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CONVEXITY OF AVERAGE OPERATORS FOR SUBSOLUTIONS
TO SUBELLIPTIC EQUATIONS

ANDREA BONFIGLIOLI, ERMANNO LANCONELLI AND ANDREA TOMMASOLI

We study convexity properties of the average integral operators naturally associated with divergence-form
second-order subelliptic operators L with nonnegative characteristic form. When L is the classical
Laplace operator, these average operators are the usual average integrals over Euclidean spheres. In our
subelliptic setting, the average operators are (weighted) integrals over the level sets

∂�r (x)= {y : 0(x, y)= 1/r}

of the fundamental solution 0(x, y) of L. We shall obtain characterizations of the L-subharmonic
functions u (that is, the weak solutions to −Lu ≤ 0) in terms of the convexity (w.r.t. a power of r ) of the
average of u over ∂�r (x), as a function of the radius r . Solid average operators will be considered as well.
Our main tools are representation formulae of the (weak) derivatives of the average operators w.r.t. the
radius. As applications, we shall obtain Poisson–Jensen and Bôcher type results for L.

1. Introduction and main results

1A. Notation and definitions. Let u be a subharmonic function in an open set �⊆ RN , N ≥ 2. Then,
with fixed x ∈�, the map

mr (u)(x) : (0, R(x))−→ (−∞,∞),

r 7→ mr (u)(x) :=
1

H N−1(∂Br (x))

∫
∂Br (x)

u(y) dH N−1(y)
(1-1)

is convex with respect to log r if N = 2, and 1/r N−2 if N ≥ 3. In (1-1), Br (x) denotes the Euclidean ball of
radius r and center x ; R(x) stands for sup{r > 0 : Br (x)⊂�}; H N−1 is the Hausdorff (N−1)-dimensional
measure in RN . This quite well-known classical result has many important consequences and applications;
see [Armitage and Gardiner 2001, Section 3.5; Hayman and Kennedy 1976, Section 2.7; Hörmander
1994, Section 3.2]. Of these applications, we only mention the Hadamard three-circles theorem, the
Liouville-type theorem for bounded above subharmonic functions in R2, the applications to the theory
of Hardy spaces, and the Bôcher theorem for harmonic functions in punctured balls (see [Armitage and
Gardiner 2001, Chapter 3], for example).

The aim of the present paper is to study analogous properties for some weighted average operators
acting on subsolutions to

−Lu = 0 in �⊆ RN , N ≥ 3,
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where L is a linear second order PDO with nonnegative characteristic form. Precisely, the operators we
are dealing with are of the form

L :=

N∑
i, j=1

∂xi (ai, j (x)∂x j )= div(A(x)∇),

where ∇ = (∂x1, . . . , ∂xN )
T and A(x) = (ai, j (x))i, j is a symmetric matrix with smooth entries that is

nonnegative definite at any point x ∈ RN . In Section 2 we will precisely fix our hypotheses on L. Here
we only need to mention the crucial ones: L is not totally degenerate, hypoelliptic, and endowed with a
fundamental solution

0 : {(x, y) ∈ RN
×RN

: x 6= y} −→ (0,∞),

with pole at any point of the diagonal {x = y} and vanishing at infinity. For example, besides the classical
Laplace operator on RN (N ≥ 3), any sub-Laplacian operator on a stratified Lie group (with homogeneous
dimension ≥ 3) enjoys all these hypotheses; see, for example, [Bonfiglioli et al. 2007].

The main objects of our investigation are the average operators on the level sets of 0, that is, on the
sets

∂�r (x)= {y ∈ RN
: 0(x, y)= 1/r}, x ∈ RN , r > 0,

together with their solid counterparts, the average operators on the sets

�r (x)= {y ∈ RN
: 0(x, y) > 1/r}, x ∈ RN , r > 0.

We call ∂�r (x) and �r (x), respectively, the L-sphere and the L-ball with radius r and center x . Owing
to Sard’s theorem, since 0 is smooth (in view of the hypoellipticity of L), any L-sphere is an (N − 1)-
dimensional manifold of class C∞, for almost every radius. (For simplicity, we assume this to be true for
every positive radius.)

If �⊆ RN is open, given an upper semicontinuous (u.s.c.) function u :�→[−∞,∞), for any L-ball
�r (x) with closure contained in �r (x), we set1

mr (u)(x) :=
∫
∂�r (x)

u(y)k(x, y) dH N−1(y),

Mα
r (u)(x) :=

α+ 1
rα+1

∫
�r (x)

u(y)Kα(x, y) dy

for any α >−1. Set 0x := 0(x, · ). The weights k, Kα are defined on RN
\ {x} by

k(x, · ) :=
|∇L0x |

2

|∇0x |
, Kα(x, · ) :=

|∇L0x |
2

02+α
x

, (1-2)

where |∇L0x(y)|2 := 〈A(y)∇0x(y),∇0x(y)〉. The average operators mr and Mα
r can be used to charac-

terize the solutions to Lu = v. Indeed, for every u ∈ C2(�,R), the following representation formulae

1Obviously, in order to define mr (u)(x), we only need to require that � contains ∂�r (x).
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hold true [Bonfiglioli and Lanconelli 2013, Section 11]:

u(x)= mr (u)(x)−
∫
�r (x)

(
0(x, y)−

1
r

)
Lu(y) dy,

u(x)= Mα
r (u)(x)−

α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
Lu(y) dy

)
dρ

(1-3)

for every L-ball �r (x) with closure contained in �. Thus, given x ∈�, the above formula is satisfied for
any positive r such that r < R(x), where

R(x) := sup{r > 0 :�r (x)⊂�}. (1-4)

For u ≡ 1, these formulae give

1= mr (1)(x)= Mα
r (1)(x) for every x ∈ RN and r > 0.

Therefore, since the kernels k and Kα are nonnegative (recall that A(y)≥ 0), mr (u)(x) and Mα
r (u)(x) are

well-posed (possibly −∞) for every u.s.c. function u. (Actually, as was recently proved in [Abbondanza
and Bonfiglioli 2013], k(x, · ) and Kα(x, · ) are positive on an open dense subset of RN

\ {x} for every
x ∈ RN .)

It is also worth noticing that

Mα
r (u)(x)=

α+ 1
rα+1

∫ r

0
ραmρ(u)(x) dρ. (1-5)

This can be proved by using Federer’s co-area formula and suitable approximation arguments for u.s.c. func-
tions.

In what follows, given a u.s.c. function u on an open set �⊆ RN , we say that

(1) u is m-continuous in � if u(x)= limr→0+mr (u)(x) for every x ∈�;

(2) u is Mα-continuous in � if u(x)= limr→0+ Mα
r (u)(x) for every x ∈�.

A smooth function u will be called L-harmonic in � if Lu = 0 in �. We call a u.s.c. function u :�→
[−∞,∞) L-subharmonic in � if

(1) the set �(u) := {x ∈ � : u(x) > −∞} contains at least one point of every connected component
of �;

(2) for every bounded open set V ⊂ V ⊂� and for every L-harmonic function h in V , continuous up to
∂V , u ≤ h holds whenever u ≤ h on ∂V .

The family of the L-subharmonic functions in � is a cone denoted by S(�).
In [Bonfiglioli and Lanconelli 2013, Section 8] it is proved that u is L-subharmonic in � if and only if

u ∈ L1
loc(�), Lu ≥ 0 in the weak sense of distributions, and u is Mα-continuous in �. For this reason

the L-subharmonic functions are also said to be the subsolutions of −L. As a consequence of the cited
characterization, by the classical Riesz representation theorem, it follows that, given u ∈ S(�), there
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exists a nonnegative Radon measure µu on the Borel subsets of � (called the L-Riesz measure of u) such
that Lu = µu in �, in the weak sense of distributions.

Several other characterizations of the L-subharmonicity have been provided in [Bonfiglioli and Lan-
conelli 2013] in terms of the average operators mr and Mα

r . For our aim it is convenient to recall
[Bonfiglioli and Lanconelli 2013, Theorem 4.2]; see also the notation in (1-4). Let u :�→ [−∞,∞) be
a u.s.c. function such that �(u) contains at least one point of every connected component of �. Then
u ∈ S(�) if and only if one of the following conditions is satisfied:

(A.1) u(x)≤ mr (u)(x) for every x ∈� and every r ∈ (0, R(x));

(A.2) u is m-continuous in� and, for every x ∈�, r 7→mr (u)(x) is monotone nondecreasing on (0, R(x)).

One obtains further equivalent conditions by replacing, in (A.1) and (A.2), the surface average mr with
the solid average Mα

r , with α >−1.
The following result will be used frequently in what follows.

Remark 1.1. By [Bonfiglioli and Lanconelli 2013, Proposition 6.10], if u ∈S(�), the map r 7→mr (u)(x)
is finite-valued and continuous on (0, R(x)) for every x ∈�. This follows from [Bonfiglioli and Lanconelli
2013, Theorem 6.4] and

mr (0( · , z))(x)=min{0(x, z), 1/r} (1-6)

jointly with a Riesz representation argument decomposing u, locally, as an L-harmonic function plus the
convolution of 0 with the Riesz measure of u. As a consequence, whenever α> 0, the map r 7→Mα

r (u)(x)
is finite-valued and continuous on (0, R(x)) for every x ∈�. This follows at once from (1-5) and (1-6),
since ρα−1 is integrable on (0, r) for any positive α. The solid average Mα

r (u)(x) is finite-valued and
continuous also when −1< α ≤ 0, provided that x ∈�(u). To obtain this fact, it suffices to keep in mind
identity (1-5) and the inequalities −∞< u(x)≤ mr (u)(x), valid for x ∈�(u) and 0< r < R(x).

In order to list the main results of this paper, we need a few more definitions. Let I ⊆ R be an interval
and suppose that ϕ : I→R is a strictly monotone continuous function. Following [Armitage and Gardiner
2001, Section 3.5], we say that f : I → R is ϕ-convex if

f (r)≤
ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

f (r1)+
ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
f (r2) (1-7)

for every r1, r, r2 ∈ I such that r1 < r < r2. When ϕ(r)= r , (1-7) gives back the standard definition of a
convex function. Moreover, clearly f is ϕ-convex if and only if f ◦ϕ−1 is convex on the interval ϕ(I ),
in the usual sense.

Finally, given a function f : I → R, we say that

(1) f is locally absolutely continuous (locally a.c.) if f is absolutely continuous on every compact
subinterval of I ;

(2) f is essentially monotone if there exists a monotone function f ∗ : I → R such that f = f ∗ almost
everywhere in I .
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1B. Main theorems. Our crucial results concern the derivative with respect to r of the average operators
mr (u)(x) and Mα

r (u)(x), when u is L-subharmonic. These are given in the following theorem.

Theorem 1.2 (derivatives of mr (u) and Mα
r (u)). Let � ⊆ RN be an open set and let u be an L-

subharmonic function in � with L-Riesz measure µu .

(i) For every x ∈�, the map r 7→ mr (u)(x) is locally a.c. on (0, R(x)), and

d
dr

mr (u)(x)=
µu(�r (x))

r2 for almost every r in (0, R(x)). (1-8)

(ii) For every x ∈� and α > 0, the map r 7→ Mα
r (u)(x) is of class C1 on (0, R(x)), and

d
dr

Mα
r (u)(x)=

α+ 1
rα+2

∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
dµu(y) (1-9)

for every r in (0, R(x)), where fα denotes an antiderivative of rα−1:

fα(r) :=
{

ln r, if α = 0,
rα/α, if α 6= 0.

(1-10)

This also holds for −1< α ≤ 0 if x ∈�(u).

A straightforward consequence of this theorem is the following corollary.

Corollary 1.3 (Poisson–Jensen type formula). Let u ∈S(�) and let µu be its L-Riesz measure. The maps
r 7→ mr (u)(x) and r 7→ Mα

r (u)(x) (for α >−1) can be prolonged with continuity up to r = 0 if and only
if x ∈�(u).

Furthermore, for every x ∈ � and r ∈ (0, R(x)), one has the following representation formulae (of
Poisson–Jensen type):

u(x)= mr (u)(x)−
∫ r

0

µu(�ρ(x))
ρ2 dρ = mr (u)(x)−

∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y), (1-11)

and, for α > 0,

u(x)= Mα
r (u)(x)−

∫ r

0

α+ 1
ρα+2

(∫
�ρ(x)

(
fα(ρ)− fα

(
1

0(x, y)

))
dµu(y)

)
dρ

= Mα
r (u)(x)−

α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
dµu(y)

)
dρ.

(1-12)

When x /∈�(u), all the sides of the previous formulae (1-11) and (1-12) are −∞, and this happens if and
only if µu({x}) > 0.

Formula (1-12) holds true also for −1< α ≤ 0, provided that x ∈�(u).

Theorem 1.2, together with the following real analysis lemma, easily implies convexity properties of
our average operators, and these will characterize the L-subharmonic functions.

Lemma 1.4. Let I = (0, a) be an interval in (0,∞), and let f : I → R.

(i) If f is bounded from above and r−β-convex for a real β > 0, then f is monotone nondecreasing.
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(ii) Let f be locally a.c., and let β 6= 0. Then f is r−β-convex if and only if r 7→ rβ+1 f ′(r) is essentially
monotone nondecreasing.

Here are our main results concerning convexity of the average operators.

Theorem 1.5 (subharmonicity and convexity of the average operators). Suppose that �⊆ RN is an open
set, and let u :�→ [−∞,∞) be an u.s.c. function such that �(u) intersects every connected component
of �.

Then the following statements are equivalent.

(1) u ∈ S(�).

(2) u is m-continuous and the map r 7→ mr (u)(x) is 1/r-convex on (0, R(x)) for every x ∈�.

(3) u is m-continuous and the map r 7→ mr (u)(x) is 1/r-convex on (0, R(x)) for every x ∈�(u).

(4) u is Mα-continuous and for every x ∈�, the map r 7→ Mα
r (u)(x) is 1/rα+1-convex on (0, R(x)) for

some (or for every) α > 0.

(5) u is Mα-continuous and, for every x ∈�(u), the map r 7→ Mα
r (u)(x) is 1/rα+1-convex on (0, R(x))

for some (or for every) α >−1.

We observe that, to the best of our knowledge, the implications (2), (3), (4), (5)⇒ (1) appear here for
the first time, even when L is the classical Laplace operator.

Moreover, we shall prove that (in statements (2), (3), (4), (5) above) we can replace r−1-convexity
or r−(α+1)-convexity with r−γ -convexity for infinitely many other values of γ > 0 (see Theorems 5.1
and 5.2 for the precise statements).

We observe that the convexity (w.r.t. suitable powers of r) of the maps r 7→ mr (u)(x),Mα
r (u)(x) in

Theorem 1.5 ensures that these functions have more regularity properties than those provided so far in
Theorem 1.2: by Alexandrov’s theorem, they are twice differentiable almost everywhere on (0, R(x)).

1C. Ring-shaped domains, applications, and further developments. Suitable versions of Theorems 1.2
and 1.5 hold true for L-subharmonic functions in ring-shaped domains. Given a, b such that 0≤a<b≤∞,
and given x0 ∈ RN , we define the 0-annulus of center x0 and radii a, b as follows:

Aa,b(x0) :=

{
x ∈ RN

: a <
1

0(x0, x)
< b

}
. (1-13)

The conventions 1/∞= 0 and 1/0=∞ apply.
The following results (Corollary 1.7 and Theorems 1.8 and 1.9) improve [Bonfiglioli and Lanconelli

2007, Theorems 1.5, 1.8, and 1.9], proved in the case of sub-Laplacians L on stratified groups.

Theorem 1.6. Let u ∈ S(Aa,b(x0)) and let µu be its L-Riesz measure. The map

(a, b) 3 r 7→ mr (u)(x0) ∈ R
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is locally a.c. and 1/r-convex. Moreover, for every fixed α, β such that a < α < β < b, there exists a
constant c ∈ R (depending on a, α, β, b, u, x0) such that

r2 d
dr

mr (u)(x0)= µu(Aα,r (x0))+ c (1-14)

for almost every r in (α, β).

From this theorem we obtain the following result.

Corollary 1.7. Suppose u is L-harmonic in the 0-annulus Aa,b(x0). Then

mr (u)(x0)=
c1

r
+ c2, r ∈ (a, b),

for some real constants c1, c2.

As an application of the previous results on L-subharmonic functions on ring-shaped domains, we
will show a symmetry result, from which a Bôcher-type theorem for L will follow. The latter improves a
result in [Bonfiglioli and Lanconelli 2007].

For our application we need (together with the structural assumptions (H1) and (H2) in Section 2) the
following extra assumption on L, a homogeneous Harnack inequality on 0-spheres.

(HH) For every fixed x0 ∈ RN and every 0< b <∞, there exist positive constants C = C(x0, b) > 1 and
θ = θ(x0, b) < 1 such that

sup
∂�r (x0)

h ≤ C inf
∂�r (x0)

h

for every r such that 0 < r < θb and every L-harmonic nonnegative function h in the 0-annulus
A0,b(x0).

By standard arguments (see, for example, [Bony 1969]), this hypothesis is satisfied for the sum of squares
of Hörmander vector fields L=

∑m
j=1 X2

j . Moreover, (HH) is fulfilled for x0= 0, when L is homogeneous
of positive degree (in the sense recalled in Remark 7.1) w.r.t. a group of dilations; see [Bonfiglioli et al.
2007, Theorem 5.16.5, page 327].

Theorem 1.8. Suppose L satisfies condition (HH) above.
Let w be nonnegative and L-harmonic in the 0-annulus A0,b(x0)=�b(x0) \ {x0} (where b <∞) and

suppose that w is also continuous up to ∂�b(x0) and w ≡ 0 on ∂�b(x0). Then w is affine w.r.t. 0, that is,

w(x)= c(0(x0, x)− 1/b), x ∈ A0,b(x0),

for some positive constant c.

We prove this theorem as a consequence of Corollary 1.7, by following an idea exploited by Axler,
Bourdon, and Ramey [Axler et al. 1992] in the classical case of the Laplace operator. From Theorem 1.8
one easily obtains the following Bôcher-type result.
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Theorem 1.9 (Bôcher’s theorem for L). Suppose L satisfies condition (HH).
Let �⊆ RN be open and x0 ∈�. Let u be nonnegative and L-harmonic in � \ {x0}. Then there exists

an L-harmonic function h on � and a constant c ≥ 0 such that

u(x)= c0(x0, x)+ h(x) for every x ∈� \ {x0}.

Further developments. We end the introduction by pointing out further applications of the results of this
paper: they can be used for the investigations of convex functions in Carnot groups (as introduced in
[Danielli et al. 2003; Lu et al. 2004]). Indeed (see [Juutinen et al. 2007] for the relevant results), since
the so-called v-convex functions on Carnot groups are characterized in terms of their L-subharmonicity
w.r.t. the family of the sub-Laplacians {L} (a class of operators comprised in our present paper), by
Theorem 1.5 it turns out that v-convexity can be characterized by the usual (Euclidean) convexity of the
family of the real-variable functions {r 7→ mr (u)(x)} (or of {r 7→ Mα

r (u)(x)}), as the average operators
vary with {L}. The characterization of v-convexity in [Bonfiglioli and Lanconelli 2012] can also be
exploited to further simplify the investigation.

Finally, since our results apply to any Hörmander sum of squares of vector fields, we can use our
characterization of v-convexity in order to obtain a new notion of convexity in more general frameworks
than the Carnot setting (for instance, in the framework of Hörmander vector fields), as was done by
Magnani and Scienza [2012]. We plan to develop this topic in a forthcoming study.

2. Main assumptions on L and recalls on r−β-convexity

2A. Assumptions on L. Throughout the paper, we let

L :=

N∑
i, j=1

∂xi (ai, j (x)∂x j ) (2-1)

be a linear second order PDO in RN , in divergence form, with C∞ coefficients, such that the matrix
A(x) := (ai, j (x))i, j≤N is symmetric and nonnegative definite at every point x ∈ RN . The operator L is
self-adjoint and it is (possibly) degenerate elliptic. However, we always assume without further comments
that L is not totally degenerate, that is, there exists i ∈ {1, . . . , N } such that ai,i (x) > 0 for every x ∈ RN .
As is well-known, this ensures that L satisfies the weak maximum principle on every bounded open
subset of RN .

Our main assumptions on L are as follows.

(H1) L is a C∞-hypoelliptic differential operator, that is, for every open set � ⊆ RN , and for every
f ∈ C∞(�,R), if u ∈ D′(�) is a solution of Lu = f in the weak sense of distributions, u can be
identified with a C∞ function on �.

(H2) We assume that L is equipped with a global fundamental solution

0 : D = {(x, y) ∈ RN
×RN

: x 6= y} −→ (0,∞)

with the following properties:
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(a) 0 ∈ L1
loc(R

N
×RN )∩C∞(D,R);

(b) for every fixed x ∈ RN , we have lim
y→x

0(x, y)=∞ and lim
y→∞

0(x, y)= 0;

(c) for every ϕ ∈ C∞0 (R
N ,R) and every x ∈ RN ,∫

RN
0(x, y)Lϕ(y) dy =−ϕ(x). (2-2)

If �⊆ RN is open, we say that u is L-harmonic on � if u ∈ C∞(�,R) and Lu = 0 in �. A bounded
open set V ⊂ RN is said to be L-regular if the following property is satisfied: for every f ∈ C(∂V,R),
there exists a (unique) L-harmonic function in V , denoted by H V

f , satisfying limy→x H V
f (y)= f (x) for

every x ∈ ∂V .
As described in [Bonfiglioli and Lanconelli 2013, Remark 2.2], L endows RN with the structure of

a S∗-harmonic space, in the sense of [Bonfiglioli et al. 2007, Definition 6.10.1]: this is a consequence
of hypothesis (H1). As a very particular byproduct, we can use Bouligand’s theorem to derive that the
0-balls �r (x) are L-regular open sets (we shall use this last fact in the proof of Bôcher’s Theorem 1.9).

2B. Background results on r−β-convexity. Next we prove some results on ϕ-convexity, as introduced
in Section 1. We begin by remarking that, obviously, given intervals I, J ⊆ R and given a function
ψ : J→ I which is monotone and continuous, a function u : I → R is ϕ-convex on I if and only if u ◦ψ
is (ϕ ◦ψ)-convex on ψ−1(I ). Another very simple lemma is in order.

Lemma 2.1. Suppose β 6= 0. Let I ⊆ (0,∞) be an interval and let u : I → R. The following assertions
are equivalent:

(1) u(r) is r−β-convex on I ;

(2) u(r−1/β) is convex on ϕ(I ), where ϕ(r)= r−β ;

(3) rβu(r) is rβ-convex on I .

Proof. The equivalence of (1) and (2) follows from the remark preceding the lemma. Taking ϕ(r)= 1/rβ ,
a simple computation shows that (1-7) is equivalent to

rβu(r)≤
rβ2 − rβ

rβ2 − rβ1
rβ1 u(r1)+

rβ − rβ1
rβ2 − rβ1

rβ2 u(r2),

which is equivalent to the rβ-convexity of rβu(r). �

The following result will be crucial later.

Lemma 2.2. Let a > 0. Suppose f : (0, a)→ R is bounded from above and r−β-convex on (0, a) for
some β > 0. Then f is monotone nondecreasing.

This lemma proves Lemma 1.4(i).

Proof. Let f be as in the assertion; by Lemma 2.1(2), g(r) := f (r−1/β) is convex on I := (a−β,∞).
Since f is bounded from above on (0, a), g is bounded from above on I . From elementary properties of
convex functions, since I is unbounded, we infer that g is monotone nonincreasing on I ; since β > 0,
this means that f is monotone nondecreasing on (0, a). �
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We prove a condition for r−β-convexity under a weak-differentiability assumption.

Lemma 2.3. Suppose β 6= 0 and let I ⊆ (0,∞) be an open interval. Suppose that u : I → R is a locally
absolutely continuous function. Then u is r−β-convex on I if and only if rβ+1u′(r) is essentially monotone
nondecreasing on I .

This lemma proves Lemma 1.4(ii).

Proof. By Lemma 2.1(2), u is r−β-convex if and only if F(r) := u(r−1/β) is convex in its domain in the
usual sense. On the other hand, since F is continuous, standard results (which we may omit) imply that
F is convex if and only if F ′ is essentially nondecreasing. Summing up,

u is r−β-convex if and only if F ′ is essentially nondecreasing. (2-3)

In turn, F ′ is essentially nondecreasing if and only if the map ρ 7→−βF ′(ρ−β) is essentially nondecreasing
on its domain. (Indeed, notice that if β > 0, then −β < 0 and ρ−β is decreasing; if β < 0, then −β > 0
and ρ−β is increasing.) Since

F ′(r)=−β−1r−(β+1)/βu′(r−1/β),

we get −βF ′(ρ−β)= ρβ+1u′(ρ). As a consequence, F ′ is essentially nondecreasing if and only this is
true of rβ+1u′(r), and this ends the proof, in view of (2-3). �

Convexity of a monotone C2 function with respect to a power of r brings along convexity with respect
to many other functions, as the following result shows.

Lemma 2.4. Let I ⊆ (0,∞) be an open interval and suppose that u : I → R is monotone nondecreasing
and locally a.c. If u is r−γ -convex on I , it is r−β-convex of I for every β ≥ γ .

Proof. Suppose u is monotone nondecreasing, locally a.c., and r−γ -convex on I . From Lemma 2.3, we
know that rγ+1u′(r) is essentially nondecreasing on I . Since u′(r)≥ 0 almost everywhere on I , if β ≥ γ ,
then rβ+1u′(r)= rβ−γ (rγ+1u′(r)) is essentially nondecreasing as well. Again by Lemma 2.3, we deduce
that u is r−β-convex on I . �

We now investigate convexity properties of an average integral function.

Corollary 2.5. Let a > 0 and f : (0, a] → R. Assume furthermore that α >−1 and rα f (r) is integrable
on (0, a). Let us consider the function

F(r)=
α+ 1
rα+1

∫ r

0
ρα f (ρ) dρ, r ∈ (0, a].

(a) If β 6= 0 and f is rβ-convex on (0, a], the same is true of F(r).

(b) Suppose that f is also continuous. Then F(r) is r−(α+1)-convex on (0, a] if and only if f (r) is
monotone nondecreasing.

As α >−1, note that the integrability of rα f (r) is ensured, for example, whenever f is bounded on
(0, a) (for example, when f extends continuously on [0, a]).
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Proof. We prove (a). Fix r ∈ (0, a]. The change of variable ρ = rs gives F(r)= (α+ 1)
∫ 1

0 sα f (rs) ds.
Setting r = t1/β , we have

F(t1/β)= (α+ 1)
∫ 1

0
sα f (t1/βs) ds.

For every fixed s ∈ [0, 1], the function t 7→ f (t1/βs) is convex, since f (t1/βs)= f ((tsβ)1/β), and since
r 7→ f (r1/β) is convex by the assumption of rβ-convexity of f . This immediately gives the convexity of
F(t1/β), that is, the rβ-convexity of F(r).

We finally prove (b). By Lemma 2.1(3) (with β=α+1), F(r) is r−(α+1)-convex if and only if rα+1 F(r)
is rα+1-convex. In turn, this last condition is equivalent to the fact that the function G(r) :=r−α(rα+1 F(r))′

is nondecreasing, this time by applying Lemma 2.3 to u(r) = rα+1 F(r) and β = −α − 1. Now, the
fundamental theorem of integral calculus ensures that G(r)= (α+1) f (r), and this function is monotone
nondecreasing if and only if the same is true of f (r). �

3. Derivatives of the average operators in the C2 case

In order to prove Theorem 1.2, we first need the derivatives of r 7→ mr (u)(x) and Mα
r (u)(x) for u of

class C2. An approximation argument will eventually yield the weak derivatives in the L-subharmonic
case (see Section 4).

Proposition 3.1. Let �⊆ RN be an open set and let u ∈ C2(�,R). For every fixed x ∈�, the functions

(0, R(x)) 3 r 7→ mr (u)(x),Mα
r (u)(x)

are differentiable and their derivatives are given by

d
dr

mr (u)(x)=
1
r2

∫
�r (x)

Lu(y) dy, (3-1)

d
dr

Mα
r (u)(x)=

α+ 1
rα+2

∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
Lu(y) dy, (3-2)

where fα is an antiderivative of rα−1 on (0,∞) (see (1-10)).

Proof. We fix the notation in the statement of the proposition. From the first mean-value formula for L in
(1-3), we get

d
dr

mr (u)(x)=
d
dr

(
u(x)+

∫
�r (x)

(
0x −

1
r

)
Lu
)

(by the co-area formula)

=
d
dr

∫ r

0

(∫
t=1/0x

(
0x −

1
r

)
Lu

dH N−1

|∇(1/0x)|

)
dt

=

∫
r=1/0x

(
0x −

1
r

)
Lu

d H N−1

|∇(1/0x)|
+

∫ r

0

(∫
t=1/0x

1
r2 Lu

dH N−1

|∇(1/0x)|

)
dt

=
1
r2

∫
�r (x)

Lu
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(the first integral is 0; we use the co-area formula again in the second one). We next prove (3-2). From
the second mean-value formula for L (1-3), we get

d
dr

Mα
r (u)(x)=−

(α+ 1)2

rα+2

∫ r

0
ρα
(∫

�ρ(x)

(
0x −

1
ρ

)
Lu
)

dρ+
α+ 1

r

∫
�r (x)

(
0x −

1
r

)
Lu =: −I+ II.

By applying Fubini’s theorem to the summand I we get

I=
(α+ 1)2

rα+2

∫
�r (x)

Lu(y)
(∫ r

1/0(x,y)

(
ρα0(x, y)− ρα−1

)
dρ
)

dy.

By recalling (1-10), since the inner integral in ρ is equal to

fα

(
1

0(x, y)

)
− fα(r)+

rα+1

α+ 1

(
0(x, y)−

1
rα+10α(x, y)

)
,

we derive for −I+ II the expression

(α+ 1)2

rα+2

∫
�r (x)

Lu
(

fα(r)− fα

(
1
0x

))
−
α+ 1

r

∫
�r (x)

Lu
(
0x−

1
rα+10αx

)
+
α+ 1

r

∫
�r (x)

(
0x−

1
r

)
Lu

=
(α+ 1)2

rα+2

∫
�r (x)

Lu
(

fα(r)− fα

(
1
0x

))
+
α+ 1

r

∫
�r (x)

Lu
(

1
rα+10αx

−
1
r

)
=
α+ 1
rα+2

∫
�r (x)

Lu
(
(α+ 1) fα(r)− (α+ 1) fα

(
1
0x

)
+

1
0αx
− rα

)
.

Now, the inner term in parentheses is equal to fα(r)− fα
( 1
0x

)
, if α = 0,

(α+ 1) fα(r)− (α+ 1) fα
( 1
0x

)
+α fα

( 1
0x

)
−α fα(r), if α 6= 0,

and, in turn, this equals fα(r) − fα(1/0x) after a cancelation in the formula for α 6= 0. Because
(d/dr)Mα

r (u)(x)=−I+ II, the proof is complete. �

Proposition 3.1 allows us to prove the needed characterization of the L-subharmonicity in the C2 case.

Proposition 3.2. Let �⊆ RN be an open set, and let u ∈ C2(�,R). Then the following conditions are
equivalent (here α >−1).

(1) u is L-subharmonic on �.

(2) Lu ≥ 0 on �.

(3) For every x ∈�, the function r 7→ mr (u)(x) is 1/r-convex on (0, R(x)).

(4) For every x ∈�, the function r 7→ Mα
r (u)(x) is 1/rα+1-convex on (0, R(x)).

The interval (0, R(x)) in (3) and (4) above can be replaced with (0, ε(x)) (for some ε(x) > 0), that is,
two other characterizations hold true:

(5) for every x ∈�, there exists 0< ε(x)≤ R(x) such that the function r 7→ mr (u)(x) is 1/r-convex on
(0, ε(x));
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(6) for every x ∈�, there exists 0< ε(x)≤ R(x) such that the function r 7→ Mα
r (u)(x) is 1/rα+1-convex

on (0, ε(x)).

Proof. Owing to the submean characterizations of the L-subharmonicity recalled in Section 1, u ∈ S(�)

if and only if u(x) ≤ mr (u)(x) for every x ∈ � and every r ∈ (0, R(x)). When u is C2, due to the
representation formula (1-3), this is clearly equivalent to Lu≥ 0 on� (recall that 0(x, y)−1/r is positive
on �r (x)). This proves the equivalence of conditions (1) and (2) above.

We now prove the equivalence of conditions (2) and (3). Since mr (u)(x) is differentiable w.r.t. r (see
Proposition 3.1), by Lemma 2.3 we obtain that condition (3) holds true if and only if the function

F(r) := r2 d
dr

mr (u)(x)

is monotone nondecreasing on (0, R(x)). By (3-1), we have F(r) =
∫
�r (x)

Lu, and this function is
nondecreasing if and only if Lu ≥ 0 (indeed, recall that �r (x) shrinks to {x} as r→ 0). This shows the
equivalence of (2) and (3).

The equivalence of (2) and (4) can be proved analogously, by showing that

Fα(r) := rα+2 d
dr

Mα
r (u)(x)

is monotone nondecreasing on (0, R(x)), this time by using (3-2) (and the fact that fα is strictly increasing
for every α; see (1-10)).

Obviously, condition (3) implies condition (5), and (4) implies (6).
Finally, we prove that conditions (5) and (6) imply condition (2). Suppose by contradiction that

Lu(x) < 0 at some point x ∈�, and hence on some neighborhood U ⊂� of x . Due to our hypothesis
(H2)(b) on the fundamental solution 0, we can choose r2 > 0 so small that r2 < ε(x) and such that
�r2(x)⊂U . If r1 is any positive number less than r2, we derive that F(r2) < F(r1) and Fα(r2) < Fα(r1),
with the notations above for F and Fα . This shows that conditions (5) and (6) cannot be true, since they
are equivalent to the nondecreasing monotonicity on (0, ε(x)) of F and Fα , respectively (by Lemma 2.3).
This ends the proof. �

Remark 3.3. We observe that the equivalence “(2)⇔ (4)” may also be proved as follows, without the
aid of formula (3-2). By (3-1), condition (2) holds true if and only if mr (u)(x) is nondecreasing w.r.t. r
on (0, R(x)); now we can apply Corollary 2.5(b), which ensures that this last condition is satisfied if and
only if

r 7→
α+ 1
rα+1

∫ r

0
ραmρ(u)(x) dρ is

1
rα+1 -convex on (0, R(x)).

Owing to (1-5), this last assertion is nothing but condition (4).

4. Weak derivatives of the average operators of u ∈ S(�)

Our next task is to prove analogues of (3-1) and (3-2) (in the sense of weak derivatives) for arbitrary
L-subharmonic functions. To this end, we need to recall that the L-Riesz measure µu of u is characterized
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by the identity ∫
�

u(x)Lϕ(x) dx =
∫
�

ϕ(x) dµu(x) for every ϕ ∈ C∞0 (�,R). (4-1)

We notice that, fixing a positive r , the average operators mr (u)(x) and Mα
r (u)(x) are well posed, as

functions of the center x , for any x ∈�r , where

�r
:= {x ∈� :�r (x)⊂�}, (4-2)

if this set is nonempty. By our hypothesis (H2)(b) on the fundamental solution 0, it is easy to see that
�ε ↑� as ε ↓ 0. Moreover, it is not difficult to prove that

for every compact set K ⊂�, there exists ε > 0 such that K ⊂�ε. (4-3)

We are ready to give the following keystone result, whose proof is quite delicate.

Theorem 4.1 (derivatives of mr (u) and Mα
r (u)). Let � ⊆ RN be an open set and let u ∈ S(�) with

L-Riesz measure µu on �. Finally let x ∈� be fixed.

(i) The function r 7→mr (u)(x) is locally absolutely continuous, hence it is almost everywhere differentiable
and its weak derivative (coinciding with its derivative at the points where the latter exists) is given by

d
dr

mr (u)(x)=
µu(�r (x))

r2 . (4-4)

Moreover, mr (u)(x) can be prolonged with continuity at r = 0 if and only if x ∈�(u), and in this case
one has, for every r ∈ [0, R(x)),

mr (u)(x)= u(x)+
∫ r

0

µu(�ρ(x))
ρ2 dρ

= u(x)+
∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y). (4-5)

(ii) Let α > 0. The function r 7→ Mα
r (u)(x) is of class C1 on (0, R(x)); its derivative is

d
dr

Mα
r (u)(x)=

α+ 1
rα+2

∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
dµu(y), (4-6)

where fα is as in (1-10). Moreover, Mα
r (u)(x) can be prolonged with continuity at r = 0 if and only if

x ∈�(u), and in this case one has, for r ∈ [0, R(x)),

Mα
r (u)(x)= u(x)+

∫ r

0

α+ 1
ρα+2

(∫
�ρ(x)

(
fα(ρ)− fα

(
1

0(x, y)

))
dµu(y)

)
dρ

= u(x)+
α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
dµu(y)

)
dρ. (4-7)

(iii) The same result as in (ii) holds true also for −1< α ≤ 0, provided that x ∈�(u) (in which case (4-7)
is also satisfied).

We observe that Theorem 4.1 proves Theorem 1.2.
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Remark 4.2. We remark that, for α > 0 and x ∈� (and for −1< α ≤ 0, provided that x ∈�(u)), (4-5)
and (4-7) produce the representation formulae

u(x)= mr (u)(x)−
∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y),

u(x)= Mα
r (u)(x)−

α+ 1
rα+1

∫ r

0
ρα
(∫

�ρ(x)

(
0(x, y)−

1
ρ

)
dµu(y)

)
dρ.

This demonstrates Corollary 1.3. The above formulae are the analogues, of Poisson–Jensen type, of the
representation formulae (1-3).

Proof of Theorem 4.1. Let us fix ε > 0. Given u ∈ S(�), by the smoothing result in [Bonfiglioli and
Lanconelli 2013, Theorem 7.1] (requiring the C∞-hypoellipticity of L), there exists a nonincreasing
sequence un of smooth L-subharmonic functions on the set �ε (see (4-2)) converging point-wise to u on
�ε. Given x ∈�ε, if we set

Rε(x) := sup{r > 0 :�r (x)⊆�ε},

then limε→0+ Rε(x)= R(x) holds. This is a direct consequence of (4-3).
Hence, the theorem is proved if we show that, for any given x ∈�ε, the functions of r ∈ [0, Rε(x))

given by mr (u)(x) and Mα
r (u)(x) are locally a.c. on (0, Rε(x)), and that their weak derivatives are given

by (4-4) and (4-6).
Since un ∈ C∞(�ε,R), from (3-1) we have

d
dr

mr (un)(x)=
1
r2

∫
�r (x)

Lun

for every x ∈ �ε and every r ∈ (0, Rε(x)). Let ψ(r) be a smooth function compactly supported
in (0, Rε(x)); we multiply both sides of the above equality by ψ(r), we integrate with respect to
r ∈ (0, Rε(x)), and we use integration by parts in the left-hand side, thus getting∫

ψ ′(r)mr (un)(x) dr =
∫
ψ(r)

(
1
r2

∫
�r (x)

Lun

)
dr. (4-8)

We aim to let n→∞ in this identity. To begin with, we claim that

lim
n→∞

∫
ψ ′(r)mr (un)(x) dr =

∫
ψ ′(r)mr (u)(x) dr. (4-9)

To prove this claim, we observe that, by arguing as in the proof of (5-2), we have

lim
n→∞

mr (un)(x)= mr (u)(x) for all x ∈�ε, r ∈ (0, Rε(x)). (4-10)

As a consequence of (4-10), (4-9) holds true if we prove that, in the left-hand side of (4-9), it is possible to
apply the dominated convergence theorem. This is indeed possible as a direct consequence of the bounds

u ≤ un ≤ u1 H⇒−∞< mr (u)(x)≤ mr (un)(x)≤ mr (u1)(x) <∞.
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We next investigate the right-hand side of (4-8). If we denote by [a, b] the support of ψ (recall that
0< a < b < Rε(x)), by Fubini’s theorem we have∫

ψ(r)
(

1
r2

∫
�r (x)

Lun

)
dr =

∫
ψ(r)

(
1
r2

∫
0(x,y)>1/r

Lun(y) dy
)

dr

=

∫
�b(x)

Lun(y)
(∫ b

max{1/0(x,y),a}
ψ(r)

dr
r2

)
dy =:

∫
�b(x)

Lun(y)9(y) dy.

Now the function 9 is supported in �b(x), it is identically equal to the constant function
∫ b

a ψ(r) dr/r2

on �a(x), and it is smooth because 0(x, · ) is smooth outside x . Hence we can integrate by parts two
times to derive ∫

ψ(r)
(

1
r2

∫
�r (x)

Lun

)
dr =

∫
un(y)L9(y) dy.

From u ≤ un ≤ u1 we get |un| ≤ max{|u|, |u1|}; hence, by recalling that L-subharmonic functions are
locally integrable [Negrini and Scornazzani 1987], and by observing that L9 ∈ C∞0 (�

ε), a dominated
convergence argument finally proves that

lim
n→∞

∫
ψ(r)

(
1
r2

∫
�r (x)

Lun

)
dr =

∫
u(y)L9(y) dy

(4-1)
=

∫
9(y) dµu(y).

On the other hand, again by Fubini’s theorem, we infer that∫
9(y) dµu(y)=

∫
�b(x)

(∫ b

max{1/0(x,y),a}
ψ(r)

dr
r2

)
dµu(y)

=

∫
ψ(r)

(
1
r2

∫
�r (x)

dµu(y)
)

dr =
∫
ψ(r)

µu(�r (x))
r2 dr.

Summing up, we have proved that

lim
n→∞

∫
ψ(r)

(
1
r2

∫
�r (x)

Lun

)
dr =

∫
ψ(r)

µu(�r (x))
r2 dr. (4-11)

Gathering together (4-9) and (4-11), from (4-8) we derive∫
ψ ′(r)mr (u)(x) dr =

∫
ψ(r)

µu(�r (x))
r2 dr.

From the arbitrariness of ψ ∈ C∞0 ((0, Rε(x)),R), this shows that mr (u)(x) possesses a weak derivative
on (0, Rε(x)), and this is equal to µu(�r (x))/r2. From the arbitrariness of ε > 0, we infer that mr (u)(x)
is weakly differentiable on (α, β) for every α, β such that 0< α < β < R(x), and its weak derivative is
µu(�r (x))/r2. Note that this function is integrable on (α, β), since∫ β

α

µu(�r (x))
r2 dr ≤

µu(�β(x))
α2 (β −α) <∞,

the last inequality following from the finiteness of µu on the compact subsets of �.
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This proves that mr (u)(x) is equal almost everywhere to a continuous function on (0, R(x)), say m(r),
and m(r) is locally a.c. on (0, R(x)), with weak derivative given by µu(�r (x))/r2; since absolutely
continuous functions are almost everywhere differentiable, we also get m′(r)= µu(�r (x))/r2 for almost
every r ∈ (0, R(x)). Moreover, since absolutely continuous functions satisfy the fundamental theorem of
calculus, we also have

m(r)= m(r1)+

∫ r2

r

1
ρ2µu(�ρ(x)) dρ,

whenever 0< r1 < r < R(x).
As mr (u)(x) is monotone (see (A.2) in Section 1), it can be equal almost everywhere to m(r) (which

is a continuous function) only if mr (u)(x)=m(r) for every r ∈ (0, R(x)). Thus mr (u)(x) inherits all the
above properties of m(r). In particular, whenever 0< r1 < r < R(x), we get

mr (u)(x)−mr1(u)(x)=
∫ r

r1

1
ρ2µu(�ρ(x)) dρ.

Letting r1→ 0+, by Beppo Levi’s theorem and by exploiting the m-continuity of L-subharmonic functions
(see property (A.2)), we obtain

mr (u)(x)− u(x)=
∫ r

0

1
ρ2µu(�ρ(x)) dρ,

where both sides are +∞ if and only if u(x)=−∞ (recall that mr (u)(x) is always finite). Otherwise,
when x ∈�(u) both sides are finite, and we get the first formula in (4-5). In this latter case, we derive that
µu(�ρ(x))/ρ2 is integrable on every compact subinterval of [0, R(x)), so that the function r 7→mr (u)(x)
(defined as u(x) when r = 0) is locally a.c. on [0, R(x)). The second formula in (4-5) can be obtained by
Tonelli’s theorem, since∫ r

0

1
ρ2µu(�ρ(x)) dρ =

∫ r

0

1
ρ2

(∫
1/0(x,y)<ρ

dµu(y)
)

dρ

=

∫
1/0(x,y)<r

(∫ r

1/0(x,y)

1
ρ2 dρ

)
dµu(y)=

∫
�r (x)

(
0(x, y)−

1
r

)
dµu(y).

This completes the proof of the theorem where surface average operators are concerned. The case of
solid average operators can be proved analogously, this time starting from (3-2), and by recalling that
Mα

r (u)(x) is always finite if α > 0, and it is finite for −1< α ≤ 0 if x ∈�(u).
Note that the fact that Mα

r (u)(x) is of class C1 is a consequence of identity (1-5), together with the
continuity of mr (u)(x) up to r = 0 (when x ∈�(u)). The fact that the two formulae in (4-7) are equivalent
to one another can be proved by direct computations, by taking into account that∫ r

0

(∫
�ρ(x)

g(ρ, y) dµu(y)
)

dρ =
∫
�r (x)

(∫ r

1/0(x,y)
g(ρ, y) dρ

)
dµu(y)

for every integrable function g(ρ, y). �
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5. Subharmonicity and convexity of the average operators

We are ready to give the proof of Theorem 1.5. We highlight the fact that, over the course of this section,
we shall provide finer versions of Theorem 1.5, namely, Theorems 5.1 and 5.2 below.

Proof of Theorem 1.5. We split the proof into six short parts.

(1)⇒ (2). If u ∈ S(�) and x ∈�, by Theorem 4.1, r 7→ m(r) := mr (u)(x) is locally a.c. on (0, R(x))
and, due to identity (4-4), one has (for almost every r ∈ (0, R(x)))

r2m′(r)= µu(�r (x)),

the latter being a nondecreasing function of r . This shows that r2m′(r) is essentially monotone nondecreas-
ing on (0, R(x)). By Lemma 2.3 (for β = 1) we see that m(r) is r−1-convex. Finally, the m-continuity of
u is contained in (A.2). This proves statement (2) of the theorem.

(2)⇒ (3). This is obvious.

(3)⇒ (1). Let x ∈ �(u). By the assumption (3), the map r 7→ m(r) := mr (u)(x) is r−1-convex on
(0, R(x)). On the other hand, for 0< r ≤ a < R(x), one has

m(r)≤ sup{u(y) : y ∈�a(x)}<∞,

due to mr (1)(x)= 1, the upper semicontinuity of u, and the compactness of�a(x). Thus m(r) is bounded
from above on (0, a) for every positive a < R(x). An application of Lemma 2.2 (for β = 1) shows that
m(r) is monotone nondecreasing on (0, R(x)). Since u is m-continuous by assumption (3), this gives

u(x)= lim
r→0+

mr (u)(x)≤ mr (u)(x) for all x ∈�(u), r ∈ (0, R(x)).

On the other hand, the inequality u(x) ≤ mr (u)(x) is trivially satisfied when x /∈ �(u) (because this
means that u(x)=−∞). Therefore, one has u(x)≤ mr (u)(x) for every r ∈ (0, R(x)) and every x ∈�.
By the characterization (A.1) of the L-subharmonicity, we deduce that u ∈ S(�).

(1)⇒ (4). Let α > 0. If u ∈ S(�) and x ∈�, by Theorem 4.1, the function r 7→ M(r) := Mα
r (u)(x) is

C1 on (0, R(x)) and, due to identity (4-6), one has

rα+2 M ′(r)= (α+ 1)
∫
�r (x)

(
fα(r)− fα

(
1

0(x, y)

))
dµu(y),

where fα is as in (1-10). Note that the function in the right-hand side is nondecreasing w.r.t. r , because
this is true of fα (and r > 1/0(x, y) on �r (x)). This shows that rα+2 M ′(r) is monotone nondecreasing
on (0, R(x)). An application of Lemma 2.3 (for β = α+ 1) proves that M(r) is r−(α+1)-convex. Finally,
the Mα-continuity of u is contained in (A.2) (with mr replaced with Mα

r ). This proves statement (4) of
the theorem.

(4)⇒ (1). Suppose there exists α > 0 such that r 7→ Mα
r (u)(x) is r−(α+1)-convex on (0, R(x)) for every

x ∈�. By arguing as in the above proof of “(3)⇒ (1)”, an application of Lemma 2.2 (for β = α+ 1)
shows that Mα

r (u)(x) is monotone nondecreasing on (0, R(x)). Since u is Mα-continuous by assumption
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(4), we get (see the above argument) u(x) ≤ Mα
r (u)(x) for every x ∈ � and r ∈ (0, R(x)). By the

characterization (A.1) of the L-subharmonicity (with mr replaced with Mα
r ), we deduce that u ∈ S(�).

(1)⇔ (5). This can be proved by using similar arguments as above (this time invoking identity (4-6) for
α ∈ (−1, 0] and x ∈�(u); note that fα is increasing also for nonpositive values of α; see (1-10)). �

We next turn to proving a more refined versions of the implications (1)⇒ (2), (3), (4), (5) of Theorem 1.5.

Theorem 5.1 (subharmonicity implies convexity of the average operators). Suppose that �⊆ RN is an
open set, and let u ∈ S(�). Then we have the following.

(1) For every x ∈ � the average operator mr (u)(x) is 1/r-convex on (0, R(x)); furthermore, it is
1/rβ-convex also for β ≥ 1.

(2) When α > 0, for every x ∈ �, the average operator Mα
r (u)(x) is 1/rα+1-convex on (0, R(x));

furthermore, it is 1/rβ-convex also for β ≥ 1.

(3) When −1 < α ≤ 0, for every x ∈ �(u), the average operator Mα
r (u)(x) is 1/rα+1-convex on

(0, R(x)); furthermore, it is 1/rβ-convex also for β ≥ α+ 1.

Proof. Let us fix ε > 0. Given u ∈ S(�), by the smoothing result in [Bonfiglioli and Lanconelli 2013,
Theorem 7.1] (recall that we assumed L to be C∞-hypoelliptic), there exists a nonincreasing sequence un

of smooth L-subharmonic functions on the set �ε (see (4-2)) converging point-wise to u on �ε. Given
x ∈�ε, if we set

Rε(x) := sup{r > 0 :�r (x)⊆�ε},

then limε→0+ Rε(x)= R(x) holds. (This is a direct consequence of (4-3).)
Hence, the theorem is proved if we show that, for any given x ∈�ε, the functions of r ∈ (0, Rε(x))

given by mr (u)(x) and Mα
r (u)(x) are r−β-convex, respectively, for β ≥ 1 and for β ≥min{1, α+ 1}.

To this end, let us observe that, since un ∈ S(�ε)∩C∞(�ε,R), from Proposition 3.2 we know the
following.

• mr (un)(x) is r−1-convex on (0, Rε(x)); since this function is smooth w.r.t. r and monotone nonde-
creasing (see (3-1) and recall that Lun ≥ 0), by Lemma 2.4 we infer that it is also r−β-convex for
every β ≥ 1.

• Mα
r (un)(x) is r−(α+1)-convex on (0, Rε(x)); from the r−1-convexity of the surface mean mr (un)(x)

we derive that Mα
r (un)(x) is also r−1-convex, owing to Corollary 2.5(a); since Mα

r (un)(x) is smooth
w.r.t. r and monotone nondecreasing (see (3-2)), by Lemma 2.4 we infer that it is also r−β-convex
for every β ≥min{1, α+ 1}.

We now show that the above properties are inherited by mr (u)(x) and Mα
r (u)(x), by passing to the limit

as n→∞. We prove it for solid average operators, the argument for surface average operators being
completely analogous. Let β ≥min{1, α+ 1}. We know that (setting ϕ(r)= r−β)

Mα
r (un)(x)≤

ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

Mα
r1
(un)(x)+

ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
Mα

r2
(un)(x) (5-1)
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for every r1, r, r2 ∈ (0, Rε(x)) such that r1 < r < r2. We claim that

lim
n→∞

Mα
r (un)(x)= Mα

r (u)(x) for all x ∈�ε, r ∈ (0, Rε(x)). (5-2)

Once this claim is proved, letting n→∞ in (5-1), we get

Mα
r (u)(x)≤

ϕ(r2)−ϕ(r)
ϕ(r2)−ϕ(r1)

Mα
r1
(u)(x)+

ϕ(r)−ϕ(r1)

ϕ(r2)−ϕ(r1)
Mα

r2
(u)(x)

for every r1, r, r2 ∈ (0, Rε(x)) such that r1 < r < r2. This is precisely what we aim to prove, that is,
Mα

r (u)(x) is an r−β-convex function of r on (0, Rε(x)).
We finally turn to prove the claimed (5-2). We fix any x ∈�ε and any r ∈ (0, Rε(x)). Let us consider

the sequence vn defined by

vn(x) := u1(x)− un(x), x ∈�ε.

Since {un}n is monotone nonincreasing, we infer that {vn}n is monotone nondecreasing and nonnegative.
Moreover, by construction of un , we have vn→ u1− u, as n→∞, point-wise on �ε. As Kα ≥ 0 (see
(1-2)), we are therefore entitled to apply the monotone convergence theorem to derive that

lim
n→∞

α+ 1
rα+1

∫
�r (x)

vn(y)Kα(x, y) dy =
α+ 1
rα+1

∫
�r (x)

(u1(y)− u(y))Kα(x, y) dy.

Recalling that Mα
r (u)(x) is finite valued (see Remark 1.1) for any α > 0, and also for−1<α≤ 0 provided

that x ∈�(u), we obtain the following identity from the above one (whenever Mα
r (u)(x) >−∞):

lim
n→∞

(Mα
r (u1)(x)−Mα

r (un)(x))= Mα
r (u1)(x)−Mα

r (u)(x).

By canceling out Mα
r (u1)(x) (when it is finite), we get (5-2) and the proof of statements (2) and (3) of

the theorem is complete. The proof of (1) is analogous, taking into account that mr (u)(x) is always finite
(see Remark 1.1). �

The next result provides the reverse implication of Theorem 5.1. Also, it proves refined versions of the
implications (2), (3), (4), (5)⇒ (1) of Theorem 1.5.

Theorem 5.2 (convexity of the average operators implies subharmonicity). Suppose that � ⊆ RN is
an open set and α > −1. Let u : �→ [−∞,∞) be an u.s.c. function such that �(u) intersects every
connected component of �.

Then, any of the following conditions implies that u is L-subharmonic in �:

(1) u is m-continuous in � and, for every fixed x ∈�(u), the average operator mr (u)(x) is 1/rγ -convex
on (0, R(x)) for some γ > 0.

(2) u is Mα-continuous in � and, for every fixed x ∈ �(u), the average operator Mα
r (u)(x) is 1/rγ -

convex on (0, R(x)) for some γ > 0.

We explicitly point out that this result holds true for every sub-Laplacian L on any Carnot group
of homogeneous dimension Q > 2, since L satisfies all the properties in Section 2 (see, for example,
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[Bonfiglioli et al. 2007]); hence, as a very special case, Theorem 5.2 holds true for the classical Laplace
operator 1 on RN , with N ≥ 3. This result seems to be new in the literature.

Proof. Since u is u.s.c., u is locally bounded from above. This ensures that, for every fixed x ∈ �,
mr (u)(x) and Mα

r (u)(x) are bounded from above on (0, a] for every positive a < R(x). If condition (1)
of Theorem 5.2 holds true (respectively condition (2)), we can apply Lemma 2.2 to derive that, for every
x ∈�(u), the average operator mr (u)(x) (respectively Mα

r (u)(x)) is monotone nondecreasing on (0, a]
for every a < R(x). Hence it is nondecreasing on the whole of (0, R(x)). Since u is supposed to be
m-continuous (respectively Mα-continuous), we infer that, for every x ∈�(u), one has

u(x)= lim
r→0+

mr (u)(x)≤ mr (u)(x) (respectively u(x)= lim
r→0+

Mα
r (u)(x)≤ Mα

r (u)(x))

for every r ∈ (0, R(x)). On the other hand, the inequality u(x)≤mr (u)(x) (respectively u(x)≤Mα
r (u)(x))

is trivially satisfied when x /∈�(u) (since this means that u(x)=−∞). Therefore, one has u(x)≤mr (u)(x)
(respectively u(x)≤ Mα

r (u)(x)) for every r ∈ (0, R(x)) and every x ∈�. By the characterization (A.1)
of the L-subharmonicity (respectively the analogue of (A.1) with mr replaced with Mα

r ), we deduce that
u is L-subharmonic in �. �

6. The case of 0-annuli

In this section we use the following notation: given a, b such that 0≤ a < b ≤∞, and given x0 ∈ RN ,
we set

Aa,b(x0) :=

{
x ∈ RN

:
1
b
< 0(x0, x) <

1
a

}
(6-1)

(with the convention that 1/∞= 0 and 1/0=∞), and we say that Aa,b(x0) is the 0-annulus of center x0

and radii a, b. The notation Aa,b will apply instead of Aa,b(x0) whenever x0 is understood. Our main
task is to prove the following result, from which applications will be derived in Section 7.

Theorem 6.1. Let 0≤ a < b ≤∞ and x0 ∈ RN be fixed. Suppose u is L-subharmonic on Aa,b(x0). Then
the function

(a, b) 3 r 7→ mr (u)(x0)

is r−1-convex and locally absolutely continuous on (a, b). For every α, β such that a < α < β < b, there
exists c (depending on a, α, β, b, u, x0) such that the (weak) derivative of mr (u)(x0) on (α, β) is given by

d
dr

mr (u)(x0)=
1
r2 (µu(Aα,r (x0))+ c) (6-2)

for almost every r ∈ (α, β). As usual, µu is the L-Riesz measure of u on Aa,b(x0).

This proves Theorem 1.6.

Remark 6.2. We cannot expect that analogues of Theorems 5.1 and 5.2 will hold true in the case of
0-annuli, since, in the case of a 0-annulus

• L-subharmonicity does not necessarily imply r−β-convexity, when β > 1;
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• solid α-means are not well-posed;

• mr (u)(x0) is not necessarily monotone nondecreasing.

See Remark 6.5 at the end of the section for related results (and a converse of Theorem 6.1 for C2

functions which are “radial” with respect to 0).

In order to prove Theorem 6.1, we need a substitute for identity (3-1). This is given in the next result.

Lemma 6.3. Let x0 ∈RN and 0≤ R1 < R2≤∞ be fixed, and suppose that u ∈C2(AR1,R2(x0),R). Given
any R ∈ (R1, R2), one has

d
dr

∣∣∣
r=R

mr (u)(x0)=
1
R2

(∫
∂�ρ(x0)

〈A∇u, ν〉 dH N−1
+

∫
Aρ,R(x0)

Lu
)

(6-3)

for every ρ ∈ (R1, R). In particular, we have

r2
2

d
dr

∣∣∣
r=r2

mr (u)(x0)− r2
1

d
dr

∣∣∣
r=r1

mr (u)(x0)=

∫
Ar1,r2 (x0)

Lu (6-4)

for every r1, r2 such that R1 < r1 < r2 < R2.

Proof. Let �⊂ RN be any bounded open set whose boundary is regular enough to support the divergence
theorem. The divergence form (2-1) of L= div(A∇) gives∫

�

(uLv− vLu)=
∫
∂�

(u〈A∇v, νest〉− v〈A∇u, νest〉) dH N−1 (6-5)

for every u, v∈C2(�,R). Here νest denotes the exterior normal unit vector on ∂�. Let u∈C2(AR1,R2(x0))

and let us take any ρ, r such that R1 < ρ < r < R2. Choosing �= Aρ,r (x0) and v =−0x0 , and since

νest(x)=
{
−ν(x) := +∇0x0(x)/|∇0x0(x)|, if x ∈ ∂�ρ(x0),

+ν(x) := −∇0x0(x)/|∇0x0(x)|, if x ∈ ∂�r (x0),
(6-6)

from (6-5) we derive (recalling that 0x0 is L-harmonic on RN
\ {x0})∫

Aρ,r (x0)

0x0Lu = mr (u)(x0)−mρ(u)(x0)+
1
r

Jr (u)(x0)−
1
ρ

Jρ(u)(x0), (6-7)

where mr is the usual surface average operator, while

JR(u)(x0) :=

∫
∂�R(x0)

〈A∇u, ν〉 dH N−1 for R = r and R = ρ, (6-8)

and ν is as in (6-6) (note that ν is the normal unit vector on ∂�R(x0) which is exterior to the set �R(x0)).
If in (6-5) we take v ≡−1 and �= Aρ,r (x0), we get∫

Aρ,r (x0)

Lu = Jr (u)(x0)− Jρ(u)(x0). (6-9)

We set f (r) := mr (u)(x0) for brevity and we differentiate both sides of (6-7) w.r.t. r :

d
dr

∫
Aρ,r (x0)

0x0Lu = f ′(r)−
1
r2 Jr (u)(x0)+

1
r

d
dr

Jr (u)(x0). (6-10)
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On the one hand, owing to the co-area formula, we have

d
dr

∫
Aρ,r (x0)

0x0Lu

=
d
dr

∫
Aρ,r (x0)

(
1
r
+0x0 −

1
r

)
Lu

=−
1
r2

∫
Aρ,r (x0)

Lu+
1
r

d
dr

∫
Aρ,r (x0)

Lu+
d
dr

∫ r

ρ

(∫
1/0x0=t

(
0x0 −

1
r

)
Lu

d H N−1

|∇(1/0x0)|

)
dt

=−
1
r2

∫
Aρ,r (x0)

Lu+
1
r

d
dr

∫
Aρ,r (x0)

Lu

+

∫
1/0x0=r

(
0x0 −

1
r

)
Lu

dH N−1

|∇(1/0x0)|
+

∫ r

ρ

(∫
1/0x0=t

1
r2 Lu

d H N−1

|∇(1/0x0)|

)
dt.

The third summand is 0, while the fourth is the opposite of the first one. Thus

d
dr

∫
Aρ,r (x0)

0x0Lu =
1
r

d
dr

∫
Aρ,r (x0)

Lu
(6-9)
=

1
r

d
dr

Jr (u)(x0).

This shows that the left-hand side of (6-10) and the last summand of its right-hand side are equal. Thus
(6-10) is equivalent to

f ′(r)=
1
r2 Jr (u)(x0).

Taking into consideration (6-9) again, we get

f ′(r)=
1
r2

(
Jρ(u)(x0)+

∫
Aρ,r (x0)

Lu
)
, R1 < ρ < r < R2. (6-11)

This proves (6-3). Equivalently, we also obtain that

r2 f ′(r)= Jρ(u)(x0)+

∫
Aρ,r (x0)

Lu, R1 < ρ < r < R2. (6-12)

If r1, r2 are such that R1 < r1 < r2 < R2, we can choose any ρ satisfying R1 < ρ < r1. Taking r = r2 in
(6-12) and subtracting side by side what we get by taking r = r1 in (6-12), we finally obtain

r2
2 f ′(r2)− r2

1 f ′(r1)=

∫
Aρ,r2 (x0)

Lu−
∫

Aρ,r1 (x0)

Lu =
∫

Ar1,r2 (x0)

Lu,

which is (6-4). �

We remark that, if u ∈ C2(�R2(x0),R), letting ρ→ 0+ in (6-3), one gets back formula (3-1). Indeed,

lim
ρ→0+

∫
∂�ρ(x0)

〈A∇u, ν〉 dH N−1
= 0,

as it follows from the identity
∫
∂�ρ(x0)

〈A∇u, ν〉 dH N−1
=
∫
∂�ρ(x0)

Lu (a consequence of (6-5) taking
v ≡−1 and �=�ρ(x0)).
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Proof of Theorem 6.1. First we observe that Theorem 6.1 holds true if, together with the other assumptions,
u is of class C2. Indeed, if u is C2 and L-subharmonic, we have Lu ≥ 0 on Aa,b; thus (6-4) proves
that r2(d/dr)(mr (u)(x0)) is monotone nondecreasing on (a, b). Lemma 2.1(3) ensures that mr (u)(x0) is
r−1-convex on (a, b) and that formula (6-4) holds true.

The general case of u ∈ S(Aa,b) can be proved by the very same approximation technique as in the
proofs of Theorems 4.1 and 5.1. �

Remark 6.4. Another example of a convex function naturally associated to an L-subharmonic function is

B(r) := sup
∂�r (x0)

u.

Indeed, let us prove that, if u ∈ S(Aa,b(x0)), then B(r) is an r−1-convex function of r ∈ (a, b). Fix any
r1, r2 such that a < r1 < r2 < b. We need to prove that B(r)≤ I (r) for every r ∈ (r1, r2), where

I (r)=
1/r2− 1/r
1/r2− 1/r1

B(r1)+
1/r − 1/r1

1/r2− 1/r1
B(r2).

We remark that I (ri )= B(ri ) for i = 1, 2 and

I (r)=
1
r

a+ b, where a =
B(r2)− B(r1)

1/r2− 1/r1
, b =

B(r1)/r2− B(r2)/r1

1/r2− 1/r1
.

With these same notations, we set v(x) := I (1/0(x0, x))= a0(x0, x)+ b. Clearly v is L-harmonic in
RN
\ {x0}; moreover, for every x ∈ ∂�ri (x0), one has

v(x)= I (ri )= B(ri )= sup
∂�ri (x0)

u ≥ u(x).

By the weak maximum principle for the L-subharmonic function u−v on the bounded open set Ar1,r2(x0),
we infer that u(x) ≤ v(x) for every x ∈ Ar1,r2(x0). In particular, if we take x ∈ ∂�r (x0), we get
u(x)≤ v(x)= I (r); taking the supremum over ∂�r (x0), we get exactly the needed inequality B(r)≤ I (r).

Remark 6.5. (a) Surface average operators of L-subharmonic functions on a 0-annulus need not be
monotone nondecreasing. Indeed, if for example L = 1 is the classical Laplace operator on R3, the
function

u(x)= (‖x‖− 2)2, where ‖x‖ =
√

x2
1 + x2

2 + x2
3 ,

is subharmonic on the annulus {4/3< ‖x‖< 3}, but mr (u)(0)= (r − 2)2 is not monotone on (4/3, 3).

(b) A converse of Theorem 6.1 holds true for C2 functions which are “radial” with respect to 0. More
precisely, suppose u has the form

u(x)= f (0(x0, x)), x ∈ Aa,b(x0),

for some f ∈ C2((1/b, 1/a),R). A direct computation based on (2-1) and on the L-harmonicity of
0(x0, · ) on RN

\ {x0}, proves that

Lu = f ′(0x0)L0x0 + f ′′(0x0)
∑
i, j

ai, j∂i0x0∂ j0x0 = f ′′(0x0)〈A∇0x0,∇0x0〉.
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Thus u is L-subharmonic on Aa,b(x0) (that is, Lu ≥ 0) if and only if (recall that A is positive semidefinite)
f ′′ ≥ 0 on (1/b, 1/a). On the other hand, if r ∈ (a, b),

mr (u)(x0)=

∫
0(x0,x)=1/r

f (0(x0, x))k(x0, x) dH N−1(x)= f (1/r).

Thus, mr (u)(x0) is r−1-convex on (a, b) if and only if f (r) is convex on (1/b, 1/a). This proves that u
is L-subharmonic on Aa,b(x0) if and only if mr (u)(x0) is an r−1-convex function on (a, b).

(c) If u is as in part (b), then mr (u)(x0) is r−β-convex on (a, b) if and only if (see Lemma 2.1) f (r1/β)

is convex on (b−β, a−β); this last condition holds if and only if

f ′′(ρ)− (β − 1)
f ′(ρ)
ρ
≥ 0 for all ρ ∈ (b−1, a−1).

Now, when β > 1, it is very simple to produce a function f satisfying this last condition on some open
interval (b−1, a−1), but violating f ′′ ≥ 0 on the same interval (recall that this last condition is equivalent
to u being L-subharmonic on Aa,b): for instance, f (ρ)=−ρβ does the job. With this choice of f , the
associated function u(x)=−(0(x0, x))β is not L-subharmonic on any annulus Aa,b(x0), but mr (u)(x0)

is r−β-convex on every subinterval (b−1, a−1) of (0,∞).

7. Applications

We are ready to give the following proofs.

Proof of Corollary 1.7. From (6-4) we derive that r2(d/dr)mr (u)(x0) is constant on (a, b), that is, there
exists c1 ∈ R such that

d
dr
(mr (u)(x0))=−

c1

r2 =
d
dr

(
c1

r

)
for every r in the interval (a, b). �

We now prove the 0-symmetry result in Theorem 1.8. Hypothesis (HH) in Section 1 is assumed.

Remark 7.1. Thanks to our hypoellipticity assumption (H1), by the strong maximum principle for L

(proved in [Abbondanza and Bonfiglioli 2013, Theorem 3.4]) we infer that the harmonic sheaf associated
with L is elliptic (in the sense of [Constantinescu and Cornea 1972]). By standard techniques, hypothesis
(HH) is then fulfilled, for example, in the following cases:

(1) if L can be put in the form L =
∑m

j=1 X2
j , where X1, . . . , Xm are smooth vector fields satisfying

Hörmander’s rank condition on RN ;

(2) for x0 = 0, if L is homogeneous w.r.t. some group of dilations on RN (this is true, for example, if L

is a sub-Laplacian on a Carnot group).

Here we agree to say that a family of maps {δλ}λ>0 is a group of dilations if

δλ : R
N
→ RN , δλ(x1, . . . , xN )= (λ

σ1 x1, . . . , λ
σN xN ),
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where the exponents σ j are strictly positive real numbers. Moreover, we say that L is δλ-homogeneous of
positive degree if there exists σ > 0 such that L(u ◦ δλ)= λσ (Lu) ◦ δλ for every u ∈ C2(RN ,R).

Proof of Theorem 1.8. We follow an idea [Axler et al. 1992] exploited in the classical case of the Laplace
operator. The proof is split into three steps.

(I) We set A := A0,b(x0). Given u ∈ C(A,R), we introduce the operator

S(u)(x) := m1/0(x0,x)(u)(x0), x ∈ A.

Clearly, one has S(1)≡ 1 and, moreover, 0x0 is another fixed function for S, since

S(0x0)(x)= m1/0(x0,x)(0x0)(x0)=

∫
0(x0,y)=0(x0,x)

0(x0, y)k(x0, y) dH N−1(y)

= 0(x0, x)S(1)(x)= 0x0(x).

We observe that if u is L-harmonic in A, then (by Corollary 1.7)

S(u)(x)= c0(x0, x)+ c2, x ∈ A, (7-1)

for some constants c, c2. In particular, if u is L-harmonic in A, then S(u) is L-harmonic in A (actually
S(u) extends to an L-harmonic function in RN

\ {x0}). Furthermore, by the above results ensuring that 1
and 0x0 are fixed functions for S, we infer that

if u is L-harmonic in A, then S(S(u))= S(u). (7-2)

Next we see how S behaves on a function w enjoying the hypotheses of the theorem. First notice that,
since w vanishes on ∂�b(x0) with continuity, the same is true of S(w). Moreover S(w) is L-harmonic in
A (since this is true of w) and

S(w)(x)= c(0(x0, x)− 1/b). (7-3)

Here we used (7-1), observing that c2 =−c/b is the only choice for c2 which ensures the vanishing of
S(w) on ∂�b(x0).

Comparing (7-3) with the thesis of the theorem, we recognize that the theorem is proved if we are able
to show that w is fixed by S, that is, S(w)= w on A.

(II) We let c := C−1, where C is the constant in hypothesis (HH). Note that 0< c< 1. We claim that the
following property holds true:

If h is L-harmonic in A and continuous up to ∂�b(x0)

with h ≡ 0 on ∂�b(x0) and h ≥ 0 on A, then h ≥ cS(h) on A. (7-4)

With this result in hand, the proof of Theorem 1.8 follows. Indeed, suppose w enjoys the hypothesis of
the theorem; let us prove by induction that, setting

cn := 1− (1− c)n, n ∈ N∪ {0}, (7-5)

we have
w ≥ cn S(w) on A for any n ∈ N∪ {0}. (7-6)
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The case n = 0 follows from the nonnegativity of w on A and c0 = 0.
Suppose (7-6) holds true, and let us prove it for n + 1 replacing n. The function h := w− cn S(w)

satisfies the hypothesis of statement (7-4): indeed, from the last remarks of part I above, it follows that h
is L-harmonic in A, continuous up to ∂�b(x0) and vanishing there. Finally h ≥ 0 on A is the inductive
assumption.

Consequently, from the claimed result in (7-4), we have on A

0≤ h− cS(h)= w− cn S(w)− cS(w− cn S(w))

= w− cn S(w)− cS(w)+ ccn S(w)

= w− cn+1S(w).

Here we used (7-2) together with cn + c− ccn = cn+1 (see the very definition (7-5) of cn). Thus (7-6) is
proved by induction.

Letting n→∞ in it, we inferw≥ S(w) on A, since cn→ 1, as 0< 1−c< 1. Recalling what we proved
in part I, we are done if we can also prove the reverse inequality w≤ S(w). Suppose by contradiction that
w(x) > S(w)(x) for some x ∈ A; by (7-2), this gives S(w)(x) > S

(
S(w)

)
(x)= S(w)(x), a contradiction.

Note that the above inequality is a consequence of S(1) = 1 and of the fact that S is a nondecreasing
operator (that is, if u ≤ v on A, then S(u)≤ S(v) on A).

(III) We are thus left with the proof of the claimed (7-4). Notice that (HH) can be restated as follows:

ch(z)≤ h(x), whenever (θb)−1 < 0(x0, z)= 0(x0, x) <∞ and h ≥ 0 is L-harmonic in A. (7-7)

Let h be as in (7-4). Arguing as in part I of the proof, we infer that H := h − cS(h) is L-harmonic
in A, continuous up to ∂�b(x0), and H = 0 on ∂�b(x0). Let us fix any arbitrary r ∈ (0, θb). We take
x, z ∈ ∂�r (x0); recall that this means

0(x0, x)= 0(x0, z)= 1/r.

Let us consider the inequality in the left-hand side of (7-7), which is fulfilled since (θb)−1 < 1/r <∞;
by multiplication by k(x0, z) (see the notation in (1-2)), and by integration w.r.t. z ∈ ∂�r (x0), we get
cmr (h)(x0)≤ h(x). Recalling that r = 1/0(x0, x), we infer

cm1/0(x0,x)(h)(x0)≤ h(x), that is, cS(h)(x)≤ h(x).

The arbitrariness of x ∈ ∂�r (x0) implies that H(x) ≥ 0 on ∂�r (x0). By the weak minimum principle
applied to the L-harmonic function H and to the bounded open set Ar,b(x0), we derive H ≥ 0 on
Ar,b(x0). Since r ∈ (0, θb) is arbitrary, this yields H ≥ 0 on A0,b(x0)= A, that is, h ≥ cS(h) on A. This
proves (7-4). �

We end the paper by giving the following proof.

Proof of Theorem 1.9. Let ε > 0 be so small that �ε(x0)⊂�. Since V :=�ε(x0) is an L-regular open
set, setting f := u|∂�ε(x0), we can consider H V

f , the unique L-harmonic function in V , continuous up to
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∂V , coinciding with u on ∂V . Let

w(x) := u(x)− H V
f (x)+0(x0, x)− 1/ε, x ∈ O :=�ε(x0) \ {x0}.

The function w is L-harmonic in O and continuous up to ∂�ε(x0), where it vanishes; moreover,
lim infx→x0 w(x)≥−H V

f (x0)−1/ε+limx→x0 0(x0, x)=∞, the inequality following from the hypothesis
u ≥ 0. The weak minimum principle for w and for the bounded open set O proves that w ≥ 0 on O .
Note that O is the 0-annulus A0,ε(x0). We are therefore entitled to apply Theorem 1.8 and derive that
w = c1(0x0 − 1/ε) on O , for some constant c1. As a consequence, we get u = c0x0 + H on O , where
c = c1− 1 and H = H V

f − c/ε. From u = c0x0 + H , the finiteness of H(x0) and the hypothesis u ≥ 0,
we get c ≥ 0. This proves that the function h defined on � \ {x0} by h(x) := u(x)− c0(x0, x) is not only
L-harmonic, but (as it coincides with H on O) it extends L-harmonically through x0. �
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