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RESONANCE WIDTHS FOR THE MOLECULAR PREDISSOCIATION

ALAIN GRIGIS AND ANDRÉ MARTINEZ

We consider a semiclassical 2× 2 matrix Schrödinger operator of the form

P =−h21I2+ diag(V1(x), V2(x))+ h R(x, h Dx ),

where V1, V2 are real-analytic, V2 admits a nondegenerate minimum at 0 with V2(0)= 0, V1 is nontrapping
at energy 0, and R(x, h Dx )= (r j,k(x, h Dx ))1≤ j,k≤2 is a symmetric 2× 2 matrix of first-order pseudodif-
ferential operators with analytic symbols. We also assume that V1(0) > 0. Then, denoting by e1 the first
eigenvalue of −1+〈V ′′2 (0)x, x〉/2, and under some ellipticity condition on r1,2 and additional generic
geometric assumptions, we show that the unique resonance ρ1 of P such that ρ1= (e1+r2,2(0, 0))h+O(h2)

(as h→ 0+) satisfies

Im ρ1 =−hn0+(1−n0)/2 f
(

h, ln
1
h

)
e−2S/h,

where f
(
h, ln 1

h

)
∼
∑

0≤m≤` f`,mh`
(
ln 1

h

)m is a symbol with f0,0 > 0, S > 0 is the so-called Agmon
distance associated with the degenerate metric max(0,min(V1, V2)) dx2, between 0 and {V1 ≤ 0}, and
n0 ≥ 1, n0 ≥ 0 are integers that depend on the geometry.

1. Introduction

The theory of predissociation goes back to the very first years of quantum mechanics (see [Kronig 1928;
Landau 1932a; 1932b; Zener 1932; Stückelberg 1932], for example). Roughly speaking, it describes
the possibility for a molecule to dissociate spontaneously (after a sufficiently large time) into several
submolecules, for energies below the crossing of the corresponding energy surfaces of the initial molecule
and the final dissociated state. From a physical point of view, one naturally expects that this (typically
quantum) phenomenon occurs with extremely small (but nonzero) probability.

Despite the fact that statements concerning this problem are present in the physics literature for more
than 70 years, the first mathematically rigorous result is due to M. Klein [1987], where an upper bound
on the time of predissociation is given in the framework of the Born–Oppenheimer approximation. More
precisely, denoting by h the square root of the ratio of electronic to nuclear mass, Klein proves the
existence of resonances ρ with real part below the crossing of the energy surfaces and with exponentially
small imaginary part; that is

|Im ρ| = O(e−2(1−ε)S/h),
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where S > 0 is a geometric constant, ε > 0 is fixed arbitrarily, and the estimate holds uniformly as h goes
to zero.

In terms of probabilities, this result corresponds to an upper bound on the transition probability between
the initial molecule and the dissociated state. The purpose of this article is to obtain more complete
information on this quantity, in particular, a lower bound. More precisely, under suitable conditions, we
prove that the imaginary part of the lowest resonance admits a complete asymptotic expansion of the type

Im ρ1 =−hn0+(1−n0)/2e−2S/h
∑

0≤m≤`

f`,mh`
(

ln 1
h

)m
,

in the sense that, for any N ≥ 1, one has∣∣∣∣Im ρ1+ hn0+(1−n0)/2e−2S/h
∑

0≤m≤`≤N

f`,mh`
(

ln 1
h

)m
∣∣∣∣= O(hn0+(1−n0)/2+N e−2S/h),

where S>0, n0≥1 and n0≥0 are all geometric constants, and where the leading coefficient f0,0 is positive.
As is well-known, the quantity Im ρ is closely related to the oscillatory behavior of the corresponding

resonant state in the unbounded classically allowed region. Hence, the main issue will be to know
sufficiently well this behavior.

The strategy of the proof consists in starting from the WKB construction at the bottom of the well and
then trying to extend it as much as possible, at least up to the classically allowed unbounded region. This
is mainly the same strategy used in [Helffer and Sjöstrand 1986] for the study of shape resonances.

However, from a technical point of view, several new problems are encountered, because of the crossing
of the electronic levels.

The first one is that, at the crossing, the only reference on WKB constructions is that of [Pettersson
1997], which has been done for a special type of matrix Schrödinger operators. In particular, it strongly
uses the fact that only differential operators are involved. In our case, since our operator comes from a
Born–Oppenheimer reduction, it is necessarily of pseudodifferential kind (see [Klein et al. 1992; Martinez
and Sordoni 2009], for example). As a consequence, our first step will consist in extending Pettersson’s
method to pseudodifferential operators. Unfortunately, this extension is far from being straightforward,
and needs a specific formal calculus adapted to expressions involving the Weber functions.

The second one is that, after having overcome the crossing, the symbols of the resulting WKB
expansions do not anymore satisfy analytic estimates (usually needed in order to resum them, up to
exponentially small error terms). In particular, this prevents us from using directly the constructions of
[Helffer and Sjöstrand 1986] near the classically allowed unbounded region. Instead, we have to adapt the
method of Fujiié, Lahmar-Benbernou and Martinez [Fujiié et al. 2011], which, without analyticity, allows
us to extend the WKB constructions into the classically allowed unbounded region up to a distance of
order (h ln |h|)2/3 from the barrier. This is not much, but it is enough to have sufficient control in this
region on the difference between the true solution and the WKB one. This is actually done by adapting
the specific arguments of propagation introduced in [loc. cit.], where the propagation takes place in
h-dependent domains.
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In the next section, we describe in details the geometrical context and the assumptions.
In Section 3, we state our main result.
Section 4 is devoted to the WKB constructions, starting from the well and proceeding away along some

minimal geodesics, until crossing the boundary of the classically forbidden region. It is in this section that
we develop a formal pseudodifferential calculus adapted to expressions involving the Weber functions.

Next, in Section 5, we extend the well-known Agmon estimates to our pseudodifferential context. In
this case, the main feature is that, since we cannot use general Lipschitz weight functions, we replace
them by h-dependent smooth functions with bounded gradient, but with derivatives of higher order that
can grow to infinity as h→ 0.

In Section 6, we use these estimates in order to obtain a bound for the difference between the WKB
solutions and a solution of a modified problem, and this permits us to define an asymptotic solution in a
whole neighborhood of the classically forbidden region (but only up to a distance of order (h ln |h|)1/3

from this region).
Section 7 contains the a priori estimates and the propagation arguments that lead to a good control on

the difference between the asymptotic solution and the actual one.
Finally, Section 8 makes the link with the width of the resonance. Even if the idea is standard (practically

an application of the Green formula; see [Helffer and Sjöstrand 1986], for example), here we have to be
careful with the double problem that, on the one hand, we deal with pseudodifferential (not differential)
operators and, on the other hand, the magnitude of freedom outside the classically forbidden region is of
order (h ln |h|)1/3 as h→ 0.

2. Geometrical assumptions

We consider the semiclassical 2× 2 matrix Schrödinger operator

P =
(

P1 0
0 P2

)
+ h R(x, h Dx), (2-1)

with
Pj := −h21+ V j (x), j = 1, 2,

where x = (x1, . . . , xn) is the current variable in Rn (n ≥ 1), h > 0 denotes the semiclassical parameter,
and R(x, h Dx)= (r j,k(x, h Dx))1≤ j,k≤2 is a formally self-adjoint 2×2 matrix of first-order semiclassical
pseudodifferential operators, in the sense that, for all α ∈N2n , ∂αr j,k(x, ξ)= O(1+|ξ |) uniformly on R2n .

Let us observe that this is typically the kind of operator one obtains in the Born–Oppenheimer
approximation, after reduction to an effective Hamiltonian [Klein et al. 1992; Martinez and Sordoni 2009].
In that case, the quantity h2 stands for the inverse of the mass of the nuclei.

Assumption 1: The potentials V1 and V2 are smooth and bounded on Rn , and satisfy:

V1(0) > 0 and E = 0 is a nontrapping energy for V1, (2-2)

V1 has a strictly negative limit as |x | →∞, (2-3)

V2 ≥ 0, V−1
2 (0)= {0}, Hess V2(0) > 0, lim inf

|x |→∞
V2 > 0. (2-4)
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In particular, we assume that V2 has a unique nondegenerate well at x = 0. We define the island Ö as
the bounded open set

Ö = {x ∈ Rn
: V1(x) > 0}, (2-5)

and the sea as the set where V1(x)<0. With (2-2) and (2-4), the well {x=0} for V2 is included in the island.
The fact that 0 is a nontrapping energy for V1 means that, for any (x, ξ) ∈ p−1

1 (0), one has that
|exp t Hp1(x, ξ)| → +∞ as t → ∞, where we let p1(x, ξ) := ξ 2

+ V1(x) be the symbol of P1 and
Hp1 := (∇ξ p1,−∇x p1) be the Hamilton field of p1.

Conditions (2-2)–(2-4) correspond to molecular predissociation, as described in [Klein 1987].
Since we plan to study the resonances of P near the energy level E = 0, we also assume:

Assumption 2: The potentials V1 and V2 extend to bounded holomorphic functions near a complex sector
of the form SR0,δ := {x ∈ Cn

: |Re x | ≥ R0, |Im x | ≤ δ|Re x |}, with R0, δ > 0. Moreover V1 tends to its
limit at∞ in this sector and Re V2 stays away from 0 in this sector.

Assumption 3: The symbols r j,k(x, ξ) for ( j, k)= (1, 1), (1, 2), (2, 2) extend to holomorphic functions
in (x, ξ) near

S̃R0,δ := SR0,δ ×{ξ ∈ Cn
: |Im ξ | ≤max(δ〈Re x〉,

√
M0)},

with

M0 > sup
x∈Rn

min(V1(x), V2(x)),

and, for real x , r j,k is a smooth function of x with values in the set of holomorphic functions of ξ near
{|Im ξ | ≤

√
M0}. Moreover we assume that, for any α ∈ N2n , they satisfy

∂αr j,k(x, ξ)= O(〈Re ξ〉) uniformly on S̃R0,δ ∪
(
Rn
×{|Im ξ | ≤

√
M0}

)
. (2-6)

Now we define the cirque � as

�= {x ∈ Rn
: V2(x) < V1(x)}. (2-7)

Hence, the well is in the cirque and the cirque is in the island.
We also consider the Agmon distance associated to the pseudometric

(min(V1, V2))+ dx2
;

see [Pettersson 1997]. There are three places where this metric is not a standard one.
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The first is near the well 0, but this case is well-known. It was treated in [loc. cit.] and also in [Helffer
and Sjöstrand 1984]. The Agmon distance,

ϕ(x) := d(x, 0), (2-8)

is smooth at 0. The point (x, ξ)= (0, 0) is a hyperbolic singular point of the Hamilton vector field Hq2 ,
where q2= ξ

2
−V2(x), and the stable and unstable manifold near this point are respectively the Lagrangian

manifolds {ξ =∇ϕ(x)} and {ξ =−∇ϕ(x)}.
Secondly, on ∂�, precisely at the points where V1 = V2. This case has been also considered by

Pettersson. At such a point, if one assume that ∇V1 6= ∇V2, then any geodesic which is transversal to the
hypersurface {V1 = V2} is C1.

Finally there is the boundary of the island ∂ Ö , where V1 = 0. This situation was considered in [Helffer
and Sjöstrand 1986]. We will follow this work in the next assumption.

Now we consider the distance from the well to the sea, that is, to ∂ Ö:

S := d(0, ∂ Ö). (2-9)

Setting BS := {x ∈ Ö : ϕ(x) < S} and denoting by BS its closure, we also consider the set BS∩∂ Ö that
consists of the points of the boundary of the island that are joined to the well by a minimal d-geodesic
included in the island. These points are called points of type 1 in [loc. cit.], and we denote by G the set
of minimal geodesics joining such a point to 0 in Ö .

We make the following assumption:

Assumption 4: For all γ ∈G, γ intersects ∂� at a finite number of points and the intersection is transversal
at each of these points. Moreover, ∇V1 6= ∇V2 on γ ∩ ∂�.

Let us recall that the assumption that 0 is a nontrapping energy for V1 implies that ∇V1 6= 0 on ∂ Ö ,
and therefore that ∂ Ö is a smooth hypersurface.

We define the caustic set C as the union of the set of points of type 1 and the set of points x ∈ Ö with
ϕ(x)= S+ d(x, ∂ Ö). As in [loc. cit.] we assume:

Assumption 5: The points of type 1 form a submanifold 0, and C has a contact of order exactly two with
∂ Ö along 0.

We denote by n0 the dimension of 0. Moreover, for any γ ∈ G, we denote by Nγ := #(γ ∩ ∂�) the
number of points where γ crosses the boundary of the cirque, and we set

n0 :=min
γ∈G

Nγ , G0 := {γ ∈ G : Nγ = n0}.

Then, we make an assumption that somehow insures that an interaction between the two Schrödinger
operators does exist.

Assumption 6: There exists at least one γ ∈ G0 for which the ellipticity condition r12(x, i∇ϕ(x)) 6= 0
holds at every point x ∈ γ ∩ ∂�.
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3. Main result

Under the previous assumption we plan to study the resonances of the operator P given in (2-1), where
R(x, h Dx) is defined as

R(x, h Dx) :=

(
OpL

h (r1,1) OpL
h (r1,2)

OpR
h (r1,2) OpL

h (r2,2)

)
,

where for any symbol a(x, ξ) we use the quantizations

OpL
h (a)u(x)=

1
(2πh)n

∫
ei(x−y)ξ/ha(x, ξ)u(y) dy dξ,

OpR
h (a)u(x)=

1
(2πh)n

∫
ei(x−y)ξ/ha(y, ξ)u(y) dy dξ.

In order to define the resonances we consider the distortion given as follows. Let F(x) ∈ C∞(Rn,Rn)

be such that F(x)= 0 for |x | ≤ R0 and F(x)= x for |x | large enough. For θ > 0 small enough, we define
the distorted operator Pθ as the value at ν = iθ of the extension to the complex numbers of the operator
UνPU−1

ν , which is defined for ν real small enough and analytic in ν, where we have set

Uνφ(x)= det(1+ ν d F(x))1/2φ(x + νF(x)). (3-1)

Since we have a pseudodifferential operator R(x, h D), the fact that UνPU−1
ν is analytic in ν is not

completely standard but can be done without problem (thanks to Assumption 3), and by using the Weyl
perturbation theorem, one can also see that there exists ε0 > 0 such that for any θ > 0 small enough, the
spectrum of Pθ is discrete in [−ε0, ε0] − i[0, ε0θ ]. The eigenvalues of Pθ are called the resonances of P
[Hunziker 1986; Helffer and Sjöstrand 1986; Helffer and Martinez 1987].

We will need another small parameter k > 0 related to the semiclassical parameter h > 0, defined as

k := h ln 1
h
. (3-2)

In the sequel, we will study the resonances in the domain [−ε0,Ch] − i[0,Ck], where C > 0 is
arbitrarily large. In this case, we can adapt the WKB constructions near the well made in [Helffer and
Sjöstrand 1984] and show that these resonances form a finite set {ρ1, . . . , ρm}, with asymptotic expansions
as h→ 0 of the form

ρ j ∼ h
∑
`≥0

ρ j,`h`/2,

where ρ j,` ∈ R and ρ j,0 = e j + r2,2(0, 0), e j being the j-th eigenvalue of the harmonic oscillator
−1+〈V ′′2 (0)x, x〉/2 (actually, to be more precise, one must also assume that the arbitrarily large constant
C does not coincide with one of the e j ).

In this paper we are interested in the imaginary part of these resonances. We have:

Theorem 3.1. Under Assumptions 1 to 6, the first resonance ρ1 of P is such that

Im ρ1 =−hn0+(1−n0)/2 f
(

h, ln 1
h

)
e−2S/h,
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where f
(

h, ln 1
h

)
admits an asymptotic expansion of the form

f
(

h, ln 1
h

)
∼

∑
0≤m≤`

f`,mh`
(

ln 1
h

)m
as h→ 0,

with f0,0 > 0 and S > 0 as defined in (2-9).
Moreover the other resonances in [−ε0,Ch] − i[0,Ck] verify

Im ρ j = O(hβ j e−2S/h),

for some real β j , uniformly as h→ 0.

4. WKB constructions

In this section, we fix some minimal d-geodesic γ ∈ G and we denote by x (1), . . . , x (Nγ ) the sequence
of points that constitute γ ∩ ∂�, ordered from the closest to 0 up to the closest to Ö (note that Nγ is
necessarily an odd number). We also denote by γ (1), γ (2), . . . , γ (Nγ+1) the portions of γ \ ∂� that are
in-between 0 and x (1), x (1) and x (2), . . ., x (Nγ ) and Ö , respectively, in such a way that we have

γ = γ (1) ∪ {x (1)} ∪ γ (2) ∪ · · · ∪ {x (Nγ )} ∪ γ (Nγ+1),

where the union is disjoint (in particular, by convention we assume that 0 ∈ γ (1)). Moreover, we start by
considering the first resonance ρ1 only.

In the cirque. As in [Pettersson 1997], the starting point of the construction consists of the WKB
asymptotics given near the well x = 0 by a method due to Helffer and Sjöstrand [1984]. More precisely,
because of the matricial nature of the operator and the fact that p1 is elliptic above x = 0, one finds a
formal solution w1 of Pw1 = ρ1w1 of the form

w1(x; h)=
(

ha1(x, h)
a2(x, h)

)
e−ϕ(x)/h, (4-1)

where ϕ is defined in (2-8) and a j ( j = 1, 2) is a classical symbol of order 0 in h, that is, a formal series
in h of the form

a j (x, h)=
∞∑

k=0

hka j,k(x), (4-2)

with a j,k smooth near 0 (here no half-powers of h appear since we consider the first resonance ρ1 only).
Moreover, a2 is elliptic in the sense that a2,0 never vanishes. Note that the generalization of the construc-
tions of [Helffer and Sjöstrand 1984] to the case of pseudodifferential operators is done by the use of a so-
called formal semiclassical pseudodifferential calculus, which in our case is based on the following result.

Lemma 4.1. Let ϕ̃ = ϕ̃(x) be a real bounded C∞ function on Rn and let p = p(x, ξ) ∈ S(1) extend to a
bounded function, holomorphic with respect to ξ in a neighborhood of the set

{(x, ξ) ∈ supp∇ϕ̃×Cn
: | Im ξ | ≤ |∇ϕ̃(x)|}.
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Then, denoting by OpL
h the left (or standard) semiclassical quantization of symbols, the operator

eϕ̃/h OpL
h (p)e

−ϕ̃/h is uniformly bounded on L2(Rn) and, for any a ∈ C∞0 (R
n) and N ≥ 1, one has,

with 8(x, y) := ϕ̃(x)− ϕ̃(y)− (x − y)∇ϕ̃(x),(
eϕ̃/h OpL

h (p)e
−ϕ̃/ha

)
(x; h)=

∑
|α|≤N

1
α!

(h
i

)|α|
∂αξ p(x, i∇ϕ̃(x))∂αy

(
a(y)e8(x,y)/h)∣∣

y=x +O(hN/2), (4-3)

locally uniformly with respect to x , and uniformly with respect to h small enough.

The proof of this lemma is rather standard, e.g., [Martinez 1987] and we omit it.
Then, the construction can be performed by using the formal series given in (4-3) in order to define the

formal action of R(x, h Dx) on w1. Afterwards, these constructions can be continued along the integral
curves of the vector field ∇ξ p2(x, i∇ϕ(x))Dx = 2∇ϕ(x).∇x (that is, along the minimal geodesic of d
starting at 0), as long as p1(x, i∇ϕ(x)) does not vanish (that is, as long as these minimal geodesics stay
inside the cirque �). In that way, after resummation and multiplication by a cutoff function, we obtain a
function w1 of the form (4-1) that satisfies

Pw1− ρ1w1 = O(h∞e−ϕ/h) (4-4)

locally uniformly in
⋃
γ , where the union is taken over all the minimal d-geodesics γ coming from the

well 0 and staying in �. In particular, (4-4) is satisfied in a neighborhood N1 of γ (1).

At the boundary of the cirque. Now, we study the situation near the point x (1) ∈ ∂�. By Theorem 2.14
of [Pettersson 1997], we know that there exist a neighborhood V1 of x (1) and two positive functions
ϕ1, ϕ2 ∈ C∞(V1) such that

ϕ1 = ϕ on V1 ∩ {V1 < V2};

ϕ2 = ϕ on V1 ∩ {V2 < V1};

|∇ϕ j (x)|2 = V j (x), j = 1, 2;

ϕ1 = ϕ2 and ∇ϕ1 =∇ϕ2 on V1 ∩ ∂�;

ϕ2(x)−ϕ1(x)∼ d(x, ∂�)2.

Actually, ϕ2 is just d2(0, x), where d2 is the Agmon distance associated with the metric V2(x) dx2 and ϕ1

is the phase function of the Lagrangian manifold obtained as the flow-out of {(x,∇ϕ2(x)) : x ∈V1∩ ∂�}

under the Hamilton flow of q1(x, ξ) := ξ 2
− V1(x).

Then, we set
ψ := 1

2(ϕ1+ϕ2), (4-5)

and we consider the smooth function z(x) defined for x ∈ V1 by

z(x)2 = 2(ϕ2(x)−ϕ1(x))

z(x) < 0 on V1 ∩ {V2 < V1}. (4-6)
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In order to extend the WKB construction (4-1) across ∂� near x (1), we follow Pettersson and try a
formal ansatz,

w2(x; h)=
∑
k≥0

hk
(
αk(x, h)Yk,0

(
z(x)
√

h

)
+
√

hβk(x, h)Yk,1

(
z(x)
√

h

))
e−ψ(x)/h, (4-7)

where

αk(x, h)=
(

hαk,1(x, h)
αk,2(x, h)

)
, βk(x, h)=

(
βk,1(x, h)
hβk,2(x, h)

)
. (4-8)

Here αk, j and βk, j are formal symbols of the type

∑
l≥0

l∑
m=0

hl(ln h)mγ l,m(x) (4-9)

(with γ l,m smooth in ω1) and, for any k ≥ 0 and ε ∈ C, the function Yk,ε is the so-called Weber function,
defined by

Yk,ε(z)= ∂k
εY0,ε(z), (4-10)

where Y0,ε is the unique entire function with respect to ε and z that is a solution of the Weber equation,

Y ′′0,ε +
(1

2
− ε−

z2

4

)
Y0,ε = 0, (4-11)

such that, for ε > 0, one has
Y0,ε(z)∼ e−z2/4z−ε as z→−∞. (4-12)

(Then, one also has Y0,ε(z) ∼
(√

2π/0(ε)
)
ez2/4zε−1 as z → +∞, by Proposition A.2 of [Pettersson

1997].) As is shown in Pettersson’s Theorem 4.3, a resummation of (4-7) is possible up to an error of
order O(h∞e−ϕ/h).

Now, since ϕ is not C∞ (but only C1) near x (1), we need to find some generalization of Lemma 4.1.
For technical reasons, in the rest of this section we prefer to work with the right semiclassical quantization
of symbols, which we denote by OpR

h .
For ν0>0 and g∈C∞(R2n

;R+), we denote by Sν0(g(x, ξ)) the set of (possibly h-dependent) functions
p ∈ C∞(R2n) that extend to holomorphic functions with respect to ξ in the strip

Aν0 := {(x, ξ) ∈ Rn
×Cn

: |Im ξ |< ν0}

such that, for all α ∈ N2n , one has

∂α p(x, ξ)= O(g(x,Re ξ)), (4-13)

uniformly with respect to (x, ξ) ∈Aν0 and h > 0 small enough. We also denote by S0(g) the analogous
space of smooth symbols obtained by switching R2n to Aν0 and “smooth” to “holomorphic”.

Lemma 4.2. Let ν0 > 0, m ∈ R, p = p(x, ξ) ∈ Sν0(〈ξ〉
m), and let φ = φ(x) be a real bounded Lipschitz

function on Rn such that
‖∇φ(x)‖L∞ < ν0.



1036 ALAIN GRIGIS AND ANDRÉ MARTINEZ

Let also a = a(x; h) ∈ C∞(Rn) be such that, for all α ∈ Nn ,

(h Dx)
αa(x; h)= O(e−φ(x)/h),

uniformly with respect to h small enough and x ∈ Rn . Then

(OpR
h (p)a)(x; h)= O(e−φ(x)/h)

uniformly with respect to h small enough and x ∈ Rn .

Proof. We write

eφ(x)/h OpR
h (p)a(x; h)=

1
(2πh)n

∫
ei(x−y)ξ/h+φ(x)/h p(y, ξ)a(y; h) dy dξ (4-14)

and, following [Sjöstrand 1982], we make the change of contour of integration in ξ ,

Rn
3 ξ 7→ ξ + iν1

x − y
|x − y|

, (4-15)

where ‖∇φ(x)‖L∞ < ν1 < ν0. We obtain

eφ(x)/h OpR
h (p)a(x; h)=

1
(2πh)n

∫
ei(x−y)ξ/h p

(
y, ξ + iν1

x − y
|x − y|

)
θ(x, y; h) dy dξ, (4-16)

with

θ(x, y; h)= a(y; h)e(φ(x)−ν1|x−y|)/h
= O(eφ(x)−φ(y)−ν1|x−y|/h).

Therefore

θ(x, y; h)= O(e−δ|x−y|/h), (4-17)

with δ = ν1−‖∇φ‖L∞ > 0.
Then, in the case m <−n, the result follows immediately from (4-16)–(4-17) (and standard estimates

on oscillatory integrals). In the general case, we just write

OpR
h (p)= OpR

h (p)(2ν0− h21x)
−k(2ν0− h21x)

k, (4-18)

with k an integer large enough (e.g., k= 1+|[m]|+n) and, since OpR
h (p)(2ν0−h21x)

−k is a semiclassical
pseudodifferential operator with (h-dependent) symbol in Sν0(〈ξ〉

m−2k) ⊂ Sν0(〈ξ〉
−n−1), the result follows

by applying the previous case with a replaced by (2ν0− h21x)
ka. �

Now, as preparation for defining a formal pseudodifferential calculus acting on expressions such
as (4-7), for j = 1, . . . , n and x ∈ ω1, we set

A j (x) :=


∂ϕ2(x)
∂x j

0

0
∂ϕ1(x)
∂x j

 ∈M2(R). (4-19)
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Then, for any k ≥ 0, we have (see [Pettersson 1997, (4.18)])

(h Dx j − i A j (x))

Yk,0

(
z(x)
√

h

)
Yk,1

(
z(x)
√

h

)
 e−ψ(x)/h

=

√
h

i
(∂x j z(x))

kYk−1,1

(
z(x)
√

h

)
Yk,0

(
z(x)
√

h

)
 e−ψ(x)/h . (4-20)

If a and b are (scalar) formal symbols of the type (4-9) and k ∈ N, we set

Ik(a, b)(x; h)= a(x; h)Yk,0

(
z(x)
√

h

)
+ b(x; h)Yk,1

(
z(x)
√

h

)
, (4-21)

and we plan to exploit (4-20) in order to define a formal action of a pseudodifferential operator on
Ik(a, b)e−ψ/h . Using (4-20), we see that we have

(h Dx − i∇ϕ2(x))(Ik(a, 0)e−ψ/h)= (Ik(h Dxa, 0)+ Ik−1(0, k
√

haDx z))e−ψ/h,

(h Dx − i∇ϕ1(x))(Ik(0, b)e−ψ/h)= Ik(
√

hbDx z, h Dx b)e−ψ/h .
(4-22)

Now, for any p ∈ Sν0(〈ξ〉
m), N ≥ 1 and j = 1, 2, Taylor’s formula gives

p(x, ξ)=
∑
|α|≤N

1
α!
∂αξ p(x, i∇ϕ j (x))(ξ − i∇ϕ j (x))α +

∑
|α|=N+1

p j,α(x, ξ)(ξ − i∇ϕ j (x))α, (4-23)

where the p j,α are in Sν0(〈ξ〉
m). Moreover, we have:

Lemma 4.3. Let ν0 > supx∈ω1
min(
√

V1(x),
√

V2(x)) and m ∈R. Then, for any q = q(x, ξ) ∈ Sν0(〈ξ〉
m),

k ≥ 0, a in C∞0 (ω1) and α ∈ Nn , one has

OpR
h
(
q(x, ξ)(ξ − i∇ϕ2(x))α

)
(Ik(a, 0)e−ψ(x)/h)= O(|ln h|kh|α|/2e−ϕ(x)/h),

OpR
h
(
q(x, ξ)(ξ − i∇ϕ1(x))α

)
(Ik(0, a)e−ψ(x)/h)= O(|ln h|kh|α|/2e−ϕ(x)/h),

(4-24)

where the estimates hold uniformly for h small enough and x ∈ Rn .

Proof. We prove both estimates together, by induction on |α|. We first notice that, by Lemma 4.6 of
[Pettersson 1997], for β ∈ Nn and j ∈ {0, 1}, one has

(h Dx)
β

(
Yk, j

(
z(x)
√

h

)
e−ψ(x)/h

)
= O(|ln h|ke−ϕ(x)/h). (4-25)

As a consequence, the result for α = 0 follows directly from Lemma 4.2.
Now, assume it is true for |α| ≤ N (N ∈N fixed arbitrarily), and let γ ∈Nn , |γ | = 1. Using the notation

Ik,2(a) := Ik(a, 0)e−ψ/h, Ik,1(a) := Ik(0, a)e−ψ/h, (4-26)

we write (for |α| ≤ N and j = 1, 2)

OpR
h
(
q(x, ξ)(ξ − i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

=
1

(2πh)n

∫
ei(x−y)ξ/h fα(y, ξ)(ξ − i∇ϕ j (y))γ Ik, j (a)(y)e−ψ(y)/h dy dξ,
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with fα(y, ξ) := q(y, ξ)(ξ − i∇ϕ j (y))α . Now, assuming without loss of generality that γ = (1, 0, . . . , 0)
and using the fact that

ξ1ei(x−y)ξ/h
=−h Dy1(e

i(x−y)ξ/h),

we obtain

OpR
h
(
q(x, ξ)(ξ − i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

=
1

(2πh)n

∫
ei(x−y)ξ/h

(
h Dy1 − i

∂ϕ j

∂x1
(y)
)

Ik, j ( fα(y, ξ)a(y))e−ψ(y)/h dy dξ,

and therefore, by (4-22),

OpR
h
(
q(x, ξ)(ξ−i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

=
1

(2πh)n

∫
ei(x−y)ξ/h Ĩk, j ( fα(y, ξ)a(y))e−ψ(y)/h dy dξ,

with

Ĩk,2(a) := hIk,2(Dx1a)+ k
√

hIk−1,1(aDx1 z), Ĩk,1(a) :=
√

hIk,2(aDx1 z)+ hIk,1(Dx1a).

Then, applying the induction hypothesis (and using the fact that Dy1 fα is a sum of terms of the type
g(y, ξ)(η− i A(y))β with |β| ≥ |α| − 1) this gives

OpR
h
(
q(x, ξ)(ξ − i∇ϕ j (x))α+γ

)
Ik, j (a)e−ψ(x)/h

= O
(
|ln h|kh1+(|α|−1)/2

+ |ln h|k−1h(1+|α|)/2+ |ln h|kh(1+|α|)/2
)
e−ϕ/h

= O
(
|ln h|kh(1+|α|)/2

)
e−ϕ/h,

and the proof is complete. �

Using Lemma 4.3 and (4-23), for any a in C∞0 (ω1), we obtain (with the notation (4-26))

OpR
h (p)(Ik, j (a)e−ψ/h)

=

∑
|α|≤N

1
α!

OpR
h
(
∂αξ p(x, i∇ϕ j (x))(ξ − i∇ϕ j (x))α

)
(Ik, j (a)e−ψ(x)/h)+O(hN/2e−ϕ/h)

=

∑
|α|≤N
β≤α

1
i |β|β!(α−β)!

OpR
h (∂

α
ξ p(x, i∇ϕ j )(∇ϕ j )

βξα−β)(Ik, j (a)e−ψ(x)/h)+O(hN/2e−ϕ/h),

and thus, as before, writing down the corresponding oscillatory integral, in the same way we deduce

OpR
h (p)(Ik, j (a)e−ψ/h)

=

∑
|α|≤N
β≤α

1
i |β|β!(α−β)!

(h Dx)
α−β
[(∇ϕ j )

β∂αξ p(x, i∇ϕ j )Ik, j (a)e−ψ/h
] +O(hN/2e−ϕ/h). (4-27)

Now, for an integer M ≤ 0 and �⊂ Rn open, we consider the space of sequences of formal symbols,

SM(ω1) :=

{
a = (ak)k∈N : ak(x, h)=

∞∑
l=−M

l∑
m=0

hl(ln h)mγ l,m
k (x), γ l,m

k ∈ C∞(ω1)

}
,
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and, for a, b ∈ SM(ω1), we set

I (a, b) :=
∑
k≥0

hk Ik(ak,
√

hbk). (4-28)

Using (4-22), we see that, for j = 1, . . . , n, we have

h Dx j I (a, b)e−ψ/h
= I ((i A j + L j )(a, b))e−ψ/h, (4-29)

where i A j (a, b)= (i(∂x jϕ2)a, i(∂x jϕ1)b) and L j is the operator

L j : SM
× SM

→ SM−1
× SM−1,

(a, b) 7→ (ã j , b̃ j ),

defined by, for k ∈ N,
ã j

k := h Dx j ak + hbk Dx j z,

b̃ j
k := h Dx j bk + (k+ 1)hak+1 Dx j z.

(4-30)

In particular, using the notation L = (L1, . . . , Ln) and Lα = Lα1
1 · · · L

αn
n , for all α ∈ Nn we have

Lα maps SM(ω1)× SM(ω1) into SM−|α|(ω1)× SM−|α|(ω1). (4-31)

For any smooth diagonal M2(C)-valued function B(x)= diag(B1(x), B2(x)), we let it act on SM
× SM

by setting
B(a, b)= (B1a, B2b), (4-32)

and we define the formal action of a pseudodifferential operator with symbol p ∈ Sν0(〈ξ〉
m) on expressions

of the type I (a, b)e−ψ/h by the formula

OpF
h (p)(I (a, b)e−ψ/h) :=

∑
α∈Nn

β≤α

1
i |β|β!(α−β)!

I
(
(i A(x)+ L)α−β A(x)β∂αξ p(x, i A(x))(a, b)

)
e−ψ/h,

(4-33)
where we have also set A := (A1, . . . , An) and

∂αξ p(x, i A(x))(a, b) :=
(
∂αξ p(x, i(∇ϕ2))a, ∂αξ p(x, i(∇ϕ1))b

)
.

Then, in view of Lemma 4.3 and (4-27), we immediately obtain:

Proposition 4.4. Let a, b ∈ SM(ω1) and denote by Ĩ (a, b)e−ψ/h any resummation of I (a, b)e−ψ/h up
to an O(h∞e−ϕ/h) error term. Then, for any χ ∈ C∞0 (ω1), the quantity OpR

h (p)(χ Ĩ (a, b)e−ψ/h) is a
resummation of OpF

h (p)(I (χa, χb)e−ψ/h), up to an O(h∞e−ϕ/h) error term.

In particular, the operator P naturally acts (up to O(h∞e−ϕ/h) error terms) on expressions of the type

w2 =

(
I (hα1, β1)

I (α2, hβ2)

)
e−ψ/h, (4-34)

where α j = (α j,k)k≥0 and β j = (β j,k)k≥0 are in S0(ω1) ( j = 1, 2).
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Writing down the equation P̃w2 = ρ1w2, setting

α j,k =
∑
l≥0

l∑
m=0

hl(ln h)mαl,m
j,k (x),

and the analogous formula for β j,k , and identifying the coefficients of hl(ln h)m for 0≤ m ≤ l ≤ 1, we
find (denoting by p =

( p1+hr1,1 hr1,2
hr2,1 p2+hr2,2

)
the right symbol of P),

p1(x, i∇ϕ2)α
0,0
1,0 + r1,2(x, i∇ϕ2)α

0,0
2,0

+
[ 1

i ∇ξ p1(x, i∇ϕ1)(∇z)+ 1
2〈(Hessξ p1)(x, i∇ϕ1)∇z,∇(ϕ2−ϕ1)〉

]
β

0,0
1,0 = 0; (4-35)

[∂ξ p1(x, i∇ϕ1)Dx − i(∇x · ∇ξ p1)(x, i∇ϕ1)+ r1,1(x, i∇ϕ1)− ρ1]β
0,0
1,0 = 0; (4-36)

p2(x, i∇ϕ1)β
0,0
2,0 + r2,1(x, i∇ϕ1)β

0,0
1,0

+
[ 1

i ∂ξ p2(x, i∇ϕ2)(∇z)+ 1
2〈(Hessξ p2)(x, i∇ϕ2)∇z,∇(ϕ1−ϕ2)〉

]
α

0,0
2,1 = 0; (4-37)

(∂ξ p2(x, i∇ϕ2)Dx − i(∇x · ∇ξ p2)(x, i∇ϕ2)+ r2,2(x, i∇ϕ2)− ρ1)α
0,0
2,0 = 0. (4-38)

Here we also have used the fact that ρ ∼
∑

k≥1 hkρk as h→ 0.
Identifying the other coefficients, one obtains a series of equations that (in a way similar to [Pettersson

1997, Section 4]) can be solved in V1 (possibly after having shrunk it a little bit around x (1)), and in such
a way that one also has

w̃2− w̃1 = O(h∞e−ϕ/h) locally uniformly in V1 ∩ {V2 < V1}, (4-39)

where w1 is defined in (4-1) and w̃1 and w̃2 are resummations of w1 and w2. Among other things, this
implies

α
0,0
2,0 = a2,0 in V1 ∩ {V2 < V1}. (4-40)

Moreover, we see in (4-36) and (4-38) that β0,0
1,0 (respectively α0,0

2,0) is a solution of a differential equation of
order 1 on each integral curve of the real vector field ∇ϕ1(y) ·∇y (respectively ∇ϕ2(y) ·∇y). In particular,
because of the ellipticity of a2,0, we deduce from (4-38) and (4-40) that we have that

α
0,0
2,0 never vanishes in V1. (4-41)

Now, Assumption 6 implies that, if γ ∈ G0, then

r1,2(x, i∇ϕ2) 6= 0 on V1. (4-42)

Since p1(y, i∇ϕ2)= p1(y, i∇ϕ1)= 0 on ω1∩∂�, we deduce from (4-35) and (4-41) that, if γ ∈G0, then
β

0,0
1,0 does not vanish on ω1 ∩ ∂�. As before, because of (4-36) (and the fact that R(x, h Dx) is formally

self-adjoint), this implies:

if γ ∈ G0, then β0,0
1,0 never vanishes in V1. (4-43)
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In the island, outside the cirque. Now, we look at what happens on γ (2) and, at first, near x (1). Using the
asymptotics of Yk,ε(z/

√
h) given in [Pettersson 1997, Section 4], one also finds that, in V1 ∩ {V1 < V2},

w2 can be formally identified with

w3(x, h)=
√

2πh
(

b1(x, h)
hb2(x, h)

)
e−ϕ(x)/h, (4-44)

where b1, b2 are symbols of the form

b j (x; h)=
∑
l≥0

l∑
m=0

hl(ln h)mbl,m
j (x) ( j = 1, 2), (4-45)

with bl,m
j ∈ C∞(V1 ∩ {V1 < V2}), in the sense that, for any resummations w̃2 and w̃3 of w2 and w3,

w̃2− w̃3 = O(h∞e−ϕ/h) locally uniformly in �∩0+. (4-46)

Moreover, one also has

b0,0
1 = β

0,0
1,0 , (4-47)

which, by (4-43), shows that, when γ ∈ G0, b1 is elliptic in V1 ∩ {V1 < V2}.
Since p2(x, i∇ϕ(x)) 6= 0 in {V1 < V2}, we can formally solve the equation Pw3 = ρ1w3, and we see

again that b1 and b2 can be continued along the integral curves of ∇ϕ, as long as these curves stay inside
{V1 < V2} and ϕ1 does not develop caustics. In particular, they can be continued in a neighborhood N2

of γ (2), and the continuation of b1 remains elliptic in �2.
Clearly, the previous steps can be repeated near x (2), x (3), etc. (in the case Nγ ≥ 3), up to x (Nγ+1),

obtaining in that way (after having pasted everything in a standard way by using a partition of unity) a
function w(x, h), smooth on a neighborhood N(γ ) of γ in Ö , satisfying

(P − ρ1)w = O(h∞e−ϕ/h),

locally uniformly in N(γ ). Moreover, N(γ ) can be decomposed into

N(γ )= N1 ∪V1 ∪ · · · ∪VNγ ∪NNγ+1,

where, for all j , V j is a neighborhood of x ( j) and N j is a neighborhood of γ ( j), in such a way that, in
each N j , w admits a WKB asymptotics of the form,

w(x; h)∼ h( j−1)/2

(
h(1−(−1) j )/2a( j)

1 (x, h)
h(1+(−1) j )/2a( j)

2 (x, h)

)
e−ϕ(x)/h, (4-48)

where a( j)
1 and a( j)

2 are symbols of the same form as in (4-45), and a( j)
1 is elliptic if j is even, while a( j)

2 is
elliptic if j is odd (in particular, a(Nγ+1)

1 is elliptic). On the other hand, in each V j , w can be represented
by means of the Weber function, in a way similar to that of (4-7).
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At and after the boundary of the island. Let us denote by xγ ∈ γ ∩ ∂ Ö the point of type 1 where γ
touches the boundary of the island. When x ∈ γ ∩ Ö is close enough to xγ , we know from the previous
subsection that the asymptotic solution w is of the form

w(x; h)∼ hNγ /2
(

b1(x, h)
hb2(x, h)

)
e−ϕ(x)/h, (4-49)

where b1, b2 are smooth symbols on NNγ+1 of the same form as in (4-45), and b1 is elliptic. Moreover, as
x approaches xγ , b1 and b2 (together with ϕ) develop singularities on some set C (called the caustic set).
However, following an idea of [Helffer and Sjöstrand 1986], we can represent h−Nγ /2eS/hw in the integral
(Airy) form

I [c1, c2](x, h)= h−
1
2

∫
γ (x)

(
c1(x ′, ξn, h)

hc2(x ′, ξn, h)

)
e−(xnξn+g(x ′,ξn))/h dξn, (4-50)

where we have used local Euclidean coordinates (x ′, xn) ∈ Rn−1
× R centered at γ ∩ ∂ Ö , such that

V1(x)=−C0xn+O(x2) near this point. For x in Ö close to γ∩∂ Ö , the phase function ξn 7→ xnξn+g(x ′, ξn)

admits two real critical points that are close to 0. Then, choosing conveniently the x-dependent interval
γ (x), the steepest descent method at one of these points gives us the asymptotic expansion of I [c1, c2].
Comparing this with the symbols b1 and b2, one can determine c1 and c2 so that the asymptotic expansion
of h−Nγ /2eS/hw coincides with that of I [c1, c2] in Ö . In particular, when γ ∈ G0, one finds that c1

remains elliptic near 0.
At this point, since we did not assume any analyticity of the potentials near Ö , we have to follow

the methods of [Fujiié et al. 2011] — a reference we will henceforth abbreviate as [FLM] — where a
similar situation is considered. Indeed, following the constructions of [FLM, Section 4] (that are made in
the scalar case, but can be generalized without problem to our vectorial case), we see that there exists a
constant δ > 0 such that, for any N ≥ 1, one can construct a (vectorial) function wN , smooth on the set

WN (γ ) := {|x − xγ |< ε} ∩ {dist(x, Ö) < 2(Nk)2/3} (4-51)

with ε > 0 small enough (recall from (3-2) that k = |h ln h|), such that [FLM, Propositions 4.5 and 4.6]:

• (P − ρ1)wN = O(hδN e−Re ϕ̃N /h) uniformly in WN (γ ).

• For any α ∈ Zn
+

, there exists mα ≥ 0 independent of N such that

∂αx wN = O(h−mαe−Re ϕ̃N /h)

uniformly in WN (γ ).

• wN can be represented by an integral of the form (4-50) (with γ (x)= γN (x) depending on N ) in all
of WN (γ ).

• wN = w in NNγ+1 ∩WN (γ ).
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• For any large enough L , there exist CL > 0 and δL > 0, both independent of N , such that, uniformly
in WN (γ )∩ {dist(x, Ö)≥ (Nk)2/3}, one has

wN (x, h)= hNγ /2

( L+[Nk/CL h]∑
`=0

0≤m≤`

h`(ln h)m
(

f `,m1,N (x)

h f `,m2,N (x)

)
+O(hδL N

+ hL)

)
e−ϕ̃N (x)/h as h→ 0, (4-52)

with f `,m1,N (x), f `,m2,N (x) independent of h and of the form

f̃ `,mj,N (x)= (dist(x,C))−3`/2−1/4β
`,m
j,N (x, dist(x,C)), j = 1, 2, (4-53)

where β`,mj,N is smooth near (xγ , 0), and β`,m1 (xγ , 0) 6= 0 in the case γ ∈ G0.

Here, ϕ̃N is a (complex-valued) C1 function on WN (γ ), smooth on WN (γ ) \ C, such that [FLM,
Lemma 4.1]:

• ϕ̃N = ϕ+O(h∞) uniformly in NNγ+1 ∩WN (γ ).

• (∇ϕ̃N )
2
= V1(x)+O(h∞) uniformly in WN (γ ).

• There exists ε(h)= O(h∞) real such that, for x ∈WN (γ ) \ Ö , one has

Re ϕ̃N (x)≥ S− ε(h). (4-54)

• One has
Im∇ϕN (x)=−νN (x)

√
dist(x,C)∇ dist(x,C)+O(dist(x,C)),

uniformly with respect to h > 0 small enough and x ∈WN (γ ) \ Ö with νN (x)≥ δ.

The previous results show that we can extend w by taking wN in WN (γ ), and we obtain in that
way a function wN smooth on N(γ )∪WN (γ ), such that (P − ρ1)wN = O(hδN e−Re ϕ̃/h) uniformly in
N(γ ) ∪WN (γ ). Note that, thanks to Assumption 4, the number Nγ is constant on each connected
component of 0.

5. Agmon estimates

Preliminaries. In order to perform Agmon estimates in the same spirit as in [Helffer and Sjöstrand 1984],
we need some preliminary results because of the fact that we have to deal with pseudodifferential operators
(and not only Schrödinger operators). For this reason, we prefer to work with C∞ weight functions
(instead of Lipschitz ones), and the idea is to take h-dependent regularizations of Lipschitz weights.

At first, we need:

Proposition 5.1. Let ν0 > 0, m ≥ 0, a = a(x, ξ) ∈ Sν0(〈ξ〉
2m). For h > 0 small enough, let also

8h ∈ C∞(Rn) be real-valued, such that

sup |∇8h|< ν0 (5-1)

and, for any multi-index α ∈ Nn with |α| ≥ 2,

∂α8h(x)= O(h1−|α|), (5-2)
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uniformly for x ∈ Rn and h > 0 small enough. Then, for any 6̃ ⊂ Rn with dist(6,Rn
\ 6̃) > 0, the

operator e8h/h Ae−8h/h
:= e8h/h OpW

h (a)e
−8h/h satisfies

‖e8h/h Ae−8h/hu‖L2 ≤ C1‖〈h Dx 〉
mu‖L2, (5-3)

uniformly for all h > 0 small enough and u ∈ H m(Rn).

Proof. For u ∈ C∞0 (R
n), we write

e8/h Ae−8/hu(x)=
1

(2πh)n

∫
ei(x−y)ξ/h+(8(x)−8(y))/ha

(
x + y

2
, ξ

)
u(y) dy dξ,

and the property (5-1) shows that we can make the change of contour of integration given by

Rn
3 ξ 7→ ξ + i9(x, y),

where 9(x, y) :=
∫ 1

0 ∇8((1− t)x+ t y) dt (in particular, one has 8(x)−8(y)= (x− y)9(x, y)). Then,
denoting by Oph the semiclassical quantization of symbols depending on 3n variables (see, e.g., [Martinez
2002, Section 2.5]), we obtain

e8/h Ae−8/h
= Oph

(
a
(

x + y
2

, ξ + i9(x, y)
))
,

and, using (5-2), we see that, for any α, β, γ ∈ Zn
+

, we have

∂αx ∂
β
y ∂

γ

ξ

(
a
(

x + y
2

, ξ + i9(x, y)
))
= O(h−|α+β|〈ξ〉m). (5-4)

Then, the result is an easy consequence of the Calderón–Vaillancourt Theorem; see [Martinez 2002,
Exercise 2.10.15], for example. �

Proposition 5.2. Let φ and V be two bounded real-valued Lipschitz functions on Rn with |∇φ(x)|2≤V (x)
almost everywhere. Let also χ1 ∈ C∞0 (R

n
; [0, 1]) be supported in the ball {|x | ≤ 1}, with

∫
χ1(x) dx = 1.

For any h > 0, we set χh(x)= h−nχ(x/h). Then, the smooth function

φh := χh ∗φ

(where ∗ stands for the standard convolution) satisfies:

• φh = φ+O(h) uniformly for h > 0 small enough and x ∈ Rn .

• For all x ∈ Rn , one has |∇φh(x)|2 ≤ V (x)+ h‖∇V ‖L∞ .

• For all α ∈ Zn
+

with |α| ≥ 1, one has ∂αφh = O(h1−|α|).

The proof of this proposition is very standard and almost obvious, and we leave it to the reader. Observe
that, in particular, φh satisfies the estimates (5-2).



RESONANCE WIDTHS FOR THE MOLECULAR PREDISSOCIATION 1045

Agmon estimates. As a corollary of the two previous propositions, we have:

Corollary 5.3. Let φ and φh be as in Proposition 5.2, with V = min(V1, V2)+. Then one has, for any
u = (u1, u2) ∈ H 2(Rn)⊕ H 2(Rn),

Re〈eφh/h Pu, eφh/hu〉

≥ ‖h∇(eφh/hu)‖2+
2∑

j=1

〈(V j − |∇φh|
2)eφh/hu j , eφh/hu j 〉−CRh(‖eφh/hu‖2+‖h∇(eφh/hu)‖2),

where CR > 0 is a constant that depends on R(x, h Dx), χ1 and sup |∇φ| only.

Proof. It is standard (and elementary) to show that

Re〈eφh/h(−h21+ V j )u j , eφh/hu j 〉 = ‖h∇(eφh/hu j )‖
2
+〈(V j − |∇φh|

2)eφh/hu j , eφh/hu j 〉.

Therefore, it is enough to estimate 〈eφh/h R(x, h Dx)u, eφh/hu〉. Applying Proposition 5.1 , we see that
the operator eφh/h R(x, h Dx)e−φh/h

〈h Dx 〉
−1 is uniformly bounded on L2.

Moreover, since the constants appearing in the estimates (5-4) depend on a, α, and on the estimates
on the ∂β8 only, we see that the norm of eφh/h R(x, h Dx)e−φh/h

〈h Dx 〉
−1 depends on r and on estimates

on ∂β(χh ∗∇φ)= (∂
βχh) ∗∇φ (|β| ≤ |α|) only. Since the latter depend on α, χ1 and sup |∇φ| only, the

result follows. �

6. Global asymptotic solution

The constructions of Section 4 can be done in a neighborhood of any minimal geodesic γ ∈G, and give rise
(after having pasted them together with a partition of unity) to an asymptotic solution (still denoted
by wN ) on a neighborhood of

⋃
γ∈G γ . Now, we plan to extend this solution to a whole (h-dependent)

neighborhood of {V1 ≥ 0}, by using a modified self-adjoint operator with discrete spectrum near 0.
At first, we fix ε0 > 0 sufficiently small, and a cutoff function χ0 ∈ C∞0 (Ö; [0, 1]) such that

χ0(x)= 1 if V1(x)≥ 2ε0, χ0(x)= 0 if V1(x)≤ ε0,

and we set
Ṽ1 := χ0V1+ ε0(1−χ0). (6-1)

In particular, Ṽ1 coincides with V1 on {V1 ≥ 2ε0}, and we have Ṽ1 ≥ ε0 everywhere. Then, we define
P̃1 := −h21+ Ṽ1, and we consider the self-adjoint operator

P̃ =
(

P̃1 0
0 P2

)
+ h R(x, h Dx). (6-2)

By construction, for all C > 0 and h small enough, the spectrum of P̃ is discrete in [−Ch,Ch], and
a straightforward adaptation of the arguments used in [Helffer and Sjöstrand 1984] shows that its first
eigenvalue E1 admits the same asymptotics as ρ1 as h → 0+. We denote by v its first normalized
eigenfunction, and by N0 ⊂ {V1 > 2ε0} some fixed neighborhood of

⋃
γ∈G ∩ {V1 > 2ε0} where the

asymptotic solution wN is well-defined. We have:
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Proposition 6.1. There exists θ0 ∈ R independent of h such that, for any compact subset K of N0, and for
any α ∈ Zn

+
, one has

‖eϕ/h∂α(eiθ0v− hn/4wN )‖K = O(h∞).

Proof. The existence of θ0 such that ∂α(eiθ0v− hn/4wN )= O(h∞) uniformly near 0 is a consequence of
[Helffer and Sjöstrand 1984, Proposition 2.5] and standard Sobolev estimates. Let χ ∈ C∞0 (N0; [0, 1]),
with χ = 1 in a neighborhood of K ∪ {0}. Following [Helffer and Sjöstrand 1984; Pettersson 1997], we
plan to apply Corollary 5.3 to u := χ(eiθ0v− hn/4wN ), with a suitable weight function φ. Let us first
observe that, using Corollary 5.3, for any ε > 0 one has

‖e(1−ε)ϕ̃/h
〈h Dx 〉v‖H1 = O(1), (6-3)

where ϕ̃(x)≥ ϕ(x) is the Agmon distance associated with min(Ṽ1, V2) between 0 and x . Now, for C ≥ 1
arbitrarily large, we define

φ(x) :=min(φ1, φ2),

where

φ1(x) :=

{
ϕ(x)−Ch ln

(
ϕ(x)

h

)
if ϕ(x)≥ Ch,

ϕ(x)−Ch ln C if ϕ(x)≤ Ch,

φ2(x) :=

{
inf

χ(y) 6=1
(1− 2ε)(ϕ(y)+ d(y, x)) if x ∈ suppχ,

(1− 2ε)ϕ(x) if x /∈ suppχ.

Here, ε > 0 is taken sufficiently small to have φ2(x) > ϕ(x) when x ∈ K . Then, φ is Lipschitz continuous,
and one has φ = φ1 on K and φ = φ2 on Rn

\ {χ = 1}. Moreover, one sees as in the proof of [Pettersson
1997, Theorem 5.5] that, if we set V :=min(V1, V2), φ satisfies

|∇φ|2 = V in {ϕ ≤ Ch}, |∇φ|2 ≤ V − δ0Ch in {ϕ ≥ Ch},

where δ0 = infx∈suppχ, x 6=0(V (x)/ϕ(x)) > 0. As a consequence, by Proposition 5.2, the regularized φh

of φ satisfies

|∇φh|
2
≤ V + h‖V ‖L∞ in {ϕ ≤ Ch}, |∇φh|

2
≤ V − (δ0C −‖V ‖L∞)h in {ϕ ≥ Ch}.

Then, choosing C sufficiently large and setting u := χ(eiθ0v−hn/4wN ), we see that Corollary 5.3 implies

‖h∇(eφh/hu)‖2+C ′h‖eφh/hu‖2
{ϕ≥Ch} ≤ 〈e

φh/h(P̃ − E1)u, eφh/hu〉, (6-4)

with C ′ = C ′(C) arbitrarily large. Moreover, if χ̃ ∈ C∞0 (N0) is such that χ̃χ = χ , we have

(P̃ − E1)u = [P̃, χ]χ̃u+O(h∞e−ϕ/h),

and since φh = (1−2ε)ϕ+O(h) on supp∇χ , minsupp∇χ ϕ=: δ1 > 0 and, by Proposition 5.1, the operator
eφh/h
[R, χ]e−φh/h is uniformly bounded, we obtain, using also (6-3),

〈eφh/h(P̃ − E1)u, eφh/hu〉 = O(‖e(1−ε)ϕ/h
〈h Dx 〉χ̃u‖2supp∇χ + h‖eφh/hu‖2)= O(e−2εδ1/h

+ h‖eφh/hu‖2).
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Inserting this estimate into (6-4) and taking C sufficiently large, this permits us to obtain

‖h∇(eφh/hu)‖2+ h‖eφh/hu‖2 = O(e−2εδ1/h
+‖eφh/hu‖2

{ϕ≤Ch}).

In particular, since φh = φ1+O(h) on K and φh = (1− 2ε)ϕ ≤ Ch on {ϕ ≤ Ch},

‖hCϕ−C eϕ/hh∇u‖2K +‖h
Cϕ−C eϕ/hu‖2K = O(e−2εδ1/h

+‖u‖2
{ϕ≤Ch}).

Therefore,
‖eϕ/h

∇u‖2K +‖e
ϕ/hu‖2K = O(h∞),

and the result follows by standard Sobolev estimates. �

Now, following [FLM, Section 4.3], we observe that, if ε0 has been taken small enough, the asymptotic
solution wN is O(hδN e−S/h) uniformly on the set{

dist
(

x,
⋃
γ∈G

γ
)
≥ ε0

}
∩ {V1 ≤ 2ε0} ∩

( ⋃
γ∈G

N(γ )∪WN (γ )
)

Moreover, by (6-3), the same is true for v on
{
dist(x,

⋃
γ∈Gγ )≥ ε0

}
∩ {V1 ≤ 2ε0}. Therefore, using also

Proposition 6.1, we can paste together eiθ0v and h−n/4wN in order to obtain a function uN that satisfies
the properties of the following proposition; see also [FLM, Proposition 4.6].

Proposition 6.2. There exists a function uN , smooth on ÖN := {dist(x, Ö) < 2(Nk)2/3}, such that

(P − ρ)uN = O(hδN e−ReϕN /h), ∂αuN = O(h−mαe−ReϕN /h),

uniformly on ÖN , where ϕ̃N is as in (4-54). Moreover, in
⋃
γ∈G WN (γ )∩ {dist(x, Ö) ≥ (Nk)2/3} one

can write uN as in (4-52) (with β`,m1 (xγ , 0) 6= 0), while away from
⋃
γ∈G WN (γ ) ∩ {x /∈ Ö}, uN is

O(hδN e−ReϕN /h).

7. Comparison between asymptotic and true solution

A priori estimates. In the same spirit as in [FLM, Theorem 2.2], we start with an a priori estimate for
the resonant state of P . From now on, we denote by u the outgoing solution of

Pu = ρ1u, (7-1)

normalized in the following way: we fix some analytic distorted space (also more recently introduced, in
the context of computational physics, under the name of perfectly matched layer; see [Berenger 1994],
for example) of the form

R̃n
θ := {x + iθF(x) : x ∈ Rn

}, (7-2)

where F ∈ C∞(Rn
;Rn), F(x) = 0 if |x | ≤ R0, F(x) = x for |x | large enough, and where θ > 0 is

sufficiently small and may also tend to 0 with h, but not too rapidly (here, we take θ = h|ln h| = k). Then,
by definition, the fact that ρ1 is a resonance of P means that (7-1) admits a solution in L2(R̃n

θ ), and here
we take u such that

‖u‖L2(R̃n
θ )
= 1. (7-3)
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As before, d stands for the Agmon distance associated with the pseudometric min(V1, V2)+ dx2, and we
denote by Bd(S) := {x ∈ Rn

: d(0, x) < S} the corresponding open ball of radius S = d(0, ∂ Ö). Then,
we first have:

Proposition 7.1. For any compact subset K ⊂ Rn , there exists NK ≥ 0 such that

‖es(x)/h u‖H1(K ) = O(h−NK ),

uniformly as h→ 0, where s(x)= ϕ(x) if x ∈ Bd(S) and s(x)= S otherwise.

Proof. The proof is very similar to that of [FLM, Theorem 2.2], with the only difference that here we
have to deal with pseudodifferential operators, forbidding us to use Dirichlet realizations and nonsmooth
weight functions. Instead, we modify V1 in a way similar to (6-1), and we regularize the weights as in
Proposition 5.2.

We consider a cutoff function χ̂ (dependent on h) such that

χ̂(x)= 1 if V1(x)≥ 2k2/3, χ̂(x)= 0 if V1(x)≤ k2/3, ∂αχ̂ = O(k−2|α|/3),

and we set

V̂1 := χ̂V1+ k2/3(1− χ̂), P̂1 := −h21+ V̂1, P̂ =
(

P̂1 0
0 P2

)
+ h R(x, h Dx). (7-4)

We denote by Ê the first eigenvalue of P̂ , and by v̂ its first normalized eigenfunction. Moreover, we
consider the Agmon distance d̂ associated with the pseudometric (min(V1, V2)+− Ê) dx2, and we set
ϕ̂(x) := d̂(0, x). Then, the same proof as in [FLM, Lemma 3.1] shows the existence of a constant C1 > 0
such that

s(x)−C1k ≤ ϕ̂(x)≤ ϕ(x) (x ∈ Rn). (7-5)

Moreover, an adaptation of the proof of [FLM, Lemma 3.2] (obtained by using Proposition 5.2 in order
to regularize the Lipschitz weight) gives

‖eϕ̂/h v̂‖H1(Rn) = O(h−N0), (7-6)

for some N0 ≥ 0. Then, the result follows by considering the function χ̂ v̂ and by observing that, thanks
to (7-6), one has [FLM, Lemma 3.3 and Formula (3.20)]∥∥∥χ̂ v̂− 1

2iπ

∫
γ

(z− Pθ )−1χ̂ v̂ dz
∥∥∥

H1
= O(h−N1e−S/h).

Here, γ is the oriented complex circle {z ∈ C : |z− Ê | = h2
} and Pθ is a convenient distortion of P . The

previous estimate actually shows that the distorted uθ of u coincides — up to O(h−N1e−S/h)— with µχ̂v̂,
where µ is a complex constant satisfying |µ| = 1+O(e−δ/h), for some δ > 0. �

Remark 7.2. The previous proof also gives a global estimate on uθ ,

‖es(x)/h uθ‖H1(Rn) = O(h−N ′1),

for some constant N ′1 ≥ 0. See [FLM, Lemma 3.3 and Formula (3.20)].
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Now, we plan to give an even better a priori estimate on the difference u− uN near the boundary of
the island. Here again, we follow the arguments given in [FLM, Section 5]. For any N ≥ 1, we set

UN := {x ∈ Rn
: dist(x, ∂ Ö) < 2(Nk)2/3}.

We have [FLM, Propositions 5.1 and 5.2]:

Proposition 7.3. There exist N1 ≥ 0 and C ≥ 1 such that, for any N ≥ 1 large enough, one has

‖u− uC N‖H1(UN ) ≤ h−N2e−S/h .

Proof. We just recall the main lines of the proof in [FLM]. At first, thanks to Proposition 7.1 and the
particular form of uC N , we immediately see that the estimate is true on the set {ϕ(x)≥ S−2k}. Then, we
take a cutoff function χ̃ ∈ C∞0 (ϕ(x) < S− k) such that χ̃ = 1 on {ϕ(x)≥ S− 2k} and ∂αχ̃ = O(h−Nα )

for some Nα ≥ 0. We also consider the Lipschitz weight

φN (x)=min
(
ϕ(x)+C1 Nk+ k(S−ϕ(x))1/3, S+ (1− k1/3)(S−ϕ(x))

)
and, by using Propositions 7.1 and 6.2, we see that, if C is large enough, we have

‖eφN /h(P − ρ1)χ̃(u− uC N )‖L2(Rn) = O(h−M1),

for some M1 ≥ 0 independent of N . Then, regularizing φN as in Proposition 5.2, we can perform Agmon
estimates as in the proof of [FLM, Proposition 5.1], and we find

‖eφN /hχ̃(u− uC N )‖L2(Rn) = O(h−M2),

for some M1 ≥ 0 independent of N , and the result follows. �

Propagation. Now, we plan to prove (see [FLM, Proposition 6.1]):

Theorem 7.4. For any L > 0 and for any α ∈ Zn
+

, there exists NL ,α ≥ 1 such that, for any N ≥ NL ,α,

∂αx (u− uC N )(x, h)= O(hLe−S/h) as h→ 0, (7-7)

uniformly in UN .

Proof. As in [FLM], the proof relies on three different types of microlocal propagation arguments. We fix
some x̂ ∈ ∂ Ö and we define the Fourier–Bors–Iagolnitzer transform T (see [Sjöstrand 1982; Martinez
2002], for example) as

T u(x, ξ ; h) :=
∫

Rn
ei(x−y)ξ/h−(x−y)2/2hu(y) dy.

(1) Standard C∞ propagation. Since u is outgoing (that is, it becomes L2 when restricted to the distorted
space or the perfectly matched layer defined in (7-2)), one can see as in [FLM, Lemma 6.2] that, if t0 > 0
is large enough, one has

T u(x, ξ)= O(h∞e−S/h),

uniformly near exp(−t0 Hp1)(x̂, 0). Moreover, by Proposition 7.1, we know that eS/h u remains O(h−N0)

(for some N0 ≥ 0) on a neighborhood of the x-projection of {exp(−t Hp1)(x̂, 0) : 0< t ≤ t0}.
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Then, the standard C∞ propagation of the frequency set for the solution to a real principal type operator
(see, e.g., [Martinez 2002]) shows that the previous estimate remains valid near exp(−t Hp1)(x̂, 0) for
any t > 0.

(2) Nonstandard propagation in h-dependent domains. Thanks to the previous result, we can concentrate
our attention on a sufficiently small neighborhood of x̂ . As before, we choose local Euclidean coordinates
(x ′, xn) ∈ Rn−1

×R centered at x̂ , such that V1(x)=−C0xn +O(|x − x̂ |2). We also set µN := (Nk)−
1
3 ,

and we consider the modified Fourier–Bors–Iagolnitzer transform TN defined by

TN u(x, ξ ; h) :=
∫

Rn
ei(x−y)ξ/h−(x ′−y′)2/2h−µN (xn−yn)

2/2hu(y) dy. (7-8)

Then, using the previous result it is elementary to show that, for any (fixed) t > 0 small enough, one has
[FLM, Lemma 6.3]

TN 1K1 u(x, ξ)= O(h∞e−S/h),

uniformly near exp(−t Hp1)(x̂, 0). Here K1 is of the form K1 = K \ Bd(S), where K is any compact
neighborhood of the closure of Ö . The interest of the latter property is that, as shown in [FLM], it can be
propagated up h-dependent times t of order (Nk)1/3. More precisely, setting

exp(t Hp1)(x̂, 0)= (x ′(t), xn(t); ξ ′(t), ξn(t)) (t ∈ R),

we have [FLM, Lemma 6.4]:

Lemma 7.5. There exists δ0 > 0 such that, for any δ ∈ (0, δ0], for all N ≥ 1 large enough, and for
tN ,δ := δ

−1(Nk)1/3, one has

TN 1K1 u = O(hδN e−S/h) uniformly in W(tN , h),

where

Wδ(N , h) :=
{
|xn − xn(−tN ,δ)| ≤ δ(Nk)2/3, |ξn − ξn(−tN ,δ)| ≤ δ(Nk)1/3, |x ′− x ′(−tN ,δ)| ≤ δ(Nk)1/3,

|ξ ′− ξ ′(−tN ,δ)| ≤ δ(Nk)1/3
}
.

Proof. The proof is based on the refined exponential weighted estimates (in the same spirit as in [Martinez
2002]) given in [FLM, Proposition 8.3], which we apply here to the operator P1. Since the proof is very
similar to that of [FLM, Lemma 6.4], we omit the details. �

On the other hand, using the explicit form of uC N given in (4-52), one also sees that, for any L large
enough, there exists δL > 0 such that, for any N ≥ 1, one has [FLM, Lemma 6.7]:

TN 1K1 uC N = O((hδL N
+ hL)e−S/h) uniformly in Wδ(N , h).

In particular, taking N = L/δL with L � 1, we obtain a sequence N = NL along which

TN 1K1 uC N = O(hδL N e−S/h) uniformly in Wδ(N , h),

and with both N and δL N arbitrarily large.
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As a consequence, along the same sequence, we also obtain

TN 1K1(u− uC N )= O(hδ
′

L N e−S/h) uniformly in Wδ(N , h),

with δ′L =min(δ, δL).
Moreover we see that, when y ∈UN ∩ Bd(S) and x ∈5x Wδ(N , h) (where 5x stands for the natural

projection onto the x-space), we have

µN (xn − yn)
2
+ s(x)− S ≥ CδNk,

with Cδ > 0 constant (and actually Cδ → ∞ as δ → 0). Therefore, using Proposition 7.3 and the
expression (7-8) for TN , we also obtain

TN 1UN∩Bd (S)(u− uC N )= O(hδN e−S/h) uniformly in Wδ(N , h).

As a consequence, if we set

χN (x) := χ0

(
|xn − x̂n|

(Nk)2/3

)
χ0

(
|x ′− x̂ ′|
(Nk)1/2

)
, (7-9)

where the function χ0 ∈ C∞0 (R+; [0, 1]) satisfies χ0 = 1 in a sufficiently large neighborhood of 0, and is
fixed in such a way that χN (x)= 1 in{

|xn − x̂n| ≤ |xn(−tN )− x̂n| + 2δ(Nk)2/3, |x ′− x̂ ′| ≤ |x ′(−tN )− x̂ ′| + 2δ(Nk)1/2
}

(here, tN and δ are those of Lemma 7.5), then the function

vN := χN eS/h(u− uC N )

is such that

TNvN = O(hδ
′

L N e−S/h) uniformly in Wδ(N , h). (7-10)

Moreover, we have [FLM, Section 6.2]

(P − ρ1)vN = [P, χN ]eS/h(u− uC N )+O(hδN ),

and thus, on {dN (x, supp∇χN ) ≥ ε} ×Rn , where ε > 0 is fixed small enough and dN is the distance
associated with the metric (Nk)−1(dx ′)2+ (Nk)−

4
3 dx2

n ,

TN (P − ρ1)vN = O(hδ
′N ),

for some δ′ = δ′(ε) > 0.

(3) (Almost) standard analytic propagation. Although we are in a region where no analytic assumption
is made, a rescaling of the problem gives estimates similar to those encountered in the analytic context.
Indeed, setting

h̃ = h̃N :=
h

Nk
=

(
N ln 1

h

)−1
,
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and performing the change of variables (still working in the same coordinates, for which x̂ = 0)

x 7→ x̃ = (x̃ ′, x̃n) := ((Nk)−
1
2 x ′, (Nk)−

2
3 xn),

ξ 7→ ξ̃ = (ξ̃ ′, ξ̃n) := ((Nk)−
1
2 ξ ′, (Nk)−

2
3 ξn),

we see that the estimate (7-10) implies (see [FLM, Formula (6.43)])

T ṽN (x̃, ξ̃ ; h̃N )= O(e−δ
′

L/2h̃N )

uniformly in the tubular domain

W̃(h̃) :=
{
|x̃n − x̃n(−δ

−1)| ≤ δ, |ξ̃n − ξ̃n(−δ
−1)| ≤ δ, |x̃ ′− x̃ ′(−δ−1)| ≤ δ(Nk)−

1
6 ,

|ξ̃ ′− ξ̃ ′(−δ−1)| ≤ δ(Nk)−
1
6
}
, (7-11)

where
ṽN (x̃) := (Nk)(n−1)/4+ 1

3 vN ((Nk)1/2 x̃ ′, (Nk)2/3 x̃n),

(x̃(t̃), ξ̃ (t̃)) := exp t̃ H p̃1(0, 0),

p̃1(x̃, ξ̃ ) := (Nk)1/3|ξ̃ ′|2+ ξ̃ 2
n +W1(x̃, h̃),

W1(x̃, h̃) := (Nk)−
2
3 V1((Nk)1/2 x̃ ′, (Nk)2/3 x̃n)− (Nk)−

2
3ρ1.

Moreover, setting
P̃ := −(Nk)1/3h̃21x̃ ′ − h̃2∂2

x̃n
+W1(x̃),

then, for any N ≥ 1 large enough, we also have

T P̃ ṽN (x̃, ξ̃ ; h̃N )= O(e−δ
′/2h̃N ),

uniformly with respect to h > 0 small enough and (x̃, ξ̃ ) ∈ R2n satisfying

dN
(
((Nk)1/2 x̃ ′, (Nk)2/3 x̃n), supp∇χN

)
≥ ε.

Finally, by Proposition 7.1 and Proposition 7.3, we have the a priori estimate

‖ṽN‖H1 = O(h−N1)= O(eN1/(Nh̃)),

for some N1 ≥ 0 independent of N , and we observe that, for N = L/δL , one has N1/(δL N )→ 0 as
L→+∞.

At this point, a small refinement of the propagation of the microsupport (see [FLM, Proposition 6.8])
gives the existence of a constant δ1 > 0 independent of L such that, for all L large enough and N = L/δL ,
one has

T ṽN (x̃, ξ̃ ; h̃)= O(e−δ1δL/h̃), (7-12)

uniformly in V (δ1)= {x̃ : |x̃ | ≤ δ1}×
{
ξ̃ : (Nk)1/6|ξ̃ ′| + |ξ̃n| ≤ δ1

}
.

Then, using an ellipticity property of p̃1 away from
{
ξ̃ : (Nk)1/6|ξ̃ ′| + |ξ̃n| ≤ δ1

}
and reconstructing

ṽN from T ṽN , one finally finds
‖ṽN‖Hm(|x̃ |≤δ2) = O(e−δ2δL/h̃),
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with m ≥ 0 arbitrary, δ2 > 0 independent of L , N = L/δL , and L arbitrarily large. Therefore, turning back
to the original coordinates x and parameter h and making x̂ vary on all of ∂ Ö , Theorem 7.4 follows. �

8. Asymptotics of the width

As before, we denote by Pθ the distorted operator obtained from P by means of a complex distortion
as in (7-2), with R0 sufficiently large in order to have Ö ⊂ {|x | ≤ R0/2}. We also denote by uθ the
corresponding distorted state obtain from u by applying the same distortion (see, e.g., [FLM] for more
details).

Let ψ0 ∈ C∞0 ([0, 2); [0, 1]) with ψ0 = 1 near [0, 1], and set

ψN (x) := ψ0

(
dist(x, Ö)
(Nk)2/3

)
,

where, as before, N = L/δL with L ≥ 1 arbitrarily large.
Then, since ψN u = ψN uθ , Pθuθ = ρ1uθ and ψN PθψN uθ = ψN PψN u, we have

Im ρ1‖ψN u‖2 = Im〈ψN Pθuθ , ψN u〉 = Im〈[ψN , Pθ ]uθ , ψN u〉,
and thus

Im ρ1 = Im

〈
2h2(∇ψN )∇u+ h2(1ψN )u, ψN u

〉
+ h

〈
[ψN , Rθ ]uθ , ψN u

〉
‖ψN u‖2

. (8-1)

Moreover, we know that ‖ψN u‖ = 1+O(e−δ/h) with δ > 0 and, by Theorem 7.4, on supp ψ̃N we can
replace u by uC N , up to an error O(hLe−S/h). Also, using Proposition 7.1 we deduce

Im ρ1 = Im〈2h2(∇ψN )∇uC N + h2(1ψN )u, ψN uC N 〉+ h〈[ψN , Rθ ]uθ , ψN u〉+O(hL−N0)e−2S/h (8-2)

for some fixed N0 ≥ 0 independent of L .
Now, we let ψ̃0 ∈ C∞0 ((1, 2); [0, 1]) with ψ̃0 = 1 near supp∇ψ0 and set ψ̃N (x)= ψ̃0

(dist(x, Ö)
(Nk)2/3

)
.

Lemma 8.1. One has

〈[ψN , Rθ ]uθ , ψN u〉 = 〈ψN [ψN , R]ψ̃N u, ψ̃N u〉+O(h∞e−2S/h). (8-3)

Proof. Thanks to Assumption 3, in [ψN , Rθ ], we can make the (complex) change of contour of integration

Rn
3 ξ 7→ ξ + i

√
M0

x − y√
(x − y)2+ h2

.

We obtain

[ψN , Rθ ]uθ (x)=
1

(2πh)n

∫
ei(x−y)ξ/h−8/h(ψN (x)−ψN (y))r̃θuθ (y) dy dξ,

with

8 :=
√

M0
(x − y)2√
(x − y)2+ h2

, ∂αx,y∂
β
ξ r̃θ (x, y, ξ)= O(h−|α|〈ξ〉).

By construction, on the set

AN := supp(ψN (x)−ψN (y))∩ {ψ̃N (x) 6= 1 or ψ̃N (y) 6= 1},
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we have |x − y| ≥ c(Nk)2/3 for some constant c > 0. As a consequence, on this set, the quantity
|x− y|/

√
(x − y)2+ h2 tends to 1 uniformly as h→ 0. Moreover, still on this set, we have either s(x)= S

or s(y)= S, and since |s(x)−s(y)| ≤µ|x− y| with 0<µ<
√

M0, we deduce the existence of a constant
c0 > 0 such that for (x, y) ∈ AN , one has s(x)+ s(y)+8≥ 2S+ c0(Nk)2/3.

Therefore, by the Calderón–Vaillancourt theorem (and also using Proposition 5.2 in order to regularize
the function s(x)), we obtain

‖e−s/h
[ψN , Rθ ]e−s/h(1− ψ̃N )〈h Dn〉

−1
‖+‖(1− ψ̃N )e−s/h

[ψN , Rθ ]e−s/h
〈h Dn〉

−1
‖ = O(h∞e−2S/h).

Then, writing
〈[ψN , Rθ ]uθ , ψN u〉 = 〈e−s/h

[ψN , Rθ ]e−s/h(es/h uθ ), ψN es/h u〉

and using Proposition 7.1 and Remark 7.2, the result follows. �

Inserting (8-3) into (8-2) and approaching ψ̃N u by ψ̃N uC N , we obtain

Im ρ1 = Im〈2h2(∇ψN )∇uC N

+ h2(1ψN )u, ψN uC N 〉+ h〈ψN [ψN , R]ψ̃N uC N , ψ̃N uC N 〉+O(hL−N0)e−2S/h . (8-4)

Finally, using Proposition 6.2 (in particular the expression (4-52) of uC N in
⋃
γ∈G WN (γ )∩ supp ψ̃N ),

we can perform a stationary-phase expansion in (8-4) (as in [FLM, Section 7]) and, for L large enough,
we obtain

Im ρ1 =−h(1−n0)/2
L∑

j=n0

∑
0≤m≤`≤L

f j,`,mh j+`
|ln h|me−2S/h

+O(hL/2)e−2S/h,

with fn0,0,0 > 0. In particular, the result for ρ1 follows.
The result for ρ j , j ≥ 2, can be done along the same lines, by using a representation of Im ρ j analogous

to (8-1) and by approaching u by a linear combination of WKB expressions similar to uC N , where the
number of terms depends on the asymptotic multiplicity of the resonance; see [Helffer and Sjöstrand
1986, Section 10].
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