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IN BANACH SPACES

DANIEL CARANDO, ANDREAS DEFANT AND PABLO SEVILLA-PERIS

The Bohr—Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an
ordinary Dirichlet series ), a,n™* converges uniformly but not absolutely is less than or equal to %, and
this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet
series in the Hardy space ¥, equals % By a surprising fact of Bayart the same result holds true if # is
replaced by any Hardy space #,, 1 < p < oo, of Dirichlet series. For Dirichlet series with coefficients
in a Banach space X the maximal width of Bohr’s strips depend on the geometry of X; Defant, Garcia,
Maestre and Pérez-Garcia proved that such maximal width equals 1 — 1/Cot X, where Cot X denotes
the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all
Dirichlet series in the vector-valued Hardy space #.,(X) equals 1 — 1/ Cot X. In this article we show
that this result remains true if ¥, (X) is replaced by the larger class % ,(X), 1 < p < oo.

1. Main result and its motivation

Given a Banach space X, an ordinary Dirichlet series in X is a series of the form D=, a,n™*, where the
coefficients a, are vectors in X and s is a complex variable. Maximal domains where such Dirichlet series
converge conditionally, uniformly or absolutely are half planes [Re > o], where o = o, 0, or o, are called
the abscissa of conditional, uniform or absolute convergence, respectively. More precisely, o, (D) is the
infimum of all » € R such that on [Re > r] we have convergence of D of the requested type a = ¢, u or a.
Clearly, we have o.(D) < 0,(D) <o0,(D), and it can be easily shown that sup o,(D) —o.(D) = 1, where
the supremum is taken over all Dirichlet series D with coefficients in X. To determine the maximal width
of the strip on which a Dirichlet series in X converges uniformly but not absolutely is more complicated.
The main result of [Defant et al. 2008] states, with the notation given below, that
1

~ Colx )
Recall that a Banach space X is of cotype ¢, 2 < g < 0o, whenever there is a constant C > 0 such that

S(X) :=supoy(D)—o0,(D)=1

for each choice of finitely many vectors xj, ..., xy € X we have

N 1/q N 2 1/2
(ankn‘Q §C</ > xiz dz) : 2)
k=1 LR X
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where T :={z € C | |z| = 1} and T" is endowed with the N-th product of the normalized Lebesgue
measure on T; we denote the best of such constants C by C,(X). As usual we write

Cot X :=inf{2 < g < 00| X is of cotype ¢},

and, although this infimum in general is not attained, we call it the optimal cotype of X. If there is no
2 < g < oo for which X has cotype ¢, then X is said to have no finite cotype, and we put Cot X = oo.
To see an example,

qg for2<g <oo,

COtE":{z forl<g<2.

The scalar case X = C in (1) was first studied over a hundred years ago: Bohr [1913a] proved that
S(C) < 1 and Bohnenblust and Hille [1931] that S(C) > % Clearly, the equality

S(C) =3, 3)

nowadays called the Bohr—Bohnenblust—Hille theorem, fits with (1). Let us give a second formulation
of (1). Define the vector space 9 (X) of all Dirichlet series D =) a,n™* in X such that

o GC(D) S 03
o the function D(s) =), a,(1/n*) on Res > 0 is bounded.

Then #, (X) together with the norm

=1
IDlstx) = sup | D an—
Res>0 n=1 n° | x

forms a Banach space. For any Dirichlet series D in X we have
. a, 1
0u(D) =inflo € R Zn—an—se%m(X) : 4)
n

In the scalar case X = C, this is (what we call) Bohr’s fundamental theorem [1913b], and for Dirichlet
series in arbitrary Banach spaces the proof follows similarly. Together with (4) a simply translation
argument gives the following reformulation of (1):

1
SX)= sup o,(D)=1————.

®)

Following an ingenious idea of Bohr each Dirichlet series may be identified with a power series in
infinitely many variables. More precisely, fix a Banach space X and denote by 13(X) the vector space
of all formal power series ) _, ¢,z* in X and by ©(X) the vector space of all Dirichlet series ) _, a,n™*
in X. Let as usual (p,), be the sequence of prime numbers. Since each integer n has a unique prime
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number decomposition n = p{" - - - p;* = p® with o; € Ny, 1 < j <k, the linear mapping
Bx : PX) - D(X),
oo
. (6)
Z Ccuz” ~ Zann_S if ape = cq,
aeN§Y n=1

is bijective; we call By the Bohr transform in X. As discovered by Bayart [2002] this (a priori very)
formal identification allows us to develop a theory of Hardy spaces of scalar—valued Dirichlet series.

Similarly, we now define Hardy spaces of X-valued Dirichlet series. Denote by dw the normalized
Lebesgue measure on the infinite-dimensional polytorus T° = [];2, T, that is, the countable product
measure of the normalized Lebesgue measure on T. For any multiindex ¢ = («y, ..., ®,,0,...) € AQ
(all finite sequences in Z) the «-th Fourier coefficient f () of f € L1(T*, X) is given by

f@=[ fww*dw,

'”'00

where we as usual write w® for the monomial w‘l)‘l .- wy". Then, given 1 < p < oo, the X-valued Hardy
space on T is the subspace of L,(T*, X) defined as

H,(T®, X)={f € L,(T®, X) | f(a)=0foralla € ZM\N{V}. (7)

Assigning to each f € H,(T*, X) its unique formal power series ) _, f (a)z* we may consider H, (T, X)
as a subspace of P3(X). We denote the image of this subspace under the Bohr transform ‘B x by

¥#,(X).
This vector space of all (so-called) #,(X)-Dirichlet series D together with the norm
1D 115,000 = 1Bx (D) 1, 7,x)
forms a Banach space; in other words, through Bohr’s transform By from (6) we by definition identify
H,(X)=H,(T*, X), 1=<p<oo.

For p = oo we this way of course could also define a Banach space #~,(X), and it turns out that at least
in the scalar case X = C this definition then coincides with the one given above; but we remark that
these two ¥ (X)’s are different for arbitrary X. It is important to note that by the Birkhoff—Khinchin
ergodic theorem the following internal description of the 3, (X)-norm for finite Dirichlet polynomials

D =)"}_, akk™* holds:
1 T p 1/p
D = 1i — dt
1 Dlse, x) TLIIgO<2T /T . )

(see, for example, Bayart [2002] for the scalar case, and the vector-valued case follows exactly the same

n 1

way).
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Motivated by (4) we define for D e D(X) and 1 < p < o0
. an 1
o, x)(D) .:mf{cf ER‘;;TM_S e%p(X)}, (8)

the so-called 7€, (X)-abscissa of D. In [Aleman et al. > 2014], Aleman, Olsen, and Saksman prove that
the sequence (of Dirichlet series) 1/n*, n € N is a Schauder basis in %, (C) for 1 < p < oo. Hence, for
1 < p < oo and any Dirichlet series D € ®(C) we have

N
1
o3, (D) = inf{ oeR ‘(Z ——s> is Cauchy in %,,(a:)}, 9)
n=1 N
which (in the scalar case) is the perfect analog of Bohr’s fundamental theorem (i.e., the case p = oo from
(4), where uniform convergence is precisely being Cauchy in % ,(C)). In [Defant 2013] it is shown that
(9) also holds true for p =1 (although in this case the 1/n* are definitely no Schauder basis in #;(C)),
and even more: The arguments given in [Defant 2013] (inspired by Bohr’s original ideas [1913b]) prove
that (9) even holds for any 1 < p < 0o and any X-valued Dirichlet series D € %, (X). In view of (1) and
(5), it therefore seems natural to study
Sp(X):= sup 04(D) —oy,x) (D)= sup o,(D)
De®D(X) Deidt,(X)

(for the second equality use again a simple translation argument). The scalar case is completely understood
since, by a result of Bayart [2002],

§p(C) = % for every 1 < p < o0, (10)
which according to Helson [2005] is surprising since #{(C) is much smaller than 7, (C).
The following theorem unifies and generalizes (1), (3) as well as (10), and it is our main result.

Theorem 1.1. For every 1 < p < 0o and every Banach space X we have

1
CotX’

The proof will be given in Section 3. But before we start let us give an interesting reformulation

S,(X)=1-

in terms of the monomial convergence of X-valued H,-functions on T°°. Fix a Banach space X and
1 < p < 00, and define the set of monomial convergence of H, (T, X):

mon H,(T*, X) = {Z € B,

D I f@)z¥llx < oo forall f e Hy(T™, X)}.

Philosophically, this is the largest set M on which for each f € H,(T, X) the definition g(z) =
Do f (x)z%, z € M leads to an extension of f from the distinguished boundary T to its “interior” B,
(the open unit ball of the Banach space ¢ of all null sequences). For a detailed study of sets of monomial
convergence in the scalar case X = C see [Defant et al. 2009], and in the vector-valued case [Defant and
Sevilla-Peris 2011].
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We later need the following two basic properties of monomial domains (in the scalar case see [Defant
et al. 2008, p. 550; 2014, Lemma 4.3], and in the vector-valued case the proofs follow similar lines).

Remark 1.2. (1) Letz emon H,(T*, X). Then u = (24 (n)), € mon H,(T>, X) for every permutation &
of N.

(2) Let z e mon H, (T, X) and x = (x,), € D> be such that |x,| < |z,| for all but finitely many n’s.
Then x € mon H, (T, X).

Given 1 < p < oo and a Banach space X, the following number measures the size of mon H, (T, X)
within the scale of £,-spaces:

M,(X)=sup{l <r <oo|{ NB, CmonH,(T>, X)}.

The following result is a reformulation of Theorem 1.1 in terms of vector-valued H,-functions on T
through Bohr’s transform B x. The proof is modeled along ideas from Bohr’s seminal article [1913a,
Satz IX].

Corollary 1.3. For each Banach space X and 1 < p < oo we have

Cot X

M, (X) = CotX—1"

Proof. We are going to prove that §,(X) =1/M,(X), and as a consequence the conclusion follows from
Theorem 1.1. We begin by showing that S,(X) < 1/M,(X). We fix ¢ < M,(X) and r > 1/q; then we
have that (1/p})» € £, N B, and, by the very definition of M,(X), >, ||f(oz)(1/p’)°‘ |x < oo converges
absolutely for every f € H,(T°, X). We choose now an arbitrary Dirichlet series

D=%Byxf= Zann_s €¥,(X) with f e H,(T™, X).

Then
>l =3 aplix (o) = 3 1@l ()" < oo,

Clearly, this implies that §,(X) < r. Since this holds for each r > 1/g, we get that S,(X) < 1/g, and
since this now holds for each ¢ < M, (X), we have §,(X) < 1/M,(X). Conversely, let us take some
q > M,(X); then there is z € £, N B, and f € H,(T*, X) such that ), f(ot)z”‘ does not converge
absolutely. By Remark 1.2 we may assume that z is decreasing, and hence (z,n'/9), is bounded. We

choose now r > g and define w, = 1/ p,l,/ ". By the prime number theorem we know that there is a

universal constant C > O such that

Zn
0<—= anyll/r =Znn

1/r 1/r
l/qpn =z nl/q<pﬂ)1/r 1 l/q(logn) /
Wy nl/a "

—<C —_—
» Ja—1jr = ST Ty
The last term tends to 0 as n — o0; hence z, < w, but for a finite number of n’s. By Remark 1.2

this implies that ) _, f(a)w® does not converge absolutely. But then D = By f = > opannt € #,(X)



518 DANIEL CARANDO, ANDREAS DEFANT AND PABLO SEVILLA-PERIS

satisfies

1 1 \¥ 2
> lanllx i =" ||apa||x(m) =Y If@lxw® = co.
n o o
This gives that o,(D) > 1/r for every r > g, hence o,(D) > 1/q. Since this holds for every g > M, (X),
we finally have §,(X) > 1/M,(X). O

We shall use standard notation and notions from Banach space theory, as presented, for example, in
[Lindenstrauss and Tzafriri 1977; 1979]. For everything needed on polynomials in Banach spaces see, for
example, [Dineen 1999; Floret 1997].

2. Relevant inequalities

The main aim here is to prove a sort of polynomial extension of the notion of cotype. Recall the definition
of C,(X) from (2). Moreover, from Kahane’s inequality we know that there is a (best) constant K > 1

such that, for each Banach space X and each choice of finitely many vectors xi, ..., xy € X,
N 2 1/2 N
</ ZXka dz) <K f ZXka dz.
™z X ™z X
As usual we write |o| = o)+ --+ay and a! = a! - - - ay! for every multiindex o € Név.

Proposition 2.1. Let X be a Banach space of cotype q,2 < q < 00, and

P:CN > X, P@i= Z e
aENg
lo|=m

be an m-homogeneous polynomial. Let

N
T:CVx.---xC">Xx, 1TEW,..., M) = Z ai, i,,lZ(l)"'Z(m)

""" il im
iyeesim=

be the unique m-linear symmetrization of P. Then

m

1/q m
( > ||a,-],...,,-m||3’(> < (C(X)K)" — / IP@)llx dz.
. m: ™
i1

----- Im

Before we give the proof let us note that [Bombal et al. 2004, Theorem 3.2] is an m-linear result that,
combined with polarization, gives (with the previous notation)

m

1/q m
(Z la,.... l-mn?() < Cy(X)" — sup [P

m. zeDN

Our result allows us to replace (up to the constant K) the || ||o norm with the smaller norm || ||;. We
prepare the proof of Proposition 2.1 with three lemmas. The first one is a complex version of [Defant
et al. 2010, Lemma 2.2] with essentially the same proof; we include it for the sake of completeness.
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Lemma 2.2. Let X be a Banach space of cotype q,2 < q < 0o. Then, for every m-linear form

----- Im*Q; Iy

T:CNX---XCN—>X, T(Z(l),...,z(m))= Z a;, 'ZO)"'Z(m)

we have
N

(%

1/q
||ai1,...,im||()1() S(Cq(X)K)’"/ / 1T, 2™ xdz V- dz™.
™ ™

i1yensim=1

Proof. We prove this result by induction on the degree m. For m = 1 the result is an immediate
consequence of the definition of cotype ¢ and Kahane’s inequality. Assume that the result holds for m — 1.
By the continuous Minkowski inequality we then conclude that for every choice of finitely many vectors
aj,,...i, € X with1 <i; <N, 1< j <m we have

q q
Dol i = D0 D iy l%
i im—1 Im

il aaaaa im -----

(3 (f

iyeesim—1 L

C,(X)IK1
< Cy(X) (/T(Z

1s

qa\d/q
dz(’")> )
X
q\1/q q
) dz(m))
X

1

ceosdmt V im
q
§Cq(X)‘1’"K‘1m</ / / Z ail,...,iqu,ﬂl)»---,Zf,':]) dzV...qz7m=D dZ(m)) ;
™ JTN ™. = X
~— ——— s lm—1
m—1
which is the conclusion. O

The following two lemmas are needed to produce a polynomial analog of the preceding result.

Lemma 2.3. Let X be a Banach space, and f : C — X a holomorphic function. Then for Ri, Ry, R > 0
with Ry + Ry < R we have

// ||f(R121+R222)||Xd21d225/||f(RZ)||XdZ-
TJT T

Proof. By the rotation invariance of the normalized Lebesgue measure on T we get
/ f I f(Riz1+ Rez2)llx dzidza = / / I f(Riz1z2 + Raz2) | x dz1dza
TJT TJT

=/f ||f<zZ<R1zl+R2>>||xdzldm=//||f<zQ|R1zl+Rz|>||xddezl
TJT TJT

2m p2m ) ) dt ds
= [ [1rGreomivdanda = [ [ ireerei gt 42,
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where r(z) = (1/R)|R1z+ R»|, z € T. We know that for each holomorphic function / : C — X we have

2 ) dt
IIh(Z)ledZ— sup / 7 (re')llx o
0

0<r<li

(see, for example, Blasco and Xu [1991, p. 338]). Define now &(z) = f(Rz), and note that 0 <r(z) <1
for all z € T. Then

2 p2m dt ds
[ [1r@a+ reivdziaz = [ [ ibeenen i g 5

2
<[ [ meixdz g2 = [ sz,
0
This completes the proof. O
A sort of iteration of the preceding result leads to the next:

Lemma 2.4. Let X be a Banach space, and f : C¥ — X a holomorphic function. Then, for every m,

/-1/nﬂwuw~mwwme~ast|vwmha.
TN TN TN

Proof. We fix some m, and do induction with respect to N. For N = 1 we obtain from Lemma 2.3 that

///f IfED 4422 42D 42 dz ™D g™ dz D a7
T TJTJIT

=18,(1), . (m=2) (z0m=D4z0m)

m—2

:///f ||f(Z(1)+-~+Z(m_2)+2w)||xdwdz(m_2)dz(1)~~dz(m_3)
T TJTJT

——
S[f/ IF D+ 42" 4 3w) | x dzW - - dz™ ) dw

T TJT

S/Hﬂm@hdz
T

We now assume that the conclusion holds for N — 1 and write each z € TV as z = (u, w), with u € TV~!
and w € T. Then, using the case N = 1 in the first inequality and the inductive hypothesis in the second,
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we have

/ / IFGED 4+ 2 x dzV - dz™
™ JTv

=/ / (/---/||f<<u“>,w1>+~-+(u<’">,wm»nxdwl---dwN) du .- du™
-1 TV-INJT T
s/ / (/ ||f<<u“>,mw>+---+<u<'">,mw>>||xdw> du'D - du™

‘[[N—l TN—I T

:/(/ f ||f((”(1)amw)+'"+(u(’"),mw))||xdu(1)...du(m>> dw
T\JTN-!L TN-1

5/(/ ||f((mu,mw)+---+(mu,mw))||xdu> dw
T\JTV-1

= / If(m2)|x dz,
™

as desired. O

Proof of the inequality from Proposition 2.1. By the polarization formula we know that for every choice
of z1, ...,z e TV we have

N
(1) ZMy = (D)
( ) W Z & 8mP<281Z )
i=1

gi==xl1

(see, for example, [Dineen 1999] or [Floret 1997]). Hence we deduce from Lemma 2.4

O T R R NI R SR / / (i)
[ [re iz az —2mva [, Zsz
(0

"2, Z /T /T (le )

m' TN TN Y X

1 m™
< — [ IPm)lxdz=— | [P@)lxdz.
m: JTN m: J1N§

dz(l) .dz (m)

dz(l) .dz (m)

dz® .. dz™

Then by Lemma 2.2 we obtain

1/q
<Z lai,... z,,,||q> S(Cq<X)K)’"/"'/ 7Y, 2" xdz ™ - dz™

= (C4(X)K)" m—, / I1P(2)llxdz,
m: JnN

which completes the proof of Proposition 2.1. O
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A second proposition is needed which allows us to reduce the proof of our main result (Theorem 1.1) to
the homogeneous case. It is a vector-valued version of a result of [Cole and Gamelin 1986, Theorem 9.2]
with a similar proof (here only given for the sake of completeness).

Proposition 2.5. There is a contractive projection
®,,: Hy(TV, X) — H,(TY, X),  f+> f,
such that, for all f € H, (TN, X),
f(a) = fm(a) forall o € Név with |a| = m. (11)

Proof. Let ?(CN, X) C H,(T", X) be the subspace of all finite polynomials f =" .
is a finite set of multiindices in N(’)V and the coefficients ¢, € X. Define the linear projection ®% on
P(CN, X) by

cuz%; here A

o) (@D =fu@= Y fl)z*;

aeA,|a|=m

clearly, we have (11). In order to show that CD?n is a contraction on (@(CN LX) 00 p) fix some function
fe®PCV,X)and z e TV, and define

f@): T—=X, w f(zw).
Clearly, we have

few) =) filyw",
k

and hence

fnl@) = f Fww™ dw.
T

Integration, Holder’s inequality and the rotation invariance of the normalized Lebesgue measure on TV

give
)4
f Il fn (@)% dz =/ ‘/ feww ™dw| dz
™ TV JT X
P
< | (f ||f(Zw)||de> z
TV \JT
< [ [ ircongdzae= [ @i
TJTV ™
which proves that 61921 is a contraction on (P(CV, X), | - || »). By Fejér’s theorem (vector-valued) we know

that ?(C", X) is a dense subspace of H » (TV, X). Hence <I>9n extends to a contractive projection ®,,
on HP(TTN, X). This extension ®,, still satisfies (11) since the mapping HP(TN, X)—>X, f— f(a) is
continuous for each multiindex «. O
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3. Proof of the main result

We are now ready to prove Theorem 1.1. Let 1 < p < 00, and recall from (1) that

11
Cot X

see Remark 3.1 for a direct argument. Hence it suffices to concentrate on the upper estimate in Theorem 1.1:
Since we obviously have S,(X) < §1(X), we are going to prove that

= Soo(X) = Sp(X);

Si(X) =1 (12)

- CotX’

Suppose first that X has no finite cotype, i.e., CotX = oco. For D = )" a,n™* € %;(X) we take
f e Hi(T*°, X) with D =B f. Note that

1F@lx < / 1 ywllx dw = | f 11, o.x) < 00

o0

hence, by the definition of By, the coefficients of D are also bounded by || f ||z, (T, x). As a consequence,
for every o > 1 we have

> — 1
D llanllx—= <3 1l — < 00,
n=1 n=1

This means that S;(X) < 1 and as a consequence (12) holds.
Now if X has finite cotype, take ¢ > Cot X and ¢ > 0, and put s = (1 — 1/¢)(1 + 2¢). Choose an
integer ko such that p,f({q >eCy(X)K (X252, l/p;.“)l/q and define

ﬁ = (pko’ <« s Pkos Pko+1s Pko+25 -« - )
— ———

ko times

We are going to show that there is a constant C (g, X, €) > 0 such that for every f € H (T, X) we have

A 1
> If@llx=
P

(N\)
aeN,

<Cq, X, fllaa=x)- (13)

This finishes the argument: By Remark 1.2 the sequence 1/p* is in mon H;(T°°, X). But in view of
Bohr’s transform from (6), this means that for every Dirichlet series D = )", a,n™* = Bx f € #;(X)
with f € H (T*, X) we have

> 1 A 1
D llanllx—= 3 I @lx— <oo.
n=1

pSO(
e

Therefore o,(D) < (1 —1/q)(1 + 2¢) for each such D which, since ¢ > 0 was arbitrary, is what we
wanted to prove.

It remains to check (13); the idea is to show first that (13) holds for all X-valued H;-functions
which only depend on N variables: There is a constant C(q, X, €) > 0 such that for all N and every
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f e H(TV, X) we have

A 1
> If@)llx =z = Cla. X o)l f .. (14)

N
aeNy

In order to understand that (14) implies (13) (and hence the conclusion), assume that (14) holds and take
some f € H{(T*, X). Given an arbitrary N, define

foTY S X, fy(w) :/p@ Flw. ) d.

Then it can be easily shown that fy € L{(T", X), || fvll1 < fll1, and fN(oz) = f(a) forall o € ZV. If
we now apply (14) to this fx, we get

A 1
> If@llx

p’“soz
aeNg

<C(q, X, ) flH =X,

which, after taking the supremum over all possible N on the left side, leads to (13).
We turn to the proof of (14), and here in a first step will show the following: For every N, every
m-homogeneous polynomial P : CV — X and every u € £, we have

R o \mld'
D IP@ulx < (qu(X)K)’”fTN I1P(2)x dz (Z Iujlq) : (15)
aeN}) j=1
la|=m

Indeed, take such a polynomial P(z) =) ﬁ(oz)z"’ , z € TV, and look at its unique m-linear

aeNéV, |ae|=m
symmetrization

i im

T:CV % xCV =X, TCY.....2")= > a2 ..o

Then we know from Proposition 2.1 that

1/q
( > lla,... l-,,1||?() < (eCy(X)K)™ /T NP@Ily dz.

Hence (15) follows by Holder’s inequality:

N 0 m/q'
D P@ulx= Y lai,... l-,,,||x|uz-1---um|s(ecq(X)K>"1/TN||P<z>||xdz(Zwm) :

aeNY ilyeensim=1 j=1
|oe|=m

We finally give the proof of (14): Take f € H;(T", X), and recall from Proposition 2.5 that for each
integer m there is an m-homogeneous polynomial P,, : CV — X such that || P, || aav.x) < 1w,y x)
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and P, () = f(a) for all « € N} with |&| = m. From (15), the definition of s, and the fact that
max{py,, p;j} < p;j for all j we have

> @iz =Y 3 1@l

e

aeN{)" m=1 aeN(I)V
lo|=m
00 o 1 m/q’
m
<Y (€Ce(X) K" | Pl ry v, x) (Z q)
m=1 j=1Pj
o [ee) 1 m/q’
=Y (CoX)K)" | £l mycrv x) (Z ﬁ)
m—=1 j=1Pj
o0 o0 1 1 m/q/
=Y (eCo(X)K)" | f v x) (Z 1—+—>
m=1 j=1 pj pj
00 oo —(l+e)\l/g' \m
qu(X)K(ijlpj )
<Iflmav.x ) g :
m=1 pko
<1
This completes the proof of Theorem 1.1. U
Remark 3.1. We end this note with a direct proof of the fact
1
— < <
Cot X <8§,(X), 1=<p<oo, (16)
in which we do not use the inequality
1
— <
1 Cotx = Soo(X) (17)

from [Defant et al. 2008] (here repeated in (1)). The proof of (17) given in that reference shows in a first
step that 1 — 1/T1(X) < Soo(X) where

[1(X) = inf{r > 2 |idy is (r, 1)-summing},

and then, in a second step, applies a fundamental theorem of Maurey and Pisier stating that IT(X) = Cot X.

The following argument for (16) is very similar to the original one from [Defant et al. 2008] but does
not use the Maurey—Pisier theorem (since we here consider #,(X), 1 < p < oo instead of ¥, (X)): By
the proof of Corollary 1.3, inequality (16) is equivalent to

CotX

MyX) = G —1

Take r < M,(X), so that £, N B, C mon H,(T*, X). Let H;(Too, X) be the subspace of H,(T*, X)
formed by all 1-homogeneous polynomials (i.e., linear operators). We can define a bilinear operator
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£, x H pl (T, X) — £1(X) by (z, f) = (z; f(e;)); which, by a closed graph argument, is continuous.
Therefore, there is a constant M such that for all z € ¢, and all f € H ; (T*°, X) we have

> lzill £ leplix < Mllzlie, | 1L, . x)-
J

Taking the supremum over all z € B,, we obtain for all f € H ; (T*, X)

1/r
(Z Ilf(ej)lng) < M| 11, x)-
J

Now, take x1,...,xy € X, define f € H;(TOO,X) by
NN LY if1<j<N,
f(ef)_{o ifj>N

and extend it by linearity. By the previous inequality and Proposition 2.5 we have

N ) 1/r' N r' 1/r
(Z ||xj||§() < M(/ > xjz; dz) .
= ™l X

By Kahane’s inequality, X has cotype r’, which means that r’ > Cot X or, equivalently, r <

Cot X

] . . CotX—1°
Since r < M, (X) was arbitrary, we obtain (16).
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