
ANALYSIS & PDE

msp

Volume 6 No. 7 2013

LAURENT AMOUR, MOHAMED KHODJA AND JEAN NOURRIGAT

THE SEMICLASSICAL LIMIT
OF THE TIME DEPENDENT HARTREE–FOCK EQUATION:

THE WEYL SYMBOL OF THE SOLUTION





ANALYSIS AND PDE
Vol. 6, No. 7, 2013

dx.doi.org/10.2140/apde.2013.6.1649 msp

THE SEMICLASSICAL LIMIT
OF THE TIME DEPENDENT HARTREE–FOCK EQUATION:

THE WEYL SYMBOL OF THE SOLUTION

LAURENT AMOUR, MOHAMED KHODJA AND JEAN NOURRIGAT

For a family of solutions to the time dependent Hartree–Fock equation, depending on the semiclassical
parameter h, we prove that if at the initial time the Weyl symbol of the solution is in L1(R2n) as well as
all its derivatives, then this property is true for all time, and we give an asymptotic expansion in powers of
h of this Weyl symbol. The main term of the asymptotic expansion is a solution to the Vlasov equation,
and the error term is estimated in the norm of L1(R2n).

1. Introduction

The essential goal of this work is a semiclassical analysis of the solutions of the time dependent Hartree–
Fock equation (TDHF) in the framework of trace class h-pseudodifferential operators. This equation
describes the time evolution of the density operator of a quantum system in the mean field approximation,
in other words, when the number N of particles tends to infinity, the interaction between two particles
being of order 1/N . (See, for instance, [Ammari and Nier 2008; 2009; Bardos et al. 2003; Erdős and
Schlein 2009; Fröhlich et al. 2009; Rodnianski and Schlein 2009; Spohn 1980].)

A solution to the TDHF equation is a nonnegative self-adjoint trace class operator ρh(t) in H= L2(Rn)

(for particles moving in Rn), of trace equal to 1, evolving as a function of t . This operator is usually
called the density operator. Its evolution depends on a parameter h > 0, and on two potentials V and W ,
which are here C∞ real valued functions on Rn , bounded as well as all their derivatives: the first one
is the external potential, interacting with all the particles, and the second one describes the interaction
between two particles. Then the density operator obeys the equation

ih ∂
∂t
ρh(t)=−h2

[1, ρh(t)] + [Vq(ρh(t)), ρh(t)], (1-1)

where 1 is the Laplacian and Vq(ρh(t)) is the multiplication operator by the mean quantum potential,
defined at each point x ∈ Rn , and for each time t , according to the principles of quantum mechanics, by

Vq(x, ρh(t))= V (x)+Tr(Wxρh(t)), (1-2)

where Wx is the multiplication operator by the function y→W (x − y). We shall see later the meaning
of the commutators in the equation, and the other hypotheses which are needed.
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Using semiclassical analysis, we want to make precise the relationship with the Vlasov equation, which
plays the role of TDHF in classical mechanics. A solution of this equation is a nonnegative real-valued
function v( · , t) in L1(Rn), depending on t ∈ R. This function defines the particle density at the point x
and at the time t in classical mechanics. Then the mean classical potential at (x, t) is

Vcl(x, v( · , t))= V (x)+
∫

R2n
W (x − y)v(y, η, t) dy dη. (1-3)

Then the density function v( · , t) satisfies the Vlasov equation, which is the Liouville equation with the
mean potential

∂v

∂t
+ 2

n∑
j=1

ξ j
∂v

∂x j
−

n∑
j=1

∂Vcl(x, v( · , t))
∂x j

∂v

∂ξ j
= 0. (1-4)

The asymptotic relationship, when h tends to 0, between a density operator ρh(t) (that is, a nonnegative
self-adjoint trace class operator, with trace 1) satisfying the TDHF equation and a density function v(x, t)
(a nonnegative real-valued function in L1(Rn), with integral 1) satisfying the Vlasov equation will be
provided by the semiclassical quantization. We can use either the semiclassical Weyl calculus or the
semiclassical Wick symbol. This paper is devoted to the approach by the Weyl calculus. The Wick
symbol, which needs weaker hypotheses, will be studied elsewhere (see [Amour et al. 2011]). In this
work we also use the semiclassical anti-Wick calculus in Section 2, only to give examples.

The semiclassical Weyl calculus associates to a suitable function F on R2n an operator, in our case in
L2(Rn), depending on the parameter h > 0, formally defined for f ∈ L2(Rn) by

(
Opweyl

h (F) f
)
(x)= (2πh)−n

∫
R2n

e(i/h)(x−y)·ξ F
(

x + y
2

, ξ

)
f (y) dy dξ. (1-5)

This operator can also be written Fw(x, h D). Let us denote by W m,p(R2n) the Sobolev space of functions
which are in L p(R2n) together with all their derivatives up to the order m (1≤ p ≤+∞, m ≥ 0). In the
oldest results on the Weyl calculus, the function F is in W∞,∞(R2n) and the operator Opweyl

h (F) is a
bounded operator in L2(Rn). See [Calderón and Vaillancourt 1972; Hörmander 1985a, Chapter 18; Lerner
2010; Taylor 1981] and, in the semiclassical context, [Robert 1987; 1998; Zworski 2012; Dimassi and
Sjöstrand 1999; Helffer 1997; Martinez 2002], for example. These results cannot be directly applied to
our problem, since our function v( · , t) is in L1(R2n), and the operator ρh(t) has to be not only bounded,
but also trace class. Rather, we shall use, in definition (1-5), symbols F in W∞,1(R2n). It was proved by
C. Rondeaux [1984] that for each function F in W m,1(R2n) (m large enough), the operator Opweyl

h (F)
formally defined by (1-5) is trace class. This result is very useful for the study of solutions of the TDHF
equation. However, in [Rondeaux 1984], there was no parameter h, and the Weyl calculus was not
semiclassical, but we need only standard modifications for that.

We want to prove that if at the initial time t = 0 the density operator ρh(0) is associated by the
semiclassical Weyl calculus to a function in W∞,1(R2n), then for each t ∈ R, the operator ρh(t) is also
associated in the same way to another function in W∞,1(Rn), and we shall make precise the time evolution
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of this function. Before giving the precise statement, we recall the standard formula

Tr
(
Opweyl

h (F)
)
= (2πh)−n

∫
R2n

F(x, ξ) dx dξ, F ∈W∞,1(R2n). (1-6)

Let us recall also that if F is real-valued, then Opweyl
h (F) is self-adjoint. By [Rondeaux 1984], we can

associate to each nonnegative function F in W∞,1(R2n) with integral equal to 1 a self-adjoint trace class
operator ρh(0) with trace 1, in the following way:

ρh(0)= (2πh)n Opweyl
h (F). (1-7)

However, the positivity of F does not imply the positivity of the operator, which will be another hypothesis.
We shall prove that, for a solution ρh(t) of the TDHF equation, if a relation like (1-7) exists for t = 0, it
will exist at each time.

Before the statements of the results, we have to explain the meaning of the TDHF equation and recall
the notion of a classical solution of TDHF introduced by Bove, Da Prato and Fano [Bove et al. 1974;
1976] (see also [Chadam and Glassey 1975]). Let us denote by L1(H) the space of trace class operators
H= L2(Rn). Denote by D the space of operators A in L1(H) such that the limit

lim
t→0

ei t1Ae−i t1
−A

t

exists in L1(H). This limit is denoted by i[1, A]. It can be easily proved that a trace class operator A
is in D if and only if its commutator with the Laplacian 1 (a priori defined as an operator from S(Rn)

into S′(Rn)) can be extended as a trace class operator in H = L2(Rn). A classical solution of TDHF
(for a fixed h > 0) is a map t→ ρh(t) in C1(R,L1(H))

⋂
C(R,D) satisfying (1-1). The Cauchy for the

TDHF equation was also studied in [Bove et al. 1974; 1976], where it is proved that for each nonnegative
self-adjoint operator A in D, and for each h > 0, there is a unique classical solution ρh(t) of the TDHF
equation such that ρh(0) = A. Moreover, ρh(t) is also self-adjoint and nonnegative, and its trace is
constant. We have similar properties for the Vlasov equation. If v is a solution of (1-4), and if at an initial
time the data v( · , 0) is in L1(R2n), and if it is nonnegative, these two properties remain true for all t ∈ R,
and the integral over R2n of v( · , t) is constant (see, for instance, [Braun and Hepp 1977]).

Theorem 1.1. Let (ρh(t))(h>0) be a family of classical solutions of the TDHF equation (1-1), with V
and W real-valued functions in W∞,∞(Rn). We assume that, for every h > 0, the operator ρh(0) can be
written

ρh(0)= (2πh)n Opweyl
h (Fh), (1-8)

where Fh is in W∞,1(R2n), real-valued, and bounded in W∞,1(R2n) independently of h in (0, 1]. We also
assume that the operator ρh(0) is nonnegative, and that∫

R2n
Fh(x, ξ) dx dξ = 1. (1-9)

Then for every t ∈ R, the operator ρh(t) can be written in the form

ρh(t)= (2πh)n Opweyl
h (uh( · , t)), (1-10)
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where uh( · , t) is in W∞,1(R2n), bounded in W∞,1(R2n) independently of h in (0, 1] and of t in a compact
set of R. We have, for all t ∈ R, ∫

R2n
uh(x, ξ, t) dx dξ = 1. (1-11)

The positivity of the operator ρh(t) is needed. Then by [Bove et al. 1976], we have ρh(t) ≥ 0 and
Tr(ρh(t))= 1 for all t . The condition ρh(0)≥ 0 is verified if ρh(0)= (2πh)n OpAW

h (G), with G ≥ 0 in
L1(R2n), where OpAW

h (G) is the anti-Wick operator associated to G (see Section 2).
If there was no interaction between the particles (W = 0), the evolution equation (1-1) would be linear,

and then we would have

ρh(t)= e−(i t/h)H(h)ρh(0)e(i t/h)H(h), H(h)=−h21+ V (x). (1-12)

In this particular case, the Egorov theorem could be applied. The earliest version of the Egorov theorem
says that if A is a pseudodifferential operator and U an invertible Fourier integral operator, then U−1 AU
is a pseudodifferential operator (see [Hörmander 1985b, Chapter 25]). In the case of an evolution equation
like (1-12), it can be proved, without the Fourier integral operators, that if ρh(0) is a pseudodifferential
operator with a symbol F in W∞,∞(R2n), then it is the same for the right-hand side of (1-12). The proof
was given (in the semiclassical context) by D. Robert [1987] and M. Zworski [2012], who proved that
the error term in the asymptotic expansion is itself a pseudodifferential operator. For this last point, the
characterization theorem of R. Beals [1977] is needed.

For our problem, we need an extension of the above Egorov theorem for two reasons: this theorem
will be applied for symbols in W∞,1(R2n) (the Rondeaux class), and for time dependent Hamiltonians.
In the proof, we shall use the Beals type characterization of operators with symbols in W∞,1(R2n), also
given by Rondeaux, but with some modifications.

Now we shall give an asymptotic expansion of the function uh of Theorem 1.1. The first term will be
a solution of the Vlasov equation, and the rest will be majorized in the L1(R2n) norm. One can see in
[Domps et al. 1997] a formulation of the physics of this problem.

Theorem 1.2. Let (ρh(t))(h>0) be a family of classical solutions of the TDHF equation (1-1) satisfying
the hypotheses of Theorem 1.1. Then there exists a sequence of functions (X, t)→ u j (X, t, h) on R2n

×R

( j ≥ 0) such that:

• The function t → u j ( · , t, h) is C∞ from R into W∞,1(R2n). For every multi-index (α, β), there
exists a function Cαβ(t), bounded on every compact set of R, such that∥∥∂αx ∂βξ u j ( · , t, h)

∥∥
L1(R2n)

≤ Cαβ(t) (1-13)

for all t ∈ R and h ∈ (0, 1].

• If Fh is the function of (1-8),

u0(X, 0, h)= Fh(X) and u j (X, 0, h)= 0, j ≥ 1. (1-14)
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• The function u0(X, t, h) verifies the Vlasov equation

∂u0

∂t
+ 2

n∑
j=1

ξ j
∂u0

∂x j
=

n∑
j=1

∂

∂x j
Vcl
(
u0( · , t)

)∂u0( · , t)
∂ξ j

. (1-15)

• For every N ≥ 1, the function uh( · , t) defined by (1-10) and the function F (N )( · , t, h) defined by

F (N )(X, t, h)=
N−1∑
k=0

h j u j (X, t, h) (1-16)

satisfy, for all h ∈ (0, 1],∥∥uh( · , t)− F (N )( · , t, h)
∥∥

L1(R2n)
≤ CN (t)hN , (1-17)

where CN is a function on R which is bounded on the compact sets of R.

• For every N ≥ 1, the operator ρ(N )h (t) defined by

ρ
(N )
h (t)= (2πh)n Opweyl

h

(
F (N )( · , t, h)

)
(1-18)

(where F (N )( · , t, h) is the function of (1-16)) verifies∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤ C(t)hN+1. (1-19)

In Section 5, we will make precise the construction of the u j (X, t, h) ( j ≥ 1), and we will prove the
theorem. The successive terms u j (X, t, h) depend on the initial data Fh . If Fh depends on h, without
admitting an asymptotic expansion in powers of h, the u j (X, t, h) will depend on h.

In [Amour et al. 2011], we study the case where ρh(0) is trace class but not necessarily a pseudodiffer-
ential operator. In this case, the Weyl symbol is not available. It is defined as a function in L2(R2n) but
not necessarily in L1(R2n), which is the natural space here. Therefore, in this other paper, we shall use
the Wick symbol instead of the Weyl symbol, and a relation with the Vlasov equation will appear also.

Since the TDHF appears as a limiting process when the number N of particles tends to infinity,
a natural question is the one of the interchange of the two limits, where N tends to infinity and the
semiclassical parameter h tends to 0. It is the subject of [Pezzotti and Pulvirenti 2009], where it is shown
that the Weyl symbol of the marginal density operator associated to a particle in a system of N particles
admits an asymptotic expansion in powers of h; that when N tends to infinity, the Weyl symbol of the
marginal density operator tends towards the symbol of a solution of TDHF; that the coefficient of h j in
the asymptotic expansion of the symbol has a limit; and that, for j = 0, this limit is a solution of the
Vlasov equation. See also [Pezzotti 2009; Graffi et al. 2003; Gasser et al. 1998]. We observe that in
[Pezzotti and Pulvirenti 2009], the limits are in the sense of S′(R2n), while in this work and in [Amour
et al. 2011], they are in the sense of L1(R2n).

In Section 2, we will recall some standard results on h-pseudodifferential operators, particularly the
semiclassical analogue of the results of [Rondeaux 1984], which need only standard modifications in
order to be applied in the semiclassical context. However, we give a different proof of the Beals type
characterization theorem for this class, in order to give precisely the number of derivatives which are
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needed. The results on the composition of operators and the Moyal bracket for the class of Rondeaux
operators are stated in Section 3, since, surprisingly, these results are not in [Rondeaux 1984]. Section 4 is
devoted to the proofs of Theorem 1.1 and, first, of the analogue of the Egorov theorem for the Rondeaux
class and for time dependent Hamiltonians. In Section 5, we prove Theorem 1.2. The results stated in
Sections 2 and 3 are proved in Appendices A and B. For Section 2 and Appendix A, we use a technique
of A. Unterberger [1980].

2. Weyl calculus and trace class operators

We define H= L2(Rn) and denote by L1(H) the set of trace class operators in H. This space is a normed
space with the norm defined by

‖A‖L1(H) = Tr
(
(A?A)1/2

)
. (2-1)

We will denote by W m,p(R2n) (where 1≤ p≤+∞, and m is an integer≥ 0 or+∞) the space of functions
F which are in L p(R2n), as well as all their derivatives up to order m.

Since W m,p(R2n) may be considered as an exotic class of symbols, let us explain why definition (1-5)
makes sense for such symbols. The semiclassical Weyl calculus sets a bijection between operators from
S(Rn) into S′(Rn), thus admitting a distribution kernel in S′(R2n) and tempered distributions on R2n

(symbols). This bijection depends on a parameter h > 0. For every F in S′(R2n), we set Opweyl
h (F) the

operator A defined by (1-5), or equivalently the operator A :S(Rn)→S′(Rn) whose distribution kernel is

K A(x, y)= (2πh)−n
∫

R2n
F
(

x+y
2
, ξ

)
e(i/h)(x−y).ξ dξ. (2-2)

This relationship is understood in the sense of distributions and may be inverted. We will denote by
σ

weyl
h (A) the distribution F (Weyl symbol of A) such that A = Opweyl

h (F):

F = σweyl
h (A) ⇐⇒ A = Opweyl

h (F).

In view of applications to trace class operators, we can rewrite (1-5) equivalently when F is in L1(R2n) as

Opweyl
h (F)= (πh)−n

∫
R2n

F(X)6Xh d X, (2-3)

where for X = (x, ξ) in R2n , 6Xh is the “symmetry” operator defined by

(6Xh f )(u)= e(2i/h)(u−x)ξ f (2x − u), X = (x, ξ) ∈ R2n. (2-4)

If A is trace class, one has

σ
weyl
h (A)(X)= 2n Tr(A ◦6Xh), X ∈ R2n. (2-5)

It is shown in [Rondeaux 1984] that if F is in W m,p(R2n) (1≤ p <∞, m large enough), the operator
Opweyl

h (F) is in the Schatten class Lp(H). For p = +∞, this is the classical result of Calderón and
Vaillancourt [1972] (see also [Hörmander 1985a]). If F is in W∞,1(R2n), one has
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Tr
(
Opweyl

h (F)
)
= (2πh)−n

∫
R2n

F(X) d X. (2-6)

If F is in W∞,p(R2n) and G in W∞,q(R2n) (p ≥ 1, q ≥ 1, 1
p
+

1
q
= 1), one has

Tr
(
Opweyl

h (F) ◦Opweyl
h (G)

)
= (2πh)−n

∫
R2n

F(X)G(X) d X. (2-7)

The left-hand side makes sense, since from [Rondeaux 1984], the two operators under composition are
respectively Lp(H) and Lq(H), and therefore their composition is trace class.

A characterization of the set of operators whose Weyl symbol is in W∞,1(R2n) is given in [Ron-
deaux 1984]. This is the analogue of the Beals characterization [1977], which concerns the symbols
in W∞,∞(R2n). In the next proposition, we recall the results of [Rondeaux 1984], taking into account
of the semiclassical parameter h. We denote by Pj (h) = (h/ i)(∂/∂x j ) the momentum operators
and by Q j (h) the multiplication by x j . For each operator P , we denote by (ad P) the mapping
Q → (ad P)(Q) = [P, Q] = P Q − Q P . For every operator A of S(Rn) in S′(Rn), and for every
multi-index (α, β), we set

(ad P(h))α(ad Q(h))β A = (ad P1(h))α1 . . . (ad Qn(h))βn A. (2-8)

Proposition 2.1. (a) If F is in W 2n+2,1(R2n), then for all h > 0, the operator Opweyl
h (F) is trace class

and ∥∥Opweyl
h (F)

∥∥
L1(H)

≤ Ch−n
∑

|α|+|β|≤2n+2

h(|α|+|β|)/2‖∂αx ∂
β
ξ F‖L1(R2n). (2-9)

(b) If A is a trace class operator and if for every multi-index (α, β) such that |α| + |β| ≤ 2n + 2 the
operator (ad P(h))α(ad Q(h))β A is trace class, then the Weyl symbol of A is in L1(R2n) and

(2πh)−n
‖σ

weyl
h (A)‖L1(R2n) ≤ C

∑
|α|+|β|≤2n+2

h−(|α|+|β|)/2
∥∥(ad P(h))α(ad Q(h))β A

∥∥
L1(H)

, (2-10)

where the constant C depends only on n.

(c) The following are equivalent:

(i) A family of operators (Ah)0<h≤1 is of the form Ah =Opweyl
h (Fh), where (Fh) is a bounded family

of functions in W∞,1(R2n).
(ii) For every h > 0, the operator Ah is trace class as well as all iterated commutators of Ah with

the operators Pj (h) and Q j (h), and for every (α, β), the family of norms

hn−|α|−|β|
∥∥(ad P(h))α(ad Q(h))β A

∥∥
L1(H)

(2-11)

stays bounded when h varies in (0, 1].

Part (a) is proved in [Rondeaux 1984], without the parameter h, and needs only standard modifications
to introduce this parameter. In the same paper, part (c) is proved without the precise estimation (b), which
is needed for applications to our nonlinear problem and proved in Appendix A.
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For the sake of clarity, it might be useful to recall the well known analogue of Proposition 2.1 for
bounded operators and symbols in W∞,∞(R2n), that is to say, the Calderón–Vaillancourt and the Beals
characterization.

Proposition 2.2. (a) If F is in L∞(R2n) as well as all derivatives up to order 2n+ 2, then for all h > 0,
the operator Opweyl

h (F) is bounded in H= L2(Rn) and∥∥Opweyl
h (F)

∥∥
L(H)
≤ C

∑
|α|+|β|≤2n+2

h(|α|+|β|)/2‖∂αx ∂
β
ξ F‖L∞(R2n). (2-12)

(b) If A is a bounded operator and if , for all multi-indices (α, β) such that |α| + |β| ≤ 2n + 2, the
operator (ad P(h))α(ad Q(h))β A is bounded, then the Weyl symbol of A is in L∞(R2n), and one has

‖σ
weyl
h (A)‖L∞(R2n) ≤ C

∑
|α|+|β|≤2n+2

h−(|α|+|β|)/2
∥∥(ad P(h))α(ad Q(h))β A

∥∥
L(H)

. (2-13)

Anti-Wick calculus. The definition of this calculus uses coherent states, in other words the family of
functions 9Xh in L2(Rn), indexed by the parameter X = (x, ξ) in R2n and depending on h > 0, defined
by

9X,h(u)= (πh)−n/4e−|u−x |2/2he(i/h)u.ξ−(i/2h)x .ξ , X = (x, ξ) ∈ R2n. (2-14)

These functions will be used, with the anti-Wick calculus recalled below, to give examples of operators
satisfying the hypotheses of Theorem 1.1. They will be also helpful in proving Proposition 2.1 in
Appendix A. Their two fundamental properties are that

|〈9Xh, 9Y h〉| = e−(1/4h)|X−Y |2, ‖9Xh‖ = 1, (2-15)

and that for all f and g in H,

〈 f, g〉 = (2πh)−n
∫

R2n
〈 f, 9Xh〉〈9Xh, g〉 d X. (2-16)

For every function F in L1(R2n) and for every h > 0, the operator OpAW
h (F) associated to F by the

anti-Wick calculus is the bounded operator in L2(Rn) such that for all f and g in H,

〈OpAW
h (F) f, g〉 = (2πh)−n

∫
R2n

a(X)〈 f, 9Xh〉〈9Xh, g〉 d X. (2-17)

If F is in L1(R2n), we see that OpAW
h (F) is indeed trace class in H, and that∥∥OpAW

h (F)
∥∥

L1(H)
≤ (2πh)−n

∫
R2n
|F(X)| d X. (2-18)

Moreover, one has
Tr
(
OpAW

h (F)
)
= (2πh)−n

∫
R2n

F(X) d X. (2-19)

If F ≥ 0, the operator OpAW
h (F) is self-adjoint and nonnegative. The Weyl symbol of the operator

OpAW
h (F) is given by

σ
weyl
h

(
OpAW

h (F)
)
= e(h/4)1F, (2-20)
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where 1 is the Laplacian on R2n . In fact, the operator 6Y h defined in (2-4) and the operator PXh of
orthogonal projection on Vect(9Xh) satisfy

Tr(PXh6Y h)= e−|X−Y |2/h . (2-21)

3. Basic facts on the Moyal bracket

The composition of symbols in the Weyl calculus is a very classical field (see [Hörmander 1985a] or
[Robert 1987] for the dependence on the semiclassical parameter h). We need to adapt that to the classes
of Rondeaux symbols, and to make precise the dependence on the parameter h.

We define a differential operator σ(∇1,∇2) on R2n
×R2n by

σ(∇1,∇2)=

n∑
j=1

∂2

∂y j∂ξ j
−

∂2

∂x j∂η j
, (3-1)

where (x, ξ, y, η) denotes the variable of R2n
×R2n .

Theorem 3.1. For all functions F in W∞,p(R2n) and G in W∞,q(R2n) (p ≥ 1, q ≥ 1, 1/p+ 1/q = 1),
for all h > 0, there exists a function Mh(F,G, · ) in W∞,1(R2n) (Moyal bracket) such that[

Opweyl
h (F),Opweyl

h (G)
]
= Opweyl

h

(
Mh(F,G, · )

)
. (3-2)

For all integers N ≥ 2, one has

Mh(F,G, X)=
N−1∑
k=1

hkCk(F,G, X)+ R(N )h (F,G, X), (3-3)

where the function Ck(F,G, X) is defined by

Ck(F,G, X)= 1
(2i)kk!

[
σ(∇1,∇2)

k(F ⊗G)(X, X)− σ(∇1,∇2)
k(G⊗ F)(X, X)

]
, (3-4)

and where the function R(N )h (F,G, · ) is in W∞,1(R2n). For every integer `, there exists a constant C such
that

h`/2
∥∥∇`R(N )h (F,G, · )

∥∥
L1(R2n)

≤ C
∑

|α|+|β|≤`+4n+2+2N
|α|≥N ,|β|≥N

h(α+β)/2‖∇αF‖L p(R2n) ‖∇
βG‖Lq (R2n). (3-5)

The operator R̂(N )h (F,G)= Opweyl
h

(
R(N )h (F,G, · )

)
verifies

‖R̂(N )h (F,G)‖L1(H) ≤ Ch−n
∑

|α|+|β|≤6n+4+2N
|α|≥N ,|β|≥N

h(α+β)/2‖∇αF‖L p(R2n)‖∇
βG‖Lq (R2n). (3-6)

This theorem will be proved in Appendix B. It is also used in [Amour et al. 2011]. We shall also use
the well-known analogue of Theorem 3.1, which we recall here in order to be used when needed.
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Theorem 3.2. With the notations of Theorem 3.1, if the functions F and G are in W∞,∞(R2n), the
function R(N )h (F,G, · ) defined by the equality (3-3) verifies, for any `≥ 0,

h`/2
∥∥∇`R(N )h (F,G, · )

∥∥
L∞(R2n)

≤ C
∑

j≥N ,k≥N
`+2N≤ j+k≤`+2N+4n+2

h( j+k)/2
‖∇

j F‖L∞(R2n)‖∇
k G‖L∞(R2n). (3-7)

The operator R̂(N )h (F,G) verifies

‖R̂(N )h (F,G)‖L(H) ≤ C
∑

j≥N ,k≥N
2N≤ j+k≤2N+6n+4

h( j+k)/2
‖∇

j F‖L∞(R2n)‖∇
k G‖L∞(R2n). (3-8)

4. The Egorov theorem for trace class operators and proof of Theorem 1.1

We are going to adapt to the case of symbols in L1(R2n) and trace class operators the idea of the proof of
the Egorov theorem contained in [Robert 1987]. The difference with [Robert 1987] comes from the fact
that the classes of operators considered here are the classes introduced by Rondeaux and that Hamiltonians
are time dependent.

We consider a function (x, t)→ V (x, t) on Rn
×R, which is real valued, depending in a C∞ way

on x , and continuously on t . We suppose that, for every α, there exists Cα > 0 such that

|∂αx V (x, t)| ≤ Cα, (x, t) ∈ Rn
×R. (4-1)

We set
H(x, ξ, t)= |ξ |2+ V (x, t). (4-2)

We denote by V (t) the multiplication by V ( · , t). We set

Ĥh(t)=−h21+ V (t). (4-3)

Therefore, Ĥh(t)= Opweyl
h (H( · , t)). Let us now recall some facts on unitary propagators (see [Reed and

Simon 1975, Section X.12]).

Proposition 4.1. For all t ∈ R, let V ( · , t) be a C∞ function on Rn satisfying (4-1) and depending in a
C1 way on t ∈ R. Let Ĥh(t) be the operator defined in (4-3). For every f in S(Rn) and every s in R, there
exists a function denoted by t→Uh(t, s) f that verifies

ih ∂
∂t

Uh(t, s) f = (Ĥh(t))Uh(t, s) f, Uh(s, s) f = f. (4-4)

The operator Uh(t, s) maps S(Rn) into itself and, by duality, S′(Rn) into itself. One has Uh(s, t) =
Uh(t, s)−1. One also has

ih ∂
∂s

Uh(t, s)=−Uh(t, s)(Ĥh(s)). (4-5)

For every operator A from S(Rn) into S′(Rn), let us set

Gh(t, s)(A)=Uh(t, s) ◦ A ◦Uh(s, t). (4-6)



THE SEMICLASSICAL LIMIT OF THE TIME DEPENDENT HARTREE–FOCK EQUATION 1659

One has

ih
∂

∂t
Gh(t, s)(A)=

[
Ĥh(t),Gh(t, s)(A)

]
, Gh(s, s)(A)= A. (4-7)

Let us state the analogue of the Egorov theorem for the class of Rondeaux operators [1984].

Theorem 4.2. Let F be a function defined on W∞,1(R2n). Let Ah = Opweyl
h (A). Then for every t ∈ R,

there exists a function Fht in W∞,1(R2n) such that

Gh(t, 0)(Ah)= Opweyl
h (Fht). (4-8)

If the function F and the potential V ( · , t) depend on a parameter λ, while staying bounded respectively in
W∞,1(R2n) and in W∞,∞(R2n) independently of λ, then the function Fht remains bounded in W∞,1(R2n)

independently of λ, of h in (0, 1], and of t in a compact set of R.

Following the idea of Robert [1987], which is related in some sense to Dyson series, we will express
our solution Gh(t, 0)(Ah) in the form

Gh(t, 0)(Ah)=

N−1∑
k=0

Opweyl
h

(
Dk( · , t)

)
+ hN EN (t, h), (4-9)

where the functions Dk( · , t) will be in W∞,1(R2n) and EN (t, h) will be a trace class operator with
bounded trace norm. In a second step, we will show that the commutators of EN (t, h) with the position
and momentum operators are also trace class operators, and we will estimate their traces. Finally,
we will rely on the characterization recalled in Proposition 2.1 to show that Gh(t, 0)(Ah) is itself a
pseudodifferential operator, with a symbol in W∞,1(R2n).

The construction of the terms Dk( · , t) will use the Hamiltonian flow of H( · , t). For every function
G in W∞,1(R2n), we call 8ts(G) the function on R2n defined by

∂8t,s(G)
∂t

= {H( · , t),8ts(G)}, 8s,s(G)= G. (4-10)

Under hypothesis (4-1), one knows that if (Gλ)λ∈E is a family of bounded functions in W∞,1(R2n), then
8ts(Gλ) stays bounded in W∞,1(R2n) when (t, s) varies in a compact set of R2 and λ in E .

Lemma 4.3. For every function G in W∞,1(R2n) and for (t, s) in R2, one has

Gh(t, s)
(
OPweyl

h (G)
)
= Opweyl

h (8ts(G))+ h
∫ t

s
Gh(t, t1)

(
Opweyl

h (R( · , t1, s, h))
)

dt1, (4-11)

where the function R( · , t1, s, h) is in W∞,1(R2n). If G depends on some parameter and is bounded
in W∞,1(R2n) independently of this parameter, then the function R( · , t1, s, h) associated to G is also
bounded in W∞,1(R2n) independently of this parameter and of (t1, s) in a compact set of R2 and of h in
(0, 1].
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Proof of the lemma. From definition (4-10),

∂

∂t
Opweyl

h (8ts(G))= Opweyl
h

(
{H( · , t),8ts(G)}

)
.

With the notations of Theorem 3.1 and with N = 2, one may write[
Ĥh(t),Opweyl

h (8tsh(G))
]
=

h
i

Opweyl
h

(
{H( · , t),8ts(G)}

)
+OPweyl

h

(
R(2)h (H( · , t),8ts(G))

)
.

Consequently,

∂

∂t
Opweyl

h (8ts(G))−
i
h
[
Ĥh(t),Opweyl

h (8ts(G))
]
=−

i
h

OPweyl
h

(
R(2)h (H( · , t),8ts(G))

)
.

On the other hand,

∂

∂t
Gh(t, s)(OPweyl

h (G))− i
h
[
Ĥh(t),Gh(t, s)(OPweyl

h (G))
]
= 0.

By combining these two equalities, noting that for t = s the two operators Gh(s, s)(Opweyl
h (G)) and

Opweyl
h (8ss(G)) are equal, and using Duhamel’s principle, we obtain (4-11), with

R( · , t1, s, h)=− i
h

R(2)h

(
H( · , t1),8t1s(G)

)
.

It is well known that when F(x, ξ)= |ξ |2, one has R(2)h (F,G)= 0 for every function G. Hence

R( · , t1, s, h)=− i
h2 R(2)h

(
V ( · , t1),8t1s(G)

)
.

By hypothesis, V ( · , t1) is in W∞,∞(Rn) and is bounded independently of t1. We have seen that 8t1s(G)
is in W∞,1(R2n), bounded independently of t1 and of s when (t1, s) varies in a compact set of R2.
According to Theorem 3.1 applied to the case N = 2, it follows that R( · , t1, s, h) is in W∞,1(R2n),
bounded independently of t1 and of s when (t1, s) varies in a compact set of R2 and h in (0, 1]. �

Proof of Theorem 4.2, first step. Let F be a function in W∞,1(R2n). Let Ah = Opweyl
h (F). Let 8ts(G)

be the function satisfying (4-10). For every t ∈ R, we define a function D0( · , t) in W∞,1(R2n) by

D0( · , t)=8t,0(F). (4-12)

We have seen that this function is in W∞,1(R2n), bounded independently of t on every compact set of R.
By Lemma 4.3 applied to G = F and s = 0, and from (4-12), one has

Gh(t, 0)(Ah)= Opweyl
h (D0(t))+ h

∫ t

0
Gh(t, t1)

(
Opweyl

h (R1( · , t1, h))
)

dt1,

where R1( · , t1, h) stays bounded in W∞,1(R
2n) when t1 belongs to a compact set of R and h is in (0, 1].

We iterate by applying Lemma 4.3 with s = t1 and G = R1( · , t1, h). We obtain

Gh(t, t1)
(
Opweyl

h (R1( · , t1, h))
)

= Opweyl
h

(
8(t, t1)(R1( · , t1, h))

)
+ h

∫ t

t1
Gh(t, t2)

(
Opweyl

h (R2( · , t2, t1, h))
)

dt2,
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where R2( · , t2, t1, h) stays bounded in W∞,1(R2n) when (t1, t2) belongs to a compact set of R2 and h is
in (0, 1]. We define a function D1( · , t) in W∞,1(R2n) by

D1( · , t)=
∫ t

0
8(t, t1)

(
R1( · , t1, h)

)
dt1.

This function is in W∞,1(R2n), bounded independently of t on every compact set of R. We have, if t > 0,

Gh(t, 0)(Ah)= Opweyl
h

(
D0(t)+ h D1(t)

)
+ h2

∫
0<t1<t2<t

Gh(t, t2)
(
Opweyl

h (R2( · , t2, t1, h))
)

dt1 dt2.

Iterating this process, we obtain, for every N , the equality (4-9), with

EN (t, h)=
∫
1N (t,0)

Gh(t, tN )
(
Opweyl

h (RN ( · , tN , . . . , t1, h))
)

dt1 . . . dtN , (4-13)

where 1N (t, s) is the set defined, if s < t , by

1N (t, s)=
{
(t1, . . . , tN ) ∈ RN , s < t1 < · · ·< tN < t

}
, (4-14)

and in a symmetric way if s > t . In (4-9), the D j ( · , t, h) ( j ≥ 0) and RN ( · , tN , . . . , t1, h) are in
W∞,1(R2n), bounded independently of h in (0, 1], of (t1, . . . , tN ) in 1N (t, 0), and of t in a compact set
of R.

It remains to prove that EN (t, h) is also a pseudodifferential operator. For that, we shall give in the
second step upper bounds for trace norms of iterated commutators of EN (t, h) with the position and
momentum operators. In order to do that, we will use the following lemma, also used in Section 5 and in
[Amour et al. 2011]. If an operator A is bounded in L2(Rn), as well as all its iterated commutators up to
order m, we set

I m∞
h (A)=

∑
|α|+|β|≤m

∥∥(ad Q(h))β(ad P(h))αA
∥∥

L(H)
. (4-15)

If an operator A in L2(Rn) is trace class, as well as all its iterated commutators up to order m, we set

I m,tr
h (A)=

∑
|α|+|β|≤m

∥∥(ad Q(h))β(ad P(h))αA
∥∥

L1(H)
. (4-16)

The aim of the next lemma is to show that these properties are preserved by the mapping Gh(t, s).

Lemma 4.4. Let Ĥh(t) be the operator defined in (4-3), where V ( · , t) verifies (4-1). Let Uh(t, s) denote
the unitary propagator and Gh(t, s) the map of Proposition 4.1. Let A be a trace class operator in
H= L2(Rn), as well as all iterated commutators (ad Q(h))β(ad P(h))αA for |α|+ |β| ≤m. Then, for all
s and t in R, the operator Gh(t, s)(A) is also trace class, as well as all iterated commutators with the
Pj (h) and Q j (h) up to order m. Moreover, for every compact set K of R, there exists CK > 0 such that

I m,tr
h (Gh(t, s)(A))≤ CK I m,tr

h (A), (s, t) ∈ K 2, h ∈ (0, 1]. (4-17)

An identical result holds for bounded operators and for the norms I m,∞
h .
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Proof of the lemma. By (4-7), one checks that, for every operator A satisfying the hypothesis of the
lemma, and for each of the momentum operators Pj (h), the following equality is valid:

∂

∂t
[Pj (h),Gh(t, s)(A)] − 1

ih
[
Ĥh(t), [Pj (h),Gh(t, s)(A)]

]
=

1
ih
[
[Pj (h), Ĥh(t)],Gh(t, s)(A)

]
.

Then the following equality results by the Duhamel principle:[
Pj (h),Gh(t, s)(A)

]
= Gh(t, s)

(
[Pj (h), A]

)
+

1
ih

∫ t

s
Gh(t, t1)

([
[Pj (h), Ĥh(t1)],Gh(t1, s)(A)

])
dt1.

We have an analogous equality for the position operators Q j (h). One has

[Pj (h), Ĥh(t)] =
h
i
∂V ( · , t)
∂x j

, [Q j (h), Ĥh(t)] = 2ih Pj (h).

We therefore deduce[
Pj (h),Gh(t, s)(A)

]
= Gh(t, s)

(
[Pj (h), A]

)
−

∫ t

s
Gh(t, t1)

([
∂V ( · , t1)
∂x j

,Gh(t1, s)(A)
])

dt1,

[
Q j (h),Gh(t, s)(A)

]
= Gh(t, s)

(
[Q j (h), A]

)
+ 2

∫ t

s
Gh(t, t1)

([
Pj (h),Gh(t1, s)(A)

])
dt1.

If A and its commutators with Pj (h) and Q j (h) are trace class, we first observe that [Pj (h),Gh(t, s)(A)]
is a trace class operator since Gh(t, s) maps L1(H) into itself. Using the second equality, we see that
[Q j (h),Gh(t, s)(A)] is also a trace class operator, and that the upper bound (4-17) is proved for m = 1.
We pursue the same reasoning to prove (4-17), by induction, for every m. The analogue of (4-17) for the
bounded operators is proved similarly. �

Proof of Theorem 4.2, second step. Following Proposition 2.1, it suffices to show that, for every multi-
index (α, β) and for every compact set K of R, there exists CαβK > 0 such that

hn−(|α|+|β|)
∥∥(ad P(h))α(ad Q(h))βGh(t, 0)(Ah)

∥∥
L1(H)

≤ CαβK (4-18)

for all t ∈ K and h ∈ (0, 1]. In order to achieve this, one will use the asymptotic expansion (4-9) up to an
order N that will depend on α and β. Since from the first step, the D j ( · , t, h) ( j ≥ 0) of the equality
(4-9) belong to W∞,1(R2n) and are bounded independently of h in (0, 1] and of t in a compact set of R,
Proposition 2.1 shows that

hn−(|α|+|β|)
∥∥(ad P(h))α(ad Q(h))β Opweyl

h (D j ( · , t, h))
∥∥

L1(H)
≤ CαβK

for all t ∈ K and h ∈ (0, 1]. Let us now derive an analogous upper bound for the term EN (t, s, h). For
that, we use the expression (4-13) of EN (t, s, h), and we apply Lemma 4.4 with (t, s) replaced by (t, tN )

and A by Opweyl
h (RN ( · , tN , . . . , t1, h)). Since RN ( · , tN , . . . , t1, h) is in W∞,1(R2n) and is bounded

independently of h in (0, 1], of (t1, . . . tN ) in 1N (0, t), and of t in a compact set of R, Proposition 2.1
shows that, for every integer m ≥ 0 and every compact set K of R, there exists C > 0 such that

hn I m,tr
h

(
Opweyl

h (RN ( · , tN , . . . , t1, h))
)
≤ CmK
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for all h ∈ (0, 1], (t1, . . . , tN ) ∈1N (0, t), and t ∈ K . Hence by Lemma 4.4, we deduce that the iterated
commutators of Gh(t, tN )(Opweyl

h (RN ( · , tN , . . . , t1, h))) with the position and momentum operators are
themselves trace class, and that there exists another constant CmK such that

hn I m,tr
h

(
Gh(t, tN )(Opweyl

h (RN ( · , tN , . . . , t1, h)))
)
≤ CmK .

We can therefore write, if Ah = Opweyl
h (F), for every multi-index (α, β) and every integer N ,

hn
∥∥(ad Q(h))β(ad P(h))αEN (t, h)

∥∥
L1(H)

≤ CαβN .

By reporting this in (4-9), and by choosing N = |α|+ |β|, one deduces (4-18). Using the characterization
of Proposition 2.1, Theorem 4.2 follows.

Proof of Theorem 1.1. Let ρh(t) be a classical solution of TDHF satisfying the hypotheses of Theorem 1.1.
Let us denote by Vh(t) the operator of multiplication by the function

x→ Vq(x, ρh(t))= V (x)+Tr(Wx ◦ ρh(t)), Wx(y)=W (x − y). (4-19)

Under the hypotheses of Theorem 1.1, we have ρh(t)≥ 0 and Tr(ρh(t))= 1 for all t , and therefore the
trace norm of ρh(t) is constant. Since all the derivatives of V and W are bounded, it follows that

|∂αx Vq(ρh(t))(x)| ≤ Cα, (x, t) ∈ Rn
×R. (4-20)

Let Ĥh(t) denote the operator defined in (4-3), where V (t) is the multiplication by Vq(x, ρh(t)). With
these notations, the TDHF equation can be written

ih
dρh(t)

dt
= [Ĥh(t), ρh(t)]. (4-21)

We note that Vh(t) depends on h, but in Theorem 4.2, the potential V (t) may depend on a parameter that
could be h. The only requirement is that Vq( · , ρh(t)) should be bounded in W∞,∞(Rn) independently
of h, which is the case. Denoting by Gh(t, s) the unitary propagator associated to the Hamiltonian Hh(t)
as in Proposition 4.1, one therefore has

ρh(t)= Gh(t, 0)(ρh(0))= Gh(t, 0)(Opweyl
h (Fh)).

Theorem 1.1 is therefore a particular case of Theorem 4.2. �

5. Proof of Theorem 1.2

We are going to state precisely the explicit construction of an approximate solution of order N , denoted
by ρ(N )h (t), of the TDHF equation. The exact solution ρh(t) is determined by the interaction potentials
V and W , which belong to W∞,∞(Rn), and the initial data ρh(0). We look for an approximate solution
with the ansatz (1-18), where F (N )(t, h) is a function R2n of the form (1-16). The functions u j ( · , t) in
the sum (1-16) will be determined in Proposition 5.1. They will be in W∞,1(R2n), and they can depend
also on h. We will associate to this solution the average quantum potential, like in (1-2):

Vq(x, ρ
(N )
h (t))= V (x)+Tr

(
Wxρ

(N )
h (t)

)
. (5-1)
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By (2-7), if F is in W∞,1(R2n) and G in W∞,∞(R2n), one has

Tr
(
Opweyl

h (F) ◦Opweyl
h (G)

)
= (2πh)−n

∫
R2n

F(X)G(X) d X.

Therefore, if ρ(N )h (t) is defined by (1-18) and F (N )(t, h) by (1-16), we have

Vq(x, ρ
(N )
h (t))= Vcl

(
x, F (N )( · , t, h)

)
, (5-2)

where, for every function v in L1(R2n), the function Vcl( · , v) is defined as in (1-3). One similarly shows
that

Vq(x, ρ
(N )
h (t))= Vcl

(
x, F (N )( · , t, h)

)
. (5-3)

With these notations, the function uh( · , t) defined in (1-10) should satisfy

∂uh( · , t)
∂t

+ 2
n∑

j=1

ξ j
∂uh( · , t)
∂ξ j

=
1
ih

Mh
(
Vcl(uh( · , t)), uh( · , t)

)
, (5-4)

where for all suitable functions A and B, Mh(A, B) denotes the Moyal bracket of A and B, defined in
(3-2). For all functions A and B in C∞(R2n), and for every integer k ≥ 0, let Ck(A, B, · ) be the function
defined in (3-4). We set C0(A, B)= 0. One has C1(A, B)= (1/ i){A, B}. Now we will choose the u j

in a such a way that Equation (5-4) is approximatively verified. The construction of the functions u j of
Theorem 1.2 is detailed in the following proposition.

Proposition 5.1. There exists a sequence of functions (X, t)→ u j (X, t) on R2n
×R ( j ≥ 0) such that:

(a) The function t→ u j ( · , t, h) is C∞ from R into W∞,1(R2n). The function u j ( · , t, h) is bounded in
W∞,1(R2n) independently of h in (0, 1] and of t in every compact set of R.

(b) One has
u0(X, 0)= Fh(X) and u j (X, 0, h)= 0, j ≥ 1.

(c) For every N , the function uN (X, t, h) verifies

∂uN

∂t
+ 2

n∑
j=1

ξ j
∂uN

∂x j
=

1
i

∑
j+k+`=N+1

Ck
(
Vcl( · , u j ( · , t, h)), u`( · , t, h)

)
. (5-5)

In the sum (5-5), the indices j and ` are ≥ 0 and k is ≥ 1.

Determination of u0. For N = 0, Equation (5-5) reduces to the Vlasov equation,

∂u0

∂t
+ 2

n∑
j=1

ξ j
∂u0

∂x j
=

n∑
j=1

∂

∂x j
Vcl
(
u0( · , t)

)∂u0( · , t)
∂ξ j

,

and we want that u0( · , 0) = Fh , where Fh is the function of (1-6), which is in W∞,1(R2n). It is well
known (see [Braun and Hepp 1977]) that there exists a unique solution u0 of this Cauchy problem, and that
the function u0 is continuous from R into W∞,1(R2n). If Fh stays bounded in W∞,1(R2n) independently
of h, it is also the case for u0( · , t, h).
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Determination of uN (N ≥ 1). For every N ≥ 1, Equation (5-5) can be written as

∂uN

∂t
+ 2

n∑
j=1

ξ j
∂uN

∂x j
=

n∑
j=1

∂

∂x j
Vcl
(
u0( · , t, h)

)∂uN ( · , t)
∂ξ j

+

n∑
j=1

∂

∂x j
Vcl
(
uN ( · , t, h)

)∂u0( · , t, h)
∂ξ j

+G N (X, t, h),

G N =
1
i

∑
j+k+`=N+1

j<N ,`<N

Ck
(
Vcl(u j ( · , t, h)), u`( · , t, h)

)
.

One also requires that uN (X, 0, h)= 0. To solve this equation, dropping the parameter h for the sake of
simplifying notations, let us denote by X→ ϕt(X)= (q(t, X), p(t, X)) the Hamiltonian flow that is the
solution of

q ′(t, X)= 2p(t, X), p′(t, X)=−∇V (q(t, X))−
∫

R2n
∇W (q(t, X)− y)u0(y, η, t) dy dη

satisfying
q(0, X)= x, p(0, X)= ξ, X = (x, ξ).

The function vN defined by vN (X, t)= uN (ϕt(X), t) should satisfy

∂vN

∂t
=

n∑
j=1

∂u0

∂ξ j

(
ϕt(X), t

) ∫
R2n

∂W
∂x j

(
qt(X)− y

)
uN (y, η, t) dy dη+ G̃ N (X, t),

where G̃ N (X, t) = G N (ϕt(X), t). By using in the integral the change of variables (y, η) = ϕt(z, ζ ),
whose jacobian equals 1, we see that vN should satisfy

∂vN

∂t
(X, t)= G̃ N (X, t)+

∫
R2n

A(X, Y, t)vN (Y, t) dY,

A(X, Y, t)=
n∑

j=1

∂u0

∂ξ j

(
ϕt(X), t

)∂W
∂x j

(
qt(X)− qt(Y )

)
.

Moreover, one must have vN ( · , 0)= 0. According to standard results on the Vlasov equation, one knows
that ∇u0( · , t) is in W∞,1(R2n), bounded when t varies in a compact set. The same is true for ∇ϕt . If
the u j (0≤ j < N ) have been built with the properties of Proposition 5.1, one sees that G N ( · , t) is in
W∞,1(R2n), bounded when t varies in a compact set. It is also the case for G̃ N ( · , t). Then the Cauchy
problem verified by vN and the one verified by uN can be solved in a standard way.

To prove Theorem 1.2, we will show that the functions F (N )(t, h)(X) defined in (1-16) starting from
the u j ( · , t, h) of Proposition 5.1 and the operators ρ(N )h (t) defined in (1-18) satisfy (1-17) and (1-19).
The next proposition is an intermediate step.

Proposition 5.2. Let ρh(t) be an exact solution of TDHF satisfying the hypotheses of Theorems 1.1 and
1.2. Let Ĥh(t) be the operator defined in (4-3), where V (t) is the multiplication by Vq(x, ρh(t)). Let u j
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( j ≥ 0) be the functions of Proposition 5.1, and, for each integer N , let F (N ) be the function defined by
(1-16) and ρ(N )h (t) defined in (1-18). Then we can write

ih
dρ(N )h (t)

dt
= [Ĥh(t), ρ

(N )
h (t)] +Opweyl

h

(
S(N )h ( · , t)

)
, (5-6)

where S(N )h ( · , t) is in W∞,1(R2n) and verifies, for every multi-index α,∥∥∇αS(N )h ( · , t)
∥∥

L1(R2n)
≤ CαN (t)

[
hN+2

+ h
∥∥ρh(t)− ρ

(N )
h (t)

∥∥
L1(H)

]
, (5-7)

where CαN (t) is a function on R which is bounded on every compact set.

Proof. By (5-5), we have

∂F (N )

∂t
+ 2

n∑
j=1

ξ j
∂F (N )

∂x j
=

1
h

N+1∑
k=1

hkCk
(
Vcl( · , F (N )( · , t, h)), F (N )( · , t, h)

)
+8(N )( · , t, h), (5-8)

where 8(N )( · , t, h) is a function in W∞,1(R2n), such that∥∥∇α8(N )( · , t, h)
∥∥

L1(R2n)
≤ hN+1CαN (t). (5-9)

We define an approximation of the operator Ĥh(t) by setting

Ĥ APP
h (t)=−h21+ Vcl

(
F (N )( · , t, h)

)
. (5-10)

Since F (N ) verifies (5-8), we may write

ih
dρ(N )h (t)

dt
=
[
Ĥ APP

h (t), ρ(N )h (t)
]
+Opweyl

h

(
T (N )

h ( · , t)
)
, (5-11)

where the function T (N )
h ( · , t) is defined by

T (N )
h ( · , t)= h8(N )( · , t, h)+ R(N+2)

h

(
Vcl( · , F (N )( · , t, h)), F (N )( · , t, h)

)
.

(For all functions A and B satisfying the hypotheses of Theorem 3.1, we denote by R(N )h (A, B, · ) the
function associated by Theorem 3.1 to such functions.) Then by the definition (5-3) of the map Vcl, and
Proposition 5.1(a), we can write∥∥∇αx Vcl

(
· , F (N )( · , t, h)

)∥∥
L∞(R2n)

≤ CαN (t),
∥∥∇βF (N )( · , t, h))

∥∥
L1(R2n)

≤ CβN (t). (5-12)

Using these upper bounds and following Theorem 3.1 on the Moyal bracket, we may write∥∥∇`R(N+2)
h

(
Vcl( · , F (N )( · , t, h)), F (N )( · , t, h)

)∥∥
L1(R2n)

≤ C`N (t)hN+2.

According to these upper bound estimates, and the estimates (5-9) of the derivatives of 8(N )( · , t, h), one
has ∥∥∇αT (N )

h ( · , t)
∥∥

L1(R2n)
≤ CαN (t)hN+2. (5-13)
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According to (5-11), and since

Ĥ APP
h (t)− Ĥh(t)= Vq( · , ρh(t))− Vq( · , ρ

(N )
h (t)),

we can write the equality (5-6) with

S(N )h ( · , t)= T (N )
h ( · , t)+Mh

(
Vq( · , ρh(t))− Vq( · , ρ

(N )
h (t)), F (N )( · , t, h)

)
. (5-14)

One has ∥∥∇αx (Vq( · , ρh(t))− Vq( · , ρ
(N )
h (t))

)∥∥
L∞(R2n)

≤ Cα
∥∥ρh(t)− ρ

(N )
h (t)

∥∥
L1(H)

.

Using all of these estimates and the L1 norm estimates (5-12) of F (N )( · , t, h), and using Theorem 3.1
on the Moyal bracket, it results that∥∥∇αMh

(
Vq(ρh(t))− Vq(ρ

(N )
h (t)), F (N )( · , t, h)

)∥∥
L1(R2n)

≤ C(t)h
∥∥ρh(t)− ρ

(N )
h (t)

∥∥
L1(H)

. (5-15)

The norm upper bound estimate (5-7) of S(N )h ( · , t) results from (5-14), (5-13) and (5-15).

End of the proof of Theorem 1.2. Let Uh(t, s) and Gh(t, s) be the unitary propagator and the mapping
defined in Proposition 4.1, associated to the operator Ĥh(t) of Proposition 5.2. The comparison of
equalities (4-21) (verified by the exact solution) and (5-6) (verified by the approximate solution) and the
Duhamel principle allow us to write

ρh(t)− ρ
(N )
h (t)= i

h

∫ t

0
Gh(t, s)

(
Opweyl

h (S(N )h ( · , s))
)

ds. (5-16)

Since Uh(t, s) is unitary, the map Gh(t, s) preserves the trace norm, and from that we may deduce that∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤
1
h

∫ t

0

∥∥Opweyl
h (S(N )h ( · , s))

∥∥
L1(H)

ds.

Using Proposition 2.1 and the upper bounds (5-7) of Proposition 5.2, we obtain∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤
1
h

∫ t

0
C(s)

[
hN+2

+ h
∥∥ρh(s)− ρ

(N )
h (s)

∥∥
L1(H)

]
ds.

By the Gronwall lemma, we deduce that, with another constant,∥∥ρh(t)− ρ
(N )
h (t)

∥∥
L1(H)

≤ C(t)hN+1.

Therefore the Theorem 1.2(1-19) is proved. We deduce from this inequality and from (5-7) that∥∥∇αS(N )h ( · , t)
∥∥

L1(R2n)
≤ CαN (t)hN+2,

where CαN (t) is a function on R, bounded on every compact set. From Proposition 2.1 and Lemma 4.4,
for every multi-index (α, β), the operators

h−N−2(ad Q(h))β(ad P(h))αGh(t, s)
(
Opweyl

h (S(N )h ( · , s)
)
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are trace class, and their trace norm is bounded, independently of (t, s) in a compact set of R, and of h in
(0, 1]. By (5-16), for every multi-index (α, β), and for every N > 0, there exists a function CαN (t) > 0,
bounded on every compact set of R, such that∥∥(ad Q(h))β(ad P(h))α

(
ρh(t)− ρ

(N )
h (t)

)∥∥
L1(H)

≤ CαN (t)hN+1.

Using Proposition 2.1(b), we deduce

(2πh)−n
∥∥σweyl

h

(
ρh(t)− ρ

(N )
h (t)

)∥∥
L1(R2n)

≤ C(t)h(N+1)−(2n+2)/2.

In other words, with the notations of Theorem 1.2,∥∥uh( · , t)− F (N )( · , t, h)
∥∥

L1(R2n)
≤ C(t)hN .

This is the Theorem 1.2(1-17), which is proved now. �

Appendix A: Proof of Proposition 2.1

The proof of Proposition 2.1 calls upon a different notion of symbol. One can associate to every bounded
operator A in H a function Sh(A) on R2n

×R2n defined by

Sh(A)(X, Y )=
〈A9Xh, 9Y h〉

〈9Xh, 9Y h〉
, (A-1)

where the 9Xh are defined in (2-14). An explicit computation of integrals shows that

|〈9Xh, 9Y h〉| = e−(1/4h)|X−Y |2, ‖9Xh‖ = 1. (A-2)

Consequently,
|Sh(A)(X, Y )| = e(1/4h)|X−Y |2

|〈A9Xh, 9Y h〉|. (A-3)

The function Sh(A) is, up to a slight modification, what G. B. Folland [1989] calls the Wick symbol.
The following proposition shows that Sh(A) and the Weyl symbol σweyl

h (A) are related to each other by
an integral operator. (By contrast, the Weyl symbol cannot be calculated from what is commonly called
the Wick symbol, namely the restriction of Sh(A) to the diagonal.) The function Sh(A) can be majorized
(in some norm) and minorized (in another norm) by the trace norm of A (Proposition A.2).

Proposition A.1. The Weyl symbol of an operator A is related to the function Sh(A) by

Sh(A)(X, Y )= (πh)−n
∫

R2n
e−(1/h)(Z−X).(Z−Y )σ

weyl
h (A)(Z) d Z , (A-4)

σ
weyl
h (A)(Z)= 2n(2πh)−2n

∫
R4n

Sh(A)(X, Y )Kh(X, Y, Z) d X dY, (A-5)

Kh(X, Y, Z)= e−(1/h)(Z−X)(Z−Y )−(1/2h)|X−Y |2 . (A-6)

Proof. By the definition (2-3) of the Weyl calculus, one has

A = (πh)−n
∫

R2n
6Zhσ

weyl
h (A)(Z) d Z ,
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where 6Zh is the operator defined in (2-4). An explicit computation shows that

〈6Zh9Xh, 9Y h〉

〈9Xh, 9Y h〉
= e−(1/h)(Z−X).(Z−Y ). (A-7)

The equality (A-4) follows. By the fundamental formula (2-16) of coherent states, one has

A = (2πh)−2n
∫

R4n
〈A9Xh, 9Y h〉PXY h d X dY, (A-8)

where PXY h is the operator defined by

PXY h f = 〈 f, 9Xh〉9Y h . (A-9)

One knows from (2-5) that

σ
weyl
h (PXY h)(Z)= 2nTr(PXY h ◦6Z )= 2n

〈6Zh9Y h, 9Xh〉.

By the computation leading to (A-7) (where X and Y are permuted), we may deduce

σ
weyl
h (A)(Z)= 2n(2πh)−2n

∫
R4n

Sh(A)(X, Y )
∣∣〈9Xh, 9Y h〉

∣∣2e−(1/h)(Z−X)(Z−Y ) d X dY.

Using the equality (2-15) on the scalar product of coherent states, we obtain (A-5). �

Proposition A.2. Let A be a trace class operator and G a function in L1(R2n). Then one has

(2πh)−2n
∫

R4n

∣∣∣∣〈A9Xh, 9Y h〉G
(

X−Y
√

h

)∣∣∣∣ d X dY ≤ (2π)−n
‖G‖L1(R2n)‖A‖L1(H), (A-10)

‖A‖L1(H) ≤ (2πh)−2n
∫

R4n

∣∣〈A9Xh, 9Y h〉
∣∣ d X dY. (A-11)

Proof. We may write A = B1 B2, where B1 and B2 are Hilbert–Schmidt. By using the fundamental
property (2-16) of coherent states, one sees that for all X and Y in R2n ,

〈A9Xh, 9Y h〉 = 〈B29Xh, B?19Y h〉 = (2πh)−n
∫

R2n
uZh(X)vZh(Y ) d Z ,

where uZh(X) = 〈B29Xh, 9Zh〉 and vZh(X) = 〈9Zh, B?19Xh〉. Let Ih be the left-hand side of (A-10).
By Schur’s lemma,

Ih ≤ (2πh)−3nhn
‖G‖L1(R2n)

∫
R2n
‖uZh‖L2(R2n)‖vZh‖L2(R2n) d Z .

By (2-16), we have ‖uZh‖L2(R2n) = (2πh)n/2‖B?29Zh‖ and ‖vZh‖L2(R2n) = (2πh)n/2‖B19Zh‖. Hence,

Ih ≤ (2πh)−2nhn
‖G‖L1(R2n)

∫
R2n
‖B19Zh‖‖B?29Zh‖ d Z .

By the fundamental property (2-16) of coherent states,

(2πh)−n
∫

R2n
‖B j9Zh‖

2 d Z = (2πh)−n
∫

R2n
〈B?j B j9Zh, 9Zh〉 d Z = Tr(B?j B j )= ‖B j‖

2
L2(H),
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where ‖B j‖L2(H) is the Hilbert norm of B j . Therefore,

Ih ≤ (2π)−n
‖G‖L1(R2n) ‖B1‖L2(H) ‖B2‖L2(H).

By taking the infimum over all the decompositions A = B1 B2, one gets (A-10). The inequality (A-11) is
deduced from the equality (A-8) since the operators PXY h have a trace norm equal to 1. �

Proof of Proposition 2.1. For (a), we use the equality (A-4) and integrate by parts, as is done in [Rondeaux
1984]. Thus we see that

(2πh)−2n
∫

R4n
e−(1/4h)|X−Y |2

|Sh(A)(X, Y )| d X dY ≤ Ch−n
∑

|α|+|β|≤2n+2

h(|α|+|β|)/2‖∂αx ∂
β
ξ F‖L1(R2n).

One then deduces item (a) (the upper bound estimate of the trace norm of A), using Equation (A-11).
For parts (b) and (c), we are going to integrate by parts in the second equality (A-5) of Proposition A.1.

One verifies that the function Kh defined in (A-6) is invariant by the differential operator

L(h)Kh = Kh, L(h)=
(

1+ |X−Y |2

h

)−1(
1+ (Y − X)∂X

)
.

Thus equality (A-5) implies, for every integer N ,∣∣σweyl
h (A)(Z)

∣∣≤ 2n(2πh)−2n
∫

R4n

∣∣Kh(X, Y, Z)
∣∣∣∣(t L(h))N Sh(A)(X, Y )

∣∣ d X dY.

One verifies that
|Kh(X, Y, Z)| = e−(1/h)|Z−(X+Y/2)|2−(1/4h)|X−Y |2 .

One chooses N = 2n+ 2. There exists C > 0 such that∣∣σweyl
h (A)(Z)

∣∣≤ C
∑

|α|≤2n+2

h|α|/2(2πh)−2n
∫

R4n

∣∣Kh(X, Y, Z)
∣∣G( X−Y

√
h

)∣∣∂αX Sh(A)(X, Y )
∣∣ d X dY,

where
G(X)= (1+ |X |)−2n−2.

By the classical formulas giving Sh([Pj (h), A]) and Sh([Q j (h), A]) as an expression with the derivatives
of Sh(A), it follows that∣∣σweyl

h (A)(Z)
∣∣

≤C
∑

|α|+|β|≤2n+2

h−2n−(|α|+|β|)/2
∫

R4n
e−(1/h)|Z−(X+Y/2)|2−(1/4h)|X−Y |2 G

(
X−Y
√

h

)∣∣Sh(Aαβh)(X, Y )
∣∣ d X dY,

where
Aαβh = (ad P(h))α(ad Q(h))β A.

The preceding equality can be also written as∣∣σweyl
h (A)(Z)

∣∣≤ C
∑

|α|+|β|≤2n+2

h−2n−(|α|+|β|)/2
∫

R4n
e−

1
h

∣∣Z− X+Y
2

∣∣2
G
(

X−Y
√

h

)∣∣〈(Aαβh9Xh, 9Y h〉
∣∣ d X dY.
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Item (b) is a consequence of (A-11). Item (c) (an analogue of the Beals characterization) is then easily
deduced. �

Appendix B: Proof of Theorems 3.1 and 3.2

First step, common to both theorems. We know that, for all suitable functions F and G, we can write
Opweyl

h (F) ◦Opweyl
h (G)= Opweyl

h (Ch(F,G, · ), with

Ch(F,G, X)= (πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)F(Y )G(Z) dY d Z ,

where σ is the symplectic form σ((x, ξ), (y, η))= yξ−xη. Consequently the Moyal bracket Mh(F,G, · )
is defined by Mh(F,G, X) = Ch(F,G, X) − Ch(G, F, X). Thus it suffices to write an asymptotic
expansion Ch(F,G, · ). We may write Ch(F,G, X)=8h(X, 1) by setting, for every θ ∈ [0, 1],

8h(X, θ)= (πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)F(Y )G

(
X + θ(Z − X)

)
dY d Z .

Consequently, for every integer N ,

Ch(F,G, X)=
N−1∑
k=0

1
k!
∂k

t 8h(X, 0)+ R̃(N )h (F,G, X),

with

R̃(N )h (F,G, X)=
∫ 1

0

(1− θ)N−1

(N − 1)!
∂N
θ 8h(X, θ) dθ.

One sees, using integration by parts, that

∂k
θ8(X, θ, h)=

(
h
2i

)k

(πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)(σ(∇1,∇2)

k(F⊗G)
)(

Y, X+θ(Z− X)
)

dY d Z .

If a function 8 depends only on the Y variable, one has (in the sense of distributions)

(πh)−2n
∫

R4n
e−(2i/h)σ (Y−X,Z−X)8(Y ) dY d Z =8(X),

and similarly if 8 depends only on the Z variable. For θ = 0, one has, by the above two equalities,

∂k
θ8(X, 0, h)=

(
h
2i

)k

σ(∇1,∇2)
k(F ⊗G)(X, X),

and therefore we do have indeed the equality (3-3) of Theorem 3.1, by setting

R(N )h (F,G, X)= R̃(N )h (F,G, X)− R̃(N )h (G, F, X). (B-1)

It remains to obtain an upper bound for the norm of the two above terms. One also has

R̃(N )h (F,G, X)=
(

h
2i

)N

(πh)−2n
∫

R4n×[0,1]

(1− θ)N−1

(N − 1)!
Kh(X, Y, Z)9(X, Y, Z , θ) dY d Z dθ,
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where
Kh(X, Y, Z)= e−(2i/h)σ (Y−X,Z−X),

9(X, Y, Z , θ)=
(
σ(∇1,∇2)

N (F ⊗G)
)(

Y, X + θ(Z − X)
)
.

The function Kh is invariant by the operator

Lh =

(
1+ 4

|X − Y |2

h
+ 4
|X − Z |2

h

)−1

(1− h1Y − h1Z ).

Therefore, for all integers K and `,

∣∣∇` R̃(N )h (F,G, X)
∣∣≤ (h

2

)N

(πh)−2n
∫

R4n×[0,1]

(1− θ)N−1

(N − 1)!

∣∣∇`(t L)K9(X, Y, Z , θ)
∣∣ dY d Z dθ.

Consequently,
h`/2|∇` R̃(N )h (F,G, X)| ≤ C

∑
α+β≤`+2K+2N
α≥N ,β≥N

h(α+β)/2 Iαβ(X, h), (B-2)

Iαβ(X, h)

=h−2n
∫

R4n×[0,1]
(1−θ)N−1

(
1+
|X−Y | + |X−Z |

√
h

)−2K

|∇
αF(Y )|

∣∣∇βG
(
X+θ(Z−X)

)∣∣ dY d Z dθ. (B-3)

End of the proof of Theorem 3.1. We integrate the equality (B-3) with respect to X by making the
change of variables

X = (1− θ)−1(X̃ − θ Z̃), Y = Ỹ , Z = Z̃ .

We obtain∥∥Iαβ( · , h)
∥∥

L1(R2n)

≤ Ch−2n
∫

R6n×[0,1]
(1− θ)N−2n−1

(
1+
|X − Y | + |X − Z |

√
h

)−2K

|∇
αF(Y )||∇βG(X)| d X dY dY d Z dθ.

If one has N ≥ 2n+ 1 and chooses K = 2n+ 1, we deduce, by using Schur’s lemma, that∥∥Iαβ( · , h)
∥∥

L1(R2n)
≤ C‖∇αF‖L p(R2n) ‖∇

βG‖Lq (R2n).

Adding these inequalities, we obtain

h`/2
∣∣∇`R(N ,1)h (F,G, X)

∣∣≤ C
∑

α+β≤`+2K+2N
α≥N ,β≥N

h(α+β)/2‖∇αF‖L p(R2n)‖∇
βG‖Lq (R2n).

By proceeding similarly for R̃(N )h (G, F, · ), we arrive at the upper bound (3-5) of Theorem 3.1. Part (3-6)
is then deduced by Proposition 2.1.
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End of the proof of Theorem 3.2. If one chooses K = 2n+ 1, it follows from (B-3) that∥∥Iαβ( · , h)
∥∥

L∞(R2n)
≤ C‖∇αF‖L∞(R2n)‖∇

βG‖L∞(R2n).

By substituting in (B-2), then in (B-1), we obtain the majorization (3-7) of Theorem 3.2.
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