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Lq BOUNDS ON RESTRICTIONS OF SPECTRAL CLUSTERS TO
SUBMANIFOLDS FOR LOW REGULARITY METRICS

MATTHEW D. BLAIR

We prove Lq bounds on the restriction of spectral clusters to submanifolds in Riemannian manifolds
equipped with metrics of C 1;˛ regularity for 0� ˛ � 1. Our results allow for Lipschitz regularity when
˛ D 0, meaning they give estimates on manifolds with boundary. When 0 < ˛ � 1, the scalar second
fundamental form for a codimension 1 submanifold can be defined, and we show improved estimates when
this form is negative definite. This extends results of Burq, Gérard, and Tzvetkov and Hu to manifolds
with low regularity metrics.

1. Introduction

Let M be a compact, smooth manifold of dimension n� 2 equipped with Riemannian metric g of at least
Lipschitz regularity. Let �g denote the associated (negative) Laplace–Beltrami operator whose action in
coordinates is given by the differential operator

�gf D
1p

det gkl

X
i;j

@i.gij
p

det gkl @jf /:

There exists an orthonormal basis f�j g
1
jD1

of L2.M / consisting of eigenfunctions of �g, which can be
seen by passing to quadratic forms; see, for example, [Smith 2006a, Section 1]. We write the corresponding
Helmholtz equation for �j as .�gC �

2
j /�j D 0 so that �j gives the frequency of vibration associated

to �j .
Given ��1, we let…� be the projection operator on L2.M / defined by…�f WD

P
�j2Œ�;�C1�hf; �j i�j;

where h � ; � i denotes the usual L2 inner product with respect to the Riemannian measure. We call functions
f which are in the range of some …� “spectral clusters”. They form approximate eigenfunctions or
quasimodes as k.�gC �

2/…�f kL2.M / � C�kf kL2.M /. Sogge [1988] proved that when g is a C1

metric, the following Lq bounds on the projections …�f are satisfied for q � 2:

k…�f kLq.M / � C�ıkf kL2.M /; (1-1)

where
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He also provided examples showing that the exponent ı.q/ is the best possible for these approximate
eigenfunctions. Since …� is a projection operator, any Lq bound it satisfies implies Lq bounds on
individual eigenfunctions. Determining when these bounds are sharp for subsequences of eigenfunctions
is an area of active interest, though we do not examine this issue here.

H. Smith [2006b] proved that the bounds (1-1) are satisfied for C 1;1 metrics. The assumption of C 1;1

regularity is the lowest degree of continuity needed to ensure the uniqueness of geodesics on M . Since
eigenfunctions naturally give rise to solutions to the wave equation, propagation of singularities suggests
that this is a relevant consideration for the validity of such bounds. Indeed, [Smith and Sogge 1994;
Smith and Tataru 2002] give examples of C 1;˛ metrics (Lipschitz when ˛D 0) which give rise to spectral
clusters …�f� D f� for each �� 1 such that

kf�kLq.M /

kf�kL2.M /

� c�
n�1

2
. 1

2
� 1

q
/.1C�/; � D

1�˛

3C˛
; (1-2)

showing that the bounds (1-1) cannot hold for 2 < q < 2.nC 2.1C ˛/�1/=.n� 1/. In each case, the
cluster f� is highly concentrated in a tube about a curve segment of length 1 and diameter ��2=.3C˛/

(cf. (1-10) below). This shows that the family ff�g��1 exhibits a greater degree of concentration than
Sogge’s examples which saturate the bounds (1-1) when 2< q � n�1

2

�
1
2
�

1
q

�
(they are concentrated in

tubes with diameter ��1=2). Smith [2006a] showed positive results for any C 1;˛ metric, proving that the
ratio on the left in (1-2) is always bounded above by C�

n�1
2
. 1

2
� 1

q
/.1C�/ when 2� q � 2.nC 1/=.n� 1/.

He also proved that the bound (1-1) holds when q D1. By interpolation, this shows (1-1) with a loss of
�=q derivatives when 2.nC 1/=.n� 1/ � q �1, though Koch, Smith, and Tataru [Koch et al. 2012]
improved upon this.

In a similar vein, when g 2 C1, results of Burq, Gérard, and Tzvetkov [Burq et al. 2007], Hu
[2009], and Reznikov [2004] show Lq bounds on the restriction of these spectral clusters to embedded
submanifolds P �M of the form

k…�f kLq.P/ � C�ıkf kL2.M /; q � 2; (1-3)

where k…�f kLq.P/ is taken to mean the Lq norm of the restriction …�f jP . In this case, ı D ı.k; q/
depends on the dimension of the submanifold k and on q. In particular, when k D n� 1,

ı Dmax
�
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�
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q
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�
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Otherwise, when 1� k � n� 2,
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(1-5)
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with the exception of .k; q/D .n� 2; 2/, where there is a logarithmic loss for � � 2, k…�f kL2.P/ �

C.log�/1=2�1=2kf kL2.M /. These bounds were proved in a semiclassical setting by Tacy [2010]. We
also remark that the bound (1-3) in the case k D n� 1, q D 2 was previously observed by Tataru [1998]
as a consequence of the estimates in [Greenleaf and Seeger 1994]. As will be discussed in Section 2,
these bounds provide an improvement over what would be obtained by trace theorems for Sobolev spaces.

One reason the bounds (1-1), (1-3) are of such great interest is that they illuminate the size and
concentration properties of eigenfunctions. In particular, Smith’s work on C 1;˛ metrics [2006a] is
significant in that it addresses concentration phenomena in situations where the roughness of the metric
means that geodesic curves may fail to be unique. It also led to the development of sharp bounds of the
form (1-1) for the Dirichlet and Neumann Laplacians on compact Riemannian manifolds with boundary;
see [Smith and Sogge 2007]. Indeed, one strategy for proving estimates in this context is to form the
double of the manifold, essentially gluing two copies of the manifold along the boundary. While this
eliminates the boundary, it gives rise to a metric of Lipschitz regularity; see, for example, [Blair et al.
2008, p. 420]. Hence any result on manifolds with Lipschitz metrics also applies to manifolds with
boundary. At the same time, the bounds (1-3) when nD 2, k D 1 (curves in 2 dimensional manifolds) for
g 2 C1 have garnered additional interest in recent works which relate improvements in these estimates
to improvements in the inequalities in (1-1); see [Bourgain 2009; Sogge 2011; Ariturk 2011].

On the other hand, one of the notable aspects of [Burq et al. 2007] is that the authors showed an
improvement on (1-3) when nD 2 and P is a curve with nonvanishing geodesic curvature. Specifically,
they proved that

k…�f kL2.P/ � C�1=6
kf kL2.M /: (1-6)

This was then generalized to all dimensions by Hu [2009], who obtained the same bound for any
codimension 1 submanifold with negative definite scalar second fundamental form (or positive definite,
depending on the choice of normal vector). As before, these bounds also follow from an observation
of Tataru [1998] based on known estimates of Hörmander [1985, 25.3]. The bound (1-6) can then be
interpolated with (1-3) when q D 2n

n�1
and ı D n�1

2n
to show that the ı in (1-4) can be improved to

ı D
n� 1

3
�

2n� 3

3q
when 2� q <

2n

n� 1
:

These bounds thus speak to the concentration properties of eigenfunctions. When P is in some sense
“far away” from containing geodesic segments, eigenfunctions have less tendency to concentrate near P .
Hassell and Tacy [2012] proved bounds of this type in a semiclassical setting.

In the present work, we consider the development of the bounds (1-3) for C 1;˛ metrics with 0� ˛ � 1,
allowing for Lipschitz regularity when ˛ D 0. As a corollary, we obtain bounds of this type (with a loss)
for the Dirichlet and Neumann Laplacians on compact manifolds with boundary. Bounds of the form
(1-3) when n D 2, k D 1 for manifolds with concave boundaries are due to Ariturk [2011], provided
Dirichlet conditions are imposed. However, the presence of gliding rays when the manifold possesses a
point of convexity within the boundary complicates matters considerably.
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Theorem 1.1. Suppose g 2 C 1;˛ with 0 � ˛ � 1, allowing for Lipschitz regularity when ˛ D 0. When
k D n� 1 and 2� q � 2n=.n� 1/, we have, for ı D .n� 1/=4� .n� 2/=.2q/,

k…�f kLq.P/ � C�ı.1C�/kf kL2.M /; � D
1�˛

3C˛
: (1-7)

Moreover, when k D n� 1, 2n=.n� 1/� q �1 or k � n� 2, we suppose that ı D .n� 1/=2�k=q and
ıC �=q < 1C˛ with � as above. In this case, the following bounds are satisfied:

k…�f kLq.P/ � C�ıC�=qkf kL2.M / (1-8)

with C replaced by C.log�/1=2 when .k; q/ D .n� 2; 2/. The admissibility condition on ı, q can be
relaxed to ıC �=q � 1C˛ when ˛ D 0 or ˛ D 1.

Furthermore, we will show improvements akin to (1-6) when 0<˛�1. For these metrics the Christoffel
symbols are well defined and continuous on M by the usual coordinate formula

�k
ij D

1
2

gkl.@igjl C @j gil � @lgij /

(with the summation convention in effect). Hence there is also a well defined Levi-Civita connection
associated to the metric g on M , mapping C 1 vector fields to continuous vector fields with the usual
properties. In particular, given a smooth, embedded, codimension 1 submanifold of P , the scalar second
fundamental form is well-defined and if it is negative definite throughout P for a suitable choice of normal
vector field, we shall call it “curved”. We will see that in this case, the power of � in (1-7) with q D 2 can
be improved to 1=6C �=2 (which can be seen as strictly less than .1=4/.1C �/ when � < 1

3
).

Theorem 1.2. Suppose g 2 C 1;˛ with 0< ˛ � 1, and that P is a “curved” codimension 1 submanifold
as defined above. Then the following bounds are satisfied:

k…�f kL2.P/ � C�
1
6
C�

2 kf kL2.M /; � D
1�˛

3C˛
: (1-9)

Moreover, interpolating this bound with the q D 2n=.n� 1/ case of (1-7) yields an improvement of that
estimate for 2� q < 2n=.n� 1/.

Following [Smith 2006a], we will show that, for each theorem, the 0� ˛ < 1 case follows from the
˛ D 1 case by rescaling methods. This involves dilating coordinates so that sets of diameter � ��� in
P have diameter � 1 in the new coordinates. Since the metric can be approximated by one with C 1;1

regularity here, the bounds from the ˛ D 1 case can then be applied. In the original coordinates, this
then implies that the estimates (1-7), (1-8), (1-9) hold with � D 0 over sets of diameter � ��� . By
incorporating the flux estimates from [Smith 2006a], it can then be seen that Theorems 1.1 and 1.2 follow
by taking a sum over all such sets.

The bounds (1-1) for C 1;1 metrics in [Smith 2006b] (and those for manifolds with boundary in [Smith
and Sogge 2007]) were proved by wave equation methods. Specifically, square function estimates are
developed for solutions to the wave equation on these manifolds, bounding the Lq.M / norm of the square
function

x 7!

�Z 1

0

ju.t;x/j2 dt

�1=2

; where .@2
t ��g/uD 0:



Lq BOUNDS ON RESTRICTED SPECTRAL CLUSTERS 1267

As will be seen below, the spectral clusters above naturally give rise to solutions to the wave equation, and
these estimates imply bounds on the …�f . Square function estimates were first proved in [Mockenhaupt
et al. 1993] for smooth metrics, using that Fourier integral operators can be used to invert the equation.
However, when g 2 C 1;1, the roughness of the metric means that these methods are inapplicable, so
a crucial development [Smith 2006b] was the construction of a suitable parametrix using wave packet
methods. The resulting approximate solution operators can be thought of as generalized Fourier integral
operators where the associated canonical relation satisfies the curvature condition in [Mockenhaupt et al.
1993].

We follow the same strategy here, essentially proving bounds on the Lq.P / norm of the square
function above. Once again, the roughness of the metric means that we are led to use wave packet
methods to construct a parametrix. In this case, the canonical relations which arise naturally have folding
singularities. In Theorem 1.1, the relation has a one-sided fold and in Theorem 1.2 the relation essentially
has a two-sided fold. There is a significant body of work on L2 ! Lq bounds for Fourier integral
operators with folding singularities; see [Greenleaf and Seeger 1994; Hörmander 1985; Melrose and
Taylor 1985; Pan and Sogge 1990; Cuccagna 1997] (the first of which treats one-sided folds). A key
technical development in the present work is that the operators arising from the wave packet transform
satisfy the desired square function estimates in spite of the inapplicability of these results for Fourier
integral operators. Nonetheless, the approach taken here is in part inspired by these works.

Notation. We use C ˛ to denote the Hölder class of order ˛. Moreover, C 1;˛ will denote the class
of metrics or functions whose first derivative is in C ˛, taking the contrived convention that Lipschitz
regularity is allowable when ˛ D 0. In what follows, X . Y will denote that X � C Y for some implicit
constant C which is in some sense uniform, though when used in decay estimates, it may depend on
the order N . Similarly, X � Y will denote that X . Y and Y .X . We use d as the differential which
carries scalar functions to covector fields and vectors into matrices in the natural way. Given a metric g
under discussion, we let h � ; � ig, j � jg denote the inner product and length induced by the metric either in
the tangent or cotangent space. Lastly, given a vector x 2 Rn, x0 and x00 will typically denote a vector in
Rl , l < n, formed by taking a subcollection of the components of x. The nature of this subcollection may
vary depending on the section.

Remark on admissibility conditions. The admissibility condition ıC�=q< 1C˛ (with equality allowed
when ˛ D 0; 1) arises in Section 2, where elliptic regularity is used to show that when a cluster …�f is
considered in a coordinate system, the high frequency components (with respect to the Fourier transform)
satisfy better bounds than those near frequency �. However, it can be checked that the condition ı < 1

2
is

always satisfied when k D n� 1 and 2 � q � 2n=.n� 1/ and that ı < 5=6 holds for sufficiently small
q > 2 when k D 2, ensuring that, in many relevant cases, the admissibility condition is satisfied. On the
other hand, Smith [2006a, p. 969] showed that the bound k…�f kL1.M / . �.n�1/=2kf kL2.M / holds
whenever g is Lipschitz. The key observation here is that one can write …�f D exp.���2�g/…� Qf

with k…� Qf kL2.M / � k…�f kL2.M /. The L1.M / bounds then follow by combining Saloff-Coste’s
Gaussian upper bounds [1992] on the heat kernel with Smith’s L2.nC1/=.n�1/.M / bounds on …�f .
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However, the same argument gives the continuity of each …�f 2L2.M / since the fixed time heat kernel
is continuous on M �M (as observed in [Saloff-Coste 1992, Section 6]). Thus Smith’s L1 bounds
on spectral clusters imply L1 bounds on their restrictions and this can be interpolated with the Lq.P /

bounds for submanifolds of low codimension to see that, in many cases, the admissibility conditions can
be relaxed. This also ensures that the restrictions are well-defined.

Remark on the optimality of (1-7). As noted above in (1-2), the examples in [Smith and Sogge 1994;
Smith and Tataru 2002] show that the bounds from [Smith 2006a] establishing Lq.M / bounds are sharp
for small values of q > 2. We comment here that the same examples show that the bounds (1-7) in
Theorem 1.1 are sharp as well. Indeed, the examples in [Smith and Sogge 1994] produce metrics of C 1;˛

regularity and associated spectral clusters f� which are concentrated in a tube of length 1 and diameter
��2=.3C˛/, that is, a set of the form

jx1j. 1; j.x2; : : : ;xn/j. ��2=.3C˛/: (1-10)

Therefore if we take P to be defined by xn D 0, we see that the rapid decay outside of this set implies

kf�kLq.P/

kf�kL2.M /

� �
2

3C˛
.n�1

2
�n�2

q
/:

However, 1
2
.� C 1/D 2=.3C˛/, showing that the exponent simplifies to ı.1C �/ and hence the bound

(1-7) is optimal.

2. Microlocal reductions

In this section, we will reduce the main theorems to proving square function estimates for frequency
localized solutions to a hyperbolic pseudodifferential equation. We follow an approach due to Smith
[2006a]; see also [Blair et al. 2008]. The needed reductions are fairly common to both theorems, so
we begin by treating all cases at the same time. It is thus convenient to take the convention that ı.�/ is
defined by taking the power of � appearing in (1-7), (1-8), or (1-9), realizing that in all cases ı.0/ denotes
the power without loss of derivatives. Moreover, the admissibility conditions mean that if � > 0 and
0< ˛ < 1, ı.�/� 1< ˛ (respectively ı.�/� 1� ˛ when ˛ D 0; 1).

Throughout these preliminary reductions, we will make use of the fact that when k < n, we have the
following embedding for traces in Rk � f0g, f0g 2 Rn�k :

H n=2�k=q.Rn/ ,!Lq.Rk
� f0g/; (2-1)

which can be seen by first applying Sobolev embedding on Rk �f0g, and then using the trace theorem for
L2 based Sobolev spaces. The estimates in Theorems 1.1 and 1.2 thus exhibit a gain relative to Sobolev
embedding. The gain is largest when qD 2: a quarter or a third of a derivative when k D n�1, depending
on whether the submanifold is curved, and half a derivative (up to a possible logarithmic correction) when
k � n� 2.

It suffices to prove the main theorem for a spectral cluster f satisfying f D …�f . We begin by
observing that f satisfies the following bounds in Sobolev spaces defined by the spectral resolution of �g
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k.�gC�
2/f kH s.M /Ckdf kH s.M / . �sC1

kf kL2.M /:

It thus suffices to prove bounds on f of the form

kf kLq.P/ .
X

i

�ı.�/�1�si .�kf kH si .M /Ckdf kH si .M /Ck.�gC�
2/f kH si .M // (2-2)

where a sum is taken over a finite collection of 0� si � 1.
Multiplication by any smooth bump function  preserves H 1.M /, and, by interpolation, H s.M / for

any s 2 Œ0; 1�. Therefore, by taking a partition of unity on M , it suffices to prove (2-2) with f replaced
by  f , where  is supported in a suitable coordinate chart which intersects P . Specifically, we will take
slice coordinates so that P is identified with Rk �f0g. Furthermore, by taking a sufficiently fine partition
of unity and dilating coordinates, we may assume that for some c0 sufficiently small,

kgij
� ıijkC 1;˛.Rn/ � c0: (2-3)

By elliptic regularity (see, for example, [Gilbarg and Trudinger 1983, Theorem 8.10, Theorem 9.11])
and interpolation, we have, for any g supported in this coordinate chart, kgkH s.M / � kgkH s.Rn/ for
s 2 Œ0; 2�: Next we observe that in coordinates within supp. /, f satisfies an equation of the form

gd2f C�2f D w; gd2f D
X

1�i;j�n

gij@2
ijf (2-4)

where w is a sum consisting of .�g C �
2/f and products of the form a � @jf , with a 2 C ˛ (or L1,

C 0;1 when ˛ D 0; 1 respectively) in turn a product of functions of the form gij ,
p

det gij , or their first
derivatives. Hence multiplication by these functions preserves H s.Rn/ for s D 0 and s 2 Œ0; ˛/ when
˛ > 0 (respectively s 2 Œ0; 1� when ˛ D 1) meaning that that, for any such s,

kwkH s.Rn/ . kf kH s.M /Ckdf kH s.M /Ck.�gC�
2/f kH s.M /:

Furthermore, elliptic regularity (see, for example, [Gilbarg and Trudinger 1983, Theorem 9.11]) also
gives that

kd2f kL2.Rn/ . k�gf kL2.Rn/Ckdf kL2.Rn/Ckf kL2.Rn/: (2-5)

Moreover, when ı.�/ > 1 (which only occurs when ˛ > 0), we have

kŒgij ; hDiı.�/�1�@2
ijf kL2.Rn/CkŒ@igij ; hDiı.�/�1�@jf kL2.Rn/ . kdf kH ı.�/�1.Rn/; (2-6)

where hDi denotes the Fourier multiplier with symbol .1C j�j2/1=2. This means that we may replace
L2 by H ı.�/�1 in (2-5). Indeed, the bound on the first term in (2-6) follows as a consequence of
the Coifman–Meyer commutator theorem (see, for example, [Taylor 1991, Proposition 3.6B]) and the
second follows since the admissibility condition on ı.�/ implies that multiplication by @igij preserves
H ı.�/�1.Rn/.

With this in mind, we define the following norm when ı.�/� 1:

jjjf jjj WD kf kL2.Rn/C�
�1
kdf kL2.Rn/C�

�2
kd2f kL2.Rn/C�

�1
kwkL2.Rn/:
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When ı.�/ > 1, we define

jjjf jjj WD

2X
jD0

��j
kdjf kL2.Rn/C�

�1
kwkL2.Rn/C�

�.ı.�/�1/

� 2X
jD0

��j
kdjf kH ı.�/�1.Rn/C�

�1
kwkH ı.�/�1.Rn/

�
:

Given the observations above, it now suffices to show that

kf kLq.Rk�f0g/ . �ı.�/jjjf jjj: (2-7)

Without loss of generality, we may assume that f is supported in a cube of sidelength 1 centered at
the origin and that the metric is defined over a cube of sidelength 8 centered at the origin. Hence we may
smoothly extend the metric g so that it is defined over all of Rn and is equal to the flat metric for jxj
sufficiently large without altering the equation for f . Given r > 0, we let Sr D Sr .D/ denote a Fourier
multiplier which applies a smooth cutoff to frequencies j�j � r and define g� D Sc2�g where c > 0 will
be taken to be sufficiently small. Since

kg�� gkL1 . ��1; (2-8)

we may replace g by g� in (2-4) when ı.�/ � 1, as the error can be absorbed into the right-hand side
of (2-7). The same holds when 1 < ı.�/ is admissible, which can be seen by using the similar bound
kg�� gkC˛ . ��1 and the fact that multiplication by a C ˛ function preserves H ı.�/�1.Rn/.

We now write f as f D f<�Cf�Cf>� where f<� D Sc�f and f>� D f �Sc�1�f . Observe that,
when s D 0, 

ŒSc�; g��




H s!H s C



ŒSc�1�; g��




H s!H s . ��1; (2-9)

which follows from simple bounds on the kernel of the commutators. When 1 < ı.�/ is admissible,
the same holds with s D ı.�/� 1. Indeed, �Sc� (and similarly �Sc�1�) defines an operator in S1

1;0
,

hence the symbolic calculus gives Œ�Sc�; g�� 2 C ˛S0
1;0

(in the notation of [Taylor 1991]). The claim then
follows by [Taylor 1991, Proposition 2.1D] or by commuting with derivatives when ˛ D 1. Defining
w<� WD g�d2f<�C�

2f<�, w>� WD g�d2f>�C�
2f>�, we have

kw<�kH s.Rn/Ckw>�kH s.Rn/ . ��1
kd2f kH s.Rn/CkwkH s.Rn/ (2-10)

for s D 0 and for s D ı.�/� 1 when the latter quantity is positive.
To bound f<�, f>�, we use arguments from [Smith 2006a, Corollary 5]. Since kg�d2f<�kL2 .

.c�/2kf<�kL2 , (2-1) and the equation give the stronger estimate

kf<�kLq.Rk�f0g/ . �n=2�k=q
kf<�kL2.Rn/ . �n=2�k=q�2

kw<�kL2.Rn/ . �n=2�k=q�1
jjjf jjj:

For the high frequency term f>�, we use that, when s � 0,

�2
kf>�kH s.Rn/C�kdf>�kH s.Rn/ . ckd2f>�kH s.Rn/:

This bound with s D 0 can be combined with elliptic regularity to obtain

kd2f>�kL2.Rn/ . kw>�kL2.Rn/: (2-11)
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When n=2� k=q � 2, (2-1) yields a gain of at least 1/2 of a derivative in the estimate for f>�. The case
n=2�k=q > 2 only arises when ˛ > 0 and ı.�/D .n� 1/=2�k=qC �=q, and in this case we use (2-6)
(with g� replacing g) to bootstrap the elliptic regularity estimate, which yields a similar gain for f>�,
since

kf>�kH ı.�/C1.Rn/ . kw>�kH ı.�/�1.Rn/ . jjjf jjj:

We are now reduced to proving bounds on f�. Reasoning as in (2-9), we obtain jjjf�jjj . jjjf jjj. We
now impose a further microlocal decomposition of the function, writing f�D f�;T Cf�;N , where Of�;T is
localized to directions tangent to the submanifold and Of�;N is localized to normal directions. Specifically,
we write f�;N D

Pn
jDkC1 f�;j where f�;j is frequency localized to a set of the form

supp.bf�;j /�
˚
� W �� j�j; j�j j& "j.�1; : : : ; �j ; �jC1; : : : ; �n/j

	
;

with " suitably small. Using (2-9) again, we have

kg�d2f�;j C�
2f�;jkL2.Rn/ . jjjf�jjj: (2-12)

With this in mind, the flux estimates of [Smith 2006a, p. 974] give

kf�;jkL1xjL2
x0
. jjjf�jjj (2-13)

where x0 denotes the vector consisting of every component in Rn but xj . Combining this with the n� 1

dimensional version of (2-1) on the hyperplane xj D 0, we have

kf�;jkLq.Rk�f0g/ . �.n�1/=2�k=q
kf�;jkL2.xjD0/ . �ı.�/jjjf�jjj:

We now further decompose f�;T as f�;T D
P

j f�;!j where f!j g is a finite collection of unit vectors
and supp.1f�;!j / lies in a small conic set containing !j . Without loss of generality, it suffices to treat
the case !j D�e1 D .�1; 0; : : : ; 0/. Recalling (2-12) and simplifying notation, it now suffices to prove
kf�kLq.Rk�f0g/ . �ı.�/jjjf�jjj for f� satisfying

supp.bf�/� f� W j�=j�j � .�e1/j. "g: (2-14)

As a consequence of (2-13) with xj D x1 and Hölder’s inequality, if SR is a slab of the form
SR D fx W jx1� r j �Rg for some r ,

kf�kL2.SR/
.R1=2

jjjf�jjj: (2-15)

Set �D .n�1/=2�k=q so that ��ı.0/D ı.0/�1=q when k D n�1, 2� q � 2n=.n�1/, and �D ı.0/
in all other cases of Theorem 1.1. Given a cube QR of sidelength RD ��� which intersects Rk �f0g, we
let Q�

R
denote its double, and also set w� WD g�d2f�C�

2f�. We claim that Theorem 1.1 now follows
from the bound

kf�kLq..Rk�f0g/\QR/
. �.1��/ı.0/R��.R�1=2

kf�kL2.Q�
R
/CR1=2��1

kw�kL2.Q�
R
//: (2-16)

Moreover, Theorem 1.2 will follow from taking q D 2 and ı.0/D 1
6

here when P is curved (as �D 0 in
this case). Indeed, if these bounds hold, we may sum over the cubes QR contained in SR which intersect
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Rk � f0g to obtain

kf�kLq..Rk�f0g/\SR/
. �.1��/ı.0/C��.R�1=2

kf�kL2.S�
R
/CR1=2��1

kw�kL2.S�
R
//:

Recalling (2-15), the right-hand side is bounded by �.1��/ı.0/C��jjjf�jjj. Given the previous observa-
tions on �, the desired bound on f� then follows by taking a sum over the O.R�1/ slabs SR in jx1j � 3=4

and the rapid decay property

jf�.x/j. .�jxj/�N
kf�kL2.Rn/ for maxj jxj j �

3
4
: (2-17)

The latter is a consequence of our assumption that f is supported in a cube of sidelength 1 at the origin,
which implies that f� is concentrated in a ��1 neighborhood of this cube.

At this stage, we pause to remark on a useful feature of our metric when P is curved. Let N be a suitable
unit normal vector field such that hN; @ni> 0. Observe that given any n�1 vector .X 1; : : : ;X n�1/ such
that .X 1/2C � � �C .X n�1/2 D 1, we may assume that, over P , the quantity

�

X
1�i;j�n�1

hN;r@i
@j igX iX j (2-18)

is uniformly bounded from above and below. Indeed, since @1; : : : ; @n�1 span the tangent space to P ,
one just applies the assumption that P is curved to constant vector fields of the form X j@j (with the
summation convention in effect). Using that r@i

@j is the vector field �k
ij@k , we may use that hN; @kig� 0

on P for k ¤ n and that hN; @nig is bounded above to get that

�

X
1�i;j�n�1

�n
ij X iX j (2-19)

is uniformly bounded from above and below over P for all such .X 1; : : : ;X n�1/. Using that kg�g�kC 1 .
��˛, the bounds also hold when the Christoffel symbols are taken with respect to g�.

Returning to the proof of (2-16), we dilate variables x 7!Rx, set � WDR�, and make the slight abuse
of notation that f�.x/D f�.Rx/. We will see that this reduces the general bounds to those without a
loss of derivatives, and hence we will take ı D ı.0/ below. Indeed, rescaling the bound (2-16) gives

kf�kLq..Rk�f0g/\Q/ . �ı.kf�kL2.Q�/C�
�1
kg�d2f�C�

2f�kL2.Q�//: (2-20)

When P is curved, rescaling yields the same with q D 2 and ı D .1Cˇ/=6 where ˇ D �=.1� �/. Here
Q is now a cube of sidelength 1, which we may take to be centered at the origin, and g�.x/ WD g�.Rx/.
We now have that if g�1=2 WD Sc2�1=2g�, then (cf. (2-3))

kg�� g�1=2kL1 . c0�
�1; (2-21)

and we may replace g� by g�1=2 in (2-20), since the error can be absorbed into the right-hand side. The
metric g�1=2 has C 2 regularity, namely,

kgij

�1=2 � ıijkC 2 . c0 and k@˛gij

�1=2kC 2 � �1=2.j˛j�2/ for j˛j � 2: (2-22)
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We pause again to discuss the effect of this dilation and regularization on the upper and lower bounds
on (2-19) for curved metrics. For unit n� 1 vectors .X 1; : : : ;X n�1/, we now have

c1 � ��
ˇ

X
1�i;j�n�1

�n
ij .x/X

iX j . c0 (2-23)

for x 2P . Here the Christoffel symbols can be taken with respect to the metric g�1=2 , since we now have
(2-21) and kg� � g�1=2kC 1;˛ . ��1=2� ��ˇ. Moreover, by continuity, we may assume that if c0 is
chosen sufficiently small, then the inequality holds for all x 2Q at the expense of decreasing c1 slightly.

We will prove the bound (2-20) by wave equation methods. Let u�.t;x/D cos.t�/f�.x/. It suffices
to show that if F� D .@

2
t � g�1=2d2/u�,

ku�kLq..Rk�f0g/\QIL2.� 1
2
; 1

2
// . �

ı.ku�.0; � /kL2.Q�/C�
�1
kF�kL2..�1;1/�Q�//:

Now let  .t;x/ denote a smooth cutoff that is identically 1 on
�
�

1
2
; 1

2

�nC1 and supported in
�
�

3
4
; 3

4

�nC1.
Replacing u� by  u�, and similarly for F�, it suffices to show that

ku�kLq.Rk�f0gIL2.R// . �ı.ku�.0; � /kL2.Rn/C�
�1
kF�kL2.RnC1//; (2-24)

since energy estimates bound the error terms which arise when commuting .@2
t � g�1=2d2/ with  . Next

we let �˙� .�; �/ be smooth cutoffs to regions of the form

f.�; �/ W ˙� � j�j; j�j � �; j�=j�j � .�e1/j. "g (2-25)

and supported in a slightly larger set. Let u˙� D �
˙
� .Dt;x/u�. By [Smith 2006b, Lemma 2.3] and the

localization of f�, we see that elliptic regularity and (2-1) yield an estimate on u��uC� �u�� with a gain
of at least half a derivative relative to the right-hand side of (2-24). It thus suffices to prove (2-24) with
u� replaced by u˙� . The proof of the bound follows in the next two sections.

3. General submanifolds

In this section, we prove (3-4) and hence Theorem 1.1. Recall that coordinates are chosen so that P

is identified with .y; 0/ 2 Rn with y 2 Rk , 0 2 Rn�k . In this section, we take the following notational
conventions on coordinates in Rn. The letters w;y; z denote vectors in Rk , and given such a vector we let
Ny denote the vector in Rn determined by NyD .y; 0/. The letters x; �; v typically denote vectors in Rn, and
we often decompose such a vector as x D .x1;x

0;x00/ where x0 D .x2; : : : ;xk/, x00 D .xkC1; : : : ;xn/.
We begin by showing that u˙� solves an equation which is hyperbolic in x1. Given (2-22), we have

that, for .�; �/ in the regions (2-25), gij

�1=2�i�j ��
2 defines a quadratic in �1 with two real roots and hence

we may write
gij

�1=2.x/�i�j � �
2
D g11

�1=2.x/.�1C q�.x; �; � 0//.�1� qC.x; �; � 0// (3-1)

with q˙ > 0 and homogeneous of degree 1 for such .�; �/. We further regularize these symbols, taking
p˙. � ; �; � 0/D Sc2�1=2q˙. � ; �; � 0/. By the elliptic regularity argument in [Smith 2006b, Lemma 2.4],
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the function u� satisfies
.�i@x1

Cp˙.x;Dt;x0//u
˙
� DG˙� ; (3-2)

with kG˙� kL2.RnC1/ bounded by the terms in parentheses on the right-hand side of (2-24). Moreover,
akin to (2-17), we have the rapid decay property

ju˙� .t;x/j. .�j.t;x/j/�N
ku�kL2.RnC1/; for max.jt j; jx1j; : : : ; jxnj/� 1: (3-3)

Thus, by energy estimates, it can be seen that

ku˙� kL2.RnC1/ . ku�.0; � /kL2.Rn/C�
�1
k@tu�.0; � /kL2.Rn/C�

�1
kG�kL2.RnC1/;

since the right-hand side is compactly supported. By (3-3), it suffices to show that

ku˙� kLq..�1;1/�Rk�1�f0gIL2.R// . �ı.ku˙� kL2.RnC1/C�
�1
kG˙� kL2.RnC1//: (3-4)

It suffices to treat the term u��, as bounds on the uC� will follow from time reversal. Hence we suppress
the superscripts on u��, G�� , p� below and assume the minus sign is taken when referencing (2-25).

It is convenient to change the roles of t and x1 above, and correspondingly � and �1, treating (3-2) as
an equation which is hyperbolic in t , rather than in x1. As a consequence of (2-22), p is now a function
of .t;x; �/ (or more precisely .t;x0;x00; �/) satisfying the boundsˇ̌

@


x;t@

ˇ

�

�
p.t;x; �/�

p
�2

1 � j.�
0; � 00/j2

�ˇ̌
. c0; j
 j � 2; (3-5)

for j�j D 1 in a cone of the form

f� W ��1 & "�1
j.� 0; � 00/jg; (3-6)

and c0 can be replaced by c0�
�ˇ when j
 j D 1. Moreover, for � in the same set,

j@


x;tp.t;x; �/j. �

1
2
.j
 j�2/; j
 j � 2: (3-7)

By (3-3) and time translation, it suffices to prove that over the time interval .0; 1/,

ku�kLq

t;y0
L2

y1

. �ı.ku�kL1t L2
x
CkG�kL2

t;x
/

where we understand the left-hand side to be�Z 1

0

Z
Rk�1�f0g

�Z
R

ju�.t; Ny/j
2 dy1

�q=2

dy0 dt

�1=q

; y0 D .y2; : : : ;yk/;

and the L1t L2
x norm on the right-hand side as L1..0; 1/IL2.Rn//. Moreover, since

p.t;x;D/�p�.t;x;D/ 2Op.S0

1; 1
2

/;

we may differentiate ku�.t; � /k2
L2

y

in t to obtain

ku�kL1t L2
y
. ku�kL2.RnC1/CkG�kL2.RnC1/:
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Let the wave packet transform T� W S
0.Rn/! C1.R2n/ be defined by

T�f .x; �/D �
n=4

Z
e�ih�;v�xi�.�1=2.v�x//f .v/ dv

where � is a real-valued, radial Schwartz function such that supp. O� / is contained in the unit ball and
normalized so that k�kL2 D .2�/�n=2. The normalization ensures that T ��T� is the identity on L2.Rn/

and hence kT�f kL2.R2n
x;�
/ D kf kL2.Rn

z /
: Let g�.x/ WD u�.0;x/ and let ‚r;t .x; �/ denote the time-r

value of the integral curve determined by the Hamiltonian flow of p with ‚r;t .x; �/jrDt D .x; �/. Given
[Smith 2006b, Lemma 3.2, Lemma 3.3], we may write

.T�u�/.t;x; �/D T�g�.‚0;t .x; �//C

Z t

0

zG�.r; ‚r;t .x; �// dr (3-8)

where zG satisfies Z t

0

k zG�.r; � /kL2.R2n
x;�
/ dr . ku�kL1t L2

v
C

Z t

0

kG�.r; � /kL2.Rn
v/

dr; (3-9)

for t 2 .0; 1/. Indeed, these lemmas show that if Hp denotes the Hamiltonian vector field defined by
p, then T�p. � ;D/�HpT� defines an operator bounded on L2, and that (3-8) follows by solving the
corresponding transport equation. Furthermore, given the frequency localization of p. � ; �/ and the
compact support of �, we may assume that uniformly in r , x, we have

supp..T�g�/.x; � //; supp. zG.r;x; � //� f� W j�j � �;��1 & "�1
j.� 0; � 00/jg: (3-10)

Define the propagator

W Qf .t;y/D T �� .
Qf ı‚0;t /. Ny/;

and observe that, given (3-8), (3-9), it suffices to show that

kW Qf kLq

t;y0
L2

y1

. �ık Qf kL2
x;�

(3-11)

with a .log�/1=2 loss when .k; q/ D .n � 2; 2/. Let Wt denote the restricted operator Wt
Qf .y/ D

W Qf .r;y/jrDt . By duality, it suffices to see that, for functions F.s; z/,

kW W �FkLq

t;y0
L2

y1

. �2ı
kFk

L
q0

s;z0
L2

z1

: (3-12)

To prove this, we will show that

kWtW
�

s hkL1
y0

L2
y1

. �n�1.1C�jt � sj/�.n�1/=2
khkL1

y0
L2

y1

; (3-13)

kWtW
�

s hkL2
y
. �n�k.1C�jt � sj/�.n�k/=2

khkL2
y
: (3-14)

When k D n� 2 and q D 2, Young’s inequality and (3-14) give (3-12) with the logarithmic loss. In all
other cases with k � n� 2, we may interpolate (3-13) and (3-14) to obtain

kWtW
�

s hkLq

y0
L2

y1

. �2.n�1
2
�k�1

q
/.1C�jt � sj/�.

n�1
2
�k�1

q
/
khk

L
q0

y0
L2

y1

(3-15)
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and use that .1C jsj/�..n�1/=2�.k�1/=q/ 2 Lq=2.R/ to get (3-12). The same argument works when
k D n� 1 and 2n=.n� 1/ < q <1. To handle the remaining cases when k D n� 1, we use that

�2.n�1
2
�n�2

q
/.1C�jt � sj/�.

n�1
2
�n�2

q
/ . �

n�1
2
�n�2

q jt � sj�
n�1

2
Cn�2

q :

Hence (3-12) follows from the Hardy–Littlewood–Sobolev inequality when q D 2n=.n � 1/. When
2� q < 2n=.n� 1/, the right-hand side is in L

q=2
loc and Young’s inequality gives (3-12).

In what follows, we will denote the integral kernel of WtW
�

s as Kt;s.y; z/. The bound (3-13) follows
from the proofs of the bounds [Smith 2006b, (3.5); Smith and Sogge 2007, (5.4), (7.2)]. Those works
establish the uniform inequalityZ

jKt;s.y; z/j dy1C

Z
jKt;s.y; z/j dz1 . �n�1.1C�jt � sj/�.n�1/=2:

It thus suffices to prove (3-14). Using that .x; �/ 7!‚r1;r2
.x; �/ defines a diffeomorphism which preserves

dx^ d�, the kernel of WtW
�

s can be realized as (cf. [Smith and Sogge 2007, p. 127])

Kt;s.y; z/D �
n=2

Z
eih�;Nz�xi�ih�s;t ; Ny�xs;t i�.�1=2.Nz�x//�.�1=2. Ny �xs;t //�.�/ dx d� (3-16)

with .xs;t ; �s;t / abbreviating .xs;t .x; �/; �s;t .x; �//. Here � is a cutoff supported in a region of the form
appearing in (3-10), which may be inserted since we are only interested in functions Qf satisfying that
condition.

Before proceeding, we observe bounds on the bicharacteristic flow of p.

Theorem 3.1. Suppose .x; �/ 2 R2n with � in the set defined by (3-6). Let ‚t;s.x; �/ be as in (3-8), that
is, ‚t;s.x; �/jtDs D .x; �/ and

@sxt;s.x; �/D d�p.s; ‚t;s.x; �//; @s�t;s.x; �/D�dxp.s; ‚t;s.x; �//: (3-17)

Then, for t; s 2 Œ0; 1�, first partials of xt;s.x; �/, �t;s.x; �/ in x; � satisfy

jdxxt;s � I jC jdx�t;sj. c0jt � sj; (3-18)

jd�xt;s.x; �/�

Z s

t

d�d�p.‚r;t .x; �// dr jC jd��t;s.x; �/� I j. c0jt � sj2: (3-19)

Proof. Differentiating the equations (3-17) gives

@r

�
dxt;r

d�t;r

�
DM.r;xt;r ; �t;r /

�
dxt;r

d�t;r

�
; where M D

�
dxd�p d�d�p

�d�dxp dxdxp

�
:

By Gronwall’s inequality and the bounds (3-5), we have

jdxxt;r � I jC jdx�t;r j. 1; jd�xt;r jC jd��t;r � I j. 1;

and substituting these bounds back into the integral equation for dxt;r ; d�t;r implies the theorem. �

This type of argument can also be used to bound higher order derivatives of xt;s; �t;s , see, for example,
(4-10) below. Such bounds are used in the proof of the next theorem. It is due to [Smith and Sogge
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2007, Theorem 5.4], which obtains bounds on Kt;s under the assumption that � is a smooth cutoff to a
(possibly) smaller set.

Theorem 3.2. Suppose N� Dmin.1; ��1=2jt � sj�1=2/ and the smooth cutoff � in (3-16) is supported in a
set contained in (3-10) of the form

supp.�/� f� W j�=j�j � �j. N�g (3-20)

for some unit vector � 2 Sn�1. Let .xt;s; �t;s/D‚t;s.Nz; �/. Then Kt;s satisfies the pointwise bounds

jKt;s.y; z/j. �n N�n�1.1C� N� j Ny �xt;sjC�jh�t;s; Ny �xt;sij/
�N : (3-21)

Observing that �n�k.1C�jt � sj/�.n�k/=2�min.�n�k ; �.n�k/=2jt � sj�.n�k/=2/, we begin treating
the case jt � sj � ��1, that is, the case where the first quantity is smaller. In this case, we apply (3-21) in
Theorem 3.2 with N� D 1 and �D�e1 to obtain

jKt;s.y; z/j. �n.1C�j Ny �xt;s.z;�e1/j/
�N ;

which gives the first half of (3-22) below. Making the measure-preserving change of variables

.x; �/ 7! .xt;s.x; �/; �t;s.x; �//

in (3-16), we may reverse the roles of y and z in Theorem 3.2 to obtain an analogous bound which yieldsZ
jKt;s.y; z/j dyC

Z
jKt;s.y; z/j dz . �n�k (3-22)

(strictly speaking, the change of variables replaces �.�/ by �.�t;s.x; �//, but this does not change the
validity of the bounds in Theorem 3.2).

It now suffices to treat the more involved case where ��1 < jt � sj � 1, and for the remainder of this
section we assume t; s 2 Œ0; 1� are two fixed values satisfying this condition. Using the notation suggested
by Theorem 3.2, we set N� D ��1=2jt � sj�1=2 so that � N�2jt � sj D 1. Using a partition of unity, we take
a decomposition Kt;s D

P
j Kj where Kj is defined by replacing � in (3-16) by a smooth cutoff �j ,

with �j supported in a set of the form j�=j�j��j j. N� and f�j g is a collection of unit vectors in the cone
f��1 & "�1j.� 0; � 00/jg separated by a distance of at least � N��1. In particular, we may assume that, for
fixed j , X

l

.1C N��1
j�j
� �l
j/�.nC1/ . 1: (3-23)

Let Tj be the operator defined by .Tj h/.y/D
R

Kj .y; z/h.z/ dz and observe that, since j.�j /1j � 1,
(3-21) in Theorem 3.2 with �D �j givesZ

jKj .y; z/j dy . �n�k N�n�k :

By the same symmetry argument used in (3-22), we now have

kTj hkL2
y
. �n�k N�n�k

khkL2
y
D �.n�k/=2

jt � sj�.n�k/=2
khkL2

y

(though in what follows, it is convenient to express the bounds in terms of �, N� ).
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We claim that there exists a constant C such that if N��1j�j � �l j � C , then

kT �l TjkL2!L2 CkTlT
�

j kL2!L2 . �2.n�k/ N�2.n�k/.1C N��1
j�j
� �l
j/�N :

Since WtW
�

s D
P

j Tj , Cotlar’s lemma then implies (3-14). Furthermore, we focus on the bound for
T �

l
Tj , as a symmetric argument yields the bound on TlT

�
j . Set

Jj ;l.z; w/D

Z
Kl.y; z/Kj .y; w/ dy:

We will show that, for N��1j�j � �l j � C ,

jJj ;l.z; w/j. �2n�k N�2n�1�k.1C� N� jz�wjC�jh�l ; Nz� NwijC N��1
j�j
� �l
j/�N : (3-24)

The proof of (3-24) varies based on whether j.�j
1
� �l

1
; : : : ; �

j

k
� �l

k
/j � j.�j � �l/00j or the opposite

inequality holds. In the first case, we write

Jj ;l.z; w/D �
n=2

“ �Z
eih�; Ny�xi�ihQ�; Ny�Qxi�.�1=2. Ny �x//�.�1=2. Ny � Qx// dy

�
� .z; w;x; �; Qx; Q�/�j .�/�l. Q�/ dx d� d Qx d Q� (3-25)

where Qx; Q� denote the variables in the integral defining Kl and  is a function independent of y. The y

integral in parentheses is a constant multiple ofZ
ei Q O�.��1=2..�1; �

0; �00/� �// O�.��1=2..�1; �
0; Q�00/� Q�// d�1d�0d�00d Q�00 (3-26)

where Q is some real-valued phase function. Since supp. O�/ is contained in the unit ball and

2j.�
j
1
� �l

1; : : : ; �
j

k
� �l

k/j � j�
j
� �l
j;

this integral vanishes if N��1j�l � �j j � C , as this implies that j.�1� Q�1; : : : ; �k � Q�k/j& C� N� � C�1=2.
We now turn to the case where j.�j /00� .�l/00j � j.�

j
1
� �l

1
; : : : ; �

j

k
� �l

k
/j. In this case, we use (3-21)

in Theorem 3.2 to bound jKl j, jKj j individually. After some minor manipulations, this yields

jJj ;l.z; w/j

. �2n N�2.n�1/

Z �
1C� N� j Ny �xt;s. Nw; �

j /jC� N� j Ny �xt;s.Nz; �
l/jC�jh�t;s.Nz; �

l/; Ny �xt;s.Nz; �
l/ij

��6N

� .1C�jh�t;s. Nw; �
j /; Ny �xt;s. Nw; �

j /i � h�t;s.Nz; �
l/; Ny �xt;s.Nz; �

l/ij/�N dy (3-27)

We take 3N of the powers in the first factor of the integrand on the right and claim that up to implicit
constants, it is bounded above by

.1C� N� jz�wjC N��1
j�j
� �l
j/�3N : (3-28)

To see this, first observe that the 3N powers from the integrand are dominated by

.1C� N� jxt;s.Nz; �
l/�xt;s. Nw; �

j /jC 64� N� jx00t;s.Nz; �
l/�x00t;s. Nw; �

j /j/�3N :
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By the bounds (3-18), (3-19) in Theorem 3.1, we have

jxt;s.Nz; �
l/�xt;s. Nw; �

j /j � 3
4
jz�wj � 2jt � sjj�l

� �j
j (3-29)

provided c0 and " are taken sufficiently small. Next we use thatˇ̌
x00t;s. Nw; �

j /�x00t;s.Nz; �
l/
ˇ̌
�
ˇ̌
x00t;s. Nw; �

j /�x00t;s. Nw; �
l/
ˇ̌
�
ˇ̌
x00t;s. Nw; �

l/�x00t;s.Nz; �
l/
ˇ̌
:

To bound the second term on the right, we use that as a consequence of (3-18) the .n� k/� n matrix
dxx00t;s satisfies ˇ̌

dxx00t;s � Œ0 In�k �
ˇ̌
. c0jt � sj:

Recalling that Nw D .w; 0/, Nz D .z; 0/, this givesˇ̌
x00t;s. Nw; �

l/�x00t;s.Nz; �
l/
ˇ̌
. c0jt � sjjz�wj:

We now use (3-5), (3-19) to get that d�x
00
t;s.x; �/ is the .n� k/� n block matrix

.s� t/.�2
1 � j.�

0; � 00/j2/�3=2
�
�1�
00 �� 00.� 0/T �

�
.�2

1
� j.� 0; � 00/j2/In�k C �

00.� 00/T
��

plus an error term which is O.c0jt � sj/. Here � 00 is taken to be a column vector. Since j.�l � �j /00j �
1
2
j�l � �j j and j.� 0; � 00/j. "j�1j, we have

jx00t;s. Nw; �
j /�x00t;s. Nw; �

l/j � 1
8
jt � sj j�l

� �j
j:

In summary, for some uniform constant M ,

64jx00t;s. Nw; �
j /�x00t;s.Nz; �

l/j � 8jt � sjj�l
� �j
j �Mc0jt � sjjz�wj: (3-30)

By taking c0 sufficiently small, the negative term in (3-30) can be absorbed by the first term in (3-29) and
vice versa, which shows (3-28).

We now turn to the second factor in the integrand of (3-27). The triangle inequality gives

�
ˇ̌
h�t;s. Nw; �

j /; Ny �xt;s. Nw; �
j /i � h�t;s.Nz; �

l/; Ny �xt;s.Nz; �
l/i
ˇ̌
� �jh�j ; Nz� Nwij �E

with

ED�
ˇ̌
�t;s.Nz; �

l/��t;s. Nw; �
j /
ˇ̌ ˇ̌
Ny�xt;s.Nz; �

l/
ˇ̌
C�

ˇ̌
h�t;s. Nw; �

j /;xt;s.Nz; �
l/�xt;s. Nw; �

j /i�h�j ; Nz� Nwi
ˇ̌
:

We claim that

E . .� N�/2j Ny �xt;s.Nz; �
l/j2C N��2

j�j
� �l
j
2
C .� N�/2jz�wj2C 1: (3-31)

The error induced by E can thus be absorbed by 2N of the powers in (3-28) and 2N of the powers in the
first factor in (3-27). This concludes the proof of (3-24), as the remaining N powers of the first factor in
(3-27) can be used to integrate in y.

To bound the first term in E, we use the geometric-arithmetic mean inequality and observe that the
bounds on dx�t;s , d��t;s in Theorem 3.1 give

N��1
ˇ̌
�t;s.Nz; �

l/� �t;s. Nw; �
j /
ˇ̌
. N��1

jz�wjC N��1
j�j
� �l
j:
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Since N��1 � � N� when jt � sj � 1, this is seen to be bounded by the right-hand side of (3-31). Using that
� N�2js� t j D 1 and �� .� N�/2, the rest of (3-31) follows fromˇ̌

h�t;s. Nw; �
j /;xt;s.Nz; �

l/�xt;s. Nw; �
j /i � h�j ; Nz� Nwi

ˇ̌
. jz�wj2C N�2

js� t j;

which can be seen by differentiating the expression on the left in s; see [Smith and Sogge 2007, p. 133].

4. Curved submanifolds

In this section, we prove the bound (2-24) with q D 2, ı D 1
6
.1C ˇ/ which implies Theorem 1.2.

In contrast to the previous section, it will be more convenient to work with an equation which is
hyperbolic in t rather than in x1. To this end, we simply set q˙.x; �/ D ˙

�P
i;j gij .x/�i�j

�1=2 and
p˙. � ; �/D Sc2�1=2q˙. � ; �/. As a consequence, we vary the notational conventions slightly so that if
x 2 Rn, we denote x0 D .x1; : : : ;xn�1/ 2 Rn�1 so that x D .x0;xn/. All other conventions will carry
over as before.

Following reductions similar to the previous section, it suffices to show that

ku˙� kL2..0;1/�Rn�1�f0g/ . �.1=6/.1Cˇ/.ku˙� kL2.RnC1/C�
�1
kG˙� kL2.RnC1//

where G˙� D .�i@tCp˙.x;D//u˙� . As before, it suffices to treat the u��, so we suppress the superscripts.
The wave packet transform from above can also be used here, and after following the initial reductions

in Section 3, it suffices to show that the propagator

W Qf .t;y/D T �� .
Qf ı‚0;t /. Ny/D �

n=4

Z
eih�t;0.x;�/; Ny�xt;0.x;�/i�.�1=2. Ny �xt;0.x; �/// Qf .x; �/ dx d�

satisfies

kW Qf kL2
t;y
. �.1=6/.1Cˇ/k Qf kL2

x;�
; ˇ D

�

1��
< 1

2
: (4-1)

where Qf is supported in a region of the form f� W j�j � �; j�1=j�j � .�e1/j. "g. In this section, the map
‚t;s is determined by the new value of p and hence ‚t;s D‚t�s;0. Given (3-3), we may assume .t;y/
are restricted to .0; 1/� .�1; 1/n�1, that is, we bound the L2..0; 1/� .�1; 1/n�1/ norm of W Qf . We now
exploit the property (2-23).

Lemma 4.1. Let .x.t/; v.t// be a solution to the geodesic equation in tangent space

dxk

dt
D vk.t/;

dvk

dt
D�vi.t/vj .t/�k

ij .x.t// (4-2)

relative to the Christoffel symbols defined by g�1=2 (with the summation convention in effect). Suppose
further that .x.t/; v.t// is defined for t 2 Œ�1; 1� and that the geodesic has unit speed in that jv.t/jg

�1=2
�1.

If v.t/ further satisfies jvn.t/j . ", where " is sufficiently small, then there exists a uniform constant c1

such that the n-th component of the velocity satisfies

c1�
�ˇ
jt j � vn.t/� vn.0/. c0�

�ˇ
jt j: (4-3)
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Furthermore, the difference between xn.t/ and its linearization about 0 satisfies

jxn.t/�xn.0/� v
n.0/t j. c0�

�ˇ
jt j2: (4-4)

Proof. If " is sufficiently small relative to the c1 appearing in (2-23), then �vi.t/vj .t/�n
ij .x.t// is

uniformly bounded from above and below. Adjusting the constant c1, the bound (4-3) is thus a consequence
of the integral equations arising from (4-2). The integral equation for xn.t/ similarly gives Equation (4-4).

�

Recall that solutions to (4-2) are naturally associated to curves .x.t/; �.t// in the cotangent bundle by
the identification vk.t/D gkl

�1=2.x.t//�l.t/. The curves in phase space are solutions to the Hamiltonian
equations

dx

dt
D d�H;

d�

dt
D�dxH; H.x; �/D 1

2
gij

�1=2�i�j :

With this in mind, we define a.x; �/ D gnm.x/�m D @�n
H , where, again, the summation convention

is used. If .xt;s.x; �/; �t;s.x; �// were integral curves of the Hamiltonian vector field determined by
q D

p
gij�i�j , we would have a.xt;s; �t;s/D j�jg

�1=2
vn.s� t/, where vn.r/ is the n-th component of the

velocity vector in (4-2) at time r with initial data satisfying

xk.0/D xk ; vk.0/D .gkl
�1=2.x/�l/=j�jg�1=2

; jv.0/jg
�1=2
D 1:

However, in the solution operator W under consideration, the .xt;s; �t;s/ are integral curves of the
Hamiltonian vector field determined by p. � ; �/D Sc2�1=2q. � ; �/. Given the bounds

j@



�
.p� q/.x; �/j. ��1; j@
x.p� q/.x; �/j. c0�

1=2;

valid for j�j��, we can use Gronwall’s inequality to approximate the integral curves of d�p �dx�dxp �d�

by those of d�q � dx � dxq � d� and deduce that, for j�j � �,

a.xt;s.x; �/; �t;s.x; �//D j�jg
�1=2

vn.t � s/CO.�1=2
jt � sj/ (4-5)

where vn.t � s/ is as before. By the same tack, (4-4) gives that for .xt;s/n D hxt;s; eni,

j.xt;s/n.x; �/�xn� j�j
�1
g
�1=2

a.x; �/.t � s/j. c0�
�ˇ
jt � sj2C��1=2

jt � sj: (4-6)

Let N�, n� be integers such that N�� log2.�
.1=3/.1Cˇ//, n�� log2.�

ˇ/ and take a smooth partition
of unity f�j .r/g

N�
jDn�

on R satisfying

supp.�n�/� fr 2 R W jr j � �2�n��2
g;

supp.�j /� fr 2 R W jr j 2 Œ�2�j�2; �2�jC2�g; n� < j <N�;

supp.�N�/� fr 2 R W jr j � �2�N�C2
g:

For each n� � j �N�, we define

W j Qf .t;y/D �n=4

Z
eih�t;0; Ny�xt;0i�.�1=2. Ny �xt;0//�j .a.xt;0; �t;0// Qf .x; �/ dx d�
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and, as before, we let W
j
t
Qf .y/DW j Qf .r;y/jrDt . It suffices to show that

kW j Qf kL2
t;y
. 2j=2

k Qf kL2
x;�
: (4-7)

When ˇ D 0, the decomposition above is consistent with earlier treatments of FIOs whose canonical
relations possess a two-sided fold; see, for example, [Cuccagna 1997]. Indeed, for an FIO determined
by the classical Lax parametrix, the singularities of the right projection of the canonical relation are
determined by a.xt;0; �t;0/D 0 and it is effective to take dyadic decomposition in a.xt;0; �t;0/=� in scales
1 � 2�j � ��1=3. For ˇ > 0, scaling considerations relating to the dilation of variables x 7! ���x in
Section 2 then suggest that the dyadic scales should not be finer than ��.1=3/.1Cˇ/. In our circumstance,
we can view the splitting of ja.xt;0; �t;0/j=� into scales less than and greater than ��

1
3
.1Cˇ/ as a

decomposition into tangential and nontangential momenta, respectively. It can be seen that this threshold
gives the largest scale at which our estimate for tangential momenta (4-18) is effective. At the same time,
restricting nontangential momenta to scales at least this size allows us to achieve an appreciable gain
in the bounds for W j by using the linear approximation of phase space transport in (4-23) below. The
selection of n� is more technical; its choice is based on the fact that, for ja.x; �/j=�� ��ˇ , the .�t;0/n

component of the Hamiltonian flow can be linearized over a unit time scale.
Let !n be the unit vector pointing in the direction of .gn1.Nz/; : : : ; gnn.Nz// and B denote the projection

matrix onto the subspace orthogonal to !n. Given the decomposition above, we will need to consider the
following class of integrals more general than those in Theorem 3.2:

Kt;s.y; z/D �
n=2

“
eih�;Nz�xi�ih�t;s ; Ny�xt;si�.�1=2.Nz�x//�.�1=2. Ny �xt;s//

� z�.�/�j .a.x; �//�j .a.xt;s; �t;s// dx d� (4-8)

where �j is defined as above with n� � j �N� and

supp.z�/� f� W j�j � �; j�1=j�j � .�e1/j. "; jB�=jB�j � �j. N�g; (4-9)

for some unit vector � orthogonal to !n. In particular, if N� D 1, W
j
t .W

j
s /
� takes this form. Our first task

is to observe a generalization of Theorem 3.2.

Theorem 4.2. Suppose N�Dmin.1; ��1=2jt�sj�1=2/�2�j and Kt;s.y; z/ is defined by (4-8), (4-9). Let �
denote a fixed vector in the �-support of z�. � /�j .a.Nz; � // andwt;sDxt;s.Nz; �/, �t;sD�t;s.Nz; �/=j�t;s.Nz; �/j.
Then Kt;s.y; z/ satisfies the bounds

jKt;s.y; z/j. �n N�n�22�j
�
1C� N� jB � . Ny �wt;s/jC�jh�t;s; Ny �xt;sij

��N
:

Proof. The proof is only a slight modification of the argument in [Smith and Sogge 2007, p. 152] and
hence we only outline the significant differences. Indeed, the only alteration is that, in our case, a.x; �/

replaces �n and the factor �j .a.xt;s; �t;s// is also present. Let !1; : : : ; !n be an orthonormal basis on Rn
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containing !n. We then define the following vector fields, which preserve the phase in (4-8):

L0 D
1� i.h�; Nz�xi � h�t;s; Ny �xt;si/h�; d�i

1Cjh�; Nz�xi � h�t;s; Ny �xt;sij
2

;

Lk D
1� i.� N�/2h!k ; Nz�x� d��t;s � . Ny �xt;s/ih!k ; d�i

1C�2 N�2jh!k ; Nz�x� d��t;s � . Ny �xt;s/ij2
; 1� k � n� 1:

We define Ln analogously to Lk above with !n replacing !k and 2�j replacing N� . The idea is to integrate
by parts in (4-8) using these vector fields. We display the following bounds on the derivatives of‚t;s.x; �/

in x; � [Smith and Sogge 2007, (5.6), (5.7), (5.11), (5.12)]:

jd2
xxt;sj. h�1=2

jt � sji; jd2
x�t;sj. �1=2;

jdxd�xt;sj. jt � sjh�1=2
jt � sji; jdxd��t;sj. h�1=2

jt � sji;

jdk
� xt;sjC jd

k
� �t;sj. jt � sjh�1=2

jt � sjik�1; k � 2; (4-10)

j.� � d�/
j .� N�d�/

˛�3=2 N�d�xt;sj. 1; j.� � d�/
j .� N�d�/

˛� N�hd��t;s; Ny �xt;sij. h�1=2
j Ny �xt;sji;

where the last one is valid for j C j˛j � 1. these bounds were used [Smith and Sogge 2007] to prove
Theorem 3.2 above and the aforementioned estimates.

Here the first crucial matter is to observe that the result of applying powers of the differential operators
h�; d�i and � N�h!k ; d�i for k D 1; : : : ; n�1 to �.i/j .a.x; �//, �.i/j .a.xt;s; �t;s// is dominated by the other
factors in the integrand. Powers of h�; d�i are easily handled by homogeneity. Differentiating �.i/j yields
a gain of ��12j , while derivatives of N�2j a.x; �/ in the direction of !k are

N�2j
h!k ; d�ia.x; �/D N�2j

h!k ; g
nm.x/� gnm.Nz/i:

Since N�2j . � 1
3
.1Cˇ/

� �1=2, this is dominated by �1=2jx� Nzj.
For �.i/j .a.xt;s; �t;s//, first consider a single power of N�2j h!k ; d�i on a.xt;s; �t;s/

N�2j
h!k ; d�ia.xt;s.x; �/; �t;s.x; �//

D N�2j
h!k ; d�i.g

nm.xt;s/.�t;s/m/

D N�2j .dxgnm.xt;s/ � h!k ; d�xt;si.�t;s/mC gnm.xt;s/h!k ; d�.�t;s/mi/: (4-11)

The first term on the right is bounded as jd�xt;s.x; �/jj�t;sj. jt � sj and N�2j jt � sj � 1. For the second,
we rewrite the sum in m as

.gnm.xt;s/� gnm.Nz//h!k ; d�.�t;s/miC gnm.Nz/h!k ; d�.�t;s/m� emi:

The second term is O.jt � sj/ and can be dominated as before. For the first term we use that

jxt;s.x; �/� Nzj � jxt;s.x; �/�xjC jx� Nzj:
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The first term here is O.jt�sj/ and the second can be treated as above. For higher derivatives of (4-11), we
simply use homogeneity and (4-10) to see that the result of applying l additional powers of N�2j h!k ; d�i

is bounded by . N�2j /lC1jt � sj��l=2� 1.
Integration by parts using L0; : : : ;Ln gives that jKt;s.y; z/j is dominated by

�n=2

“
.1C�1=2

jNz�xjC�1=2
j Ny �xt;sj/

�N .1C� N� jB � .Nz�x� d��t;s � . Ny �xt;s//j

C�2j
jh!n; Nz�x� d��t;s � . Ny �xt;s/ijC jh�; Nz�xi � h�t;s; Ny �xt;sij/

�N d�dx (4-12)

and we may assume that the values of � are restricted to � 2 supp.z�. � /�j .a.x; � ///.
Now observe that if � is such a vector and Q�, Q� are vectors in the direction of �, � normalized so that

jB Q�j D jB Q�j D 1, then

jB. Q� � Q�/j. N�; j.I �B/. Q� � Q�/j. jNz�xjC 2�j : (4-13)

The first of the two inequalities is evident from the support condition on z� and the second follows by
observing that jB�j; jB�j � � and

gnm.Nz/ Q�m� gnm.Nz/ Q�m D .gnm.Nz/� gnm.x// Q�mC gnm.x/ Q�m� gnm.Nz/ Q�m

Given (4-13), the proof of [Smith and Sogge 2007, (5.13)] goes through with only minor adjustments.
Hence (4-12) is further dominated by

�n=2

“
.1C� N� jB � d��t;s � . Ny �wt;s/jC�2�j

jh!n; d��t;s � . Ny �wt;s/ij

C jh�t;s; Ny �wt;sij/
�N .1C�1=2

jNz�xjC�1=2
j Ny �xt;sj/

�N d�dx (4-14)

where � values are restricted as before. Observe that since �1=2� �2�j � � N� and d��t;s is invertible,
the middle two terms in the first factor dominate �1=2j Ny �wt;sj.

We next see that we may replace �t;s by �t;s.Nz; �/ in the expression h�t;s; Ny �wt;si. Without loss of
generality, we may assume that jB�j D jB�j. We note that

jh�t;s.x; �/� �t;s.Nz; �/; Ny �wt;sij. �jx� Nzjj Ny �xt;sj:

It now remains to bound jh�t;s.x; �/� �t;s.x; �/; Ny �wt;sij. We thus write

�t;s.x; �/� �t;s.x; �/D .� � �/ � d��t;sCO.j� � �j2��1=2
jt � sj/:

For the first term here, note that

.� � �/ � d��t;s D .� � �/ �B � d��t;sC .� � �/ � .I �B/ � d��t;s:

Since B is an orthogonal projection and

jB � .� � �/j. � N�; j.I �B/ � .� � �/j. �2�j
C�jx� Nzj;

the error induced by the first term here is dominated by the other terms in the integrand in (4-14). We
then use � N�2jt � sj � 1 to bound the error term similarly.
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Also, replacing d��t;s by the identity matrix in (4-14) yields an acceptable error, as it is bounded by

� N� jt � sjj Ny �xt;sj. �1=2
j Ny �xt;sj:

Finally, for each x, the region of integration in � can be restricted to a set of volume � �n N�n�22�j ,
which is enough to conclude the proof. �

Note that, by (2-22), we may assume that the difference between B and projection onto the first n� 1

coordinates yields an error which is no more than O.c0/. Moreover, since j�t;s � e1j. "C c0, we have,
as a consequence of this theorem, thatZ

jKt;s.y; z/j dy . �2�j : (4-15)

We now begin the proof of (4-7) when j DN�, claiming there exists Qc1 such that

W
N�
t .W

N�
s /� D 0 whenever jt � sj � Qc1�

ˇ2�N� : (4-16)

To see this, recall that the kernel of W
N�
t .W

N�
s /� is given by an integral of the form (4-8) with N� D 1.

Since ��ˇ� ��1=2, by (4-3) and (4-5), there exists a constant Qc1, inversely proportional to c1 above,
such that ja.xt;s.x; �/; �t;s.x; �//j � �2�N�C2 whenever ��ˇjt � sj � Qc12�N� and � 2 supp.�N�/.

Turning to the case jt � sj � Qc1�
ˇ2�N� , take a collection of unit vectors �i orthogonal to !n and

mutually separated by a distance � N� so that (3-23) holds. Now write Kt;s D
P

i Ki.y; z/ where each
Ki is defined as in (4-8) with � replaced by �i . Next observe that j�j � �l j . j.�j � �l/0j, which can
be seen by noting that the linear map which projects the subspace orthogonal to !n onto its first n� 1

components is invertible and depends continuously on z. An adjustment of the almost orthogonality
argument in (3-26) thus shows that the operators T �

l
Tj , TlT

�
j vanish if N��1j�i � �j j � C for some large

C . Observe that Z
jKi.y; z/j dyC

Z
jKi.y; z/j dz . �2�N� : (4-17)

But the first half of this is a consequence of (4-15) and the second half follows by symmetry and
the same bound. Indeed the theorem applies here, as our assumption on jt � sj means that N� &
��.1=2/.1Cˇ/2.1=2/N� � 2�.3=2/N�C.1=2/N� D 2�N� . The bound (4-7) now follows by duality, since
Young’s inequality in t; s gives

kW N�.W N�/�kL2
s;z!L2

t;y
. �2�N� ��ˇ2�N� � 2N� : (4-18)

For n� � j <N�, we take a partition of unity over Rn�1,
P

l �.y � l/� 1 such that the sum is taken
over l 2 Zn�1 and supp.�/� Œ�1; 1�n�1. Use this to define

�l.y/ WD �.�
�ˇ2j y � l/ and W j ;l Qf .t;y/ WD �l.y/W

j Qf .t;y/

and we consider only those l such that supp.�l/ intersects .�1; 1/n. By the support properties of �, we
may take C sufficiently large so that .W j ;m/�W j ;l vanishes whenever jl �mj � C . We next claim that
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we can take C so that

kW j ;l.W j ;m/�kL2!L2 . ��N whenever jl �mj � C: (4-19)

Since there is at most O.�.n�1/=3/ of the W j ;l , the estimate (4-7) on W j will follow by Cotlar’s lemma
and Young’s inequality provided we can show

kW
j ;l
t .W j ;l

s /�hkL2
y
. �2�j .1C�2�2j

jt � sj/�2
khkL2

y
: (4-20)

In order to show (4-19), we can write the kernel of the operator, denoted by K
l;m
t;s .y; z/, as the product

of �l.y/�m.z/ with an integral of the form (4-8) with N� D 1. Given the compact support of K
l;m
t;s in y

and z it suffices to show that this integral is dominated by ��N for any N . Similar to the j DN� case,
if � 2 supp.�j / and jt � sj � Qc1�

ˇ2�j for some Qc1 depending only on c1, then �j .a.xt;s; �t;s// D 0,
meaning the kernel vanishes for such t; s. When jt � sj � Qc1�

ˇ2�j , we use that

jxt;s.Nz; �/�xt;s.x; �/j. jNz�xj

to dominate the integral in (4-8) simply by

�n=2

“
.1C�1=2

jNz�xjC�1=2
j Ny �xt;s.Nz; �/j/

�2N z�.�/�j .a.x; �// dx d�:

Using the elementary estimate jxt;s.Nz; �/� Nzj � 2jt � sj, we see that if jl �mj � 24 Qc1,

j Ny �xt;s.Nz; �/j � jy � zj � 2jt � sj � �ˇ2�j�2
jl �mj � 2 Qc1�

ˇ2�j
� �ˇ2�j

� ��1=3

and hence �1=2jNz�xt;s. Ny; �/j& �1=6. This implies the desired bound on K
l;m
t;s .y; z/.

We now turn to (4-20). It suffices to restrict attention to jt � sj � Qc1�
ˇ2�j , though this does not play

a crucial role in the argument. First consider the case where t; s satisfy jt � sj � ��122j . We begin by
observing that a slight adjustment of the almost orthogonality argument in (3-26) and preceding (4-18)
allows us to assume that the kernel K

l;l
t;s.y; z/ of W

j ;l
t .W

j ;l
s /� is the product of �l.y/�l.z/ and an

integral of the form (4-8) with N� Dmin.1; ��1=2jt � sj�1=2/. Indeed, reasoning as in (3-25), we are lead
to consider the integralZ

eih�; Ny�xi�ihQ�; Ny�Qxi�.�1=2. Ny �x//�.�1=2. Ny � Qx//�2
l .y/ dy:

While this integral does not vanish when �1=2 � � N� � j� � Q�j, we may bound its absolute value by
CN�

�N for any N , which is just as effective. Indeed, we may take the Fourier transform similarly to
(3-26) and, since the Fourier transform of �2

l
is concentrated (though not localized) in a ball of radius

��ˇ2j � �1=3� �1=2, the rapid decay in � follows. We now conclude (4-20) for jt � sj � ��122j by
applying (4-15) and reasoning analogously to (4-17).

To show (4-20) when jt � sj > ��122j , we take the decomposition used in Section 3, writing the
kernel K

l;l
t;s D

P
i Ki with Ki defined by replacing the � in (3-16) by a smooth cutoff z�j ;i to a region of

the form ˚
� 2 supp.z�. � /�j .a.x; � // W ��1 � �; j�=j�j � �

i
j. N�

	
; N� D ��1=2

jt � sj�1=2
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where �i 2 Sn�1. As before, we assume that �i are separated so that (3-23) holds. The estimates (3-21)
in Theorem 3.2 give

jKi.yI z/j. �n N�n�1
�
1C� N� j Ny �xi

t;sjC�jh�
i
t;s; Ny �xi

t;sij
��N (4-21)

with xi
t;s D xt;s.Nz; �

i/. We will show that

j Ny �xi
t;sj& 2�j

jt � sj: (4-22)

Together with our assumption on t; s, this gives �1=22�j jt�sj1=2.� N� j Ny�xi
t;sj, and hence this additional

decay and the almost orthogonality arguments above can be integrated into the proof of (3-24) to obtain

kW
j ;l
t .W j ;l

s /�kL2!L2 . � N�.1C�2�2j
jt � sj/�2

� �2�j .1C�2�2j
jt � sj/�2:

To show (4-22), first consider t; s satisfying ��122j < jt � sj � �ˇ2�jC3 (note that this is nontrivial
when 2j < 2�

1
3
.1Cˇ/

� 2N� , a relevant consequence of the j < N� threshold discussed above). We
may assume c0 in (2-22) is sufficiently small and use a linear approximation of the n-th component of
xt;s.Nz; �

i/ in (4-6) to obtain
j.xt;s/n.Nz; �

i/j& 2�j
jt � sj; (4-23)

since the n-th component of Nz vanishes. Indeed, over this time scale, the error term is smaller than the
linearization.

Now assume that jt � sj � �ˇ2�jC3. Taking ", c0 sufficiently small, we obtain

j.xt;s/1.Nz; �
i/� z1j D

ˇ̌̌̌Z t

s

@�1
p.r; ‚r;s.Nz; �

i// dr

ˇ̌̌̌
�

1
2
jt � sj

Since y; z 2 supp.�l/ we obtain jy � zj � 2�jC1�ˇ � 1
4
jt � sj and hence we have the stronger bound

j.xt;s/1.Nz; �
i/�y1j �

1
2
jt � sj � jz1�y1j �

1
4
jt � sj:
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