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Let

L=

q∑
i, j=1

ai j (x)X i X j + a0(x)X0,

where X0, X1, . . . , Xq are real smooth vector fields satisfying Hörmander’s condition in some bounded
domain � ⊂ Rn (n > q + 1), and the coefficients ai j = a j i , a0 are real valued, bounded measurable
functions defined in �, satisfying the uniform positivity conditions

µ|ξ |2 ≤

q∑
i, j=1

ai j (x)ξiξ j ≤ µ
−1
|ξ |2, µ≤ a0(x)≤ µ−1,

for a.e. x ∈�, every ξ ∈ Rq , and some constant µ > 0.
We prove that if the coefficients ai j , a0 belong to the Hölder space Cα

X (�) with respect to the distance
induced by the vector fields, local Schauder estimates of the following kind hold:

‖X i X j u‖CαX (�
′)+‖X0u‖CαX (�

′) ≤ c{‖Lu‖CαX (�)
+‖u‖L∞(�)}

for any �′ b�.
If the coefficients ai j , a0 belong to the space VMOX,loc(�) with respect to the distance induced by the

vector fields, local L p estimates of the following kind hold, for every p ∈ (1,∞):

‖X i X j u‖L p(�′)+‖X0u‖L p(�′) ≤ c{‖Lu‖L p(�)+‖u‖L p(�)}.
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1. Introduction

Let us consider a family of real smooth vector fields

X i =

n∑
j=1

bi j (x)∂x j , i = 0, 1, 2, . . . , q

(here q+1< n), defined in some bounded domain � of Rn and satisfying Hörmander’s condition: the Lie
algebra generated by the X i at any point of � spans Rn . Under these assumptions, Hörmander’s operators

L=

q∑
i=1

X2
i + X0

have been studied since the late 1960s. Hörmander [1967] proved that L is hypoelliptic, while Rothschild
and Stein [1976] proved that, for these operators, a priori estimates of L p type for second order derivatives
with respect to the vector fields hold, namely,

q∑
i, j=1

‖X i X j u‖L p(�′)+‖X0u‖L p(�′) ≤ c
{
‖Lu‖L p(�)+‖u‖L p(�)+

q∑
i=1

‖X i u‖L p(�)

}
(1-1)

for any p ∈ (1,∞), �′ b�.
Note that the “drift” vector field X0 has weight two, compared with the vector fields

X i for i = 1, 2, . . . , q.

Many more results have been proved in the literature for operators without the drift term (“sum of squares”
of Hörmander type) than for complete Hörmander’s operators. On the other hand, complete operators owe
their interest, for instance, to the class of Kolmogorov–Fokker–Planck operators, which arise naturally in
many fields of physics, natural sciences, and finance as the transport-diffusion equations satisfied by the
transition probability density of stochastic systems of ODEs which describe some real system governed by
a basically deterministic law perturbed by some kind of white noise. The study of Kolmogorov–Fokker–
Planck operators in the framework of Hörmander’s operators received a strong impulse from [Lanconelli
and Polidoro 1994], which started a lively line of research. We refer to [Lanconelli et al. 2002] for a good
survey of this field, with further motivations for the study of these equations and related references.

Let us also note that the study of Hörmander’s operators is considerably easier when L is left invariant
with respect to a suitable Lie group of translations and homogeneous of degree two with respect to a
suitable family of dilations (which are group automorphisms of the corresponding group of translations).
In this case we say that L has an underlying structure of homogeneous group and, by a famous result due
to Folland [1975], L possesses a homogeneous left invariant global fundamental solution, which turns
out to be a precious tool in proving a priori estimates.
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In the last ten years, more general classes of nonvariational operators structured on Hörmander’s vector
fields have been studied, namely,

L=

q∑
i, j=1

ai j (x)X i X j , (1-2)

L=

q∑
i, j=1

ai j (x, t)X i X j − ∂t , (1-3)

L=

q∑
i, j=1

ai j (x)X i X j + a0(x)X0, (1-4)

where the matrix {ai j ( · )}
q
i, j=1 is symmetric positive definite and the coefficients are bounded (a0 is

bounded away from zero) and satisfy suitable mild regularity assumptions; for instance, they belong
to Hölder or VMO spaces defined with respect to the distance induced by the vector fields. Since the
ai j ’s are not C∞, these operators are no longer hypoelliptic. Nevertheless, a priori estimates on second
order derivatives with respect to the vector fields are a natural result which does not in principle require
smoothness of the coefficients. Namely, a priori estimates in L p (with coefficients ai j in VMOX ∩ L∞)
have been proved for operators (1-2) [Bramanti and Brandolini 2000a] and for operators (1-4) [Bramanti
and Brandolini 2000b] but in homogeneous groups; a priori estimates in Cα

X spaces (with coefficients
ai j in Cα

X ) have been proved for operators (1-3) [Bramanti and Brandolini 2007] and for operators (1-4)
[Gutiérrez and Lanconelli 2009] but in homogeneous groups. Here the Hölder space Cα

X and the VMOX

space are defined with respect to the distance induced by the vector fields (see Section 3D for precise
definitions).

In the particular case of Kolmogorov–Fokker–Planck operators, which can be written as

L=

q∑
i, j=1

ai j (x)∂2
xi x j
+ X0

for a suitable drift X0, L p estimates (when ai j are VMO) have been proved [Bramanti et al. 1996] in
homogeneous groups, while Schauder estimates (when ai j are Hölder continuous) have been proved
[Di Francesco and Polidoro 2006] under more general assumptions (namely, assuming the existence of
translations but not necessarily dilations, adapted to the operator). We recall that the idea of proving
L p estimates for nonvariational operators with leading coefficients in VMO∩ L∞ (instead of assuming
their uniform continuity) appeared for the first time in [Chiarenza et al. 1991; Chiarenza et al. 1993] by
Chiarenza, Frasca, and Longo, in the uniformly elliptic case.

The aim of the present paper is to prove both L p and Cα local estimates for general operators (1-4)
structured on Hörmander’s vector fields “with drift”, without assuming the existence of any group structure,
under the appropriate assumptions on the coefficients ai j , a0. Namely, our basic estimates read as follows:

‖u‖S2,p
X (�′)

≤ c{‖Lu‖L p(�)+‖u‖L p(�)} (1-5)
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for p ∈ (1,∞) and any �′ b� if the coefficients are VMOX,loc(�), and

‖u‖C2,α
X (�′)

≤ c{‖Lu‖Cα
X (�)
+‖u‖L∞(�)} (1-6)

for α ∈ (0, 1) and �′ b � if the coefficients are Cα
X (�). The related Sobolev and Hölder spaces S2,p

X ,
C2,α

X are those induced by the vector fields X i , and will be precisely defined in Section 3D. Clearly, these
estimates are more general than those contained in all the aforementioned papers.

At first sight, this kind of result could seem a straightforward generalization of existing theories.
However, several difficulties exist, some hidden in subtle details. We are going to describe some of them.
First of all, we have to remark that in [Rothschild and Stein 1976], although S2,p

X estimates are stated
for both sum of squares and complete Hörmander’s operators, proofs are given only in the first case.
While some adaptations are quite straightforward, this is not always the case. Therefore, some results
proved in the present paper can be seen also as a detailed proof of results stated in [Rothschild and Stein
1976], in the drift case. One of the new difficulties in the drift case is related to the proof of suitable
representation formulas for second order derivatives X i X j u of a test function, in terms of u and Lu, via
singular integrals and commutators of singular integrals. In turn, the reason why these representation
formulas are harder to prove in the presence of a drift relies on the fact that a technical result which allows
us to exchange, in a suitable sense, the action of X i -derivatives with that of suitable integral operators
assumes a more involved form when the drift is present.

Once the suitable representation formulas are established, a real variable machinery similar to that used
in [Bramanti and Brandolini 2000a; 2007] can be applied, and this is the reason why we have chosen to
give in a single paper a unified treatment of L p and Cα

X estimates. More specifically, one considers a
bounded domain � endowed with the control distance induced by the vector fields X i , which has been
defined, in the drift case, by Nagel, Stein, and Wainger [Nagel et al. 1985], and the Lebesgue measure,
which is locally doubling with respect to these metric balls, as proved in [Nagel et al. 1985]. However,
a problem arises when trying to apply to this context known results about singular integrals in metric
doubling spaces (or “spaces of homogeneous type”, after [Coifman and Weiss 1971]). Namely, what we
should know to apply this theory on some domain �′ b� is a doubling property such as

µ(B(x, 2r)∩�′)≤ cµ(B(x, r)∩�′) for any x ∈�′ b�, r > 0 (1-7)

while what we actually know, in view of [Nagel et al. 1985], is

µ(B(x, 2r))≤ cµ(B(x, r)) for any x ∈�′ b�, 0< r < r0. (1-8)

It has been known since [Franchi and Lanconelli 1983] that, when �′ is for instance a metric ball,
condition (1-7) follows from (1-8) as soon as the distance satisfies a kind of segment property which
reads as follows: for any couple of points x1, x2 at distance r and for any number δ < r and ε > 0, there
exists a point x0 having distance ≤ δ from x1 and ≤ r − δ+ ε from x2 (this fact explicitly appears, for
instance, from the proof given in [Bramanti and Brandolini 2005, Lemma 4.2]). However, while when
the drift term is lacking, the distance induced by the X i is easily seen to satisfy this property, this is no
longer the case when the field X0 with weight two enters the definition of distance, and, as far as we
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know, a condition of kind (1-7) has never been proved in this context for a metric ball �′, or for any other
special kind of bounded domain �. Thus we are forced to apply a theory of singular integrals which
does not require the full strength of the global doubling condition (1-7). A first possibility is to consider
the context of nondoubling spaces, as studied by Tolsa, Nazarov, Treil, and Volberg, and other authors
(see, for instance, [Tolsa 2001; Nazarov et al. 2003] and the references therein). Results of L p and Cα

continuity for singular integrals of this kind, applicable to our context, have been proved in [Bramanti
2010]. However, to prove our L p estimates (1-5), we also need some commutator estimates, of the kind
of the well-known result proved by [Coifman et al. 1976], which, as far as we know, are not presently
available in the framework of general nondoubling quasimetric (or metric) spaces. For this reason, we
have recently developed [Bramanti and Zhu 2012] a theory of locally homogeneous spaces which is quite
a natural framework where all the results we need about singular integrals and their commutators with
BMO functions can be proved. To give a unified treatment of both L p and Cα estimates, here we have
decided to prove both by exploiting the results in [Bramanti and Zhu 2012]. We note that our Schauder
estimates could also be obtained by applying the results in [Bramanti 2010], while L p estimates could
not.

Once the basic estimates on second order derivatives are established, a natural, but nontrivial, extension
consists in proving similar estimates for derivatives of (weighted) order k+ 2, in terms of k derivatives of
Lu (assuming, of course, that the coefficients of the operator possess the corresponding further regularity).
In the presence of a drift, it is reasonable to restrict this study to the case of k even, as already appears
from the analog result proved in homogeneous groups [Bramanti and Brandolini 2000b]. Even in this
case, a proof of this extension seems to be a difficult task, and we have decided not to lengthen the paper
to address this problem.

2. Assumptions and main results

We now state precisely our assumptions and main results. All the function spaces involved in the statements
below will be precisely defined in Section 3D. Our basic assumption is as follows.

Assumption (H). Let

L=

q∑
i, j=1

ai j (x)X i X j + a0(x)X0,

where the X0, X1, . . . , Xq are real smooth vector fields satisfying Hörmander’s condition (see Section 3A)
in some bounded domain �⊂ Rn and the coefficients ai j = a j i , a0 are real valued, bounded measurable
functions defined in �, satisfying the uniform positivity conditions

µ|ξ |2 ≤

q∑
i, j=1

ai j (x)ξiξ j ≤ µ
−1
|ξ |2, µ≤ a0(x)≤ µ−1,

for a.e. x ∈�, every ξ ∈ Rq , and some constant µ > 0.

Our main results are contained in the next two theorems.
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Theorem 2.1. In addition to (H), assume that the coefficients ai j , a0 belong to Cα
X (�) for some α ∈ (0, 1).

Then, for every domain �′ b�, there exists a constant c > 0 depending on �′, �, X i , α, µ, ‖ai j‖Cα
X (�)

,
and ‖a0‖Cα

X (�)
such that, for every u ∈ C2,α

X (�), one has

‖u‖C2,α
X (�′)

≤ c{‖Lu‖Cα
X (�)
+‖u‖L∞(�)}.

Theorem 2.2. In addition to (H), assume that the coefficients ai j , a0 belong to the space VMOX,loc(�).
Then, for every p ∈ (1,∞), any �′ b�, there exists a constant c depending on X i , n, q , p, µ, �′, �, and
the VMO moduli of ai j and a0 such that, for every u ∈ S2,p

X (�),

‖u‖S2,p
X (�′)

≤ c{‖Lu‖L p(�)+‖u‖L p(�)}.

Remark 2.3. Under the assumptions of the previous theorems, it is not restrictive to assume a0(x) to be
equal to 1, for we can always rewrite (1-4) in the form

q∑
i, j=1

ai j

a0
X i X j + X0 =

f
a0

and apply the a priori estimates to this equation, controlling Cα
X or VMO moduli of the new coefficients

ai j/a0 in terms of the analogous moduli of ai j , a0, and the constant µ. Therefore, throughout the following
we will always take a0 ≡ 1.

3. Known results and preparatory results from real analysis and geometry of vector fields

3A. Hörmander’s vector fields, lifting, and approximation. Let X0, X1, . . . , Xq be a system of real
smooth vector fields

X i =

n∑
j=1

bi j (x)∂x j , i = 0, 1, 2, . . . , q

(q + 1< n) defined in some bounded, open and connected subset � of Rn . Let us assign to each X i a
weight pi , saying that

p0 = 2 and pi = 1 for i = 1, 2, . . . , q.

For any multiindex
I = (i1, i2, . . . , ik), 0≤ i j ≤ q,

we define the weight of I as

|I | =
k∑

j=1

pi j

and we set
X I = X i1 X i2 · · · X ik ,

X[I ] = [X i1, [X i2, . . . [X ik−1, X ik ] . . .]],

where [X, Y ] = XY − Y X for any couple of vector fields X, Y .
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We will say that X[I ] is a commutator of weight |I |. As usual, X[I ] can be seen either as a differential
operator or as a vector field. We will write

X[I ] f

to denote the differential operator X[I ] acting on a function f , and

(X[I ])x

to denote the vector field X[I ] evaluated at the point x ∈�.
We shall say that X = {X0, X1, . . . , Xq} satisfies Hörmander’s condition of weight s if these vector

fields, together with their commutators of weight ≤ s, span the tangent space at every point x ∈�.
Let ` be the free Lie algebra of weight s on q+1 generators, that is, the quotient of the free Lie algebra

with q + 1 generators by the ideal generated by the commutators of weight at least s+ 1. We say that the
vector fields X0, . . . , Xq , which satisfy Hörmander’s condition of weight s at some point x0 ∈ Rn , are
free up to order s at x0 if n = dim `, as a vector space (note that inequality ≤ always holds). The famous
lifting theorem proved by Rothschild and Stein [1976, p. 272] reads as follows.

Theorem 3.1. Let X = (X0, X1, . . . , Xq) be C∞ real vector fields on a domain � ⊂ Rn satisfying
Hörmander’s condition of weight s in �. Then, for any x̄ ∈�, in terms of new variables, hn+1, . . . , hN ,
there exist smooth functions λil(x, h) (0 ≤ i ≤ q, n + 1 ≤ l ≤ N ) defined in a neighborhood Ũ of
ξ̄ = (x̄, 0) ∈ RN such that the vector fields X̃ i given by

X̃ i = X i +

N∑
l=n+1

λil(x, h)
∂

∂hl
, i = 0, . . . , q,

satisfy Hörmander’s condition of weight s and are free up to weight s at every point in Ũ .

Let X̃ = (X̃0, X̃1, . . . , X̃q) be the lifted vector fields which are free up to weight s at some point
ξ ∈ RN and let ` be the free Lie algebra generated by X̃ . For each j , 1≤ j ≤ s, we can select a family
{X̃ j,k}k of commutators of weight j , with X̃1,k = X̃k , X̃2,1 = X̃0, k = 1, 2, . . . , q , such that {X̃ j,k} jk is a
basis of `, that is to say, there exists a set A of double-indices α such that {X̃α}α∈A is a basis of `. Note
that Card A = N , which allows us to identify ` with RN .

Now, in RN we can consider the group structure of N (q + 1, s), which is the simply connected Lie
group associated to `. We will write ◦ for the Lie group operation (which we think of as a translation)
and assume that the group identity is the origin. It is also possible to assume that u−1

=−u (the group
inverse is the Euclidean opposite). We can naturally define dilations in N (q + 1, s) by

D(λ)((uα)α∈A)= (λ
|α|uα)α∈A (3-1)

with | j, k| = j . These are group automorphisms, hence N (q+ 1, s) is a homogeneous group, in the sense
of Stein [1993, pp. 618–622]. We will call this group G, leaving the numbers q, s implicitly understood.

We can define in G a homogeneous norm ‖ · ‖ as follows. For any u ∈ G, u 6= 0, set

‖u‖ = r ⇔
∣∣∣D(1

r

)
u
∣∣∣= 1,
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where | · | denotes the Euclidean norm.
The function

dG(u, v)= ‖v−1
◦ u‖

is a quasidistance, that is

dG(u, v)≥ 0 and dG(u, v)= 0 if and only if u = v,

dG(u, v)= dG(v, u),

dG(u, v)≤ c(dG(u, z)+ dG(z, v))

(3-2)

for every u, v, z ∈ G and some positive constant c(G)≥ 1. We define the balls with respect to dG as

B(u, r) := {v ∈ RN
: dG(u, v) < r}.

It can be proved [Stein 1993, p. 619] that the Lebesgue measure in RN is the Haar measure of G.
Therefore, by (3-1),

|B(u, r)| = |B(u, 1)|r Q

for every u ∈ G and r > 0, where Q =
∑

α∈A |α|. We will call Q the homogeneous dimension of G.
Let τu be the left translation operator acting on functions: (τu f )(v)= f (u◦v). We say that a differential

operator P on G is left invariant if P(τu f )= τu(P f ) for every smooth function f .
We say that a differential operator P on G is homogeneous of degree δ > 0 if

P( f (D(λ)u))= λδ(P f )(D(λ)u)

for every test function f and every λ > 0, u ∈G. We also say that a function f is homogeneous of degree
δ ∈ R if

f (D(λ)u)= λδ f (u) for every λ > 0, u ∈ G.

Clearly, if P is a differential operator homogeneous of degree δ1 and f is a homogeneous function
of degree δ2, then P f is a homogeneous function of degree δ2− δ1, while f P is a differential operator,
homogeneous of degree δ1− δ2.

Let Yα be the left invariant vector field which agrees with ∂/(∂uα) at 0 and set Y1,k = Yk, k = 1, . . . , q ,
Y2,1 = Y0. The differential operator Yi,k is homogeneous of degree i , and {Yα}α∈A is a basis of the free
Lie algebra `.

A differential operator on G is said to have local degree less than or equal to λ if, after taking the
Taylor expansion at 0 of its coefficients, each term obtained is a differential operator homogeneous of
degree ≤ λ.

Also, a function on G is said to have local degree greater than or equal to λ if, after taking the Taylor
expansion at 0 of its coefficients, each term obtained is a homogeneous function of degree ≥ λ. For
ξ, η ∈ Ũ , define the map

2η(ξ)= (uα)α∈A

with ξ = exp
(∑
α∈A

uα X̃α
)
η. We will also write 2(η, ξ)=2η(ξ).
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We can now state Rothschild and Stein’s approximation theorem [1976, p. 273].

Theorem 3.2. In the coordinates given by 2(η, · ) we can write X̃ i = Yi + Rηi on an open neighborhood
of 0, where Rηi is a vector field of local degree at most 0 for i = 1, . . . , q (and at most 1 for i = 0)
depending smoothly on η. Explicitly, this means that, for every f ∈ C∞0 (G),

X̃ i [ f (2(η, · ))](ξ)= (Yi f + Rηi f )(2(η, ξ)). (3-3)

More generally, for every double-index (i, k) ∈ A, we can write

X̃ i,k[ f (2(η, · ))](ξ)= (Yi,k f + Rηi,k f )(2(η, ξ)), (3-4)

where Rηi,k is a vector field of local degree ≤ i − 1 depending smoothly on η.

Some other important properties of the map 2 are stated in the next theorem (see [Rothschild and
Stein 1976, pp. 284–287]).

Theorem 3.3. Let ξ̄ ∈ RN and Ũ be a neighborhood of ξ̄ such that for any η ∈ Ũ the map 2(η, · ) is well
defined in Ũ . For ξ, η ∈ Ũ , define

ρ(η, ξ)= ‖2(η, ξ)‖, (3-5)

where ‖ · ‖ is the homogeneous norm defined above. Then

(a) 2(η, ξ)=2(ξ, η)−1
=−2(ξ, η) for every ξ, η ∈ Ũ ;

(b) ρ is a quasidistance in Ũ (that is satisfies the three properties (3-2));

(c) under the change of coordinates u = 2ξ (η), the measure element becomes

dη = c(ξ) · (1+ω(ξ, u)) du, (3-6)

where c(ξ) is a smooth function, bounded and bounded away from zero in Ũ , ω(ξ, u) is a smooth
function in both variables with

|ω(ξ, u)| ≤ c‖u‖,

and an analogous statement is true for the change of coordinates u = 2η(ξ).

Remark 3.4. As we recalled in the introduction, in [Rothschild and Stein 1976] detailed proofs are given
only when the drift term X0 is lacking. A proof of the lifting and approximation results explicitly covering
the drift case can be found in [Bramanti et al. 2010], where the theory is also extended to the case of
nonsmooth Hörmander’s vector fields. We refer to the introduction of [Bramanti et al. 2010] for further
bibliographic remarks about existing alternative proofs of the lifting and approximation theorems.

3B. Metric induced by vector fields. Let us start by recalling the definition of control distance given by
Nagel, Stein, Wainger [Nagel et al. 1985] for Hörmander’s vector fields with drift.

Definition 3.5. For any δ > 0, let C(δ) be the class of absolutely continuous mappings ϕ: [0, 1] → �

which satisfy
ϕ′(t)=

∑
|I |≤s

λI (t)(X[I ])ϕ(t) for a.e. t ∈ (0, 1) (3-7)
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with |λI (t)| ≤ δ|I |. We define

d(x, y)= inf{δ : there exists ϕ ∈ C(δ) with ϕ(0)= x, ϕ(1)= y}.

The finiteness of d immediately follows by Hörmander’s condition: since the vector fields {X[I ]}|I |≤s

span Rn , we can always join any two points x, y with a curve ϕ of the kind (3-7); moreover, d turns
out to be a distance. Analogously to what Nagel, Stein, and Wainger [Nagel et al. 1985] do when X0 is
lacking, in [Bramanti et al. 2013] the following notion is introduced.

Definition 3.6. For any δ > 0, let C1(δ) be the class of absolutely continuous mappings ϕ : [0, 1] →�

which satisfy

ϕ′(t)=
q∑

i=0

λi (t)(X i )ϕ(t) for a.e. t ∈ (0, 1)

with |λ0(t)| ≤ δ2 and |λ j (t)| ≤ δ for j = 1, . . . , q . We define

dX (x, y)= inf{δ : there exists ϕ ∈ C1(δ) with ϕ(0)= x, ϕ(1)= y}.

Note that the finiteness of dX (x, y) for any two points x, y ∈� is not a trivial fact, but depends on a
connectivity result (“Chow’s theorem”); moreover, it can be proved that d and dX are locally equivalent,
and that dX is still a distance (see [Bramanti et al. 2013], where these results are proved in the more
general setting of nonsmooth vector fields). From now on we will always refer to dX as the control
distance induced by the system of Hörmander’s vector fields X . It is well-known that this distance is
topologically equivalent to the Euclidean one. For any x ∈�, we set

B(x, r)= {y ∈� : dX (x, y) < r}.

The basic result about the measure of metric balls is the famous local doubling condition.

Theorem 3.7 [Nagel et al. 1985]. For every �′ b� there exist positive constants c, r0 such that, for any
x ∈�′, r ≤ r0,

|B(x, 2r)| ≤ c|B(x, r)|.

As already pointed out in the introduction, the distance dX does not satisfy the segment property: given
two points at distance r , it is generally impossible to find a third point at distance r/2 from both. A
weaker property which this distance actually satisfies is contained in the next lemma, and will be useful
when dealing with the properties of Hölder spaces Cα

X .

Lemma 3.8. For any x, y ∈�, positive integer n, ε > 0, we can join x to y with a curve γ and find n+ 1
points p0 = x, p1, p2, . . . , pn = y on γ , such that

dX (p j , p j+1)≤
1+ ε
√

n
dX (x, y) for j = 0, 2, . . . , n− 1.
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Proof. For any x, y ∈ � with dX (x, y) = R, any ε > 0, by Definition 3.6 we can join x and y with a
curve γ (t) satisfying

γ (0)= x, γ (1)= y, γ ′(t)=
q∑

i=0

λi (t)(X i )γ (t),

with |λi (t)| ≤ R(1+ ε), for i = 1, . . . , q and |λ0(t)| ≤ (R(1+ ε))2.
Let γ j (t)= γ ((t + j)/n) for j = 0, 1, 2, . . . , n− 1. Then γ j (t) satisfies

γ j (0)= γ
(

j
n

)
=: p j , γ j (1)= γ

(
j + 1

n

)
= p j+1.

In particular, p0 = x and pn = y. Moreover,

γ ′j (t)=
1
n

q∑
i=0

λi

(
t + j

n

)
(X i )γ j (t)

with ∣∣∣∣1nλ0

(
t + j

n

)∣∣∣∣≤ ( R(1+ ε)
√

n

)2

,

∣∣∣∣1nλi

(
t + j

n

)∣∣∣∣< R(1+ ε)
√

n

for i = 1, . . . , q , j = 0, 2, . . . , n− 1. Thus

dX (p j , p j+1)≤
R(1+ ε)
√

n

for j = 0, 2, . . . , n− 1, so we are done. �

The free lifted vector fields X̃ i induce, in the neighborhood where they are defined, a control distance
dX̃ ; we will denote by B̃(ξ, r) the corresponding metric balls. In this lifted setting we can also consider
the quasidistance ρ defined in (3-5). The two functions turn out to be equivalent.

Lemma 3.9. Let ξ̄ , Ũ be as in Theorem 3.3. There exists B̃(ξ̄ , R) ⊂ Ũ such that the distance dX̃ is
equivalent to the quasidistance ρ in (3-5) in B̃(ξ̄ , R), and both are greater than the Euclidean distance;
namely, there exist positive constants c1, c2, c3 such that

c1|ξ − η| ≤ c2ρ(η, ξ)≤ dX̃ (η, ξ)≤ c3ρ(η, ξ) for every ξ, η ∈ B̃(ξ̄ , R).

This fact is proved in [Nagel et al. 1985]; see also [Bramanti et al. 2010, Proposition 22].

3C. Locally homogeneous spaces. We are now going to recall the notion of locally homogeneous space,
introduced in [Bramanti and Zhu 2012]. Roughly speaking, a locally homogeneous space is a set �
endowed with a function d which is a quasidistance on any compact subset, and a measure µ which
is locally doubling, in a sense which will be made precise below. In our concrete situation, our set is
endowed with a function d which is a distance in �, and a locally doubling measure. We can therefore
give the following definition, which is simpler than that given in [Bramanti and Zhu 2012].
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Definition 3.10. Let (�, d) be a metric space, and let µ be a positive regular Borel measure in �.
Assume there exists an increasing sequence {�n}

∞

n=1 of bounded measurable subsets of � such that

∞⋃
n=1

�n =� (3-8)

and, for any n = 1, 2, 3, . . . ,

(i) the closure of �n in � is compact,

(ii) there exists εn > 0 such that

{x ∈� : d(x, y) < 2εn for some y ∈�n} ⊂�n+1, (3-9)

(iii) there exists Cn > 1 such that, for any x ∈�n , 0< r ≤ εn , we have

0< µ(B(x, 2r))≤ Cnµ(B(x, r)) <∞. (3-10)

(Note that for x ∈�n and r ≤ εn we also have B(x, 2r)⊂�n+1.)

We say that (�, {�n}
∞

n=1, d, µ) is a (metric) locally homogeneous space if the above assumptions hold.

Any space satisfying the above definition a fortiori satisfies the definition of locally homogeneous
space given in [Bramanti and Zhu 2012].

Next, we discuss some facts about local singular kernels. For fixed�n , �n+1, and a fixed ball B(x̄, R0),
with x̄ ∈�n and R0 < 2εn (hence B(x̄, R0)⊂�n+1), let K (x, y) be a measurable function defined for
x, y ∈ B(x̄, R0), x 6= y. We now list a series of possible assumptions on the kernel K which are involved
in the theorems that we will apply in the following.

(i) We say that K satisfies the standard estimates for some ν ∈ [0, 1) if the following hold:

|K (x, y)| ≤
Ad(x, y)ν

µ(B(x, d(x, y)))
(3-11)

for x, y ∈ B(x̄, R0) with x 6= y, and

|K (x0, y)− K (x, y)| + |K (y, x0)− K (y, x)| ≤
Bd(x0, y)ν

µ(B(x0, d(x0, y)))

(
d(x0, x)
d(x0, y)

)β
(3-12)

for any x0, x, y ∈ B(x̄, R0) with d(x0, y) > 2d(x0, x), and some β > 0.

(ii) We say that K satisfies the cancellation property if the following holds: there exists C > 0 such that,
for a.e. x ∈ B(x̄, R0) and every ε1, ε2 such that 0< ε1 < ε2 and Bρ(x, ε2)⊂�n+1,∣∣∣∣∫

�n+1,ε1<ρ(x,y)<ε2

K (x, y) dµ(y)
∣∣∣∣+ ∣∣∣∣∫

�n+1,ε1<ρ(x,z)<ε2

K (z, x) dµ(z)
∣∣∣∣≤ C, (3-13)

where ρ is any quasidistance (see (3-2)) equivalent to d in �n+1 and Bρ denotes ρ-balls.
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(iii) We say that K satisfies the convergence condition if the following holds: for a.e. x ∈ B(x̄, R0) such
that Bρ(x, R)⊂�n+1, there exists

h R(x)≡ lim
ε→0

∫
�n+1,ε<ρ(x,y)<R

K (x, y) dµ(y), (3-14)

where ρ is any quasidistance equivalent to d in �n+1.

Application of the abstract theory to our setting. Let’s now explain how this abstract setting will be
used to describe our concrete situation. The a priori estimates we will prove in Theorems 2.1 and 2.2
involve a fixed subdomain �′ b�. Let us fix this �′ once and for all. For any x̄ ∈�′ we can perform in
a suitable neighborhood of x̄ the lifting and approximation procedure as explained in Section 3A. Let
ξ̄ = (x̄, 0) ∈ RN and B̃(ξ̄ , R) be as in Lemma 3.9. Then we can choose

�̃= B̃(ξ̄ , R); �̃k = B̃
(
ξ̄ ,

k R
k+ 1

)
for k = 1, 2, 3, . . . .

By the properties of dX̃ that we have listed in Section 3B, and particularly Theorem 3.7, we see that

(�̃, {�̃k}
∞

k=1, dX̃ , dξ)

is a metric locally homogeneous space. The function ρ(ξ, η) = ‖2(η, ξ)‖ will play the role of the
quasidistance appearing in conditions (3-13) and (3-14), in view of Lemma 3.9. This is the basic setting
where we will apply several results about singular integrals in locally homogeneous spaces, which have
been proved in [Bramanti and Zhu 2012]. Here we do not repeat the statements of all those theorems.
Instead, we will give a precise reference to [Bramanti and Zhu 2012] for each one. We just note that,
since in our situation we are dealing with a metric locally homogeneous space, the constants which are
called Bn in [Bramanti and Zhu 2012], here are equal to 1.

In the space of the original variables (�, dX , dx), instead, we will not apply singular integral estimates,
but we will again use the local doubling condition when we establish some important properties of
function spaces Cα and VMO (see Section 3D). Note that if �k is an increasing sequence of domains
with �k b�k+1 b�, we can say that

(�, {�k}k, dX , dx)

is a metric locally homogeneous space.

3D. Function spaces. The aim of this section is twofold. First, we want to define the basic function
spaces we will need and point out their main properties; second, we want to find a relation between
function spaces defined over a ball B(x̄, r) ⊂ � ⊂ Rn and those over the corresponding lifted ball
B̃(ξ̄ , r)⊂ RN . More precisely, we need to know that f (x) belongs to some function space on B if and
only if f̃ (x, h)= f (x) belongs to the analogous function space on B̃. This last fact relies on the following
known result; see [Nagel et al. 1985, Lemmas 3.1 and 3.2, p. 139].
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Theorem 3.11. Let us denote by B and B̃ the balls defined with respect to dX and dX̃ , respectively. There
exist constants δ0 ∈ (0, 1), r0, c1, c2 > 0 such that

c1 vol(B̃r (x, h))≤ vol(Br (x)) · vol{h′ ∈ RN−n
: (z, h′) ∈ B̃r (x, h)} ≤ c2 vol(B̃r (x, h)) (3-15)

for every x ∈�, z ∈ Bδ0r (x), and r ≤ r0. (Here “vol” stands for the Lebesgue measure in the appropriate
dimension, x denotes a point in Rn , and h a point in RN−n). More precisely, the condition z ∈ Bδ0r (x) is
needed only for the validity of the first inequality in (3-15). Moreover,

dX̃ ((x, h), (x ′, h′))≥ dX (x, x ′). (3-16)

Finally, the projection of the lifted ball B̃r (x, h) on Rn is just the ball B(x, r), and this projection is onto.

A consequence of the above theorem is the following.

Corollary 3.12. For any positive function g defined in Br (x)⊂�, r ≤ r0, one has

c1

|Bδ0r (x)|

∫
Bδ0r (x)

g(y) dy ≤
1

|B̃r (x, h)|

∫
B̃r (x,h)

g(y) dy dh′ ≤
c2

|Br (x)|

∫
Br (x)

g(y) dy, (3-17)

where δ0 is the constant in Theorem 3.11.

Proof. By (3-15) and the locally doubling condition, we have, for some fixed δ0 < 1 as in Theorem 3.11,

1
|B̃r (x, h)|

∫
B̃r (x,h)

g(y) dy dh′ =
1

|B̃r (x, h)|

∫
Br (x)

g(y) dy
∫
{h′∈RN−n :(y,h′)∈B̃r (x,h)}

dh′

≥
c1

|B̃r (x, h)|

∫
Bδ0r (x)

|B̃r (x, h)|
|Br (x)|

g(y) dy ≥
c

|Bδ0r (x)|

∫
Bδ0r (x)

g(y) dy,

where in the last inequality we exploited the doubling condition |Br (x)| ≤ c|Bδ0r (x)|, which holds because
Br (x) ⊂ � and r ≤ r0. The proof of the second inequality in (3-17) is analogous but easier, since it
involves the second inequality in (3-15), which does not require the condition y ∈ Bδ0r (x). �

3D.1. Hölder spaces.

Definition 3.13. For any 0< α < 1, u :�→ R, let

|u|Cα
X (�)
= sup

{
|u(x)− u(y)|

dX (x, y)α
: x, y ∈�, x 6= y

}
,

‖u‖Cα
X (�)
= |u|Cα(�)+‖u‖L∞(�),

Cα
X (�)= {u :�→ R : ‖u‖Cα(�) <∞}.

Also, for any positive integer k, let

Ck,α
X (�)= {u :�→ R : ‖u‖Ck,α(�) <∞},

with

‖u‖Ck,α
X (�)

=

k∑
|I |=1

q∑
ji=0

‖X j1 · · · X jl u‖Cα(�)+‖u‖Cα(�),
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where I = ( j1, j2, . . . , jl).
We will set Cα

X,0(�) and Ck,α
X,0(�) for the subspaces of Cα

X (�) and Ck,α
X (�) of functions which are

compactly supported in �, and set Cα

X̃
(B̃), Ck,α

X̃
(B̃), Cα

X̃ ,0
(B̃), and Ck,α

X̃ ,0
(B̃) for the analogous function

spaces over B̃ defined by the X̃ i .
We will also write Ck,0

X (�) to denote the space of functions with continuous X -derivatives up to
weight k.

Let us note that we will sometimes also need to use the classical spaces of (possibly compactly
supported) continuously differentiable functions, denoted as usual by C1 (or C1

0 ).
The next proposition, adapted from [Bramanti and Brandolini 2007, Proposition 4.2], collects some

properties of Cα functions which will be useful later. We will apply these properties mainly in the context
of lifted variables, that is, for the vector fields X̃ i on a ball B̃(ξ̄ , R).

Proposition 3.14. Let B(x̄, 2R) be a fixed ball where the vector fields X i and the control distance d are
well defined.

(i) For any δ ∈ (0, 1) and any f ∈ C1(B(x̄, (1+ δ)R)), one has

| f (x)− f (y)| ≤
c
δ

dX (x, y)
( q∑

i=1

sup
B(x̄,(1+δ)R)

|X i f | + dX (x, y) sup
B(x̄,(1+δ)R)

|X0 f |
)

(3-18)

for any x, y ∈ B(x̄, R).
If f ∈ C1

0(B(x̄, R)), one can simply write, for any x, y ∈ B(x̄, R),

| f (x)− f (y)| ≤ cdX (x, y)
( q∑

i=1

sup
B(x̄,R)

|X i f | + dX (x, y) sup
B(x̄,R)

|X0 f |
)
. (3-19)

In particular, for f ∈ C1
0(B(x̄, R)),

| f |Cα(B(x̄,R)) ≤ cR1−α
·

( q∑
i=1

sup
B(x̄,R)

|X i f | + R sup
B(x̄,R)

|X0 f |
)
. (3-20)

The assumption f ∈ C1 (or C1
0 ) can be replaced by f ∈ C2

X (or C2
X,0, respectively).

(ii) For any couple of functions f, g ∈ Cα
X (B(x̄, R)), one has

| f g|Cα
X (B(x̄,R)) ≤ | f |Cα

X (B(x̄,R))‖g‖L∞(B(x̄,R))+ |g|Cα
X (B(x̄,R))‖ f ‖L∞(B(x̄,R))

and

‖ f g‖Cα
X (B(x̄,R)) ≤ 2‖ f ‖Cα

X (B(x̄,R))‖g‖Cα
X (B(x̄,R)). (3-21)

Moreover, if both f and g vanish at least at a point of B(x̄, R), then

| f g|Cα
X (B(x̄,R)) ≤ cRα| f |Cα

X (B(x̄,R))|g|Cα
X (B(x̄,R)). (3-22)
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(iii) Let B(xi , r) (i=1, 2, . . . , k) be a finite family of balls of the same radius r such that
⋃k

i=1 B(xi , 2r)⊂
�. Then, for any f ∈ Cα

X (�),

‖ f ‖Cα
X (
⋃k

i=1 B(xi ,r))
≤ c

k∑
i=1

‖ f ‖Cα
X (B(xi ,2r)) (3-23)

with c depending on the family of balls, but not on f .

(iv) There exists r0 > 0 such that, for any f ∈ C2,α
X,0(B(x̄, R)) and 0< r ≤ r0, we have the interpolation

inequality

‖X0 f ‖L∞(B(x̄,R)) ≤ rα/2|X0 f |Cα
X (B(x̄,R))+

2
r
‖ f ‖L∞(B(x̄,R)). (3-24)

Proof. The proof of (ii)–(iii) is similar to that in [Bramanti and Brandolini 2007, Proposition 4.2], hence
we will only prove (i) and (iv).

Throughout this proof we will write d for dX . (Actually, we will apply this proposition both to dX and
to dX̃ ).

(i) Fix δ ∈ (0, 1) and let R′ = (1+ δ)R. Let us distinguish two cases.

Case 1: d(x, y) < R′−max(d(x̄, x), d(x̄, y)). Let ε > 0 be such that

d(x, y)+ ε < R′−max(d(x̄, x), d(x̄, y)), (3-25)

hence, by Definition 3.6, there exists a curve ϕ(t) such that ϕ(0)= x, ϕ(1)= y, and

ϕ′(t)=
q∑

i=0

λi (t)(X i )ϕ(t)

with |λi (t)| ≤ (d(x, y)+ ε), |λ0(t)| ≤ (d(x, y)+ ε)2 for i = 1, . . . , q. By (3-25),

B(x, d(x, y)+ ε)⊂ B(x̄, R′),

hence every point γ (t) for t ∈ (0, 1) belongs to B(x̄, R′). Then we can write

| f (x)− f (y)| =
∣∣∣∣∫ 1

0

d
dt

f (ϕ(t)) dt
∣∣∣∣= ∣∣∣∣∫ 1

0

q∑
i=0

λi (t)(X i f )ϕ(t) dt
∣∣∣∣

≤ (d(x, y)+ ε)
q∑

i=1

sup
B(x̄,R′)

|X i f | + (d(x, y)+ ε)2 sup
B(x̄,R′)

|X0 f |,

and since ε is arbitrary, this implies (3-19) and, in particular, (3-18). We note that the above argu-
ment relies on the differentiability of f along the curve ϕ, which holds under either the assumption
f ∈ C1(B(x̄, (1+ δ)R)) or f ∈ C2

X (B(x̄, (1+ δ)R)) (since X0 has weight two).

Case 2: d(x, y)≥ R′−max(d(x̄, x), d(x̄, y)). Let us write

| f (x)− f (y)| ≤ | f (x)− f (x̄)| + | f (x̄)− f (y)| = A+ B.
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Each of the terms A, B can be bounded by an argument similar to that in Case 1 (since both x and y can
be joined to x̄ by curves contained in B(x̄, R)), giving

| f (x)− f (y)| ≤ [d(x, x̄)+ d(y, x̄)] ·
{ q∑

i=1

sup
B(x̄,R)

|X i f | + [d(x, x̄)+ d(y, x̄)] sup
B(x̄,R)

|X0 f |
}
.

Now it is enough to show that
d(x, x̄)+ d(y, x̄)≤

c
δ

d(x, y).

To show this, let r :=max(d(x̄, x), d(x̄, y)). Then

d(x, x̄)+ d(y, x̄)≤ 2r ≤
2
δ
(R′− r)≤

2
δ

d(x, y),

where the second inequality holds since r < R and R′= (1+δ)R, and the last inequality is the assumption
d(x, y) ≥ R′−max(d(x̄, x), d(x̄, y)). This completes the proof of (3-18), which immediately implies
(3-19) and (3-20).

(iv) Let f ∈ C2,α
X,0(B(x̄, R)). For any x ∈ B(x̄, R), let γ (t) be the curve such that

γ ′(t)= (X0)γ (t), γ (0)= x .

This γ (t) will be defined at least for t ∈ [0, r0] where r0 > 0 is a number only depending on B(x̄, R) and
X0. Then, for any r ∈ (0, r0), we can write, for some θ ∈ (0, 1),

f (γ (r))− f (γ (0))= r
d
dt
[ f (γ (t))]t=θr = r(X0 f )(γ (θr)),

hence
(X0 f )(x)= (X0 f )(γ (0))− (X0 f )(γ (θr))+

1
r
[ f (γ (r))− f (γ (0))]

and since, by definition of γ and d, d(γ (0), γ (θr))≤ (θr)1/2, we get

|(X0 f )(x)| ≤ |(X0 f )(γ (0))− (X0 f )(γ (θr))| +
2
r
‖ f ‖L∞

≤ (θr)α/2|X0 f |Cα
X (B(x̄,R))+

2
r
‖ f ‖L∞(B(x̄,R))

≤ rα/2|X0 f |Cα
X (B(x̄,R))+

2
r
‖ f ‖L∞(B(x̄,R)),

so we are done. �

Next, we are going to study the relation between the spaces Cα
X (BR) and Cα

X̃
(B̃R).

Proposition 3.15. Let B̃(ξ̄ , R) be a lifted ball (see the end of Section 3C), with ξ̄ = (x̄, 0). If f is a
function defined in B(x̄, R) and f̃ (x, h) = f (x) is regarded as a function defined on B̃R(ξ̄ , R), the
following inequalities hold (whenever the right-hand side is finite):

| f̃ |Cα

X̃
(B̃(ξ̄ ,R)) ≤ | f |Cα

X (B(x̄,R)),

| f |Cα
X (B(x̄,s)) ≤

c
(t − s)2

| f̃ |Cα

X̃
(B̃(ξ̄ ,t)) for 0< s < t < R, (3-26)
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where c also depends on R. Moreover,

|X̃ i1 X̃ i2 · · · X̃ ik f̃ |Cα

X̃
(B̃(ξ̄ ,R)) ≤ |X i1 X i2 · · · X ik f |Cα

X (B(x̄,R)), (3-27)

|X i1 X i2 · · · X ik f |Cα
X (B(x̄,s)) ≤

c
(t − s)2

|X̃ i1 X̃ i2 · · · X̃ ik f̃ |Cα

X̃
(B̃(ξ̄ ,t)) (3-28)

for 0< s < t < R and i j = 0, 1, 2, . . . , q.

As already done in [Bramanti and Brandolini 2007, Proposition 8.3], to prove the above relation
between Hölder spaces over B and B̃ we have to exploit an equivalent integral characterization of
Hölder continuous functions, analogous to the one established in the classical case by Campanato [1963].
However, to avoid integration over sets of the kind �∩ B(x, r) (with the related problem of assuring a
suitable doubling condition), we need to apply the local version of this result which has been established
in [Bramanti and Zhu 2012].

Definition 3.16. For x̄ ∈�′, B(x̄, R)⊂�, f ∈ L1(B(x̄, R)), α ∈ (0, 1), and 0< s < t ≤ 1, let

Mα,Bs R,Bt R ( f )= sup
x∈B(x̄,s R),r≤(t−s)R

inf
c∈R

1
rα|Br (x)|

∫
Br (x)
| f (y)− c| dy.

If f ∈ Cα
X (B(x̄, R)), then

Mα,Bs R ,Bt R ( f )≤ | f |Cα(BR(x0)).

Moreover, we get the following.

Lemma 3.17. For x̄ ∈ �′, B(x̄, 2R0)⊂ �, R < R0, α ∈ (0, 1), and 0< s < t ≤ 1, if f ∈ L1(B(x̄, t R))
is a function such that Mα,Bs R,Bt R ( f ) <∞, then there exists a function f ∗, a.e. equal to f , such that
f ∗ ∈ Cα

X (B(x̄, s R)) and

| f ∗|Cα
X (B(x̄,s R)) ≤

c
(t − s)2

Mα,Bs R ,Bt R ( f )

for some c independent of f , s, t .

Proof. We can apply [Bramanti and Zhu 2012, Theorem 9.2] choosing �k = B(x̄, s R), �k+1 = B(x̄, t R),
εn = R(t − s). The locally doubling constant can be chosen independently of R, since B(x̄, 2R0)⊂�,
R < R0. We conclude that there exists a function f ∗, a.e. equal to f , such that

| f ∗(x)− f ∗(y)| ≤ cMα,Bs R ,Bt R ( f )dX (x, y)α

for any x, y ∈ B(x̄, s R) with dX (x, y)≤ R(t − s)/2.
Now if x, y are any two points in Bs R(x0), and r = dX (x, y), by Lemma 3.8 we can find n+ 1 points

x0 = x, x1, x2, . . . , xn = y in Bs R(x0) such that

dX (xi , xi−1)≤
2r
√

n
.
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Let n be the least integer such that 2r/
√

n ≤ R(t − s)/2. Then

| f ∗(x)− f ∗(y)| ≤
n∑

i=1

| f ∗(xi )− f ∗(xi−1)| ≤

n∑
i=1

cMα,Bs R ,Bt R ( f )dX (xi , xi−1)
α

≤ ncMα,Bs R ,Bt R ( f )dX (x, y)α.

Let us find an upper bound on n. We know that

√
n ≤ c

dX (x, y)
R(t − s)

≤
c

t − s
,

since dX (x, y)≤ 2R for x, y ∈ Bt R(x0). Hence n ≤ c/(t − s)2 and the lemma is proved. �

Proof of Proposition 3.15. The first inequality immediately follows by (3-16). To prove the second one,
let 0< s < t < 1 and x ∈ B(x̄, δ0s R), where δ0 is the number in Theorem 3.11, r ≤ R(t − s), ξ̄ = (x̄, 0).
Since the projection π : B̃((x, s), δ)→ B(x, δ) is onto (see Theorem 3.11), there exists h ∈ RN−n such
that ξ = (x, h) ∈ B̃(ξ̄ , δ0s R). Then, by Corollary 3.12, we have

1
rα

c
|Bδ0r (x)|

∫
Bδ0r (x)

| f (y)− k| dy ≤
c

rα
1

|B̃(ξ, r)|

∫
B̃(ξ,r)

| f̃ (η)− k| dη; (3-29)

choosing k = f (x)= f̃ (ξ), the latter quantity is

≤
c

rα
| f̃ |Cα

X̃
(B̃(ξ,r))r

α
= c| f̃ |Cα

X̃
(B̃(ξ,r)).

Since r ≤ R(t − s) and d(ξ, ξ̄ ) < δ0s R, we have the inclusion

B̃(ξ, r)⊂ B̃(ξ̄ , δ0s R+ R(t − s))=: B̃(ξ̄ , R′)

so that (3-29) implies

Mα,B(x̄,δ0s R),B(x̄,δ0t R)( f )≤ c| f̃ |Cα

X̃
(B̃(ξ̄ ,R′)),

and, by Lemma 3.17, we conclude

| f ∗|Cα
X (B(x̄,δ0s R)) ≤

c
(t − s)2

| f̃ |Cα

X̃
(B̃(ξ̄ ,R′)).

Note that R′− δ0s R = R(t − s), hence, changing our notation to

δ0s R = s ′, R′ = t ′,

we get

| f ∗|Cα
X (B(x̄,s

′)) ≤
c

(t ′− s ′)2
| f̃ |Cα

X̃
(B̃(ξ̄ ,t ′))

for 0< s ′ < t ′ < R, with c also depending on R. This is (3-26).
Now inequalities (3-27) and (3-28) also follow, because X̃ i f̃ = X̃ i f , hence the same reasoning can be

iterated to higher order derivatives. �
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3D.2. Sobolev spaces.

Definition 3.18. If X = (X0, X1, . . . , Xq) is any system of smooth vector fields satisfying Hörmander’s
condition in a domain �⊂ Rn , the Sobolev space S2,p

X (�) (1< p <∞) consists of L p-functions with 2
(weighted) derivatives with respect to the vector fields X i , in L p. Explicitly,

‖u‖S2,p
X (�)

= ‖u‖L p(�)+

2∑
i=1

‖Di u‖L p(�),

where ‖D1u‖L p(�) =

q∑
i=1

‖X i u‖L p(�); ‖D2u‖L p(�) = ‖X0u‖L p(�)+

q∑
i, j=1

‖X i X j u‖L p(�).

Also, we can define the spaces of functions vanishing at the boundary saying that u ∈ S2,p
0,X (�) if there

exists a sequence {uk} of C∞0 (�) functions converging to u in S2,p
X (�). Similarly, we can define the

Sobolev spaces S2,p
X̃
(B̃), S2,p

X̃ ,0
(B̃) over a lifted ball B̃, induced by the X̃ .

The following has been proved [Bramanti and Brandolini 2000a, Proposition 3.5].

Proposition 3.19. If u ∈ S2,p
X (�) and ϕ ∈ C∞0 (�), then uϕ ∈ S2,p

0,X (�), and an analogous property holds

for the space S2,p
0,X̃
(B̃).

Moreover, we have the following.

Theorem 3.20. Let f ∈ L p(B(x, r), f̃ (x, h) = f (x), and B̃(ξ, r) be the lifted ball of B(x, r), with
ξ = (x, 0) ∈ RN . Then

c1‖ f ‖L p(B(x,δ0r)) ≤ ‖ f̃ ‖L p(B̃(ξ,r)) ≤ c2‖ f ‖L p(B(x,r)),

c1‖ f ‖S2,p
X (B(x,δ0r)) ≤ ‖ f̃ ‖S2,p

X̃
(B̃(ξ,r)) ≤ c2‖ f ‖S2,p

X (B(x,r)),

where δ0 < 1 is the number appearing in Theorem 3.11.

Proof. The first inequality follows by Theorem 3.11; the second follows by the first, since

X̃ i f̃ = X i f̃ = (̃X i f ). �

3D.3. Vanishing mean oscillation. Let us recall the following abstract definition.

Definition 3.21 [Bramanti and Zhu 2012, Definition 6.1]. Let (�, {�n}
∞

n=1, d, µ) be a metric locally
homogeneous space (see Section 3C). For any function u ∈ L1(�n+1) and r > 0 with r ≤ εn , set

η∗u,�n,�n+1
(r)= sup

t≤r
sup

x0∈�n

1
µ(B(x0, t))

∫
B(x0,t)

|u(x)− u B | dµ(x),

where u B = µ(B(x0, t))−1
∫

B(x0,t)
u. We say that u ∈ BMOloc(�n, �n+1) if

‖u‖BMOloc(�n,�n+1) = sup
r≤εn

η∗u,�n,�n+1
(r) <∞.
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We say that u ∈ VMOloc(�n, �n+1) if u ∈ BMOloc(�n, �n+1) and

η∗u,�n,�n+1
(r)→ 0 as r→ 0.

The function η∗u,�n,�n+1
will be called the VMO local modulus of u in (�n, �n+1).

We need to specialize this definition to our concrete situation. First, let us endow our domain � with
the structure

(�, {�k}k, dX , dx)

of locally homogeneous space described at the end of Section 3C. Then:

Definition 3.22 (local VMO). We say that a ∈ VMOX,loc(�) if

a ∈ VMOloc(�k, �k+1) for every k.

More explicitly, this means that, for any fixed �′ b�, the function

η∗u,�′,�(r)= sup
t≤r

sup
x0∈�′

1
|Bt(x0)|

∫
Bt (x0)

|u(x)− u Bt (x0)| dx,

is finite for r ≤ r0 and vanishes for r→ 0, where r0 is the number such that the local doubling condition
of Theorem 3.7 holds:

|B(x, 2r)| ≤ c|B(x, r)| for any x ∈�′, r ≤ r0.

As for Hölder continuous and Sobolev functions, we need a comparison result for VMO functions in
the original variables and the lifted ones. By Corollary 3.12 we immediately have the following.

Proposition 3.23. Let a ∈ VMOX,loc(�). Then, for any �′ b �, x0 ∈ �
′, B(x0, R), and �̃k =

B̃(ξ0, k R/(k + 1)) as before, we have that ã(x, h) = a(x) belongs to the class VMOloc(�̃k, �̃k) for
every k, with

η∗ã,�̃k ,�̃k+1
(r)≤ cη∗a,�′,�(r).

In other words, the VMOloc modulus of the original function a controls the VMOloc modulus of its
lifted version.

4. Operators of type λ and representation formulas

4A. Differential operators and fundamental solutions. We now define various differential operators
that we will handle in the following. Our main interest is to study the operator

L=

q∑
i, j=1

ai j (x)X i X j + X0,

under the assumption (H) in Section 2. Recall that, in view of Remark 2.3, we have set a0(x)≡ 1.
For any x̄ ∈ �, we can apply the “lifting theorem” to the vector fields X i (see Section 3A for

the statement and notation), obtaining new vector fields X̃ i which are free up to weight s and satisfy
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Hörmander’s condition of weight s in a neighborhood of ξ̄ = (x̄, 0) ∈ RN . For ξ = (x, t) ∈ B̃(ξ̄ , R), with
B̃(ξ̄ , R) as in Lemma 3.9, set

ãi j (x, t)= ai j (x),

and let

L̃=

q∑
i, j=1

ãi j (ξ)X̃ i X̃ j + X̃0 (4-1)

be the lifted operator, defined in B̃(ξ̄ , R). Next, we freeze L̃ at some point ξ0 ∈ B̃(ξ̄ , R), and consider
the frozen lifted operator

L̃0 =

q∑
i, j=1

ãi j (ξ0)X̃ i X̃ j + X̃0. (4-2)

To study L̃0, in view of the “approximation theorem” (Theorem 3.2), we will consider the approximating
operator, defined on the homogeneous group G,

L∗0 =

q∑
i, j=1

ãi j (ξ0)Yi Y j + Y0,

and its transpose,

L∗T0 =

q∑
i, j=1

ãi j (ξ0)Yi Y j − Y0,

where {Yi } are the left invariant vector fields on the group G defined in Section 3A.
We will apply to L∗0 and L∗T0 several results proved in [Bramanti and Brandolini 2000b], which in turn

are based on [Folland 1975, Theorem 2.1 and Corollary 2.8; Folland and Stein 1974, Proposition 8.5].
They are collected in the following theorem.

Theorem 4.1. Assume that the homogeneous dimension of G is Q ≥ 3. For every ξ0 ∈ B̃(ξ̄ , R), the
operator L∗0 has a unique fundamental solution 0(ξ0; · ) such that

(a) 0(ξ0; · ) ∈ C∞(RN
\ {0});

(b) 0(ξ0; · ) is homogeneous of degree (2− Q);

(c) for every test function f and every v ∈ RN ,

f (v)=
∫

RN
0(ξ0; u−1

◦ v)L∗0 f (u) du;

moreover, for every i, j = 1, . . . , q , there exist constants αi j (ξ0) such that

Yi Y j f (v)= PV
∫

RN
Yi Y j0(ξ0; u−1

◦ v)L∗0 f (u) du+αi j (ξ0) ·L
∗

0 f (v); (4-3)

(d) Yi Y j0(ξ0; · ) is homogeneous of degree −Q;



L p AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HÖRMANDER VECTOR FIELDS 1815

(e) for every R > r > 0,∫
r<‖u‖<R

Yi Y j0(ξ0; u) du =
∫
‖u‖=1

Yi Y j0(ξ0; u) dσ(u)= 0.

In (4-3) the notation PV
∫

RN · · · du stands for limε→0
∫
‖u−1◦v‖>ε

· · · du.

Remark 4.2. By [Folland 1975, remark on p. 174], we know that the fundamental solution of the
transposed operator L∗T0 is

0T (ξ0; u)= 0(ξ0; u−1)= 0(ξ0;−u).

(However, beware that Yi0
T (ξ0; u) 6= ±Yi0(ξ0;−u).)

Throughout the following, we will set, for i, j = 1, . . . , q,

0i j (ξ0; u)= Yi Y j [0(ξ0; · )](u),

0T
i j (ξ0; u)= Yi Y j [0

T (ξ0; · )](u).

A second fundamental result we need contains a bound on the derivatives of 0, uniform with respect
to ξ0.

Theorem 4.3 [Bramanti and Brandolini 2000b, Theorem 12]. For every multi-index β, there exists a
constant c = c(β,G, µ) such that, for any i, j = 1, . . . , q,

sup
ξ∈B̃(ξ̄ ,R)
‖u‖=1

∣∣∣∣( ∂

∂u

)β
0i j (ξ ; u)

∣∣∣∣≤ c;

moreover, for the αi j appearing in (4-3), the uniform bound

sup
ξ∈B̃(ξ̄ ,R)

|αi j (ξ)| ≤ c2

holds for some constant c2 = c2(G, µ).

Remark 4.4. Theorems 4.1 and 4.3 still hold replacing 0 by 0T and 0i j by 0T
i j .

4B. Operators of type λ. As in [Rothschild and Stein 1976; Bramanti and Brandolini 2000a], we are
going to build a parametrix for L̃ shaped on the homogeneous fundamental solution of L∗0. More generally,
we need to define a class of integral operators with different degrees of singularity. The next definition is
adapted from [Bramanti and Brandolini 2000a], the difference being the necessity, in the present case, to
consider integral kernels shaped on the fundamental solutions of both L∗0 and L∗T0 .

Definition 4.5. For any ξ0 ∈ B̃(ξ̄ , R), we say that k(ξ0; ξ, η) is a frozen kernel of type λ (over the ball
B̃(ξ̄ , R)) for some nonnegative integer λ (we will use λ= 0, 1, 2) if, for every positive integer m, we can
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write, for ξ, η ∈ B̃(ξ̄ , R),

k(ξ0; ξ, η)= k ′(ξ0; ξ, η)+ k ′′(ξ0; ξ, η)

=

{ Hm∑
i=1

ai (ξ)bi (η)Di0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(2(η, ξ))

+

{ Hm∑
i=1

a′i (ξ)b
′

i (η)D
′

i0
T (ξ0; · )+ a′0(ξ)b

′

0(η)D
′

00
T (ξ0; · )

}
(2(η, ξ)),

where ai , bi , a′i , b′i ∈C∞0 (B̃(ξ̄ , R)) (i = 0, 1, . . . , Hm), and Di and D′i are differential operators such that,
for i = 1, . . . , Hm , Di and D′i are homogeneous of degree ≤ 2− λ (so that Di0(ξ0; · ), and D′i0

T (ξ0; · )

are homogeneous functions of degree ≥ λ−Q); D0 and D′0 are differential operators such that D00(ξ0; · )

and D′00
T (ξ0; · ) have m (weighted) derivatives with respect to the vector fields Yi (i = 0, 1, . . . , q).

Moreover, the coefficients of the differential operators Di , D′i for i = 0, 1, . . . , Hm possibly depend also
on the variables ξ, η, in such a way that the joint dependence on (ξ, η, u) is smooth.

In order to simplify notation, we will not always express explicitly this dependence of the coefficients
of Di on ξ, η. Only if necessary will we write, for instance, ai (ξ)bi (η)D

ξ,η

i 0(ξ0;2(η, ξ)) to recall this
dependence.

Remark 4.6. Note that if a smooth function c(ξ, η, u) is D(λ)-homogeneous of some degree β with
respect to u, any ξ or η derivative of c has the same homogeneity with respect to u, since

c(ξ, η, D(λ)u)= λβc(ξ, η, u) implies
∂c
∂ξi
(ξ, η, D(λ)u)= λβ

∂c
∂ξi
(ξ, η, u).

Hence any derivative (
∂

∂ξi
Dξ,η

i

)
0(ξ0; · ),

(
∂

∂ηi
Dξ,η

i

)
0(ξ0; · )

has the same homogeneity as
Dξ,η

i 0(ξ0; · ).

Here and in the following, the symbol ((∂/∂ξi )D
ξ,η

i ) f means that we have taken the ξi -derivative of the
coefficients of the differential operator Dξ,η

i , which acts on the u variables but contains ξ , η as parameters;
the resulting differential operator acts on the function f (u).

Definition 4.7. For any ξ0 ∈ B̃(ξ̄ , R), we say that T (ξ0) is a frozen operator of type λ≥ 1 (over the ball
B̃(ξ̄ , R)) if k(ξ0; ξ, η) is a frozen kernel of type λ and

T (ξ0) f (ξ)=
∫

B̃
k(ξ0; ξ, η) f (η) dη

for f ∈ C∞0 (B̃(ξ̄ , R)). We say that T (ξ0) is a frozen operator of type 0 if k(ξ0; ξ, η) is a frozen kernel of
type 0 and

T (ξ0) f (ξ)= PV
∫

B̃
k(ξ0; ξ, η) f (η) dη+α(ξ0, ξ) f (ξ),
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where α is a bounded measurable function, smooth in ξ , and the principal value integral exists. Explicitly,
this principal value is defined by

PV
∫

B̃
k(ξ0; ξ, η) f (η), dη = lim

ε→0

∫
‖2(η,ξ)‖>ε

k(ξ0; ξ, η) f (η) dη.

Definition 4.8. If k(ξ0; ξ, η) is a frozen kernel of type λ≥ 0, we say that k(ξ ; ξ, η) is a variable kernel
of type λ (over the ball B̃(ξ̄ , R)), and

T f (ξ)=
∫

B̃
k(ξ ; ξ, η) f (η) dη

is a variable operator of type λ. If λ= 0, the integral must be taken in principal value sense and a term
α(ξ, ξ) f (ξ) must be added.

In reference to Definition 4.5, we will call the k ′ and k ′′ parts of k “the frozen kernels of type λ modeled
on 0 and 0T ”, respectively. Analogously we will sometimes speak of frozen operators of type λ modeled
on 0 or 0T , to denote that the kernel has this special form.

A common operation on frozen operators is transposition.

Definition 4.9. If T (ξ0) is a frozen operator of type λ≥ 0 over B̃(ξ̄ , R), we will denote by T (ξ0)
T the

transposed operator, formally defined by∫
B̃

f (ξ)T (ξ0)
T g(ξ) dξ =

∫
B̃

g(ξ)T (ξ0) f (ξ) dξ

for any f, g ∈ C∞0 (B̃(ξ̄ , R)).

Clearly, if k(ξ0, ξ, η) is the kernel of T (ξ0), then k(ξ0, η, ξ) is the kernel of T (ξ0)
T . It is useful to note

the following.

Proposition 4.10. If T (ξ0) is a frozen operator of type λ ≥ 0 over B̃(ξ̄ , R), modeled on 0 or 0T , then
T (ξ0)

T is a frozen operator of type λ, modeled on 0T or 0, respectively. In particular, the transpose of a
frozen operator of type λ is still a frozen operator of type λ.

Proof. Let D be any differential operator on the group G. For any f ∈ C∞0 (B̃(ξ̄ , R)), let f ′(u)= f (−u).
Let D′ be the differential operator defined by the identity

D′ f = (D( f ′))′.

Clearly, if D is homogeneous of some degree β, the same is true for D′; if D0(ξ0; · ) or D0T (ξ0; · )

has m (weighted) derivatives with respect to the vector fields Yi (i = 0, 1, . . . , q), the same is true for
D′0(ξ0; · ) or D′0T (ξ0; · ). Also, recalling that 0T (ξ0; u)= 0(ξ0;−u), we have

(D′0)(u)= (D0T )(−u) and (D′0T )(u)= (D0)(−u).

Moreover, these identities can be iterated, for instance,

(D1 D20)(−u)= (D1(D20))(−u)= (D′1(D20)
′)(u)= (D′1 D′20

T )(u).
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Therefore, if

k ′(ξ0, ξ, η)=

{ Hm∑
i=1

ai (ξ)bi (η)Di0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(2(η, ξ))

is a frozen kernel of type λ modeled on 0, then

k ′(ξ0, η, ξ)=

{ Hm∑
i=1

ai (η)bi (ξ)Di0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(−2(η, ξ))

=

{ Hm∑
i=1

ai (η)bi (ξ)D′i0
T (ξ0; · )+ a0(ξ)b0(η)D′00

T (ξ0; · )

}
(2(η, ξ))

is a frozen kernel of type λ modeled on 0T . Analogously one can prove the converse. �

We now have to deal with the relations between operators of type λ and the differential operators
represented by the vector fields X̃ i . This is a study which was carried out in [Rothschild and Stein 1976,
Section 14] and adapted to nonvariational operators in [Bramanti and Brandolini 2000a]. We are interested
in two main results. Roughly speaking, the first says that the composition, in any order, of an operator
of type λ with the X̃ i or X̃0 derivative is an operator of type λ− 1 or λ− 2, respectively. The second
says that the X̃ i derivative of an operator of type λ can be rewritten as the sum of other operators of type
λ, each acting on a different X̃ j derivative, plus a suitable remainder. In [Rothschild and Stein 1976]
these results are proved only for a system of Hörmander vector fields of weight one (that is, without the
drift), and several arguments are very condensed. Hence we need to extend and modify some arguments
in [Rothschild and Stein 1976, Section 14] to cover the present situation. Moreover, as in [Bramanti and
Brandolini 2000a], we need to keep under careful control the dependence of any quantity on the frozen
point ξ0 appearing in 0(ξ0, · ). For these and other technical reasons, we prefer to write complete proofs
of these properties. The first result is the following.

Theorem 4.11 [Rothschild and Stein 1976, Theorem 8]. Suppose T (ξ0) is a frozen operator of type λ≥ 1.
Then X̃k T (ξ0) and T (ξ0)X̃k (k = 1, 2, . . . , q) are operators of type λ− 1. If λ ≥ 2, then X̃0T (ξ0) and
T (ξ0)X̃0 are operators of type λ− 2.

To prove this, we begin by stating the following two lemmas.

Lemma 4.12. If k(ξ0; ξ, η) is a frozen kernel of type λ ≥ 1 over B̃(ξ̄ , R), then (X̃ j k)(ξ0; · , η)(ξ) ( j =
1, 2, . . . , q) is a frozen kernel of type λ− 1. If λ ≥ 2, then (X̃0k)(ξ0; · , η)(ξ) is a frozen kernel of type
λ− 2.

Proof. This basically follows by the definition of kernel of type λ and Theorem 3.2. When the X̃ j

derivative acts on the ξ variable of a kernel Dξ
i 0(ξ0, · ), one also has to take into account Remark 4.6.

Here we just want to point out the following fact. The prototype of a frozen kernel of type 2 is the
function

a(ξ)0(ξ0;2(η, ξ))b(η).
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Note that the computation

X̃ i [a( · )0(ξ0;2(η, · ))b(η)](ξ)= a(ξ)[(Yi + Rηi )0(ξ0; · )](2(η, ξ))b(η)+ (X̃ i a)(ξ)0(ξ0;2(η, ξ))b(η)

in particular generates the term

a(ξ)(Rηi 0)(ξ0; · )(2(η, ξ))b(η),

where the differential operator Rηi has coefficients depending on η. In the proof of Theorem 4.11 we will
see another basic computation on frozen kernels which generates differential operators with coefficients
also depending on ξ . This is the reason why Definition 4.5 allows for this kind of dependence. �

Lemma 4.13. If T (ξ0) is a frozen operator of type λ≥ 1 over B̃(ξ̄ , R), then X̃ i T (ξ0) (i = 1, 2, . . . , q) is
a frozen operator of type λ− 1. If λ≥ 2, then X̃0T (ξ0) is a frozen operator of type λ− 2.

Proof. With reference to Definition 4.5, it is enough to consider the part k ′ of the kernel of T , the proof
for k ′′ being completely analogous. So, let us consider the operator

X̃ i T (ξ0) (i = 1, 2, . . . , q),

where T (ξ0) has kernel k ′.
If λ > 1, the result immediately follows by the previous lemma. If λ= 1, then

T (ξ0) f (ξ)=
∫

B̃(ξ̄ ,R)
a(ξ)b(η)D10(ξ0;2(η, ξ)) f (η) dη+ T ′(ξ0) f (ξ),

where T ′(ξ0) is a frozen operator of type 2 and D1 is a 1-homogeneous differential operator. We already
know that X̃ i T ′(ξ0) is a frozen operator of type 1, so it remains to show that

X̃ i

∫
B̃(ξ̄ ,R)

a(ξ)b(η)D10(ξ0; (2(η, ξ))) f (η) dη

is a frozen operator of type 0. To do this, we have to apply a distributional argument, which will be used
several times in the following. Let us compute, for any ω ∈ C∞0 (B̃(ξ̄ , R)),∫

B̃(ξ̄ ,R)
X̃ T

i ω(ξ)

∫
B̃(ξ̄ ,R)

a(ξ)b(η)Dξ

10(ξ0; (2(η, ξ))) f (η) dη dξ

= lim
ε→0

∫
B̃(ξ̄ ,R)

X̃ T
i ω(ξ)

∫
B̃(ξ̄ ,R)

a(ξ)b(η)ϕε(2(η, ξ))D
ξ

10(ξ0; (2(η, ξ))) f (η) dη dξ,

where ϕε(u) = ϕ(D(ε−1)u) and ϕ ∈ C∞0 (R
N ), ϕ(u) = 0 for ‖u‖ < 1, ϕ(u) = 1 for ‖u‖ > 2. Here we

have written Dξ

1 to recall that the coefficients of the differential operator D1 also depend (smoothly) on ξ
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as a parameter. By Theorem 3.2,∫
B̃(ξ̄ ,R)

X̃ T
i ω(ξ)

∫
B̃(ξ̄ ,R)

a(ξ)b(η)ϕε(2(η, ξ))D
ξ

10(ξ0; (2(η, ξ))) f (η) dη dξ

=

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
(X̃ T

i ω)(ξ)a(ξ)ϕε(2(η, ξ))D
ξ

10(ξ0; (2(η, ξ))) dξ dη

=

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)(X̃ i a)(ξ)ϕε(2(η, ξ))D

ξ

10(ξ0; (2(η, ξ))) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)ϕε(2(η, ξ))(X̃ i Dξ

1 )0(ξ0; (2(η, ξ))) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)[(Yi + Rηi )(ϕεDξ

10(ξ0; · ))](2(η, ξ)) dξ dη

=: Aε + Bε +Cε. (4-4)

(For the meaning of the symbol X̃ i Dξ

1 appearing in the term Bε, see Remark 4.6.) Now, for ε→ 0,

Aε→
∫

B̃(ξ̄ ,R)
b(η) f (η)

∫
B̃(ξ̄ ,R)

ω(ξ)(X̃ i a)(ξ)D10(ξ0; (2(η, ξ))) dξ dη

=

∫
B̃(ξ̄ ,R)

f (η)S1(ξ0)ω(η) dη =
∫

B̃(ξ̄ ,R)
ω(η)S1(ξ0)

T f (η) dη, (4-5)

where S1(ξ0) is a frozen operator of type 1, and S1(ξ0)
T is still a frozen operator of type 1, by

Proposition 4.10. Next,

Bε→
∫

B̃(ξ̄ ,R)
b(η) f (η)

∫
B̃(ξ̄ ,R)

ω(ξ)a(ξ)(X̃ i Dξ

1 )0(ξ0; (2(η, ξ))) dξ dη

=

∫
B̃(ξ̄ ,R)

f (η)S′1(ξ0)ω(η) dη =
∫

B̃(ξ̄ ,R)
ω(η)S′1(ξ0)

T f (η) dη, (4-6)

where, by Remark 4.6, S′1(ξ0) is a frozen operator of type 1, and the same is still true for S′1(ξ0)
T . Finally,

Cε =
∫

B̃(ξ̄ ,R)
b(η) f (η)

∫
B̃(ξ̄ ,R)

ω(ξ)a(ξ)[ϕεYi D10(ξ0; · )](2(η, ξ)) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)[ϕεRηi D10(ξ0; · )](2(η, ξ)) dξ dη

+

∫
B̃(ξ̄ ,R)

b(η) f (η)
∫

B̃(ξ̄ ,R)
ω(ξ)a(ξ)[(Yi + Rηi )ϕεD10(ξ0; · )](2(η, ξ)) dξ dη

=: C1
ε +C2

ε +C3
ε . (4-7)

Now

C1
ε→

∫
B̃(ξ̄ ,R)

ω(ξ)

{
PV
∫

B̃(ξ̄ ,R)
a(ξ)Yi D10(ξ0;2(η,ξ))b(η) f (η)dη

}
dξ =

∫
B̃(ξ̄ ,R)

ω(ξ)T (ξ0) f (ξ)dξ, (4-8)
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where T (ξ0) is a frozen operator of type 0. Note that the principal value exists because the kernel
Yi D10(ξ0; u) has a vanishing integral over spherical shells {u ∈ G : r1 < ‖u‖< r2} (see Theorem 4.1).

C2
ε →

∫
B̃(ξ̄ ,R)

ω(ξ)

{∫
B̃(ξ̄ ,R)

a(ξ)Rηi D10(ξ0;2(η,ξ))b(η) f (η)dη
}

dξ =
∫

B̃(ξ̄ ,R)
ω(ξ)S(ξ0) f (ξ)dξ, (4-9)

where S(ξ0) is a frozen operator of type 1. To handle C3
ε , let us perform the change of variables u=2(η, ξ),

which, by Theorem 3.3, gives

C3
ε =

∫
B̃(ξ̄ ,R)

(b f )(η)
∫
‖u‖<R

(ωa)(2(η, · )−1(u))[(Yi + Rηi )ϕεD10(ξ0; · )](u) · c(η)(1+ O(‖u‖)) du dη.

On the other hand, Yiϕε(u)= (1/ε)Yiϕ(D(1/ε)u), while Rηi ϕε(u) is uniformly bounded in ε. Hence the
change of variables D(1/ε)u = v gives

C3
ε =

∫
B̃(ξ̄ ,R)

(b f )(η)
∫
‖v‖<R/ε

(ωa)(2(η, · )−1(D(ε)v))
[

1
ε

Yiϕ(v)+ O(1)
]

· c(η)ε1−Q Dη

10(ξ0; v)(1+ O(ε‖v‖))εQ dv dη

→

∫
B̃(ξ̄ ,R)

(bc f )(η)
∫
‖v‖≤2

(ωa)(2(η, · )−1(0))Yiϕ(v)D
η

10(ξ0; v) dv dη

=

∫
B̃(ξ̄ ,R)

(ωabc f )(η)
∫
‖v‖≤2

Yiϕ(v)D
η

10(ξ0; v) dv dη

=

∫
B̃(ξ̄ ,R)

(ωabc f )(η)α(ξ0, η) dη, (4-10)

which is the integral of ω times the multiplicative part of a frozen operator of type 0. It is worthwhile
(although not logically necessary to prove the theorem) to realize that the quantity α(ξ0, η) appearing
in (4-10) actually does not depend on the function ϕ. Namely, recalling that Yiϕ(v) is supported in the
spherical shell 1≤ ‖v‖ ≤ 2 with ϕ(u)= 1 for ‖u‖ = 2 and ϕ(u)= 0 for ‖u‖ = 1, an integration by parts
gives∫

1≤‖v‖≤2
Yiϕ(v)D

η

10(ξ0; v) dv =−
∫

1≤‖v‖≤2
ϕ(v)Yi Dη

10(ξ0; v) dv+
∫
‖v‖=2

Dη

10(ξ0; v)ni dσ(v)

with ni =
∑N

j=1 bi j (u)ν j , where Yi =
∑N

j=1 bi j (u)∂u j and ν is the outer normal on ‖v‖ = 2. The

vanishing property of the kernel Yi Dξ

10(ξ0; · ) implies that if ϕ is a radial function, the first integral
vanishes. Therefore,

α(ξ0, η)=

∫
‖v‖=2

Dη

10(ξ0; v)ni dσ(v),

which also shows that α(ξ0, η) smoothly depends on η and is bounded in ξ0 (by Theorem 4.3). By
(4-4)–(4-6) and (4-8)–(4-10) we have therefore proved that

X̃ i T (ξ0) f (ξ)= S1(ξ0)
T f (ξ)+ S′1(ξ0)

T f (ξ)+ T (ξ0) f (ξ)+α(ξ0, ξ)(abc f )(ξ),
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which is a frozen operator of type 0. This completes the proof of the first statement. The proof of the fact
that if λ≥ 2, then X̃0T (ξ0) is a frozen operator of type λ− 2 is completely analogous. �

The above two lemmas imply the assertion on X̃k T (ξ0) and X̃0T (ξ0) in Theorem 4.11. To prove the
assertions about T (ξ0)X̃k and T (ξ0)X̃0 we need a way to express ξ -derivatives of the integral kernel
in terms of η-derivatives of the kernel, in order to integrate by parts. This will involve the use of right
invariant vector fields on the group G: throughout the following, we will denote by

Y R
i,k

the right invariant vector field on G satisfying Y R
i,k f (0)= Yi,k f (0).

Lemma 4.14. For any f ∈C∞0 (G) and η, ξ in a neighborhood of ξ0, we can write, for any i = 1, 2, . . . , s,
k = 1, 2, . . . , ki (recall s is the step of the Lie algebra),

X̃ i,k[ f (2( · , ξ))](η)=−(Y R
i,k f )(2(η, ξ))+ ((Rξi,k)

′ f )(2(η, ξ)), (4-11)

where (Rξi,k)
′ is a vector field of local degree ≤ i − 1 smoothly depending on ξ .

Proof. We start with the following.

Claim. For any function f defined on G, let

f ′(u)= f (−u)

(recall that −u = u−1); then the following identities hold:

Yi,k( f ′)=−(Y R
i,k f )′. (4-12)

Proof. Let us define the vector fields Ŷi,k by

Yi,k( f ′)=−(Ŷi,k f )′. (4-13)

Then, for any a ∈ G, denoting by La, Ra the corresponding operators of left and right translation,
respectively (acting on functions), we have

(Ŷi,k Ra f )′=−Yi,k((Ra f )′)=−Yi,k(L−a f ′)=−L−aYi,k f ′= L−a(−Yi,k f ′)= L−a(Ŷi,k f )′=(RaŶi,k f )′,

hence Ŷi,k are right invariant vector fields. Also, note that, for any vector field Y =
∑

a j (u)∂u j , we have

Y ( f ′)(0)=−(Y f )(0),

because
Y ( f ′)(u)=

∑
a j (u)∂u j [ f (−u)] = −

∑
a j (u)(∂u j f )(−u) implies

Y ( f ′)(0)=−
∑

a j (0)(∂u j f )(0)=−(Y f )(0).

Hence, by (4-13), we know that Ŷk f (0)= Yk f (0). Therefore Ŷk is the right invariant vector field which
coincides with Yk at the origin, that is, Ŷk = Y R

k . �
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By (3-4) and (4-12),

X̃ i,k[ f (2( · , ξ))](η)

= X̃ i,k[ f ′(2(ξ, · ))](η)= (Yi,k f ′+ Rξi,k f ′)(2(ξ, η))

=−(Y R
i,k f )′(2(ξ, η))+ Rξi,k f ′(2(ξ, η))=−(Y R

i,k f )(2(η, ξ))+ ((Rξi,k)
′ f )(2(η, ξ)), (4-14)

where

((Rξi,k)
′ f )(u)= (Rξi,k f ′)(−u)

is a differential operator of degree ≤ i − 1. This proves (4-11). �

Proof of Theorem 4.11. As we noted after Lemma 4.13, we are left to prove the assertion about T (ξ0)X̃ i

and T (ξ0)X̃0. We only give the proof for the case λ≥ 1, i = 1, . . . , q. The proof for λ≥ 2, i = 0 being
very similar. Like in the proof of Lemma 4.13, it is enough to consider the part k ′ of the kernel of T , the
proof for k ′′ being completely analogous (see Definition 4.5). Let us expand

k ′(ξ0; ξ, η)=

{ Hm∑
j=1

a j (ξ)b j (η)D j0(ξ0; · )+ a0(ξ)b0(η)D00(ξ0; · )

}
(2(η, ξ)),

where D00(ξ0; · ) has bounded Yi -derivatives (i = 1, 2, . . . , q). We can consider each of the terms

T j (ξ0)X̃ i f (ξ)≡
∫

a j (ξ)b j (η)D
η

j0(ξ0;2(η, ξ))X̃ i f (η) dη

(this time it is important to recall the η-dependence of the coefficients of D j ) and distinguish 2 cases:

(i) D j0 is homogeneous of degree ≥ 2− Q or it is regular (that is, D j0 has bounded Yi -derivatives);

(ii) T j (ξ0) is a frozen operator of type 1 and D j0 is homogeneous of degree 1− Q.

Case (i). We can integrate by parts, recalling that the transpose of X̃ i is

(X̃ i )
T g(η)=−X̃ i g(η)+ ci (η)g(η)

with ci smooth functions:

T j (ξ0)X̃ i f (ξ)

=

∫
ci (η)a j (ξ)b j (η)D

η

j0(ξ0;2(η, ξ)) f (η) dη−
∫

a j (ξ)(X̃ i b j )(η)D
η

j0(ξ0;2(η, ξ)) f (η) dη

−

∫
a j (ξ)b j (η)X̃ i [D

η

j0(ξ0;2( · , ξ))](η) f (η) dη−
∫

a j (ξ)b j (η)(X̃
η

i Dη

j )0(ξ0;2(η, ξ)) f (η) dη

= A(ξ)+ B(ξ)+C(ξ)+ D(ξ).

Now, A(ξ)+ B(ξ) is still an operator of type λ, applied to f ; in particular, it can be seen as operator of
type λ−1; the same is true for D(ξ), by Remark 4.6. To study C(ξ), we apply Lemma 4.14, which gives

X̃ i [D
η

j0(ξ0;2( · , ξ))](η)=−(Y R
i Dη

j0)(ξ0,2(η, ξ))+ ((R
ξ
i )
′Dη

j0)(ξ0,2(η, ξ)).
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Since Y R
i is homogeneous of degree 1, a j (ξ)b j (η)Y R

i Dη

j0(ξ0,2(η, ξ)) is a kernel of type λ− 1. Since

(Rξi )
′ is a differential operator of degree ≤ 0, the kernel a j (ξ)b j (η)((R

ξ
i )
′Dη

j0)(ξ0,2(η, ξ)) is of type λ.
Note that, even when the coefficients of the differential operator D j (in the expression D j0(ξ0;2(η, ξ)))

do not depend on ξ and η, this procedure introduces, with the operator (Rξi )
′, a new ξ -dependence of the

coefficients. Compare this with our remark in the proof of Lemma 4.12.

Case (ii). In this case the kernel (Y R
i D j0) is singular, so that the computation must be handled with

more care. We can write

T j (ξ0)X̃ i f (ξ)= lim
ε→0

∫
a j (ξ)b j (η)ϕε(2(ξ, η))D j0(ξ0;2(η, ξ))X̃ i f (η) dη ≡ lim

ε→0
Tε(ξ)

with ϕε as in the proof of Lemma 4.13. Note that, choosing a radial ϕ, we have ϕε(2(ξ, η))=ϕε(2(η, ξ)).
Then

Tε(ξ)=
∫

ci (η)a j (ξ)b j (η)ϕε(2(ξ, η))D j0(ξ0;2(η, ξ)) f (η) dη

−

∫
a j (ξ)(X̃ i b j )(η)ϕε(2(ξ, η))D j0(ξ0;2(η, ξ)) f (η) dη

−

∫
a j (ξ)b j (η)X̃ i [ϕε(2( · , ξ))D j0(ξ0;2( · , ξ))](η) f (η) dη

−

∫
a j (ξ)b j (η)ϕε(2(ξ, η))(X̃

η

i Dη

j )0(ξ0;2(η, ξ)) f (η) dη

=: Aε(ξ)+ Bε(ξ)+Cε(ξ)+ Dε(ξ).

Now Aε(ξ)+Bε(ξ)+Dε(ξ) converge to an operator of type λ, as A(ξ), B(ξ), D(ξ) are in Case (i), while,
by Theorem 3.2 and Lemma 4.14,

Cε(ξ)= −
∫

a j (ξ)b j (η) f (η)(Yiϕε)(2(η, ξ))D j0(ξ0;2(η, ξ)) dη

−

∫
a j (ξ)b j (η) f (η)(Rξi ϕε)(2(η, ξ))D j0(ξ0;2(η, ξ)) dη

+

∫
a j (ξ)b j (η) f (η)ϕε(2(η, ξ))(Y R

i D j0)(ξ0,2(η, ξ)) dη

−

∫
a j (ξ)b j (η) f (η)ϕε(2(η, ξ))((R

ξ
i )
′D j0)(ξ0,2(η, ξ)) dη

=: Eε(ξ)+ Fε(ξ)+Gε(ξ)+ Hε(ξ).

Now Hε(ξ) tends to an operator of type 1 and Gε(ξ) tends to

PV
∫

a j (ξ)b j (η) f (η)(Y R
i D j0)(ξ0,2(η, ξ)) dη,

which is an operator of type 0. As to Eε(ξ), the same computation as in the proof of Lemma 4.13 gives

Eε(ξ)→ α(ξ0, ξ)(abc f )(ξ)
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with

α(ξ0, ξ)=

∫
Yiϕ(v)D

ξ

10(ξ0; v) dv,

which is the multiplicative part of an operator of type 0. A similar computation shows that Fε(ξ)→ 0. �

Let us come to the second main result of this section. In [Rothschild and Stein 1976, corollary on
p. 296], the following fact is proved for a family of Hörmander’s vector fields without the drift X̃0: for
any frozen operator T (ξ0) of type 1, i = 1, 2, . . . , q, there exist operators Ti j (ξ0), Ti (ξ0) of type 1 such
that

X̃ i T (ξ0)=

q∑
j=1

Ti j (ξ0)X̃ j + Ti (ξ0).

This possibility of exchanging the order of integral and differential operators will be crucial in the proof
of representation formulas. However, such an identity cannot be proved in this form when the drift X̃0 is
present. Instead, we are going to prove the following, which will be enough for our purposes.

Theorem 4.15. If T (ξ0) is a frozen operator of type λ≥ 1, i = 1, 2, . . . , q , then

X̃ i T (ξ0)=

q∑
k=1

T i
k (ξ0)X̃k +

q∑
h, j=1

ãhj (ξ0)T hi (ξ0)X̃ j + T i
0 (ξ0)+ T i (ξ0)L̃0, (4-15)

where T i
k (ξ0) (k = 0, 1, . . . , q) and T hi (ξ0) are frozen operators of type λ, T i (ξ0) are frozen operators of

type λ+ 1, and ãhj (ξ0) are the frozen coefficients of L̃0.
If T (ξ0) is a frozen operator of type λ≥ 2, then

X̃0T (ξ0)=

q∑
k=1

Tk(ξ0)X̃k +

q∑
h, j=1

ãhj (ξ0)T h(ξ0)X̃ j + T0(ξ0)+ T (ξ0)L̃0, (4-16)

where Tk(ξ0) (k = 0, 1, . . . , q) and T h(ξ0) are frozen operators of type λ− 1, T (ξ0) is a frozen operator
of type λ.

We start with the following lemma, similar to that proved in [Rothschild and Stein 1976, p. 296].

Lemma 4.16. For any vector field X̃ j0,k0 ( j0=1, 2, . . . , s, k0=1, 2, . . . , k j0), there exist smooth functions

{a j0k0η
jk } j=1,2,...,s

k=1,2,...,h j

having local degree ≥max{ j − j0, 0} and smoothly depending on η, such that, for any f ∈ C∞0 (G), one
can write

X̃ j0,k0[ f (2(η, · ))](ξ)=
∑

j=1,2,...,s
k=1,2,...,k j

a j0k0η
jk (2(η, ξ))X̃ j,k[ f (2( · , ξ))](η)+ (R

ξ,η

j0,k0
f )(2(η, ξ)), (4-17)

where Rξ,ηj0 is a vector field of local degree ≤ j0− 1, smoothly depending on ξ, η.
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Proof. By Theorem 3.2 we know that

X̃ j0,k0[ f (2(η, · ))](ξ)= (Y j0,k0 f + Rηj0,k0
f )(2(η, ξ))≡ (Zηj0,k0

f )(2(η, ξ)), (4-18)

where Zηj0,k0
is a vector field of local degree ≤ j0, smoothly depending on η. To rewrite (Zηj0,k0

f ) in a
suitable form, we start from the following identities:

Yi,k =
∂

∂uik
+

∑
i<l≤s

kl∑
r=1

gik
lr (u)

∂

∂ulr
(4-19)

for any i = 1, 2, . . . , s and k = 1, 2, . . . , ki ;

Yi,k =
∑

gik
lr (u)Y

R
l,r , (4-20)

where gik
lr (u) are homogeneous of degree l − i ; see [Rothschild and Stein 1976, p. 295]. Hence we can

write

Zηj0,k0
=

∑
aηjk(u)

∂

∂u jk
,

where a jk has local degree ≥ j − j0 and smoothly depends on η. By inverting (for any i, k) the triangular
system (4-19), we obtain

∂

∂u jk
= Y j,k +

∑
j<l≤s

kl∑
r=1

f jk
lr (u)Yl,r ,

where each f jk
lr (u) is homogeneous of degree l − j . Also using (4-20), we have

(Zηj0,k0
f )(u)=

∑
aηjk(u)[(Y j,k f )(u)+

∑
j<l≤s

f jk
lr (u)(Yl,r f )(u)] =

∑
bηlr (u)(Y

R
l,r f )(u), (4-21)

where

bηlr has local degree≥max{l − j0, 0} (4-22)

and smoothly depends on η. Then, by Lemma 4.14,

(Zηj0,k0
f )(2(η, ξ))=

∑
l,r

−bηlr (2(η, ξ))X̃l,r [ f (2( · , ξ))](η)+
∑
l,r

(bηlr (R
ξ
l,r )
′ f )(2(η, ξ)), (4-23)

where (Rξl,r )
′ is a differential operator of local degree ≤ l − 1, hence the differential operator on G

Rξ,ηj0,k0
≡

∑
l,r

bηlr (R
ξ
l,r )
′ has local degree≤ j0− 1 (4-24)

and depends smoothly on ξ, η. Collecting (4-18), (4-22), (4-23), (4-24), the lemma is proved, with
a j0k0η

jk =−bηjk . �

Thanks to this lemma, we can prove the following, which is similar to [Rothschild and Stein 1976,
Theorem 9].
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Theorem 4.17. (i) Suppose T (ξ0) is a frozen operator of type λ ≥ 1. Given a vector field X̃ i for
i = 1, 2, . . . , q, there exist frozen operators T i (ξ0) of type λ, and T i

jk(ξ0), frozen operators of type
λ+ j − 1, such that

X̃ i T (ξ0)=
∑
j,k

T i
jk(ξ0)X̃ j,k + T i (ξ0). (4-25)

(ii) Suppose T (ξ0) is a frozen operator of type λ≥ 2. There exist T 0(ξ0) and T 0
jk(ξ0), frozen operators of

type λ− 1 and λ+max{ j − 2, 0}, respectively, such that

X̃0T (ξ0)=
∑
j,k

T 0
jk(ξ0)X̃ j,k + T 0(ξ0). (4-26)

Proof. First of all, it is enough to consider the part k ′ of the kernel of T (ξ0), the proof for k ′′ being
completely analogous (see Definition 4.5).

(i) If T (ξ0) is a frozen operator of type λ≥ 1 with kernel k ′, we can write it as

T (ξ0) f (ξ)=
∫

a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη+ T ′(ξ0) f (ξ),

where D0(ξ0, · ) is homogeneous of degree λ− Q and T ′(ξ0) is a frozen operator of degree λ+ 1. Since
X̃ i T ′(ξ0) is a frozen operator of type λ, it already has the form T i (ξ0) required by the theorem, hence it
is enough to prove that

X̃ i

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

can be rewritten in the form ∑
j,k

T i
jk(ξ0)X̃ j,k f (ξ)+ T i (ξ0) f (ξ)

with T i
jk(ξ0) and T i (ξ0) frozen operators of type λ+ j−1 and λ, respectively. Next, we have to distinguish

two cases.

Case 1: λ≥ 2. In this case the X̃ i derivative can be taken under the integral sign, writing

X̃ i

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

=

∫
(X̃ i a)(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη+

∫
a(ξ)X̃ i [D0(2(η, · ))](ξ)b(η) f (η) dη

=: A(ξ)+ B(ξ).

Now A(ξ) is a frozen operator of type λ, while applying Lemma 4.16 with j0 = 1 we get

B(ξ)=
∫

a(ξ)
∑
l,r

ai
lr (2(η, ξ))X̃l,r [D0(ξ0;2( · , ξ))](η)b(η) f (η) dη

+

∫
a(ξ)(Rξi D0)(ξ0;2(η, ξ))b(η) f (η) dη

=: C(ξ)+ D(ξ),
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where Rξi are differential operators of local degree ≤ 0, and the ai
lr have local degree ≥ l−1. Hence D is

a frozen operator of type λ, while, since the transposed vector field of X̃l,r is

X̃ T
l,r =−X̃l,r + cl,r

with cl,r smooth functions,

C(ξ)= − a(ξ)
∑
l,r

∫
X̃l,r [ai

lr (2( · , ξ))b( · )](η)D0(ξ0;2(η, ξ)) f (η) dη

+ a(ξ)
∑
l,r

∫
ai

lr (2(η, ξ))D0(ξ0;2(η, ξ))cl,r (η)b(η) f (η) dη

− a(ξ)
∑
l,r

∫
ai

lr (2(η, ξ))D0(ξ0;2(η, ξ))b(η)X̃l,r f (η) dη.

The first two terms in the last expression are still frozen operators of type λ applied to f , while the third
is a sum of operators of type λ+ l − 1 applied to X̃l,r f , as required by the theorem.

Case 2: λ= 1. In this case we have to compute the derivative of the integral in a distributional sense, as
was already done in the proof of Lemma 4.13. With the same meaning of ϕε, let us compute

lim
ε→0

X̃ i

∫
a(ξ)ϕε(2(η, ξ))D0(ξ0;2(η, ξ))b(η) f (η) dη.

Actually, this gives exactly the same result as in case 1:

X̃ i

∫
a(ξ)ϕε(2(η,ξ))D0(ξ0;2(η,ξ))b(η) f (η)dη

=

∫
(X̃ i a)(ξ)ϕε(2(η,ξ))D0(ξ0;2(η,ξ))b(η) f (η)dη+

∫
a(ξ)X̃ i [(ϕεD0)(2(η,·))](ξ)b(η) f (η)dη

= Aε(ξ)+ Bε(ξ),

where Aε(ξ)→
∫
(X̃ i a)(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη and

Bε(ξ)=
∫

a(ξ)
∑
l,r

ai
lr (2(η, ξ))X̃l,r [ϕε(2( · , ξ))D0(ξ0;2( · , ξ))](η)b(η) f (η) dη

+

∫
a(ξ)(Rξi (ϕεD0))(ξ0;2(η, ξ))b(η) f (η) dη

=: Cε(ξ)+ Dε(ξ),

where Cε(ξ) converges to the expression called C(ξ) in the computation of case 1; as for Dε(ξ),

Rξi (ϕεD0)= (Rξi ϕε)D0+ϕεRξi D0.

Now, ϕεRξi D0→ Rξi D0 while (Rξi ϕε)D0→ 0, Rξi being a vector field of local degree ≤ 0. Hence
Dε(ξ) also converges to the expression called D(ξ) in the computation of case 1, and we are done.
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(ii) Now let T (ξ0) be a frozen operator of type λ≥ 2 with kernel k ′. As in (i), it is enough to prove that

X̃0

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη,

where D0 is homogeneous of degree λ− Q can be rewritten in the form∑
j,k

T 0
jk(ξ0)X̃ j,k f (ξ)+ T 0(ξ0) f (ξ)

with T 0
jk(ξ0) and T 0(ξ0) frozen operators of type λ+ j − 2 and λ− 1, respectively. Let us consider only

the case λ≥ 3, the case λ= 2 being handled with the modification seen in (i), Case 2. By Lemma 4.16,

X̃0

∫
a(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

=

∫
(X̃0a)(ξ)D0(ξ0;2(η, ξ))b(η) f (η) dη

+

∫
a(ξ)

∑
l,r

a0
lr (2(η, ξ))X̃l,r [D0(ξ0;2( · , ξ))](η)b(η) f (η) dη

+

∫
a(ξ)(Rξ0 D0)(ξ0;2(η, ξ))b(η) f (η) dη

=: A(ξ)+C(ξ)+ D(ξ),

where Rξ0 are now differential operators of local degree ≤ 1, and the a0
lr have local degree ≥max{ j−2, 0}.

Then A(ξ) is a frozen operator of type λ, applied to f ; D(ξ) is a frozen operator of type λ− 1, applied
to f . Moreover,

C(ξ)= − a(ξ)
∑
l,r

∫
X̃l,r [a0

lr (2( · , ξ))b( · )](η)D0(ξ0;2(η, ξ)) f (η) dη

+ a(ξ)
∑
l,r

∫
a0

lr (2(η, ξ))D0(ξ0;2(η, ξ))cl,r (η)b(η) f (η) dη

− a(ξ)
∑
l,r

∫
a0

lr (2(η, ξ))D0(ξ0;2(η, ξ))b(η)X̃l,r f (η) dη,

where the first two terms are still frozen operators of type λ, applied to f , while the third is the sum of
frozen operators of type λ+max{ j − 2, 0} applied to X̃l,r f . �

Proof of Theorem 4.15. It suffices to prove (4-15), since the proof of (4-16) is similar. So, if X̃ i T (ξ0) is
like in (4-15), let us apply Theorem 4.17 and rewrite X̃ i T (ξ0) like in (4-25). Now, let us consider one of
the terms T i

jk(ξ0)X̃ j,k appearing in (4-25).
If j = 1, the term is already in the form required by the theorem we are proving.
If j = 2, then X̃2,k can be written as a combination of commutators of the vector fields X̃1, X̃2, . . . , X̃q ,

plus (possibly) the field X̃0. Then T i
2k(ξ0)X̃2,k contains terms T i

2k(ξ0)X̃h X̃ j and possibly a term T i
2k(ξ0)X̃0.



1830 MARCO BRAMANTI AND MAOCHUN ZHU

By Theorem 4.17, we know T i
2k is a frozen operator of type λ+ 1. Now

T i
2k(ξ0)X̃h X̃ j = (T i

2k(ξ0)X̃h)X̃ j = T i
k (ξ0)X̃ j ,

where, by Theorem 4.11, T i
k (ξ0) is a frozen operator of type λ; on the other hand, by (4-2),

T i
2k(ξ0)X̃0 = T i

2k(ξ0)

(
L̃0−

q∑
h, j=1

ãhj (ξ0)X̃h X̃ j

)

= T i
2k(ξ0)L̃0−

q∑
h, j=1

ãhj (ξ0)(T i
2k(ξ0)X̃h)X̃ j = T i

2k(ξ0)L̃0−

q∑
h, j=1

ãhj (ξ0)T i
h,k(ξ0)X̃ j ,

with T i
2k(ξ0) and T i

h,k(ξ0) frozen operators of type λ+ 1 and λ, respectively, which is in the form allowed
by the thesis of the theorem we are proving.

Finally, if j > 2, it is enough to look at the final part of the differential operator X̃ j,k . It is always
possible to rewrite X̃ j,k either as X̃ j−1,k X̃1,k or as X̃ j−2,k X̃2,k . In the first case, we have

T i
jk(ξ0)X̃ j,k = (T i

jk(ξ0)X̃ j−1,k)X̃1,k = T ′ijk(ξ0)X̃1,k,

with T ′ijk(ξ0) frozen operator of type λ, which is already in the proper form; in the second case, we have

T i
jk(ξ0)X̃ j,k = (T i

jk(ξ0)X̃ j−2,k)X̃2,k = T
′i
j (ξ0)X̃2,k

with T ′ijk(ξ0) frozen operator of type λ+ 1, and then we can proceed as in the case j = 2. �

4C. Parametrix and representation formulas. Throughout this subsection we will make extensive use
of computations on frozen operators of type λ. To make our formulas more readable, we will use the
symbols

T (ξ0), S(ξ0), P(ξ0)

(possibly with some indices) to denote frozen operators of type 0, 1, 2, respectively.
In order to prove representation formulas for second order derivatives, we start with the following

parametrix identities, analogous to [Rothschild and Stein 1976, Theorem 10; Bramanti and Brandolini
2000a, Theorem 3.1].

Theorem 4.18. Given a ∈ C∞0 (B̃(ξ̄ , R)), there exist Si j (ξ0), S0(ξ0), S∗i j (ξ0), S∗0 (ξ0), frozen operators of
type 1 and P(ξ0), P∗(ξ0), frozen operators of type 2 (over the ball B̃(ξ̄ , R)) such that

a I = L̃T
0 P∗(ξ0)+

q∑
i, j=1

ãi j (ξ0)S∗i j (ξ0)+ S∗0 (ξ0), (4-27)

aI = P(ξ0)L̃0+

q∑
i, j=1

ãi j (ξ0)Si j (ξ0)+ S0(ξ0), (4-28)



L p AND SCHAUDER ESTIMATES FOR OPERATORS STRUCTURED ON HÖRMANDER VECTOR FIELDS 1831

where I denotes the identity. Moreover, S∗i j (ξ0), S∗0 (ξ0), P∗(ξ0) are modeled on 0T , while Si j (ξ0),
S0(ξ0), P(ξ0) are modeled on 0. Explicitly,

P∗(ξ0) f (ξ)=−
a(ξ)
c(ξ)

∫
B̃
0T (ξ0;2(η, ξ)) b(η) f (η) dη,

P(ξ0) f (ξ)=−b(ξ)
∫

B̃

a(η)
c(η)

0(ξ0;2(η, ξ)) f (η) dη,

where c is the function appearing in Theorem 3.3(c).

Sketch of the proof. Let us define

P∗(ξ0) f (ξ)=−
a(ξ)
c(ξ)

∫
B̃
0T (ξ0;2(η, ξ))b(η) f (η) dη,

where a, b ∈ C∞0 (B̃(ξ̄ , R)) such that ab = a and c(ξ) is the function appearing in the formula of change
of variables (3-6). Let us compute L̃T

0 P∗(ξ0) f for f ∈ C∞0 (B̃(ξ̄ , R)). We can apply a distributional
argument like in the proof of Lemma 4.13. For ω ∈ C∞0 (B̃(ξ̄ , R)), let us evaluate∫

B̃
L̃0ω(ξ)P∗(ξ0) f (ξ) dξ = lim

ε→0

∫
B̃

L̃0ω(ξ)P∗ε (ξ0) f (ξ) dξ,

where

P∗ε (ξ0) f (ξ)=−
a(ξ)
c(ξ)

∫
B̃
ϕε(2(η, ξ))0

T (ξ0;2(η, ξ))b(η) f (η) dη

with ϕε as in the proof of Lemma 4.13. Now, computing the integral∫
B̃

L̃0ω(ξ)P∗ε (ξ0) f (ξ) dξ

and taking its limit for ε→0, by the same techniques used in Section 4B, we can prove (4-27). Transposing
this identity, one finds (4-28). �

Now, starting from (4-28) and reasoning as in the proof of [Bramanti and Brandolini 2000a, Theo-
rem 3.2], applying Theorem 4.11 and Theorem 4.15, one can easily prove the next two theorems.

Theorem 4.19 (representation of X̃m X̃lu by frozen operators). Let a ∈ C∞0 (B̃(ξ̄ , R)), ξ0 ∈ B̃(ξ̄ , R).
Then, for any m, l = 1, 2, . . . , q, there exist frozen operators over the ball B̃(ξ̄ , R) such that, for any
u ∈ C∞0 (B̃(ξ̄ , R)),

X̃m X̃l(au)= Tlm(ξ0)L̃0u+
q∑

k=1

Tlm,k(ξ0)X̃ku+ T 0
lm(ξ0)u

+

q∑
i, j=1

ãi j (ξ0)

{ q∑
k=1

T i j
lm,k(ξ0)X̃ku+

q∑
h,k=1

ãhk(ξ0)T
′i j

lm,h(ξ0)X̃ku+ Si j
lm(ξ0)L̃0u+ T i j

lm(ξ0)u
}
. (4-29)
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(All the T···(ξ0) are frozen operators of type 0 and Si j
lm(ξ0) are of type 1.) Also,

X̃m X̃l(au)= Tlm(ξ0)L̃u+ Tlm(ξ0)

( q∑
i, j=1

[ãi j (ξ0)− ãi j ( · )]X̃ i X̃ j u
)
+

q∑
k=1

Tlm,k(ξ0)X̃ku+ T 0
lm(ξ0)u

+

q∑
i, j=1

ãi j (ξ0)

{ q∑
k=1

T i j
lm,k(ξ0)X̃ku+

q∑
h,k=1

ãhk(ξ0)T
′i j

lm,h(ξ0)X̃ku+ Si j
lm(ξ0)L̃u

+ Si j
lm(ξ0)

( q∑
i, j=1

[ãi j (ξ0)− ãi j ( · )]X̃ i X̃ j u
)
+ T i j

lm(ξ0)u
}
. (4-30)

Remark 4.20. The representation formulas of the above theorem have a cumbersome aspect, due to the
presence of the coefficients ãi j (ξ0) which appear several times as multiplicative factors. Anyway, if we
agree to leave implicitly understood in the symbol of frozen operators the possible multiplication by the
coefficients ãi j , our formulas assume the following more compact form

X̃m X̃l(au)= Tlm(ξ0)L̃0u+
q∑

k=1

T lm
k (ξ0)X̃ku+ T 0

lm(ξ0)u

and

X̃m X̃l(au)= Tlm(ξ0)L̃u+ Tlm(ξ0)

( q∑
i, j=1

[ãi j (ξ0)− ãi j ( · )]X̃ i X̃ j u
)
+

q∑
k=1

T lm
k (ξ0)X̃ku+ T 0

lm(ξ0)u.

In the proof of a priori estimates, when we take Cα

X̃
or L p norms of both sides of these identities, the

multiplicative factors ãhj will be simply bounded by taking, respectively, the Cα

X̃
or the L∞ norms of the

ãhj ; hence leaving these factors implicitly understood is harmless.

The above theorem is suited to the proof of Cα

X̃
estimates for X̃ i X̃ j u. In order to prove L p estimate for

X̃ i X̃ j u we need the following variation.

Theorem 4.21 (representation of X̃m X̃lu by variable operators). Given a ∈ C∞0 (B̃(ξ̄ , R)), for any
m, l=1, 2, . . . , q , there exist variable operators over the ball B̃(ξ̄ , R) such that, for any u∈C∞0 (B̃(ξ̄ , R)),

X̃m X̃l(au)

= TlmL̃u+
q∑

i, j=1

[ãi j , Tlm]X̃ i X̃ j u+
q∑

k=1

Tlm,k X̃ku+ T 0
lmu

+

q∑
i, j=1

ãi j

{ q∑
k=1

T i j
lm,k X̃ku+

q∑
h,k=1

ãhk T ′i j
lm,h X̃ku+ Si j

lmL̃u+
q∑

i, j=1

[ãi j , Si j
lm]X̃ i X̃ j u+ T i j

lmu
}
. (4-31)

Here all the T··· are variable operators of type 0, Si j
lm is of type 1, [a, T ] denotes the commutator of the

multiplication for a with the operator T , and ãi j are the coefficients of the operator L̃ (which are no
longer frozen at ξ0).
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Remark 4.22. The above representation formula can be written in a shorter way as

X̃m X̃l(au)= TlmL̃u+
q∑

i, j=1

[ãi j , Tlm] X̃ i X̃ j u+
q∑

k=1

Tlm,k X̃ku+ T 0
lmu

if we leave understood in the symbol of variable operators the possible multiplication by the coefficients
ãi j ; see the previous remark.

5. Singular integral estimates for operators of type zero

The proof of a priori estimates on the derivatives X̃ i X̃ j u will follow, as will be explained in Section 6 and
Section 7, combining the representation formulas proved in Section 4C with suitable Cα or L p estimates
for “operators of type zero”. To be more precise, the results we need are the Cα

X̃
(B̃(ξ̄ , R)) continuity

of a frozen operator of type zero and the L p(B̃(ξ̄ , R)) continuity of a variable operator of type zero,
together with the L p(B̃(ξ̄ , r)) estimate for the commutator of a variable operator of type zero with the
multiplication with a VMO function, implying that the L p(B̃(ξ̄ , r)) norm of the commutator vanishes
as r → 0. All these results will be derived in the present section, as an application of abstract results
proved in [Bramanti and Zhu 2012] in the context of locally homogeneous spaces (see Section 3C). To
apply them, we need to check that our kernels of type zero satisfy suitable properties. Moreover, to study
variable operators of type zero, we also have to resort to the classical technique of expansion in series of
spherical harmonics, dating back to Calderón and Zygmund [1957], and already applied in the framework
of vector fields in [Bramanti and Brandolini 2000b; 2000a]. This study will be split into two subsections,
the first devoted to frozen operators on Cα and the second to variable operators on L p.

5A. Cα

X̃
continuity of frozen operators of type 0. The goal of this section is the proof of the following.

Theorem 5.1. Let B̃(ξ̄ , R) be as before, ξ0 ∈ B̃(ξ̄ , R), and let T (ξ0) be a frozen operator of type λ≥ 0
over B̃(ξ̄ , R). Then there exists c > 0 depending on R, {X̃ i }, α, and µ, such that, for any r < R and
u ∈ Cα

X̃ ,0
(B̃(ξ̄ , r)),

‖T (ξ0)u‖Cα

X̃
(B̃(ξ̄ ,r)) ≤ c‖u‖Cα

X̃
(B̃(ξ̄ ,r)). (5-1)

To prove this, we will apply theorems proved in [Bramanti and Zhu 2012] about the Cα continuity of
singular and fractional integrals in spaces of locally homogeneous type, taking

�k = B̃
(
ξ̄ ,

k R
k+ 1

)
for k = 1, 2, 3, . . . . (5-2)

Following notation and assumptions in Definition 4.5, our frozen kernel of type zero can be written as

k(ξ0; ξ, η)= k ′(ξ0; ξ, η)+ k ′′(ξ0; ξ, η).
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We will prove Theorem 5.1 for the operator with kernel k ′, the proof for k ′′ being completely analogous.
Let us split k ′ as

k ′(ξ0;ξ,η)=a1(ξ)b1(η)D10(ξ0;2(η,ξ))+

{ Hm∑
i=2

ai (ξ)bi (η)Di0(ξ0;·)+a0(ξ)b0(η)D00(ξ0;·)

}
(2(η,ξ))

=: kS(ξ,η)+kF (ξ,η),

where D10(ξ0; u) is homogeneous of degree −Q while all the kernels Di0(ξ0; u) are homogeneous of
some degree ≥ 1− Q and D00(ξ0; u) is regular. Recall that all these kernels may also have an explicit
(smooth) dependence on ξ, η; we will write Dξ,η

i 0(ξ0;2(η, ξ)) to point out this fact when it is important.
We want to apply [Bramanti and Zhu 2012, Theorem 5.4] (about singular integrals) to the kernel kS

and [Bramanti and Zhu 2012, Theorem 5.8] (about fractional integrals) to each term of the kernel kF .
We start with the following result, very similar to [Bramanti and Brandolini 2000a, Proposition 2.17].

Proposition 5.2. Let W ξ,η( · ) be a function defined on the homogeneous group G, smooth outside the
origin and homogeneous of degree `− Q for some nonnegative integer `, smoothly depending on the
parameters ξ, η ∈ B̃(ξ̄ , R), and let

K (ξ, η)=W ξ,η(2(η, ξ))

be defined for ξ, η ∈ B̃(ξ̄ , R). Then K satisfies the following.

(i) The growth condition: there exists a constant c such that

|K (ξ, η)| ≤ c · sup
‖u‖=1

|W ξ,η(u)| · dX̃ (ξ, η)
`−Q .

(ii) The mean value inequality: there exists a constant c> 0 such that, for every ξ0, ξ, η with dX̃ (ξ0, η)≥

2dX̃ (ξ0, ξ),

|K (ξ0, η)− K (ξ, η)| + |K (η, ξ0)− K (η, ξ)| ≤ C
dX̃ (ξ0, ξ)

dX̃ (ξ0, η)Q+1−` , (5-3)

where the constant C has the form

c sup
‖u‖=1

ξ,η∈B̃(ξ̄ ,R)

{|∇u W ξ,η(u)| + |∇ξW ξ,η(u)| + |∇ηW ξ,η(u)|}.

(iii) The cancellation property: if `= 0 and W satisfies the vanishing property∫
r<‖u‖<R

W ξ,η(u) du = 0 for every R > r > 0 and ξ, η ∈ B̃(ξ̄ , R), (5-4)

then, for any positive integer k, for every ε2>ε1>0 and ξ ∈�k (see (5-2)) such that B̃(ξ, ε2)⊂�k+1,∣∣∣∣∫
�k+1,ε1<ρ(ξ,η)<ε2

K (ξ, η) dη
∣∣∣∣+ ∣∣∣∣∫

�k+1,ε1<ρ(ξ,η)<ε2

K (η, ξ) dη
∣∣∣∣≤ C · (ε2− ε1), (5-5)
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where the constant C has the form

c sup
‖u‖=1

ξ,η∈B̃(ξ̄ ,R)

{|W ξ,η(u)| + |∇ξW ξ,η(u)| + |∇ηW ξ,η(u)|}.

Proof. (i) is trivial, by the homogeneity of W , and the equivalence between dX̃ and ρ (see Lemma 3.9).
In order to prove (ii), fix ξ0, η and let r = 1

2ρ(η, ξ0). Condition ρ(η, ξ0) > 2ρ(ξ, ξ0) means that ξ is a
point ranging in B̃r (ξ0). Applying (3-18) to the function

f (ξ)= K (ξ, η),

we can write

| f (ξ)− f (ξ0)| ≤ cdX̃ (ξ, ξ0)

( q∑
i=1

sup
ζ∈B̃(ξ0,

3
4 dX̃ (ξ0,η))

|X̃ i f (ζ )| + dX̃ (ξ, ξ0) sup
ζ∈B̃(ξ0,

3
4 dX̃ (ξ0,η))

|X̃0 f (ζ )|
)
.

Noting that, for ζ ∈ B̃(ξ0,
3
4 dX̃ (ξ0, η)),

|X̃ i K ( · , η)(ζ )| = |X̃ i (W ζ,η(2( · , η)))(ζ )+ (X̃ i W ·,η(2(ζ, η)))(ζ )|

≤ |(Yi W + Rηi W )(2(η, ζ ))| + |(X̃ i W ·,η(2(ζ, η)))(ζ )|

and recalling that, by Remark 4.6, ∇ζW ζ,η(u) has the same u homogeneity as W ζ,η(u), we get

|X̃ i K ( · , η)(ζ )| ≤ sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

|∇u W ξ,η(u)|
c

ρ(ζ, η)Q−`+1 + sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

|∇ζW ζ,η(u)|
c

ρ(ζ, η)Q−`

≤ sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

{|∇u W ζ,η(u)| + |∇ζW ζ,η(u)|}
c

dX̃ (ξ0, η)Q−`+1 .

Analogously,

|X̃0K ( · , η)(ζ )| ≤ sup
‖u‖=1

ζ,η∈B̃(ξ̄ ,R)

{|∇u W ζ,η(u)| + |∇ζW ζ,η(u)|}
c

dX̃ (ξ0, η)Q−`+2 ,

hence

|K (ξ, η)− K (ξ0, η)| ≤ C
dX̃ (ξ, ξ0)

dX̃ (ξ0, η)Q−`+1

with
C = c sup

‖u‖=1
ζ,η∈B̃(ξ̄ ,R)

{|∇u W ζ,η(u)| + |∇ζW ζ,η(u)|}.

To get the analogous bound for |K (η, ξ0)− K (η, ξ)|, it is enough to apply the previous estimate to the
function

K̃ (ξ, η)= W̃ ξ,η(2(η, ξ)) with W̃ ξ,η(u)=W η,ξ (u−1).

This completes the proof of (ii).



1836 MARCO BRAMANTI AND MAOCHUN ZHU

To prove (iii), we first ignore the dependence on the parameters ξ, η, and then we will show how to
modify our argument to take them into account. By the change of variables u =2(η, ξ), Theorem 3.3(c)
gives ∫

�k+1,ε1<ρ(ξ,η)<ε2

W (2(η, ξ)) dη = c(ξ)
∫
ε1<‖u‖<ε2

W (u)(1+ω(ξ, u))) du,

which, by the vanishing property of W , equals

c(ξ)
∫
ε1<‖u‖<ε2

W (u)ω(ξ, u) du.

Then∣∣∣∣∫
�k+1,ε1<ρ(ξ,η)<ε2

W (2(η, ξ)) dη
∣∣∣∣≤ c ·

∫
ε1<‖u‖<ε2

|W (u)|‖u‖ du

≤ c · sup
‖u‖=1

|W | ·
∫
ε1<‖u‖<ε2

‖u‖1−Q du ≤ c · sup
‖u‖=1

|W | · (ε2− ε1).

Analogously, one can prove the bound on W (2(ξ, η)). Now, to keep track of the possible dependence of
W on the parameters ξ, η, let us write∫
�k+1,ε1<ρ(ξ,η)<ε2

W ξ,η(2(η, ξ)) dη

=

∫
�k+1,ε1<ρ(ξ,η)<ε2

W ξ,ξ (2(η, ξ)) dη+
∫
�k+1,ε1<ρ(ξ,η)<ε2

[W ξ,η(2(η, ξ))−W ξ,ξ (2(η, ξ)) ] dη

=: I + II.

The term I can be bounded as above, while

|W ξ,η(u)−W ξ,ξ (u)| ≤ |ξ − η||∇ηW ξ,η′(u)|

for some point η′ near ξ and η. Recalling again that the function ∇ηW ξ,η′( · ) has the same homogeneity
as W ξ,η′( · ), while

|ξ − η| ≤ cdX̃ (ξ, η)≤ cρ(ξ, η),

we have

|II| ≤ c sup
‖u‖=1

ξ,η∈B̃(ξ̄ ,R)

|∇ηW ξ,η(u)|
∫
�k+1,ε1<‖u‖<ε2

‖u‖1−Q du

and the same reasoning as above applies. This proves the bound on |
∫

K (ξ, η) dη| in (5-5). The proof
of the bound on |

∫
K (η, ξ) dη| is analogous, since the vanishing property (5-4) also implies the same

bound for
∫

r<‖u‖<R W ξ,η(u−1) du. �

Proposition 5.2 implies that D10(ξ0;2(η, ξ)) satisfies the standard estimates, cancellation property,
and convergence condition stated in Section 3C. Note that (5-5) implies both the cancellation property
and the convergence condition.
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In order to apply [Bramanti and Zhu 2012, Theorem 5.4] to the kernel kS(ξ, η), we still need to prove
that the singular integral T with kernel kS(ξ, η) satisfies a condition T (1) ∈ Cγ

X̃
. This result is more

delicate than the previous conditions, and is contained in the following.

Proposition 5.3. Let

h̃(ξ) := lim
ε→0

∫
ρ(ξ,η)>ε

K̃ (ξ, η) dη

with
K̃ (ξ, η)= a1(ξ)b1(η)D

ξ,η

1 0(ξ0;2(η, ξ)),

Dξ,η

1 0(ξ0; · ) homogeneous of degree −Q and satisfying the vanishing property∫
r<‖u‖<R

Dξ,η

1 0(ξ0; u) du = 0 for every R > r > 0, any ξ, η ∈ B̃(ξ̄ , R).

Then
h̃ ∈ Cγ

X̃
(B̃(ξ̄ , R)) for any γ ∈ (0, 1). (5-6)

Proof. Since a1, b1 are compactly supported in B̃(ξ̄ , R), we can choose a radial cutoff function

φ(ξ, η)= f (ρ(ξ, η))

with
f (‖u‖)= 1 for ‖u‖ ≤ R, f (‖u‖)= 0 for ‖u‖ ≥ 2R,

so that K̃ (ξ, η)= K̃ (ξ, η)φ(ξ, η). To begin with, let us prove the assertion without taking into considera-
tion the dependence of Dξ,η

1 0(ξ0; u) on ξ, η. Then

h̃(ξ)= a1(ξ)b1(ξ) lim
ε→0

∫
ρ(ξ,η)>ε

φ(ξ, η)D10(ξ0;2(η, ξ)) dη

+ a1(ξ)

∫
φ(ξ, η)D10(ξ0;2(η, ξ))[b1(η)− b1(ξ)] dη

=: I (ξ)+ II(ξ).

Now,

I (ξ)= a1(ξ)b1(ξ)c(ξ) lim
ε→0

∫
‖u‖>ε

f (‖u‖)D10(ξ0; u)(1+ω(ξ, u)) du

= a1(ξ)b1(ξ)c(ξ)
∫

f (‖u‖)D10(ξ0; u)ω(ξ, u) du,

by the vanishing property, with ω smoothly depending on ξ and uniformly bounded by c‖u‖. Hence I (ξ)
is Lipschitz continuous and, in particular, Hölder continuous of any exponent γ ∈ (0, 1). Moreover,

II(ξ)= a1(ξ)

∫
B̃(ξ̄ ,R)

κ(ξ, η) dη with κ(ξ, η)= φ(ξ, η)D10(ξ0;2(η, ξ))[b1(η)− b1(ξ)].

It is not difficult to check that the kernel κ(ξ, η) satisfies the standard estimates of fractional integrals (3-11)
and (3-12) for any ν ∈ (0, 1) (actually, for ν = 1). Hence, by [Bramanti and Zhu 2012, Theorem 5.8],
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the operator with kernel κ is continuous on Cγ (B̃(ξ̄ , R)); in particular, it maps the function 1 into
Cγ (B̃(ξ̄ , R)), which proves that II(ξ) is Hölder continuous.

To conclude the proof, we have to show how to take into account the possible dependence of
Dξ,η

1 0(ξ0; u) on ξ, η. Let us start with the η dependence.

h̃(ξ)= a1(ξ)b1(ξ) lim
ε→0

∫
ρ(ξ,η)>ε

φ(ξ, η)Dη

10(ξ0;2(η, ξ)) dη

+ a1(ξ)

∫
φ(ξ, η)Dη

10(ξ0;2(η, ξ))[b1(η)− b1(ξ)] dη

=: I ′(ξ)+ II′(ξ).

The term II′(ξ) can be handled as the term II(ξ) above. As to I ′(ξ),

I ′(ξ)= a1(ξ)b1(ξ)c(ξ) lim
ε→0

∫
‖u‖>ε

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u) du

+ a1(ξ)b1(ξ)c(ξ)
∫

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u)ω(ξ, u) du.

The second term can be handled as above, while the first one requires some care. By the vanishing
property of Dζ

10(ξ0; u) for any fixed ζ , we can write

lim
ε→0

∫
‖u‖>ε

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u) du = lim

ε→0

∫
‖u‖>ε

f (‖u‖)[D2( · ,ξ)−1(u)
1 0(ξ0; u)− Dξ

10(ξ0; u)] du.

On the other hand,

D2( · ,ξ)−1(u)
1 0(ξ0; u)= Dξ

10(ξ0; u)+ Dξ

00(ξ0; u),

where Dξ

0 is a vector field of local weight ≤ 0, smoothly depending on ξ . Hence

lim
ε→0

∫
‖u‖>ε

f (‖u‖)D2( · ,ξ)−1(u)
1 0(ξ0; u) du =

∫
f (‖u‖)Dξ

00(ξ0; u) du,

which can be handled as the term I (ξ) above.
Dependence on the variable ξ can be taken into account as follows. If

h̃(ξ)= a1(ξ)b1(ξ) lim
ε→0

∫
ρ(ξ,η)>ε

φ(ξ, η)Dξ,η

1 0(ξ0;2(η, ξ)) dη

≡ lim
ε→0

∫
Fε(ξ, ξ, η) with Fε(ζ, ξ, η)= a1(ξ)b1(ξ)χρ(ξ,η)>ε(η)φ(ξ, η)D

ζ,η

1 0(ξ0;2(η, ξ)) dη,

then

h̃(ξ1)− h̃(ξ2)= lim
ε→0

∫
[Fε(ξ1, ξ1, η)− Fε(ξ2, ξ1, η)] dη+ lim

ε→0

∫
[Fε(ξ2, ξ1, η)− Fε(ξ2, ξ2, η)] dη

=: A(ξ1, ξ2)+ B(ξ1, ξ2).

Now,

|A(ξ1, ξ2)| ≤ cρ(ξ1, ξ2)
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by the smoothness of ξ 7→ Dξ,η

1 0(ξ0; u). As to B(ξ1, ξ2), it is enough to apply the previous reasoning to
Dζ,η

1 0(ξ0;2(η, ξ)), for any fixed ζ , to conclude that∣∣∣∣ limε→0

∫
[F(ζ, ξ1, η)− F(ζ, ξ2, η)] dη

∣∣∣∣≤ cρ(ξ1, ξ2)
γ

for some constant uniformly bounded in ζ , and then apply this inequality taking ζ = ξ2. �

Conclusion of the proof of Theorem 5.1. Recall that a frozen operator of type zero is written as

T (ξ0) f (ξ)= PV
∫

B̃
k(ξ0; ξ, η) f (η) dη+α(ξ0, ξ) f (ξ),

where α is a bounded measurable function, smooth in ξ . The multiplicative part

f (ξ) 7−→ α(ξ0, ξ) f (ξ)

clearly maps Cα

X̃
in Cα

X̃
, since α(ξ0, · ) is smooth, with operator norm bounded by some constant depending

on the vector fields and the ellipticity constant µ, by Theorem 4.3.
Let us now consider the integral part. With the notation introduced at the beginning of this section, let

us consider first

kS(ξ, η)= a1(ξ)b1(η)D
ξ,η

1 0(ξ0;2(η, ξ)),

where Dξ,η

1 0(ξ0; u) is homogeneous of degree −Q and satisfies the vanishing property (5-4). By
Proposition 5.2, kS(ξ, η) satisfies conditions (i), (ii), and (iii) in Section 3C, with constants bounded by

c sup
‖u‖=1
{|D20(ξ0, u)| + |D30(ξ0, u)|}, (5-7)

where the symbols D2, D3 denote standard derivatives of orders 2, 3, respectively, with respect to u,
and the constant c depends on the vector fields but not on the point ξ0. By Proposition 5.3, condition
(5-6) is also satisfied by kS(ξ, η), with the Cγ

X̃
norm bounded by a quantity of the kind (5-7). Hence, by

[Bramanti and Zhu 2012, Theorem 5.4], the operator with kernel kS(ξ, η) satisfies the assertion of the
theorem we are proving, with a constant bounded by a quantity like (5-7). In turn, by Theorem 4.3, this
quantity can be bounded by a constant depending on the vector fields and the ellipticity constant µ of the
matrix ai j (x).

Let us now come to the kernel

kF (ξ, η)=

{ H∑
i=2

ai (ξ)bi (η)D
ξ,η

i 0(ξ0; · )+ a0(ξ)b0(η)D
ξ,η

0 0(ξ0; · )

}
(2(η, ξ)),

where each function Dξ,η

i 0(ξ0; u) (i = 2, 3, . . . , H ) is homogeneous of some degree ≥ 1− Q, while
Dξ,η

0 0(ξ0; u) is bounded and smooth. By Proposition 5.2, each kernel

ai (ξ)bi (η)D
ξ,η

i 0(ξ0;2(η, ξ))
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satisfies the standard estimates (i) in Section 3C for some ν > 0, hence we can apply [Bramanti and Zhu
2012, Theorem 5.8] to the integral operators defined by these kernels, and conclude as above. Finally, the
integral operator with regular kernel is clearly Cγ continuous. �

5B. L p continuity of variable operators of type 0 and their commutators. In this subsection we are
going to prove the following.

Theorem 5.4. Let T be a variable operator of type 0 (see Section 4B) over the ball B̃(ξ̄ , R), and
p ∈ (1,∞). Then

(i) there exists c > 0, depending on p, R, {X̃ i }
q
i=0, and µ such that

‖T u‖L p(B̃(ξ̄ ,r)) ≤ c‖u‖L p(B̃(ξ̄ ,r))

for every u ∈ L p(B̃(ξ̄ , r)) and r ≤ R;

(ii) for every a ∈ VMOX,loc(�), any ε > 0, there exists r ≤ R such that, for every u ∈ L p(B̃(ξ̄ , r)),

‖T (ãu)− ã · T u‖L p(B̃(ξ̄ ,r)) ≤ ε‖u‖L p(B̃(ξ̄ ,r)), (5-8)

where ã(x, h)= a(x). The number r depends on p, R, {X̃ i }
q
i=0, µ, η∗a,�′,�, and ε (see Section 3D.3

for the definition of VMOX,loc(�) and η∗a,�′,�).

A basic difference between the context here and that of the previous section is that here we are
considering variable kernels and operators of type zero. To reduce the study of these operators to that
of constant operators of type zero we will make use of the classical technique of expansion in series of
spherical harmonics, as already done in [Bramanti and Brandolini 2000a].

Proof. This proof is similar to that of [Bramanti and Brandolini 2000a, Theorem 2.11]. Recall that a
variable operator of type zero is written as

T f (ξ)= PV
∫

B̃
k(ξ ; ξ, η) f (η) dη+α(ξ, ξ) f (ξ),

where α(ξ0, ξ) is a bounded measurable function in ξ0, smooth in ξ . The multiplicative part

f (ξ) 7−→ α(ξ, ξ) f (ξ)

clearly maps L p into L p, with operator norm bounded by some constant depending on the vector fields
and the ellipticity constant µ, by Theorem 4.3. Moreover, this part does not affect the commutator of T .

As to the integral part of T , let us split the variable kernel as

k(ξ ; ξ, η)= k ′(ξ ; ξ, η)+ k ′′(ξ ; ξ, η).

Like in the previous section, it is enough to prove our result for the kernel k ′. Let us expand it as

k ′(ξ ; ξ, η)=
H∑

i=1

ai (ξ)bi (η)D
ξ,η

i 0(ξ ;2(η, ξ))+ a0(ξ)b0(η)D
ξ,η

0 0(ξ ;2(η, ξ))

=: kU (ξ ; ξ, η)+ kB(ξ ; ξ, η),
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where the kernels Dξ,η

i 0(ξ ; u) (for i = 1, 2, 3, . . . , H ) are homogeneous of some degree ≥ −Q,
Dξ,η

i 0(ξ ; u) satisfies the cancellation property, and Dξ,η

0 0(ξ ; u) is bounded in u and smooth in ξ, η.
The kernels kU and kB are “unbounded” and “bounded”, respectively.

The operator with kernel kB is obviously L p continuous. Moreover, it satisfies the commutator estimate
(5-8) by [Bramanti and Zhu 2012, Theorem 7.3], since

|kB(ξ ; ξ, η)| ≤ ca0(ξ)b0(η)

and the constant function 1 obviously satisfies the standard estimates (3-11), (3-12) with ν = 1.
To handle the kernel kU , we expand each of its terms in series of spherical harmonics, exactly like in

[Bramanti and Brandolini 2000a, Section 2.4]:

Dξ,η

i 0(ξ ; u)=
∞∑

m=0

gm∑
k=1

cξ,ηi,km(ξ)Ki,km(u),

where Ki,km(u) are homogeneous kernels which, on the sphere ‖u‖ = 1, coincide with the spherical
harmonics, and cξ,ηi,km( · ) are the corresponding Fourier coefficients.

Let us first prove the assertion without taking into account the dependence of the coefficients cξ,ηi,km(ξ)

on η. Then the operator with kernel kU can be written as

S f (ξ)=
∞∑

m=0

gm∑
k=1

cξi,km(ξ)Si,km f (ξ) (5-9)

with

Si,km f (ξ)= ai (ξ)

∫
B̃

bi (η)Ki,km(2(η, ξ)) f (η) dη.

The number gm in (5-9) is the dimension of the space of spherical harmonics of degree m in RN ; it is
known that

gm ≤ c(N ) ·m N−2 for every m = 1, 2, . . . . (5-10)

For every p ∈ (1,∞) we can write

‖S f ‖L p(B̃(ξ̄ ,r)) ≤

∞∑
m=0

gm∑
k=1

‖c·i,km( · )‖L∞(B̃(ξ̄ ,r))‖Si,km f ‖L p(B̃(ξ̄ ,r))

and

‖S(ã f )− ã · S f ‖L p(B̃(ξ̄ ,r)) ≤

∞∑
m=0

gm∑
k=1

‖c·i,km( · )‖L∞(B̃(ξ̄ ,r))‖Si,km (̃a f )− ã · Si,km f ‖L p(B̃(ξ̄ ,r)).

Now each Si,km is a frozen operator of type λ≥ 0, and the same arguments as in the previous section show
that the kernel of Si,km satisfies the assumptions (i), (ii), and (iii) in Section 3C with constants bounded by

c · sup
‖u‖=1

|∇u Kkm(u)|,
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(with c depending on the vector fields); in turn, by known properties of spherical harmonics, we have

sup
‖u‖=1

|∇u Kkm(u)| ≤ c(N )m N/2,

so that, by [Bramanti and Zhu 2012, Theorems 5.3 and 5.7], we conclude as in [Bramanti and Brandolini
2000a, p. 807] that

‖Si,km f ‖L p(B̃(ξ̄ ,r)) ≤ c ·m N/2
‖ f ‖L p(B̃(ξ̄ ,r)) for i = 1, 2, . . . , H,

where we have also taken into account Remark 5.5 below.
Analogously, applying [Bramanti and Zhu 2012, Theorems 7.1 and 7.2], we have the commutator

estimate

‖Si,km(ã f )− ã · Si,km f ‖L p(B̃(ξ̄ ,r)) ≤ ε ·m
N/2
‖ f ‖L p(B̃(ξ̄ ,r)) for i = 1, 2, . . . , H,

for any ε > 0, provided r is small enough, depending on ε and η∗ã,�k+2,�k+3
(see (5-2) and Definition 3.21

for the meaning of symbols). Then, by Proposition 3.23, the constant r depends on the function a only
through the local VMO modulus η∗a,�′,�.

Next, again by known properties of spherical harmonics, we can say that, for any positive integer h,
there exists ch such that

|cζi,km(ξ)| ≤ ch ·m−2h sup
‖u‖=1,|β|=2h

∣∣∣( ∂
∂u

)β
Dζ

i 0(ξ ; u)
∣∣∣.

By the uniform estimates contained in Theorem 4.3, the last expression is bounded by Cm−2h , for some
constant C depending on h, the vector fields, and the ellipticity constant µ. Also taking into account
(5-10) and choosing h large enough, we conclude

‖S f ‖L p(B̃(ξ̄ ,r)) ≤

∞∑
m=0

Cgmm−2hm N/2
‖ f ‖L p(B̃(ξ̄ ,r)) = c‖ f ‖L p(B̃(ξ̄ ,r))

and

‖S(ã f )− ã · S f ‖L p(B̃(ξ̄ ,r)) ≤ cε‖ f ‖L p(B̃(ξ̄ ,r))

for any ε > 0, provided r is small enough.
We are left to show how the previous argument needs to be modified to take into account the possible

dependence of Dξ,η

i 0(ξ ; u) (and then of cξ,ηi,km(ξ)) on η. Let us expand

Dζ,2( · ,ζ )−1(u)
i 0(ξ ; u)=

∞∑
m=0

gm∑
k=1

cζi,km(ξ)Ki,km(u)

so that

Dζ,η

i 0(ξ ;2(η, ζ ))=

∞∑
m=0

gm∑
k=1

cζi,km(ξ)Ki,km(2(η, ζ )).
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The kernels Ki,km are the same as above, hence the estimates on the operators Si,km and their commutators
remain unchanged. As to the coefficients cζi,km(ξ), we now have to write, for any positive integer h and
some constant ch ,

|cζi,km(ξ)| ≤ ch ·m−2h sup
‖u‖=1,|β|=2h

∣∣∣( ∂
∂u

)β
(Dζ,2( · ,ζ )−1(u)

i 0(ξ ; u))
∣∣∣.

Now, from the identity

∂

∂u j
(Dζ,2(·,ζ )−1(u)

i 0(ξ ;u))=
∂

∂u j
(Dζ,η

i 0(ξ ;u))/η=2(·,ζ )−1(u)+
∑

l

∂

∂ηl
(Dζ,η

i 0(ξ ;u))
∂

∂u j
(2(·,ζ )−1(u))l,

it is easy to see that we can still get a uniform bound of the kind

|cζi,km(ξ)| ≤ C ·m−2h

with C depending on h, the vector fields, and the ellipticity constant µ. �

Remark 5.5. In the statements of all the theorems about singular integrals proved in [Bramanti and
Zhu 2012], the constant depends on the kernel only through the constants involved in the assumptions.
Actually, we need some additional information about this dependence. A standard sublinearity argument
allows us to say that if, for example, our assumptions on the kernel are (3-11), (3-12), and (3-13), the
constant in our upper bound will have the form

c · (A+ B+C),

where A, B, and C are the constants appearing in (3-11), (3-12), and (3-13), and c does not depend on
the kernel. This fact has been used in the above proof and will be used again.

6. Schauder estimates

We are now in position to apply all the machinery presented in the previous sections to prove our main
results, that is, Cα

X and L p estimates on X i X j u in terms of u and Lu. We will prove Cα
X estimates

(Theorem 2.1) in this section, and L p estimates (Theorem 2.2) in Section 7.
Let us recall the setting described at the end of Section 3C. For a fixed subdomain �′ b � ⊂ Rn

and a fixed point x̄ ∈ �′, let us consider a lifted ball B̃(ξ̄ , R) ⊂ RN (with ξ̄ = (x̄, 0)) where the lifted
vector fields X̃ i are defined and satisfy Hörmander’s condition and the map 2 is defined and satisfies the
properties stated in Section 3A.

According to the procedure followed in [Bramanti and Brandolini 2007, Section 5], the proof of Cα
X

a priori estimates for second order derivatives will proceed in three steps: first, in the space of lifted
variables, for test functions supported in a ball B̃(ξ̄ , r) with r small enough; then for any function in
C2,α

X̃
(B̃(ξ̄ , r)) (not necessarily vanishing at the boundary); then for any function in C2,α

X (B(x̄, r)), that is
in the original space.

The first step in the proof of Schauder estimates is contained in the following.
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Theorem 6.1. Let B̃(ξ̄ , R) be as before. Then there exist R0 < R and c > 0 such that, for every
u ∈ C2,α

X̃ ,0
(B̃(ξ̄ , R0)),

‖u‖C2,α
X̃
(B̃(ξ̄ ,R0))

≤ c{‖L̃u‖Cα

X̃
(B̃(ξ̄ ,R0))

+‖u‖L∞(B̃(ξ̄ ,R0))
},

where c and R0 depend on R, {X̃ i }, α, µ, and ‖ãi j‖Cα(B̃(ξ̄ ,R)).

The proof is quite similar to that of [Bramanti and Brandolini 2007, Theorem 5.2] and will be omitted.
We just point out the facts which it relies upon:

• the representation formula proved in Theorem 4.19;

• Theorem 5.1 about singular integrals on Cα

X̃
;

• several properties of C2,α
X̃

functions, collected in Proposition 3.14.

The second step in the proof of Schauder estimates consists in establishing a priori estimates for
functions not necessarily compactly supported.

Theorem 6.2. There exist r0 < R0 and c, β > 0 (with R0 as in Theorem 6.1) such that, for every
u ∈ C2,α

X̃
(B̃(ξ̄ , r0)), 0< t < s < r0,

‖u‖C2,α
X̃
(B̃(ξ̄ ,t)) ≤

c
(s− t)β

{‖L̃u‖Cα

X̃
(B̃(ξ̄ ,s))+‖u‖L∞(B̃(ξ̄ ,s))},

where r0, c depend on R, {X̃ i }
q
i=1, α, µ, and ‖ãi j‖Cα

X̃
(B̃(ξ̄ ,R)) and β depends on {X̃ i }

q
i=0 and α.

As in [Bramanti and Brandolini 2007], this result relies on interpolation inequalities for Ck,α
X̃

norms
and the use of suitable cutoff function. The following result can be proved as [Bramanti and Brandolini
2007, Lemma 6.2] by the results in Proposition 3.14.

Lemma 6.3 (cutoff functions). For any 0 < ρ < r and ξ ∈ B̃(ξ̄ , R), there exists ϕ ∈ C∞0 (R
N ) with the

following properties.

(i) 06 ϕ 6 1, ϕ ≡ 1 on B̃(ξ, ρ), and sprtϕ ⊆ B̃(ξ, r).

(ii) For i, j = 1, 2, . . . , q,

|X̃ iϕ|6
c

r − ρ
; |X̃0ϕ|, |X̃ i X̃ jϕ|6

c
(r − ρ)2

. (6-1)

(iii) For any f ∈ Cα

X̃
(B̃(ξ̄ , R)) and r − ρ small enough,

‖ f X̃ iϕ‖Cα

X̃
(B̃(ξ̄ ,R)) 6

c
(r − ρ)2

‖ f ‖Cα

X̃
(B̃(ξ̄ ,R)),

‖ f X̃0ϕ‖Cα

X̃
(B̃(ξ̄ ,R)), ‖ f X̃ i X̃ jϕ‖Cα

X̃
(B̃(ξ̄ ,R)) 6

c
(r − ρ)3

‖ f ‖Cα

X̃
(B̃(ξ̄ ,R)).

(6-2)

We will write
B̃ρ(ξ)≺ ϕ ≺ B̃r (ξ)

to indicate that ϕ satisfies all the previous properties.
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Proposition 6.4 (interpolation inequality for test functions). Let

H =
q∑

i=1

X̃2
i + X̃0

and let B̃(ξ̄ , R) be as before. Then, for every α ∈ (0, 1), there exist constants γ ≥ 1 and c > 0, depending
on α, R and {X̃ i }, such that, for every ε ∈ (0, 1) and every f ∈ C∞0 (B̃(ξ̄ , R/2)),

‖X̃l f ‖Cα

X̃
(B̃(ξ̄ ,R/2)) ≤ ε‖H f ‖Cα

X̃
(B̃(ξ̄ ,R/2))+

c
εγ
‖ f ‖L∞(B̃(ξ̄ ,R/2)) (6-3)

for l = 1, 2, . . . , q; moreover, we have

‖D f ‖Cα

X̃
(B̃(ξ̄ ,R/2)) ≤ ε‖L̃ f ‖Cα

X̃
(B̃(ξ̄ ,R/2))+

c
εγ
‖ f ‖L∞(B̃(ξ̄ ,R/2)), (6-4)

where D is any vector field of local degree ≤ 1.

To prove Proposition 6.4, we need the following.

Lemma 6.5. Let P(ξ0) be a frozen operator of type λ≥ 1 over B̃(ξ̄ , R) and α ∈ (0, 1). Then there exist
positive constants γ > 1 and c, depending on α, µ, and {X̃ i }, such that, for every f ∈ C∞0 (B̃(ξ̄ , R)) and
ε ∈ (0, 1),

‖P H f ‖Cα

X̃
(B̃(ξ̄ ,R)) ≤ ε‖H f ‖Cα

X̃
(B̃(ξ̄ ,R))+

c
εγ
‖ f ‖L∞(B̃(ξ̄ ,R)). (6-5)

Moreover, (6-5) still holds if H is replaced by any differential operator of weight two, like X̃ i X̃ j or X̃0.

The proof of this lemma is very similar to that of [Bramanti and Brandolini 2007, Lemma 7.2]. It
exploits the properties of cutoff functions (Lemma 6.3 ), inequality (3-19), and fractional integral estimates,
relying on [Bramanti and Zhu 2012, Theorem 5.7] and Remark 5.5.

Proof of Proposition 6.4. By Theorem 4.18, we can write

a f = P H f (ξ)+ S f,

where P and S are frozen operators of type 2 and 1, respectively, over B̃(ξ̄ , R). More precisely, they
should be called “constant kernels of type 2 and 1”, since they satisfy the definition of frozen kernels
with the matrix {ãi j (ξ0)} replaced by the identity matrix.

If we assume a = 1 on B̃(ξ̄ , R/2), then, for f ∈ C∞0 (B̃(ξ̄ , R/2)), we obtain

f = P H f (ξ)+ S f, (6-6)

and therefore, by Theorem 4.11,

X̃ i f = S1 H f (ξ)+ T f, (6-7)

where S1 and T are frozen operators of type 1 and 0, respectively. Substituting (6-6) in (6-7) yields

X̃ i f = S1 H f (ξ)+ T P H f + T S f,
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and therefore, by Theorem 5.1 and Lemma 6.5,

‖X̃ i f ‖α ≤ ‖S1 H f ‖α + c{‖P H f ‖α +‖S f ‖α} ≤ c{ε‖H f ‖α + ε−γ ‖ f ‖∞+‖S f ‖α}, (6-8)

where all the norms are taken over B̃(ξ̄ , R/2). We end the proof by showing that, for an operator S of
type 1,

‖S f ‖α ≤ c‖ f ‖L∞,

which by (6-8) will complete the proof of the first inequality in the proposition. Indeed, if

S f (ξ)=
∫

B̃R

k(ξ, η) f (η) dη,

we have

|S f (ξ1)− S f (ξ2)| ≤ ‖ f ‖L∞(B̃R)

∫
B̃(ξ̄ ,R)

|k(ξ1, η)− k(ξ2, η)| dη. (6-9)

Moreover,∫
B̃R

|k(ξ1, η)− k(ξ2, η)| dη =
∫

B̃(ξ̄ ,R),ρ(ξ1,η)>Mρ(ξ1,ξ2)

|k(ξ1, η)− k(ξ2, η)| dη

+

∫
B̃(ξ̄ ,R),ρ(ξ1,η)≤Mρ(ξ1,ξ2)

|k(ξ1, η)− k(ξ2, η)| dη

=: I + II.

Then

I ≤
∫
ρ(ξ1,η)>Mρ(ξ1,ξ2)

c
ρ(ξ1, η)Q−1

ρ(ξ1, ξ2)

ρ(ξ1, η)
dη

= ρ(ξ1, ξ2)
α

∫
ρ(ξ1,η)>Mρ(ξ1,ξ2)

ρ(ξ1, η)
1−α

ρ(ξ1, η)Q

ρ(ξ1, ξ2)
1−α

ρ(ξ1, η)1−α
dη

≤ cρ(ξ1, ξ2)
α

∫
B̃R

ρ(ξ1, η)
1−α

ρ(ξ1, η)Q dη ≤ cρ(ξ1, ξ2)
αR1−α,

where in the last inequality we have used the following standard computation (which will be useful again):∫
B̃(ξ̄ ,R),ρ(ξ1,η)<r

dη
ρ(ξ1, η)Q−β ≤ crβ for any ξ1 ∈ B̃(ξ̄ , R). (6-10)

As to II,

II ≤
∫
ρ(ξ1,η)≤Mρ(ξ1,ξ2)

|k(ξ1, η)| dη+
∫
ρ(ξ1,η)≤Mρ(ξ1,ξ2)

|k(ξ2, η)| dη.

Since there exists M1 > 0 such that if ρ(ξ1, η)≤ Mρ(ξ1, ξ2), then ρ(ξ2, η)≤ M1ρ(ξ1, ξ2),

II ≤ c
{∫

ρ(ξ1,η)≤Mρ(ξ1,ξ2)

1
ρ(ξ1, η)Q−1 dη+

∫
ρ(ξ2,η)≤M1ρ(ξ1,ξ2)

1
ρ(ξ2, η)Q−1 dη

}
,

which, again by (6-10), is
≤ cρ(ξ1, ξ2)≤ cρ(ξ1, ξ2)

αR1−α.
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Hence, for every α ∈ (0, 1),∫
B̃R

|k(ξ1, η)− k(ξ2, η)| dη ≤ cαρ(ξ1, ξ2)
αR1−α,

and, by (6-9),
|S f |α ≤ c‖ f ‖L∞ .

Moreover,

|S f (ξ)| ≤
∫

B̃R

|k(ξ, η) f (η)| dη ≤ ‖ f ‖L∞

∫
ρ(ξ,η)≤cR

c
ρ(ξ, η)Q−1 dη ≤ cR‖ f ‖L∞,

hence
‖S f ‖α ≤ c‖ f ‖L∞ .

This completes the proof of (6-3). A similar argument gives (6-4). �

Theorem 6.6 (interpolation inequality). There exist positive constants c, γ and r1 < R such that, for any
u ∈ C2,α

X̃
(B̃(ξ̄ , r1)), 0< ρ < r1, 0< δ < 1/3,

‖D̃u‖Cα

X̃
(B̃(ξ̄ ,ρ)) ≤ δ

q∑
i=1

‖D̃2u‖Cα

X̃
(B̃(ξ̄ ,r1))

+
c

δγ (r1− ρ)2γ
‖u‖L∞(B̃(ξ̄ ,r1))

,

where

‖D̃u‖ ≡
q∑

i=1

‖X̃ i u‖ and ‖D̃2u‖ ≡
q∑

i, j=1

‖X̃ i X̃ i u‖+‖X̃0u‖.

The constants c, r1, γ depend on α, {X̃ i }; γ is as in Proposition 6.4.

Proof. The proof can be carried out exactly as in [Bramanti and Brandolini 2007, Proposition 7.4],
exploiting the properties of cutoff functions (Lemma 6.3), the interpolation inequality for test functions
(Proposition 6.4), and (3-20) in Proposition 3.14. �

We are now ready to complete the second step in the proof of Schauder estimates.

Proof of Theorem 6.2. This proof can now be carried out exactly like in [Bramanti and Brandolini
2007, Theorem 5.3], exploiting Schauder estimates for functions with small support (Theorem 6.1), the
properties of Hölder continuous functions contained in (3-20), (3-21), and (3-24), the properties of cutoff
functions (Lemma 6.3), and the interpolation inequalities contained in Theorem 6.6 and (6-4). �

Proof of Theorem 2.1. We finally come back to our original context, which we are going to recall. We
have a bounded domain � where our vector fields and coefficients are defined, and a fixed subdomain
�′ b�. Fix x̄ ∈�′ and R such that in B(x̄, R)⊂� all the construction of the previous two subsections
(lifting to B̃(ξ̄ , R) and so on) can be performed. Let r0 be as in Theorem 6.2. To begin with, we want
to prove Schauder estimates for functions u ∈ C2,α

X (B(x̄, r0)). By Proposition 3.15 we know that the
function ũ(x, h)= u(x) belongs to C2,α

X̃
(B(ξ̄ , r0)), so we can apply to ũ Schauder estimates contained in

Theorem 6.2. Combining this fact with the two estimates in Proposition 3.15 and choosing t , s such that

r0 > t > s > 0 and t − s = r0− t,
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we get, for some exponent ω > 2,

‖u‖C2,α
X (B(x̄,s)) ≤

c
(t − s)2

‖ũ‖C2,α
X̃
(B̃(ξ̄ ,t))

≤
c

(r0− t)ω
(‖L̃ũ‖Cα

X̃
(B̃(ξ̄ ,r0))

+‖ũ‖L∞(B̃(ξ̄ ,r0))
)

≤
c

(r0− s)ω
(‖Lu‖Cα

X (B(x̄,r0))+‖u‖L∞(B(x̄,r0))), (6-11)

since L̃ũ = (̃Lu). Next, let us choose a family of balls B(xi , r0) in � such that

�′ ⊂

k⋃
i=1

B(xi , r0/2)⊂
k⋃

i=1

B(xi , r0)⊂�.

Then, by Proposition 3.14(v) and (6-11), with s = r0/2,

‖u‖C2,α
X (�′)

≤ ‖u‖C2,α
X (∪B(xi ,r0/2))

≤ c
k∑

i=1

‖u‖C2,α
X (B(xi ,r0))

≤ c
k∑

i=1

{‖Lu‖Cα
X (B(xi ,r0))+‖u‖L∞(B(xi ,r0))}

≤ c{‖Lu‖Cα
X (�)
+‖u‖L∞(�)}

with c also depending on r0. Finally, let us note that the constant c depends on the coefficients ai j through
the norms

‖ãi j‖Cα

X̃
(B̃(ξ̄ ,R0))

,

which in turn are bounded by the norms

‖ai j‖Cα
X (B(x̄,R0))

(by Proposition 3.15), and hence by ‖ai j‖Cα
X (�)

(or more precisely, by ‖ai j‖Cα
X (�

′′) for some �′′ such that
�′ b�′′ b�). �

7. L p estimates

The logical structure of this section, as well as the general setting, is very similar to that of the previous
one, following as closely as possible the strategy of [Bramanti and Brandolini 2000a]. The basic difference
with the setting of Schauder estimates is the fact that here we start with representation formulas where
the “frozen” point has finally been unfrozen; therefore, singular integrals with variable kernels are now
involved, together with their commutators with VMO functions. This makes the singular integral part of
the theory more involved.

The first step is contained in the following.
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Theorem 7.1. Let B̃(ξ̄ , R) be as in the previous section, and p ∈ (1,∞). There exists R0 < R such that,
for every u ∈ C∞0 (B̃(ξ̄ , R0)),

‖u‖S2,p
X̃
(B̃(ξ̄ ,R0))

≤ c{‖L̃u‖L p(B̃(ξ̄ ,R0))
+‖u‖L p(B̃(ξ̄ ,R0))

} (7-1)

for some constant c depending on {X̃ i }
q
i=0, p, µ, and R; the number R0 also depends on the local VMO

moduli η∗ai j ,�′,�
.

The proof can be carried out exactly like in [Bramanti and Brandolini 2000a, Theorem 3.2], exploiting
the representation formula proved in Theorem 4.21 and the results about singular integrals and commutators
contained in Theorem 5.4.

Next, we have to remove the restriction to compactly supported functions.

Theorem 7.2. Let B̃(ξ̄ , R) be as before. There exists r0 < R and, for any r ≤ r0, there exists c > 0 such
that, for any u ∈ S2,p

X̃
(B̃(ξ̄ , r)), we have

‖u‖S2,p
X̃
(B̃(ξ̄ ,r/2)) ≤ c{‖L̃u‖L p(B̃(ξ̄ ,r))+‖u‖L p(B̃(ξ̄ ,r))}.

The constants c, r0 depend on {X̃ i }
q
i=0, p, µ, R, and η∗ai j ,�′,�

; c also depends on r.

Analogously to what we have seen in Theorem 6.2, the proof of the above theorem relies on interpolation
inequalities for Sobolev norms and the use of cutoff functions. Regarding cutoff functions, we need the
following statement.

Lemma 7.3 (radial cutoff functions). For any σ ∈ ( 1
2 , 1), r > 0 and ξ ∈ B̃(ξ̄ , r), there exists ϕ ∈C∞0 (R

N )

with the following properties.

(i) B̃σr (ξ)≺ ϕ ≺ B̃σ ′r (ξ) with σ ′ = (1+ σ)/2 (this means that ϕ = 1 in B̃σr (ξ) and it is supported in
B̃σ ′r (ξ)).

(ii) For i, j = 1, . . . , q , we have

|X̃ iϕ| ≤
c

(1− σ)r
, |X̃0ϕ|, |X̃ i X̃ jϕ| ≤

c
(1− σ)2r2 . (7-2)

The above lemma, very similar to [Bramanti and Brandolini 2000a, Lemma 3.3], is actually contained
in Lemma 6.3, but we prefer to state it explicitly because it is formulated in a slightly different notation,
suitable to our application to L p estimates.

Theorem 7.4 (interpolation inequality for Sobolev norms). Let B̃(ξ̄ , R) be as before. For every p∈ (1,∞),
there exists c > 0 and r1 < R such that, for every 0< ε ≤ 4r1, u ∈ C∞0 (B̃(ξ̄ , r1)),

‖X̃ i u‖L p(B̃(ξ̄ ,r1))
≤ ε‖Hu‖L p(B̃(ξ̄ ,r1))

+
c
ε
‖u‖L p(B̃(ξ̄ ,r1))

(7-3)

for every i = 1, . . . , q, where H :=
∑q

i=1 X̃2
i + X̃0.

Proof. The proof of this proposition is adapted from [Bramanti and Brandolini 2000a, Theorem 3.6], but
also improves that result, which is stated with a generic constant c(ε) instead of c/ε.
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Let r1 be a small number to be fixed later. Like in the proof of Proposition 6.4, we can write, for any
u ∈ C∞0 (B̃(ξ̄ , r1)) and ξ ∈ B̃(ξ̄ , r1),

X̃ i u(ξ)= SHu(ξ)+ T u(ξ),

where S and T are constant operators of type 1 and 0, respectively, over B̃(ξ̄ , 2r1), provided 2r1 < R.
(See the proof of Proposition 6.4 for the explanation of the term “constant operators of type λ”.) Since

‖T u‖L p(B̃(ξ̄ ,r1))
≤ c‖u‖L p(B̃(ξ̄ ,r1))

,

the result will follow if we prove that

‖SHu‖L p(B̃(ξ̄ ,r1))
≤ ε‖Hu‖L p(B̃(ξ̄ ,r1))

+
c
ε
‖u‖L p(B̃(ξ̄ ,r1))

. (7-4)

Let k(ξ, η) be the kernel of S, and, for any fixed ξ ∈ B̃(ξ̄ , r1), let ϕε be a cutoff function (as in Lemma 7.3)
with

B̃ε/2(ξ)≺ ϕε ≺ B̃ε(ξ).

Let us split SHu(ξ) as

SHu(ξ)=
∫

B̃(ξ̄ ,r1),ρ(ξ,η)>ε/2
k(ξ, η)[1−ϕε(η)]Hu(η) dη+

∫
B̃(ξ̄ ,r1),ρ(ξ,η)≤ε

k(ξ, η)Hu(η)ϕε(η) dη

=: I (ξ)+ II(ξ).

Then

|I (ξ)| =
∣∣∣∣∫

B̃(ξ̄ ,r1),ρ(ξ,η)>ε/2
H T (k(ξ, · )[1−ϕε( · )])(η)u(η) dη

∣∣∣∣
≤

∫
B̃(ξ̄ ,r1),ρ(ξ,η)>ε/2

{∣∣[1−ϕε]H T k(ξ, · )
∣∣+ c

∑∣∣X̃ i [1−ϕε] · X̃ j k(ξ, · )
∣∣

+
∣∣k(ξ, · )H T

[1−ϕε]|(η)|u(η)
∣∣ }dη

=: A(ξ)+ B(ξ)+C(ξ).

Recall that, for i, j = 1, 2, . . . , q ,

|k(ξ, η)| ≤
c

d(ξ, η)Q−1 ,

|X̃ i k(ξ, η)| ≤
c

d(ξ, η)Q ,

|H T k(ξ, · )(η)| ≤
c

d(ξ, η)Q+1 ,

|X̃ i (1−ϕε)(η)| ≤
c
ε
,

|H T (1−ϕε)(η)| ≤
c
ε2 ,
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and the derivatives of (1−ϕε) are supported in the annulus ε/2≤ d(ξ, η)≤ ε. Since ξ, η ∈ B̃(ξ̄ , r1), we
have d(ξ, η) < 2r1. Hence, letting k0 be the integer such that 2k0−1ε < 2r1 ≤ 2k0ε, we have

|A(ξ)| ≤ c
k0∑

k=0

∫
2k−1ε<ρ(ξ,η)≤2kε

c
d(ξ, η)Q+1 |u(η)| dη

≤ c
k0∑

k=0

1
2k−1ε

1
(ε2k−1)Q

∫
ρ(ξ,η)≤2kε

|u(η)| dη

≤
c
ε
· sup

r≤4r1

1
|B̃(ξ, r)|

∫
B̃(ξ,r)

|u(η)| dη. (7-5)

We now have to recall the definition of a local maximal function M in a (metric) locally homogeneous
space (�, {�n}, d, dµ), given in [Bramanti and Zhu 2012]. Fix�n, �n+1 (see Section 3C for the notation)
and, for any f ∈ L1(�n+1), define

M�n,�n+1 f (x)= sup
r≤rn

1
µ(B(x, r))

∫
B(x,r)

| f (y)| dµ(y) for x ∈�n,

where rn =
2
5εn . Applying this definition to our situation where 4r1 = rn =

2
5εn , we get εn = 10r1 and,

for ξ ∈ B̃(ξ̄ , r1), we have B̃(ξ, εn)⊂ B̃(ξ̄ , 11r1). Therefore, by (7-5), we can write

|A(ξ)| ≤
c
ε
·MB̃(ξ̄ ,r1),B̃(ξ̄ ,11r1)

u(ξ),

and, by [Bramanti and Zhu 2012, Theorem 8.3], we have

‖A‖L p(B̃(ξ̄ ,r1))
≤

c
ε
‖u‖L p(B̃(ξ̄ ,11r1))

=
c
ε
‖u‖L p(B̃(ξ̄ ,r1))

,

since u ∈ C∞0 (B̃(ξ̄ , r1)), provided 11r1 < R. Also,

|B(ξ)| ≤ c
∫
ε
2<ρ(ξ,η)≤ε,

1
ε
·

1
d(ξ, η)Q |u(η)| dη ≤

c
εQ+1

∫
ρ(ξ,η)≤ε

|u(η)| dη

≤
c
ε
· sup

r≤ε

1
|B̃(ξ, r)|

∫
B̃(ξ,r)

|u(η)| dη ≤
c
ε
·MB̃(ξ̄ ,r1),B̃(ξ̄ ,11r1)

u(ξ)

provided ε < 4r1. As before, we have

‖B‖L p(B̃(ξ̄ ,r1))
≤

c
ε
‖u‖L p(B̃(ξ̄ ,r1))

.

Finally,

|C(ξ)| ≤ c
∫
ε/2<ρ(ξ,η)≤ε

1
ε2 ·

1
d(ξ, η)Q−1 |u(η)|η dy ≤

c
εQ+1

∫
ρ(ξ,η)≤ε

|u(η)| dη.

Therefore, as for the term B(ξ),

‖I‖L p(B̃(ξ̄ ,r1))
≤

c
ε
‖u‖L p(B̃(ξ̄ ,r1))

.
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Let us bound II:

|II(ξ)| ≤ c
∫
ρ(ξ,η)≤ε

|Hu(η)|
ρ(ξ, η)Q−1 dη.

Then a computation similar to that of C(ξ) gives

|II(ξ)| ≤ cεMB̃(ξ̄ ,r1),B̃(ξ̄ ,11r1)
u(ξ) and ‖II‖L p(B̃(ξ̄ ,r1))

≤ cε‖u‖L p(B̃(ξ̄ ,r1))
,

provided ε < 4r1. �

Theorem 7.5. For any u ∈ S2,p
X̃
(B̃(ξ̄ , r)), p ∈ [1,∞), 0< r < r1 (where r1 is the number in Theorem 7.4),

define the following quantities:

8k = sup
1/2<σ<1

((1− σ)kr k
‖D̃ku‖L p(B̃rσ )

) for k = 0, 1, 2.

Then, for any δ > 0 (small enough),

81 ≤ δ 82+
c
δ
80.

Proof. This result follows exactly as in [Bramanti and Brandolini 2000b, Theorem 21], exploiting the
interpolation result for compactly supported functions (Theorem 7.4), cutoff functions (Lemma 7.3), and
Proposition 3.19. �

Proof of Theorem 7.2. This proof is similar to that of theorem [Bramanti and Brandolini 2000b, Theorem 3].
Due to the different context, we include a complete proof for the convenience of the reader.

Pick r0=min(R0, r1) where R0 and r1 are the numbers appearing in Theorems 7.1 and 7.4, respectively.
For r ≤ r0, let u ∈ S2,p

X̃
(B̃(ξ̄ , r)). Let ϕ be a cutoff function as in Lemma 7.3:

B̃(ξ̄ , σr)≺ ϕ ≺ B̃(ξ̄ , σ ′r).

By Theorem 7.1, ϕu ∈ S2,p
X̃ ,0
(B̃(ξ̄ , r)); then, by density, we can apply Theorem 7.1 to ϕu:

‖ϕu‖S2,p(B̃(ξ̄ ,r)) ≤ c{‖L̃(ϕu)‖L p(B̃(ξ̄ ,r))+‖ϕu‖L p(B̃(ξ̄ ,r))}.

For 1≤ i, j ≤ q, from the above inequality we get

‖X̃ i X̃ j u‖L p(B̃σr )
≤ c{‖L̃u‖L p(B̃σ ′r )

+
1

(1− σ)r
‖D̃u‖L p(B̃σ ′r )

+
1

(1− σ)2r2 ‖u‖L p(B̃σ ′r )
}.

Multiplying both sides by (1− σ)2r2, we get

(1−σ)2r2
‖ X̃ i X̃ j u ‖L p(B̃σr )

≤ c{(1−σ)2r2
‖L̃u‖L p(B̃σ ′r )

+(1−σ)r(‖D̃u‖L p(B̃σ ′r )
)+‖u‖L p(B̃σ ′r )

}. (7-6)

Next, we compute (1− σ)2r2
‖X̃0u‖L p(B̃σr )

:

(1− σ)2r2
‖X̃0u‖L p(B̃σr )

= (1− σ)2r2
‖L̃u−

q∑
i, j=1

ãi j X̃ i X̃ j u‖L p(B̃σr )

≤ c(1− σ)2r2(‖L̃u‖L p(B̃σr )
+‖X̃ i X̃ j u‖L p(B̃σr )

). (7-7)
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Combining (7-6) and (7-7), we have

(1− σ)2r2
‖D̃2u‖L p(B̃σr )

≤ c{(1− σ)2r2
‖L̃u‖L p(B̃σ ′r )

+ (1− σ)r‖D̃u‖L p(B̃σ ′r )
+‖u‖L p(B̃σ ′r )

}. (7-8)

Adding (1− σ)r‖D̃u‖L p(B̃σr )
to both sides of (7-8),

(1− σ)r‖D̃u‖L p(B̃σr )
+ (1− σ)2r2

‖D̃2u‖L p(B̃σr )

≤ c{(1− σ)2r2
‖L̃u‖L p(B̃σ ′r )

+ (1− σ)r‖D̃u‖L p(B̃σ ′r )
+‖u‖L p(B̃σ ′r )

}, (7-9)

which, by Theorem 7.5, is

≤ c{(1− σ)2r2
‖L̃u‖L p(B̃σ ′r )

+ (δ82+
c
δ
80)+‖u‖L p(B̃σ ′r )

}.

Choosing δ small enough, we have

82+81 ≤ c{r2
‖L̃u‖L p(B̃r )

+‖u‖L p(B̃r )
}.

Then

r2
‖D̃2u‖L p(B̃(ξ̄ ,r/2))+ r‖D̃u‖L p(B̃(ξ̄ ,r/2)) ≤ c{r2

‖L̃u‖L p(B̃(ξ̄ ,r))+‖u‖L p(B̃(ξ̄ ,r))},

hence

‖u‖S2,p
X̃
(B̃(ξ̄ ,r/2)) ≤ c{‖L̃u‖L p(B̃(ξ̄ ,r))+‖u‖L p(B̃(ξ̄ ,r))},

which is the desired result. �

Proof of Theorem 2.2. This follows from Theorem 7.2 in a way which is analogous to that followed in
Section 6 to prove Schauder estimates. Namely, fix x̄ ∈�′ b� and R such that in B(x̄, R)⊂� all the
construction of the previous two subsections (lifting to B̃(ξ̄ , R) and so on) can be performed. Let r0 < R
as in Theorem 7.2, and let u ∈ S2,p

X (B(x̄, r0)). By Theorem 3.20 we know that the function ũ(x, h)= u(x)
belongs to S2,p

X̃
(B(ξ̄ , r0)), so we can apply to ũ the L p estimates contained in Theorem 7.2. Combining

this fact with the two estimates in Theorem 3.20, we get

‖u‖S2,α
X (B(x̄,δ0r0/2))

≤ c‖ũ‖S2,α
X̃
(B̃(ξ̄ ,r0/2))

≤ c(‖L̃ũ‖L p(B̃(ξ̄ ,r0))
+‖ũ‖L p(B̃(ξ̄ ,r0))

)

≤ c(‖Lu‖L p(B(x̄,r0))+‖u‖L p(B(x̄,r0))),

since L̃ũ = (̃Lu). Next, let us choose a family of balls B(xi , r0) in � such that

�′ ⊂

k⋃
i=1

B(xi , δ0r0/2)⊂
k⋃

i=1

B(xi , r0)⊂�.
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Therefore,

‖u‖S2,p
X (�′)

≤ ‖u‖S2,p
X (∪B(xi ,δ0r0/2))

≤

k∑
i=1

‖u‖S2,p
X (B(xi ,δ0r0/2))

≤ c
k∑

i=1

{‖Lu‖L p(B(xi ,r0))+‖u‖L p(B(xi ,r0))}

≤ c{‖Lu‖L p(�)+‖u‖L p(�)}

with c also depending on r0. �
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