
dt a R R?
Taking o = Z /2 leads to
i(u(t), Agpu(t)) = 2Kp(t) — Z(z + 4 + i)MR(t). (3-21)
dr 2 R R?

To conclude our proof, we average over ¢ in an interval [0, T'] using that
(1), Ageu())] <2VKVNligrllim = 2RVK VN,
and we get

1 [T Z 2 3\1 [T 2RV KA/N
— Kedt <Z| =+ =+ = |= Mgt dt + ——~—, 3-22
T/O NG <4+R+R2>T/O R dr+ 2 (322)

which concludes the proof of (1-12).

Step 4: Estimate on K. We end the proof of Theorem 4 by estimating the maximal value K of the kinetic
energy of u(t) in terms of |[ugl| g1, using the conservation of energy.

Lemma 12 (kinetic energy estimate). We have, forallt € R,

IV @) 1725y < Z20l172 ) + 110117 2 sy + 3 140117 2 o | Vato l L2 - (3-23)
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Proof of Lemma 12. By conservation of energy and mass, we find

A

Ez(up) =€z () > (u Az u)+ Hvul? >_Z—2 luol® + 1| Vu|?
zZ\ug) — oz = ) 2 |X| 2 LZ(R3)/ 2 - 0 2 LZ(RIé)s

since —A /2 —Z|x|7' > —2Z2%)2 (hydrogen atom). Next, for x € R3 and u € H'(R?), we note the bound

lu(y)|? . [z 1 / 2
dy < — — \Y% = 3 ||V 3y, 3-24
/R3 X —y] y fg(l)l 2 Js lu|”+ 22 Je [Vul lull 2wy IVull 2 w3 (3-24)

which gives us

2 1 3
%Z(MO) < ”vuO”LZ(Rﬁ) + j”u()”LZ(RS) I|VM0||L2(R3)'

Hence,

2 2 2 2 3
”VMHLZ(RS) <Z ”uO”LZ(RS) + 2||Vu0“L2(R3) + ||u0||L2(R3)||Vu0||L2(R3)'

This concludes the proof of Theorem 4.

4. Extensions: Hartree—Fock and many-body Schrodinger theories

4.1. Hartree—Fock theory. The Hartree—Fock equations describe the nonlinear evolution of a wave
function taking the form of a Slater determinant, that is,

1
V()= — z, e I, X ’
Q) i Z sgn(o)uy(f, Xo1)) - - - uN(t, Xo(N))
(TGGN
where the functions uy, ..., uy model the states of the N electrons. The physical fact that electrons are

fermions is expressed in the Pauli principle given by the orthonormality condition
(uj, u) 2 =3dji.

The Hartree—Fock equations [Lieb and Simon 1977; Chadam 1976; Bove et al. 1976] form a system of N
coupled nonlinear equations similar to (1-1):

.0
l&” = H,u;,
N N 4-1)
Hy=—Av—Zlx|" v+ Juel® s |x]™'v = @) # x| g
k=1 k=1
One simple way to write the same equation is to introduce the one-body density matrix
N
y () = lug) (ugl,
which is the orthogonal projection onto the spacé:slpanned by the functions uy, ..., uy. Then (4-1) is
equivalent to the so-called von Neumann equation,
.0
la_)/ = [Hya V],
! —1 —1 y(tv X, )’) (4_2)
Hyv=—Av—Z|x|" v+ py0 * x| v— —v(y)dy.
R X —yl
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Here p, (x) := y(x, x) is the density associated with the matrix y. The time-dependent equation (4-2)
does in fact make sense for any trace-class operator y such that

0<y <1l and Tr(y)=N

which corresponds to generalized Hartree—Fock states [Bach et al. 1994]. Note that the infinite-rank case
rank y = 400 is also allowed here. We refer to [Chadam 1976; Bove et al. 1976] for the proof of global
well-posedness for (4-2) with initial data such that Tr(1 — A)yy < +00.

The following result is the equivalent of Theorem 4 in the Hartree—Fock case.

Theorem 13 (long-time behavior of atoms in Hartree—Fock theory). Suppose Z > 0 and let yy be an
arbitrary initial datum such that
Tr(1 — A)yp < oo.

Denote by y (t) the unique solution of (4-2). Then we have the estimate

P 2/KNR?
— dt <4Z+1 4-3
/ /Rs 1—|—|x|2/R2 + + + ZT (4-3)
with
N :=Tr(yo)
and
K :=supTr(—A)y (t) < Z*N +2Tr(—A)yo + N>/ Tr(—= A)yp. (4-4)
>0
In particular, we have
1 T
lim sup — / dt/ dxp,H(x) <4Z +1 4-5)
T—o0 [x|<r

for every r > 0. Similarly, we have the following estimate on the local kinetic energy:

1 T (1) () z? 27 3z / / o) 2RVK~NN
/ dt/w (1+|x|/R)2<(4 i3 ) g 1+ |x[2/R2 bt 40

where T, (x) = — Zk:l (Ory or) (x, x) is the density of kinetic energy, and therefore

1 T ZZ
lim sup — / dt / ‘ dxt,H(x) < 7(42 +1) 4-7)
x|<r

T—o0

for everyr > Q.
If the initial datum Yy is radial in the sense that

Yo@Rx, Ry) = yo(x,y) forall x,y € R® and all ® € SO(3),

then y (t) is radial for all times and the same estimates (4-3) and (4-7) hold true with 4Z + 1 replaced by
27 + 1.

The proof of Theorem 13 is very similar to that of Theorem 4, the main new difficulty being the control
of the exchange term. Thus we only explain how to deal with it.
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Sketch of the proof of Theorem 13. First, we consider a sufficiently smooth radial function f = f(|x]).
(Below we will take f = fg, the same as in the proof of Theorem 4.) Differentiating with respect to ¢,
we find p

“Tr(Apy) =i Te((Hy. Asly)

dt
= —Tr([p?, [p?, flly) +iTe([V,, Afly) —i Te((X,, Afly), (4-8)

where V), = —Z|x|7 4 x| % py and X, is the exchange term defined by

(qu><x>=/ YO ) dy.
RS |x — Yl
Note that

ilV,, Af]==2Vf-VV,

is a function (that is, a multiplication operator). Analogous to the Hartree case, we thus obtain
iTr([Vy,Af]w=—2/3py<x)Vf(x)-vvy(x>dx
R

/ V@) -V (x—
:_ZZ/Rs f|)(c||);|)py(t,x)dx+/ (V) =Vi()-(x y)py(x)py(y)dxdy‘

r3 J R lx—y[3

The exchange term is controlled using the following fact.

Lemma 14 (exchange term). Let Tr(1 — A)y < 400 and suppose f : R — R satisfies V f € L™ (R).
Then we have

Vi) =VI)) - (x—
iTr([Xy»Af]V)Z/ VI ZVIOD =0 )P dxay. (4-9)

RS JR3 lx —y[3

Proof. The proof is an explicit computation:

iTr([X,, Afly)
=iTr((Xy, (p-(VHO+ V) -ply)

= +/R3 /R3 X, (x, )V, - (VHOy(y, x)dx dy—/IR3 /[R3 Y, )V - (VX)X (x, y) dx dy
—1—/R3 /W Xy(x,y)(Vf)()’)~Vyy(y,x)dxdy—/[m /W Y (3, X)(V)(x) - Ve X, (x, y) dx dy.
Integrating by parts for the first two terms, we find
iTr([X,, Arly)
=_/R3 /ﬂ_@)/(y,x)(vf)()’)-VyXy(x,y)dxdy—l—/R3 /R X, (e (V@) - Vay (3. x) dx dy
+/R3 /R} Xy(x,y)(Vf)()’)-Vyy(y,x)dxdy—/w /R% Y (3, X)(V)(x) - Ve X, (x, y) dx dy.

Now we use that
va)/ (xv )’) =

1
= Vyy (x, y) +y(x, y)Vy

lx — y]
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and we exchange x and y in the second and fourth integrals. The final result is

P Te([X,, A Ty) = / / |y(x,y>|2<<Vf><y>-vy (VN -V )dxdy
R3 JR3 lx —yl lx —yl
:/ / (VS =TI o, -
R3 JR3 lx —yl

Inserting this in (4-8) gives the following value for the derivative of the expectation value of A ;:

d /
ST =Tt 1 fiiy =22 [ LR ax
\Y% -V (x —
+/Rz /IR3 ) |x f(yyé) S y)(py(x)py(Y)_ I)/(x,y)lz)dxdy. (4-10)

Since f is convex, we have the operator bound

—[p% [P% 1= —FP (D,

which gives

=T 02 1) > =T ) == [ O d

because y > 0. Thus we can argue exactly as in the Hartree case. We start by taking fg given by (3-7)
and define the local mass by

Mg(t) .= . %pym(ﬂdx-

Then we use the bound (3-9), that is,

(VIRG) = VRO - (x —y)

1 Rf'(xI/R) R*f'(1/R)
= yP? "2

|x|? yI?

’

as well as the fact that p, (x)p, (y) = |y (x, y)|? for a.e. x, y € R? (by the Cauchy—Schwarz inequality
and the eigenfunction expansion for y.) This gives

/ (VfrR(x) =V fr(y) - (x =)
R3 JR3

Ix —y?

Mg (1)?
2

(py () py (V) = ly (x, WP dx dy > — I Te(hgyhry).

with hg = sz/(lxl/R)lxl_z. Since 0 <y < 1and 0 < hg < 1, we have hryhg < (hg)*> < hg, and
therefore
Tr(hryhry) <Tr(hry) = Mg(2).

We conclude that
/ (Vi) =Vf(y) -(x—y)
R3 R3

Mg (t)? — Mg(t)
lx—y[3 '

2

(py () py (V) = ly (x, WP dx dy >

The additional term is responsible for the change of 4Z into 4Z + 1. In the radial case, we use (3-10)
instead and we get rid of the factor of % on the left side. The rest of the proof is exactly the same as in
the Hartree case. O
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4.2. Many-body Schridinger equation. Our method also applies to the linear many-body Schrodinger

equation
0
iglp(t) =H(N, Z)¥(1),
al z 1 1
H(N, Z)=Z<—Ax.——>+— Y, — @11
=1 bl 2 1<k£L<N |k — xel

W(0) =Wy e H' (R)Y),

of which the Hartree and Hartree—Fock models are nonlinear approximations.

The Hamiltonian H (N, Z) is self-adjoint and bounded from below on L2(RHM). Tts operator domain
is H2((R*") and its quadratic form domain is H L(RHN). Of particular interest are its restrictions to
the symmetric (bosonic) and antisymmetric (fermionic) subspaces. These are also self-adjoint operators,
denoted, respectively, by Hg(N, Z) and H,(N, Z). In either of these two subspaces, the essential spectrum
of Hy/s(N, Z) is a half line [¥,/5(N, Z), 00) where

2:a/s(Na Z) = infspeC(Ha/s(N —1,2)),

by the HVZ Theorem [Reed and Simon 1978; Cycon et al. 1987]. It is known that there are no positive
eigenvalues [Froese and Herbst 1982], but there might be embedded eigenvalues in [X,/5(N, Z), 0]. There
exists a critical number of particles N /S(Z ) such that H, /(N , Z) has no eigenvalues below ¥, /;(N, Z)
for N > N¢, (Z); see [Ruskai 1982; Sigal 1982; 1984]. For bosons, it is known that

als

NYZ)

C»

lim

Z— Z
where y, >~ 1.21 < y, is the largest number of electrons that ground states can have in Hartree theory
[Benguria and Lieb 1983; Baumgartner 1984; Solovej 1990]. For fermions, it was proved [Lieb et al.
1988] that ‘

lim Na(2) =

Z—soo 72
The best bound valid for all N goes back to [Lieb 1984] and it holds both for bosons and fermions:
N; /S(Z) < 2Z + 1. For fermions, it was improved to

1.

NE(Z) <1227 4+37'3

by Nam [2012].

All the previous authors seem to have only studied when the Hamiltonian H, /s (N, Z) ceases to have
eigenvalues below its essential spectrum. The question of the existence of embedded eigenvalues in
[Z4/s(N, Z), 0] does not seem to have been addressed so far. But this is a relevant problem in the context
of the time-dependent equation. Our method allows us to prove that there are no eigenvalue at all when
N >4Z +1.

Theorem 15 (linear many-body Schrédinger equation). The Hamiltonian H(N, Z) has no eigenvalue
when N > 47 + 1.
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Here we do not distinguish between the different particle statistics. Thus our result applies to all of
L?((R*™) and it deals with all possible symmetries. We, however, conjecture that the largest N such
that H,/;(N, Z) can have eigenvalues behaves like N /S(Z) for large Z.

Proof. Let W € H?((R*)™) be an eigenfunction of H(N, Z) and let fz(|x|) = R? f(|x|/R) be as in (3-7).
Then we write

N N
0 :<\IJ, i (H(N, 2)Y (Ap)e; — > (Ag)y H(N, Z)>\p>

j=1 j=1

N N
; Z 1 1
=) (W,ilph (A 1IW) =2) (W, Vir(x) -V [ —— 43 —>\p>
Z< P75 (An I¥) ;< Trs) ]( |x;1 2Z|Xj_xk|

j=1 =y
| x| R2f'(Ix|/R)
>‘E/Rg f(4)(?)pw(x)dX—2Z/RgTﬁw&)dx
(VfR(xj)—VfR(xk))-(xj—Xk)) >
v, W),
+< < 2 ) — P

Using (3-9), we get 1<j#k<N

<\II,( Z (VfR(xj)_VfR(xk))'(xj_xk))w>

xj — xi 3

1< j#KSN
| R2fp(lx; D) R2 fp(lel)
g §<q” (KZ Pl >w>
SJj#ASN
N 2 ¢/ 2 N 2 o1 2
I R2f5(1x;1) ! R2 £ (1x;1)
§<w’ <Z B ) q’>_§<q” (Z( i P ) )‘D>
j=1 J j=1 J
N 2 ¢r 2 N 2 ¢r
! R2fh(1x;1) ! R2 ) (1x;1)
g 5<q” (Z i P )q’> _5<q” (Z T )W>

j=1

R%f'(1x|/R 2 R%f'(1x|/R
:1(/[@ £/ )pw)dx) _%/R PR

2 Jx|? Jx|?

j=1

In the last line we have used Jensen’s inequality as well as the fact that f/(r)/r?> =1/(1+r?) < 1. Passing
to the limit as R — oo gives N <4Z + 1. 0

Since H(N, Z) has no eigenvalue when N > 4Z + 1, it follows from the known existence of scattering
and the asymptotic completeness [Dereziiski 1993; Sigal and Soffer 1994; Hunziker and Sigal 2000]
that any solution W(¢) of the time-dependent equation (4-11) behaves (in an appropriate sense) as a
superposition of bound states of H (k, Z) with k <4Z +1 plus a scattering part. In particular, it is possible
to prove that
limsup/ ow(t,x)dx <47 + 1.

lx|<r

t—00
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By using the argument in the proof of Theorem 15 and following step by step the method of Section 3,
one can get a simple proof of the weaker result

1 T
limsup—/ dt/ owl(t,x)dx <4Z + 1.
T Jo lx|<r

T—o0
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