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THE HEAT KERNEL ON AN ASYMPTOTICALLY CONIC MANIFOLD

DAVID A. SHER

We investigate the long-time structure of the heat kernel on a Riemannian manifold M that is asymp-
totically conic near infinity. Using geometric microlocal analysis and building on results of Guillarmou
and Hassell, we give a complete description of the asymptotic structure of the heat kernel in all spatial
and temporal regimes. We apply this structure to define and investigate a renormalized zeta function and
determinant of the Laplacian on M .

1. Introduction

We study the heat kernel on asymptotically conic manifolds. Asymptotically conic manifolds should be
thought of as those complete manifolds which are approximately conic near infinity. More specifically:

Definition [Guillarmou and Hassell 2008]. Let (M, g) be a complete Riemannian manifold without
boundary of dimension n, and let M be the usual radial compactification of M . Let (N , h0) be a closed
Riemannian manifold of dimension n− 1. We say that (M, g) is asymptotically conic with cross-section
(N , h0) if in a neighborhood of ∂M , M is isometric to [0, δ)x × Ny with the metric

g =
dx2

x4 +
h(x)
x2 . (1)

Here x is a smooth function on M with x = 0 and dx 6= 0 on ∂M (we call this a boundary defining
function for ∂M) and a smooth family of metrics h(x) on N with h(0)= h0. Throughout, we let z be a
global coordinate on M , writing z = (x, y) in a neighborhood of the boundary of M .

In particular, Euclidean space Rn is asymptotically conic with cross-section Sn−1; we may choose
x = r−1. Any complete manifold which is exactly Euclidean or conic near infinity is, of course, also
asymptotically conic. The condition (1) may be weakened by replacing h(x) with any symmetric 2-tensor
h′(x, y) which restricts to a metric h0(x) on the boundary at x = 0; an observation of Melrose and Wunsch
[2004] shows that these conditions are in fact equivalent.

Asymptotically conic manifolds are a relatively well-behaved class of manifolds, and as such the
theory of the heat equation is relatively advanced. In particular, it is easy to see from (1) that all sectional
curvatures of (M, g) approach zero as x goes to zero, and thus that (M, g) has bounded sectional curvature.
For complete manifolds of bounded sectional curvature, a classical theorem of Cheng, Li, and Yau gives
the following Gaussian upper bound for the heat kernel:
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Theorem 1 [Cheng et al. 1981]. There are nonzero constants C1 and C2 such that the heat kernel on M ,
denoted H M(t, z, z′), satisfies

H M(t, z, z′)≤
C1

tn/2 e−|z−z′|2/C2t . (2)

However, for many applications to spectral theory, one needs finer information about the structure of
the heat kernel. The example we have in mind is the definition of the zeta function. Recall that if M is
compact, the zeta function is defined for <s > n/2 by

ζM(s)=
1
0(s)

∫
∞

0
(Tr H M(t)− 1) t s−1 dt. (3)

The zeta function has a well-known meromorphic continuation to all of C with a regular value at s = 0;
the key is that the trace of the heat kernel has a short-time asymptotic expansion, which, along with the
long-time exponential decay, enables us to write down an explicit meromorphic continuation [Rosenberg
1997]. The determinant of the Laplacian is then given by exp(−ζ ′M(0)); the determinant plays a key role
in many problems in spectral theory, including the isospectral compactness results of Osgood, Phillips,
and Sarnak [1988b; 1988a; 1989].

We would like to define such a zeta function and determinant when M is asymptotically conic, with
an eye towards applying these concepts to the spectral and scattering theory of asymptotically conic
manifolds. There are several obstacles. First, the heat kernel is no longer trace class, so Tr H M(t) does
not make sense. Instead, we define the renormalized heat trace R Tr H M(t) to be the finite part at δ = 0
of the divergent asymptotic expansion in δ of∫

x≥δ
H M(t, z, z) dz. (4)

Details, including the existence of this divergent asymptotic expansion, may be found in Section 3. We
then formally define the renormalized zeta function:

RζM(s)=
1
0(s)

∫
∞

0

R Tr H M(t) t s−1 dt. (5)

However, to make sense of this definition and obtain a meromorphic continuation, we still need to
understand the behavior of the renormalized trace — and hence of the heat kernel itself — as t→ 0 and
t→∞. In particular, we need asymptotics in both the short and long time regimes.

The short-time behavior of the heat kernel on an asymptotically conic manifold is relatively well-
understood. Short-time heat kernels may be analyzed using techniques from semiclassical analysis. In
this approach, the goal is to develop a “semiclassical functional calculus” containing the heat kernel,
modeled on standard semiclassical techniques as developed, for example, in [Dimassi and Sjöstrand
1999]. The key functional calculus for this purpose, at least in the asymptotically Euclidean setting, is the
Weyl calculus of Hörmander [1979].

An alternate approach, and one more suited to analysis of the renormalized trace and determinant, is
to use geometric microlocal analysis to first construct the heat kernel and then analyze its fine structure.
The techniques of geometric microlocal analysis were first developed by Melrose and Mendoza [1983]
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to study elliptic PDE on manifolds with asymptotically cylindrical ends. They have been extended by
many other mathematicians and play a key role in the modern analysis of linear PDE on singular and
non-compact spaces. In particular, Melrose [1994] discusses some aspects of spectral and scattering
theory on asymptotically conic manifolds. Albin [2007] uses these methods to investigate the short-time
heat kernel on a variety of complete spaces, including asymptotically conic manifolds. His work can be
used to obtain the fine structure that we need for the short-time heat kernel.

The long-time problem is trickier: in the asymptotically conic setting, we no longer have exponential
decay of the heat kernel as t→∞. Indeed, from the structure of the Euclidean heat kernel and (2), we
expect that the leading-order behavior of H M(t, z, z′) as t→∞ will be Ct−n/2, and the leading-order
behavior of the renormalized heat trace may be even worse. This lack of decay means that the zeta
function may not be well-defined a priori for any s. We may split (5) into two integrals by breaking
it up at t = 1, but there is no obvious reason for the integral from t = 1 to∞ to have a meromorphic
continuation to all of C. In order to obtain such a meromorphic continuation, we need an asymptotic
expansion for the heat kernel as t →∞. Moreover, we must understand how this expansion interacts
with the heat trace renormalization.

1.1. Main results. We solve this problem by using the methods of geometric microlocal analysis to
obtain a complete description of the asymptotic structure of the heat kernel on M in all spatial and
temporal regimes. The key concepts, including blow-ups and polyhomogeneous conormal functions, were
originally introduced by Melrose [1993; 1996], and a good introduction may be found in [Grieser 2001].
In Section 2, we discuss these concepts briefly and then use them to define a new blown-up manifold
with corners which we call M2

w,sc. The space M2
w,sc was originally defined by Guillarmou and Hassell

[2008], and we use their labeling of the boundary hypersurfaces; see Section 2 for the definitions. Our
main theorem is the following:

Theorem 2. Let M be asymptotically conic. For any n ≥ 2, and for any fixed time T > 0, the heat kernel
on M is polyhomogeneous conormal on M2

w,sc for t > T , where w = t−1/2. The leading orders at the
boundary hypersurfaces are at least 0 at sc and n at each of bf0, rb0, lb0, and zf, with infinite-order decay
at lb, rb, and bf.

This theorem gives a complete description of the asymptotic structure of the heat kernel for long time;
previously, only estimates such as Theorem 1 were known. The analogous structure for the short-time
heat kernel is well-understood (see Section 2 for the definition of M2

sc):

Theorem 3. For t < 1, the heat kernel H M(t, z, z′) is polyhomogeneous conormal on[
M2

sc(z, z′)×[0, 1]√t ; {
√

t = 0, z = z′}
]
.

Moreover, there is infinite-order decay at all faces except the scattering front face sc and the face F
obtained by the final blow-up.

Theorem 3 follows immediately from the work of Albin [2007]; however, the precise statement above
does not appear in the literature. Therefore, in the Appendix, we give a simple proof using the machinery
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Figure 1. Asymptotic structure of the heat kernel on M .

developed in [Albin 2007]. Combining Theorem 2 with Theorem 3 gives a complete geometric-microlocal
description of the structure of the heat kernel. This structure is illustrated in Figure 1; the short-time
structure is the left-hand side of the diagram, and the long-time structure is the right-hand side. We also
indicate the leading order of the heat kernel at each of the boundary hypersurfaces, in terms of

√
t at

t = 0, w = t−1/2 at t =∞, and x or x ′ respectively at all the finite-time boundaries.
As an example of how polyhomogeneous structure may be used to read off the behavior in all asymptotic

regimes, let a be a parameter, and fix (y, x ′, y′); consider the heat kernel H Z (a2, a−1, y, x ′, y′) as a
approaches infinity. In the compactified space in Figure 1, as a approaches infinity, the arguments
approach a point in the center of the face lb0, where the leading order of the heat kernel is n. Since
w = a−1, and w is a boundary defining function for lb0, we conclude that H Z (a2, a−1, y, x ′, y′) has a
polyhomogeneous asymptotic expansion in a−1 as a→∞, with leading term Cna−n . A similar analysis
may be performed in any asymptotic regime.

As an application, Theorems 2 and 3 give us precisely the polyhomogeneous structure we need to
define and investigate the renormalized zeta function on M :

Theorem 4. Let M be asymptotically conic. The renormalized zeta function, defined formally by (5), is
well-defined and has a meromorphic continuation to all of C.

We may then define the renormalized determinant of the positive Laplacian 1M on M by

log Rdet1M =−
Rζ ′M(0),

where Rζ ′M(0) is the coefficient of s in the Laurent series for RζM(s) around s = 0.
In a companion paper [Sher 2012a], we use Theorems 2, 3, and 4 to analyze the behavior of the

determinant of the Laplacian on a family of manifolds degenerating to a manifold with conical singularities.
We expect that this work will have applications to spectral theory and to index theory on singular spaces,
including the study of the Cheeger–Müller theorem on manifolds with conical singularities. The key
theorem from [Sher 2012a] is as follows: let �0 be a manifold with an exact conic singularity (with
arbitrary base) and let Z be a manifold conic near infinity with the same base. For each ε > 0, we define
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a smooth manifold �ε replacing the tip of �0 with an ε-scaled copy of Z ; as ε→ 0, the manifolds �ε
converge to �0 in the Gromov–Hausdorff sense. Then it is proven in [Sher 2012a] that

Theorem 5. As ε→ 0,

log det1�ε =−2 log ε(RζZ (0))+ log det1�0 + log Rdet1Z + o(1).

1.2. Outline of the proofs. The usual geometric-microlocal approach to the fine structure of the heat
kernel is a direct parametrix construction, which involves the construction of an initial approximation to
the heat kernel and then the removal of the error via a Neumann series argument. This is the method
adopted in [Albin 2007]. However, parametrix constructions are not well-suited for analysis of the
long-time heat kernel; the problem is global rather than local. In order to obtain the asymptotic structure
of the heat kernel at long time, we instead take an indirect approach. Recall that the functional calculus
shows that the heat kernel and the resolvent are related by

H M(t)= 1
2π i

∫
0

eλt(1M + λ)
−1 dλ, (6)

where 0 is a contour around the spectrum. Guillarmou and Hassell [2008; 2009] have analyzed the
asymptotic structure of the resolvent (1M + λ)

−1 at low energy, again giving a complete description in
all regimes. They have shown:

Theorem 6 [Guillarmou and Hassell 2008]. Suppose that M is an asymptotically conic manifold of
dimension n ≥ 3. Then the Schwartz kernel of (1M + eiθk2)−1 is polyhomogeneous conormal on M2

k,sc
for each θ ∈ (−π, π), with a conormal singularity at the spatial diagonal and all coefficients smoothly
depending on θ . It decays to infinite order at the faces lb, rb, and bf, with leading orders at sc, bf0, rb0,
lb0 and zf given by 0, n− 2, n− 2, n− 2, and 0 respectively.

Note that Guillarmou and Hassell require n ≥ 3. In Section 4, we adapt their methods to extend
Theorem 6 to the two-dimensional case:

Theorem 7. Theorem 6 also holds when n = 2; all the leading orders are the same, except that we have
logarithmic growth instead of order 0 at zf.

In Section 2, we use geometric microlocal analysis, in particular Melrose’s pushforward theorem, to
prove Theorem 2. The key is to push the structure of Theorems 6 and 7 through the contour integral
(6). To state the main technical theorem, we must first compactify M2

k,sc to M2
k,sc by introducing a new

boundary face at k =∞, with boundary defining function k−1. In a neighborhood of the new face, which
we call tf, M2

k,sc is M2
sc×[0, 1)k−1 . The main technical theorem is this:

Theorem 8. Let M be an asymptotically conic manifold, and let E be a vector bundle over M. Let
A : C∞(E)→ C−∞(E) be a pseudodifferential operator with the following properties:

(a) σ(A)⊂ [0,∞].

(b) (Low-energy resolvent behavior) If k is bounded above, the Schwartz kernel of the resolvent
(A + eiθk2)−1 is polyhomogeneous conormal on M2

k,sc for each θ ∈ (−π, π), with a conormal
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singularity at the spatial diagonal and all coefficients smoothly depending on θ . Moreover, it decays
to infinite order at the faces lb, rb, and bf, with index sets at sc, bf0, rb0, lb0, and zf given by Rsc,
Rbf0 , Rrb0 , Rlb0 , and Rzf respectively.

(c) (High-energy resolvent behavior) For each θ ∈ (−π, π) and for k bounded below, the Schwarz kernel
of (A+ eiθk2)−1 is phg conormal on M2

k,sc, with infinite-order decay at lb, rb, and bf, index set Rsc

at sc, and index set Rt f at tf.

Then for t greater than any fixed T > 0, the kernel of e−t A is polyhomogeneous conormal on M2
w,sc, where

w = t−1/2. It decays to infinite order at lb, rb, and bf, and has index sets at sc, bf0, rb0, lb0, and zf which
are subsets of Rsc, Rbf0 + 2, Rrb0 + 2, Rlb0 + 2, and Rzf+ 2 respectively.

Once we have proven Theorem 8, Theorem 2 is an almost immediate consequence, though there is a
slight twist involving the leading orders.

In Section 3, we use Theorem 2 and some additional geometric microlocal techniques to analyze
the renormalized heat trace and prove Theorem 4. We also analyze the renormalized zeta function and
determinant in the special case where M is exactly conic (or Euclidean) outside a compact set. In Section 4,
we extend the methods of [Guillarmou and Hassell 2008] to prove Theorem 7. Finally, in the Appendix,
we use the framework in [Albin 2007] to prove Theorem 3.

2. From resolvent to heat kernel

The goal of this section is to prove Theorems 8 and 2.

2.1. Preliminaries. We first give a brief summary of the key relevant concepts in geometric microlocal
analysis; again, a self-contained introduction may be found in [Grieser 2001]. A manifold with corners of
dimension n is a topological space which is locally modeled on Rk

+
×Rn−k for some k; a simple example

is the n-dimensional unit cube. Blow-up is a way of creating new manifolds with corners from old ones,
and is used to resolve certain geometric singularities. The idea is to formally introduce polar coordinates
around a submanifold of a manifold with corners, in order to distinguish between directions of approach
to that submanifold. For example, consider the origin as a submanifold of R2

+
. To blow up the origin, we

introduce polar coordinates (r, θ), which corresponds to replacing the point (0, 0) with a quarter-circle,
which corresponds to the inward-pointing spherical normal bundle of (0, 0)⊂ R2

+
. See [Melrose 1993;

1996; Grieser 2001], or the appendix of [Sher 2012b] for a more detailed explanation and more general
examples of blow-ups.

By Taylor’s theorem, smooth functions on a manifold with corners are precisely those functions
which have Taylor expansions at each boundary hypersurface and joint Taylor expansions at every
corner. Polyhomogeneous conormal distributions, which we abbreviate as phg or phg conormal, are a
generalization of smooth functions. In particular, if we let x be a boundary defining function, we allow
terms of the form x s(log x)p for any x ∈ C and any p ∈N0 to appear in the asymptotic expansions at the
boundary and in the joint expansions at the corners. The index set of a phg conormal distribution u at a
particular boundary hypersurface H is simply the set of (s, p) which appear in the asymptotic expansion
of u at H .
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Polyhomogeneous conormal functions are well-behaved under addition and multiplication, but also
under more complicated operations, namely pullback and pushforward. To discuss these, we first need
to discuss properties of a map f : W → Z between manifolds with corners. Roughly, we say that f
is a b-map if it is smooth up to the boundary and product-type near the boundary in terms of the local
coordinate models (see [Grieser 2001] for a precise definition). If additionally f does not map any
boundary hypersurface of W into a corner of Z , and f is also a fibration over the interior of every
boundary hypersurface, we call f a b-fibration. Two results of Melrose will be critical in the analysis to
follow:

Proposition 9 (Melrose’s [1992] pullback and pushforward theorems). Let f :W → Z be a smooth map
of manifolds with corners.

(a) If f is a b-map and u is phg conormal on Z , then f ∗u is phg conormal on W . Moreover, the index
sets of f ∗u may be computed explicitly from those of u and the geometry of the map f .

(b) If f is also a b-fibration, v is phg conormal on W , and f∗v is well-defined (the pushforward is
integration along the fibers, which may not converge), then f∗v is phg conormal on Z , and again the
index sets may be computed explicitly.

Finally, we need to consider distributions which have pseudodifferential-type conormal singularities at
submanifolds in the interior of a manifold with corners.

Definition [Grieser 2001]. Let y = (x1, . . . , xk) and z = (xk+1, . . . , xn), and let N be the set {z = 0} in
Rn

y,z . A distribution u on Rn has a conormal singularity at N of order m if it can be written

u(y, z)=
∫

Rn−k
ei z·ξa(y, ξ) dξ,

where a is a classical symbol; that is, a has asymptotics as |ξ | →∞

a(y, ξ)∼
∞∑
j=0

am− j

(
y,
ξ

|ξ |

)
|ξ |m− j ,

with each coefficient am− j smooth in y and ξ/|ξ |.

This definition may be extended, by using the local coordinate models, to define distributions with a
conormal singularity at any p-submanifold of a manifold with corners; a p-submanifold is a subset which,
in each local coordinate chart, may be identified with a coordinate submanifold. Variants of the pullback
and pushforward theorems also hold for polyhomogeneous conormal distributions with interior conormal
singularities [Melrose 1996; Epstein et al. 1991].

2.2. The space M2
k,sc. We now introduce the space M2

k,sc, which appears in [Guillarmou and Hassell
2008; 2009; Guillarmou et al. 2012] and was first proposed in an unpublished note of Melrose and
Sá Barreto. To construct M2

k,sc, we begin with the space M2
k = [0,∞)k ×M ×M ; coordinates on this

space near [0,∞)k × ∂M × ∂M are (k, x, y, x ′, y′). There are three boundary hypersurfaces: {k = 0},
which we call zf, {x = 0}, which we call lb, and {x ′ = 0}, which we call rb.



1762 DAVID A. SHER

Figure 2. The space M2
k,b.

First we blow up the corner {x = 0, x ′ = 0, k = 0}, which corresponds to the introduction of polar coor-
dinates near that corner; we call the front face of this blow-up bf0. We then blow up three codimension-2
submanifolds: we blow up {x = 0, x ′ = 0} and call the new face bf, we blow up {x = 0, k = 0} and
call the resulting face lb0, and we blow up {x ′ = 0, k = 0} and call the resulting face rb0. The resulting
manifold with corners, which we call M2

k,b (as in [Guillarmou et al. 2012]), is shown in Figure 2, with
y and y′ suppressed. Using the definition of a “b-stretched product” from [Melrose and Singer 2008],
we can identify this manifold near x = 0, x ′ = 0 with X3

b(x, x ′, k)× Ny × Ny′ . We use these b-stretched
products Xn

b from [Melrose and Singer 2008] throughout the arguments.
Finally, consider the intersection of the closure of the interior spatial diagonal with the face bf. In

coordinates near the boundary, this is {x/x ′ = 1, y = y′, x/k = 0}, and it is marked with a dotted line in
Figure 2. We blow this up to create a new boundary hypersurface, which we call sc (for “scattering”).
The resulting space is M2

k,sc, and it has eight boundary hypersurfaces, illustrated in Figure 3. The spatial
diagonal Dk,sc is defined to be the closure in M2

k,sc of the interior spatial diagonal; its intersection with
the boundary is marked with a dotted line in Figure 3.

Figure 3. The space M2
k,sc.
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Figure 4. Contour of integration 0a .

We now describe some useful coordinate systems on M2
k,sc. Near the intersection of zf, rb0, and bf0,

we use the coordinates (
x, σ =

x ′

x
, y, y′, κ ′ =

k
x

)
.

In these coordinates, x is a boundary defining function (bdf) for bf0, σ is a bdf for rb0, and κ ′ is a bdf for
zf. Similarly, near the intersection of zf, lb0, and bf0, we use the coordinates(

x ′, σ ′ =
x
x ′
, y, y′, κ =

k
x

)
.

Coordinates near sc are slightly more complicated; before the final blow-up, good coordinates are
(x ′, σ ′, y, y′, x/k). After the blow-up, we use the coordinates(

X = k
(

1
x ′
−

1
x

)
, Y = k

y− y′

x
, λ=

x
k
, y, k

)
.

These are valid in a neighborhood of the intersection of Dk,sc with sc and bf0; however, they are not good
coordinates as we approach bf.

In addition to the b-stretched products of [Melrose and Singer 2008] and the space M2
k,sc, we also

define the scattering double space M2
sc(z, z′), originally described in [Melrose 1994]. It is a blown-up

version of M ×M ; the first blow-up is of {x = x ′ = 0}, and the second blow-up is of the boundary fiber
diagonal {x ′ = 0, x/x ′ = 1, y = y′}. Notice that each cross-section of M2

k,sc corresponding to a fixed
k > 0 is a copy of M2

sc.

2.3. Proof of Theorem 8. Let A be an operator satisfying hypotheses (a)–(c) of Theorem 8, and let
R(λ, z, z′) be the Schwartz kernel of (A+λ)−1. The spectrum of A is [0,∞], so R(λ, z, z′) is holomorphic
outside the non-positive real axis. Fix ϕ ∈ (π/2, π). For any a > 0, let 0a be the path in C consisting of
two half-rays along θ =−ϕ and θ = ϕ, connected by the portion of the circle of radius a from θ =−ϕ to
θ = ϕ, and traversed counterclockwise. Moreover, let 0a,1 be the portion of 0a along the circle of radius
a, and let 0a,2 be the remainder; that is, the two half-rays. These contours are illustrated in Figure 4.

Let F(w, z, z′) be the heat kernel at time t = w−2. Then, by the functional calculus, we have

F(w, z, z′)=
1

2π i

∫
0

eλ/w
2
R(λ, z, z′) dλ. (7)
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We let a = w2 and 0 = 0w2 , and then consider the integral (7) over 0w2,1 and 0w2,2 separately.
On 0w2,1, λ= w2eiθ , so dλ= w2dθ , and we have

w2

2π i

∫ ϕ

−ϕ

eeiθ
R(θ, w, z, z′) dθ. (8)

By condition (b), for each θ , the integrand in (8) is phg conormal on M2
w,sc with a conormal singularity at

1w,sc, and the dependence of all coefficients on θ ∈ [−ϕ, ϕ] is smooth. Therefore, the integral (8) is phg
conormal on M2

w,sc, with a possible conormal singularity at Dw,sc. The index sets of (8) on M2
w,sc are

those of w2 plus those of R(w, z, z′). The function w2 is smooth and has order 2 as a function at zf, bf0,
rb0, and lb0 and order 0 everywhere else, so we add 2 to the index sets of the resolvent at those faces.
This procedure gives precisely the index sets claimed in Theorem 8.

It remains to consider the integral over 0w2,2. 0w2,2 consists of two half-rays; we consider only the
half-ray corresponding to θ = ϕ, as the other is analogous. Since θ is fixed, we suppress θ in the notation;
the integral runs from r = w2 to r =∞. After changing variables from r to s =

√
r , and dropping the

overall factor of (2π i)−1 (which does not affect polyhomogeneity), the 0w2,2 portion of (7) becomes∫
∞

w

2se(cosϕ)s2/w2
ei(sinϕ)s2/w2

R(s2, z, z′) ds. (9)

First consider the behavior of the integrand as s →∞. Since cosϕ < 0 and w is bounded above,
the term exp((cosϕ)s2/w2), and hence the entire integrand of (9), will decay to infinite order at s =∞.
There will still be a conormal singularity at the spatial diagonal, but the coefficients decay to infinite
order at s =∞.

In order to analyze (9), we break R(s2, z, z′) into pieces. First we separate out the conormal singularity
in a neighborhood of Ds,sc and analyze (9) using explicit local coordinates. Then we deal with the
remainder, which is smooth on M2

s,sc, by breaking it into two pieces and applying the pushforward
theorem.

2.4. The conormal singularity. Using a partition of unity, we let R = Rs + Rc, where Rc is supported
in a neighborhood of Ds,sc and Rs is supported away from Ds,sc, as in Figure 5. In a neighborhood of
sc∩ bf0, we use the coordinates(

X = s
(

1
x
−

1
x ′

)
, Y = s

y− y′

x
, y, µ=

x
s
, s
)
.

In these coordinates, R has a conormal singularity at {X = Y = 0}. On the other hand, in a neighborhood
of bf0 ∩ zf∩ Ds,sc, we use a slight modification of the coordinates in the previous subsection:(

X̂ =
(

1−
x
x ′

)
, Ŷ = y− y′, y,

s
x
, x
)
.

Since we use different coordinates in different regimes, write Rc = R1 + R2 + R3 by using a smooth
partition of unity near x/s = 1; R1 is supported near the boundary but away from sc (say s/x < 2), R2
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D

Figure 5. Decomposition of R.

near the boundary but away from zf (say x/s < 2), and R3 in the interior. The decomposition at the
boundary is illustrated in Figure 5.

First look at R1. Using the explicit symbolic form of a conormal singularity, we may write

R1 ∼

∫
Rn

ei(X̂ ,Ŷ )·(ξ1,ξ2)

∞∑
j=0

a j

(
s
x
, x, y,

ξ

|ξ |

)
|ξ |2− j dξ. (10)

This is an asymptotic sum, modulo smooth functions on M2
s,sc; we pick a particular representative which

is supported in a small neighborhood of Ds,sc, and absorb the remainder into Rs . The coefficients a j

are phg conormal in x and s/x with index sets independent of j ; they are also smooth in y and ξ/|ξ |.
We plug (10) into (9) and then interchange the convergent s-integral with the asymptotic sum and the
oscillatory integral over Rn . The result is∫

Rn
ei(X̂ ,Ŷ )·(ξ1,ξ2)

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

a j

(
s
x
, x, y,

ξ

|ξ |

)
ds |ξ |2− j dξ. (11)

By Melrose’s pullback theorem [1996], the pullback of each a j to X3
b(s, x, w) × Ny × Sn−1

ξ/|ξ | via
projection is also phg conormal with index sets independent of j . As a result, the integrand in∫

∞

w

2se−(s/w)
2eiϕ

a j

(
s
x
, x, y,

ξ

|ξ |

)
ds (12)

is phg conormal on X3
b(s, w, x)× Ny × Sn−1

ξ/|ξ |, with a cutoff singularity at s/w = 1. Moreover, it has
infinite-order decay at s = ∞, independent of w < 1 and x < 1, and hence integration in s is well-
defined. Integration in s is a b-fibration from X3

b(s, w, x) to X2
b(w, x), by [Melrose and Singer 2008,
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Proposition 4.4], and is hence also a b-fibration when we take the direct product with Ny × Sn−1
ξ/|ξ |.

Moreover, integration in s is transverse to the cutoff singularity at s/w= 1. Therefore, by the pushforward
theorem with conormal singularities (from the appendix of [Epstein et al. 1991]), (12) is phg conormal on
X2

b(w, x)× Ny × Sn−1
ξ/|ξ |, with index sets independent of j .

Since w< s < 2x on the support of R1, (12) has a phg conormal expansion in (w/x, x). Therefore, the
integral (11), in the coordinates (X̂ , Ŷ , y, w/x, x), corresponding to the R1 piece of (9), is phg conormal
in (w/x, x) with index sets independent of j , and smoothly dependent on y, with an interior conormal
singularity at X̂ = Ŷ = 0. Thus (11) is phg conormal on M2

w,sc with a conormal singularity at the diagonal.
We now consider R2; the analysis is similar. Write

R2 ∼

∫
Rn

ei(X,Y )·(ξ1,ξ2)

∞∑
j=0

b j

(
x
s
, s, y,

ξ

|ξ |

)
|ξ |2− j dξ, (13)

where the b j are phg conormal in x/s and s with index sets independent of j , and also smooth in y and
ξ/|ξ |.

It is helpful to consider the regimes w > x/2 and w < 2x separately. First assume that w > x/2, and
let X =w(1/x − 1/x ′), Y =w(y− y′)/x , and λ̄= x/w. We expect a conormal singularity at X = Y = 0
in this regime. Noting that (X, Y )= (s/w)(X , Y ), we change variables in (13) and let ζ = (s/w)ξ . The
result is

R2 ∼

∫
Rn

ei(X ,Y )·(ζ1,ζ2)

∞∑
j=0

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

|ζ |2− j dζ. (14)

As before, plug (14) into (9) and interchange the sums and convergent integrals: the part of (9) coming
from R2 is ∫

Rn
ei(X ,Y )·(ζ1,ζ2)

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

ds |ζ |2− j dζ. (15)

Consider the coefficients∫
∞

w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

ds. (16)

If we can show that the coefficients (16) are phg conormal in (x/w,w) with respect to some index sets
independent of j , with smooth dependence on y and ζ/|ζ |, then (15) is phg conormal on M2

w,sc with
a conormal singularity at the diagonal when w > x/2. To show this phg conormality, note that again
the integrands in (16) are each phg conormal on X3

b(s, x, w)× Ny × Sn−1
ζ/|ζ |. Moreover, the index sets are

independent of j , as s/w > 1, and there is always infinite-order decay at s =∞, independent of w. As
before, we use the pushforward theorem to integrate in s, and we conclude that the coefficients (16) are
phg conormal on X2

b(x, w)× Ny × Sn−1
ζ/|ζ | with respect to index sets independent of j . Since w > x/2,

this yields expansions in x/w and w, which is precisely what we need.
On the other hand, suppose that w < 2x . Then we expect a conormal singularity at X̂ = Ŷ = 0.

Since (X, Y )= (s/x)(X̂ , Ŷ ), we change variables in (13), letting ζ ′ = (s/x)ξ . Following the exact same
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procedure as in the w > x/2 case, we see that the part of (9) coming from R2, when w < 2x , is∫
Rn

ei(X̂ ,Ŷ )·(ζ ′1,ζ
′

2)

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ ′

|ζ ′|

)(
s
x

) j−2−n

ds |ζ ′|2− j dζ ′. (17)

The coefficients can be rewritten as(
w

x

) j−2−n ∫ ∞
w

2se−(s/w)
2eiϕ

b j

(
x
s
, s, y,

ζ

|ζ |

)(
s
w

) j−2−n

ds. (18)

These are just (w/x) j−2−n times (16), and (w/x) j−2−n is phg conormal on X2
b(w, x), so (18) is also phg

conormal on X2
b(w, x) for each j . Since we are only considering w < 2x , the orders only improve as j

increases. In particular, all the coefficients are phg conormal on X2
b(w, x) with respect to subsets of the

index set of the j = 0 coefficient. This is again sufficient to prove that (17) is phg conormal on M2
w,sc

with a conormal singularity at the diagonal.
Finally, consider the interior term R3; it is the simplest of the lot, since z and z′ are in a compact subset

of M . We let η be a dual variable to z− z′ and write

R3 ∼

∫
Rn

ei(z−z′)·η
∞∑
j=0

c j

(
s, z,

η

|η|

)
|η|2− j dη. (19)

Here the c j are phg conormal at s = 0 and s =∞, with index sets independent of j at s = 0 and s =∞.
Following the same procedure as in the previous two cases, simplified since z− z′ and η are independent
of s, we conclude that the part of (9) coming from R3 is∫

Rn
ei(z−z′)·η

∞∑
j=0

∫
∞

w

2se−(s/w)
2eiϕ

c j

(
s, z,

η

|η|

)
ds |η|2− j dη. (20)

Analyzing the coefficients, we see that the integrand in each is phg conormal on X2
b(s, w), with index

sets independent of j , z, and η/|η|, and with infinite-order decay at s =∞. By the pushforward theorem,
each coefficient is phg conormal at w = 0, with index sets independent of j , z, and η/|η|. Moreover, (20)
has compact support in (z, z′). Therefore, (20), and hence the part of (9) corresponding to Rc, is phg
conormal on M2

w,sc with a conormal singularity at the diagonal.
Technically, we need to compute the index sets of the coefficients of the conormal singularity at

each boundary face of M2
w,sc. This may be done directly via the pushforward theorem, but it is easier

to apply the analysis we will develop in the next section. Note that a j and b j may be viewed as phg
conormal functions on the diagonal Ds,sc ⊂ M2

s,sc, with fixed index sets Rsc, Rbf0 , and Rzf at the boundary
hypersurfaces sc, bf0, and zf. Observe that they can be extended smoothly to functions defined in a
neighborhood of Ds,sc which are themselves phg conormal on M2

s,sc with the given index sets; call these
extensions d j . Then the coefficients of the conormal singularity of the integral (9) are the restrictions to
the diagonal of ∫

∞

w

2se−(s/w)
2eiϕ

d j (s, x, y, x ′, y′) ds.
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Applying Lemma 10 to each d j , these coefficients are all phg conormal on M2
w,sc, with index sets obtained

by adding 2 at the faces bf0, rb0, lb0, and zf. Therefore the restrictions to the diagonal are all phg conormal
on Dw,sc, with leading orders matching those in Theorem 8, as expected. This completes the analysis of
the conormal singularity.

2.5. Finishing the proof. It remains to consider the integral∫
∞

w

2se−(s/w)
2eiϕ

Rs(s2, z, z′) ds, (21)

where Rs(s2, z, z′) is phg conormal on M2
s,sc and smooth across the diagonal. We claim:

Lemma 10. Let T (s, z, z′) be any function which is phg conormal on M2
s,sc, smooth in the interior, and

decaying to infinite order at lb, rb, and bf. Then∫
∞

w

2se−(s/w)
2eiϕ

T (s, z, z′) ds (22)

is phg conormal on M2
w,sc for w bounded above. Moreover, if the index sets of T at the various boundary

hypersurfaces are Tsc, Tbf0 , Tzf, Trb0 , Tlb0 , and Tt f , then the index sets of (22) are

Tsc, Tbf0 + 2, Tzf+ 2, Trb0 + 2, Tlb0 + 2.

We defer the proof for the moment. Applying Lemma 10 to T (s)= Rs(s2), we conclude that (21) is
phg conormal on M2

w,sc with index sets precisely as in Theorem 8. Combining this with our analysis of
Rc, we have now shown that F(w, z, z′) is phg conormal on M2

w,sc possibly with a conormal singularity
at the spatial diagonal, and with leading orders as specified in Theorem 8. However, F(w, z, z′) is a heat
kernel, so it has no conormal singularity at the diagonal. This completes the proof of Theorem 8.

Finally, to prove Theorem 2, we apply Theorem 8. Condition (a) is true since the Laplacian is
essentially self-adjoint and non-negative. Condition (b) follows from Theorems 6 and 7. Condition (c)
is a well-known consequence of the semiclassical scattering calculus. The scattering calculus was first
introduced by Melrose [1994] and the semiclassical version was developed by Vasy, Wunsch, and Zworski
among others [Vasy and Zworski 2000; Wunsch and Zworski 2000]. The exact statement we need, along
with a summary of the semiclassical scattering calculus, may be found in [Hassell and Wunsch 2008,
Section 10]; h̄ in the semiclassical calculus corresponds to k−1 in our context. Applying Theorem 8 gives
us the polyhomogeneity we claim, and once we plug in the leading orders from [Guillarmou and Hassell
2008] and the Appendix, we see that the heat kernel has leading orders of 0 at sc and n at each of bf0,
rb0, and lb0.

Unfortunately, Theorem 8 does not by itself give us the claimed order-n behavior at zf; instead, we
only see quadratic decay at zf when n ≥ 3 and decay of the form w2 logw when n = 2. However, by
the estimate of Cheng–Li–Yau (Theorem 1), the heat kernel is uniformly bounded for large time by
Ct−n/2

=Cwn . Thus the leading order of the heat kernel at zf must actually be at least n, which completes
the proof of Theorem 2.
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Figure 6. Decomposition of T .

Note that the lack of sharpness in the order calculation of Theorem 8 reflects the fact that our real-
analytic approach does not take into account the complex-analytic structure of the resolvent; there is
cancellation between the top and bottom parts of the integral that our approach cannot see. In particular,
we could instead move the contour 0 towards the spectrum and represent the heat kernel as an integral
with respect to the spectral measure. Guillarmou, Hassell, and Sikora demonstrate in [Guillarmou et al.
2012] that there is cancellation between the top and bottom parts of the contour in the spectral measure.
In particular, the spectral measure at zf vanishes to order n− 1 by Theorem 1.2 of their paper; integrating
e−λt against this spectral measure, we obtain an alternative proof of the fact that the heat kernel vanishes
to order n at zf.

2.6. Proof of Lemma 10. We now prove Lemma 10; the proof involves extensive use of Melrose’s
pullback and pushforward theorems. First, write T (s, z, z′) as T1+ T2, where T1 is supported away from
sc and T2 is supported in a neighborhood of sc. This partition is illustrated in Figure 6. Then decompose
(22) into two integrals, corresponding to T1 and T2.

Consider the first integral: ∫
∞

0
χ({s ≥ w}) 2se−(s/w)

2eiϕ
T1(s, z, z′) ds

s
. (23)

Notice that T1(s, z, z′) is phg conormal on M2
s,sc but supported away from sc, so it is in fact phg conormal

on the blown-down space M2
s,b(z, z′) (see Figure 2). The rest of the terms in the integrand are phg

conormal on X2
b(s, w), with a cutoff singularity (which is an example of a conormal singularity) at s =w.

We now define a space M2
s,w,b(z, z′) as follows: start with [0, T )w×[0,∞]s ×Mz ×Mz′ . Then blow up,

in order,

• The submanifold where all four of (x, x ′, s, w) are zero;

• The four now-disjoint submanifolds where exactly three of (x, x ′, s, w) are zero;

• The six now-disjoint submanifolds where exactly two of (x, x ′, s, w) are zero.
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This construction mimics the construction of the b-stretched product X4
b(x, x ′, s, w), and in fact

M2
s,w,b(z, z′) is precisely X4

b(x, x ′, s, w)× Ny × Ny′ in a neighborhood of {x = x ′ = s = w = 0}. By the
same arguments as for the b-stretched products in [Melrose and Singer 2008], the projection-induced
maps from M2

s,w,b(z, z′) to M2
w,b(z, z′) (isomorphic to X3

b(x, x ′, w)× Ny × Ny′ near {x = x ′ = w = 0})
and to X2

b(s, w) are well-defined b-fibrations. Therefore, by the pullback theorem, the integrand of (23)
is phg conormal on Mw

s,w,b(z, z′), with a conormal singularity at s = w. Since the fibers of the projection
map to M2

w,b(z, z′) are transverse to the singularity at s = w, and the integrand has order∞ at s =∞,
the pushforward theorem implies that (23) itself is phg conormal on M2

w,b(z, z′). Since M2
w,b(z, z′) is a

blow-down of M2
w,sc(z, z′), we conclude that (23) is phg conormal on M2

w,sc(z, z′) as desired.
For T2, we may use (z, z′) = (x, y, x ′, y′) since T2 is supported in a small neighborhood of sc. We

have ∫
∞

0
χ({s ≥ w}) 2se−(s/w)

2eiϕ
T2(s, x, y, x ′, y′) ds

s
. (24)

Let σ = (x/ x ′−1, y− y′); σ is an n-dimensional coordinate, and M2
s,sc is created from X3

b(s, x, x ′)×
Ny × Ny′ by blowing up {σ = x/s = 0}. In particular, T2(s, x, y, x ′, y′), having compact support in x/x ′,
is phg conormal on [

X2
b(s, x)× Ny ; {σ = x/s = 0}

]
.

This space is the subset of M2
w,sc with 1/2< x/x ′ < 2, so label its boundary hypersurfaces bf, sc, bf0, and

zf. In this labeling, T2 is supported away from zf, decays to infinite order at bf, and has leading orders tsc

at sc and tbf0 at bf0.
We analyze the integrand in (24) as a function on the space

S =
(
X3

b(s, w, x)∩ {s ≥ w}
)
× B(σ )× Ny .

Here B is the unit ball in Rn . A diagram of S is given in Figure 7, with σ and y suppressed; we label the
boundary hypersurfaces A–E .

Figure 7. The space S.
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We now define an iterated blow-up of S. Let P1 be the p-submanifold of S given by A ∩ {σ = 0}.
Blowing up P1 creates a new space S1 = [S ; P1]; call the front face of this blow-up F . Now let P2 be the
p-submanifold of S1 given by the closure of the lift of D◦ ∩ {σ = 0}. Then let

S2 = [S1 ; P2] = [[S ; P1] ; P2 ],

and let G be the new front face. The following two propositions allow us to analyze (24); their proofs are
deferred for the moment.

Proposition 11. The map

πw : S2 ∩ {s ≥ x} →
[(

X2
b(s, x)∩ {s ≥ x}

)
× B1(σ )× Ny ; {σ = x/s = 0}

]
,

given in the interior of S2 by projection off the variable w and extending continuously to the boundary, is
a b-map.

Proposition 12. The map

πs : S1→
[
X2

b(w, x)× B1(σ )× Ny ; {σ = x/w = 0}
]
,

given in the interior of S1 by projection off the variable s and extending continuously to the boundary, is a
b-fibration. Moreover, if we let ρH be a bdf for each hypersurface H , we have

(πs)
∗(ρzf)= ρCρE , (πs)

∗(ρbf0)= ρBρD, (πs)
∗(ρsc)= ρF , (πs)

∗(ρbf)= ρA. (25)

Since T2 is supported in {s ≥ x} and its support does not intersect the lift of {s = x}, Proposition 11 and
the pullback theorem imply that the pullback of T2 is phg conormal on S2. Moreover, the remainder of the
integrand in (24) is phg conormal on X2

b(s, w)∩ {s >w}, so pulling back first to X3
b(s, w, x)∩ {s >w},

and then to S2, we see that it is phg conormal on S2 as well. Therefore, the entire integrand in (24) is
phg conormal on S2 = [S1 ; P2]. However, the factor of e−s2/w2

, and hence the integrand, vanishes to
infinite order at the front face G; consequently the integrand in (24) is actually phg conormal on S1. By
the pushforward theorem from [Epstein et al. 1991], since πs is a b-fibration transverse to the conormal
singularity at s = w, the pushforward (24) is phg conormal on the target space [X2

b(w, x)× B1(σ )×

Ny ; {σ = x/w = 0}]. From Figure 8, we see that this space is a subset of M2
w,sc; we have therefore

shown that (24) is phg conormal on M2
w,sc. This completes the proof of the polyhomogeneity statement

in Lemma 10, modulo the proofs of Propositions 11 and 12.
It remains to check the index sets claimed in Lemma 10. However, this calculation is a straightforward

application of the pullback and pushforward theorems (explicit descriptions of the pullback and pushfor-
ward index sets may be found in [Grieser 2001]). A computation of the leading orders may be found in
[Sher 2012b] and computing the index sets themselves is no harder.

2.7. Propositions 11 and 12. Finally, we prove Propositions 11 and 12. These propositions are proved
in [Sher 2012b] using explicit local coordinates, but here we instead give a simpler proof based on the
machinery developed by Hassell, Mazzeo, and Melrose [Hassell et al. 1995].
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Figure 8. [X2
b(w, x) ; {σ = x/w = 0}].

Observe first that there are projection-induced maps from S to both X2
b(s, x) × B(σ ) × Ny and

X2
b(w, x)× B(σ )× Ny . We call these maps π̃w and π̃s respectively. It is easy to see directly that both of

these maps are in fact b-fibrations; see also the analysis of b-stretched products in [Melrose and Singer
2008]. Moreover, it may be checked by hand [ibid.] that each entry of the “exponent matrix” associated
to each of these maps is either 0 or 1; see [Grieser 2001] or [Mazzeo 1991] for a discussion of exponent
matrices.

To prove Proposition 11, consider the p-submanifold {σ = x/s = 0} of the target space of π̃w. Its
lift under π̃w is a union of two p-submanifolds of S: A∩ {σ = 0} and D ∩ {σ = 0}. S2 is precisely the
space we obtain from S by blowing up those two p-submanifolds (first A, then D). We may therefore
apply Lemma 10 from [Hassell et al. 1995, Section 2] to conclude that the lift of π̃w to a map from S2 to
[X2

b(s, x)× B(σ )× Ny ; {σ = x/s = 0}] is a b-fibration; but this lift is precisely πw. Since a b-fibration
is certainly a b-map, this completes the proof of Proposition 11.

Proposition 12 is proved in exactly the same way: the lift of {σ = x/w = 0} to S under π̃s is just
A∩{σ = 0}, which is precisely P1. An identical application of the lemma just cited allows us to conclude
that πs is a b-fibration. The computation of the pullbacks of boundary defining functions is not hard and
may be done directly using local coordinates; the details may be found in [Sher 2012b].

3. Renormalized heat trace and zeta function

In this section, we define the renormalized heat trace, zeta function, and determinant on an asymptotically
conic manifold M . These definitions ultimately allow us, in [Sher 2012a], to state and prove Theorem 5.
The first step is to define the renormalized trace. This definition is inspired by Melrose’s b-heat trace,
which is a renormalized heat trace for manifolds with asymptotically cylindrical ends. Albin [2007]
also defined renormalized heat traces in the asymptotically hyperbolic setting; later, Albin, Aldana, and
Rochon [Albin et al. 2013] defined and investigated a renormalized determinant of the Laplacian on
asymptotically hyperbolic surfaces.
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3.1. The renormalized heat trace. Pick any cutoff function χ1(r) on R+ which is supported on {r ≤ 2}
and equal to 1 on {r ≤ 1/2}. Assume that either

(a) χ1(r) is a non-increasing smooth function of r (smooth cutoff), or

(b) χ1(r) is precisely the characteristic function of [0, 1] (sharp cutoff).

Then for any δ < 1/2, let χ1,δ be a function on M , equal to χ1(rδ) for r ≥ 1 and equal to 1 inside {r = 1}.
Consider the integral ∫

M
χ1,δ(z)H M(t, z, z) dz. (26)

Theorem 13. Let χ1 be either the smooth or the sharp cutoff. The integral (26) has a polyhomoge-
neous expansion in δ for each fixed t. Moreover, the finite part at δ = 0, which we denote P(t), has
polyhomogeneous expansions in t at t = 0 and t−1 at t =∞.

This theorem allows us to define the renormalized heat trace on an asymptotically conic manifold.
Roughly, this corresponds to integrating the heat kernel on the diagonal over regions where r ≤ δ−1, and
renormalizing by subtracting the divergent parts at δ = 0. Renormalization in this fashion is often called
Hadamard renormalization (for details, see [Albin 2007; Albin et al. 2013]).

Definition. Let χ1(r) be the sharp cutoff. The renormalized heat trace, denoted R Tr H M(t), is the finite
part at δ = 0 of (26).

Proof of Theorem 13. The key ingredient is the following observation on the structure of the heat kernel
on the diagonal near the boundary, which is a consequence of the structure theorem we have proven for
the heat kernel. The asymptotic structure of H M(t, x, y, x, y) reflected in this proposition is illustrated in
Figure 9.

Proposition 14. (a) For t bounded above, H M(t, x, y, x, y) is phg conormal in (
√

t, x), with smooth
dependence on y.

(b) For t bounded below, let w = t−1/2; then H M(t, x, y, x, y) is phg conormal as a function of w and
x on X2

b(w, x), again with smooth dependence on y.

Proof. Proposition 14 is an immediate consequence of restricting to the spatial diagonal D in Theorem 2;
since D is a p-submanifold of the space on which H M is polyhomogeneous, the restriction of H M to D

Figure 9. Asymptotic structure of H M(t, x, y, x, y).
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is also polyhomogeneous. Comparing D with Figure 9, we see that D is precisely the space described in
Proposition 14. �

To prove Theorem 13, we analyze (26), which may be rewritten as∫
N

∫ 1

0
χ1(δ/x)H M(t, x, y, x, y)x−n−1 dx dy+

∫
x≥1

H M(t, z, z) dz. (27)

First analyze the second term; the region {x ≥ 1} is bounded away from spatial infinity. Therefore, by
Theorem 2, H M(t, z, z) has polyhomogeneous expansions in t at t = 0 and t−1/2, hence t−1, at t =∞,
and these expansions are uniform in z with smooth coefficients. Integrating in z results in a function of t
which is phg conormal at t = 0 and t =∞; this function contributes only to the finite part P(t) at δ = 0
and satisfies the polyhomogeneity claimed in Theorem 13.

It remains to analyze the first term in (27). We consider the small-t and large-t regimes separately,
analyzing the integrand

χ1(δ/x)H M(t, x, y, x, y)x−n−1 (28)

in each regime as a function of (t, x, δ). In each case, χ1(δ/x) is phg conormal on X2
b(x, δ); if χ1 is the

sharp cutoff, there is also a cutoff singularity, which is a type of conormal singularity, at δ/x = 1.
For small t , H M(t, x, y, x, y) is phg conormal in (

√
t, x), so (28) is phg conormal on R+(

√
t)×

X2
b(x, δ), possibly with a conormal singularity at δ/x = 1. The projection map πx is a b-fibration from

this space onto the first quadrant in (
√

t, δ) and is transverse to δ/x = 1; moreover, the integral in x is
well-defined, as the integrand is supported away from the x = 0, δ > 0 face. By the pushforward theorem
from [Epstein et al. 1991], the first term of (27) is phg conormal in (

√
t, δ) for bounded t .

On the other hand, for large t , H M is phg conormal on X2
b(w, x) and χ1 is phg conormal on X2

b(x, δ).
Since the maps from X3

b(w, x, δ) to each of these spaces are b-maps (also b-fibrations), the integrand
is phg conormal on X3

b(w, x, δ) by the pullback theorem; there may again be a conormal singularity at
δ/x = 1. Integration in x is pushforward by a b-fibration onto X2

b(w, δ). Again, the integrand is supported
in {x > δ}, and the fibration is transverse to δ/x = 1, so we apply the pushforward theorem from [Epstein
et al. 1991] to conclude that the first term in (27) is phg conormal on X2

b(w, δ) for bounded w. Combining
these results, we have shown that (27) is phg conormal on the space in Figure 10.

In particular, for any fixed t , (27) has a polyhomogeneous expansion as δ→ 0. Moreover, P(t) is
simply the coefficient of the t0 term at the (0< t <∞, δ = 0) face. By the definition of phg conormality

Figure 10. Asymptotic structure of (27).
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(also see the discussion surrounding [Mazzeo 1991, Lemma A.4]), P(t) therefore has polyhomogeneous
conormal expansions at t = 0 and t =∞. This completes the proof of Theorem 13. �

Using Theorem 13, we now define the meromorphic continuation of the renormalized zeta function:

RζM(s)=
1
0(s)

∫
∞

0

R Tr H M(t) t s−1 dt. (29)

We break up the integral (29) at t = 1, and consider first the short-time piece,

1
0(s)

∫ 1

0

R Tr H M(t) t s−1 dt. (30)

By the phg conormality of R Tr H M(t), we can write, for any N > 0,

R Tr H M(t)=
kN∑
i=0

ai t zi (log t)pi +O(t N ).

Plug this expansion into (30). The O(t N ) contribution is well-defined and meromorphic whenever
<s >−N , and the continuations of the other terms are integrals of the form

ai

0(s)

∫ 1

0
t zi+s−1(log t)pi dt.

These integrals may be evaluated directly, and give explicit meromorphic functions of s, each with finitely
many poles. Therefore, (30), though initially defined only when <s >−z0, has a meromorphic extension
to all of C.

On the other hand, the long-time piece is

1
0(s)

∫
∞

1

R Tr H M(t) t s−1 dt. (31)

Writing u = 1/t and substituting, this becomes

1
0(−(−s))

∫ 1

0

R Tr H M(1/u) u(−s)−1 du.

We have a phg conormal expansion for R Tr H M(1/u) as u→ 0; say the leading order term is of the form
uz∞(log u)p. Proceeding exactly as in the analysis of (30), we conclude that (31), though initially defined
only when <(−s) >−z∞, has a meromorphic continuation to all of C.

This allows us to define the renormalized zeta function and determinant on any asymptotically conic
manifold M .

Definition. The renormalized zeta function on M , RζM(s), is given by the meromorphic continuation of
(29).

Depending on the orders, there may be no s in C for which (29) is defined; however, once we split the
integral at t = 1, both pieces are defined in half-planes and continue meromorphically to all of C.
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Definition. The renormalized determinant of the Laplacian on M is e−
Rζ ′M (0), where Rζ ′M(0) is the

coefficient of s in the Laurent series for RζM(s) at s = 0.

3.2. Manifolds conic near infinity. We now specialize to the case of manifolds which are precisely conic
outside a compact set. In particular, let Z be any asymptotically conic manifold without boundary which
is isometric to a cone outside a compact set. Without loss of generality, assume that Z is isometric to
a cone when r ≥ 1/2. We examine the asymptotic expansion of

∫
Z
χ1,δ(z)H Z (t, z, z) dz as δ→ 0; the

finite part is precisely the renormalized heat trace. However, for applications, such as the study of conic
degeneration in [Sher 2012a], we are also interested in identifying the divergent terms in the expansion.
The fact that Z is conic near infinity allows us to identify those terms:

Theorem 15. Let Z be conic near infinity as above, and let χ1 be the sharp cutoff. We have the following
asymptotic expansion for

∫
Z
χ1,δ(z)H Z (t, z, z) dz as δ→ 0:∫

Z
χ1,δ(z)H Z (t, z, z) dz =

n−1∑
k=0

fk(t)δk−n
+ flog(t) log δ+ R Tr H Z (t)+ R(δ, t). (32)

Here R(δ, t) goes to zero as δ goes to zero for each fixed t. Moreover, if we let uk(1, y) be the coefficient
of t (k−n)/2 in the short-time heat expansion on CN at the point (1, y), then

fk(t)=
t (k−n)/2

k−n

∫
N

uk(1, y) dy and flog(t)=−
∫

N
un(1, y) dy.

Proof of Theorem 15. Note first that
∫

Z
χ1,δ(z)H Z (t, z, z) does in fact have a polyhomogeneous expansion

in δ, by Theorem 13, so it is just a matter of identifying the terms. The proof involves a comparison of
the heat kernels on Z and on CN ; Z and CN are identical near infinity, which allows us to formulate and
prove the following lemma:

Lemma 16. Let CN be the infinite cone over N. Then
∣∣HCN (t, z, z)− H Z (t, z, z)

∣∣, defined whenever
r ≥ 1, decays to infinite order in |z| as |z| goes to infinity.

Proof. Let Ẑ = Z ∩{r ≥ 1}. It is a complete manifold with boundary at r = 1, and is a subset of both CN

and Z . On Ẑ , HCN (t, z, z′)− H Z (t, z, z′) is a solution of the heat equation for each z′, with initial data
equal to zero and boundary data at r = 1 given by HCN (t, 1, y, z′)− H Z (t, 1, y, z′). Fix any T > 0. We
claim that for all t < T , y ∈ N , and z′ with |z′|> 2, there is a constant K so that the absolute value of the
boundary data is less than K .

We show this for HCN (t, 1, y, z′) and for H Z (t, 1, y, z′) separately. For CN , by scaling and noting
that |z′|< 2,

HCN (t, 1, y, z′)=
1
|z′|n

HCN

(
t
|z′|2

,
1
|z′|
, y,

z′

|z′|

)
< HCN

(
t
|z′|2

,
1
|z′|
, y, 1, y′

)
.

For each fixed y′, the heat kernel with point source at (1, y′) is continuous for r < 1/2 (i.e., the tip of the
cone), and hence is bounded for r < 1/2 and for t/|z′|2 < t < T by some universal constant K . Since y′
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varies only over a compact set, the proof is complete. As for H Z (t, 1, y, z′), consider the region

W =
{
(t, 1, y, x ′, y′)

∣∣ t < T, x ′ < 1
2 , y ∈ N , y′ ∈ N

}
as a subset of (t, x, y, x ′, y′) space. The kernel H Z has infinite-order decay at each boundary hypersurface
of the space in Figure 1 with which W has nontrivial intersection. We conclude that H Z is bounded on W ,
so there is a constant K so that H Z (t, 1, y, z′) < K for all t < T , all y ∈ N , and all z′ with |z′|> 2.

Since we have an upper bound for the boundary data, we can construct a supersolution and apply
the parabolic maximum principle. Let g(t, r) be the solution of the heat equation on Ẑ with zero initial
condition and boundary data at r = 1 equal to K for all t . By the maximum principle, we see that∣∣HCN (t, z, z′, t)−H Z (t, z, z′)

∣∣< g(t, |z′|) uniformly for |z′|> 2 and t < T . We claim that g(t, r) decays
to infinite order in r , uniformly in t for t < T . This can be seen either from Bessel function expansions or
by constructing a further supersolution ĝ(t, r) modeled on the heat kernel on Rn . In particular, we can use

ĝ(t, r)=
K/α
(4π)n/2

T0∑
k=−1

1
(t − k)n/2

e−r2/4(t−k)χ
{t>k},

where α = (8π)n/2e1/4 and T0 is the greatest integer less than or equal to T . This supersolution has the
uniform exponential decay property we want, so a final application of the parabolic maximum principle
finishes the proof of the lemma. �

Corollary 17. For any fixed t and any χ1,δ (either a sharp cutoff or a smooth cutoff ),∣∣∣∣ ∫
CN

χ1,δ(z)HCN (t, z, z) dz−
∫

Z
χ1,δ(z)H Z (t, z, z) dz

∣∣∣∣ (33)

converges as δ→ 0.

It now suffices to show that ∫
CN

χ1,δ(z)HCN (t, z, z) dz

has a divergent asymptotic expansion of the form claimed in Theorem 15, as (33) converges as δ→ 0 and
hence contributes only to the finite part of the expansion. (Recall that χ is the sharp cutoff.)

Lemma 18. Fix t. The divergent terms in the expansion of
∫
|z|≤1/δ HCN (t, z, z) as δ→ 0 are given by

n−1∑
k=0

t (k−n)/2

k− n
δk−n

∫
N

uk(1, y) dy−C log δ,

where C is equal to
∫

N un(1, y) dy.

Proof. The integral is, modulo a term independent of δ,∫ 1/δ

1

∫
N

HCN (t, r, y, r, y) rn−1 dy dr.
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By the conformal homogeneity of CN , HCN (t, r, y, r, y) = r−n HCN (t/r2, 1, y, 1, y). So the integral
becomes ∫ 1/δ

1

∫
N

HCN

(
t
r2 , 1, y, 1, y

)
1
r

dy dr.

Now let s = t/r2 and switch to an integral in s; we get

1
2

∫ t

δ2t

∫
N

HCN (s, 1, y, 1, y)
1
s

dy ds. (34)

From short-time heat asymptotics, we know that∫
N

HCN (s, 1, y, 1, y) dy =
n−1∑
k=0

s(k−n)/2
∫

N
uk(1, y) dy+

∫
N

un(1, y) dy+O(s1/2). (35)

Here uk(1, y) are the heat coefficients on the cone CN at the point (1, y). We plug (35) into (34) and get

n−1∑
k=0

t (k−n)/2

k− n
δk−n

∫
N

uk(1, y) dy− log δ
∫

N
un(1, y) dy+ g(δ, t),

where g(δ, t) is finite as δ→ 0. This is what we wanted to prove. �

Combining this lemma with the preceding corollary and the definition of the renormalized heat trace
completes the proof of Theorem 15. �

Finally, it is also useful to investigate the analogous divergent expansion when a smooth cutoff, rather
than a sharp cutoff, is used.

Lemma 19. Let χ1(r) be as in condition (a) of Section 3.1: smooth and non-increasing, supported in
r ≤ 2 and 1 when r ≤ 1/2. Then∫

Z
χ1,δ(z)H Z (t, z, z) dz =

n−1∑
k=0

lk fk(t)δk−n
+ flog(t) log δ+ R Tr H Z (t)+ llog flog(t)+ R̃(δ, t), (36)

where lk =−
∫ 2

1/2
χ′

1(r)r
k−n dr and llog =−

∫ 2
1/2
χ′

1(r) log r dr , and R̃(δ, t) goes to zero as δ goes to zero
for every fixed t.

Proof. Let ξ(r) be any function which is equal to a constant a for r ≤ 1/2 and supported in {r ≤ 2}. For
any δ < 1/2, we may define a function ξδ(z) on Z by letting ξδ(z) be equal to ξδr for r = |z| ≥ 1 and a
for {r ≤ 1}. Then consider the integral ∫

Z
ξδ(z)H Z (t, z, z) dz, (37)

and examine its behavior as δ→ 0.
When ξ(r) is the characteristic function of [0, 1], we have the expansion (32). By replacing δ with δ/b

for any b ∈ [1/2, 2], we can compute the δ→ 0 expansion of (37) for ξ(r) equal to the characteristic
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function of [0, b]. By linearity, we see that the expansion of (37) for ξ(r)= (1h)χ[a,b] is

n−1∑
k=0

(1h) fk(t)
(
bk−n
− ak−n) δk−n

+ (1h) flog(t)
(
log b− log a

)
+ (1h)

(
R(δ/b, t)− R(δ/a, t)

)
.

Now let ξ(r)= χ1(r)−χ{r≤1}; this is the difference between the sharp and smooth cutoffs. Since the
expansions of (37) are linear in ξ , we can approximate by step functions and then integrate by summing
over thin horizontal rectangles. Assume for simplicity that χ1(r)= 1 for all r ≤ 1 (in the general case,
there are some negative signs, but we get the same answer). The thickness of the rectangle at height h is
1h. The length of the rectangle is χ−1

1 (h)− 1. Putting all of this together, the expansion of (37) with
respect to ξ(r) is

n−1∑
k=0

fk(t)
∫ 1

0

(
(χ−1

1 (h))k−n
− 1

)
dh δk−n

+ flog(t)
∫ 1

0
logχ−1

1 (h) dh+ R̃(δ, t),

where R̃(δ, t) is the contribution from the remainder terms.
Finally, perform the change of variables u = χ−1

1 (h), then add the expansion for χ{r≤1}; we obtain
precisely the expansion claimed in the statement of the lemma. This finishes the proof, as long as we can
control the remainder term R̃(δ, t). Indeed, for each fixed t , we claim that R̃(δ, t) goes to zero as δ goes
to zero; define a new function S(δ, t) by letting

S(δ, t)= sup
1/2≤γ≤2

∣∣R(δ/γ, t)
∣∣.

When ξ(r)= (1h)χ
[a,b], the remainder is bounded in absolute value by (1h)S(δ, t). So the integral from

h = 0 to 1 is bounded by S(δ, t), which goes to zero as δ→ 0; this shows boundedness of the remainder
term and finishes the proof of the lemma. �

It is worth examining the dependence on the zeta function on the choice of cutoff χ1; we used a sharp
cutoff to define it, but we could use a smooth cutoff instead. In this case, the finite part of the divergent
δ-expansion changes from R Tr H Z (t) to R Tr H Z (t)+ llog flog(t). But flog and llog are constants. So the
renormalized heat trace only depends on the choice of cutoff function by the addition of a constant,
independent of t . However, it can be easily shown by breaking up the integral at t =1 that the meromorphic
continuation of

∫
∞

0 Ctk t s−1 dt is identically zero for any constant C . We have shown:

Proposition 20. Let Z be conic near infinity. The renormalized zeta function and determinant of the
Laplacian on Z are independent of the choice of cutoff function χ1,δ.

We have now shown the existence of a renormalized zeta function and determinant of the Laplacian on
any asymptotically conic manifold M ; moreover, when M is conic near infinity, we have computed the
divergent terms in the expansion which leads to those renormalizations.
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4. The low-energy resolvent in two dimensions

In this section, we extend the techniques used by Guillarmou and Hassell in [2008] to prove Theorem 7.
In particular, we construct the low-energy resolvent on an asymptotically conic surface. The resolvent is

R(θ, k, z, z′)= (1M + eiθk2)−1(z, z′).

For simplicity, we set θ = 0, so that R is a function of (k, z, z′). At the end of the section, we return to
discuss allowing arbitrary θ ∈ [−ϕ, ϕ] and showing smoothness in θ ; however, this is not difficult.

4.1. Strategy. Our goal is to construct the Schwartz kernel of the resolvent, R(k, z, z′), as a distribution
on M2

k,sc. To do this, as in [Guillarmou and Hassell 2008], we will first construct a parametrix G(k)
so that (1M + k2)G(k) = Id+E(k), where E(k) is an error term. G(k) will be a family (in k) of
pseudodifferential operators on M whose Schwartz kernel is polyhomogeneous conormal on M2

w,sc with
an interior conormal singularity at the spatial diagonal. By examining the leading order behavior of the
equation (1M + k2)G(k)= Id at each boundary hypersurface of M2

w,sc, we obtain a model problem at
each hypersurface. The leading order of the parametrix G(k) at each hypersurface should solve the model
problem. We first choose solutions of the model problem at each hypersurface, and then check that they
are consistent; that is, that they may be glued together to obtain a parametrix G(k). Finally, we analyze
the error E(k) and show that it can be removed via a Neumann series argument.

In order to define the appropriate space of pseudodifferential operators, we use certain density con-
ventions, all the same as in [Guillarmou and Hassell 2008]. We consider P = 1M as an operator on
scattering half-densities by writing

P
(

f (x, y)
∣∣x−n−1 dx dy

∣∣1/2)= (1M f )(x, y)
∣∣x−n−1 dx dy

∣∣1/2.
As in [Guillarmou and Hassell 2008], we expect a transition between scattering behavior for k > 0 and
b-behavior at k = 0, which leads us to define the conformally related b-metric gb = x2g. The space
(M, gb) is asymptotically cylindrical. We then define Pb= x−n/2−1 Pxn/2−1 with respect to scattering half-
densities. However, we want to consider Pb acting with respect to b-half densities |x−1 dx dy|1/2. After
this shift, the relationship between Pb acting on b-half densities and P acting on scattering half-densities
is P = x Pb x .

Let �̃1/2
b be the bundle of half-densities on M2

k,sc which is spanned by sections of the form∣∣∣∣ f (k, x, y, x ′, y′)
dgb dg′b dk

k

∣∣∣∣1/2.
Let ν be a smooth nonvanishing section of this bundle. Since it involves the b-metric gb, �̃1/2

b is not the
natural bundle near sc. In particular, the kernel of the identity operator on M has leading order −n/2 at
sc with respect to �̃1/2

b [Guillarmou and Hassell 2008]. We can now define spaces of pseudodifferential
operators, precisely as in [Guillarmou and Hassell 2008]:

Definition. Let ρsc be a boundary defining function for sc. The space 9m,E
k (M ; �̃1/2

b ) is the space of
half-density kernels K = K1+ K2 on M2

k,sc satisfying:
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(1) ρn/2
sc K1 is supported near 1k,sc, and has an interior conormal singularity of order m at 1k,sc, with

coefficients whose behavior at the boundary is specified by E;

(2) ρn/2
sc K2 is polyhomogeneous conormal on M2

k,sc with index family E, and moreover decays to infinite
order at bf, lb, and rb.

The factor of ρn/2
sc corrects for the use of b-half densities near sc. Using this definition, we can compute

as in [Guillarmou and Hassell 2008] that

(P + k2) ∈9
2,E
k (M ; �̃1/2

b ),

with index sets 0 at sc, 2 at bf0, 0 at zf, 2 at lb0, and 2 at rb0.
As proven in [Guillarmou and Hassell 2008], these spaces satisfy a composition rule:

Proposition 21. Suppose that A ∈ 9m,E
k and B ∈ 9m′,F

k . Then A ◦ B is well defined and an element of
9

m+m′,G
k , where

Gsc = Esc+Fsc, Gzf = (Ezf+Fzf)∪ (Erb0 +Flb0), Gbf0 = (Ebf0 +Fbf0)∪ (Elb0 +Frb0),

Glb0 = (Ebf0 +Flb0)∪ (Elb0 +Fzf), Grb0 = (Erb0 +Fbf0)∪ (Ezf+Frb0).

We therefore expect our parametrix G to be in9−2,G
k for some index family G. To gain more information,

we need to start analyzing the model problems.

4.2. The two-dimensional problem. We begin our analysis of the model problems at the face zf. In order
to identify the leading-order part of the equation at a boundary hypersurface, we need to pick a coordinate
to use as a boundary defining function in the interior of that face. For all the faces in the lift of {k = 0},
we use k, which is the easiest choice, since it commutes with P . Since P + k2

= x Pb x + k2, the leading
order part of the operator at zf, which we call the normal operator, is x Pb x , and the model problem is
(x Pb x)G0

zf = Id. We therefore expect that G0
zf will be (xx ′)−1 times some right inverse for Pb.

In order to invert Pb, we use the b-calculus of [Melrose 1993], identifying zf, near bf0, with the
b-double space X2

b(x, x ′)× Ny × Ny′ . The corner zf∩ bf0 corresponds to the front face ff in the b-double
space. An easy calculation, following [Guillarmou and Hassell 2008], shows that

Pb =−(x∂x)
2
+

(
n
2
− 1

)2

+1N +W,

where W is a lower-order term; that is, W vanishes as a b-differential operator at x = 0. In fact, Pb is an
elliptic b-differential operator, and hence may be inverted by following the procedure of Melrose, which
is described in [Melrose 1993] and [Mazzeo 1991].

The first step in this procedure is to consider the indicial operator, which is the leading order part of
Pb at the front face ff. Using the coordinates (σ ′ = x/x ′, x ′, y, y′), this is

Iff(Pb)=−(σ
′∂σ ′)

2
+

(
n
2
− 1

)2

+1N .

With this terminology, the key theorem is as follows:
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Theorem 22 [Melrose 1993]. Pb is Fredholm as an operator between xδH 2
b and xδL2

b if and only if δ is
not an indicial root of Iff(Pb). (See [Melrose 1993] or [Mazzeo 1991] for definitions of xδH 2

b and xδL2
b).

In our setting, as in [Guillarmou and Hassell 2008], the indicial roots are precisely

±νi =±

√(
n
2
− 1

)2

+ λi ; λi ∈ σ(1N ).

When n > 2, 0 is not an indicial root, and Guillarmou and Hassell show that Pb is not only Fredholm but
invertible for δ = 0, and then set G0

zf to be (xx ′)−1 times that inverse. However, in our case, n = 2, so
νi =
√
λi , and 0 is an indicial root. So Pb is not even Fredholm from H 2

b to L2
b. This is precisely why the

n = 2 case is not considered by Guillarmou and Hassell.

4.3. An example: Euclidean space. In order to gain some intuition for the behavior of the resolvent
near zf in the n = 2 setting, we examine the simplest case, which is M = R2. The resolvent on R2, acting
on scattering half-densities |dz| = |x−3 dx dy|, is

−
1

2π
H0
(
k
∣∣z− z′

∣∣)=− 1
2π

H0

(
k
∣∣∣∣ y
x
−

y′

x ′

∣∣∣∣ ),
where H0 is the Hankel function of order zero. From the asymptotics of the Hankel function, we know
that H0(r) decays exponentially as r→∞, and for small r ,

H0(r)∼−log r + log 2− γ +O(r).

Using these asymptotics, one can show that the resolvent on R2 is phg conormal on M2
k,sc. We are

most interested in the leading order behavior near zf. In a neighborhood of zf, we have k|z− z′|< 1, so
this leading order behavior is controlled by the small-r asymptotics

H0
(
k
∣∣z− z′

∣∣)∼−log
(
k
∣∣z− z′

∣∣)+ log 2− γ =−log k− log |z− z′| + log 2− γ.

Some observations on these asymptotics:

• As we approach zf, the resolvent increases logarithmically. This is a major difference from the n ≥ 3
case studied in [Guillarmou and Hassell 2008], in which the resolvent is continuous down to zf. On
the other hand, the resolvent is continuous down to bf0, lb0, and rb0.

• The function −(1/2π) log |z− z′| is the Green’s function for the Laplacian on R2.

These observations suggest that in two dimensions, we will have a logarithmic term at zf in addition to
a zero-order term. We write these terms as G0,1

zf log k and G0
zf respectively. From the Euclidean-space

example, we expect that, on scattering half-densities,

G0,1
zf log k+G0

zf =−C log k+ F(z, z′),

where F(z, z′) is a right inverse for the operator P . Moreover, since −C log k has logarithmic growth at
bf0, lb0, and rb0 but the resolvent on R2 does not, we expect that F(z, z′) will have logarithmic growth at
those faces, with the right coefficient to cancel the logarithmic growth coming from −C log k.
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4.4. Construction of the initial parametrix. We now construct our parametrix G(k) by specifying its
leading order behavior at each boundary hypersurface and then checking that the models are consistent.

4.4.1. The diagonal, sc, and bf0. The resolvent has an interior conormal singularity at the diagonal {z, z′}.
The symbol of P + k2 is |η|2+ k2, where η is the dual variable of z− z′. One can compute that |η|2+ k2

is elliptic on M2
k,sc, with leading orders 0 at sc, 2 at bf0, and 0 at zf. As in [Guillarmou and Hassell

2008], we let the symbol of G(k) be the inverse of |η|2+ k2, in the sense of operator composition. This
determines the diagonal symbol of G(k) up to symbols of order −∞, and hence determines G(k) up to
operators with smooth Schwartz kernels in the interior of M2

w,sc.
At sc, the analysis is identical to that of Guillarmou and Hassell, so we omit some of the details. The

key point is that sc can be described as a fiber bundle with Rn fibers, parametrized by y′ ∈ N and k. The
normal operator of P + k2 is 1Rn + k2, which has a well-defined inverse for k > 0. In each fiber, we let

G0
sc =

(
1R2 + k2)−1

.

At bf0, we again follow [Guillarmou and Hassell 2008] exactly. We use the coordinates (κ = k/x, κ ′ =
k/x ′, y, y′), with k a bdf for bf0. Note that these are only good coordinates on the interior of bf0 — for
example, they become degenerate near zf. We then view the interior of bf0 as R+(κ)×R+(κ

′)×Ny×N ′y .
The normal operator at bf0 is

Ibf0

(
k−2(P + k2)

)
= κ−1(

−(κ∂κ)
2
+1N + κ

2)κ−1.

Letting Pbf0 =−(κ∂κ)
2
+1N + κ

2, the model problem is (κPbf0κ)G
−2
bf0
= δκ − κ ′δ−y′. To solve it, we

separate variables and invert Pbf0 . For each eigenvalue λ j of 1N , write ν j =
√
λ j (these are the indicial

roots). Let Eν j ⊂ L2(N ) be the corresponding eigenspace of 1N , and let 5Eν j
be projection in L2(N )

onto Eν j . Then the inverse of Pbf0 is

Qbf0 =

∞∑
j=0

5Eν j

(
Iν j (κ)Kν j (κ

′)χ{κ ′>κ}+ Iν j (κ
′)Kν j (κ)χ{κ ′<κ}

)
.

The only difference between our setting and Guillarmou and Hassell’s is that we have ν0 = 0 as opposed
to ν0 > 0. We then set

G−2
bf0
= (κκ ′)Qbf0 .

We need to check consistency between G0
sc and G−2

bf0
; that is, we need to show that they agree to leading

order in a neighborhood of sc∩ bf0. This proof is the same as in [Guillarmou and Hassell 2008]; the
model problems and formal expressions for G0

sc and G−2
bf0

are identical. We do have ν0 = 0, and K0(r)
has different small-r asymptotics from Kν j (r) for ν j > 0; this will be reflected in the asymptotics of G−2

bf0

near zf. However, since κ and κ ′ both approach infinity near sc, only the large-r asymptotics are relevant
for this consistency check, and the large-r asymptotics of Iν(r) and Kν(r) are no different when ν = 0.

Technically, we also need to check consistency between the diagonal symbol and the models at bf0 and
sc. However, this is also the same as in [Guillarmou and Hassell 2008]; the models at bf0 and sc themselves
satisfy elliptic pseudodifferential equations given by the leading order part of (P + k2)G(k)= Id at those
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faces. As a result, their symbols at the diagonal are determined up to symbols of order −∞, and agree up
to order −∞ with the inverse of |ξ |2+ k2.

4.4.2. The leading order term at zf. At zf, the model problem with respect to b-half-densities is

(x Pb x)
(
G0,1

zf log k+G0
zf
)
= Id,

which translates to
(x Pb x)G0

zf = Id, (x Pb x)G0,1
zf = 0.

Translating our observations in the M = R2 case to b-half-densities, we expect

G0,1
zf log k+G0

zf = (xx ′)−1(−C log k+ F(z, z′)),

where F(z, z′) is a right inverse for Pb. We need to pick the correct right inverse; in particular, if we have
one right inverse, we may add any function of z′ to obtain another right inverse. The correct choice should
have logarithmic singularities at all faces and should be consistent with our choice of G−2

bf0
. To check consis-

tency, we need to show that k0(G0,1
zf log k+G0

zf
)

and k−2G−2
bf0

agree to leading order at ff= bf0∩zf, which
is the same as checking if (xx ′)

(
G0,1

zf log k+G0
zf
)

and Qbf0 = (κκ
′)−1G−2

bf0
agree to leading order there.

First examine the leading order part of Qbf0 at zf. When x < x ′, we use the coordinates (s, κ, x ′, y, y′),
and we have, where V = Vol(N ),

Qbf0 = V−1 I0(κσ
′)K0(κ)+

∞∑
j=1

5E j Iν j (κσ
′)Kν j (κ). (38)

The boundary defining function for zf is κ , so we need to examine the small-κ asymptotics. For ν > 0 we
know by standard asymptotics of Bessel functions in [Watson 1944] that

I0(r)∼ 1, K0(r)∼−log r + log 2− γ, Iν(r)∼
1

0(ν+ 1)

(
r
2

)ν
, Kν(r)∼

0(ν)

2

(
r
2

)−ν
.

Here γ is the Euler–Mascheroni constant. Plugging these asymptotics into (38) shows that the leading
order term in κ is

V−1(
−log κ + log 2− γ

)
+

∞∑
j=1

5Eν j

(σ ′)ν j

2ν j
.

On the other hand, when x > x ′, we use the coordinates (σ, κ ′, x, y, y′) and perform the same sort of
calculations to obtain that the leading order term in κ is

V−1(
−log κ ′+ log 2− γ

)
+

∞∑
j=1

5Eν j

σ ν j

2ν j
.

The x < x ′ and x > x ′ cases may be combined; we see that the leading order term of Qbf0 at zf is

V−1(
−log k+ log 2− γ + log x ′+χσ ′<1 log σ ′

)
+

∞∑
j=1

5Eν j

e−ν j |log σ ′|

2ν j
. (39)

We see immediately that we must have C = V−1, and hence we set
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G0,1
zf =−V−1(xx ′)−1.

We then need to construct G0
zf so that (xx ′)G0

zf has leading order at bf0 given by

V−1(log 2− γ + log x ′+χσ ′<1 log σ ′
)
+

∞∑
j=1

5Eν j

e−ν j |log σ ′|

2ν j
. (40)

To construct G0
zf, we must first find the correct right inverse for Pb. Fix δ with 0< δ < ν1; then Pb is

Fredholm from x−δH 2
b to x−δL2

b by Theorem 22. Following the usual b-calculus construction in [Melrose
1993] and [Mazzeo 1991], we obtain a generalized inverse Q−δb . We claim:

Lemma 23. Pb is surjective onto x−δL2
b.

The lemma implies that Q−δb is an exact right inverse for Pb.

Proof. By taking adjoints, the lemma is equivalent to the statement that Pb is injective on xδL2
b. Suppose

that u|dgb|
1/2 is in xδL2

b and satisfies Pbu = 0. By regularity of solutions to b-elliptic equations, u is phg
conormal on M near x = 0; since u ∈ xδL2

b, it decays to at least order δ at x = 0. On the other hand, since
P = x Pb x and |dgb|

1/2
= x |dg|1/2, u|dg|1/2 is in the kernel of P =1M , and hence 1M u = 0. By the

maximum principle, u = 0, which completes the proof of the lemma. �

The correct right inverse will be a slight modification of Q−δb . In order to check consistency, we need
to understand the structure of Q−δb near the front face ff= bf0∩ zf. This structure is described in detail in
[Melrose 1993] and [Mazzeo 1991]. In particular, the leading order of Q−δb at ff is precisely the indicial
operator Iff(Q−δb ), which satisfies the equation(

−(σ ′∂σ ′)
2
+1N

)
Iff(Qb)= δ(σ

′
= 1, y = y′). (41)

Moreover, from [Melrose 1993] and [Mazzeo 1991], Iff(Q−δb ) has polyhomogeneous expansions at σ ′= 0
and σ ′ =∞, with leading order terms at worst (σ ′)−δ at each end; that is, a small amount of growth is
allowed at σ ′ = 0, and a small amount of decay is required at σ ′ =∞.

We now separate variables and solve (41) directly. For each j ≥ 1, (σ ′)±ν j span the kernel of
−(σ ′∂σ ′)

2
+ ν2

j . Therefore, the solutions corresponding to Eν j are combinations of (σ ′)ν j and (σ ′)−ν j

away from σ ′ = 1. By the requirements at σ ′ = 0 and σ ′ =∞, our solution is a multiple of (σ ′)−ν j for
σ ′ > 1 and of (σ ′)ν j for σ ′ < 1. Using the matching conditions at σ ′ = 1 arising from the delta function
singularity, the solution on the eigenspace Eν j is

5Eν j

e−ν j |log σ ′|

2ν j
.

We have to consider ν0 = 0 separately; the kernel of −(σ ′∂σ ′)2 is spanned by 1 and log σ ′. Because
we require decay at σ ′ =∞, the solution for σ ′ > 1 must be zero. Then the matching conditions at σ ′ = 1
imply that the solution is log σ ′ for σ ′ < 1. Since projection onto E0 is simply V−1, the zero-eigenspace
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solution is Vχ{σ ′<1} log σ ′. Therefore the leading order part of Q−δb at ff is

Iff(Q−δb )= V−1χ
{σ ′<1} log σ ′+

∞∑
j=1

5Eν j

e−ν j |log σ ′|

2ν j
. (42)

Now compare (42) with (39). Let χ(z′) be a smooth cutoff function on M , equal to 1 when x ′ ∈ [0, 1]
and 0 whenever x ′ ≥ 2. We see immediately that if we let

G0
zf = (xx ′)−1(Q−δb + V−1χ(z′) log x ′+ V−1(log 2− γ )

)
,

then G0,1
zf log k+G0

zf and G−2
bf0

are consistent. Additionally, G0
zf solves the model problem (x Pb x)G0

zf= Id
at zf; the key is that any function of z′ is independent of (x, y) and hence is in the kernel of Pb. Similarly,
G0,1

zf log k =−(V xx ′)−1 log k is in the kernel of x Pb x and hence solves the model problem. Moreover,
the diagonal symbol is consistent with G0,1

zf log k+G0
zf for the same reason that it is consistent with G0

sc

and G−2
bf0

.

4.4.3. The model terms at rb0. Finally, we need to specify the leading-order behavior of the parametrix
at rb0; in fact, we need to specify some lower-order terms as well. We use the coordinates (x, y, κ ′, y′);
the κ ′ = 0 face is rb0∩ zf and the x = 0 face is rb0∩bf0. There will be a term Gν j−1

rb0
for each ν j in [0, 1).

The model problem near this face, with k as a boundary defining function, is (x Pb x)u = 0, so we need
Pb(xG−ν j

rb0
)= 0 for each ν j ∈ [0, 1).

First we focus on the model of order −1. We let

G−1
rb0
= V−1x−1κ ′K0(κ

′),

and claim that this is consistent with G0,1
zf log k+G0

zf and G−2
bf0

.
To check consistency with G0,1

zf log k+G0
zf, we need to show that the leading order of G0,1

zf log k+G0
zf

agrees with the leading order of k−1G−1
rb0

at zf∩ rb0. Recall that at rb0, which corresponds to s =∞, Q−δb

decays to a positive order. So (xx ′)−1 Q−δb has leading order greater than −1 at rb0; therefore, the leading
order part of G0,1

zf log k+G0
zf at rb0 is precisely

(xx ′)−1(V−1(−log κ ′+ log 2− γ )
)
.

But by Bessel function asymptotics,

k−1G−1
rb0
= V−1(xx ′)−1K0(κ

′)∼ (xx ′)−1V−1(
−log κ ′+ log 2− γ

)
.

Therefore G0,1
zf log k+G0

zf and G−1
rb0

are consistent.
We must also check consistency of G−1

rb0
with G−2

bf0
. Near rb0,

k−2G−2
bf0
= V−1(xx ′)−1 I0(κ)K0(κ

′)+ (xx ′)−1
∞∑
j=1

5Eν j
Iν j (κ)Kν j (κ

′).

We are only interested in the order −1 part of this term. Since x ′ and κ both vanish to first order at rb0,
all the j > 0 terms have leading order −1+ ν j at rb0. Since I0(0)= 1, the order −1 part of k−2G−2

bf0
at
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rb0 is precisely
(xx ′)−1V−1K0(κ

′)= k−1(V−1x−1κ ′K0(x ′)
)
= k−1G−1

bf0
.

We conclude that G−1
rb0

is consistent with the models at zf and bf0.
We also need to specify some lower order terms at bf0; for this we precisely follow [Guillarmou and

Hassell 2008, Section 4]. At zf, they need to match with the asymptotics of Q−δb , and at bf0, they need to
match with the higher order Bessel functions. Both of these involve only the nonzero indicial roots, so
the terms and arguments are identical to [Guillarmou and Hassell 2008]. In particular, for any 0< ν j < 1
in the indicial set, we let

Gν j−1
rb0
= x−1 κ

′Kν j (κ
′)

0(ν j )2ν j−1 vν j (z, y′),

where vν j (z, y′) is in the kernel of Pb with asymptotic

vν j (x, y, y′)= (2ν j )
−15E j x

−ν j +O(x−ν j−1 log x).

The function vν j is there to match with the asymptotics of Qb at rb0, as in [Guillarmou and Hassell 2008,
Section 4]. In fact, these models are consistent with our models at bf0 and at zf by precisely the same
argument as in [Guillarmou and Hassell 2008]; we will not repeat it here.

4.5. The final parametrix and resolvent. We have now constructed models at sc, bf0, zf, and rb0 which
are consistent with each other and also with the diagonal symbol. Moreover, all the models decay to infinite
order as we approach lb, rb, or bf. Therefore, we specify our parametrix G(k) to be any pseudodifferential
operator in 9−2,E

k with kernel having the specified diagonal symbol and specified leading-order terms at
sc, bf0, zf, and rb0. The consistency we checked guarantees that such an operator exists. The behavior
of the kernel of G(k) at lb0 may be freely chosen as long as the leading-order term is order −1 and it
matches with our models at zf and bf0; a term of order −1 will, however, be required.

Now let E(k)= (P+k2)G(k)− Id. Since G(k) has diagonal symbol equal to the inverse of the symbol
of P + k2, the Schwartz kernel of E(k) is smooth on the interior of M2

w,sc. Moreover, since P + k2 is a
differential operator, the Schwartz kernel of E(k) is phg conormal on M2

w,sc.

• At lb, rb, and bf, the Schwartz kernel of G(k) vanishes to infinite order along with all derivatives, so
the same is true of E(k).

• At sc, G0
sc solves the model problem, so E(k) has positive leading order at sc.

• At bf0, G(k) has order −2, but G−2
bf0

solves the model problem, and moreover P + k2 vanishes to
second order. Therefore E(k) has positive leading order at bf0.

• At zf, G0
zf and G0,1

zf solve the model problem, so E(k) has positive leading order.

• At lb0, G(k) has order −1. The variables k and x both vanish at lb0, so k2G(k) has order 1 and
xG(k) has order 0. Since Pb is a b-differential operator, Pb(xG(k)) also has order 0, and hence
(P+ k2)G(k)= (x Pb x+ k2)G(k) has order 1. Since Id is supported away from lb0, E(k) decays to
at least order 1 at lb0.
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• At rb0, G(k) has order−1, but all the terms Gν j−1 for ν j ∈ [0, 1) solve the model problem. Therefore,
the error E(k) has leading order at worst 0.

To summarize, if E is the index set for E(k), we have shown:

Esc > 0, Ezf > 0, Ebf0 > 0, Elb0 ≥ 1, Erb0 ≥ 0, Elb = Erb = Ebf =∅.

Now we iterate away the error. By Proposition 21, E(k)2 vanishes to positive order at all faces of M2
k,sc;

suppose that the order of vanishing at each face is greater than ε > 0. Again applying Proposition 21, we
see that for each N ∈N, the order of vanishing of E(k)2N and E(k)2N+1 at each face of M2

k,sc is greater
than Nδ. Therefore the Neumann series(

Id+E(k)
)−1
=

∞∑
i=0

E(k)i

may be summed asymptotically, and the sum defines an element of 9−∞,Êk for some index family Ê.
Finally, let R(k)= G(k)(Id+E(k))−1; we see that (P + k2)R(k)= Id. Since P + k2 is invertible for

all positive k, its only right inverse is the resolvent. We conclude that R(k) is in fact the resolvent, and it
is an element of 9−∞,Rk (M, �̃1/2

b ) for some index family R.
In order to prove Theorem 7, we need to perform this construction for any angle θ ∈ (−π, π), not

just for θ = 0. However, as claimed in [Guillarmou and Hassell 2008], the construction is essentially
unchanged. Indeed, we just use eiθ/2k as our boundary defining function for the k = 0 faces instead of k,
and correspondingly change the model at sc from (1R2 + k2)−1 to (1R2 + eiθk2)−1. The construction is
then precisely analogous to the θ = 0 case; by construction, the index sets are independent of θ . Moreover,
by the continuity of the resolvent outside the spectrum (also by construction), all the dependence on θ is
smooth. This completes the proof.

4.6. Leading orders of the resolvent. Since R(k)=G(k)−G(k)E(k)+G(k)E(k)2−· · · , we can obtain
some information about the leading orders of R(k) at each face. For n ≥ 3, it is shown in [Guillarmou
and Hassell 2008] that the leading orders of R(k) are the same as those of G(k); we claim that the same
is true when n = 2.

When n = 2, G(k) has leading orders −1 at lb0 and rb0, order 0 at sc, order −2 at bf0, and logarithmic
growth at zf. E(k) has non-negative leading orders at all faces, and it is easy to use Proposition 21
to show that the leading orders of G(k)E(k) are no worse than those of G(k). Similarly, it may be
shown that the leading orders of G(k)E(k)l are no worse than those of G(k). Since G(k) is fixed
and Id−E(k)+ E(k)2 − · · · is asymptotically summable, the series G(k)− G(k)E(k)+ · · · is also
asymptotically summable; therefore, the leading orders of R(k) are no worse than those of G(k). The
leading order terms themselves may be affected by G(k)E(k), but the orders are not.

To summarize, when n = 2, the leading orders of the exact resolvent R(k) are no worse than 0 at sc,
−2 at bf0, logarithmic at zf, and −1 at lb0 and rb0. When n ≥ 3, the orders are at worst 0 at sc, −2 at bf0,
0 at zf, and n/2−2 at lb0 and rb0, as in [Guillarmou and Hassell 2008]. However, these orders are for the
resolvent acting on b-half-densities, rather than the more natural scattering half-densities. Switching to
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scattering half-densities requires an order shift, adding n/2 at each of {x = 0} and {x ′ = 0}. So we need
to add n/2 to the orders at lb0 and rb0, and n at bf0. The order at sc remains unchanged, because the extra
factor of ρn/2

sc in the definition of the calculus already incorporates the shift. So: viewing the resolvent as
a scattering half-density |dg dg′|1/2 acting on scattering half-densities for each k, or equivalently as a
function acting on functions on M by integration against dg, it has leading orders given by

• 0 at sc and n− 2 at bf0, rb0, and lb0;

• rzf at zf, where rzf = 0 if n ≥ 3 and rzf = (0, 1) (that is, leading order behavior of log ρzf) if n = 2.

Appendix: Construction of the short-time heat kernel

Albin has created a framework for the construction of the heat kernel on an asymptotically conic manifold;
essentially all of the hard work involved in this construction has already been done [2007]. To complete
the construction and prove Theorem 3, all we need to do is create an initial parametrix for the heat kernel.
This construction is the content of this short appendix and is based on [Albin 2007, Section 5], in which
the heat kernel on an edge manifold is constructed.

The space in Theorem 3, which we call Sheat, is obtained by taking the manifold M2
sc× [0, T )t and

then blowing up the t = 0 diagonal. We call the scattering face of M2
sc×[0, T )t sf and call the front face

at t = 0 ff. The heat operator is precisely ∂t +1M . Our goal is to create a parametrix which, to first order,
solves the normal equations at sf and ff.

First analyze the situation at sf. As first discussed in [Melrose 1994] and elaborated upon in [Guillarmou
and Hassell 2008], sf has a Euclidean structure, parametrized by y ∈ N and t ∈ [0, T ). By the same
analysis as in the latter paper, the normal operator at sf is precisely ∂t +1Rn . We then simply let the
model at sf be the Euclidean heat kernel, H Rn

. This is analogous to the construction in [Albin 2007,
Section 5] for the edge setting, in which the model is the heat kernel on hyperbolic space times the heat
kernel on the fiber.

The analysis at ff is also standard, since ff corresponds to the short-time regime on the interior of the
manifold, where the heat kernel asymptotics are local. We know that d(z, z′)/

√
t is a good coordinate

along ff, zero at the spatial diagonal and increasing to infinity as we approach the original t = 0 face. We
therefore let the leading-order model at ff be

Hff =
1

(4π t)n/2
e−d(z,z′)2/4t .

The choice of model at ff is again based on the Euclidean heat kernel, and is precisely the same as the
choice of model in the edge setting [Albin 2007].

Each model vanishes to infinite order as we approach all boundary hypersurfaces other than sf and ff.
Moreover, the models are consistent, as the leading orders of each are precisely the Euclidean heat kernel
at sf∩ ff. We may therefore pick a pseudodifferential operator whose Schwartz kernel agrees with our
models to leading order at sf and ff, and decays to infinite order at all other boundary faces. Albin [2007,
Section 4] proves a composition rule for time-dependent pseudodifferential operators whose kernels
are polyhomogeneous conormal on Sheat — our setting is the “scattering” setting, which is included
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in his analysis. We then use this composition rule and an iteration argument, precisely as in [Albin
2007, Section 5], to construct the heat kernel as a polyhomogeneous conormal distribution on Sheat. This
completes the proof of Theorem 3.
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