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GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER
EQUATION WITH DERIVATIVE IN ENERGY SPACE

YIFEI WU

In this paper, we prove that there exists some small ε∗ > 0 such that the derivative nonlinear Schrödinger
equation (DNLS) is globally well-posed in the energy space, provided that the initial data u0 ∈ H 1(R)

satisfies ‖u0‖L2 <
√

2π + ε∗. This result shows us that there are no blow-up solutions whose masses
slightly exceed 2π , even if their energies are negative. This phenomenon is much different from the
behavior of the nonlinear Schrödinger equation with critical nonlinearity. The technique used is a
variational argument together with the momentum conservation law. Further, for the DNLS on the
half-line R+, we show the blow-up for the solution with negative energy.

1. Introduction

We study the following Cauchy problem of the nonlinear Schrödinger equation with derivative (DNLS):{
i∂t u+ ∂2

x u = iλ∂x(|u|2u), t ∈ R, x ∈ R,

u(0, x)= u0(x) ∈ H 1(R),
(1-1)

where λ ∈ R. It arises from studying the propagation of circularly polarized Alfvén waves in magnetized
plasma with a constant magnetic field; see [Mio et al. 1976; Mjolhus 1976; Sulem and Sulem 1999] and
the references therein.

This equation is L2-critical in the sense that both the equation and the L2-norm are invariant under the
scaling transform

uα(t, x)= α1/2u(α2t, αx), α > 0.

It has the same scaling invariance as the quintic nonlinear Schrödinger equation,

i∂t u+ ∂2
x u+µ|u|4u = 0, t ∈ R, x ∈ R,

and the quintic generalized Korteweg–de Vries equation,

∂t u+ ∂3
x u+µ∂x(u5)= 0, t ∈ R, x ∈ R.

One may always take λ= 1 in (1-1), since the general case can be reduced to this case by the following
two transforms. First, we apply the transform

u(t, x) 7→ ū(−t, x),
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then reduce the equation to the case of λ > 0. Then we take the rescaling transform

u(t, x) 7→
1
√
λ

u(t, x)

and reduce it to the case of λ= 1. So in this sense, (1-1) can always be regarded as the focusing equation.
From now on, we always assume that λ= 1 in (1-1).

The H 1-solution of (1-1) obeys three conservation laws. The first is the conservation of the mass

M(u(t)) :=
∫

R

|u(t)|2 dx = M(u0); (1-2)

the second is the conservation of energy

ED(u(t)) :=
∫

R

(
|ux(t)|2+ 3

2 Im |u(t)|2u(t)ux(t)+ 1
2 |u(t)|

6) dx = ED(u0); (1-3)

and the third is the conservation of momentum (see (3-4) below),

PD(u(t)) := Im
∫

R

ū(t)ux(t) dx − 1
2

∫
R

|u(t)|4 dx = PD(u0). (1-4)

Local well-posedness for the Cauchy problem (1-1) is well understood. It was proved for the energy
space H 1(R) in [Hayashi 1993; Hayashi and Ozawa 1992; 1994]; see also [Guo and Tan 1991] for an
earlier result in smooth spaces. For rough data below the energy space, Takaoka [1999] proved local
well-posedness in H s(R) for s ≥ 1

2 . This result was shown to be sharp in the sense that the flow map fails
to be uniformly C0 for s < 1

2 ; see [Biagioni and Linares 2001; Takaoka 2001].
The global well-posedness for (1-1) has also been widely studied. By using mass and energy con-

servation laws, and by developing the gauge transformations, Hayashi and Ozawa [Hayashi and Ozawa
1994; Ozawa 1996] proved that the problem (1-1) is globally well-posed in energy space H 1(R) under
the condition

‖u0‖L2 <
√

2π. (1-5)

Further, for initial data of regularity below the energy space, Colliander et al. [2001; 2002] proved the
global well-posedness for (1-1) in H s(R) for s > 1

2 , under the condition (1-5). Recently, Miao, Wu, and
Xu [Miao et al. 2011] proved that (1-1) is globally well-posed in the critical space H 1/2(R), also under
the condition (1-5). For other work on the DNLS in the periodic case, see for example [Grünrock and
Herr 2008; Herr 2006; Nahmod et al. 2012; Win 2010].

As mentioned above, all the results on global existence for initial data were obtained under the
assumption (1-5). Since

√
2π is just the mass of the ground state of the corresponding elliptic problem,

the condition (1-5) was naturally used to keep the energy positive; see [Colliander et al. 2001; Miao et al.
2011] for examples. Now one may wonder what happens to the well-posedness for the solution when
(1-5) is not fulfilled. Our first main result in this paper is to improve the assumption (1-5) and obtain the
global well-posedness as follows.
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Theorem 1.1. There exists a small ε∗ > 0 such that, for any u0 ∈ H 1(R) with∫
R

|u0(x)|2 dx < 2π + ε∗, (1-6)

the Cauchy problem (1-1) (λ= 1) is globally well-posed in H 1(R) and the solution u satisfies

‖u‖L∞t H1
x
≤ C(ε∗, ‖u0‖H1).

The technique used to prove Theorem 1.1 is a variational argument together with the momentum and
energy conservation laws. The key ingredient is the momentum conservation law, rather than the energy
conservation law, upon which many (subcritical) problems rely when studying the global existence. We
argue by contradiction. Suppose that the solution of (1-1) blows up at finite/infinite time T and tn is a
time sequence tending to T such that u(tn) tends to infinity in H 1(R) norm. Then, thanks to the energy
conservation law and a variational lemma from Merle [2001], u(tn) is close to the ground state Q (see
below for its definition) up to a spatial transformation, a phase rotation, and a scaling transformation. On
the one hand, since u(tn) blows up at T , the scaling parameter λn decays to zero; on the other hand, the
conservation of momentum prevents λn from tending to zero. This leads to a contradiction.

As mentioned above, Theorem 1.1 improves the smallness of the L2-norm of the initial data of the
previous works on global existence [Hayashi and Ozawa 1994; Ozawa 1996]. More importantly, it reveals
some special features of the derivative nonlinear Schrödinger equation. As discussed before, the smallness
condition (1-5) in the previous works is imposed to guarantee the positivity of the energy ED(u(t)).
Indeed, by using a variant gauge transformation

v(t, x) := e−(3/4)i
∫ x
−∞
|u(t,y)|2 dyu(t, x), (1-7)

the energy is deduced to be

ED(u(t))= ‖vx(t)‖2L2
x
−

1
16‖v(t)‖

6
L6

x
:= E(v(t)), (1-8)

and then the positivity of E(v) is followed by the sharp Gagliardo–Nirenberg inequality (see [Weinstein
1982/83])

‖ f ‖6L6 ≤
4
π2 ‖ f ‖4L2‖ fx‖

2
L2 . (1-9)

Once the mass is greater than 2π , the positive energy can not be maintained. To see this, we first make
use of the gauge transformation (1-7), and rewrite (1-1) as

i∂tv+ ∂
2
x v =

i
2
|v|2vx −

i
2
v2v̄x −

3
16 |v|

4v. (1-10)

Then there exists a standing wave ei t Q of (1-10), where Q is the unique (up to some symmetries) positive
solution of the elliptic equation

−Qxx + Q− 3
16 Q5

= 0.

This leads to the standing wave solution corresponding to (1-1),

R(t, x) := ei t+(3/4)i
∫ x
−∞

Q2 dy Q(x).
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So on the one hand, as a byproduct, our result implies the stability of the standing wave solution, which
has been proved by Colin and Ohta [2006]. On the other hand,

‖Q‖L2 =
√

2π, E(Q)= 0,

and the Fréchet derivation of the functional E(v) at Q satisfies δE(Q) · Q =−2π < 0. These relations
imply that there exists a u0 such that u0 obeys (1-6) and ED(u0) < 0. Therefore, there indeed exist global
solutions with negative energy, as stated in Theorem 1.1. Obviously this is much different from the
focusing, quintic nonlinear Schrödinger equation (3-1) and focusing, quintic generalized Korteweg–de
Vries equation (3-2). For (3-1), Ogawa and Tsutsumi [1991] proved that the solutions with the initial
data belonging to H 1(R) and negative energy must blow up in finite time; for (3-2), Martel and Merle
[Martel and Merle 2002; Merle 2001] proved that the solutions with the initial data belonging to H 1(R),
negative energy, and obeying some further decay conditions blow up in finite time. In Section 3 below
we will discuss some differences among these three equations, in particular from the viewpoint of the
virial arguments.

Moreover, the situation of the Cauchy problem and the initial boundary value problem of (1-1) are
much different. We consider the following Cauchy–Dirichlet problem of the nonlinear Schrödinger
equation with derivative on the half-line R+:

i∂t u+ ∂2
x u = i∂x(|u|2u), t ∈ R, x ∈ (0,+∞),

u(0, x)= u0(x),
u(t, 0)= 0.

(1-11)

We show that under some assumptions, the solution must blow up in finite time if its energy is negative.

Theorem 1.2. Let u0 ∈ H 2(R+) and xu0 ∈ L2(R+), and let u be the corresponding solution of (1-11)
which exists on the (right) maximal lifetime [0, T∗). If ED(u0) < 0, then T∗ <∞. Moreover, there exists a
constant C = C(u0) > 0 such that

‖ux(t, x)‖L2(R+) ≥
C

√
T∗− t

→∞ as t ↗ T ∗.

For related results on the blow-up solution to the DNLS equation on bounded domain with the Dirichlet
condition, see [Tan 2004].

Lastly, we remark that it remains open for the DNLS equation (1-1) whether there exists an H 1(R)

initial data of much larger L2-norm such that the corresponding solution blows up in finite time. Moreover,
it may be interesting to study the existence of global rough solutions when the condition (1-5) on initial
data is relaxed.

This paper is organized as follows. In Section 2, we present the gauge transformation and prove the
virial identities of DNLS. In Section 3, we discuss the differences among the DNLS, the quintic NLS,
and the quintic gKdV equations. In Section 4, we study the initial boundary value problem of the DNLS
on the half-line and give the proof of Theorem 1.2. In Section 5, we prove Theorem 1.1.
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2. Gauge transformations, virial identities

Gauge transformations. The gauge transformation is an important and very nice tool to study the
nonlinear Schrödinger equation with derivative [Hayashi 1993; Hayashi and Ozawa 1992; 1994]. It gives
some improvement of the nonlinearity. In this subsection, we present the various gauge transformations
and their properties. See [Colliander et al. 2001; Ozawa 1996] for more details. We define

Gau(t, x)= eia
∫ x
−∞
|u(t,y)|2 dyu(t, x).

Then GaG−a = Id, the identity transform. For any function f ,

∂x Ga f = eia
∫ x
−∞
| f (t,y)|2 dy(ia| f |2 f + fx). (2-1)

Further, we have the following.

Lemma 2.1. If u is the solution of (1-1) (where λ= 1), v = Gau is the solution of the equation

i∂tv+ ∂
2
x v− i2(a+ 1)|v|2vx − i(2a+ 1)v2v̄x +

1
2a(2a+ 1)|v|4v = 0.

Moreover,

ED(u)= ‖∂x Gau‖22+ (2a+ 3
2) Im

∫
R

|Gau|2Gau · ∂x Gau dx + (a2
+

3
2a+ 1

2)

∫
R

|Gau|6 dx .

The proof of this lemma follows from a direct computation and is omitted.
To understand how the gauge transform improves the nonlinearity in the present form (1-1), we

introduce the following two transforms used in [Hayashi and Ozawa 1994; Ozawa 1996]. Let

φ = G−1u, ψ = G1/2∂x G−1/2u.

Then (φ, ψ) solves the following system of nonlinear Schrödinger equations:{
i∂tφ+ ∂

2
xφ =−iφ2ψ̄,

i∂tψ + ∂
2
xψ = ψ

2φ̄.
(2-2)

Compared with the original equation (1-1), the system above has no loss of derivatives. Thus it is much
more convenient to get the local solvability of (1-1) for suitable smooth data by considering the system
(2-2) instead.

As mentioned above, it is convenient to consider v = G−3/4u. Then, by Lemma 2.1, the equation (1-1)
of u reduces to (1-10), that is,

i∂tv+ ∂
2
x v =

1
2 i |v|2vx −

1
2 2v2v̄x −

3
16 |v|

4v.

Moreover, the energy ED(u) in (1-3) is changed into E(v) in (1-8). In the sequel we shall consider (1-10)
and the energy (1-8) of v instead.
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Virial identities. In this subsection, we discuss some virial identities for the nonlinear Schrödinger
equation with derivative. Formally, one may find that the virial quantity of v is similar to that of the
mass-critical nonlinear Schrödinger equation. However, it is in fact the difference that gives the different
conclusions of these two equations. Let ψ = ψ(x) be a smooth real function. Define

I (t)=
∫

R

ψ |v(t)|2 dx, (2-3)

J (t)= 2 Im
∫

R

ψv̄(t)vx(t) dx + 1
2

∫
ψ |v(t)|4 dx . (2-4)

Lemma 2.2. Let v be the solution of (1-10) with v(0)= v0 ∈ H 1(R), and let ψ ∈ C3. Then

I ′(t)= 2 Im
∫

R

ψ ′v̄(t)vx(t) dx, (2-5)

J ′(t)= 4
∫

R

ψ ′(|vx(t)|2− 1
16 |v(t)|

6) dx −
∫

R

ψ ′′′|v(t)|2 dx . (2-6)

Proof. Employing the gauge transform

w(t, x) := G−1/2u(t, x)= G1/4v(t, x),

by Lemma 2.1, w obeys the equation

iwt +wxx = i |w|2wx .

Moreover, since v(t, x)= G−1/4w(t, x), by (2-1),

∂xv(t, x)= e−i(1/4)
∫ x
−∞
|w(t,y)|2 dy(−1

4 i |w|2w+wx).

Thus we have

I (t)=
∫

R

ψ |w(t)|2 dx and J (t)= 2 Im
∫

R

ψw̄(t)wx(t) dx .

Now, by a direct computation, we get

I ′(t)= 2 Re
∫

R

ψw̄(t, x)∂tw(t, x) dx = 2 Re
∫

R

ψw̄(iwxx + |w|
2wx) dx

= 2 Im
∫

R

ψ ′w̄wx dx − 1
2

∫
R

ψ ′|w|4 dx . (2-7)

Applying (2-1) again,
∂xw(t, x)= e(1/4)i

∫ x
−∞
|v(t,y)|2 dy( 1

4 i |v|2v+ vx). (2-8)

This together with (2-7) gives (2-5). Now we turn to (2-6). For this, we get

J ′(t)= 2 Im
∫

R

ψw̄t(t, x)wx(t, x) dx + 2 Im
∫

R

ψw̄(t, x)wxt(t, x) dx

=−4Im
∫

R

ψwt w̄x dx − 2 Im
∫

R

ψ ′w̄wt dx
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=−4 Im
∫

R

ψw̄x(iwxx + |w|
2wx) dx − 2 Im

∫
R

ψ ′w̄(iwxx + |w|
2wx) dx

=−4 Re
∫

R

ψw̄xwxx dx − 2 Re
∫

R

ψ ′w̄wxx dx − 2 Im
∫

R

ψ ′|w|2w̄wx dx

= 4
∫

R

ψ ′|wx |
2 dx + 2 Re

∫
R

ψ ′′w̄wx dx − 2 Im
∫

R

ψ ′|w|2w̄wx dx

= 4
∫

R

ψ ′|wx |
2 dx −

∫
R

ψ ′′′|w|2 dx − 2 Im
∫

R

ψ ′|w|2w̄wx dx . (2-9)

Now, using (2-8), we have
|wx |

2
= |vx |

2
+

1
2 Im(|v|2v̄vx)+

1
16 |v|

6

and
|w|2 = |v|2, Im(|w|2w̄wx)= Im(|v|2v̄vx)+

1
4 |v|

6.

These insert into (2-9) and we obtain (2-6). �

3. A comparison between DNLS, NLS-5, and gKdV-5

In this section, we discuss the nonlinear Schrödinger equation with derivative (1-10), the focusing, quintic
nonlinear Schrödinger equation (NLS-5), which reads

i∂t u+ ∂2
x u+ 3

16 |u|
4u = 0, (3-1)

and the focusing, quintic generalized Korteweg–de Vries equation (gKdV-5),

∂t u+ ∂3
x u+ 3

16∂x(u5)= 0. (3-2)

The first two equations have the same standing wave solutions as ei t Q, and the last one has a traveling
wave solution Q(x − t). These three equations have the same energies in the form of (1-8). So by the
sharp Gagliardo–Nirenberg inequality, all of them are globally well-posed in H 1(R) when the initial data
‖u0‖L2 < ‖Q‖L2 =

√
2π .

Now we continue to discuss the difference between the first equation (DNLS) and the last two (NLS-5,
gKdV-5).

First of all, we give some products from Lemma 2.2. We always assume that v is smooth enough.
Taking ψ = x and ψ = x2, by (2-5), we have

d
dt

∫
R

x |v(t)|2 dx = 2 Im
∫

R

v̄(t)vx(t) dx

and
d
dt

∫
R

x2
|v(t)|2 dx = 4 Im

∫
R

x v̄(t)vx(t) dx, (3-3)

respectively. Note that these two identities resemble the corresponding identity of the mass-critical
nonlinear Schrödinger equation (3-1).

Now we take ψ = 1 in (2-6), which gives the momentum conservation law,
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P(v(t)) := Im
∫

R

v̄(t)vx(t) dx + 1
4

∫
R

|v(t)|4 dx = P(v0). (3-4)

Then, taking ψ = x , we have

d
dt

(
2 Im

∫
R

x v̄(t)vx(t) dx + 1
2

∫
R

x |v(t)|4 dx
)
= 4E(v0). (3-5)

This equality is different from the situation of the mass-critical nonlinear Schrödinger equation (3-1).
More precisely, for the solution u of (3-1) with the initial data u0, we have

d
dt

(
2 Im

∫
R

xū(t)ux(t) dx
)
= 4E(u0). (3-6)

Compared with the identity (3-6), there is an additional term 1
2

∫
x |v(t)|4 dx in (3-5). Indeed, for the

solution of (3-1), combining with the same identity as in (3-3), one has

d2

dt2

∫
R

x2
|u(t)|2 dx = 8E(u0). (3-7)

But this does not hold for the solution of (1-10). The “surplus” term 1
2

∫
x |v(t)|4 dx in (3-5) breaks

the convexity of the variance. It is precisely this difference that leads to the distinct phenomena of the
solutions of these two equations, at least at the technical level.

Using the virial identity (3-7), Glassey [1977] proved that the solution u of the mass-critical nonlinear
Schrödinger equation

∂t u+1u+ |u|4/N u = 0, (t, x) ∈ R×RN ,

blows up in finite time when u0 ∈ H 1(RN ), xu0 ∈ L2(RN ), and E(u0) < 0. Further, in the 1D case,
Ogawa and Tsutsumi [1991] proved that the solutions of (3-1) blow up in finite time when u0 ∈ H 1(R)

and E(u0) < 0. See also [Du et al. 2013; Holmer and Roudenko 2010; Glangetas and Merle 1995; Nawa
1999], where all the solutions of the nonlinear Schrödinger equations with power nonlinearity blow up in
finite time or infinite time if their energies are negative. However, Theorem 1.1 depicts a different scene,
where there exist global and uniformly bounded solutions even if E(v0) < 0.

The situation is also different from the mass-critical generalized KdV equation (3-2). The latter also
has virial identity

d
dt

∫
R

(x + t)|u(t)|2 dx =
∫

R

u2 dx − 3
∫

R

|ux |
2 dx − 1

3

∫
R

|u|6 dx .

The blow-up of the solutions to (3-2) also occurs when the initial data u0 satisfies E(u0) < 0, (1-6), and
some decay conditions; see [Martel and Merle 2002; Merle 2001].

4. Blow-up for the DNLS on the half line

In this section, we use the virial identities obtained in Lemma 2.2 to study the blow-up solutions for the
nonlinear Schrödinger equation with derivative on the half line. Consider the problem (1-11), and set
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v(t, x)= exp
(
−

3
4 i
∫ x

0
|u(t, y)|2 dy

)
u(t, x),

Using the gauge transformation, we see that v is the solution of
i∂tv+ ∂

2
x v =

1
2 i |v|2vx −

1
2 iv2v̄x −

3
16 |v|

4v, t ∈ R, x ∈ (0,+∞),

v(0, x)= v0(x),

v(t, 0)= 0.

(4-1)

Note that after replacing the integral domain R by R+, the energy conservation law and all of the virial
identities obtained in Section 2 also hold true for v.

Now using the virial identities and Glassey’s argument [1977], we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let v be the solution to (4-1). Define

I (t)=
∫
∞

0
x2
|v(t, x)|2 dx .

Then, by the identity analogous to (3-3), we have

I ′(t)= 4 Im
∫
∞

0
x v̄(t)vx(t) dx = 2

(
2 Im

∫
∞

0
x v̄(t)vx(t) dx + 1

2

∫
∞

0
x |v(t)|4 dx

)
−

∫
∞

0
x |v(t)|4 dx .

Now, by the identity analogous to (3-5), we get

d
dt

(
2 Im

∫
∞

0
x v̄(t)vx(t) dx + 1

2

∫
∞

0
x |v(t)|4 dx

)
= 4E(v0).

Therefore, using these two identities, we obtain

I ′′(t)= 8E(v0)−
d
dt

∫
∞

0
x |v(t)|4 dx .

Integrating in time twice, we have

I (t)= I (0)+ I ′(0)t +
∫ t

0

∫ s

0
I ′′(τ ) dτ ds

= I (0)+ I ′(0)t +
∫ t

0

∫ s

0

(
8E(v0)−

d
dτ

∫
∞

0
x |v(τ)|4 dx

)
dτ ds

= 4E(v0)t2
+

(
I ′(0)+

∫
∞

0
x |v0|

4 dx
)

t + I (0)−
∫ t

0

∫
∞

0
x |v(s)|4 dx ds

≤ 4E(v0)t2
+

(
I ′(0)+

∫
∞

0
x |v0|

4 dx
)

t + I (0). (4-2)

Since E(v0)= ED(u0) < 0, there exists a finite time T∗ > 0 such that I (T∗)= 0,

I (t) > 0 for 0< t < T∗,

and
I (t)= O(T∗− t) as t ↗ T∗.
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Note that ∫
∞

0
|v0(x)|2 dx =

∫
∞

0
|v(t, x)|2 dx =−2 Re

∫
∞

0
xv(t, x)vx(t, x) dx

≤ 2‖xv(t, x)‖L2
x (R
+)‖vx(t, x)‖L2

x (R
+) = 2

√
I (t)‖vx(t, · )‖L2(R+).

Then there is a constant C = C(v0) > 0 such that

‖vx(t, · )‖L2(R+) ≥

∫
∞

0 |v0(x)|2 dx

2
√

I (t)
≥

C
√

T∗− t
, (4-3)

and the right-hand side goes to∞ as t ↗ T ∗. Therefore, v(t) blows up at time T∗ <+∞. Since

vx = exp
(
−

3
4 i
∫ x

0
|u(t, y)|2 dy

)
(−i 3

4 |u|
2u+ ux),

by the Gagliardo–Nirenberg inequality and the mass conservation law, there exists C = C(u0) such that

‖vx(t, · )‖L2(R+) ≤ ‖ux(t, · )‖L2(R+)+
3
4‖u(t, · )‖

3
L6(R+)

≤ C‖ux(t, · )‖L2(R+).

Thus, by (4-3), this gives the analogous estimate on u. �

One may note from the proof that the key ingredient to obtain the blow-up result of the initial boundary
value problem on the half-line case is the positivity of the “surplus” term

∫
∞

0 x |v(t)|4 dx . This is not true
for the Cauchy problem.

5. Proof of Theorem 1.1

Proof. Let (−T−(u0), T+(u0)) be the maximal lifespan of the solution u of (1-1). To prove Theorem 1.1,
it is sufficient to obtain the (indeed uniformly) a priori estimate of the solutions on H 1-norm, that is,

sup
t∈(−T−(u0),T+(u0))

‖vx(t)‖L2 <+∞.

Now we argue by contradiction and suppose that there exists a sequence {tn} with

tn→−T−(u0) or T+(u0)

such that
‖vx(tn)‖L2 →+∞, as n→∞. (5-1)

Let
λn = ‖Qx‖L2/‖vx(tn)‖L2 (5-2)

and
wn(x)= λ1/2

n v(tn, λnx). (5-3)

Then, by (5-1),
‖∂xwn‖L2 = ‖Qx‖L2 and λn→ 0, as n→∞.

First we have the following lemma.
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Lemma 5.1. For any ε > 0, there exists a small ε∗ = ε∗(ε) > 0 such that if the function f ∈ H 1(R)

satisfies ∫
R

| f (x)|2 dx < 2π + ε∗, ‖∂x f ‖L2 = ‖∂x Q‖L2, E( f ) < ε∗,

then there exist γ0, x0 ∈ R such that

‖ f − e−iγ0 Q( · − x0)‖H1 ≤ ε.

We put the proof of Lemma 5.1 at the end of this section and apply it to prove Theorem 1.1. Let ε0 > 0
be a fixed small constant which will be chosen later, and let ε∗ = ε∗(ε0) > 0 be the number defined in
Lemma 5.1. By (1-6), (5-3), and a simple computation,∫

R

|wn(x)|2 dx =
∫

R

|v0(x)|2 dx < 2π + ε∗,

and

‖∂xwn‖L2 = ‖Qx‖L2, E(wn)= λ
2
n E(v0)→ 0.

Then, by Lemma 5.1, we may inductively construct the sequences {γn}, {xn} which satisfy

‖wn − e−iγn Q( · − xn)‖H1 ≤ ε0 for any n ≥ n0, (5-4)

where n0 = n0(ε0) is a positive large number. Let

ε(tn, x)= eiγnwn(x + xn)− Q.

Then

wn(x)= e−iγn Q(x − xn)+ e−iγnε(tn, x − xn). (5-5)

Therefore, by (5-3), (5-5), and (5-4), we have

v(tn, x)= e−iγnλ−1/2
n (ε+ Q)(tn, λ−1

n x − xn), ‖ε(tn)‖H1 ≤ ε0. (5-6)

By the momentum and (5-6), one has

P(v(tn))= Im
∫

R

v̄(tn)vx(tn) dx + 1
4

∫
R

|v(tn)|4 dx

= λ−2
n Im

∫
R

(ε̄+ Q)(tn, λ−1
n x − xn) · (εx + Qx)(tn, λ−1

n x − xn) dx

+
1
4λ
−2
n

∫
R

|(ε+ Q)(tn, λ−1
n x − xn)|

4 dx

= λ−1
n Im

∫
R

(ε̄(tn)+ Q)(εx(tn)+ Qx) dx + 1
4λ
−1
n

∫
R

|ε(tn)+ Q|4 dx

= λ−1
n

(
1
4‖Q‖

4
L4 + Im

∫
R

(Qxε(tn)+ Qεx(tn)+ ε̄εx(tn)) dx + 1
4

∫
R

(|ε(tn)+ Q|4− Q4) dx
)

= λ−1
n
( 1

4‖Q‖
4
L4 + O(‖ε(tn)‖H1)

)
≥ λ−1

n
( 1

4‖Q‖
4
L4 −Cε0

)
. (5-7)
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Thus, by choosing ε0 small enough such that Cε0 ≤
1
8‖Q‖

4
L4 , one has P(v(tn))≥ λ−1

n ·
1
8‖Q‖

4
L4 . By the

momentum conservation law, this proves that P(v0)λn ≥
1
8‖Q‖

4
L4 . That is, by (5-2),

‖vx(tn)‖L2 ≤ 8P(v0)‖Qx‖L2/‖Q‖4L4 . (5-8)

This violates (5-1). Therefore, we prove that there exists C0 = C0(ε∗, ‖v0‖H1), such that

sup
t∈R

‖vx(t)‖L2 ≤ C0.

Now, for the solution u of (1-1) (with λ= 1), we have u = G3/4v. Thus, by (2-1), we have

ux = ei(3/4)
∫ x
−∞
|v(t,y)|2 dy(i 3

4 |v|
2v+ vx

)
.

Therefore, by (1-9) and the mass conservation law, for any t ∈ R,

‖ux(t)‖L2 ≤ ‖vx(t)‖L2 +
3
4‖v(t)‖

3
L6 ≤ ‖vx(t)‖L2 +

3
2π
‖v(t)‖2L2‖vx(t)‖L2 ≤ C0

(
1+ 3

2π
‖u0‖

2
L2

)
. �

Proof of Lemma 5.1. The proof follows from the standard variational argument; see [Merle 2001; Weinstein
1986] for examples; see also [Banica 2004; Hmidi and Keraani 2005] for its applications. Here we prove
it by using the profile decomposition (see [Gérard 1998] for example) for the sake of the completeness.
Let { fn} ⊂ H 1(R) be any sequence satisfying

‖ fn‖L2 →‖Q‖L2, ‖∂x fn‖L2 = ‖Qx‖L2, E( fn)→ 0.

Then, by the profile decomposition, there exist {V j
}, {x j

n } such that, up to a subsequence,

fn =

L∑
j=1

V j ( · − x j
n )+ RL

n ,

where, for j 6= k, we have |x j
n − xk

n | →∞ as n→∞, and

lim
L→∞

lim
n→∞
‖RL

n ‖L6 = 0. (5-9)

Moreover,

‖ fn‖
2
H s =

L∑
j=1

‖V j
‖

2
H s +‖RL

n ‖
2
H s + on(1) for s = 0, 1,

E( fn)=

L∑
j=1

E(V j )+ E(RL
n )+ on(1).

(5-10)

Since ‖ fn‖L2 →‖Q‖L2 , one has, by (5-10),

‖V j
‖L2 ≤ ‖Q‖L2 for any j ≥ 1. (5-11)

This implies, by the sharp Gagliardo–Nirenberg inequality (1-9), that E(V j )≥ 0 for any j ≥ 1. Further,
by (5-9), one has

lim
L→∞

lim
n→∞

E(RL
n )≥ 0.
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Since E( fn)→ 0, we have E(V j )= 0 for any j ≥ 1. Combining with (5-11) and (1-9), this again yields

‖V j
‖L2 = ‖Q‖L2 or V j

= 0.

Since ‖ fn‖L2 →‖Q‖L2 , there exists exactly one j , say j = 1, such that

‖V 1
‖L2 = ‖Q‖L2, V j

= 0 for any j ≥ 2.

Moreover, by (5-10) and (1-9), when n→∞, we have RL
n → 0 in L2(R), and then further in H 1(R).

Therefore,
‖∂x V 1

‖L2 = ‖Qx‖L2, E(V 1)= 0,

and fn→ V 1 in H 1(R) as n→∞. Now we note that V 1 attains the sharp Gagliardo–Nirenberg inequality
(1-9). Thus, by the uniqueness of the minimizer of the Gagliardo–Nirenberg inequality [Weinstein
1982/83], we have V 1

= e−iγ0 Q( · − x0) for some γ0 ∈ R and x0 ∈ R. This proves the lemma. �
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