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MICHAEL DABKOWSKI, ALEXANDER KISELEV, LUIS SILVESTRE AND VLAD VICOL

The paper is devoted to the study of slightly supercritical active scalars with nonlocal diffusion. We prove
global regularity for the surface quasigeostrophic (SQG) and Burgers equations, when the diffusion term
is supercritical by a symbol with roughly logarithmic behavior at infinity. We show that the result is sharp
for the Burgers equation. We also prove global regularity for a slightly supercritical two-dimensional
Euler equation. Our main tool is a nonlocal maximum principle which controls a certain modulus of
continuity of the solutions.

1. Introduction

Active scalars play an important role in fluid mechanics. An active scalar equation is given by

∂tθ + (u · ∇)θ +Lθ = 0, θ(x, 0)= θ0(x), (1-1)

where L is typically some dissipative operator, such as fractional dissipation, and u is the flow velocity
that is determined by θ . A common setting is either on Rd or Td . Active scalar equations are nonlinear,
and most active scalars of interest are nonlocal. This makes the analysis of these equations challenging.
The best known active scalar equations are the two-dimensional Euler equation in vorticity form (for
which u =∇⊥(−1)−1θ ), the surface quasigeostrophic (SQG) equation (d = 2, u =∇⊥(−1)−1/2θ ), and
the one-dimensional Burgers equation (u = θ). The two-dimensional Euler and Burgers equations are
classical in fluid mechanics, while the SQG equation was first considered in the mathematical literature by
Constantin, Majda, and Tabak [Constantin et al. 1994], and since then has attracted significant attention,
in part due to certain similarities with three-dimensional Euler and Navier–Stokes equations.

Observe that for the SQG and Burgers equations the drift velocity u and the advected scalar θ are
of the same order of regularity, while for the two-dimensional Euler equation u is more regular by a
derivative. The two-dimensional Euler equation has global regular solutions, and can be thought of as a
critical case. For the Burgers and SQG equations, fractional dissipation L=3α , where 3= (−1)1/2 is
the Zygmund operator, have often been considered. Both of these equations possess the L∞ maximum
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principle [Resnick 1995; Córdoba and Córdoba 2004], and this makes α = 1 critical with respect to the
natural scaling of the equations. It has been known for a while that in the subcritical case α > 1, global
regular solutions exist for sufficiently smooth initial data (see [Resnick 1995] for the SQG equation; the
analysis for the Burgers equation is very similar; see, for example, [Kiselev et al. 2008]). The critical case
α = 1 has been especially interesting for the SQG equation since it is well motivated physically, with
the 3θ term modeling so called the Ekman boundary layer pumping effect; see, for example, [Pedlosky
1987]. The global regularity in the critical case has been settled independently by Kiselev, Nazarov,
and Volberg [Kiselev et al. 2007] and Caffarelli and Vasseur [2010]. A third proof of the same result
was provided by Kiselev and Nazarov [2009], and a fourth by Constantin and Vicol [2012]. All these
proofs are quite different. The method of [Caffarelli and Vasseur 2010] is inspired by DeGiorgi iterative
estimates, while the duality approach of [Kiselev and Nazarov 2009] uses an appropriate set of test
functions and estimates on their evolution. The proof in [Constantin and Vicol 2012] takes advantage of a
new nonlinear maximum principle, which gives a nonlinear bound on a linear operator. The method of
[Kiselev et al. 2007], on the other hand, is based on a technique which may be called a nonlocal maximum
principle. The idea is to prove that the evolution (1-1) preserves a certain modulus of continuity ω of
the solution. In the critical SQG case, the control is strong enough to give a uniform bound on ‖∇θ‖L∞ ,
which is sufficient for global regularity.

In the supercritical case, until recently the only results available (for large initial data) have been
on conditional regularity and finite time regularization of solutions. It was shown by Constantin and
Wu [2008] that if the solution is Cδ with δ > 1− α, it is smooth (see also [Silvestre 2011] for drift
velocity that is not divergence free). Dong and Pavlovic [2009] improved this result to δ = 1−α. Finite
time regularization has been proved by Silvestre [2010] for α sufficiently close to 1, and for the whole
dissipation range 0 < α < 1 by Dabkowski [2011] (with an alternative proof of the latter result given
in [Kiselev 2011]). The issue of global regularity in the case α ∈ (0, 1) remains an outstanding open
problem. A small advance into the supercritical regime was made in [Dabkowski et al. 2012], where the
SQG equation with velocity given by

u =∇⊥3−1m(3)θ

was considered. Here m is a Fourier multiplier which may grow at infinity at any rate slower than double
logarithm. The method of [Dabkowski et al. 2012] was based on the technique of [Kiselev et al. 2007].
The main issue is that even with very slow growth of m, the equation loses scaling, which plays an
important role in every proof of regularity for the critical case. [Dabkowski et al. 2012] was partly inspired
by the slightly supercritical Navier–Stokes regularity result of Tao [2009], and partly by recent work on
generalized Euler and SQG models [Chae et al. 2011; Chae et al. 2010].

In this paper, we analyze a slightly supercritical SQG equation and the Burgers equation equation. As
opposed to [Dabkowski et al. 2012], we keep the velocity definition the same as for classical SQG and
Burgers equations, and instead treat supercritical diffusion. We also consider nonlocal diffusion terms
more general than the fractional Laplacian, including cases where the L∞ maximum principle does not
hold. We show, roughly, that symbols supercritical by a logarithm or less lead to global regular solutions
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for both equations. Our main technique is the control of an appropriate family of moduli of continuity of
the solutions. For the Burgers equation, when the conditions we impose on the diffusion in order to obtain
global regularity are not satisfied, we prove that some smooth initial data leads to finite time blow-up;
see also [Alibaud et al. 2007; Dong et al. 2009; Kiselev et al. 2008]. In this respect, our well-posedness
result is sharp. For the SQG equation, the global regularity proof is more sophisticated than for the
Burgers equation. The upgrade from the double logarithmic supercriticality of [Dabkowski et al. 2012] to
the logarithmic one is made possible by exploiting the structure of nonlinearity, in particular the ∇⊥ in
u = ∇⊥3−1θ . This idea is based on [Kiselev 2011], where this structure was exploited to prove finite
time regularization for power supercritical SQG equations. We note that Xue and Zheng [2012] observed
a similar improvement from log log to log in the context of supercritical velocity.

We also consider the slightly supercritical two-dimensional Euler equation, and generalize the results
of [Chae et al. 2011] on global regularity of solutions.

General diffusion of integral type arises from probabilistic models which involve discontinuous Lévy
processes. Indeed, the classical Lévy–Khintchine representation formula shows that very general integral
diffusion arises as the generator of Lévy processes. This type of diffusion has many applications in the
physical sciences; see, for example, [Klafter and Sokolov 2005] and the references therein.

Below, we state main results proved in the paper. In Section 2, we provide some basic background
results on the nonlocal maximum principles. Section 3 is devoted to proving global regularity for the
slightly supercritical SQG equation with nonlocal diffusions. The Burgers case is handled in Section 4. In
Section 5, we consider the case of dissipation given by Fourier multipliers. Some natural multipliers can
lead to nonpositive convolution kernels for the corresponding nonlocal diffusion, and we generalize our
technique to this case. Section 6 is devoted to the slightly supercritical two-dimensional Euler equation.

To state our main results, we need to introduce some notation.

1A. Assumptions on m. Let m : (0,∞)→[0,∞) be a nonincreasing smooth function which is singular
at the origin, that is, limr→0 m(r)=∞, and satisfies the following conditions:

(i) There exists a sufficiently large positive constant C0 > 0 such that

rm(r)≤ C0 for all r ∈ (0, r0) (1-2)

for some r0 > 0. This condition is natural in the present context, since otherwise the dissipative
operator defined below is subcritical, which is not the purpose of this paper.

(ii) There exists some α > 0 such that

rαm(r) is nonincreasing. (1-3)

This assumption is slightly stronger than just having m(r) be nonincreasing.

Throughout this paper we also denote by m the radially symmetric function m : Rd
\ {0} → [0,∞) such

that m(y)= m(|y|) for each y ∈ Rd
\ {0}. Note that the above conditions allow for m to be identically

zero on the complement of a ball.
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The examples of functions m which are relevant to this paper are those that are less singular than r−1

near r = 0. These functions yield dissipative nonlocal operators (cf. (1-5) below) that are less smoothing
than 3, which makes the corresponding SQG and Burgers equations supercritical. The main examples
we have in mind are

m(r)=
1
ra and m(r)=

1
r( log(2/r))a

(1-4)

with 0 < a ≤ 1 and 0 < r ≤ 1, coupled with enough regularity and decay for r > 1. The first class
corresponds to power supercriticality. The second class, supercritical by a logarithm, is relevant for the
global well-posedness results we prove. It is not hard to verify that the functions in (1-4) verify (1-2)–(1-3)
on (0, 1], and that they can be suitably extended on [1,∞).

1B. Dissipative nonlocal operators. Associated to any such function m, we consider the nonlocal oper-
ator

Lθ(x)=
∫

Rd
(θ(x)− θ(x + y))

m(y)
|y|d

dy. (1-5)

Above and throughout the rest of the paper the integral is meant in principal value sense, but we omit
the P.V. in front of the integral. For example, when m(r)= r−αCd,α for a suitable normalizing constant,
Cd,α, L=3α. The nonlocal operators L we consider here are dissipative because m is singular at the
origin: due to (1-3), we have that m(r) ≥ m(1)r−α for some α > 0 when r ≤ 1, so that L is at least as
dissipative as 3α . It is now evident that when limr→0 rm(r)= 0, the corresponding nonlocal operator L

is less smoothing than 3. We emphasize that, for θ ∈ C∞(Td), the P.V. integral in (1-5) converges only if
m is subquadratic near r = 0, that is, ∫ 1

0
rm(r) dr <∞

holds. In our case, the above condition is satisfied in view of assumption (1-2). Convergence near infinity
is not an issue due to assumption (1-3).

All results in this paper can be generalized to a more general class of dissipative operators. Namely,
for each function m that satisfies (1-2)–(1-3), consider the class of smooth radially symmetric kernels
K : Rd

\ {0} → (0,∞) which satisfy

m(y)
C |y|d

≤ K (y)≤
Cm(y)
|y|d

(1-6)

for some constant C > 0 and all y 6= 0. Associated to each such kernel K we may consider the dissipative
nonlocal operator

Lθ(x)=
∫

Rd
(θ(x)− θ(x + y))K (y) dy, (1-7)

which generalizes the definition in (1-5). As we will see, such generalization will be useful when working
with dissipative operators generated by Fourier multipliers. Moreover, as we will see later, conditions on
K can be relaxed further.
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1C. Main results. The generalized dissipative SQG equation reads

∂tθ + u · ∇θ +Lθ = 0, (1-8)

u =∇⊥3−1θ, (1-9)

where L is as defined in (1-5) and m is as described above. The main result of this paper with respect to
the dissipative SQG equation is the following.

Theorem 1.1 (global regularity for slightly supercritical SQG). Assume that θ0 is smooth and periodic,
and m satisfies an additional assumption

lim
ε→0+

∫ 1

ε

m(r) dr =∞. (1-10)

Then there exists a unique, global in time, C∞ smooth solution θ of the initial value problem associated to
(1-8)–(1-9).

In analogy, one may consider the generalized dissipative Burgers equation

∂tθ − θθx +Lθ = 0, (1-11)

where L and m are as before, and d = 1. Then we prove

Theorem 1.2 (global regularity for fractal Burgers). Assume that θ0 is smooth and periodic, and m is
such that (1-2)–(1-3) hold and

lim
ε→0+

∫ 1

ε

m(r) dr =∞. (1-12)

Then there exists a unique, global in time, C∞ smooth solution θ of the initial value problem associated to
(1-11).

In addition, in the case of the Burgers equation we prove that condition (1-12) is sharp.

Theorem 1.3 (finite time blow-up for fractal Burgers). Assume that m is such that (1-2)–(1-3) hold, and
in addition we have

r |m′(r)| ≤ Cm(r) (1-13)

for r > 0 and some constant C ≥ 1. Furthermore, suppose that

lim
ε→0+

∫ 1

ε

m(r) dr <∞ (1-14)

holds. Then there exists an initial datum θ0 ∈ C∞(T), and T > 0 such that limt→T ‖θx(t)‖L∞ =∞, that
is, we have finite time blow-up arising from smooth initial data.

A natural class of dissipation terms is associated with Fourier multiplier operators. This representation
is closely related to the form (1-7). As noted above, when m(r)= r−αCd,α for a suitable constant Cd,α,
L = 3α, corresponding to the Fourier multiplier with symbol P(ζ ) = |ζ |α. One may generalize this
statement as follows. Let P(ζ ) be a sufficiently nice Fourier multiplier (see Lemmas 5.1 and 5.2 for
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precise assumptions on P), and let K (y) be the convolution kernel associated to the multiplier P , that is,
L̂θ(ζ )= P(ζ )θ̂(ζ ), where L is the operator defined in (1-7). Then there exists a positive constant C that
depends only on P , such that (1-6) holds for all sufficiently small y, with m(y)= P(1/ζ ). This turns out
to be sufficient to prove an analog of Theorem 1.1 (and Theorem 1.2).

Theorem 1.4 (global regularity for slightly supercritical SQG). Let P be a radially symmetric Fourier
multiplier that is smooth away from zero, nondecreasing, satisfies P(0)= 0, P(ζ )→∞ as |ζ | →∞, as
well as conditions (5-3)–(5-4), and (5-9). Suppose also

P(|ζ |)≤ C |ζ | (1-15)

for all |ζ | sufficiently large,

|ζ |−αP(|ζ |) is nondecreasing (1-16)

for some α > 0, and

. lim
ε→0

∫ 1

ε

P(|ζ |−1) d|ζ | =∞. (1-17)

Then, for any θ0 that is smooth and periodic, the Cauchy problem for the dissipative SQG equation
(5-1)–(5-2) has a unique global in time smooth solution.

In particular, Theorem 1.4 proves global regularity of solutions for dissipative terms given by multipliers
with behavior P(ζ )∼ |ζ |( log |ζ |)−a for large ζ , where 0≤ a ≤ 1. The details of the assumptions on P
and more discussion can be found in Section 5 below.

2. Pointwise moduli of continuity

Definition 2.1 (modulus of continuity). We call a function ω : [0,∞)→ [0,∞) a modulus of continuity
if ω(0) = 0, ω is nondecreasing, continuous, concave, piecewise C2 with one sided derivatives, and
additionally satisfies ω′(0+) < ∞ and ω′′(0+) = −∞. We say that a smooth function f obeys the
modulus of continuity ω if | f (x)− f (y)|< ω(|x − y|) for all x 6= y.

We recall that if f ∈ C∞(T2) obeys the modulus ω, then ‖∇ f ‖L∞ < ω
′(0+) [Kiselev et al. 2007]. In

addition, observe that a function f ∈ C∞(T2) automatically obeys any modulus of continuity ω(ξ) that
lies above the function min{ξ‖∇ f ‖L∞, 2‖ f ‖L∞}.

The following lemma gives the modulus of continuity of the Riesz transform of a given function.

Lemma 2.2 (modulus of continuity under a Riesz transform). Assume that θ obeys the modulus of
continuity ω, and that the drift velocity is given by the constitutive law u = ∇⊥3−1θ . Then u obeys the
modulus of continuity � defined as

�(ξ)= A
(∫ ξ

0

ω(η)

η
dη+ ξ

∫
∞

ξ

ω(η)

η2 dη
)

(2-1)

for some positive universal constant A > 0.



GLOBAL WELL-POSEDNESS FOR ACTIVE SCALAR EQUATIONS 49

Moreover, for any two points x, y with |x − y| = ξ > 0, we have∣∣∣∣(u(x)− u(y)) ·
x − y
|x − y|

∣∣∣∣≤ �̃(ξ)+�⊥(ξ), (2-2)

where

�̃(ξ)= A
(
ω(ξ)+ ξ

∫
∞

ξ

ω(η)

η2 dη
)

(2-3)

and

�⊥(ξ)= A
∫ ξ/4

0

∫ 3ξ/4

ξ/4
(θ(η, ν)−θ(−η, ν)−θ(η,−ν)+θ(−η,−ν))

ν

((ξ/2− η)2+ ν2)3/2
dη dν, (2-4)

where A is a universal constant.

The proof of (2-1) may be found in [Kiselev et al. 2007, Appendix], while (2-2) was obtained in [Kiselev
2011, Lemma 5.2], to which we refer for further details.

Lemma 2.3 (dissipation control). Let L be defined as in (1-7), with K satisfying (1-6). Assume that
θ ∈ C∞(T2) obeys a concave modulus of continuity ω. Suppose that there exist two points x, y with
|x − y| = ξ > 0 such that θ(x)− θ(y)= ω(ξ). Then we have

Lθ(x)−Lθ(y)≥ D(ξ)+D⊥(ξ) (2-5)

where

D(ξ)=
1
A

∫ ξ/2

0
(2ω(ξ)−ω(ξ + 2η)−ω(ξ − 2η))

m(2η)
η

dη

+
1
A

∫
∞

ξ/2
(2ω(ξ)−ω(ξ + 2η)+ω(2η− ξ))

m(2η)
η

dη (2-6)

and

D⊥(ξ)=
1
A

∫ ξ/4

0

∫ 3ξ/4

ξ/4
(2ω(2η)− θ(η, ν)+ θ(−η, ν)− θ(η,−ν)+ θ(−η,−ν))

×
m(
√
(ξ/2− η)2+ ν2)

(ξ/2− η)2+ ν2 dη dν (2-7)

with some sufficiently large universal constant A > 0 (that we can, for simplicity of presentation, choose
to be the same as in Lemma 2.2). The corresponding lower bound in one dimension includes only the D

term.

Note that D≥ 0 due to the concavity of ω, while D⊥ ≥ 0 since θ obeys the modulus of continuity ω.
The above lemma may be obtained along the lines of [Kiselev 2011, Section 5], where it was obtained for
L = 3. However, some modifications are necessary for more general diffusions we consider, and we
provide a proof in the Appendix below. We conclude this section by establishing a bound for �⊥(ξ) in
terms of D⊥(ξ).
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Lemma 2.4 (connection between �⊥ and D⊥). Let m be as in Section 1A, and assume θ obeys the
modulus of continuity ω. For �⊥(ξ) and D⊥(ξ) defined via (2-4) and (2-7), respectively, we have

m(ξ)�⊥(ξ)≤ A2D⊥(ξ) (2-8)

for all ξ > 0.

Proof of Lemma 2.4. To prove (2-8), first observe that since θ obeys ω, we have θ(η, ν)−θ(−η, ν)≤ω(2η)
and also θ(η,−ν)− θ(−η,−ν)≤ ω(2η). Therefore we have that

|θ(η, ν)− θ(−η, ν)− θ(η,−ν)+ θ(−η,−ν)|

≤ 2ω(2η)− θ(η, ν)+ θ(−η, ν)− θ(η,−ν)+ θ(−η,−ν) (2-9)

holds, for any (η, ν) ∈ R2.
Next, we claim that, for any 0< ν ≤ ξ/4 and any |η− ξ/2| ≤ ξ/4, we have

ν m(ξ)
((ξ/2− η)2+ ν2)3/2

≤
m(
√
(ξ/2− η)2+ ν2)

(ξ/2− η)2+ ν2 . (2-10)

To prove (2-10), we observe that in this range for (η, ν) we have
√
(ξ/2− η)2+ ν2 ≤ ξ , and due to the

monotonicity of m, it follows that m(ξ) ≤ m(
√
(ξ/2− η)2+ ν2). Since ν ≤

√
(ξ/2− η)2+ ν2, (2-10)

holds. Recalling the definitions of �⊥ and D⊥, it is clear that (2-8) follows directly from (2-9) and (2-10).
concluding the proof of the lemma. �

3. Global regularity for slightly supercritical SQG

Proof of Theorem 1.1. The local well-posedness for smooth solutions to SQG-type equations is by now
standard. In particular, we have.

Proposition 3.1 (local existence of a smooth solution). Given a periodic θ0 ∈ C∞, there exists T > 0 and
a periodic solution θ( · , t) ∈ C∞ of (1-8)–(1-9). Moreover, the smooth solution may be continued beyond
T as long as ‖∇θ‖L1(0,T ;L∞) <∞.

The local in time propagation of C∞ regularity may in fact even be obtained in the absence of dissipation.
Since in (1-8)–(1-9) we have a dissipative term, one may actually show local C∞ regularization of
sufficiently regular initial data. The proof may be obtained in analogy to the usual supercritical SQG
equation [Dong 2010], since, in view of (1-3), L is smoothing more than 3α for some α > 0. The
presence of the general dissipation L instead of the usual 3α does not introduce substantial difficulties.

The main difficulty in proving Theorem 1.1 is the supercriticality of the dissipation in (1-8)–(1-9).
Thus, as opposed to the critical case [Kiselev et al. 2007], here we cannot construct a single modulus of
continuity ω(ξ) preserved by the equation, and then use the scaling ωB(ξ)= ω(Bξ) to obtain a family of
moduli of continuity such that each initial data obeys a modulus in this family. Instead, we will separately
construct a modulus of continuity ωB(ξ) for each initial data, and each such modulus will be preserved
by the equation for all times; see also [Dabkowski et al. 2012].
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Before constructing the aforementioned family of moduli, let us recall the breakthrough scenario of
[Kiselev et al. 2007].

Lemma 3.2 (breakthrough scenario). Assume ω is a modulus of continuity such that ω(0+) = 0 and
ω′′(0+)=−∞. Suppose that the initial data θ0 obeys ω. If the solution θ(x, t) violates ω at some positive
time, there must exist t1 > 0 and x 6= y ∈ T2 such that

θ(x, t1)− θ(y, t1)= ω(|x − y|),

and θ(x, t) obeys ω for every 0≤ t < t1.

Let us consider the breakthrough scenario for a modulus of continuity ω. A simple computation
[Kiselev 2011] combined with Lemma 2.2 and Lemma 2.3 yields

∂t(θ(x, t)− θ(y, t))|t=t1 = u · ∇θ(y, t1)− u · ∇θ(x, t1)+Lθ(y, t1)−Lθ(x, t1)

≤

∣∣∣∣(u(x, t1)− u(y, t1)) ·
x − y
|x − y|

∣∣∣∣ω′(ξ)+Lθ(y, t1)−Lθ(x, t1)

≤min{�(ξ), �̃(ξ)+�⊥(ξ)}ω′(ξ)− (D(ξ)+D⊥(ξ)), (3-1)

where �, �̃,�⊥,D, and D⊥ are given in (2-1), (2-3), (2-4), (2-6), and (2-7)„ respectively. If we can
show that the expression on the right side of (3-1) must be strictly negative, we obtain a contradiction: ω
cannot be broken, and hence it is preserved by the evolution (1-8).

3A. Construction of the family of moduli of continuity. We now construct a family of moduli of con-
tinuity ωB , such that, given any periodic C∞ function θ0, there exists B ≥ 1 such that θ0 obeys ωB .

Fix a sufficiently small positive constant κ > 0, to be chosen precisely later in terms of the constant
A of (2-3) and the function m. For any B ≥ 1, we define δ(B) to be the unique solution of

m(δ(B))=
B
κ
. (3-2)

Since m is continuous, nonincreasing, m(r)→+∞ as r→ 0+, and (1-3) holds, such a solution δ(B)
exists for any B ≥ 1 (if κ is small enough). For convenience we can ensure that δ(B) ≤ r0/4 for any
B ≥ 1 by using (1-2) and choosing κ < r0/(4C0). Note that δ(B) is a nonincreasing function of B.

We let ωB(ξ) be the continuous function with ωB(0)= 0 and

ω′B(ξ)= B−
B2

2Cακ

∫ ξ

0

3+ ln(δ(B)/η)
ηm(η)

dη for 0< ξ < δ(B), (3-3)

ω′B(ξ)= γm(2ξ) for ξ > δ(B), (3-4)

where Cα = (1+ 3α)/α2 and γ > 0 is a constant to be chosen later in terms of κ, A, and the function
m (through C0, α, r0 of assumptions (1-2)–(1-3)). We emphasize that neither κ nor γ will depend on B.

Let us now verify that the above defined function ωB is indeed a modulus of continuity in the sense of
Definition 2.1. First notice that by construction ω′B(0+)= B and ωB(ξ)≤ Bξ for all 0< ξ ≤ δ(B). To
verify that ωB is nondecreasing, since m is nonnegative, we only need to check that ω′B > 0 for ξ < δ(B).
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This is equivalent to verifying that ω′B(δ(B)−) > 0. Using (1-3) and the change of variables δ(B)/η 7→ ξ ,
we may estimate∫ δ(B)

0

3+ ln(δ(B)/η)
ηm(η)

dη ≤
∫ δ(B)

0

3+ ln(δ(B)/η)
η1−αδ(B)αm(δ(B))

dη =
1

m(δ(B))

∫
∞

1

3+ ln ξ
ξ 1+α dξ =

Cα
m(δ(B))

,

where Cα = (1+ 3α)/α2 may be computed explicitly. The above estimate and (3-2)–(3-3) imply that

ω′B(δ(B)−)≥ B−
CαB2

2Cακm(δ(B))
=

B
2
, (3-5)

which concludes the proof that ω′B > 0.
In order to verify that ω′′B(0+)=−∞, we use (1-2) and (3-3) to obtain

ω′′B(ξ)=−
B2

2Cακξm(ξ)

(
3+ ln

δ(B)
ξ

)
≤−

B2

2CακC0

(
3+ ln

δ(B)
ξ

)
,

which is strictly negative for 0< ξ < δ(B), and also converges to −∞ as ξ → 0+.
Since m is nonincreasing, the concavity may only fail at ξ = δ(B). By (3-2) and (3-5) we have

ω′B(δ(B)+)= γm(2δ(B))≤ γm(δ(B))=
γ B
κ
≤

B
2
≤ ω′B(δ(B)−)

provided that 2γ ≤ κ , and therefore ωB is concave on (0,∞). It will also be useful to observe that, due
to the concavity of ωB and the mean value theorem, we have

ωB(δ(B))≥ δ(B)ω′B(δ(B)−)≥
δ(B)B

2
. (3-6)

3B. Each initial data obeys a modulus. In order to show that given any θ0 ∈ C∞(T2) there exits B ≥ 1
such that θ0 obeys ωB(ξ), it is enough to find a B such that ωB(ξ) >min{ξ‖∇θ0‖L∞, 2‖θ0‖L∞} for all
ξ > 0. Letting a = 2‖θ0‖L∞/‖∇θ0‖L∞ , due to the concavity of ωB , it is sufficient to find B ≥ 1 such that
ωB(a) > 2‖θ0‖L∞ . First, by choosing B large enough, we can ensure that a > δ(B). Then we have that

ωB(a)= ωB(δ(B))+
∫ a

δ(B)
ω′B(η) dη ≥ γ

∫ a

δ(B)
m(2η) dη→∞ as δ(B)→ 0 (3-7)

due to the assumption (1-10). Therefore each initial data obeys a modulus from the family {ωB}B≥1.

3C. The moduli are preserved by the evolution. It is left to verify that the above constructed family of
moduli of continuity satisfy

min{�B(ξ), �̃B(ξ)+�
⊥

B (ξ)}ω
′

B(ξ)− (DB(ξ)+D⊥B (ξ)) < 0 (3-8)

for any ξ > 0 and B ≥ 1. Here �B and others are defined just as � and others, but with ω replaced by ωB .
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The case ξ ≥ δ(B). First we observe that, by Lemma 2.4 and the fact that m is nonincreasing, we have

ω′B(ξ)�
⊥

B (ξ)= γm(2ξ)�⊥B (ξ)≤ γm(ξ)�⊥B (ξ)≤ γ A2D⊥B (ξ)≤ D⊥B (ξ)

for all ξ ≥ δ(B) if we choose γ ≤ 1/A2. In view of (3-8), it is left to prove that

�̃B(ξ)ω
′

B(ξ)−DB(ξ) < 0

for all ξ ≥ δ(B). In order to do this we claim that, for all ξ > δ(B), we have

ωB(2ξ)≤ cαωB(ξ), (3-9)

where cα = 1+ (3/2)−α and α > 0 is as in assumption (1-3). Note that, by definition, 1< cα < 2. We
postpone the proof of (3-9) to the end of this subsection. Using Lemma 2.3, (3-9), and the concavity and
the monotonicity of ωB , we may bound −DB as

−DB(ξ)≤
1
A

∫
∞

ξ/2
(ωB(ξ + 2η)−ωB(2η− ξ)−ωB(2ξ)− (2− cα)ωB(ξ))

m(2η)
η

dη

≤−
2− cα

A
ωB(ξ)

∫ ξ

ξ/2

m(2η)
η

dη ≤−
2− cα

A
ωB(ξ)m(2ξ). (3-10)

We emphasize that, for the upper bound (3-10), only the contribution from η ∈ (ξ/2, ξ) was used.
On the other hand, integrating by parts, the contribution from �̃B may be rewritten as

�̃B(ξ)

A
= ωB(ξ)+ ξ

∫
∞

ξ

ωB(η)

η2 dη = 2ωB(ξ)+ γ ξ

∫
∞

ξ

m(2η)
η

.

Using (1-3), we may bound∫
∞

ξ

m(2η)
η

dη ≤ ξαm(2ξ)
∫
∞

ξ

1
η1+α dη ≤

m(2ξ)
α

,

where α > 0 is given. Hence we obtain

�̃B(ξ)

A
≤ 2ωB(ξ)+

γ ξm(2ξ)
α

. (3-11)

Now, for δ(B)≤ ξ ≤ 2δ(B), by (1-3) we have

γ ξm(2ξ)
α

≤
γ

α
(2δ(B))1−αδ(B)αm(δ(B))≤

2γ
α
δ(B)

B
κ
≤

Bδ(B)
2
≤ ωB(δ(B))≤ ωB(ξ) (3-12)

by (3-6), if γ is small. On the other hand, for ξ > 2δ(B) we have ξ − δ(B)≥ ξ/2 and therefore

ωB(ξ)≥ γ

∫ ξ

δ(B)
m(2η) dη ≥ γm(2ξ)(ξ − δ(B))≥

γ ξm(2ξ)
2

.

Combining the above estimates with (3-11) leads to a bound

�̃B(ξ)≤ A
(

2+
2
α

)
ωB(ξ). (3-13)
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From (3-4) and the bounds (3-10) and (3-13), we hence obtain

�̃B(ξ)ω
′

B(ξ)−DB(ξ)≤

(
Aγ

2α+ 2
α
−

2− cα
A

)
ωB(ξ)m(2ξ) < 0

for all ξ ≥ δ(B), if we set γ small enough, depending only on A,C, α, and cα.

Proof of estimate (3-9). To verify (3-9) for δ(B)≤ ξ ≤ 2δ(B) is straightforward, since, by the mean value
theorem and (1-3), similarly to (3-12), we obtain

ωB(2ξ)≤ ωB(ξ)+ ξω
′

B(ξ)= ωB(ξ)+ γ ξm(2ξ)

≤ ωB(ξ)+
2γ
κ

Bδ(B)≤ ωB(ξ)+ (cα − 1)ωB(δ(B)),

by choosing γ small enough.
Now, for ξ > 2δ(B), by (3-4) and (3-6) we have

cαωB(ξ)−ωB(2ξ)

= (cα − 1)ωB(δ(B))+ (cα − 1)γ
∫ ξ

δ(B)
m(2η) dη− γ

∫ 2ξ

ξ

m(2η) dη

≥ (cα − 1)
Bδ(B)

2
− γ

∫ 2ξ

2ξ−δ(B)
m(2η) dη+ γ

∫ ξ

δ(B)
((cα − 1)m(2η)−m(2η+ 2ξ − 2δ(B))) dη.

We next note that for ξ ≥ 2δ(B), due to the monotonicity of m, we have

γ

∫ 2ξ

2ξ−δ(B)
m(2η) dη ≤ γ δ(B)m(δ(B))=

γ

κ
Bδ(B)≤ (cα − 1)

Bδ(B)
2

by letting γ be small enough. We next verify that

(cα − 1)m(2η)≥ m(2η+ 2ξ − 2δ(B))

holds for all η ∈ (δ(B), ξ). Using (1-3) and recalling that cα = 1+ (3/2)−α , the above inequality follows
once we check that

(3/2)−α(2η+ 2ξ − 2δ(B))α ≥ (2η)α

holds for all η ∈ (δ(B), ξ). But since ξ > 2δ(B), we have

η+ ξ − δ(B)
η

≥ 1+
ξ − δ(B)

ξ
≥

3
2 . �

The case 0< ξ ≤ δ(B). For small values of ξ , we prefer to bound the contribution from the advective
term using �B instead of �̃B +�

⊥

B . It is sufficient to prove that

�B(ξ)ω
′

B(ξ)−DB(ξ) < 0.

Using the concavity of ωB and the mean value theorem, we may estimate

−DB(ξ)≤
1
A

∫ ξ/2

0
(ωB(ξ + 2η)+ωB(ξ − 2η)− 2ωB(ξ))

m(2η)
η

dη ≤
C
A
ω′′B(ξ)

∫ ξ/2

0
ηm(2η) dη.



GLOBAL WELL-POSEDNESS FOR ACTIVE SCALAR EQUATIONS 55

From (1-3) we obtain ηαm(2η)≥ (ξ/2)αm(ξ) for η ∈ (0, ξ/2). Since ω′′B(ξ) < 0, we may further bound

−DB(ξ)≤
C
A
ω′′B(ξ)ξ

αm(ξ)
∫ ξ/2

0
η1−α dη ≤

C
A
ω′′B(ξ)ξ

2m(ξ). (3-14)

The contribution from the advecting velocity is bounded as

�B(ξ)

A
=

∫ ξ

0

ωB(η)

η
dη+ ξ

∫ δ(B)

ξ

ωB(η)

η2 dη+ ξ
∫
∞

δ(B)

ωB(η)

η2 dη

≤ Bξ + Bξ ln
δ(B)
ξ
+ ξ

(
ωB(δ(B))
δ(B)

+ γ

∫
∞

δ(B)

m(2η)
η

dη
)
. (3-15)

Here we used that ωB(η)≤ Bη for η ∈ (0, δ(B)). Using (1-2)–(1-3) and (3-2), we bound∫
∞

δ(B)

m(2η)
η

dη ≤
m(2δ(B))

α
≤

B
ακ
≤

B
γ

for γ ≤ ακ . Therefore, (3-15) gives

�B(ξ)≤ ABξ
(

3+ log
δ(B)
ξ

)
. (3-16)

From (3-3) and the bounds (3-14) and (3-16), we obtain

�B(ξ)ω
′

B(ξ)−DB(ξ)≤ AB2ξ

(
3+ log

δ(B)
ξ

)
+

C
A
ξ 2m(ξ)ω′′B(ξ)

≤ AB2ξ

(
3+ log

δ(B)
ξ

)(
1−

C
2A2Cακ

)
< 0 (3-17)

for any ξ ∈ (0, δ(B)), if we choose κ small enough. Here we used the explicit expression of ω′′B for small
ξ . Note that the choice of κ is independent of γ and B, which is essential in order to avoid a circular
argument. This concludes the proof of Theorem 1.1. �

4. Global regularity vs. finite time blow-up for slightly supercritical Burgers

In this section we prove Theorems 1.2 (global regularity) and 1.3 (finite time blow-up).

Proof of Theorem 1.2. Due to evident similarities to the SQG proof given in Section 3 above, we only
sketch the necessary modifications. See also [Kiselev et al. 2008] for more details.

First, we note that a modulus of continuity ωB is preserved by (1-11) if

ωB(ξ)ω
′

B(ξ)−DB(ξ) < 0, (4-1)

where DB is defined as by (2-6), with ω replaced by ωB . We will consider exactly the same family of
moduli of continuity ωB as in the SQG case, defined via (3-3)–(3-4).

We need to verify that (4-1) holds for any ξ > 0. In the case ξ ≥ δ(B), by using (3-10), we have

ωB(ξ)ω
′

B(ξ)−DB(ξ)≤ ωB(ξ)γm(2ξ)−
C
4
ωB(ξ)m(2ξ) < 0 (4-2)
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if γ ≤ C/8. On the other hand, for ξ ∈ (0, δ(B)), we use (3-14) and obtain

ωB(ξ)ω
′

B(ξ)−DB(ξ)≤ Bξω′B(ξ)+Cξ 2m(ξ)ω′′B(ξ)

≤ B2ξ −
C B2ξ

2Cακ

(
3+ ln

δ(B)
ξ

)
≤ B2ξ

(
1−

3C
2Cακ

)
< 0

(4-3)

if κ ≤ 3C/(2Cα). This concludes the proof of Theorem 1.2. �

Proof of Theorem 1.3. The proof will use ideas from [Dong et al. 2009], which builds an appropriate
Lyapunov functional to show blow-up. Throughout this section we assume that (1-14) holds, that is,∫ 1

0
m(r) dr = A <∞. (4-4)

Let θ0 ∈ C∞ be periodic and odd, with θ0(0)= 0. For simplicity we may take θ0 to be T = [−π, π]

periodic, and consider that r0 = 1 in (1-2). It is clear that the proof carries over for any period length and
for any value of r0 > 0, with obvious modifications. Assume the solution θ(x, t) of (1-11) corresponding
to this initial data lies in C(0, T ;W 1,∞) for some T > 0, and is hence C∞ smooth on [0, T ]. The Burgers
equation preserves oddness of a smooth solution so that we have θ(0, t) = 0 for t ∈ [0, T ], and also
θ(x, t)=−θ(−x, t) for all x ∈ T and t ∈ [0, T ].

Let w(x) be defined as the odd function with

w(x)= 1− x for x ∈ (0, 1), (4-5)

w(x)= 0 for x ≥ 1. (4-6)

Associated to this function w we define the Lyapunov functional

L(t)=
∫
∞

0
θ(x, t)w(x) dx =

∫ 1

0
θ(x, t)w(x) dx . (4-7)

Then, due to the maximum principle ‖θ( · , t)‖L∞ ≤ ‖θ0‖L∞ , which holds on [0, T ], and the definition of
w(x), we have

L(t)≤ ‖θ0‖L∞ (4-8)

for all t ∈ [0, T ]. We will next show, using our assumption that θ ∈C(0, T ;W 1,∞), that if T is sufficiently
large, the bound (4-8) is violated. This shows that our assumption has been wrong, and θ has finite time
blow-up in the W 1,∞ norm, concluding the proof of Theorem 1.3.

To proceed, we first need the following lemma.

Lemma 4.1. If L is a diffusive operator defined by (1-5) with m satisfying (4-4) in addition to our usual
assumptions and w is given by (4-5), ∫

R

|Lw(x)| dx <∞.

Proof. It is sufficient to estimate the integral over positive x , since Lw(x) is odd.
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The case x ≥ 1. Here we have w(x)= 0 and w is odd, hence

Lw(x)=
∫

R

(w(x)−w(y))
m(x − y)
|x − y|

dy =−
∫ 1

0
w(y)

m(x − y)
|x − y|

dy−
∫ 0

−1
w(y)

m(x − y)
|x − y|

dy

=−

∫ 1

0
w(y)

m(x − y)
|x − y|

dy+
∫ 1

0
w(y)

m(x + y)
|x + y|

dy

=−

∫ 1

0
(1− y)

(
m(x − y)
|x − y|

−
m(x + y)
|x + y|

)
dy. (4-9)

Using the mean value theorem and the monotonicity of m, we estimate∣∣∣∣m(x − y)
|x − y|

−
m(x + y)
|x + y|

∣∣∣∣≤ 2y sup
r∈[x−y,x+y]

r |m′(r)| +m(r)
r2 ≤ 4Cy

m(x − y)
|x − y|2

.

But the above bound is only convenient when x ≥ 2, and in this range we obtain∫
∞

2
|Lw(x)| dx ≤ 4C

∫
∞

2

∫ 1

0
(1− y)y

m(x − y)
|x − y|2

dy dx

≤ 4C
∫
∞

2

∫ 1

0
(1− y)y

m(1)
|x − 1|2

dy dx ≤ Cm(1). (4-10)

On the other hand, when x ∈ [1, 2], it is convenient to work with (4-9) directly. By the monotonicity of
m, we have that

|Lw(x)| ≤
∫ 1

0
(1− y)

(
m(x − y)
|x − y|

+
m(x + y)
|x + y|

)
dy ≤ 2

∫ 1

0
m(1− y) dy = 2A (4-11)

for any x ∈ [1, 2), by using (4-4). Therefore,
∫ 2

1 |Lw(x)| dx ≤ 2A, and by using (4-10), we obtain that∫
∞

1
|Lw(x)| dx ≤ 2A+CC0 =: C1. (4-12)

The case 0< x < 1. Here we have w(x)= 1− x , and therefore

Lw(x)

=

∫
∞

1−x
(1− x)

m(y)
y

dy+
∫ 1−x

−x
y

m(y)
|y|

dy+
∫
−x

−x−1
(2+ y)

m(y)
|y|

dy+
∫
−x−1

−∞

(1− x)
m(y)
|y|

dy

=: T1(x)+ T2(x)+ T3(x)+ T4(x). (4-13)

Using condition (1-3), we may easily bound T1 and T4. More precisely, using a change of variables
y→−y in T4, we may write

|T1(x)+ T4(x)| = (1− x)
∫ 1+x

1−x

m(y)
y

dy+ 2(1− x)
∫
∞

1+x

yαm(y)
y1+α dy

≤ (1− x)
∫ 1+x

1−x

m(1− x)
1− x

dy+ 2(1− x)(1+ x)αm(1+ x)
∫
∞

1+x

1
y1+α dy

≤ 2x m(1− x)+
2(1− x)m(1)

α
,
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and therefore∫ 1

0
|T1(x)+ T4(x)| dx ≤ 2

∫ 1

0
xm(1− x) dx +

2C0

α

∫ 1

0
(1− x) dx ≤ 2A+

C0

α
. (4-14)

To bound T2, we recall that m is even and hence T2(x)=
∫ 1−x

x m(y) dy, which in turn implies∫ 1

0
|T2(x)| dx ≤

∫ 1/2

0

∫ 1−x

x
m(y) dy dx +

∫ 1

1/2

∫ x

1−x
m(y) dy dx ≤

∫ 1

0
m(y) dy = A. (4-15)

Lastly, due to the monotonicity of m, we have that

|T3(x)| ≤ 2
∫ 1

x

m(y)
y

dy+ 2
∫ x+1

1

m(y)
y

dy+
∫ x+1

x
m(y) dy

≤ 2
∫ 1

x

m(y)
y

dy+ 2
∫ 2

1

m(1)
y

dy+
∫ 1

x
m(y) dy+

∫ 2

1
m(y) dy

≤ 2
∫ 1

x

m(y)
y

dy+ 2m(1) log 2+ A+m(1),

and therefore ∫ 1

0
|T3(x)| dx ≤ 2

∫ 1

0

∫ 1

x

m(y)
y

dy dx + 3m(1)+ A

≤ 2
∫ 1

0

∫ y

0

m(y)
y

dx dy+ 3C0+ A ≤ 3(C0+ A). (4-16)

Summarizing (4-14), (4-15), and (4-16), we obtain that∫ 1

0
|Lw(x)| dx ≤ 6A+ 3C0+

C0

α
=: C2. (4-17)

This concludes the proof. �

Coming back to our Lyapunov functional L(t), using the evolution (1-11) and integrating by parts, we
obtain

d
dt

L(t)=
∫
∞

0
θt(x, t)w(x) dx =

∫
∞

0

(
∂x
θ(x, t)2

2
−Lθ(x, t)

)
w(x) dx

=−
1
2

∫ 1

0
θ(x, t)2wx(x) dx −

∫
∞

0
θ(x, t)Lw(x) dx . (4-18)

Here we employed the identity
∫
∞

0 Lθ( · , t)w =
∫
∞

0 θ( · , t)Lw. This equality can be derived by using
the oddness of both θ and w, the evenness of m, and Lemma 4.1, ensuring Lw(x) ∈ L1 (see [Dong et al.
2009, (2.8)] for more details). Also, the integration by parts in the first term of (4-18) is justified, since,
by our assumption, θ vanishes as C |x | when x→ 0, with C = sup[0,T ] ‖∇θ( · , t)‖L∞ .
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Now, since wx =−1 for 0< x < 1, and using the Cauchy–Schwartz inequality, we obtain

L(t)2 =
(∫ 1

0
θ(x, t)w(x) dx

)2

≤

∫ 1

0
θ(x, t)2 dx

∫ 1

0
w(x)2 dx

=
1
3

∫ 1

0
θ(x, t)2 dx =−1

3

∫ 1

0
θ(x, t)2wx(x) dx .

Therefore, by (4-18) on [0, T ] we have

d
dt

L(t)≥
3
2

L(t)2−
∫
∞

0
|θ(x, t)||Lw(x)| dx ≥ L(t)2−‖θ0‖L∞

∫
∞

0
|Lw(x)| dx . (4-19)

By Lemma 4.1, we then have

d
dt

L(t)≥ L(t)2− (C1+C2)‖θ0‖L∞ . (4-20)

But (4-20) implies that L(t) blows up in finite time provided that

0< L(0)2− (C1+C2)‖θ0‖L∞ =

(∫ 1

0
(1− x)θ0(x) dx

)2

− (C1+C2)‖θ0‖L∞ .

It is easy to design initial data satisfying this condition, and thus leading to finite time blow-up. This
completes the proof of Theorem 1.3. �

5. Global regularity with dissipative Fourier multiplier

In this section we establish a connection between the global regularity results obtained for (1-8)–(1-9)
when the dissipative nonlocal operators L are replaced by dissipative Fourier multiplier operators, an
approach that has been more standard in fluid dynamics. More precisely, we will replace Lθ(x) by

(P(ζ )θ̂(ζ ))∨(x)

for a nice enough radially symmetric Fourier multiplier symbol P , and consider the global regularity for
the slightly supercritical SQG equation

∂tθ + u · ∇θ + (P θ̂ )∨ = 0, (5-1)

u =∇⊥3−1θ. (5-2)

The setting can be either T2 or R2 with decaying initial data. In the latter case, an additional argument
is needed for Lemma 3.2 to remain valid due to lack of compactness; see [Dong and Du 2008]. We
will focus on the periodic case. Note that working on Td is equivalent to working on Rd with θ(x, t)
extended periodically. We will henceforth pursue this strategy, thinking of the Fourier multiplier P and
its corresponding convolution kernel K in Rd .

Intuitively, the Fourier multiplier corresponds to a nonlocal operator L as defined in (1-5), with m(y)
that is comparable to P(1/|y|). We make this connection more precise in the following two lemmas.
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Lemma 5.1 (dissipative operator associated to Fourier multiplier — upper bound). Let P(ζ )= P(|ζ |) be
a radially symmetric function which is smooth away from zero, nonnegative, nondecreasing, with P(0)= 0
and P(ζ )→∞ as |ζ | →∞. In addition assume the following:

(i) P satisfies the doubling condition:

P(2|ζ |)≤ cD P(|ζ |) (5-3)

for some doubling constant cD ≥ 1.

(ii) P satisfies the Hörmander–Mikhlin condition:

|∂k
ζ P(ζ )||ζ ||k| ≤ cH P(ζ ) (5-4)

for some constant cH ≥ 1, and for all multi-indices k ∈ Zd with |k| ≤ N , with N depending only on
the dimension d and on the doubling constant cD .

(iii) P has subquadratic growth at∞, that is,∫ 1

0
P(|ζ |−1)|ζ |d|ζ |<∞. (5-5)

Then the Fourier multiplier operator with symbol P(ζ ) is given as a nonlocal operator defined as the
principal value of

(P( · )θ̂( · ))∨(x)=
∫

Rd
(θ(x)− θ(x + y))K (y) dy (5-6)

and the radially symmetric kernel K satisfying

|K (y)| ≤ C |y|−d P(|y|−1) (5-7)

for all y 6= 0, for some positive constant C > 0. Similarly |∇K (y)| ≤ C |y|−d−1 P(|y|−1) for y 6= 0.

Proof. As in Littlewood–Paley theory, consider smooth, radially symmetric functions ϕ, supported on
1/2≤ |ζ | ≤ 2, such that

1=
∑
j∈Z

ϕ(2− jζ ) (5-8)

holds for ζ ∈ Rd
\ {0}. We write ϕ j (ζ ) = ϕ(2− jζ ) and note that P(ζ )ϕ j (ζ ) is smooth and compactly

supported with P(0)ϕ j (0)= 0. Hence

K j (y)=−
∫

Rd
P(ζ )ϕ j (ζ )eiy·ζ dζ

is a family of L1 kernels, which are smooth at the origin, radially symmetric, and have zero mean on Rd .
Thus we may write (in order to avoid principal value integrals we use double differences)

(P( · )ϕ j ( · )θ̂( · ))
∨(x)=

∫
Rd

K j (y)
(
2θ(x)− θ(x − y)− θ(x + y)

)
dy.
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For y 6= 0, let j0 = [ log2 |y|
−1
] and fix N > d + log2 cD to be an even integer. By (5-3)–(5-4) we have∑

j

|K j (y)| =
∑
j< j0

‖K j‖L∞ +
∑
j≥ j0

∣∣∣∣∫
Rd

P(ζ )ϕ j (ζ )eiζ ·y dζ
∣∣∣∣

≤

∑
j< j0

‖K̂ j‖L1 +

∑
j≥ j0

|y|−N
∣∣∣∣∫

Rd
(−1)N/2(P(ζ )ϕ j (ζ ))eiζ ·y dζ

∣∣∣∣
≤

∑
j< j0

∫
Rd

P(ζ )ϕ(2− jζ ) dζ +C |y|−N
∑
j≥ j0

2− j N
∫

2 j−1≤|ζ |≤2 j+1
P(ζ ) dζ

≤ P(2 j0)
∑
j< j0

∫
Rd
ϕ(2− jζ ) dζ +C |y|−N

∑
j≥ j0

2− j (N−d)P(2 j+1)

≤ C P(2 j0)
∑
j< j0

2 jd
+C |y|−N 2− j0(N−d)

∑
j≥ j0

2−( j− j0)(N−d)P(2 j0)c j− j0
D

≤ C P(|y|−1)|y|−d
+C P(|y|−1)|y|−d

∑
j≥ j0

2−( j− j0)(N−d−log2 cD),

which shows that the sum K (y)=
∑

j K j (y) converges absolutely for all y 6= 0, and proves (5-7). The
purpose of condition (5-5) is now evident. For a smooth function θ (say at least of class C2), in order to
make sense of the integral ∫

|y|≤1
K (y)(θ(x − y)+ θ(x + y)− 2θ(x)) dy,

in view of (5-7), we need to assume that
∫
|y|≤1 P(|y|−1)|y|−d+2 dy <+∞, which is equivalent to (5-5).

The bound for |∇K |(y) is analogous, and we omit further details. �

Lemma 5.2 (dissipative operator associated to Fourier multiplier — lower bound). Let the Fourier multi-
plier P and its associated kernel K be as in Lemma 5.1. Assume additionally that

(v) P satisfies
(−1)(d+2)/2 P(ζ )≥ c−1

H P(ζ )|ζ |−d−2 (5-9)

for all |ζ | sufficiently large (say larger than c0 > 0), for some constant cH ≥ 1.

Then the kernel K corresponding to P (see (5-6)) may be bounded from below as

K (y)≥ C−1
|y|−d P(|y|−1) (5-10)

for all sufficiently small |y|, for some sufficiently large constant C > 0.

Proof. From our assumptions, the symbol P is a Cd+2 smooth function except perhaps at the origin.
Without loss of generality we can assume P to be smooth at the origin as well. Otherwise, we can write
P = P̃ + R where P̃ is a Cd+2 function everywhere with P̃(ζ )= P(ζ ) for all |ζ |> c0, P̃(0)= 0, and
(−1)N/2 P̃ is bounded in Rd . The remainder R is a bounded compactly supported function with R(0)= 0.
Therefore, the Fourier multiplier operator with symbol P is the sum of the operators with multipliers P̃
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and R. For P̃ we apply the proof below and obtain a kernel satisfying (5-10), and for the remainder R we
have (Rθ̂ )∨ = R∨ ∗ θ and R∨ is a bounded, mean zero L1 kernel. Thus, adding R∨ will not destroy the
estimate (5-10) for small enough y.

If P is smooth near ζ = 0, we have that Q(ζ )= (−1)(d+2)/2 P(ζ ) ∈ L1(Rd). Indeed,
∫
|ζ |≤1 |Q(ζ )| dζ

is finite since P is smooth, while by (5-4) and (5-5) we have∫
|ζ |≥1
|Q(ζ )| dζ ≤ cH

∫
|ζ |≥1
|ζ |−(d+2)P(ζ ) dζ = cH

∫
∞

1
|ζ |−3 P(|ζ |)d|ζ | = cH

∫ 1

0
r P(r−1) dr <∞.

We may hence define the function M , the inverse Fourier transform of −Q, as

M(y)=−
∫

Rd
Q(ζ )eiζ ·y dζ =−

∫
Rd

Q(ζ ) cos(y · ζ ) dζ,

where we have used the fact that Q is radially symmetric and real. Moreover, note that Q has zero
mean, since in view of Lemma 5.1 we have the bound |Q∨(x)| ≤ |x |d+2

|P∨(x)| ≤ C |x |2 P(|x |−1)→ 0
as |x | → 0, since P is subquadratic at infinity; cf. (5-5). Thus we may rewrite M(y) as

M(y)=
∫

Rd
Q(ζ )(1− cos(y · ζ )) dζ =

∫
Rd

Q(ζ )(1− cos(ζ1|y|)) dζ (5-11)

by using that Q is radially symmetric. In order to appeal to (5-9), we further split

M(y)=
∫
|ζ |≤c0

Q(ζ )(1− cos(ζ1|y|)) dζ +
∫
|ζ |>c0

Q(ζ )(1− cos(ζ1|y|)) dζ. (5-12)

For all |y| ≤ c−1
0 , the first integral in (5-12) can be estimated from below by −CQ |y|2, where CQ =∫

|ζ |≤c0
|Q(ζ )| dζ . Then, using (5-9), for |y| ≤ c−1

0 we obtain

M(y)≥−CQ |y|2+ c−1
H

∫
|ζ |≥c0

|ζ |−(d+2)P(ζ )(1− cos(ζ1|y|)) dζ

≥−CQ |y|2+ c−1
H |y|

2
∫
|z|≥c0|y|

|z|−(d+2)P(z|y|−1)(1− cos(z1))dz

≥−CQ |y|2+ c−1
H |y|

2
∫

2≥|z|≥1
|z|−(d+2)P(z|y|−1)(1− cos(z1))dz

≥−CQ |y|2+ c−1
H 2−(d+2)

|y|2 P(|y|−1)

∫
2≥|z|≥1

(1− cos z1)dz

≥−CQ |y|2+ 2C−1
|y|2 P(|y|−1) (5-13)

for some sufficiently large constant C > 0 that depends only on cH and d . The assumption that P(ζ )→∞
as |ζ | →∞ combined with (5-13) shows that

M(y)≥ C−1
|y|2 P(|y|−1)

holds for all sufficiently small |y|.
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To conclude, we note that since M̂ = −Q = −(−1)(d+2)/2 P , we have that K (y) = −P∨(y) =
|y|−(d+2)M(y) in the sense of tempered distributions, and hence we obtain that, for sufficiently small |y|,
the bound K (y)≥ C−1

|y|−d P(|y|−1) holds, concluding the proof of the lemma. �

Remark 5.3 (examples of symbols P). The conditions (5-3)–(5-5) that were assumed on the symbol P in
order to obtain the upper bound for the associated kernel are fairly common assumptions in Fourier analysis.
For all symbols of interest to us in this paper, condition (5-9) also naturally holds. The dimension relevant
to the SQG equation is d = 2. When P(ζ ) = |ζ |( log(|ζ |))−a for sufficiently large |ζ | and 0 < a ≤ 1,
corresponding to (1-4), one may verify that (−1)2 P(ζ )|ζ |4/P(ζ )→ 1 as |ζ | →∞, so that we may take
cH = 2 in (5-9) if c0 is sufficiently large. Thus condition (5-9) is not restrictive for the class of symbols
we have in mind.

The proof of Theorem 1.4 combines the estimates in Lemmas 5.1 and 5.2 above with the argument
given in Section 3. One complication arises due to the fact that (5-10) only holds for small enough |y|. In
fact, for the class of multipliers P that we consider, positivity of the kernel K is not assured. Because of
that, the L∞ maximum principle is no longer available. However, there is an easy substitute which is
sufficiently strong for our purpose.

Lemma 5.4. Assume that a smooth function θ(x, t) solves (5-2). Suppose that the kernel K (y) cor-
responding to the multiplier P via (5-6) satisfies |K (y)| ≤ C |y|−d P(|y|−1) for all y and K (y) ≥
C−1
|y|−d P(|y|−1) for all |y| ≤ 2σ , where σ,C are positive constants. Then there exists M∗ = M∗(P, θ0)

such that ‖θ(x, t)‖L∞ ≤ M for all t ≥ 0.

Proof. Letting M(t)= ‖θ( · , t)‖L∞ , we prove that there exists M∗ ≥ M(0), sufficiently large, such that
M(t)≤ M∗ for all t ≥ 0. If not, then, for any fixed M∗, there exists a t∗ > 0 such that M(t∗)= M∗ and
∂t M(t∗)≥ 0. For this fixed t∗ let x̄ be a point of maximum for θ( · , t∗). We have

Lθ(x̄)≥
∫
σ≤|y|≤∞

(θ(x̄)− θ(x̄ + y))K (y) dy

≥ cM∗

∫
σ≤|y|≤2σ

P(|y|−1)

|y|d
dy−C‖θ‖L2(Td )

(∫
σ≤|y|

P(|y|−1)2

|y|2d dy
)1/2

≥ cM∗P((2σ)−1)−C‖θ0‖L2(Td )P(σ
−1)σ−d/2. (5-14)

We used that P ≥ 0 implies ‖θ( · , t)‖L2(Td ) ≤ ‖θ0‖L2(Td ) in the above calculation. The estimate (5-14)
proves that ∂t M(t∗) must be negative if M∗ is large enough, depending only on P (through σ and other
constants) and θ0. It follows that M(t) will never exceed the larger of these bound or ‖θ0‖L∞ . �

Proof of Theorem 1.4. The first two lemmas of this section show that, for the multiplier P satisfying (5-3)–
(5-5) and (5-9), we have that (P θ̂ )∨(x)=

∫
(θ(x)− θ(x + y))K (y) dy, with K being radial and smooth

away from zero. Moreover, K satisfies |K (y)| ≤ C |y|−d P(|y|−1) for all y and K (y)≥ c|y|−d P(|y|−1)

for all |y| ≤ 2σ , where C, c, σ are positive constants depending only on P .
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Consider a smooth radially decreasing function ϕ0(y) that is identically 1 on |y| ≤ σ and vanishes
identically on |y| ≥ 2σ . We decompose

K (y)= K (y)ϕ0(y)+ K (y)(1−ϕ0(y))=: K1(y)+ K2(y),

so that

(P θ̂ )∨(x)=
∫

Rd
(θ(x)− θ(x + y))K1(y)+

∫
Rd
(θ(x)− θ(x + y))K2(y)=: L1θ(x)+L2θ(x).

The nonlocal operator L1 is of type (1-7), since by letting

m(r)= C−1 P(r−1)ϕ0(r), (5-15)

we have that

K1(y)≥ m(|y|)|y|−d

for all y and some C > 0. It is clear that the above defined m satisfies properties (1-2)–(1-3) and (1-10)
in view of assumptions (1-15)–(1-17) imposed on P . Therefore, for L1, we will be able to directly use
the estimate in Lemma 2.3, which relies only on lower bounds for the kernel associated to L1.

On the other hand, we observe that K2 ∈ L1(Rd) since K2(y)= 0 for y ≤ σ , and we have

|K2(y)| ≤ |K (y)| ≤ C P(|y|−1)|y|−d
≤ σ αP(σ−1)|y|−d−α

for any |y| ≥ σ , by using (1-16). Let us fix the constant C2 = ‖K2‖L1(Rd ). Then if θ( · , t) obeys the
modulus of continuity ω(ξ), it is clear that

|L2θ(x, t)−L2θ(y, t)| ≤ 2C2 min{ω(ξ),M∗}, (5-16)

where M∗ is the L∞ norm bound from Lemma 5.4, holds for all x, y ∈ Rd , where |x − y| = ξ .
Now the argument of Section 3 goes through with minor changes. We provide an outline of the

argument to verify this. First, similarly to (3-7) we may prove that for B large enough (now depending
on σ as well) we have ωB(σ ) ≥ 3M∗ ≥ 3‖θ( · , t)‖L∞ , so that the modulus of continuity can only be
broken at values of ξ ∈ (0, σ ). Let DB and D⊥B be the bounds obtained from the dissipative operator L1

via Lemma 2.3. Note that the only contribution from the integral defining DB that is used in the estimates
is for η ∈ (0, ξ) (see (3-10) and (3-14)), and for us ξ < σ so all the bounds on the dissipation given in the
proof of Theorem 1.1 require no modification. Therefore, provided κ and γ are chosen sufficiently small,
we have

min{�B(ξ), �̃B(ξ)+�
⊥

B (ξ)}ω
′

B(ξ)− (
1
2 DB(ξ)+D⊥B (ξ)) < 0

for any B ≥ 1 and ξ ∈ (0, σ ), exactly as in the proof of Theorem 1.1. The proof is hence completed once
we show that the contribution of L2 is controlled:

2C2 min{ωB(ξ), 2‖θ‖L∞} ≤
1
2 DB(ξ) (5-17)
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for any ξ ∈ (0, σ ) and any B ≥ 1. The range ξ ∈ (0, δ(B)) is clear, since here ωB(ξ)≤ Bξ and by (3-14)
we have

DB(ξ)≥−
C
A
ξ 2m(ξ)ω′′B(ξ)=

C B2

2κCαA
ξ

(
3+ ln

δ(B)
ξ

)
≥

3C
2κCαA

Bξ ≥ 4C2 Bξ ≥ 4C2ωB(ξ)

by letting κ be small enough (independent of B ≥ 1).
We next consider the range ξ ∈ (δ(B), σ ). In view of (3-10), we have DB(ξ)≥ CωB(ξ)m(2ξ), where

C = (2− cα)/A. Since P(ζ )→∞ as |ζ | →∞, we have that Cm(2ξ)≥ 4C2, for all ξ ∈ (δ(B), κ), for
some κ > 0. If κ ≥ σ , the proof is completed, but this cannot be guaranteed, so we have to also consider
the case κ < σ . For ξ ∈ (κ, σ ), we have

DB(ξ)≥ CωB(ξ)m(2ξ)≥ CωB(κ)m(σ )≥ Cm(σ )γ
∫ κ

δ(B)
m(2η) dη. (5-18)

By making B large enough, we can ensure that the right hand side of (5-18) is larger than 2M∗. �

6. Global well-posedness for a two-dimensional Euler-type equation with more singular velocity

In this section we address the issue of global regularity for the inviscid active scalar equation

∂tθ − u · ∇θ = 0, (6-1)

u =∇⊥3−2 P(3)θ, (6-2)

where the multiplier P(ζ ) = P(|ζ |) is a radially symmetric function which is smooth, nondecreasing,
with P(0)= 0 and P(ζ )→∞ as |ζ | →∞. In addition, we assume that P satisfies a doubling property

P(2|ζ |)≤ cD P(|ζ |) (6-3)

for some doubling constant cD ≥ 1,

|ζ |−αP(|ζ |) is nonincreasing (6-4)

for some α ∈ (0, 1), and a Hörmander–Mikhlin type condition

|∂k
ζ P(ζ )||ζ ||k| ≤ cH P(ζ ) (6-5)

holds for some constant cH ≥ 1 and for all multi-indices k ∈ Zd with |k| ≤ N , where N depends only on
the dimension d and on the doubling constant cD . Condition (6-4) is quite natural in view of (6-7) below,
while conditions (6-3) and (6-5) are standard in Fourier analysis. We remark that, while finalizing this
paper, we learned of [Elgindi 2014], which proves a result very similar to the one proved in this section
under slightly less restrictive assumptions on P .

Using the technique of Lemma 5.1, one may show using (6-3) and (6-5) that the convolution kernel K
corresponding to the operator ∇⊥3−2 P(3), that is, to the Fourier multiplier iζ⊥|ζ |−2 P(|ζ |), satisfies
the estimates

|K (x)| ≤ C |x |−d+1 P(|x |−1), |∇K (x)| ≤ C |x |−d P(|x |−1), |∇1K (x)| ≤ C |x |−d−2 P(|x |−1) (6-6)
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for all x 6= 0. Moreover, we note that K integrates to 0 around the unit sphere, and hence convolution
with K annihilates constants.

The study of Euler equations with more singular velocities, (6-1)–(6-2), was recently initiated by Chae,
Constantin, and Wu [Chae et al. 2011]. They prove the global regularity for the loglog-Euler equation;
namely, they prove global regularity in the case that arises when P(ζ ) = [ln(1+ ln(1+ |ζ |2))]γ , for
γ ∈ [0, 1]. Their approach relies on estimates for the Fourier localized gradient of the velocity for a
particular class of symbols. Our aim here is to provide a proof of global regularity for a slightly more
general class of symbols P , via the modulus of continuity method. The main result of this section is the
following.

Theorem 6.1 (global regularity for the P-Euler equation). Let P be a smooth radially symmetric function
which is smooth and nondecreasing with P(0)= 0 and P(ζ )→∞ as |ζ | →∞ and satisfies assumptions
(6-3)–(6-5). If θ0 is periodic and smooth and we assume that∫ M

1

dr
r ln(2r)P(r)

→∞, as M→∞, (6-7)

the P−Euler equation (6-1)–(6-2) has a global in time smooth solution.

Remark 6.2 (integral formulation). In fact, our proof provides a stronger result if we state the constitutive
law relating u and θ in terms of an integrodifferential operator instead of a Fourier multiplier

u(x)=
∫

Rd
θ(x + y)K (y) dy,

where K is any kernel which satisfies the hypothesis (6-6) for any function P for which (6-3), (6-4), and
(6-7) hold, but not necessarily (6-5).

In the previous sections, we constructed autonomous families of moduli of continuity preserved by
the dynamics of the respective equations. In the inviscid case, we will construct a single modulus of
continuity and then scale it autonomously. The following lemma makes the above observation precise.

Lemma 6.3 (modulus of continuity under pure transport). Let u be a Lipschitz vector field and let θ solve
the transport equation

∂tθ + u · ∇θ = 0. (6-8)

If θ0 = θ( · , 0) has some modulus of continuity ω(ξ), then θ( · , t) has the modulus of continuity ω(B(t)ξ),
where B(t) is given by

B(t)= exp
(∫ t

0
‖∇u( · , s)‖L∞

)
.

Equivalently, B(t) solves B(0)= 1 and Ḃ(t)= ‖∇u( · , t)‖L∞B(t).

Proof. The solution to the transport equation can be obtained by following the flow of the vector field
backwards. Indeed, θ(x, t)= θ0(X (t)) where X solves the ordinary differential equation

Ẋ(s)= u(X (s), t − s), X (0)= x .
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If X (t) and Y (t) are two such trajectories starting at x and y, respectively, from Grönwall’s inequality

|X (t)− Y (t)| ≤ exp
(∫ t

0
‖∇u( · , s)‖L∞

)
|x − y| = B(t)|x − y|.

Therefore,
|θ(x, t)− θ(y, t)| ≤ |θ0(X (t))− θ0(Y (t))| ≤ ω(B(t)|x − y|), �

which concludes the proof of the lemma.

Proof of Theorem 6.1. Let us consider an initial data θ0 whose Lipschitz L∞ and L2 norms are bounded
by an arbitrary constant A. Applying Lemma 6.3 with ω(ξ) = Aξ , we obtain that θ( · , t) obeys the
modulus of continuity AB(t)ξ , that is, it is Lipschitz continuous with Lipschitz constant

‖∇θ( · , t)‖L∞ ≤ A B(t), (6-9)

where B(0)= 1 and Ḃ = ‖∇u( · , t)‖L∞ B(t).
By the maximum principle, ‖θ( · , t)‖L∞ ≤ ‖θ0‖ ≤ A for any time t . Moreover, since u is divergence-

free, ‖θ( · , t)‖L2 ≤ ‖θ0‖L2 ≤ A for any time t . In order to combine the last two estimates, we have to
estimate the Lipschitz norm of u at time t . Let ϕ(y) be a radially nonincreasing nonnegative function that
is constant 1 on |y| ≤ 1/2 and vanishes for |y| ≥ 1. For some r ∈ (0, 1) to be chosen later, we split the
integral defining ∇u into three pieces to estimate

|∇u(x)| =
∣∣∣∣∫

Rd
∇K (y)θ(x + y)dy

∣∣∣∣
≤

∫
Rd
|∇(ϕ(y/r)K (y))||θ(x + y)− θ(x)|dy+

∫
Rd
|∇((1−ϕ(y/r))ϕ(y)K (y))| |θ(x + y)|dy

+

∣∣∣∣∫
Rd
∇((1−ϕ(y))K (y))θ(x + y)dy

∣∣∣∣.
Using the bounds on K and its derivatives obtained in (6-6) and the fact that θ is Lipschitz with constant
given by (6-9), we may further bound

|∇u(x)| ≤ C
∫
|y|≤r

P(|y|−1)

|y|d
|θ(x + y)− θ(x)| dy+C

∫
r/2≤|y|≤1

P(|y|−1)

|y|d
|θ(x + y)| dy

+

∫
Rd
|(−1)∇((1−ϕ(y))K (y))||(−1)−1θ(x + y)| dy (6-10)

≤ C AB(t)
∫ r

0
P(ρ−1) dρ+C‖θ0‖L∞

∫ 1

r/2

P(ρ−1)

ρ
dρ

+C‖(−1)−1θ‖L∞(Rd )

∫
|y|≥1/2

P(|y|−1)

|y|d+2 dy

≤ C AB(t)r P(r−1)+C AP(r−1) ln 2
r
+C AP(2). (6-11)

In the last inequality above, we have additionally used two facts: first, that by (6-4) we have∫ r

0
P(ρ−1) dρ ≤ Cr P(r−1);
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and second, that since θ is periodic and has zero mean on the torus, we can use the Sobolev inequality
and estimate

‖(−1)−1θ‖L∞(Rd ) = ‖(−1)
−1θ‖L∞(Td ) ≤ C‖θ‖L2(Td ) ≤ C A.

By choosing r = B(t)−1 in (6-11), which is allowed since B(0)= 1 and Ḃ ≥ 0, we arrive at

‖∇u( · , t)‖L∞ ≤ C A(1+ P(B(t))(1+ ln 2B(t))).

Finally we rewrite the differential equation for B(t) as

Ḃ(t)= ‖∇u( · , t)‖L∞B(t)≤ C A(1+ P(B(t))(1+ ln 2B(t)))B(t).

Clearly this ODE has a global in time solution if and only if∫
∞

1

1
r ln(2r)P(r)

dr =∞

holds, which finishes the proof. �

Appendix: Estimate on the dissipative operator at points of modulus breakdown

Here we prove Lemma 2.3. Our argument parallels that of [Kiselev 2011], but is slightly simpler and
more general, as we use the integral representation of the diffusion generator L instead of generalized
Poisson kernels employed in [Kiselev 2011]. We remark that a more general argument that allows one to
also handle the Cordoba–Cordoba–Fontelos model has recently been given by Tam Do [2013].

Proof of Lemma 2.3. Due to translation invariance and radial symmetry, we may assume without loss of
generality that

x = (ξ/2, 0) and y = (−ξ/2, 0).

For a point (η, ν) ∈ R2, we write K (η, ν) for the dissipation kernel corresponding to L. Then we have

Lθ

(
ξ

2
, 0
)
−Lθ

(
−
ξ

2
, 0
)

=

∫
R

∫
R

(
θ

(
ξ

2
, 0
)
− θ

(
−
ξ

2
, 0
)
− θ

(
ξ

2
+ η, ν

)
+ θ

(
−
ξ

2
+ η, ν

))
K (η, ν) dη dν. (A-1)

Note that since θ obeys the modulus of continuity ω, one may bound Lθ(ξ/2, 0)−Lθ(−ξ/2, 0) from
below by the expression on the right side of (A-1), with K (η, ν) replaced by m(

√
η2+ ν2)(η2

+ ν2)−1.
We will henceforth write K as a shortcut for the latter expression, and assume without loss of generality
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that K is radially nonincreasing and nonnegative, since so is m in (1-6).

Lθ

(
ξ

2
, 0
)
−Lθ

(
−
ξ

2
, 0
)

=

∫
R

∫
R

(
ω(ξ)− θ

(
ξ

2
+ η, ν

)
+ θ(−

ξ

2
− η, ν)

)
K (η, ν) dη dν

=

∫
R

∫
∞

−ξ/2

(
ω(ξ)− θ

(
ξ

2
+ η, ν

)
+ θ

(
−
ξ

2
− η, ν

))
K (η, ν) dη dν

+

∫
R

∫
∞

−ξ/2

(
ω(ξ)− θ

(
−
ξ

2
− η, ν

)
+ θ

(
ξ

2
+ η, ν

))
K (−ξ − η, ν) dη dν

=

∫
R

∫
∞

−ξ/2
ω(ξ)(K (η, ν)+ K (−ξ − η, ν))

−

(
θ

(
ξ

2
+ η, ν

)
− θ

(
−
ξ

2
− η, ν

))
(K (η, ν)− K (ξ + η, ν)) dη dν

=

∫
R

∫
∞

−ξ/2
ω(ξ)(K (η, ν)+ K (−ξ − η, ν))−ω(ξ + 2η)(K (η, ν)− K (ξ + η, ν)) dη dν

+

∫
R

∫
∞

−ξ/2
ω(ξ)(K (η, ν)+ K (−ξ − η, ν))

+

(
ω(ξ + 2η)− θ

(
ξ

2
+ η, ν

)
+ θ

(
−
ξ

2
− η, ν

))
(K (η, ν)− K (ξ + η, ν)) dη dν

=: T ‖+ T⊥.

Note that

K (η, ν)− K (ξ + η, ν)≥ 0

for η ≥−ξ/2 due to the monotonicity of K (or that of its lower bound). Hence, using that θ obeys the
modulus of continuity ω, we see that T⊥ ≥ 0. To obtain a useful lower bound for T⊥, we only retain the
singular piece centered about η = 0. Changing variables η+ ξ/2 7→ η, we have

T⊥ =
∫

R

∫
∞

0
(ω(2η)− θ(η, ν)+ θ(−η, ν))

(
K
(
η−

ξ

2
, ν

)
− K

(
η+

ξ

2
, ν

))
dη dν. (A-2)

When |ν| ≤ ξ/4 and |η− ξ/2| ≤ ξ/4, using that m is radially nonincreasing, we have that

K (η−ξ/2,ν)−K (η+ξ/2,ν)=
m(
√
(η−ξ/2)2+ν2)

(η−ξ/2)2+ν2 −
m(
√
(η+ξ/2)2+ν2)

(η+ξ/2)2+ν2

≥m
(√
(η−ξ/2)2+ν2

)( 1
(η−ξ/2)2+ν2 −

1
(η+ξ/2)2+ν2

)
≥m

(√
(η−ξ/2)2+ν2

) 1
2((η−ξ/2)2+ν2)

=
K (η−ξ/2,ν)

2
. (A-3)
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Inserting estimate (A-3) into expression (A-2) and recalling that θ obeys ω, we obtain

T⊥ ≥ 1
2

∫ ξ/4

−ξ/4

∫ 3ξ/4

ξ/4
(ω(2η)− θ(η,ν)+ θ(−η,ν))K

(
η−

ξ

2
,ν

)
dηdν

=
1
2

∫ ξ/4

0

∫ 3ξ/4

ξ/4
(2ω(2η)− θ(η,ν)+ θ(−η,ν)− θ(η,−ν)+ θ(−η,−ν))K

(
η−

ξ

2
,ν

)
dηdν =

D⊥

2
.

On the other hand, the dissipation contribution from the direction parallel to x − y may be rewritten as

T ‖ =
∫

R

∫
∞

−ξ/2
ω(ξ)(K (η,ν)+K (−ξ −η,ν))−ω(ξ +2η)(K (η,ν)−K (ξ +η,ν))dηdν

=

∫
R

∫
−ξ/2

−∞

(ω(ξ)+ω(−ξ −2η))K (η,ν)dηdν+
∫

R

∫
∞

−ξ/2
(ω(ξ)−ω(ξ +2η))K (η,ν)dηdν

=

∫
−ξ/2

−∞

(ω(ξ)+ω(−ξ −2η))K̃ (η)dη+
∫
∞

−ξ/2
(ω(ξ)−ω(ξ +2η))K̃ (η)dη

=

∫ ξ/2

0
(2ω(ξ)−ω(ξ +2η)−ω(ξ −2η))K̃ (η)dη+

∫
∞

ξ/2
(2ω(ξ)−ω(ξ +2η)+ω(2η− ξ))K̃ (η)dη,

where we have denoted

K̃ (η)=
∫

R

K (η, ν) dν.

Since ω is concave, the proof of the lemma is concluded once we establish the existence of a positive
constant C such that

K̃ (η)≥
Cm(2η)
η

for all η > 0. But this is immediate since m is nonincreasing, and hence∫
R

K (η, ν) dν ≥
∫ η

−η

K (η, ν) dν ≥ Cm(2η)
∫ η

−η

dν
η2+ ν2 ≥

Cm(2η)
η

. �

Remark A.1 (one-dimensional version). It is clear that this proof also holds in the one-dimensional case
relevant for the Burgers equation. In fact this case is simpler since there is no need to introduce K̃ .
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