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In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynam-
ics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the
electric permittivity, and the conductivity, are described by continuously differentiable functions.
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1. Introduction

Let � be a bounded nonempty open subset of R3 with boundary denoted by ∂�. Consider functions
µ, ε, σ ∈ L∞(�), representing magnetic permeability, electric permittivity, and conductivity, respectively,
such that µ(x) ≥ µ0, ε(x) ≥ ε0, and σ(x) ≥ 0 almost everywhere in � for positive constants µ0 and
ε0. At frequency ω > 0, for each medium characterized by (µ, ε, σ ), we have access to all available
data of the boundary tangential components of electric and magnetic fields. More specifically, we
have access to the Cauchy data set C(µ, ε, σ ;ω) consisting of all boundary graded forms f 1

+ f 2
∈

TH δ
(
∂�;31R3

)
⊕ TH d

(
∂�;32R3

)
(see the Appendix for the definitions of these spaces and results

related to l-forms) such that there exists u1
+ u2
∈ H d

(
�;31R3

)
⊕ H δ(�;32R3) satisfying

δu2
+ iωεu1

− du1
+ iωµu2

= σu1 (1-1)

almost everywhere in � and

δ tr u2
+ d tr u1

= f 1
+ f 2 (1-2)
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in the sense of TH δ
(
∂�;31R3

)
⊕ TH d

(
∂�;32R3

)
. Here u1 is the 1-form representation of the electric

field and u2 is the 2-form representation of the magnetic field. It is worth pointing out that the graded
equations (1-1) and (1-2) are equivalent to the following systems of time-harmonic Maxwell equations:{

δu2
+ iωεu1

= σu1,

du1
− iωµu2

= 0

almost everywhere in � and {
δ tr u2

= f 1,

d tr u1
= f 2

in the sense of the space TH δ
(
∂�;31R3

)
for the 1-form equation and in the sense of TH d

(
∂�;32R3

)
for the 2-form equation. Throughout this paper, for convenience, we follow the graded form notation
rather than the l-form system.

We are interested in the inverse boundary value problem (IBVP) of recovering µ, ε, σ ∈ L∞(�) from
the knowledge of C(µ, ε, σ ;ω). This problem is just a reformulation in differential forms of the usual
IBVP for the time-harmonic Maxwell equations proposed in [Somersalo et al. 1992], where ∂� was
smooth enough, the electromagnetic fields (E,H) satisfied{

∇ ×E− iωµH= 0,
∇ ×H+ iω(ε+ iσ/ω)E= 0

almost everywhere in �, and the Cauchy set C(µ, ε, σ ;ω) consisted of pairs

(ν×E|∂�, ν×H|∂�) ∈ TH 1/2
Div (∂�)× TH 1/2

Div (∂�)

(see [Somersalo et al. 1992] for precise definitions) with ν denoting the unit outer normal vector to ∂�.
The uniqueness question associated to this problem is as follows. Given a frequency ω > 0 and two sets
of parameters {µ j , ε j , σ j } ⊂ L∞(�) with j ∈ {1, 2} such that µ j (x) ≥ µ0, ε j (x) ≥ ε0, and σ j (x) ≥ 0
almost everywhere in �, does C(µ1, ε1, σ1;ω)=C(µ2, ε2, σ2;ω) imply µ1 =µ2, ε1 = ε2, and σ1 = σ2?

In this paper we provide the answer to this question in the case where � is locally described by the
graph of a Lipschitz function and µ, ε, and σ are continuously differentiable in �. This is stated in our
main theorem as follows.

Theorem 1.1. Let � be a bounded nonempty open subset of R3. Assume that ∂� is locally described by
the graph of a Lipschitz function. Let µ j , ε j , and σ j with j ∈ {1, 2} belong to C1(�). At frequency ω > 0,
suppose ∂αµ1(x) = ∂αµ2(x), ∂αε1(x) = ∂αε2(x), and ∂ασ1(x) = ∂ασ2(x) for α ∈ N3 with |α| ≤ 1 and
all x ∈ ∂�. Then

C(µ1, ε1, σ1, ω)= C(µ2, ε2, σ2, ω)H⇒ µ1 = µ2, ε1 = ε2 and σ1 = σ2.

A precise definition of the space denoted by C1(�) is given at the beginning of Section 3. Our result
assumes the coefficients to be equal up to order one on the boundary. This is required to extend them
identically outside the domain. As far as we know, the only available results about uniqueness on the
boundary in this context are due to Joshi and McDowall [McDowall 1997; Joshi and McDowall 2000],
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where ∂� is assumed to be locally described by a smooth function and the Cauchy data sets are given by
the graph of a bounded map.

The IBVP considered in this paper was first proposed by Somersalo, Isaacson, and Cheney [Somersalo
et al. 1992]. Lassas [1997] found a relation between this IBVP and the inverse conductivity problem
proposed by Calderón [2006]. In general terms, the latter problem can be seen as the low-frequency limit
of the former. Calderón’s problem in electrical impedance tomography consists of reconstructing the
conductivity of a domain by measuring electric voltages and currents on the boundary. The uniqueness
question arising in this problem is whether the conductivity σ (σ ∈ L∞(�) and σ(x)≥ σ0 > 0 for almost
every x ∈ �), in a divergence type equation ∇ · (σ∇u) = 0 in �, can be determined uniquely by the
boundary Dirichlet-to-Neumann map 3σ : H 1(�)/H 1

0 (�)−→ (H 1(�)/H 1
0 (�))

∗ defined as

〈3σ f | g〉 =
∫
�

σ∇u · ∇v dx

for any f, g ∈ H 1(�)/H 1
0 (�), where u ∈ H 1(�) is the weak solution of the conductivity equation

∇ · (σ∇u)= 0 in � with u|∂� = f and v ∈ H 1(�) with v|∂� = g. A significant number of works have
been devoted to answering not only the question of uniqueness but also the questions of reconstruction and
stability. The most successful approach to treat this problem was introduced by Sylvester and Uhlmann
[1987] and it is based on the construction of complex geometrical optics (CGO) solutions. In dimension 2,
the problem is rather well understood and some important results can be found in [Astala and Päivärinta
2006; Clop et al. 2010; Nachman 1996]. In dimension greater than 2, there are still many open questions
about the sharp smoothness to ensure uniqueness, stability, and reconstruction. Some important results
can be found in [Haberman and Tataru 2013; Sylvester and Uhlmann 1987; Nachman 1988; Alessandrini
1988]. Some recent results are [Caro et al. 2013; García and Zhang 2012]. For a more complete list of
papers on this problem, we refer to the survey papers [Uhlmann 2009; 2008].

The literature for the IBVP in electrodynamics under consideration is not as extensive as for Calderón’s
problem. [Somersalo et al. 1992] contains the first partial results for the linearization of the problem at
constant electromagnetic parameters, and Sun and Uhlmann [1992] provided a local uniqueness theorem.
The first global uniqueness result is due to Ola, Päivärinta, and Somersalo [Ola et al. 1993], where the
authors assume that the electromagnetic coefficients are C3-functions and ∂� is of class C1,1. They also
provided a reconstruction algorithm to recover the coefficients. The arguments in [Ola et al. 1993] are
rather complicated, since the method developed by Sylvester and Uhlmann [1987] does not immediately
apply. The lack of ellipticity of Maxwell’s equations makes the problem more complicated than Calderón’s.
Ola and Somersalo [1996] simplified the proof in [Ola et al. 1993] by establishing a relation between
Maxwell’s equations and a matrix Helmholtz equation with a potential. This relation helps to deal with
the lack of ellipticity, allowing them to produce exponentially growing solutions for Maxwell’s equations
from the CGOs for the matrix Helmholtz equation. This idea has been extensively used in proving many
other results and it will be used in this paper as well. There are other results related to the IBVP under
consideration in the literature. Kenig, Salo, and Uhlmann [Kenig et al. 2011] proved uniqueness for the
corresponding IBVP in some noneuclidean geometries. With certain types of partial boundary data, the
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uniqueness was addressed by Caro, Ola, and Salo [Caro et al. 2009]; see also [Caro 2011]. The question
of stability has been studied in [Caro 2010] assuming full data and in [Caro 2011] assuming partial data.
Zhou [2010] used the enclosure method to reconstruct electromagnetic obstacles.

In our paper, Theorem 1.1 lowers significantly the regularity of the coefficients and the smoothness of
the boundary of � assumed in previous results (despite the fact that domains with Lipschitz boundaries
were already considered in [Caro 2010]) and it matches the regularity assumptions made in [Haberman
and Tataru 2013] for Calderón’s problem.

The general line of our paper follows the argument in [Ola and Somersalo 1996], relating (1-1) with
an equation given by a compactly supported zeroth order perturbation of the graded Hodge–Helmholtz
operator, namely

(δd + dδ−ω2µ0ε0)w j + Q jw j = 0, (1-3)

where Q j = Q(ε j + iσ j/ω,µ j , ω) with j ∈ {1, 2} has to be thought of as a weak potential containing
second partial derivatives of µ j , ε j , and σ j . Using this relation, we are able to prove the integral formula

〈(Q2− Q1)w1 | v2〉 = 0, (1-4)

where w1 is a solution to (1-3) that produces a solution to (1-1) and v2 is a solution to a first order elliptic
equation (see Section 3 for more details). This integral formula, with CGOs w1 and v2 as inputs, will be
the starting point of our proof.

To lower the regularity of the electromagnetic parameters, we adopt a recent improvement of Sylvester
and Uhlmann’s method that Haberman and Tataru developed [2013] to prove uniqueness of the Calderón
problem with continuously differentiable conductivities. For such regularity, solving a conductivity
equation can be reduced to solving a Schrödinger equation, −1v +mqv = 0, where mq denotes the
multiplication operator by the compactly supported weak potential q=1

√
σ/
√
σ . Note that this reduction

was first used by Sylvester and Uhlmann [1987] for smooth conductivities and later by Brown [1996]
for less regular conductivities, all followed by the construction of CGOs in proper function spaces.
Haberman and Tataru [2013] proved the existence of CGO solutions v(x)= ex ·ζ (1+ψζ (x)) with ζ ∈ Cn

and ζ · ζ = 0 to the Schrödinger equation. Roughly speaking, the construction is based on solving the
equation −(1+ 2ζ · ∇)ψζ +mqψζ = 0 in a Bourgain-type space Ẋb

ζ whose norm includes the potential
|pζ (ξ)|2b

= ||ξ |2 − 2iζ · ξ |2b as a weight. In this way, the ζ -dependence is transferred into the space
norms and it is shown [Haberman and Tataru 2013] that

‖(1+ 2ζ · ∇)−1
‖Ẋ−1/2

ζ →Ẋ1/2
ζ

= 1, ‖mq‖Ẋ1/2
ζ →Ẋ−1/2

ζ

< 1,

which guarantee the convergence of the Neumann series for ψζ . Furthermore, Haberman and Tataru
obtained an average decaying property for ‖ψζ‖Ẋ1/2

ζ

, from which they deduced the existence of a sequence
{ζm
} such that {ψζm } vanishes as m grows.

In this paper, we adopt the idea and several of the estimates in [Haberman and Tataru 2013] to construct
the CGOs w1 and v2 with desired properties. Nevertheless, we avoid the argument of extracting the
sequence of {ζm

}, and directly use the decay in average. This has been previously done by Caro, García,
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and Reyes [Caro et al. 2013] to prove stability of the Calderón problem for C1,ε-conductivities. When
plugging in the CGOs w1 and v2, the output of (1-4) will be certain nonlinear relations of ε1+ iσ1/ω, µ1,
ε2+ iσ2/ω, and µ2 involving second weak partial derivatives of the coefficients. Thus, to conclude the
proof of our theorem we will need a unique continuation property for a system of the form

−1 f + V f + a f + bg = 0,

−1g+Wg+ cg+ d f = 0,

where a, b, c, and d are compactly supported and belong to L∞(R3), while V and W are again weak
potentials. We will again apply the argument with Bourgain-type spaces to prove the required unique
continuation property, which seems not to be available in the literature.

The paper is organized as follows. In Section 2 we show the relation between (1-1) and (1-3). The
proof of the integral formula (1-4) is given in Section 3. The CGO solutions are constructed in Section 4,
where we will directly refer several times to the estimates proven in [Haberman and Tataru 2013] rather
than listing them in the paper. In Section 5, we complete our proof by plugging the CGOs into (1-4) and
using the unique continuation principle that we will derive. An appendix is provided at the end of the
paper, gathering basic facts and notations in the framework of differential forms, as well as including
some technical computations for the electromagnetic IBVP.

2. An auxiliary graded equation

In this section we establish a relation between

δu2
+ iωεu1

− du1
+ iωµu2

= σu1

and an auxiliary graded Hodge–Helmholtz equation with zeroth order perturbation (following the idea
in [Ola and Somersalo 1996]), which allows the construction of CGOs. For our purposes, it would be
enough to have solutions in �, but for convenience we will conduct our analysis in the whole R3. This
gives us certain freedoms in extending the coefficients outside �. Thus, set B = {x ∈ R3

: |x |< R} with
R > 0 such that �⊂ B. Let ω, µ0, and ε0 be three positive constants. At this point, we consider µ, ε,
and σ in W 1,∞(R3), the space of measurable functions modulo those vanishing almost everywhere such
that they and their first weak partial derivatives are essentially bounded in R3. Furthermore, we assume
that µ, ε, and σ are real-valued,

supp(µ−µ0)⊂ B, supp(ε− ε0)⊂ B, supp(σ )⊂ B,

and µ(x)≥ µ0, ε(x)≥ ε0, and σ(x)≥ 0 for almost every x in R3. For simplicity, write γ = ε+ iσ/ω. It
is sufficient for us to produce weak solutions to

δu2
+ iωγ u1

− du1
+ iωµu2

= 0 (2-1)

in R3, namely, forms u1
+ u2 with ul

∈ L2
loc

(
R3
;3lR3

)
satisfying

〈δu2
+ iωγ u1

− du1
+ iωµu2

| ϕ1
+ϕ2
〉 = 0
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for all ϕ1
+ϕ2 with ϕl

∈ C∞0
(
R3
;3lR3

)
. Here 〈 · | · 〉 denotes the duality bracket for distributions.

In order to derive the auxiliary equation, we augment (2-1) by adding

−γ−1δ(γ u1)+µ−1d(µu2)= 0,

which is derived directly from (2-1).
Next, we consider an equation of the graded form

∑3
l=0 ul where ul

∈ L2
loc

(
R3
;3lR3

)
:

−γ−1δ(γ u1)+iωµu0
+µ−1d(µu0)+δu2

+iωγ u1
−γ−1δ(γ u3)−du1

+iωµu2
+µ−1d(µu2)+iωγ u3

=0.

Multiplying 0, 2-forms by γ 1/2 and 1, 3-forms by µ1/2, we obtain

−γ−1/2δ(γ u1)+ iωγ 1/2µu0
+µ−1/2d(µu0)+µ1/2δu2

+ iωγµ1/2u1

− γ−1/2δ(γ u3)− γ 1/2du1
+ iωγ 1/2µu2

+µ−1/2d(µu2)+ iωγµ1/2u3
= 0.

Throughout this paper ( · )1/2 will denote the principal branch of the square root, and the same convention
will apply to log. If we now set

v =

3∑
l=0

vl
= µ1/2u0

+ γ 1/2u1
+µ1/2u2

+ γ 1/2u3,

we end up with the equation

P(d + δ; γ, µ, ω)v = 0, (2-2)

where

P(d + δ; γ, µ, ω)v

= (d + δ)
3∑

l=0

(−1)lvl
+ da ∧ v1

+ da ∨ (v1
+ v3)+ db∧ (v0

+ v2)− db∨ v2
+ iωγ 1/2µ1/2v,

a = 1
2 log γ and b = 1

2 logµ. The key point of this derivation to take note of is that v =
∑3

0 v
l with

vl
∈ L2

loc

(
R3
;3lR3

)
is a weak solution of (2-2) in R3 (that is, for every ϕ=

∑3
0 ϕ

l with ϕl
∈C∞0

(
R3
;3lR3

)
,

〈P(d+ δ; γ, µ, ω)v | ϕ〉 = 0 with 〈 · | · 〉 denoting the duality bracket for distributions) and v0
+ v3
= 0 if

and only if u1
+u2
= γ−1/2v1

+µ−1/2v2 with ul
∈ L2

loc

(
R3
;3lR3

)
is a weak solution of (2-1) in R3. For

convenience, let us define an operator

P(d + δ; γ, µ, ω)tw

:= (d+δ)
3∑

l=0

(−1)l+1wl
+db∧w1

+db∨(w1
+w3)+da∧(w0

+w2)−da∨w2
+ iωγ 1/2µ1/2w (2-3)

for w =
∑3

0w
l with wl

∈ H δ
loc

(
R3
;3lR3

)
∩ H d

loc

(
R3
;3lR3

)
. Note that P(d + δ; γ, µ, ω)t is the formal

transpose of P(d + δ; γ, µ, ω).
Due to the rescaling by γ 1/2 and µ1/2 that we chose, it can be verified that P(d + δ; γ, µ, ω) ◦ P(d +

δ; γ, µ, ω)t is a zeroth order perturbation of the graded Hodge–Helmholtz operator. For any graded forms
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w =
3∑
0
wl and ϕ =

3∑
0
ϕl with wl, ϕl

∈ H 1
loc

(
R3
;3lR3

)
, set

〈Q(γ, µ, ω)w | ϕ〉 = −
∫

R3
ω2(γµ− ε0µ0)〈w, ϕ〉 dx

+

∫
R3
〈i2ωd(γ 1/2µ1/2)∨ (w1

+w3)+ i2ωd(γ 1/2µ1/2)∧ (w0
+w2), ϕ〉 dx

+

∫
R3
〈da, da〉〈w0

+w2, ϕ0
+ϕ2
〉+ 〈db, db〉〈w1

+w3, ϕ1
+ϕ3
〉 dx

+

∫
R3
〈da, d〈−w0

+w2, ϕ0
+ϕ2
〉〉+ 〈db, d〈w1

−w3, ϕ1
+ϕ3
〉〉 dx

+

∫
R3
〈db, D∗(w1

�ϕ1)〉 dx +
∫

R3
〈da, D∗(∗w2

�∗ϕ2)〉 dx . (2-4)

Proposition 2.1. Let w =
3∑
0
wl be a graded form with wl

∈ H 1
loc

(
R3
;3lR3

)
and assume that∫

R3
〈δw, δϕ〉+ 〈dw, dϕ〉−ω2ε0µ0〈w, ϕ〉 dx +〈Q(γ, µ, ω)w | ϕ〉 = 0 (2-5)

for all ϕ =
3∑
0
ϕl with ϕl

∈ C∞0
(
R3
;3lR3

)
. Then v =

3∑
0
vl defined by

v = P(d + δ; γ, µ, ω)tw (2-6)

is a weak solution to (2-2) in R3 and vl
∈ H 1

loc

(
R3
;3lR3

)
.

Proof. We first prove that v is a weak solution to (2-2). Since vl
∈ L2

loc

(
R3
;3lR3

)
, it is enough to show

that∫
R3
〈P(d + δ; γ, µ, ω)tw, P(d + δ; γ, µ, ω)tϕ〉 dx

=

∫
R3
〈δw, δϕ〉+ 〈dw, dϕ〉−ω2ε0µ0〈w, ϕ〉 dx +〈Q(γ, µ, ω)w | ϕ〉. (2-7)

To check this, by direct computation, the first four terms on the left-hand side are∫
R3

〈
(d + δ)

3∑
l=0

(−1)l+1wl, (d + δ)
3∑

l=0

(−1)l+1ϕl
〉

dx =
∫

R3
〈δw, δϕ〉+ 〈dw, dϕ〉 dx, (2-8)∫

R3
〈iωγ 1/2µ1/2w, iωγ 1/2µ1/2ϕ〉 dx =−

∫
R3
ω2γµ〈w, ϕ〉 dx, (2-9)∫

R3

〈
(d + δ)

3∑
l=0

(−1)l+1wl, iωγ 1/2µ1/2ϕ

〉
dx +

∫
R3

〈
iωγ 1/2µ1/2w, (d + δ)

3∑
l=0

(−1)l+1ϕl
〉

dx

=

∫
R3
〈iωd(γ 1/2µ1/2)∨ (w1

+w3)+ iωd(γ 1/2µ1/2)∧ (w0
+w2), ϕ〉 dx

+

∫
R3
〈iωd(γ 1/2µ1/2)∨w2

− iωd(γ 1/2µ1/2)∧w1, ϕ〉 dx, (2-10)
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and∫
R3
〈db∧w1

+ db∨ (w1
+w3)+ da ∧ (w0

+w2)− da ∨w2, iωγ 1/2µ1/2ϕ〉

+ 〈iωγ 1/2µ1/2w, db∧ϕ1
+ db∨ (ϕ1

+ϕ3)+ da ∧ (ϕ0
+ϕ2)− da ∨ϕ2

〉 dx

=

∫
R3
〈iωd(γ 1/2µ1/2)∨ (w1

+w3)+ iωd(γ 1/2µ1/2)∧ (w0
+w2), ϕ〉 dx

−

∫
R3
〈iωd(γ 1/2µ1/2)∨w2

− iωd(γ 1/2µ1/2)∧w1, ϕ〉 dx . (2-11)

By Corollary A.2, the fifth term gives∫
R3
〈db∧w1

+ db∨ (w1
+w3)+ da ∧ (w0

+w2)

−da ∨w2, db∧ϕ1
+ db∨ (ϕ1

+ϕ3)+ da ∧ (ϕ0
+ϕ2)− da ∨ϕ2

〉 dx

=

∫
R3
〈da, da〉〈w0

+w2, ϕ0
+ϕ2
〉+ 〈db, db〉〈w1

+w3, ϕ1
+ϕ3
〉 dx . (2-12)

By Proposition A.6, the last term yields

∫
R3

〈
db∧w1

+ db∨ (w1
+w3)+ da ∧ (w0

+w2)− da ∨w2, (d + δ)
3∑

l=0

(−1)l+1ϕl
〉

+

〈
(d + δ)

3∑
l=0

(−1)l+1wl, db∧ϕ1
+ db∨ (ϕ1

+ϕ3)+ da ∧ (ϕ0
+ϕ2)− da ∨ϕ2

〉
dx

=

∫
R3
〈da, d〈−w0

+w2, ϕ0
+ϕ2
〉〉+ 〈db, d〈w1

−w3, ϕ1
+ϕ3
〉〉 dx+

∫
R3
〈db, D∗(w1

�ϕ1)〉 dx

+

∫
R3
〈da, D∗(∗w2

�∗ϕ2)〉 dx = 0. (2-13)

Summing up identities (2-8) through (2-13) gives identity (2-7).
It remains to prove that vl

∈ H 1
loc

(
R3
;3lR3

)
. Since vl

∈ L2
loc

(
R3
;3lR3

)
, we have

(d + δ)
3∑
0

(−1)lvl
∈

3⊕
0

L2
loc
(
R3
;3lR3)

by (2-2). Therefore, Lemma A.7 allows us to conclude the proof. �

Remark 2.2. Identity (2-7) holds even for ϕ =
3∑
0
ϕl with ϕl

∈ H 1
loc

(
R3
;3lR3

)
.

Similar calculations verify that the same property holds for P(d + δ; γ, µ, ω)t ◦ P(d + δ; γ, µ, ω) as
stated in Proposition 2.3. Define



GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS 383

〈Q̃(γ, µ, ω)w | ϕ〉 = −
∫

R3
ω2(γµ− ε0µ0)〈w, ϕ〉 dx

+

∫
R3
〈−i2ωd(γ 1/2µ1/2)∨w2

+ i2ωd(γ 1/2µ1/2)∧w1, ϕ〉 dx

+

∫
R3
〈db, db〉〈w0

+w2, ϕ0
+ϕ2
〉+ 〈da, da〉〈w1

+w3, ϕ1
+ϕ3
〉 dx

+

∫
R3
〈db, d〈w0

−w2, ϕ0
+ϕ2
〉〉+ 〈da, d〈−w1

+w3, ϕ1
+ϕ3
〉〉 dx

−

∫
R3
〈da, D∗(w1

�ϕ1)〉 dx −
∫

R3
〈db, D∗(∗w2

�∗ϕ2)〉 dx (2-14)

for w =
3∑
0
wl and ϕ =

3∑
0
ϕl with wl, ϕl

∈ H 1
loc

(
R3
;3lR3

)
.

Proposition 2.3. Let w =
3∑
0
wl be a graded form with wl

∈ H 1
loc

(
R3
;3lR3

)
and assume that∫

R3
〈δw, δϕ〉+ 〈dw, dϕ〉−ω2ε0µ0〈w, ϕ〉 dx +〈Q̃(γ, µ, ω)w | ϕ〉 = 0 (2-15)

for all ϕ =
3∑
0
ϕl with ϕl

∈ C∞0
(
R3
;3lR3

)
. Then v =

3∑
0
vl defined by

v = P(d + δ; γ, µ, ω)w

is a weak solution of

P(d + δ; γ, µ, ω)tv = 0

in R3 and vl
∈ H 1

loc

(
R3
;3lR3

)
.

Recall that v =
∑3

0 v
l with vl

∈ L2
loc

(
R3
;3lR3

)
is a weak solution to (2-2) and satisfies v0

+ v3
= 0

in R3 if and only if u1
+ u2
= γ−1/2v1

+µ−1/2v2 with ul
∈ L2

loc

(
R3
;3lR3

)
is a weak solution of (2-1)

in R3. We finish this section by singling out the equation of v0
+ v3 from (2-15), which is used later to

show that the CGOs we will construct in Section 4 satisfy v0
+ v3
= 0.

Proposition 2.4. Let v =
3∑
0
vl with vl

∈ H 1
loc

(
R3
;3lR3

)
satisfy

P(d + δ; γ, µ, ω)v = 0

in any bounded open subset of R3. For any ϕ = ϕ0
+ϕ3 with ϕl belonging to C∞0

(
R3
;3lR3

)
, we have∫

R3
〈δ(v0

+v3), δϕ〉+〈d(v0
+v3), dϕ〉−ω2ε0µ0〈v

0
+v3, ϕ〉 dx+〈q̃(γ, µ, ω)(v0

+v3) | ϕ〉 = 0, (2-16)

where

〈q̃(γ, µ, ω)(v0
+v3) |ϕ〉=−

∫
R3
ω2(γµ−ε0µ0)〈v

0
+v3, ϕ〉 dx+

∫
R3
〈db, db〉〈v0, ϕ0

〉+〈da, da〉〈v3, ϕ3
〉

+ 〈db, d〈v0, ϕ0
〉〉+ 〈da, d〈v3, ϕ3

〉〉 dx .

Proof. This is immediate from the proof of Proposition 2.3 and the fact that Q̃(γ, µ, ω) decouples for
v0
+ v3. �
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3. An integral formula

In this section we provide an integral formula that serves as the starting point to prove uniqueness of
the IBVP. To do this, we exploit the computations which allow us to produce solutions for (2-1) from
solutions of (2-5) (see Proposition 2.1).

Let � be a bounded nonempty open subset in R3 whose boundary ∂� can be locally described by the
graph of a Lipschitz function. Throughout the rest of the paper, we assume that µ j , ε j , and σ j belong
to C1(�) with j ∈ {1, 2} such that µ j (x) ≥ µ0, ε j (x) ≥ ε0, and σ j (x) ≥ 0 everywhere in �. Here we
say that f is in C1(�) if f :�−→ C is continuously differentiable in �, its partial derivatives ∂α f are
uniformly continuous in � for α ∈ N3 and |α| = 1, and

|∂α f (x)| ≤ C for all x ∈�, |α| ≤ 1, (3-1)

for a certain positive constant C . The norm on C1(�), defined as the smallest constant C for which (3-1)
holds, makes C1(�) a Banach space. Since ∂� is of Lipschitz class, f defined as above is uniformly
continuous and, consequently, ∂α f possesses a unique bounded continuous extension to � for any |α| ≤ 1.
This extension will still be denoted by f .

Consider C j = C(µ j , ε j , σ j ;ω), the Cauchy data set associated to µ j , ε j , and σ j at frequency ω > 0.
Write γ j = ε j+iσ j/ω and assume ∂αγ1(x)= ∂αγ2(x) and ∂αµ1(x)= ∂αµ2(x) for all x ∈ ∂� and |α| ≤ 1.
We can extend1 γ j and µ j to continuously differentiable functions in R3, still denoted by γ j and µ j , such
that |∂αγ j (x)| + |∂αµ j (x)| ≤ C , µ j (x) ≥ µ0, ε j (x) ≥ ε0, and σ j (x) ≥ 0 for all x ∈ R3, |α| ≤ 1 and a
certain constant C > 0,

supp(µ j −µ0)⊂ B, supp(γ j − ε0)⊂ B,

where B = {x ∈ R3
: |x | < R} ⊃ �, and γ1(x) = γ2(x) and µ1(x) = µ2(x) for all x ∈ R3

\�. For
convenience, we write a j =

1
2 log γ j and b j =

1
2 logµ j .

Proposition 3.1. Let w1 =
3∑
0
wl

1 be a graded form with wl
1 ∈ H 1

loc

(
R3
;3lR3

)
satisfying∫

R3
〈δw1, δϕ〉+ 〈dw1, dϕ〉−ω2ε0µ0〈w1, ϕ〉 dx +〈Q(γ1, µ1, ω)w1 | ϕ〉 = 0 (3-2)

for all ϕ =
3∑
0
ϕl with ϕl

∈ C∞0
(
R3
;3lR3

)
. Assume that v1 =

3∑
0
vl

1, defined by

v1 = P(d + δ; γ1, µ1, ω)
tw1, (3-3)

satisfies v0
1 + v

3
1 = 0. Let v2 =

3∑
0
vl

2 with vl
2 ∈ H 1

loc

(
R3
;3lR3

)
satisfy

P(d + δ; γ2, µ2, ω)
tv2 = 0 (3-4)

1The extensions we want to perform here are of Whitney type. These kinds of extensions hold for functions defined on any
closed subset of Rn whenever the functions can be approximated by certain polynomials. In order to ensure the existence of such
polynomials, we use that ∂� is of Lipschitz class. The argument to prove the existence of such polynomials is similar to the
one carried out in Section 2 of [Caro et al. 2013] for C1,ε(�) functions with the only difference being that, where the authors
referred to Chapter VI, Section 2 of [Stein 1970], we refer to Chapter VI, Section 4.7 of [Stein 1970].



GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS 385

in any bounded open subset of R3. Then C1 = C2 implies

〈(Q(γ2, µ2, ω)− Q(γ1, µ1, ω))w1 | v2〉 = 0.

Proof. By Remark 2.2 and because γ1(x)= γ2(x) and µ1(x)= µ2(x) for all x ∈ R3
\�, we know that

〈(Q(γ2, µ2, ω)−Q(γ1, µ1, ω))w1 | v2〉 =

∫
�

〈P(d+ δ; γ2, µ2, ω)
tw1, P(d+ δ; γ2, µ2, ω)

tv2〉 dx

−

∫
�

〈P(d+ δ; γ1, µ1, ω)
tw1, P(d+ δ; γ1, µ1, ω)

tv2〉 dx

=−

∫
�

〈v1, P(d+ δ; γ1, µ1, ω)
tv2〉 dx .

The last equality follows from (3-4) and (3-3).
Since v0

1 + v
3
1 = 0, we have that u1

1+ u2
1 = γ

−1/2
1 v1

1 +µ
−1/2
1 v2

1 satisfies

δu2
1+ iωγ1u1

1− du1
1+ iωµ1u2

1 = 0 (3-5)

almost everywhere in � (see Section 2). The definitions of boundary traces δ tr and d tr (see Section A3)
give

−

∫
�

〈v1, P(d + δ; γ1, µ1, ω)
tv2〉 dx

= 〈δ tr(γ1u1
1) | γ

−1/2
1 v0

2〉+ 〈δ tr u2
1 | µ

1/2
1 v1

2〉− 〈d tr u1
1 | γ

1/2
1 v2

2〉+ 〈d tr(µ1u2
1) | µ

−1/2
1 v3

2〉. (3-6)

Suppose f = f 1
+ f 2 with f l

∈ L2
loc

(
R3
;3lR3

)
is a weak solution to

δ f 2
+ iωγ2 f 1

− d f 1
+ iωµ2 f 2

= 0 (3-7)

in R3. Note that then f 1
∈ H d

(
�;31R3

)
, f 2
∈ H δ

(
�;32R3

)
. Set g = g1

+ g2
= γ

1/2
2 f 1

+µ
1/2
2 f 2. By

(3-4), we obviously have ∫
�

〈g, P(d + δ; γ2, µ2, ω)
tv2〉 dx = 0.

Once more by the definitions of δ tr and d tr, we have

0=
∫
�

〈g, P(d + δ; γ2, µ2, ω)
tv2〉 dx

=−〈δ tr(γ2 f 1) | γ
−1/2
2 v0

2〉− 〈δ tr f 2
| µ

1/2
2 v1

2〉+ 〈d tr f 1
| γ

1/2
2 v2

2〉− 〈d tr(µ2 f 2) | µ
−1/2
2 v3

2〉. (3-8)

Since δ tr u2
1+ d tr u1

1 ∈ C1 = C2 by assumption, there exists u2 = u1
2+ u2

2 with u1
2 ∈ H d

(
�;31R3

)
and u2

2 ∈ H δ
(
�;32R3

)
a solution to (3-7) in � such that

δ tr u2
1+ d tr u1

1 = δ tr u2
2+ d tr u1

2.
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Define2 f (x)= u2(x) for almost every x ∈� and f (x)= u1(x) for almost every x ∈R3
\�. Using (3-6)

and (3-8) and noting that γ1(x)= γ2(x) and µ1(x)= µ2(x) for all x ∈ ∂�, we can conclude

〈(Q(γ2, µ2, ω)− Q(γ1, µ1, ω))w1 | v2〉

=−
1

iω
〈δ tr(δu2

1) |γ
−1/2
2 v0

2〉+
1

iω
〈d tr(du1

1) |µ
−1/2
2 v3

2〉+
1

iω
〈δ tr(δu2

2) |γ
−1/2
2 v0

2〉−
1

iω
〈d tr(du1

2) |µ
−1/2
2 v3

2〉.

The result follows by Lemma A.5. �

4. The construction of CGO solutions

In this section we construct the CGO solutions that will be plugged into the integral formula in
Proposition 3.1. To deal with less regular electromagnetic coefficients than those in [Ola and Somersalo
1996], we adopt Bourgain-type spaces introduced by Haberman and Tataru [2013].

Let ζ =
∑3

1 ζ j dx j be a constant 1-differential form in R3 and let pζ denote the polynomial

pζ (ξ)= |ξ |2− 2i〈ζ, ξ〉.

For any b ∈ R, let Ẋb
ζ denote the space of graded forms w =

∑3
0w

l such that wl
∈ S′

(
R3
;3lR3

)
and its

Fourier transform
ŵl ∈ L2(R3, |pζ |2bdξ ;3lR3).

The functional

w ∈ Ẋb
ζ 7−→ ‖w‖Ẋb

ζ

=

( 3∑
l=0

‖|pζ |bŵl‖2L2(R3
;3l R3)

)1/2

makes Ẋb
ζ a normed space. Moreover, if b < 1, then Ẋb

ζ is a Hilbert space. As in [Haberman and Tataru

2013], we will only use the cases where b ∈ {1/2,−1/2}. Note that Ẋ−1/2
ζ can be identified as the dual

space of Ẋ1/2
ζ . The simplest feature of these spaces is that the operator (1ζ +〈ζ, ζ 〉)−1 (defined by the

symbol (pζ )−1) is a bounded linear operator from Ẋ−1/2
ζ to Ẋ1/2

ζ with norm

‖(1ζ +〈ζ, ζ 〉)
−1
‖

Ẋ−1/2
ζ →Ẋ1/2

ζ

= 1. (4-1)

Let 1ζ denote the conjugate operator 1ζ = e−ζ (dδ+ δd) ◦ eζ where eζ (x)= eζ ·x and ζ · x =
∑3

1 ζ j x j .

Remark 4.1. Given f ∈ Ẋ−1/2
ζ , it is an obvious consequence of the definition of Ẋ1/2

ζ that there exists a

unique u ∈ Ẋ1/2
ζ satisfying

1ζu+〈ζ, ζ 〉u = f.

Remark 4.2. If u ∈ Ẋ1/2
ζ with u =

∑3
0 ul , then ul

∈ H 1
loc

(
R3
;3lR3

)
. This is a simple consequence of (5)

and (6) in Lemma 2.2 of [Haberman and Tataru 2013] and the finite band property (sometimes called
Bernstein’s inequality).

2This definition satisfies the appropriate conditions, since γ1(x)= γ2(x) and µ1(x)= µ2(x) for all x ∈ R3
\�.



GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS 387

4A. The construction of w1. Let ζ1 be a complex-valued constant 1-form in R3 satisfying 〈ζ1, ζ1〉=−k2

where k = ω1/2µ0ε0. We are looking for w1 =
∑3

0w
l
1 with wl

1 ∈ H 1
loc

(
R3
;3lR3

)
, the solution to (3-2) of

the form

w1 = eζ1(Aζ1 + Rζ1) (4-2)

with Aζ1 a constant graded differential form in R3 and Rζ1 ∈ Ẋ1/2
ζ1

. Moreover, we want Rζ1 to bear a
certain sense of smallness. Note that this is equivalent to finding Rζ1 , which solves

(1ζ1 − k2)Rζ1 + Q(γ1, µ1, ω)Rζ1 =−Q(γ1, µ1, ω)Aζ1 (4-3)

in Ẋ1/2
ζ1

. Note that Q(γ1, µ1, ω)Aζ1 ∈ Ẋ−1/2
ζ1

. In the scalar case, this was done in [Haberman and Tataru
2013] for such Bourgain-type spaces. In the original case of smooth coefficients, such equations were
solved in weighted L2 spaces in [Sylvester and Uhlmann 1987] for the scalar case and in [Ola and
Somersalo 1996] for systems.

Lemma 4.3. Let ζ1 and Aζ1 be as above. For |ζ1| large enough, there exists a solution Rζ1 ∈ Ẋ1/2
ζ1

to (4-3)
such that

‖Rζ1‖Ẋ1/2
ζ1

. ‖Q(γ1, µ1, ω)Aζ1‖Ẋ−1/2
ζ1

, (4-4)

where the implicit constant (incorporated in the symbol .) is independent of ζ1.

Proof. By using a Neumann series argument (see [Sylvester and Uhlmann 1987]), we can show the
existence of Rζ1 ∈ Ẋ1/2

ζ1
satisfying

‖Rζ1‖Ẋ1/2
ζ1

≤ ‖(I + (1ζ1 − k2)−1 Q(γ1, µ1, ω))
−1
‖

Ẋ1/2
ζ1
→Ẋ1/2

ζ1

‖Q(γ1, µ1, ω)Aζ1‖Ẋ−1/2
ζ1

for |ζ1| large enough, as a simple consequence of (4-1) and

‖Q(γ1, µ1, ω)‖Ẋ1/2
ζ1
→Ẋ−1/2

ζ1

= o(1(|ζ1|)). (4-5)

Here 1(t)= 1 for any t ∈ R.
To prove (4-5), let u and v belong to Ẋ1/2

ζ1
. By a slight modification of Corollary 2.1 in [Haberman

and Tataru 2013], we have that

|〈Q(γ1, µ1, ω)u | v〉|. |ζ1|
−1
‖u‖

Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

+

∣∣∣∣∫
R3
〈αh, d〈−u0

+ u2, v0
+ v2
〉〉+ 〈βh, d〈u1

− u3, ϕ1
+ v3
〉〉 dx

∣∣∣∣
+

∣∣∣∣∫
R3
〈βh, D∗(u1

� v1)〉 dx
∣∣∣∣+ ∣∣∣∣∫

R3
〈αh, D∗(∗u2

�∗v2)〉 dx
∣∣∣∣

+

∣∣∣∣∫
R3
〈da1−αh, d〈−u0

+ u2, v0
+ v2
〉〉+ 〈db1−βh, d〈u1

− u3, ϕ1
+ v3
〉〉 dx

∣∣∣∣
+

∣∣∣∣∫
R3
〈db1−βh, D∗(u1

� v1)〉 dx
∣∣∣∣+ ∣∣∣∣∫

R3
〈da1−αh, D∗(∗u2

�∗v2)〉 dx
∣∣∣∣
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where αh and βh are 1-forms in R3 defined by

αh = ϕh∗da1, βh = ϕh∗db1

(here ∗ denotes convolution) with 0 < h ≤ 1, ϕh(x) = h−3ϕ(x/h), ϕ ∈ C∞0 (R
3), 0 ≤ ϕ(x) ≤ 1 for all

x ∈ R3 and
∫

R3 ϕ dx = 1. Note that the implicit constant depends on ε0, µ0, �, and the C1-norms of γ1

and µ1. A further modification of Lemma 2.3 in [Haberman and Tataru 2013] gives

|〈Q(γ1, µ1, ω)u | v〉|. |ζ1|
−1
‖u‖

Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

+ |ζ1|
−1(‖δαh‖L∞(R3)

+‖δβh‖L∞(R3)
)‖u‖

Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

+ (‖da1−αh‖L∞(R3)
+‖db1−βh‖L∞(R3)

)‖u‖
Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

. (|ζ1|
−1h−1

+ o(1(h)))‖u‖
Ẋ1/2
ζ1

‖v‖
Ẋ1/2
ζ1

as h vanishes. Choosing h = |ζ1|
−1/2, this implies (4-1) and the lemma is proven. �

Up to this point, nothing has been said about the smallness of Rζ1 . We will see in the next lemma that
estimate (4-4) yields such smallness in an average sense. This idea is one of the key points in [Haberman
and Tataru 2013].

Lemma 4.4. Let s ∈ R satisfy s ≥ 1. Given a real-valued constant 1-form ρ in R3, choose η1 and η2 also
real-valued constant 1-forms such that 〈η1, η2〉 = 0, 〈η j , ρ〉 = 0, and |η j | = 1 for j ∈ {1, 2}. Set

ζ1 =−

√
s2+
|ρ|2

4
η1+ i

(
ρ

2
−

√
s2+ k2 η2

)
,

and assume |Aζ1 | is bounded as a function of s, η1. Then the Rζ1 obtained in Lemma 4.3 satisfies

1
λ

∫
S1

∫ 2λ

λ

‖Rζ1‖
2
Ẋ1/2
ζ1

ds dη1 = o(1(λ)) (4-6)

as λ becomes large. Here S1 denotes the intersection between the unit sphere in R3 and the plane defined
by η1 and η2.

Proof. By the definition of Q(γ1, µ1, ω), the identity (2-13), the fact that Aζ1 is constant, and the fact
that Q(γ1, µ1, ω) is compactly supported, we have

|〈Q(γ1, µ1, ω)Aζ1 | v〉|.
3∑

l=0

‖χvl
‖L2(R3

;3l R3)
+‖χ(d + δ) fζ1‖Ẋ−1/2

ζ1

‖v‖
Ẋ1/2
ζ1

,

where v =
∑3

0 v
l , χ ∈ C∞0 (R

3) such that χ(x)= 1 for all x ∈ supp dγ1 ∪ supp dµ1 and

fζ1 = db1 ∧ A1
ζ1
+ db1 ∨ (A1

ζ1
+ A3

ζ1
)+ da1 ∧ (A0

ζ1
+ A2

ζ1
)− da1 ∨ A2

ζ1

with Aζ1 =
∑3

0 Al
ζ1

. By (5) in Lemma 2.2 of [Haberman and Tataru 2013], this gives

‖Q(γ1, µ1, ω)Aζ1‖Ẋ−1/2
ζ1

. s−1/2
+‖χ(d + δ) fζ1‖Ẋ−1/2

ζ1

.
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Now an immediate modification of Lemma 3.1 in [Haberman and Tataru 2013] allows us to check that

1
λ

∫
S1

∫ 2λ

λ

‖χ(d + δ) fζ1‖
2
Ẋ−1/2
ζ1

ds dη1 = o(1(λ)),

which implies
1
λ

∫
S1

∫ 2λ

λ

‖Q(γ1, µ1, ω)Aζ1‖
2
Ẋ−1/2
ζ1

ds dη1 = o(1(λ)) (4-7)

as λ becomes large. By (4-4), we obtain (4-6). �

From the construction of Rζ1 ∈ Ẋ1/2
ζ1

solving (4-3), the existence of w1 of the form (4-2) that solves
(3-2) is immediate. However, it turns out that for such a w1 to satisfy the condition in Proposition 3.1, the
constant 1-form Aζ1 has to be chosen carefully.

Lemma 4.5. Let w1 =
∑3

l=0w
l
1 as in (4-2) with ζ1, Aζ1 , and Rζ1 as in Lemma 4.3. Then

wl
1 ∈ H 1

loc
(
R3
;3lR3)

and w1 is a solution of (3-2). Moreover, if Aζ1 satisfies the relation

−ζ1 ∨ A1
ζ1
+ ik A0

ζ1
− ζ1 ∧ A2

ζ1
+ ik A3

ζ1
= 0, (4-8)

then v1 =
∑3

0 v
l
1 defined as in (3-3) satisfies v0

1 + v
3
1 = 0 for |ζ1| large enough.

Proof. We can ensure wl
1 is in H 1

loc

(
R3
;3lR3

)
since Rζ1 ∈ Ẋ1/2

ζ1
(See Remark 4.2). Additionally, w1 is a

solution of (3-2) since Rζ1 ∈ Ẋ1/2
ζ1

solves3 (4-3).
In order to prove the second part of this lemma, note that vl

1 ∈ H 1
loc

(
R3
;3lR3

)
and

P(d + δ; γ1, µ1, ω)v1 = 0

in any bounded open subset of R3 by Proposition 2.1. Then by Proposition 2.4 we know that v0
1 + v

3
1 is a

weak solution to
(δd + dδ− k2)(v0

1 + v
3
1)+ q̃(γ1, µ1, ω)(v

0
1 + v

3
1)= 0

in R3. By (3-3), we can write vl
1 = eζ1(B

l
ζ1
+ Sl

ζ1
) with l ∈ {0, 3}, where

B0
ζ1
=−ζ1 ∨ A1

ζ1
+ ik A0

ζ1
,

S0
ζ1
=−ζ1 ∨ R1

ζ1
+ δR1

ζ1
+ db∨ (A1

ζ1
+ R1

ζ1
)+ iωγ 1/2

1 µ
1/2
1 R0

ζ1
+ i(ωγ 1/2

1 µ
1/2
1 − k)A0

ζ1
, (4-9)

B3
ζ1
=−ζ1 ∧ A2

ζ1
+ ik A3

ζ1
,

S3
ζ1
=−ζ1 ∧ R2

ζ1
− d R2

ζ1
+ da ∧ (A2

ζ1
+ R2

ζ1
)+ iωγ 1/2

1 µ
1/2
1 R3

ζ1
+ i(ωγ 1/2

1 µ
1/2
1 − k)A3

ζ1
. (4-10)

Then relation (4-8) implies B0
ζ1
+ B3

ζ1
= 0, and hence that v0

1 + v
3
1 = eζ1(S

0
ζ1
+ S3

ζ1
) is a weak solution of

(1ζ1 − k2)(S0
ζ1
+ S3

ζ1
)+ q̃(γ1, µ1, ω)(S0

ζ1
+ S3

ζ1
)= 0 (4-11)

in R3.
3See also (A-20).
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To complete the proof, it is sufficient to show that (4-11) is uniquely solvable in Ẋ1/2
ζ1

for |ζ1| large

enough and S0
ζ1
+ S3

ζ1
belongs to Ẋ1/2

ζ1
.

Using the same argument as in proving (4-5), we see that q̃(γ1, µ1, ω) is a bounded linear operator
from Ẋ1/2

ζ1
to Ẋ−1/2

ζ1
and its operator norm is o(1(|ζ1|)). Then, by Remark 4.1, identity (4-1), and the

Banach fixed-point theorem, (4-11) is uniquely solvable in Ẋ1/2
ζ1

for |ζ1| large enough.
Since eζ1 Sl

ζ1
= vl

1 ∈ H 1
loc

(
R3
;3lR3

)
for l ∈ {0, 3}, we know that χ(S0

ζ1
+ S3

ζ1
) ∈ Ẋ1/2

ζ1
for χ ∈ C∞0 (R

3)

such that χ(x)= 1 for all x ∈ (supp dγ1 ∪ supp dµ1). Therefore, the right-hand side of

(1ζ1 − k2)(S0
ζ1
+ S3

ζ1
)=−q̃(γ1, µ1, ω)χ(S0

ζ1
+ S3

ζ1
)

is in Ẋ−1/2
ζ1

. Further, it is not hard to see from (4-9) and (4-10) that Ŝl
ζ1

belongs to L2
loc

(
R3
;3lR3

)
with

l ∈ {0, 3}. The last two facts imply that S0
ζ1
+ S3

ζ1
∈ Ẋ1/2

ζ1
. �

Remark 4.6. The condition given by (4-8) is necessary in our proof since B0
ζ1
+ B3

ζ1
does not belong to

Ẋ1/2
ζ1

.

As a conclusion of these lemmas, we can state the constructions of w1 in the following theorem.

Theorem 4.7. Let s ∈ R satisfy s ≥ 1. Given a real-valued constant 1-form ρ in R3, choose η1 and η2

also real-valued constant 1-forms in R3 such that 〈η1, η2〉 = 0, 〈η j , ρ〉 = 0, and |η j | = 1 for j ∈ {1, 2}. Set

ζ1 =−

√
s2+
|ρ|2

4
η1+ i

(
ρ

2
−

√
s2+ k2 η2

)
and

Aζ1 =

√
2
|ζ1|

(ζ1 ∨α+ ikα+ ikβ + ζ1 ∧β),

where either α = η1 and β = 0 or α = 0 and β = |ρ|−1η2 ∧ ρ. Then, for |ζ1| large enough, there exists
w1 =

∑3
0w

l
1 with wl

1 ∈ H 1
loc

(
R3
;3lR3

)
of the form

w1 = eζ1(Aζ1 + Rζ1),

which is a weak solution to

(dδ+ δd − k2)w1+ Q(γ1, µ1, ω)w1 = 0

in R3. Moreover, we have Rζ1 ∈ Ẋ1/2
ζ1

satisfies

1
λ

∫
S1

∫ 2λ

λ

‖Rζ1‖
2
Ẋ1/2
ζ1

ds dη1 = o(1(λ))

as λ becomes large. Here S1 denotes the intersection between the unit sphere in R3 and the plane defined
by η1 and η2. Furthermore, v1 =

∑3
0 v

l
1 defined by

v1 = P(d + δ; γ1, µ1, ω)
tw1

satisfies v0
1 + v

3
1 = 0 for |ζ1| large enough.
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4B. The construction of v2. Let ζ2 be a complex-valued constant 1-form in R3 satisfying 〈ζ2, ζ2〉 =−k2.
We are looking for the solution v2 =

∑3
0 v

l
2 with vl

2 ∈ H 1
loc

(
R3
;3lR3

)
to (3-4) in any bounded subset of

R3 of the form
v2 = eζ2(Bζ2 + Sζ2), (4-12)

where Bζ2 is a constant graded differential form in R3 and Sζ2 ∈ Ẋ1/2
ζ2

. In addition, we want Sζ2 to be
small in the sense of (4-6). To construct such a v2, by Proposition 2.3, we start with the construction of a
solution w2 to∫

R3
〈δw2, δϕ〉+ 〈dw2, dϕ〉−ω2ε0µ0〈w2, ϕ〉 dx +〈Q̃(γ2, µ2, ω)w2 | ϕ〉 = 0 (4-13)

for all ϕ =
∑3

0 ϕ
l , with ϕl

∈ C∞0
(
R3
;3lR3

)
.

Lemma 4.8. Let Aζ2 = A1
ζ2
+ A2

ζ2
be a constant graded differential form in R3. For |ζ2| large enough,

there exists Rζ2 = R1
ζ2
+ R2

ζ2
∈ Ẋ1/2

ζ2
such that w2 = w

1
2 +w

2
2 with

wl
2 = eζ2(A

l
ζ2
+ Rl

ζ2
)

and wl
2 ∈ H 1

loc

(
R3
;3lR3

)
, is a solution of (4-13) in R3.

Proof. Analogous to the proof of Lemma 4.3, the existence of a general Rζ2 =
∑3

0 Rl
ζ2

for a given constant
Aζ2 =

∑3
0 Al

ζ2
is immediate by

‖Q̃(γ2, µ2, ω)‖Ẋ1/2
ζ2
→Ẋ−1/2

ζ2

= o(1(|ζ2|))

as |ζ2| becomes large. Since Q̃(γ2, µ2, ω) decouples for 1 and 2 forms, we can ensure that Rζ2 = R1
ζ2
+R2

ζ2

for Aζ2 = A1
ζ2
+ A2

ζ2
. �

Now Proposition 2.3 states that v2 = P(d + δ; γ2, µ2, ω)w2 is a solution to (3-4). Moreover, we can
write v2 as in (4-12). However, we still need to show the smallness of Sζ2 .

Theorem 4.9. Let s ∈ R satisfy s ≥ 1. Given a real-valued constant 1-form ρ in R3, we choose η1 and
η2 two other real-valued constant 1-forms in R3 such that 〈η1, η2〉 = 0, 〈η j , ρ〉 = 0, and |η j | = 1 for
j ∈ {1, 2}. Set

ζ2 =

√
s2+
|ρ|2

4
η1+ i

(
ρ

2
+

√
s2+ k2 η2

)
and let α and β be as in Theorem 4.7. If |ζ2| is large enough, there exists v2 =

∑3
0 v

l
2 with

vl
2 ∈ H 1

loc
(
R3
;3lR3)

of the form
v2 = eζ2(Bζ2 + Sζ2),

where

Bζ2 =−

√
2
|ζ2|

(ζ2 ∨ (α+β)+ ζ2 ∧ (−α+β)+ ik(α+β)) (4-14)
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and Sζ2 ∈ Ẋ1/2
ζ2

, which solves
P(d + δ; γ2, µ2, ω)

tv2 = 0

in any bounded open subset of R3 and satisfies

1
λ

∫
S1

∫ 2λ

λ

‖Sζ2‖
2
Ẋ1/2
ζ2

ds dη1 = o(1(λ)) (4-15)

as λ becomes large. Here S1 denotes the intersection between the unit sphere in R3 and the plane defined
by η1 and η2.

Proof. Let w2 be as in Lemma 4.8 with Aζ2 = A1
ζ2
+ A2

ζ2
=−
√

2(α+β). By Proposition 2.3, we know
that v2 =

∑3
0 v

l
2 defined by

v2 = P(d + δ; γ2, µ2, ω)w2

satisfies that vl
2 ∈ H 1

loc

(
R3
;3lR3

)
and solves

P(d + δ; γ2, µ2, ω)
tv2 = 0 (4-16)

in any bounded open subset of R3. One can easily write

v2 = eζ2(Bζ2 + Sζ2)

and check that Bζ2 is given by (4-14) and

Sζ2 =
1
|ζ2|

(ζ2 ∨ (R1
ζ2
+ R2

ζ2
)+ ζ2 ∧ (−R1

ζ2
+ R2

ζ2
)+ (d + δ)(−R1

ζ2
+ R2

ζ2
)

+ da2 ∧ (A1
ζ2
+ R1

ζ2
)+ da2 ∨ (A1

ζ2
+ R1

ζ2
)+ db2 ∧ (A2

ζ2
+ R2

ζ2
)− db2 ∨ (A2

ζ2
+ R2

ζ2
)

+ iωγ 1/2
2 µ

1/2
2 (R1

ζ2
+ R2

ζ2
)+ i(ωγ 1/2

2 µ
1/2
2 − k)(A1

ζ2
+ A2

ζ2
)).

Moreover, by (4-16) and (2-7), we know that Sζ2 satisfies the familiar equation

(1ζ2 − k2)Sζ2 + Q(γ2, µ2, ω)Sζ2 =−Q(γ2, µ2, ω)Bζ2 . (4-17)

Since Q(γ2, µ2, ω)Bζ2 ∈ Ẋ−1/2
ζ2

, (4-17) is uniquely solvable in Ẋ1/2
ζ2

. Therefore, since Sζ2 ∈ Ẋ1/2
ζ2

and
|Bζ2 | = O (1(|ζ2|)), Sζ2 satisfies (4-15). �

5. Proof of uniqueness

To complete the proof of Theorem 1.1, the final step is to plug into the integral formula given in
Proposition 3.1 the w1 and v2 obtained in Theorem 4.7 and Theorem 4.9 and to let λ go to∞. The output
turns out to be certain nonlinear relations of γ1, µ1, γ2, µ2, and their weak partial derivatives up to the
second order. Then a unique continuation principle argument can be used to conclude the uniqueness.

Throughout this section we let Q j denote Q(γ j , µ j , ω) with j ∈ {1, 2}. If

A1 =−(η1+ iη2)∨α− (η1+ iη2)∧β,

B2 =−(η1+ iη2)∨ (α+β)− (η1+ iη2)∧ (−α+β)
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with α and β as in Theorem 4.7, we see that, for any ρ, |Aζ1 − A1| + |Bζ2 − B2| = O(s−1) for s large
enough and all η1, η2 ∈ S1. The implicit constant (incorporated in the symbol O) here depends on ρ. On
the other hand, plugging w1 and v2 into Proposition 3.1, as in Theorem 4.7 and Theorem 4.9, we get

〈(Q2−Q1)eiρ A1 | B2〉=〈(Q1−Q2)(Aζ1+Rζ1) |eiρ(Bζ2−B2+Sζ2)〉+〈(Q1−Q2)B2 |eiρ(Aζ1−A1+Rζ1)〉.

We know that, for each ρ, Q j is bounded from Ẋ1/2
ζ j

to Ẋ−1/2
ζ j

and its norm is o(1(s)) for s large enough
and all η1 (see (4-5) and the same applies to Q2). The same is true for Q1− Q2 from Ẋ1/2

ζ1
to Ẋ−1/2

ζ2
as

an immediate consequence of the proof of Lemma 2.3 in [Haberman and Tataru 2013]. Thus, for each ρ,
we have

|〈(Q2− Q1)eiρ A1 | B2〉|. ‖(Q1− Q2)B2‖Ẋ−1/2
ζ1

[‖χ(Aζ1 − A1)‖Ẋ1/2
ζ1

+‖Rζ1‖Ẋ1/2
ζ1

]

+ [‖(Q1− Q2)Aζ1‖Ẋ−1/2
ζ2

+‖Rζ1‖Ẋ1/2
ζ1

][‖χ(Bζ2 − B2)‖Ẋ1/2
ζ2

+‖Sζ2‖Ẋ1/2
ζ2

], (5-1)

where χ ∈ C∞0 (R
3) such that χ(x)= 1 for all x ∈ supp dγ2 ∪ supp dµ2. Here the implicit constant might

depend on ρ.
If α = η1 and β = 0, then A1 =−1, B2 =−1+ iη2 ∧ η1, and the left-hand side of (5-1) gives

〈(Q2− Q1)eiρ A1 | B2〉

=

∫
R3
〈d(a1− a2), deiρ〉 dx +

∫
R3
〈d(a1+ a2), d(a2− a1)〉eiρ dx +

∫
R3
ω2(γ1µ1− γ2µ2)eiρ dx . (5-2)

If α = 0 and β = |ρ|−1η2 ∧ ρ, then

A1 =−|ρ|
−1η1 ∧ η2 ∧ ρ, B2 =−|ρ|

−1(η1+ iη2)∨ (η2 ∧ ρ)− |ρ|
−1η1 ∧ η2 ∧ ρ,

and we have

〈(Q2− Q1)eiρ A1 | B2〉

=

∫
R3
〈d(b1− b2), deiρ〉 dx +

∫
R3
〈d(b1+ b2), d(b2− b1)〉eiρ dx +

∫
R3
ω2(γ1µ1− γ2µ2)eiρ dx . (5-3)

Meanwhile, by the choice of A1 and B2 above, we have(
1
λ

∫
S1

∫ 2λ

λ

‖χ(Aζ1 − A1)‖
2
Ẋ1/2
ζ1

ds dη1

)1/2

= O(1(λ)),(
1
λ

∫
S1

∫ 2λ

λ

‖χ(Bζ2 − B2)‖
2
Ẋ1/2
ζ2

ds dη1

)1/2

= O(1(λ)).

Then, after averaging (5-1) on (s, η1) ∈ [λ, 2λ]× S1 and using the Cauchy–Schwartz inequality, we get

|〈(Q2− Q1)eiρ A1 | B2〉|. [O(1(λ))+ o(1(λ))]
(

1
λ

∫
S1

∫ 2λ

λ

‖(Q1− Q2)B2‖
2
Ẋ−1/2
ζ1

ds dη1

)1/2

+ [O(1(λ))+ o(1(λ))]
[(

1
λ

∫
S1

∫ 2λ

λ

‖(Q1− Q2)Aζ1‖
2
Ẋ−1/2
ζ2

ds dη1

)1/2

+ o(1(λ))
]
,
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where Theorems 4.7 and 4.9 are used. It is not hard to see this converges to zero as λ goes to∞ by the
same argument we used in proving (4-7) and by noticing that the left-hand side is independent of λ. Thus,
by (5-2) and (5-3), we arrive at∫

R3
〈d(a2− a1), deiρ〉 dx −

∫
R3
〈d(a1+ a2), d(a2− a1)〉eiρ dx +

∫
R3
ω2(γ2µ2− γ1µ1)eiρ dx = 0 (5-4)

and∫
R3
〈d(b2− b1), deiρ〉 dx −

∫
R3
〈d(b1+ b2), d(b2− b1)〉eiρ dx +

∫
R3
ω2(γ2µ2− γ1µ1)eiρ dx = 0 (5-5)

for any ρ. So far, this shows that{
δd(a2− a1)−〈d(a1+ a2), d(a2− a1)〉+ω

2(γ2µ2− γ1µ1)= 0,
δd(b2− b1)−〈d(b1+ b2), d(b2− b1)〉+ω

2(γ2µ2− γ1µ1)= 0,

a system that has to be understood in the weak sense. Finally, some simple computations yield a system
of second order equations of the form{

−1(γ
1/2
2 − γ

1/2
1 )+ V (γ 1/2

2 − γ
1/2
1 )+ a(γ 1/2

2 − γ
1/2
1 )+ b(µ1/2

2 −µ
1/2
1 )= 0,

−1(µ
1/2
2 −µ

1/2
1 )+W (µ

1/2
2 −µ

1/2
1 )+ c(µ1/2

2 −µ
1/2
1 )+ d(γ 1/2

2 − γ
1/2
1 )= 0,

again in the weak sense with

V =−
δd(γ 1/2

1 + γ
1/2
2 )

γ
1/2
1 + γ

1/2
2

, W =−
δd(µ1/2

1 +µ
1/2
2 )

µ
1/2
1 +µ

1/2
2

and

a = 1�ω2γ
1/2
1 γ

1/2
2 (µ1+µ2), b =−1�ω2γ

1/2
1 γ

1/2
2 (γ1+ γ2)

µ
1/2
1 +µ

1/2
2

γ
1/2
1 + γ

1/2
2

,

c = 1�ω2µ
1/2
1 µ

1/2
2 (γ1+ γ2), d =−1�ω2µ

1/2
1 µ

1/2
2 (µ1+µ2)

γ
1/2
1 + γ

1/2
2

µ
1/2
1 +µ

1/2
2

,

where 1� is the characteristic function of �. Note that γ 1/2
2 −γ

1/2
1 and µ1/2

2 −µ
1/2
1 belong to H 1(R3) and

they are compactly supported. Thus the next unique continuation result implies that γ2 = γ1 and µ2 = µ1.

Lemma 5.1. Let f and g belong to H 1(R3) and assume that they are compactly supported. Then f and
g vanish if and only if they satisfy {

−1 f + V f + a f + bg = 0,
−1g+Wg+ cg+ d f = 0.

(5-6)

Proof. Let ζ ∈ Cn satisfies ζ · ζ = 0. Set u(x)= eζ ·x f (x) and v(x)= eζ ·x g(x). Since f and g belong to
H 1(R3) and they are compactly supported, u and v also belong to H 1(R3) and, consequently, to Ẋ1/2

ζ .
Moreover, u and v solve {

−(1+ 2ζ · ∇)u+ V u+ au+ bv = 0,
−(1+ 2ζ · ∇)v+Wv+ cv+ du = 0.

(5-7)
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Let w = w0
+w3 be the graded form given by w0

= u and w3
= ∗v and define

〈Qw | ϕ〉 = −
∫

R3

〈
d(γ 1/2

1 + γ
1/2
2 ), d

〈w0, ϕ0
〉

γ
1/2
1 + γ

1/2
2

〉
dx +

∫
R3
〈aw0

+ bw3, ϕ0
〉 dx

−

∫
R3

〈
d(µ1/2

1 +µ
1/2
2 ), d

〈w3, ϕ3
〉

µ
1/2
1 +µ

1/2
2

〉
dx +

∫
R3
〈dw0

+ cw3, ϕ3
〉 dx

for any ϕ = ϕ0
+ϕ3 with ϕl

∈ H 1
(
R3
;3lR3

)
. Then w ∈ Ẋ1/2

ζ and (5-7) reads

1ζw+ Qw = 0. (5-8)

Here we have identified ζ with a 1-form also denoted by ζ . Following the same argument as in Lemma 4.3,
we can prove

‖Q‖
Ẋ1/2
ζ →Ẋ−1/2

ζ

= o(1(|ζ |)) (5-9)

as |ζ | becomes large. Then Remark 4.1, identity (4-1), (5-9), and the Banach fixed-point theorem imply
that (5-8) has a unique solution belonging to Ẋ1/2

ζ . Therefore, w= 0, which in turn implies f = g= 0. �

Appendix: The framework of differential forms

Since the tools used in this paper are scattered throughout the literature, to make the paper more self-
contained, we summarized them in this appendix. We start with collecting several basics required in the
framework of differential forms (see [Taylor 1996] and [Federer 1969] for some details of differential
forms and Grassman graded algebra), and the basic functional spaces and properties for the current
discussion of PDEs. Then we show a useful identity used in the paper, and end our discussion with
recalling basic facts about the Fourier transform of graded forms.

A1. Tools of multivariable calculus. For x ∈ Rn and n ∈ N\{0}, let Tx Rn denote the complex vector
space of distributions X of order one in Rn satisfying supp X = {x} and 〈X | c〉 = 0 for any constant
function c (See Theorem 2.3.4 in [Hörmander 1983] for the justification of this definition). Such X can
be uniquely extended to a linear form on C1(Rn), the space of continuously differentiable functions in
Rn . Let ∂x j |x denote the distribution given by

〈∂x j |x | φ〉 = ∂x jφ(x)

for any φ ∈ C1(Rn). The set {∂x1 |x , . . . , ∂xn |x} is a base of Tx Rn . Let T ∗x Rn denote the dual vector space
of Tx Rn with {dx1

|x , . . . , dxn
|x} being the dual base. We define on T ∗x Rn the inner product 〈 · , · 〉 given

by the bilinear extension of 〈dx j
|x , dxk

|x 〉 = δ jk (Kronecker delta). Note that it is not a Hermitian product.

A1.1. Differential forms. Let 3lRn with l ∈ {0, 1, . . . , n} and n ≥ 2 denote the smooth complex vector
bundle over Rn whose fiber at x ∈ Rn consists of 3l T ∗x Rn , the l-fold exterior product of T ∗x Rn . By
convention, a 0-fold is just a complex number and a 1-fold is an element of T ∗x Rn . Let E be a nonempty
subset of Rn; an l-form on E is a section u of 3lRn over E , so u(x)= u|x ∈3l T ∗x Rn for any x ∈ E . Any
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l-form on E with l ∈ {1, . . . , n} can be written as

u =
∑
α∈Sl

uα dxα1 ∧ · · · ∧ dxαl

with Sl
= {(α1, . . . , αl) ∈ {1, . . . , n}l : α1 < · · ·< αl} and uα : E −→ C. It is convenient to call uα with

α ∈ Sl the component functions of u.
The exterior product of an l-form u and an m-form v, both on E , is denoted by (u ∧ v)(x)= u|x ∧ v|x

for any x ∈ E . Recall that the exterior product is bilinear, associative and anticommutative:

u ∧ v = (−1)lmv∧ u. (A-1)

Since a 0-form v on E is nothing but a map from E to C, it holds that u ∧ v = v∧ u = vu for any l-form
u on E .

The inner product of two l-forms on E with l ∈ {2, . . . , n} can be defined at each point x ∈ E as the
bilinear extension of

〈(dxα1 ∧ · · · ∧ dxαl )|x , (dxβ1 ∧ · · · ∧ dxβl )|x 〉 = det〈dxα j |x , dxβk |x 〉,

where the right-hand side stands for the determinant of the matrix

(〈dxα j |x , dxβk |x 〉) jk .

The inner product of two 0-forms is just the usual product of functions. The inner product on l-forms can
be immediately extended to graded forms u(x)=

∑n
0 ul(x) and v(x)=

∑n
0 v

l(x) on E , with ul and vl

l-forms on E , as follows:

〈u, v〉(x)=
n∑

l=0

〈ul
|x , v

l
|x 〉.

Associated to this inner product, we consider the norm satisfying |u|2 = 〈u, ū〉.
Now let T ∗x Rn be endowed with an orientation. The Hodge star operator of an l-form on E with

l ∈ {1, . . . , n− 1} is defined at each point x ∈ E as the linear extension of

∗(dxα1 ∧ · · · ∧ dxαl )|x = (dxβ1 ∧ · · · ∧ dxβn−l )|x ,

where (β1, . . . , βn−l) ∈ {1, . . . , n}n−l is chosen such that

{dxα1, . . . dxαl , dxβ1, . . . , dxβn−l }

is a positive base of T ∗x Rn . The case of 0-forms and n-forms follows from

∗1|x = (dx1
∧ · · · ∧ dxn)|x , ∗(dx1

∧ · · · ∧ dxn)|x = 1|x ,
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where 1 denotes the constant function taking the value 1 at any point. Now, if u and v are l-forms on E ,

∗∗u(x)= (−1)l(n−l)u(x), (A-2)

〈u, v〉(x)= ∗(u|x ∧∗v|x)= ∗(v|x ∧∗u|x), (A-3)

〈u, v〉 = 〈∗u, ∗v〉. (A-4)

Let u be an l-form on E and let v be an m-form on E . The vee product of v and u at each point x ∈ E is
defined as

(v∨ u)(x)= (−1)(n+m−l)(l−m)
∗(v|x ∧∗u|x). (A-5)

Note that whenever m > l, (v ∨ u)(x) = 0 for all x ∈ E . The vee product is bilinear, but it is neither
associative nor commutative. The product satisfies

〈w∧ v, u〉 = 〈w, v∨ u〉 (A-6)

for any k-form w on E .

Proposition A.1. If u and v are 1-forms and w is an l-form with l ∈ {0, . . . , n}, then

u ∨ (v∧w)− v∧ (u ∨w)= (−1)l〈u, v〉w. (A-7)

Corollary A.2. If u1 and v1 are 1-forms and ul and vl are l-forms with l ∈ {0, . . . , n}, then

〈u1
∨ ul, v1

∨ vl
〉+ 〈v1

∧ ul, u1
∧ vl
〉 = 〈u1, v1

〉〈ul, vl
〉.

Proof. Since

〈u1
∨ ul, v1

∨ vl
〉+ 〈v1

∧ ul, u1
∧ vl
〉 = (−1)l〈u1

∨ (v1
∧ ul)− v1

∧ (u1
∨ ul), vl

〉,

the identity follows from (A-7). �

Let G be a nonempty open subset of Rn and k a positive integer. An l-form u on G with l ∈ {1, . . . , n}
is said to be k-times continuously differentiable if its component functions are k-times continuously
differentiable in G. We write u ∈ Ck

(
G;3lRn

)
. If u ∈ Ck

(
G;3lRn

)
for any positive integer k, we

say that u is smooth and we write u ∈ C∞
(
G;3lRn

)
. Furthermore, u ∈ Ck

(
G;3lRn

)
(respectively

u ∈C∞
(
G;3lRn

)
) is said to be compactly supported if its component functions are compactly supported

in G, in which case we write u ∈ C∞0
(
G;3lRn

)
(respectively u ∈ C∞0

(
G;3lRn

)
). These definitions are

naturally generalized to 0-forms, where the conventional function space notations are also used.
The exterior derivative of u ∈ C1

(
G;30Rn

)
is a 1-form defined by

du|x(X)= 〈X | χx u〉

for each x ∈ G and X ∈ Tx Rn . Here χx ∈ C∞0 (G) with χx(x) = 1 on G, and χx u is understood as the
extension of u by zero outside G. The exterior derivative of u ∈ C1

(
G;3lRn

)
with l ∈ {1, . . . , n} is

defined by
du =

∑
α∈Sl

duα ∧ dxα1 ∧ · · · ∧ dxαl .
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Recall that d(du)= 0 for any u ∈ C2
(
G;3lR3

)
and

d(u ∧ v)= du ∧ v+ (−1)lu ∧ dv, (A-8)

for any u ∈ C1
(
G;3lR3

)
and v ∈ C1

(
G;3mR3

)
.

A1.2. Symmetric tensors. Let 6lRn with l ∈ N and n ≥ 2 denote the smooth complex vector bundle
over Rn whose fiber at x ∈ Rn consists of 6l T ∗x Rn , the l-fold symmetric tensor product of T ∗x Rn . By
convention, a 0-fold is just a complex number and a 1-fold is an element of T ∗x Rn . Let E be a nonempty
subset of Rn; an l-symmetric tensor on E is a section u of 6lRn over E , so u(x) = u|x ∈ 6l T ∗x Rn for
any x ∈ E . Any l-symmetric tensor on E with l ∈ {1, . . . , n} can be written as

u =
∑
α∈T l

uα dxα1 � · · ·� dxαl

with T l
= {(α1, . . . , αl) ∈ {1, . . . , n}l : α1 ≤ · · · ≤ αl} and uα : E −→ C. It is convenient to call uα with

α ∈ T l the component functions of u and to point out that 6l T ∗x Rn
= 3l T ∗x Rn for l ∈ {0, 1}, which in

turn implies 6lRn
=3lRn for l ∈ {0, 1}.

The symmetric tensor product of an l-symmetric tensor u and an m-symmetric tensor v, both on E , is
denoted by (u� v)(x)= u|x � v|x for any x ∈ E . Recall that the symmetric tensor product is bilinear,
associative, and commutative. Moreover, if u and v are 1-symmetric tensors,

u� v = 1
2(u⊗ v+ v⊗ u).

The inner product of two l-symmetric tensors on E with l ∈ N \ {0, 1} can be defined at each point
x ∈ E as the bilinear extension of

〈(dxα1 � · · ·� dxαl )|x , (dxβ1 � · · ·� dxβl )|x 〉 = | det〈dxα j |x , dxβk |x 〉|.

Let G be a nonempty open subset of Rn . An l-symmetric tensor u on G with l ∈ N is said to be
k-times continuously differentiable if its component functions are k-times continuously differentiable in
G, and we write u ∈ Ck(G;6lRn). Furthermore, u ∈ Ck(G;6lRn) with l ∈ N is said to be compactly
supported if its component functions are compactly supported in G, and we write u ∈ Ck

0(G;6
lRn).

These definitions extend naturally to 0-symmetric tensors on G.
The symmetric derivative of a smooth l-symmetric tensor u on G with l ∈ N \ {0} is defined by

i Du =
∑
α∈T l

duα � dxα1 � · · ·� dxαl .

A2. Functional spaces. Let L1
loc

(
E;3lRn

)
denote the space of locally integrable l-forms (whose com-

ponent functions are in L1
loc(E)) modulo those which vanish almost everywhere (a.e.) in E . The space

L p
(
E;3lRn

)
, with p ∈ [1,+∞), consists of all u ∈ L1

loc

(
E;3lRn

)
such that∫

E
〈u, ū〉p/2 dx <+∞.
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Endowed with the norm

‖u‖L p(E;3l Rn) =

(∫
E
〈u, ū〉p/2 dx

)1/p

,

L p
(
E;3lRn

)
is a Banach space. Moreover, L2

(
E;3lRn

)
is a Hilbert space.

Let u ∈ L1
loc

(
G;3lRn

)
with l ∈ {1, . . . , n}. We say that v ∈ L1

loc

(
G;3l−1Rn

)
is the formal adjoint

derivative of u, denoted by v = δu, if∫
G
〈v,w〉 dx =

∫
G
〈u, dw〉 dx

for any w ∈ C1
0

(
G;3l−1Rn

)
. If u ∈ L1

loc

(
G;30Rn

)
, we define δu = 0. For all u ∈ L1

loc

(
G;3lRn

)
with

l ∈ {0, . . . , n} such that δu ∈ L1
loc

(
G;3l−1Rn

)
, one has δ(δu)= 0. Moreover, if u ∈ C1

(
G;3lRn

)
, then

δu = (−1)n(l+1)+1
∗d∗u. (A-9)

Proposition A.3. Consider u ∈ L1
loc

(
G;3lRn

)
and v ∈ C1

(
G;3mRn

)
. If δu ∈ L1

loc

(
G;3l−1Rn

)
, then

δ(v∨ u) ∈ L1
loc

(
G;3l−m−1Rn

)
and

δ(v∨ u)= (−1)l−mdv∨ u+ v∨ δu. (A-10)

Let u ∈ L1
loc

(
G;3lRn

)
with l ∈ {0, . . . , (n − 1)}. We say that v ∈ L1

loc

(
G;3l+1Rn

)
is the (weak)

exterior derivative of u, denoted by v = du, if∫
G
〈v,w〉 dx =

∫
G
〈u, δw〉 dx

for any w ∈ C1
0

(
G;3l+1Rn

)
. If u ∈ L1

loc

(
G;3nRn

)
, we define du = 0. For all u ∈ L1

loc

(
G;3lRn

)
with

l ∈ {0, . . . , n} such that du ∈ L1
loc

(
G;3l+1Rn

)
, one has d(du)= 0.

Proposition A.4. Let u ∈ L1
loc

(
G;3lRn

)
such that δu ∈ L1

loc

(
G;3l−1Rn

)
. Then ∗d∗u ∈ L1

loc

(
G;3l−1Rn

)
and

δu = (−1)n(l+1)+1
∗d∗u. (A-11)

We now present certain Sobolev spaces of forms, in which our PDEs are discussed. Let H d
(
G;3lRn

)
(respectively H δ

(
G;3lRn

)
) denote the space of u ∈ L2

(
G;3lRn

)
such that du ∈ L2

(
G;3l+1Rn

)
(re-

spectively δu ∈ L2
(
G;3l−1Rn

)
), endowed with the norm

‖u‖Hd (G;3l Rn)
= (‖u‖2L2(G;3l Rn)

+‖du‖2L2(G;3l+1Rn)
)1/2(

respectively ‖u‖H δ(G;3l Rn)
= (‖u‖2L2(G;3l Rn)

+‖δu‖2L2(G;3l−1Rn)
)1/2

)
.

It is observed that H d
(
G;3lRn

)
and H δ

(
G;3lRn

)
are Hilbert spaces and C1

0

(
Rn
;3lRn

)
is dense in

them. Let H d
loc

(
Rn
;3lRn

)
and H δ

loc

(
Rn
;3lRn

)
denote the spaces of u ∈ L1

loc

(
Rn
;3lRn

)
such that

u|U ∈ H d
(
U ;3lRn

)
and u|U ∈ H δ

(
U ;3lRn

)
, respectively, for any bounded nonempty open subset U in

Rn .



400 PEDRO CARO AND TING ZHOU

Finally, by a density argument, we have∫
Rn
〈du, v〉 dx =

∫
Rn
〈u, δv〉 dx (A-12)

for all u ∈ H d
(
Rn
;3l−1Rn

)
and v ∈ H δ

(
Rn
;3lRn

)
with l ∈ {1, . . . , n}.

A3. Traces.4

Let U be a nonempty bounded open subset of Rn , and let H 1
(
U ;3lRn

)
denote the space of all

u ∈ L2
(
U ;3lRn

)
whose component functions uα satisfy duα ∈ L2

(
U ;31Rn

)
for all α ∈ Sl , endowed

with the norm

‖u‖H1(U ;3l Rn)
=

(
‖u‖2L2(U ;3l Rn)

+

∑
α∈Sl

‖duα‖2L2(U ;31Rn)

)1/2

. (A-13)

Given G, a nonempty open subset of Rn , by H 1
loc

(
G;3lRn

)
we denote the space of u ∈ L1

loc

(
G;3lRn

)
such that u|U ∈ H 1

(
U ;3lRn

)
for any bounded nonempty open subset U of G.

It is a consequence of (A-11) that, for any u ∈ H 1
(
U ;3lRn

)
, one has

‖u‖H δ(U ;3l Rn)
≤ ‖u‖H1(U ;3l Rn)

. (A-14)

Let H 1
0

(
U ;3lRn

)
denote the closure in H 1

(
U ;3lRn

)
of C∞0

(
U ;3lRn

)
modulo those vanishing a.e. in

U . We then define the space

TH 1(∂U ;3lRn)
= H 1(U ;3lRn)/H 1

0
(
U ;3lRn).

If f ∈ TH 1
(
∂U ;3lRn

)
, let u f ∈ H 1

(
U ;3lRn

)
denote a representative of f . This space can be endowed

with the norm
‖ f ‖TH1(∂U ;3l Rn)

= inf{‖u‖H1(U ;3l Rn)
: u− u f ∈ H 1

0
(
U ;3lRn)

}.

Let TH 1
(
∂U ;3lRn

)
∗ denote the dual space of TH 1

(
∂U ;3lRn

)
with the functional ‖ · ‖TH1(∂U ;3l Rn)∗

standing for the dual norm.
The latter spaces will be used as auxiliary spaces to define certain traces on H d

(
U ;3lRn

)
and

H δ
(
U ;3lRn

)
. Firstly, define the d-trace of v ∈ H d

(
U ;3lRn

)
with l ∈ {0, . . . , n− 1} as

〈d tr v | f 〉 =
∫

U
〈dv, u〉 dx −

∫
U
〈v, δu〉 dx

for any f ∈ TH 1
(
∂U ;3l+1Rn

)
where u ∈ H 1

(
U ;3l+1Rn

)
such that u− u f ∈ H 1

0

(
U ;3l+1Rn

)
. Since

(A-14) holds, we have
〈d tr v | f 〉 ≤ ‖v‖Hd (U ;3l Rn)

‖u‖H1(U ;3l+1Rn)

for all u ∈ H 1
(
U ;3l+1Rn

)
such that u− u f ∈ H 1

0

(
U ;3l+1Rn

)
. Hence d tr v ∈ TH 1

(
∂U ;3l+1Rn

)
∗ and

‖d tr v‖TH1(∂U ;3l+1Rn)∗
≤ ‖v‖Hd (U ;3l Rn)

.

4For more details on traces see [Mitrea 2004; Schwarz 1995].
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This motivates the definition of TH d
(
∂U ;3l+1Rn

)
to be the space of all g ∈ TH 1

(
∂U ;3l+1Rn

)
∗ such

that d tr v = g for some v ∈ H d
(
U ;3lRn

)
. The endowed norm is then given by

‖g‖THd (∂U ;3l+1Rn)
= inf{‖v‖Hd (U ;3l Rn)

: d tr v = g}.

Finally, we define the δ-trace of v ∈ H δ
(
U ;3lRn

)
with l ∈ {1, . . . , n} as

〈δ tr v | f 〉 = (−1)l
∫

U
〈δv, u〉 dx − (−1)l

∫
U
〈v, du〉 dx

for any f ∈ TH 1
(
∂U ;3l−1Rn

)
where u ∈ H 1

(
U ;3l−1Rn

)
such that u−u f ∈ H 1

0

(
U ;3l−1Rn

)
. Similarly

we would have δ tr v ∈ TH 1
(
∂U ;3l−1Rn

)
∗ and

‖δ tr v‖TH1(∂U ;3l−1Rn)∗
≤ ‖v‖H δ(U ;3l Rn)

.

Moreover, we define TH δ
(
∂U ;3l−1Rn

)
, the space consisting of all g belonging to TH 1

(
∂U ;3l−1Rn

)
∗,

such that there exists v ∈ H δ
(
U ;3lRn

)
with δ tr v = g with norm

‖g‖TH δ(∂U ;3l−1Rn)
= inf{‖v‖H δ(U ;3l Rn)

: δ tr v = g}.

Then we will need the following lemma about these spaces.

Lemma A.5. Given the definitions above,

(a) if u ∈ H d
(
U ;3lRn

)
with l ∈ {0, . . . , n− 2} and d tr u = 0, then d tr(du)= 0;

(b) if u ∈ H δ
(
U ;3lRn

)
with l ∈ {2, . . . , n} and δ tr u = 0, then δ tr(δu)= 0.

Proof. In order to prove (a), let us consider the bounded linear operator

(ν ∨ · ) : TH d(∂U ;3lRn)
−→ TH δ

(
∂U ;3l−1Rn)∗

given by

〈ν ∨ f | g〉 =
∫

U
〈du, v〉 dx −

∫
U
〈u, δv〉 dx,

where u ∈ H d
(
U ;3l−1Rn

)
, v ∈ H δ

(
U ;3lRn

)
, d tr u = f , and δ tr v = g. Here TH δ

(
∂U ;3l−1Rn

)
∗

denotes the dual of TH δ
(
∂U ;3l−1Rn

)
. Let u be as in (a) and g ∈ TH 1

(
U ;3l+2Rn

)
. Then

〈d tr(du) | g〉 = −〈ν ∨ d tr u | δ tr(δvg)〉,

where vg ∈ H 1
(
U ;3l+2Rn

)
denotes a representative of g. Therefore (a) holds.

A similar proof applies to (b) by considering the operator

(ν ∨ · ) : TH δ
(
∂U ;3lRn)

−→ TH d(∂U ;3l+1Rn)∗
defined by

〈ν ∧ f | g〉 = (−1)l+1
∫

U
〈δu, v〉 dx − (−1)l+1

∫
U
〈u, dv〉 dx,

where u ∈ H δ
(
U ;3l+1Rn

)
, v ∈ H d

(
U ;3lRn

)
, δ tr u = f , and d tr v = g. We leave the proof to the

readers. �



402 PEDRO CARO AND TING ZHOU

A4. A useful identity. Given G, a nonempty open subset of Rn , let L1
loc(G;6

lRn) denote the space of
locally integrable l-symmetric tensors (whose component functions are in L1

loc(E)) modulo those which
vanish a.e. in E .

For u ∈ L1
loc(G;6

lRn) with l ∈ N \ {1, 2}, we say that v ∈ L1
loc(G;6

l−1Rn) is the formal adjoint
(symmetric) derivative of u, denoted by v = D∗u, if∫

G
〈v,w〉 dx =

∫
G
〈u, Dw〉 dx

for any w ∈ C1
0(G;6

l−1Rn).
Note that if

u =
n∑

j=1

u j dx j and v =

n∑
j=1

v j dx j

are such that u� v ∈ L1
loc(G;6

2Rn) and D∗(u� v) ∈ L1
loc(G;6

1Rn), then

D∗(u� v)=−
n∑

k=1

( n∑
j=1

∂x j (u jvk + ukv j )

)
dxk . (A-15)

Proposition A.6. Given u and v in H 1
loc

(
G;31Rn

)
, we have that d〈u, v〉 and D∗(u � v) belong to

L1
loc

(
G;31Rn

)
and the following identity holds:

u ∨ dv+ v∨ du+ δu ∨ v+ δv∨ u = d〈u, v〉+ D∗(u� v).

A5. Local regularity. Here we prove a local regularity lemma for the operator (d + δ)
∑n

0(−1)l .

Lemma A.7. Let v =
∑n

0 v
l be such that vl

∈ L2
loc

(
Rn
;3lRn

)
and

(d + δ)
n∑

l=0

(−1)lvl
∈

n⊕
l=0

L2
loc
(
Rn
;3lRn).

Then vl
∈ H 1

loc

(
Rn
;3lRn

)
for l ∈ {0, . . . , n}.

Proof. By using Corollary A.2 and the identity

〈ξ ∧ φ̂l−1(ξ), ξ ∨ φ̂l+1(ξ)〉 = 0,

we can check that

‖φ‖2L2 = ‖φ‖
2
H−1 +

∥∥∥∥(d + δ) n∑
l=0

(−1)lφl
∥∥∥∥2

H−1
(A-16)

for all φ=
∑n

0 φ
l such that φl

∈ L2
(
Rn
;3lRn

)
. Here we are using the notation ‖ϕ‖2Y =

∑n
0 ‖ϕ

l
‖

2
Y (Rn

;3l Rn)

for ϕ=
∑n

0 ϕ
l with ϕl

∈ Y
(
Rn
;3lRn

)
, where Y denotes either L2 or H−1. Recall that ‖ϕl

‖
2
H−1(Rn

;3l Rn)
=∫

Rn (1+ |ξ |2)−1
|ϕ̂l(ξ)|2 dξ .
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Let ψ be a compactly supported smooth function in Rn and let 1 j
hφ be defined as

1
j
hφ(x)=

1
h
(φ(x + he j )−φ(x))

with φ as in (A-16), h a positive parameter, and e j the j-th element of the orthonormal basis of Rn . By
(A-16) and the commutativity between 1 j

h and (d + δ)
∑n

0(−1)l , we have

‖1
j
h(ψv)‖

2
L2 = ‖1

j
h(ψv)‖

2
H−1 +‖1

j
h(d + δ)

n∑
l=0

(−1)l(ψvl)‖2H−1 . (A-17)

Since

(d + δ)
n∑

l=0

(−1)l(ψvl)= ψ(d + δ)
n∑

l=0

(−1)lvl
+

n∑
l=0

(−1)ldψ ∧ vl
+ dψ ∨ vl

and v and (d+δ)
∑n

0(−1)lvl belong to
⊕n

0 L2
loc

(
Rn
;3lRn

)
, the statement of the result follows by making

the parameter h go to zero in the identity (A-17)5. �

A6. Fourier transform of forms and operator 1ζ . An l-form u with l ∈ {0, . . . , n} is said to belong to
the Schwartz space S

(
Rn
;3lRn

)
if its component functions uα (α ∈ Sl) are in the Schwartz space S(Rn).

We can define the space S′
(
Rn
;3lRn

)
of l-form-valued tempered distributions similarly. The Fourier

Transform of u ∈ S
(
Rn
;3lRn

)
is then defined by

û =
∑
α∈Sl

ûαdξα1 ∧ · · · ∧ dξαl ∈ S
(
Rn
;3lRn).

The Fourier Transform û for u ∈ S′
(
Rn
;3lRn

)
can be defined by duality. One can easily verify the

following identities for u ∈ S
(
Rn
;3lRn

)
;

d̂u(ξ)= iξ ∧ û(ξ), δ̂u(ξ)= i(−1)lξ ∨ û(ξ), (A-18)

where ξ ∈ R3
\{0} can be viewed as a 1-form. For u, v ∈ L2

(
Rn
;3lRn

)
, we have∫

Rn
〈u, v̄〉 dx =

∫
Rn
〈û, ¯̂v〉 dx, (A-19)

making the Fourier transform a unitary map on L2
(
Rn
;3lRn

)
.

Given ζ =
∑n

1 ζ j dx j , a constant 1-differential form in Rn , consider the conjugated Hodge–Laplacian
operator 1ζ = e−ζ (dδ+ δd) ◦ eζ , where eζ (x) = eζ ·x and ζ · x =

∑n
1 ζ j x j . When acting on an l-form

u ∈ H d
(
Rn
;3lRn

)
∩ H δ

(
Rn
;3lRn

)
, it reads

1ζu = (dδ+ δd)u+ (−1)ld(ζ ∨ u)+ ζ ∧ δu+ δ(ζ ∧ u)+ (−1)l+1ζ ∨ du−〈ζ, ζ 〉u, (A-20)

(understood in the weak sense). Moreover, it is easy to verify that the symbol of1ζ is |ξ |2−2i〈ζ, ξ〉−〈ζ, ζ 〉
by (A-18).

5See Theorem (6.19) of [Folland 1995] for more details.
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