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A GEOMETRIC TANGENTIAL APPROACH TO SHARP REGULARITY
FOR DEGENERATE EVOLUTION EQUATIONS

EDUARDO V. TEIXEIRA AND JOSÉ MIGUEL URBANO

That the weak solutions of degenerate parabolic PDEs modelled on the inhomogeneous p-Laplace
equation

ut − div(|∇u|p−2
∇u)= f ∈ Lq,r , p > 2

are C0,α , for some α ∈ (0, 1), has been known for almost 30 years. What was hitherto missing from the
literature was a precise and sharp knowledge of the Hölder exponent α in terms of p, q, r and the space
dimension n. We show in this paper that

α =
(pq − n)r − pq

q[(p− 1)r − (p− 2)]

using a method based on the notion of geometric tangential equations and the intrinsic scaling of the
p-parabolic operator. The proofs are flexible enough to be of use in a number of other nonlinear evolution
problems.

1. Introduction

The understanding of the local behaviour of solutions to singular and degenerate parabolic equations
has witnessed an impressive progress in the last three decades. At the heart of most developments lies
a single unifying idea, namely that regularity results have to be interpreted in an intrinsic geometric
configuration, a sort of signature to each particular PDE. The pioneering work of DiBenedetto [1993]
was the starting point to a theory that has, in many aspects, reached its maturity (see [DiBenedetto et al.
2012] and [Urbano 2008] for recent accounts).

A central aspect in this endeavour has always been the Hölder continuity of bounded weak solutions,
which ultimately follows from Harnack-type inequalities. Although powerful, this approach only provides
qualitative estimates that depend solely on the structure of the equations and thus hold in a very general
setting. The quest for precise, quantitative derivations of the Hölder exponent has hitherto eluded
the community, the only exception being the two-dimensional result in [Iwaniec and Manfredi 1989]
concerning p-harmonic functions. This type of quantitative information, apart from its own intrinsic
value, plays an important role in the analysis of a number of qualitative issues for parabolic PDEs, such
as blow-up analysis, Liouville type results, free boundary problems, and so forth.
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The main goal of this paper is to fill this gap, bringing the theory to a new level of understanding. We
show that weak solutions of degenerate p-parabolic equations whose prototype is

ut − div(|∇u|p−2
∇u)= f ∈ Lq,r , p ≥ 2, (1)

are locally of class C0,α in space, with

α :=
(pq − n)r − pq

q[(p− 1)r − (p− 2)]

a precise and sharp expression for the Hölder exponent in terms of p, the integrability of the source and
the space dimension n. We also show that u is of class C0,α/θ in time, where θ is the α-interpolation
between 2 and p. What makes the parabolic case more delicate to analyse is the inhomogeneity in the
equation, the fact that it scales differently with respect to space and time. It is worth stressing that the
integrability in time (respectively, in space) of the source affects the regularity in space (respectively, in
time) of the solution.

To highlight the extent to which our result is sharp, we project it into the state of the art of the theory.
For the linear case p = 2, we obtain

α = 1−
(

2
r
+

n
q
− 1

)
,

which is the optimal Hölder exponent for the nonhomogeneous heat equation, and is in accordance with
estimates obtained by energy considerations. When p→∞, we have α→ 1−, which gives an indication
of the expected locally Lipschitz regularity for the case of the parabolic infinity-Laplacian. When the
source f is independent of time, or else bounded in time, that is r =∞, we obtain

α =
pq − n

q(p− 1)
=

p
p− 1

·
q − n/p

q
,

which is exactly the optimal exponent obtained in [Teixeira 2013] for the elliptic case. It might also be
interesting to compare our optimal result with the estimates from [Misawa 2013, Section 4], and also
with the continuity estimates on p-parabolic obstacle problems from [Kuusi et al. 2014].

Within the general theory of p-parabolic equations, our result reveals a surprising feature. From the
applied point of view, it is relevant to know what is the effect on the diffusion properties of the model
as we dim the exponent p. Naïve physical interpretations could indicate that the higher the value of p,
the less efficient should the diffusion properties of the p-parabolic operator turn out to be, i.e., one
should expect a less efficient smoothness effect of the operator. For instance, this is verified in the sharp
regularity estimate for p-harmonic functions in 2D [Iwaniec and Manfredi 1989]. On the contrary, our
estimate implies that for p-parabolic inhomogeneous equations, the Hölder regularity theory improves as
p increases. In fact, a direct computation shows

sign(∂pα(p, n, q, r))= sign(q(2− r)+ nr)=+1,

in view of standard assumptions on the integrability exponents of the source term.
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Although regularity estimates for degenerate evolution equations have been successfully obtained in
great generality (see [Kinnunen and Lewis 2000; Acerbi and Mingione 2007]), explicit expressions for
the Hölder exponent of continuity for weak solutions have only been known in the linear setting. For
nonlinear equations, the classical tools from harmonic analysis, such as singular integrals, are precluded
from being used and an entirely new approach is needed. The new estimates we obtain are striking in their
simplicity but perhaps the most relevant contribution we offer is the technique employed. We develop a
method based on the notion of geometric tangential equations, which explores the intrinsic scaling of the
p-parabolic operator and the integrability of the forcing term. By means of appropriate scaled iterative
arguments, we show that at each inhomogeneous equation there is a universal tangential space formed by
C0,1 in space and C0,1/2 in time functions. The method then imports such regularity back to the original
equation, properly corrected through the scaling used to access the tangential space. The method is new
to the field and robust enough to be adapted to other evolutionary problems, as well as to a number of
other issues in the theory.

2. Preliminary tools

Let U ⊂ Rn be open and bounded, and T > 0. We consider the space-time domain UT =U × (0, T ). We
work with the prototype inhomogeneous equation

ut − div(|∇u|p−2
∇u)= f in UT , (2)

with a source term f ∈ Lq,r (UT )≡ Lr (0, T ; Lq(U )) satisfying

1
r
+

n
pq

< 1 (3)

and
2
r
+

n
q
> 1. (4)

The first assumption is the standard minimal integrability condition that guarantees the existence of
bounded weak solutions, while (4) defines the borderline setting for optimal Hölder type estimates. For
instance, when r =∞, conditions (3) and (4) enforce

n
p
< q < n,

which corresponds to the known range of integrability required in the elliptic theory for local C0,α

estimates to be available.
We start with the definition of weak solution to (2).

Definition 2.1. We say a function

u ∈ Cloc(0, T ; L2
loc(U ))∩ L p

loc(0, T ;W 1,p
loc (U ))
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is a weak solution to (2) if, for every compact K ⊂U and every subinterval [t1, t2] ⊂ (0, T ], there holds∫
K

uϕ dx
∣∣∣t2
t1
+

∫ t2

t1

∫
K

{
−uϕt + |∇u|p−2

∇u · ∇ϕ
}

dx dt =
∫ t2

t1

∫
K

f ϕ dx dt,

for all ϕ ∈ H 1
loc(0, T ; L2(K ))∩ L p

loc(0, T ;W 1,p
0 (K )).

The following alternative definition makes use of the Steklov average of a function v ∈ L1(UT ), defined
for 0< h < T by

vh :=


1
h

∫ t+h

t
v( · , τ ) dτ if t ∈ (0, T − h],

0 if t ∈ (T − h, T ],

and circumvents the difficulties related to the low regularity in time. In fact, these difficulties are more of
a technical nature since the time derivative ut is shown in [Lindqvist 2008] to be an element of a certain
Lebesgue space.

Definition 2.2. We say a function

u ∈ Cloc(0, T ; L2
loc(U ))∩ L p

loc(0, T ;W 1,p
loc (U ))

is a weak solution to (2) if, for every compact K ⊂U and every 0< t < T − h, there holds∫
K×{t}

{
(uh)tϕ+ (|∇u|p−2

∇u)h · ∇ϕ
}

dx =
∫

K×{t}
fhϕ dx, (5)

for all ϕ ∈W 1,p
0 (K ).

One key ingredient in our analysis is the following Caccioppoli-type energy estimate enjoyed by weak
solutions of (2).

Lemma 2.3 (Caccioppoli estimate). Let u be a weak solution to (2). Given K × [t1, t2] ⊂ U × (0, T ],
there exists a constant C , depending only on n, p, K ×[t1, t2] and ‖ f ‖Lq,r , such that

sup
t1<t<t2

∫
K

u2ξ p dx +
∫ t2

t1

∫
K
|∇u|pξ p dx dt

≤

∫ t2

t1

∫
K
|u|p(ξ p

+ |∇ξ |p) dx dt +
∫ t2

t1

∫
K

u2ξ p−1
|ξt | dx dt +‖ f ‖q,r (6)

for every ξ ∈ C∞0 (K × (t1, t2)) such that ξ ∈ [0, 1].

Proof. Choose ϕ = uhξ
p as a test function in (5) and perform the usual combination of integrating in

time, passing to the limit in h→ 0 and applying Young’s inequality to derive the estimate. �

We finally recall that, if v is a function belonging to L p(Q), its averaged norm is

‖v‖p,avg,Q :=

(∫
Q
|v|p dx dt

)1/p

= |Q|−1/p
‖v‖p,Q,
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where, as usual, the integral average is defined by∫
A
ψ =

1
|A|

∫
A
ψ.

3. Sharp Hölder estimate

We start by fixing universal constants, that depend only on the data. The intrinsic exponent to (2), with
f ∈ Lq,r , is

α :=
(pq − n)r − pq

q[(p− 1)r − (p− 2)]
=

p
(

1− 1
r
−

n
pq

)
(2

r
+

n
q
− 1

)
+ p

(
1− 1

r
−

n
pq

) , (7)

which, in view of (3) and (4), satisfies 0< α < 1. Next, let

θ := α+ p− (p− 1)α = p− (p− 2)α = α2+ (1−α)p. (8)

Clearly 2< θ < p, since 0< α < 1. For such θ , we define the intrinsic θ -parabolic cylinder

Gτ := (−τ
θ , 0)× Bτ (0), τ > 0.

We first establish a key compactness result that states that if the source term f has a small norm in Lq,r ,
then a solution u to (2) is close to a p-caloric function in an inner subdomain. It is worth comparing such
a result with the A-caloric approximation lemma obtained in [Duzaar and Mingione 2005, Lemma 4.1].

Lemma 3.1 (approximation to p-caloric functions). For every δ > 0, there exists 0< ε� 1, such that if
‖ f ‖Lq,r (G1) ≤ ε and u is a local weak solution of (2) in G1, with ‖u‖p,avg,G1 ≤ 1, then there exists a φ
that is p-caloric in G1/2 in the sense that

φt − div(|∇φ|p−2
∇φ)= 0 in G1/2, (9)

and moreover satisfies
‖u−φ‖p,avg,G1/2 ≤ δ. (10)

Proof. Suppose, for the sake of contradiction, that the thesis of the lemma fails. That is, assume, for some
δ0 > 0, that there exists a sequence

(u j ) j ∈ Cloc(−1, 0; L2
loc(B1))∩ L p

loc(−1, 0;W 1,p
loc (B1))

and a sequence ( f j ) j ∈ Lq,r (G1) such that

u j
t − div(|∇u j

|
p−2
∇u j )= f j in G1, (11)

‖u j
‖p,avg,G1 ≤ 1, (12)

‖ f j
‖Lq,r (G1) ≤ 1/j, (13)

but still, for any j and any p-caloric function φ in G1/2,

‖u j
−φ‖p,avg,G1/2 > δ0. (14)
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Fix a cutoff function ξ ∈ C∞0 (G1), such that ξ ∈ [0, 1], ξ ≡ 1 in G1/2 and ξ ≡ 0 near ∂pG1. From the
Caccioppoli estimate, using the notation

V (I ×U )= L∞(I ; L2(U ))∩ L p(I ;W 1,p(U )),

we obtain

‖u j
‖V (G1/2) ≤ sup

−1<t<0

∫
B1

(u j )2ξ p dx +
∫ 0

−1

∫
B1

|∇u j
|

pξ p dx dt

≤

∫ 0

−1

∫
B1

{
|u j
|

p(ξ p
+ |∇ξ |p)+ (u j )2ξ p−1

|ξt |
}

dx dt +‖ f j
‖Lq,r (G1)

≤ c ‖u j
‖

p
p,avg,G1

+ c′‖u j
‖

2
2,avg,G1

+
1
j

≤ c.

A control of the time derivative, along the lines of [Lindqvist 2008] (see also [Acerbi et al. 2004]),
gives

‖u j
t ‖Ls,1(G1/2) ≤ c,

with s=min{q, p/(p−1)}< p. We now use a classical compactness result (see [Simon 1987, Corollary 4]),
with

W 1,p ↪→ L p
⊂ Ls,

to conclude that

u j
→ ψ,

strongly in L p(G1/2), in addition to the weak convergence in V (G1/2).
Passing to the limit in (11), we find that

ψt − div(|∇ψ |p−2
∇ψ)= 0 in G1/2,

which contradicts (14), for j � 1. The proof is complete. �

Next, by means of geometric iteration, we shall establish the optimal Hölder continuity for solutions
to the heterogeneous p-parabolic equation (2). Our approach explores the approximation by p-caloric
functions, given by Lemma 3.1, and the fact that p-caloric functions are universally Lipschitz continuous
in space and C0,1/2 in time. The following is the crucial first iterative step.

Lemma 3.2. Let 0< α < 1 be fixed. There exists ε > 0 and 0< λ� 1/2, depending only on p, n and α,
such that if ‖ f ‖Lq,r (G1) ≤ ε and u is a local weak solution of (2) in G1, with ‖u‖p,avg,G1 ≤ 1, then there
exists a universally bounded constant c0 such that

‖u− c0‖p,avg,Gλ
≤ λα. (15)
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Proof. Take 0 < δ < 1, to be chosen later, and apply Lemma 3.1 to obtain 0 < ε � 1 and a p-caloric
function φ in G1/2, such that

‖u−φ‖p,avg,G1/2 ≤ δ.

Observe that

‖φ‖p,avg,G1/2 ≤ ‖u−φ‖p,avg,G1/2 +‖u‖p,avg,G1 ≤ δ+ 2(θ+n)/p
≤ C. (16)

Since φ is p-caloric, it follows from standard theory that φ is universally C0,1/2
loc in time and C0,1

loc in space.
That is, for λ� 1, to be chosen soon, we have

sup
(x,t)∈Gλ

|φ(x, t)−φ(0, 0)| ≤ C λ,

for C > 1 universal. In fact, for (x, t) ∈ Gλ,

|φ(x, t)−φ(0, 0)| ≤ |φ(x, t)−φ(0, t)| + |φ(0, t)−φ(0, 0)|

≤ C ′ |x − 0| +C ′′ |t − 0|1/2

≤ C ′ λ+C ′′ λθ/2 ≤ C λ,

since θ > 2. We can therefore estimate

‖u(x, t)−φ(0, 0)‖p,avg,Gλ
≤ ‖u(x, t)−φ(x, t)‖p,avg,Gλ

+‖φ(x, t)−φ(0, 0)‖p,avg,Gλ

≤

(
1

2λ

)θ+n
p
δ+C λ. (17)

Note that we will choose λ� 1/2 and thus

Gλ = (−λ
θ , 0)× Bλ ⊂ (−(1/2)θ , 0)× B1/2 = G1/2.

We put c0 := φ(0, 0), observing that, due to (16) and the fact that φ is p-caloric, c0 is universally
bounded. The next step is to fix the constants. We choose λ� 1

2 so small that

C λ≤ 1
2λ
α,

and then we define
δ = 1

2λ
α(2λ)(θ+n)/p,

thus fixing, via Lemma 3.1, also ε > 0. The lemma now follows from estimate (17) with the indicated
choices. �

Our next step involves iterating Lemma 3.2 in the appropriate geometric scaling.

Theorem 3.3. Under the conditions of the previous lemma, there exists a convergent sequence of real
numbers {ck}k≥1, with

|ck − ck+1| ≤ c(n, p)(λα)k, (18)

such that
‖u− ck‖p,avg,G

λk ≤ (λ
k)α. (19)
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Proof. The proof is by induction on k ∈ N. For k = 1, (19) holds due to Lemma 3.2, with c1 = c0.
Suppose the conclusion holds for k and let’s show it also holds for k+1. We start by defining the function
v : G1→ R by

v(x, t)=
u(λk x, λkθ t)− ck

λαk . (20)

We compute
vt(x, t)= λkθ−αkut(λ

k x, λkθ t)

and
div(|∇v(x, t)|p−2

∇v(x, t))= λpk−(p−1)αk div(|∇u(λk x, λkθ t)|p−2
∇u(λk x, λkθ t))

to conclude, recalling (8), that

vt − div(|∇v|p−2
∇v)= λpk−(p−1)αk f (λk x, λkθ t)= f̃ (x, t).

We now compute

‖ f̃ ‖rLq,r (G1)
=

∫ 0

−1

(∫
B1

| f̃ (x, t)|q dx
)r/q

dt (21)

=

∫ 0

−1

(∫
B1

λ(pk−(p−1)αk)q
| f (λk x, λkθ t)|q dx

)r/q

dt

=

∫ 0

−1

(∫
B
λk

λ(pk−(p−1)αk)q−kn
| f (x, λkθ t)|q dx

)r/q

dt

= λ
((pk−(p−1)αk)q−kn) r

q

∫ 0

−1

(∫
B
λk

| f (x, λkθ t)|q dx
)r/q

dt

= λ
((pk−(p−1)αk)q−kn) r

q−kθ
∫ 0

−λkθ

(∫
B
λk

| f (x, t)|q dx
)r/q

dt.

Due to the crucial and sharp choice (7) of α, we have, recalling again (8),

((pk− (p− 1)αk)q − kn)
r
q
− kθ = 0.

We go back to (21) to conclude

‖ f̃ ‖Lq,r (G1) = ‖ f ‖Lq,r ((−λkθ ,0)×B
λk ) ≤ ‖ f ‖Lq,r (G1) ≤ ε,

which entitles v to Lemma 3.2 (note that ‖v‖p,avg,G1 ≤ 1, due to the induction hypothesis).
It then follows that there exists a constant c̃0, with |c̃0| ≤ c(n, p), such that

‖v− c̃0‖p,avg,Gλ
≤ λα,

which is the same as
‖u− ck+1‖p,avg,G

λk+1 ≤ λ
α(k+1),
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for ck+1 := ck + c̃0λ
αk ; the induction is complete. We readily observe that

|ck+1− ck | ≤ c(n, p)(λα)k,

thus obtaining also (18). �

Theorem 3.4. A locally bounded weak solution of (2), with f ∈ Lq,r , satisfying (3)–(4), is locally Hölder
continuous in the space variables, with exponent

α =
(pq − n)r − pq

q[(p− 1)r − (p− 2)]

and locally Hölder continuous in time with exponent α/θ . In addition, there exists a constant C , that
depends only on p, n, ‖ f ‖q,r and ‖u‖p,avg,G1 , such that

‖u‖C0;α,α/θ (G1/2)
≤ C.

Proof. We start by observing (see also [Araújo et al. 2013, Section 7]) that the smallness regime required
in the assumptions of Theorem 3.3 is not restrictive since we can fall into that framework by scaling and
contraction. Indeed, given a solution u, let

v(x, t)= %u
(
%ax, %(p−2)+apt

)
(%, a to be fixed), which is a solution of (2) with

f̃ (x, t)= %(p−1)+ap f
(
%ax, %(p−2)+apt

)
.

We choose a > 0 such that

a <
2

n+ p
and [(p− 1)+ ap]r − a(n+ p)− (p− 2) > 0,

which is always possible (observe that the second condition holds for a = 0 and use its continuity with
respect to a), and then 0< % < 1 such that

‖v‖
p
p,avg,G1

≤ %2−a(n+p)
‖u‖p

p,avg,G1
≤ 1

and
‖ f̃ ‖rLq,r (G1)

= %[(p−1)+ap]r−a(n+p)−(p−2)
‖ f ‖rLq,r (G1)

≤ εr .

Due to (18), the sequence {ck}k≥1 is convergent and we put

c̄ := lim
k→∞

ck .

It follows from (19) that, for arbitrary 0< r < 1/2,∫
Gr

|u− c̄|p dx dt ≤ Cr pα.

Standard covering arguments, a remark in [Teixeira 2013, Lemma 3.2] and the characterisation of Hölder
continuity of Campanato–Da Prato give the local C0;α,α/θ -continuity and thus the result. �
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4. Generalisations and beyond

The ideas and methods employed in this paper only explore the degenerate p-structure of the operator.
The underlying heuristics is to interpret the homogeneous problem as the geometric tangential equation
of its inhomogeneous counterpart, for small perturbations f ∈ Lr,q , ‖ f ‖r,q � 1. The proofs adapt to
more general degenerate parabolic equations

ut − div A(x, t, Du)= f ∈ Lr,q (22)

satisfying the usual structure assumptions for p ≥ 2.
We briefly comment on the modifications required. Lemma 2.3 is based on pure energy considerations,

thus the very same proof works in the general case. Lemma 3.1 can be carried out universally in the
structural class of operators, provided integrability bounds for the time-derivative are available (cf. [Acerbi
et al. 2004, Section 7], where a more general version of the result in [Lindqvist 2008] on this issue is
proved). As for Lemma 3.2, the very same proof works since solutions to the general homogeneous
equation are also Lipschitz in space and C0;1/2 in time. The only modification occurs when we iterate
Lemma 3.2. The rescaled function v defined in (20) now solves the equation

vt − div Ak(x, t, Dv)= λpk−(p−1)αk f (λk x, λkθ t),

where

Ak(x, t, ξ) := (λ−αk)1−pA(λk x, λθk t, λ−αkξ)

belongs to the same structural class of A. In particular, v is entitled to the conditions of Lemma 3.2 and
the proof then follows exactly as before.

We would like to conclude by explaining how the idea of finding geometrical tangential equations can
be employed to derive analytical tools for p-parabolic operators, continuously on p. For instance, one
can access regularity estimates for degenerate parabolic equations by interpreting the heat operator as the
tangential equation obtained when we differentiate the family of p-parabolic operators with respect to the
exponent p, near p = 2.

It is possible to obtain a universal compactness device. Let Qτ := Iτ × Bτ = (−τ, τ )× Bτ . We fix
M0� 2 and work within the range p ∈ [2,M0].

Lemma 4.1 (uniform in p compactness). Given δ > 0, there exists ε > 0, depending only on n, M0 and δ,
such that if q ∈ [2,M0], u is a q-caloric function in Q1, with |u| ≤ 1, and |q − p|< ε, then we can find a
p-caloric function w in Q1/2, with |w| ≤ 1, such that

sup
Q1/2

|w− u| ≤ δ. (23)

Proof. Suppose, for the sake of contradiction, that the thesis of the lemma does not hold true. This means
that for a certain δ0 > 0, there exist sequences (q j ) j , (u j ) j and (p j ) j , with
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q j ∈ [2,M0],

(u j )t − div(|∇u j |
q j−2
∇u j )= 0 in Q1,

|u j | ≤ 1,

|p j − q j | ≤
1
j
,

(24)

but such that, for every p j -caloric function w in Q1/2,

sup
Q1/2

|u j −w|> δ0. (25)

By compactness, we have, up to subsequences,

q j → q∞ ∈ [2,M0] (26)

and, from the last assertion in (24), also p j → q∞. As in the proof of Lemma 3.1, up to a subsequence,
u j → u∞ in the appropriate space. Since q j → q∞, by stability (see [Kinnunen and Parviainen 2010]),
we can pass to the limit in the equation satisfied by the u j to conclude that u∞ is q∞-caloric in Q2/3.

We now solve, for each p j , the boundary value problem{
(w j )t − div(|∇w j |

p j−2
∇w j )= 0 in Q2/3,

w j = u∞ on ∂Q2/3,
(27)

and pass to the limit in j , concluding that also w j → u∞ uniformly in Q1/2.
Finally, choosing j sufficiently large, we obtain

|u j −w j | ≤ |u j − u∞| + |w j − u∞| ≤
δ0

2
+
δ0

2
= δ0 in Q1/2,

which is a contradiction to (25). �

Heuristically, Lemma 4.1 implies the continuity of the underlying regularity theory for p-parabolic
operators with respect to p. In particular, improved sharp Hölder estimates can be derived by these
methods for problems governed by p-parabolic operators, near the heat equation, i.e., for p close to 2.
We leave the development of these heuristics for a future work.
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