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QUASIMODES AND A LOWER BOUND ON THE UNIFORM
ENERGY DECAY RATE FOR KERR–ADS SPACETIMES

GUSTAV HOLZEGEL AND JACQUES SMULEVICI

We construct quasimodes for the Klein–Gordon equation on the black hole exterior of Kerr–AdS (anti-
de Sitter) spacetimes. Such quasimodes are associated with time-periodic approximate solutions of
the Klein–Gordon equation and provide natural candidates to probe the decay of solutions on these
backgrounds. They are constructed as the solutions of a semiclassical nonlinear eigenvalue problem
arising after separation of variables, with the (inverse of the) angular momentum playing the role of
the semiclassical parameter. Our construction results in exponentially small errors in the semiclassical
parameter. This implies that general solutions to the Klein Gordon equation on Kerr–AdS cannot decay
faster than logarithmically. The latter result completes previous work by the authors, where a logarithmic
decay rate was established as an upper bound.
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1. Introduction

There is currently a lot of mathematical activity concerning the analysis of waves on the exterior of black
hole backgrounds.1 The main motivation is the black hole stability problem, i.e., the conjectured nonlinear
asymptotic stability of the two-parameter family of asymptotically flat Kerr spacetimes (M, gM,a), the
latter being stationary solutions of the vacuum Einstein equations Ric[g] = 0. From the point of view of
nonlinear partial differential equations, the analysis of linear scalar waves on black holes is a prerequisite
to successfully understanding the nonlinear hyperbolic Einstein equations in a neighborhood of the Kerr
family.

MSC2010: primary 58J50; secondary 83C57.
Keywords: wave equation, black holes, decay estimates, Kerr – anti-de Sitter.

1See [Dafermos and Rodnianski 2013] for an introduction and a review of recent results.
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A major insight that crystallized in the last decade [Dafermos and Rodnianski 2005; 2009; 2010a;
2010b; Marzuola et al. 2010; Tataru and Tohaneanu 2011; Andersson and Blue 2009; Dyatlov 2011; 2012]
is that the fundamental geometric obstacles to the decay of waves, namely superradiance and trapped
null-geodesics, can be overcome by exploiting the normal hyperbolicity of the trapping, the redshift effect
near the event horizon and the natural dispersion of waves in asymptotically flat (and asymptotically de
Sitter) spacetimes. In particular, polynomial decay rates have been established for solutions to the scalar
wave equation on the exterior of any member of the subextremal Kerr family of spacetimes [Dafermos
and Rodnianski 2010b].

Changing the black hole geometry can have dramatic effects on the behavior of linear waves through
the subtle interplay of the redshift, the superradiance and the trapping. Aretakis [2012; 2013] showed
that for extremal black holes (whose vanishing surface gravity leads to a degeneration of the redshift
effect) the transversal derivatives of general solutions to the wave equation will grow along the event
horizon. In [Shlapentokh-Rothman 2014], it is proven that for the massive wave equation on a subextremal
(|a|< M) Kerr spacetime, exponentially growing solutions can be constructed on the exterior, exploiting
an amplification of the superradiance caused by the confining properties of the mass term.

In this paper, we shall be interested in a black hole geometry for which a strong trapping phenomenon
leads to a very slow (only logarithmic) decay of waves. More precisely, we will study the behavior of
solutions to the massive wave equation (

�g +
α

l2

)
ψ = 0 (1)

in the exterior of asymptotically anti-de Sitter (AdS) black holes with spacetime metric g.
Due to their AdS asymptotics, these spacetimes are not globally hyperbolic. Nonetheless, Equation (1)

is well-posed in suitably weighted Sobolev spaces, denoted here by H k
AdS, provided α satisfies the

Breitenlohner–Friedmann bound α < 9
4 . See [Holzegel 2012] as well as [Vasy 2012; Bachelot 2008; 2011;

Ishibashi and Wald 2004; Warnick 2013] for a complete treatment of general boundary conditions.
The global properties of solutions to (1) on the exterior of nonsuperradiant2 Kerr–AdS black holes were

studied in [Holzegel 2010; Holzegel and Smulevici 2013a; Holzegel and Warnick 2014]. In particular,
boundedness was obtained in [Holzegel 2010; Holzegel and Warnick 2014] and logarithmic decay in
time for general H 2

AdS solutions in [Holzegel and Smulevici 2013a]. We summarize these results in the
following theorem. We refer to Section 2A1 for the precise definitions of the Kerr–AdS spacetimes, the
area-radius r+ of the event horizon and the 6t?-foliation and to Section 2B for the definitions of the norms
and energies used in the statement below. At this point we only remark that e1[ψ] is an energy density
involving all first derivatives of ψ while e2[ψ] and ẽ2[ψ] involve all second derivatives (with appropriate
weights):

Theorem 1.1. Let (g,R) denote the black hole exterior of a Kerr–AdS spacetime with mass M > 0,
angular momentum per unit mass a and cosmological constant 3=−3/l2. Assume that the parameters
satisfy α < 9

4 , |a|< l. Fix a spacelike slice 6t?0 intersecting H+. Then:

2This means that the parameters of the black hole satisfy r2
+
> |a|l. See Remark 1.3 and Section 2.
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1. Equation (1) is well-posed in CH k
AdS on (g,R) for any k ≥ 2 for initial data prescribed on 6t?0 .

(See [Holzegel 2012].)

2. The solutions of (1) arising from data prescribed on 6t?0 remain uniformly bounded on the black hole
exterior provided r2

+
> |a|l holds. In particular,∫

6t∗
e1[ψ](t?) r2 sin θ dr dθ dφ .

∫
6t?0

e1[ψ](t?0 ) r2 sin θ dr dθ dφ. (2)

Analogous statements hold for all higher H k
AdS-norms. In particular,∫

6t∗
e2[ψ](t?) r2 sin θ dr dθ dφ .

∫
6t?0

e2[ψ](t?0 ) r2 sin θ dr dθ dφ, (3)

and the same statement for ẽ2[ψ](t?). (See [Holzegel 2010; Holzegel and Warnick 2014].3)

3. If the parameters satisfy r2
+
> |a|l, the solutions of (1) satisfy the global decay estimate∫

6t∗
e1[ψ](t?) r2 sin θ dr dθ dφ .

1
[log(2+ t?)]2

∫
6t?0

e2[ψ](t?0 ) r2 sin θ dr dθ dφ (4)

for all t? ≥ t?0 > 0. (See [Holzegel and Smulevici 2013a].)

Remark 1.2. The constant implicit in the symbol “.” appearing in items 2 and 3 depends only on the
fixed parameters M , `, a and α.

Remark 1.3. The condition r2
+
> |a|l on the parameters in items 2 and 3 guarantees the existence of a

globally causal Killing vector field on the black hole exterior, the Hawking–Reall vector field [Hawking
and Reall 2000], which explains why such black holes are sometimes referred to as “nonsuperradiant”. If
one restricts to axisymmetric solutions of (1), this condition can be dropped for statements 2 and 3 in
Theorem 1.1.

Remark 1.4. The boundedness statement (2) does not lose derivatives while the decay statement (4) does.
This is the familiar loss of derivatives caused by the existence of trapped null-geodesics [Ralston 1969;
Sbierski 2013].

This logarithmic decay rate (4) was conjectured to be sharp in [Holzegel and Smulevici 2013a] in view
of the discovery of a new stable trapping phenomenon, itself a consequence of the coupling between the
lack of dispersion at the asymptotic end and the usual (unstable) trapping on black hole exteriors [ibid.].

1A. The main results. In this paper, we shall prove that the logarithmic decay estimate of Theorem 1.1
is indeed sharp. Recall that for the obstacle problem, it is classical [Ralston 1969] that lower bounds on
the rate of energy decay can be obtained from the construction of approximate eigenfunctions, also called
quasimodes, of the associated elliptic operator, obtained by formally taking the Fourier transform in time

3These papers and [Holzegel 2012] are only concerned with the ẽ2[ψ] energy. It is remarked that by commutation with
angular momentum operators one can prove boundedness for the e2[ψ] energy (which differs from the ẽ2[ψ] energy through the
weights of the angular derivatives). For completeness, we provide in an Appendix an explicit proof of this statement.
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of the wave operator. Our main theorem establishes the existence of such quasimodes for Kerr–AdS with
exponentially small errors.4

The statement of the following theorem will involve the quantity

rmax ∈

(
r+,

3M
1− a2/l2

]
,

which is determined in Lemma 3.1 as the location of the unique maximum of a simple radial function.
For Schwarzschild–AdS, rmax = 3M will be the location of the well-known photon sphere.

Theorem 1.5 (quasimodes for Kerr–AdS). Let (g,R) denote the black hole exterior of a Kerr–AdS
spacetime, with mass M > 0, angular momentum per unit mass a and cosmological constant 3=−3/l2.
Assume that the parameters satisfy α < 9

4 , |a| < l. Let (t, r, θ, ϕ) denote standard Boyer–Lindquist
coordinates on R. Then, for δ > 0 sufficiently small (depending only on the parameters l, M , a, α), there
exists a family of nonzero functions ψ` ∈ H k

AdS for any k ≥ 0 satisfying the following conditions:

(1) ψ`(t, r, θ, ϕ)= eiω`tϕ`(r, θ) (axisymmetric and time-periodic).

(2) 0< c <
ω2
`

`(`+1)
< C , for constants c and C independent of ` (uniform bounds on the frequencies).

(3) For all t? ≥ t?0 and all k ≥ 0, we have
∥∥(�g +α/ l2

)
ψ`
∥∥

H k
Ads(6t? )

≤ Cke−Ck`‖ψ`‖H0
AdS(6t?0 )

, for some
Ck > 0 independent of ` (approximate solutions to the wave equation).

(4) The support of F` := (�g+α/ l2)ψ` is contained in {rmax ≤ r ≤ rmax+ δ} (spatial localization of the
error).

(5) The support of ϕ`(r, θ) is contained in {r ≥ rmax} (spatial localization of the solution).

Note that the ψ` have constant H k
AdS-norms and hence exhibit no decay. On the other hand, a

standard application of Duhamel’s formula shows that the ψ` are good approximations to the solution of
(�g +α/ l2)ψ = 0 arising from the data induced by ψ`, at least up to a time t ∼ eCk`.

Corollary 1.6. Let (R, g) denote the black hole exterior of a Kerr–AdS spacetime as in Theorem 1.5.
Denote by SCH 2

AdS the set of CH 2
AdS solutions to (1) with α < 9

4 . Let t?0 ≥ 0 be fixed and define for any
nonzero ψ and t? ≥ 0

Q[ψ](t?) := log(2+ t?)
(∫

6t?∩{r≥rmax}
e1[ψ](t?) r2 sin θ dr dθ dφ∫

6t?0
e2[ψ](t?0 )r

2 sin θ dr dθ dφ

)1
2

.

Then there exists a universal (depending only on M , α, |a| and l) constant C > 0 such that

lim sup
t?→+∞

sup
ψ∈SCH2

AdS
ψ 6=0

Q[ψ](t?) > C > 0.

Remark 1.7. Corollary 1.6 implies that the semilocal energy in {r ≥ rmax} cannot decay universally faster
than (log t?)−2, unless one loses more derivatives.

4Note that in order to deduce the sharpness of the logarithmic decay rate from the quasimodes, polynomial errors would a
priori not be sufficient.
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Remark 1.8. We emphasize that no smallness assumption on the angular momentum a is needed, apart
from the condition |a|< l which ensures that the metric is a regular black hole metric.

Remark 1.9. The ψ` constructed in Theorem 1.5 are axisymmetric, while the decay estimate of Theorem
1.1 holds for general solutions (provided r2

+
> |a|l holds in the nonaxisymmetric case). Since we are

concerned here with a lower bound on the uniform decay rate, an analysis within axisymmetry is sufficient.
This allows us to drop the nonsuperradiant condition r2

+
> |a|l in the analysis. On the other hand, for

(sufficiently) superradiant black holes r2
+
< |a|l one can adapt the proof of [Shlapentokh-Rothman 2014]

to construct exponentially growing solutions. Hence in this case, the quasimodes we construct are not the
“worst” solutions on these backgrounds.

Remark 1.10. Stable trapping occurs only in the region r ≥ rmax and is associated to certain frequencies.
As a consequence, stronger local energy decay in r ≤ rmax or for some frequency projections of solutions
is a priori compatible with the results of this paper.

1B. Related works and discussion.

1B1. Nonlinear analysis on asymptotically AdS spacetimes. In [Holzegel and Smulevici 2012a; 2013b],
the nonlinear spherically symmetric Einstein–Klein–Gordon system for asymptotically AdS initial data
was studied, and, in particular, asymptotic stability of Schwarzschild–AdS was proven within this model.

For a discussion connecting the logarithmic decay to the nonlinear stability or instability of asymptoti-
cally AdS black holes, we refer to Section 1.4 of [Holzegel and Smulevici 2013a]. We also mention the
recent heuristic analysis of [Dias et al. 2012] drawing attention to a potential stability mechanism caused
by the lack of exact nonlinear resonances in this setting. For AdS itself, instability was conjectured in
[Dafermos and Holzegel 2006; Anderson 2006; Dafermos 2006]. More recently, both numerical and
additional heuristic evidence has been presented [Bizon and Rostworowski 2011]. Finally, let us note that
asymptotically AdS solutions to the Einstein equations have been constructed in [Friedrich 1995].

1B2. Quasinormal modes of the asymptotically AdS black holes. Quasinormal modes, also called reso-
nances, are complex frequencies generalizing the well-known normal modes to systems which dissipate
energy. There is a strong connection between quasimodes and resonances [Tang and Zworski 1998]. One
way to mathematically define them is as poles of the meromorphic continuation of a truncated resolvent.
In the case of asymptotically de Sitter black holes, this theory has been very successfully developed;
see [Bony and Häfner 2008; Dyatlov 2011; 2012]. In a recent paper, Gannot [2014] has established,
in the case of Schwarzschild–AdS, the existence of a sequence of quasinormal modes (based on an
independent construction of quasimodes), indexed by angular momentum `, and with imaginary parts
of size O(exp(−`/C)). In particular, his construction confirms the numerical results of [Festuccia and
Liu 2009] and provides an independent proof of Theorem 1.5 and Corollary 1.6, albeit restricted to the
Schwarzschild–AdS case. While we restrict ourselves here to the construction of quasimodes, we strongly
believe that our results can be used as a basis for the construction of resonances in the Kerr–AdS case for
the whole range of parameters satisfying |a|< l and r2

+
> |a|l.
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1B3. Universal minimal decay rates of waves outside stationary black holes. In the context of the obstacle
problem in Minkowski space, a celebrated result of Burq [1998] establishes a logarithmic decay rate for
the local energy of waves, independently of the geometry of the obstacle causing the trapping. For waves
outside black holes, in view of the results of [Holzegel and Smulevici 2013a], a natural conjecture is:
Given any black hole exterior (R, g) of a stationary spacetime, a logarithmic decay of energy similar
to that of [ibid.] will hold, provided a uniform boundedness statement is true for solutions to the wave
equation �gψ = 0 on R.

1C. Outline and overview of the proof. Section 2 introduces the family of Kerr–AdS spacetimes as well
as the norms required to state our estimates. In Section 3, we exploit the classical fact that the wave
equation separates on Kerr–AdS. An ingredient which considerably simplifies our analysis here is the
important observation that we can restrict ourselves to axisymmetric solutions. With axisymmetry, the
separation of variables leads to relatively simple, one-dimensional, second order ordinary differential
equations for the radial functions. In the case of Schwarzschild, they are roughly of the form of the
semiclassical problem

−u′′`
1

`(`+ 1)
+ Vσu` =

ω2

`(`+ 1)
u` (5)

for a potential Vσ (r), whose general form is depicted below.5 In Section 3C, we shall describe in detail
the analytic properties of the potentials appearing in these equations.

1/l2

E

r ? = π/2
r =∞

r = rmax

E + δ

u = 0
u = 0

r = rmax+ δ
′

E − δ

Vσ

To construct the quasimodes, we first construct eigenfunctions for the problem (5) with Dirichlet conditions
u = 0 imposed on u at r = rmax and r →∞ (Section 4). In particular, we prove a version of Weyl’s
law, ensuring that for any energy between 1/l2 < E < Vmax = Vσ (rmax) we can find (lots of) eigenvalues

5For the purpose of this exposition, we neglect terms of lower order in 1
`(`+1) in the potential, as well as the mass term. The

latter is actually unbounded and needs to be absorbed with a Hardy inequality. We suppress such technical difficulties in the
present discussion.
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ω2
`/(`(`+ 1)) of (5) in a strip [E−δ, E+δ]. In the Kerr case, the eigenvalue problem (5) turns into a

problem of the form6

−u′′`
1

µ`(a2ω2)
+ Vσu` =

ω2

µ`(a2ω2)
u`, (6)

which is nonlinear in ω2. An application of the implicit function theorem together with global estimates
on the behavior of the eigenvalues still allow us to conclude the existence of eigenfunctions u` of (6)
with corresponding eigenvalues in the range

(
1/l2, E + δ

]
. These estimates, together with the analysis of

the potential in the Kerr–AdS case, constitute the core of our paper.
In Section 5, we recall the so-called Agmon estimates, their proof being included to make the paper

self-contained. These estimates quantify that the solutions u` constructed from the above eigenvalue
problem decay exponentially in ` in a region [rmax, rmax+ δ

′
].

In Section 6, the quasimodes are constructed by cutting off the solution u` of the eigenvalue problem in
[rmax, rmax+ δ

′
] so that it vanishes with all derivatives at rmax and then continuing it to be identically zero

in [r+, rmax]. The function φ` thus constructed will be defined on [r+,∞) and the corresponding wave
function ψ` = eiω`φ` will satisfy the wave equation everywhere except in the small strip [rmax, rmax+ δ

′
],

where the error is exponentially small by the Agmon estimate.
In the last section, we prove Corollary 1.6 using the Duhamel formula. Finally, the Appendix contains

a proof of boundedness for the second energy used in this paper. This boundedness statement differs from
that obtained in [Holzegel 2010; Holzegel and Warnick 2014] in that it allows for stronger radial weights
near infinity for the angular derivatives.

2. Preliminaries

2A. The Kerr–AdS family of spacetimes. We recall here some basic facts about the family of Kerr–AdS
spacetimes required in the paper. We refer the reader to the detailed discussion in our work [Holzegel and
Smulevici 2013a].

2A1. The fixed manifold with boundary R. Let R denote the manifold with boundary

R= [0,∞)×R×S2.

We define standard coordinates y∗ for [0,∞), t? for R and (θ, φ) for S2. This defines a coordinate system
on R which is global up to the well-known degeneration of the spherical coordinates. We define the event
horizon H+ to be the boundary of R:

H+ = ∂R= {y∗ = 0}.

The manifold R will coincide with the domain of outer communication of the black hole spacetimes
including the future event horizon H+.

6The µ`(a2ω2) generalize the familiar spherical eigenvalues `(`+ 1) of the Schwarzschild case to Kerr. See Section 3A.
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2A2. The parameter space and the radial function. A Kerr–AdS spacetime is characterized by its mass
M > 0, its angular momentum per unit mass a and the value of the cosmological constant 3< 0. For
convenience, we shall use mostly l =

√
3/|3|, instead of 3. For the spacetime to be regular, we will

require |a|< l. Let us thus fix M , l > 0 and |a|< l. We then define r+(M, l, a) > 0 as the unique real
solution of 1−(x)= 0, where

1−(x)=
(

1+
x2

l2

)
(x2
+ a2)− 2Mx . (7)

We now define a function r on R as follows. As a function of (t?, y?, ϕ, θ), r only depends on y?

and is a diffeomorphism from [0,∞) to [r+,∞). The collection (t?, r(y?), ϕ, θ) then forms a coordinate
system on R, global up to the degeneration of the spherical coordinates. Moreover, the horizon H+

coincides with {r = r+}.

2A3. More coordinates: r?, t , φ̃. Let us define r? by

dr?

dr
(r)=

r2
+ a2

1−(r)
, r?(r =+∞)=

π

2
,

where 1−(r) is given by (7). Note that r?(r+)=−∞.
By a small abuse of notation, we shall often write for functions f and g, f (r?) = g(r), instead of

f (r?)= g(r(r?)) or f (r?(r))= g(r).
Finally, let rcut = r+ + 1

2(rmax − r+), with rmax > r+ defined in Lemma 3.1 depending only on the
parameters M , a and l, and let χ(r) be a smooth cut-off function with the property

χ(r)=
{

1 if r ∈
[
r+, 1

2(rcut− r+)
]
,

0 if r ≥ rcut.
(8)

We introduce the time coordinate t and another angular coordinate φ̃ as

t = t?− A(r)χ(r) and φ̃ = φ− B(r)χ(r), (9)

where
d A
dr
=

2Mr
1−(1+ r2/l2)

,
d B
dr
=

a(1− a2/l2)

1−
,

and A and B vanish at infinity.
Note that t , φ̃ and r? are not well-behaved functions at the horizon r = r+. As a consequence, the

coordinate systems (t, r, θ, φ̃) and (t, r?, θ, φ) only cover int(R). Observe also that the two coordinate
systems (t, r, θ, φ̃) and (t?, r, θ, φ) are identical for r ≥ rcut.

2A4. The Kerr–AdS metric for fixed (a,M, l). We may now introduce the Kerr–AdS metric as the unique
smooth extension to R of the tensor given in the Boyer–Lindquist chart by

gKAdS =
6

1−
dr2
+
6

1θ
dθ2
+
1θ (r2

+ a2)2−1−a2 sin2 θ

426
sin2 θ dφ̃2

−2
1θ (r2

+ a2)−1−

46
a sin2 θ dφ̃dt −

1−−1θa2 sin2 θ

6
dt2, (10)
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where 1− is defined by (7) and

6 = r2
+ a2 cos2 θ, 1θ = 1−

a2

l2 cos2 θ, 4= 1−
a2

l2 . (11)

See [Holzegel and Smulevici 2013a] for explicit expressions for the inverse of (10) and its determinant in
Boyer–Lindquist coordinates. That the tensor (10) indeed extends to a smooth metric on R is clear from
expressing the metric in (t?, r, θ, φ) coordinates, which is carried out explicitly in [ibid.]. Note that for
a = 0 the metric (10) reduces to the well-known Schwarzschild–AdS spacetime

g =−
(

1−
2M
r
+

r2

l2

)
dt2
+

(
1−

2M
r
+

r2

l2

)−1

dr2
+ r2 dσS2,

where dσS2 is the standard metric on the unit sphere.
The Boyer–Lindquist coordinates degenerate at the horizon r = r+, but the importance of these

coordinates is that it is in these coordinates that the Klein–Gordon operator separates (see Section 3).

2A5. The Klein–Gordon operator in Boyer–Lindquist coordinates. For any Lorentzian metric g and any
scalar function ψ , we define as usual

�gψ =
1
√
|g|
∂α(
√
|g|gαβ∂βψ);

the Klein–Gordon operator acting on scalar functions in Boyer–Lindquist coordinates is given by(
�g +

α

l2

)
ψ =

(
−
(r2
+ a2)2

61−
+

a2 sin2 θ

61θ

)
∂2

t ψ +
1
6
∂r (1−∂rψ)+ 2

(
4(r2

+ a2)a
1−6

−
4a
1θ6

)
∂t∂φ̃ψ

+

(
42

1θ6

1

sin2 θ
−
42a2

61−

)
∂φ̃∂φ̃ψ +

1
6 sin θ

∂θ (1θ sin θ∂θψ)+
α

l2ψ. (12)

2B. The norms. Let /g and /∇ denote the induced metric and the covariant derivative on the spheres S2
t?,r

of constant t? and r in R.
We write | /∇ · · · /∇ψ |2 = /g AA′

· · · /gB B ′ /∇ A · · · /∇Bψ /∇ A′ · · · /∇B ′ψ to denote the induced norms on these
spheres. We denote by �i with i = 1, 2, 3 the standard basis of angular momentum operators on the unit
sphere in θ , φ coordinates.

With these conventions, we define the energy densities

e1[ψ] =
1
r2 (∂t?ψ)

2
+ r2(∂rψ)

2
+ | /∇ψ |2+ψ2,

ẽ2[ψ] = e1[ψ] + e1[∂t?ψ] + r4(∂r∂rψ)
2
+ r2
|∂r /∇ψ |

2
+ | /∇ /∇ψ |2,

e2[ψ] = ẽ2[ψ] +
∑

i

e1[�iψ].
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Similarly, we define the following energy norms for the scalar field ψ (see [Holzegel 2012]):

‖ψ‖2
H0,s

AdS(6t? )
=

∫
6t∗

r sψ2r2 dr sin θ dθ dφ

‖ψ‖2
H1,s

AdS(6t? )
=

∫
6t∗

r s(r2(∂rψ)
2
+ | /∇ψ |2+ψ2) r2 dr sin θ dθ dφ

‖ψ‖2
H2,s

AdS(6t? )
= ‖ψ‖2

H1,s
AdS(6t? )

+

∫
6t∗

r s(r4(∂r∂rψ)
2
+ r2
| /∇∂rψ |

2
+ | /∇ /∇ψ |2

)
r2 dr sin θ dθ dφ.

Note in particular the relations∫
6t∗

e1[ψ]r2 dr sin θ dθ dφ = ‖ψ‖2
H1,0

AdS(6t? )
+‖∂t?ψ‖

2
H0,−2

AdS (6t? )
, (13)∫

6t∗
e2[ψ]r2 dr sin θ dθ dφ = ‖�iψ‖

2
H1,0

AdS(6t? )
+‖∂t?ψ‖

2
H1,0

AdS(6t? )
+‖ψ‖2

H2,0
AdS(6t? )

+‖∂t?∂t?ψ‖
2
H0,−2

AdS (6t? )
.(14)

Higher-order norms may be defined similarly. We denote by H k,s
AdS(6t?) the space of functions ψ such

that ∇ iψ ∈ L2
loc(6t?) for i = 0, . . . , k and ‖ψ‖2

H k,s
AdS(6t? )

<∞. We denote by CH k,s
AdS the set of functions

ψ defined on R such that

ψ ∈
⋂

q=0,...,k

Cq(Rt?; H k−q,sq
AdS (6t?)

)
, where sk =−2, sk−1 = 0 and s j = s for j = 0, . . . , k− 2.

When s = 0, we will feel free to drop the s in the notation, i.e., H k,0
AdS := H k

AdS and CH k
AdS := CH k,0

AdS.

2C. A final remark. In [Holzegel and Smulevici 2013a], the coordinates t and φ̃ in (9) are defined with
the χ(r) of (8) being globally equal to 1. Here, for convenience in the subsequent analysis (which happens
mostly away from the horizon, in r ≥ rmax), we have altered these coordinates away from the horizon
to agree with the Boyer–Lindquist coordinates. Note that these two coordinate systems are equivalent
in the sense that the statement ‖ψ‖2H k,s

AdS(6t? ) decays logarithmically in t? is independent of whether the
coordinates (and 6t?-slices) of our earlier paper or the cut-off coordinates (9) are used.

3. Separation of variables and reduced equations

3A. The (modified) oblate spheroidal harmonics. For each ξ ∈R, define the unbounded L2(sin θ dθ dφ̃)-
self-adjoint operator PS2(ξ) with domain the space of H 2(S2)-complex valued functions (see Section 7
of [Dafermos and Rodnianski 2010a] for a more detailed discussion), as

−PS2(ξ) f =
1

sin θ
∂θ (1θ sin θ ∂θ f )+

42

1θ

1

sin2 θ
∂2
φ̃

f +4
ξ 2

1θ
cos2 θ f − 2iξ

4

1θ

a2

l2 cos2 θ ∂φ̃ f. (15)

We also define the operator Pα, which is equal to

PS2,α(ξ)=


P(ξ)+ α

l2 a2 sin2 θ if α > 0,

P(ξ)+ |α|
l2 a2 cos2 θ if α ≤ 0.

(16)
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The motivation for introducing these operators is that, formally replacing ξ by ai∂tψ , they appear naturally
in the Klein–Gordon operator (12) when trying to separate variables; see the next section.

When l→∞ the operator PS2(ξ) reduces to an oblate spheroidal operator on S2 as considered for
instance in [ibid.]. If also ξ = a = 0 we recover the Laplacian on the round sphere. Both operators PS2(ξ)

and PS2,α(ξ) have discrete spectra. We will use the following notation:

PS2,α(ξ) has eigenvalues λm`(ξ) with eigenfunctions Sm`(ξ, cos θ)eimφ̃.

Later we will restrict attention to axisymmetric solutions and hence to the eigenvalues λ0` of the operators

−Pθ,α(ξ 2) := −PS2,α(ξ)
∣∣
m=0. (17)

In fact, it will be convenient (in view of their manifest positivity) to work with the eigenvalues of the
shifted operators, which are, for α ≤ 0,

−Pθ,α(ξ 2)− ξ 2
=

1
sin θ

∂θ (1θ sin θ∂θ ( · ))−
|α|

l2 a2 cos2 θ −
sin2 θ

1θ
ξ 2 (18)

(cos2 is replaced by sin2 in the second term if α > 0). In view of these considerations, we shall denote
the eigenvalues of the operator Pθ,α(ξ 2)+ ξ 2 by µ`(ξ 2). By min-max and comparison with the spherical
Laplacian [Holzegel and Smulevici 2013a, Lemma 5.1] in the axisymmetric case, we have

µ`(ξ
2)≥ µ`(0)≥4`(`+ 1) > ca,l`(`+ 1). (19)

3B. The separation of variables. We now present the reduced equations obtained after separation of
variables. For this purpose, we consider the Klein–Gordon operator in Boyer–Lindquist coordinates (12).

For the construction of quasimodes, it would be sufficient to start directly from the reduced equations.
However, we will instead derive them from the Klein–Gordon equation (1) to show this relation. Thus, in
this section ψ will denote any regular solution to (1). Let us introduce the time-Fourier transform7

ψ(t, r, θ, φ̃)= 1
√

2π

∫
∞

−∞

e−iωt ψ̂(ω, r, θ, φ̃) dω. (20)

We decompose the ψ̂ of (20) as

ψ̂(ω, r, θ, φ̃)=
∑
m`

(ψ̂)
(aω)
m` (r)Sm`(aω, cos θ)eimφ̃, (21)

where Sm` are the modified spheroidal harmonics introduced above and

(ψ̂)
(aω)
m` (r)=

1
√

2π

∫
∞

−∞

dt
∫

S2(t,r)
dσ̃ eiωt Sm`(aω, cos θ)e−imφ̃ψ(t, r, θ, φ̃),

with dσ̃ = sin θ dθ dφ̃.
After the renormalization

u(aω)m` (r)= (r
2
+ a2)1/2(ψ̂)

(aω)
m` (r), (22)

7Note that in general ψ is not an L2-function in time and therefore, ψ̂ is defined only as a tempered distribution. Since here
we are merely trying to justify the origin of the reduced equations, it will be sufficient to understand all computations formally.
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we finally obtain from (1) and (12) the equation(
u(aω)m` (r)

)′′
+
(
ω2
− V (aω)

m` (r)
)
u(aω)m` = 0, (23)

where ′ denotes differentiation with respect to r? and where the potential V (aω)
m` (r) is defined as

V (aω)
m` (r)= V (aω)

+,m`(r)+ V (aω)
0,m` (r)+ Vα(r), (24)

where

V (aω)
+,m`(r)=−1

2
−

3r2

(r2+ a2)4
+1−

5r4/l2
+ 3r2(1+ a2/l2)− 4Mr + a2

(r2+ a2)3
= (r2

+ a2)−1/2(
√

r2+ a2)′′,

V (aω)
0,m` (r)=

1−(λm`+ω
2a2)−42a2m2

− 2mωa4(1−− (r2
+ a2))

(r2+ a2)2
, (25)

Vα(r)=−
α

l2

1−

(r2+ a2)2
(r2
+2(α)a2), (26)

with 2(α)= 1 if α > 0 and 2(α)= 0 if α ≤ 0 (recall that the λm` also depend on α through (16)). Note
that V+ grows like 2r2/l4 near infinity, while the V0 part remains bounded.

3C. The axisymmetric reduced equations. We now look at the axisymmetric case; that is, we consider
the above equations under the assumption that ψ is independent of the azimuthal variable φ̃. The reduced
equations are then obtained by setting m = 0 in the decomposed equations. Hence, we will consider the
following set of equations: (

u(aω)0` (r)
)′′
+
(
ω2
− V (aω)

0` (r)
)
u(aω)0` (r)= 0, (27)

where the potential V (aω)
0` (r) is defined as

V (aω)
0` (r)= Vjunk(r)+ Vmass(r)+ Vσ (r) ·µ`(ω2a2), (28)

where

Vjunk(r)=−12
−

3r2

(r2+a2)4
+1−

5r4/l2
+3r2(1+a2/l2)−4Mr+a2

(r2+a2)3
−

2
l2

1−r2

(r2+a2)2
−
α

l2

1−

(r2+a2)2
2(α)a2,

Vmass(r)=
2−α

l2

1−r2

(r2+a2)2
, Vσ (r)=

1−

(r2+a2)2
. (29)

Here we rearranged the terms in the different potentials so that Vmass = 0 corresponds to the conformal
case α = 2. In particular, we have

|Vjunk(r)| ≤ CM,l,a
1−

(r2+ a2)2
. Vσ ;

hence Vjunk is uniformly bounded.

Lemma 3.1 (properties of Vσ ). For all |a|< l, the potential Vσ enjoys the following properties:

• Vσ (r?)→ 1/l2 as r?→ π/2.
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• Vσ has a unique local and global maximum Vmax at r?max in [r?
+
, π/2). Also, Vσ is monotonically

decreasing in [r?max, π/2).

• Vmax = Vσ (r?max)≥
1
l2 +

3M/4+4a2(
(3M/4)2+ a2

)2 .

Remark 3.2. In particular, for any 0< a0 < l and all |a| ≤ a0, the size of the interval [1/l2, Vσ (r?max)] is
bounded uniformly (in a) from below by a strictly positive uniform constant.

Proof. The first claim can be trivially checked. For the second and third claims, let us write

Vσ (r)=
1−

(r2+ a2)2
=
(r2
+ a2)(r2/l2

+ a2/l2
+4)− 2Mr

(r2+ a2)2
=

1
l2 +

4(r2
+ a2)− 2Mr
(r2+ a2)2

. (30)

The r -derivative of Vσ is

∂r Vσ (r)=
(r2
+a2)2(24r−2M)−4r(r2

+a2)(4(r2
+a2)−2Mr)

(r2+a2)4

=
(r2
+a2)(24r−2M)−4r(4(r2

+a2)−2Mr)
(r2+a2)3

=
−24r3

+6Mr2
−24a2r−2Ma2

(r2+a2)3
. (31)

If a = 0, then one has as usual that the only zero in [r+,∞) is at r = 3M . Assume a 6= 0. Observe that
the derivative is positive near −∞, negative at r = 0, positive at r = r+ and negative near∞. This tells us
that there are three real roots for ∂r Vσ . The one of interest to us is the one corresponding to the (unique)
maximum of Vσ in the interval [r+,∞). Define rguess = 3M/4. We claim r+ < rguess <∞. This follows
from r+ < 2M , which is in turn a consequence of the fact that 1− = r(r − 2M)+ r4/l2

+ a2(1+ r2/l2)

is positive for r ≥ 2M . Finally, at rguess = 3M/4 we have from (30)

Vσ (rguess)=
1
l2 +

3M/4+4a2

(r2
guess+ a2)2

>
1
l2 . �

4. Bound states

As proven in [Holzegel and Smulevici 2013a], there exist no periodic solutions of the massive wave
equation on Kerr–AdS. In this section, we will introduce an additional boundary, located at r = rmax

(the location of the top of the potential Vσ , as defined in Lemma 3.1), enabling us to construct periodic
solutions whose associated energies lie below the top of Vσ .

In order to avoid confusion between the mode number ` and the real number l determining the
cosmological constant, we introduce the semiclassical parameter h > 0 by defining

h−2(`, ω) := λ0`(a2ω2)+ a2ω2
= µ`(a2ω2), (32)

as well as the shorthand
h−2

0 = h−2(`, 0)= µ`(0). (33)

In the rest of this paper, the notation u` or uh will be used when we want to make explicit that a solution
u depends on ` or h.
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Having in mind a semiclassical-type analysis with semiclassical parameter h, we then rewrite (27) as
the nonlinear eigenvalue problem

h2ω2u = P(h)u := −h2u′′+ Vσu+ h2(Vjunk+ Vmass)u,

with boundary conditions u(r?max)= 0 and
∫ π/2

r?max

(|u′|2+ r2u2) dr? <∞.
(34)

Remark 4.1. We will refer to these boundary conditions as Dirichlet conditions. They imply that
u(π/2)= 0. See Remark 4.2 below.

Unless a = 0, (34) is a nonlinear eigenvalue problem. Indeed, a solution to the eigenvalue problem

κu = P(h)u (35)

with Dirichlet boundary conditions is a solution of (34) if and only if κ = h2ω2. If a = 0, (34) reduces to
the linear problem (35), since the P(h) operator becomes independent of ω, and, therefore, given any
solution to (35), one simply obtains a solution to (34) by defining ω2

= h−2κ .
What we would like to prove is that, given fixed parameters M , a, l and α, we can find, for any

sufficiently small h (or, equivalently, any sufficiently large `), an ω2
` such that (34) is solved for some u`,

and that we can control the size of this ω2
` (see Proposition 4.8 below).

In order to understand (34), it will be useful to first look at the following linear eigenvalue problem:

h2
0ω

2 u = Pbase(h0)u := −h2
0u′′+ Vσu+ h2

0(Vjunk+ Vmass)u,

with boundary conditions u(r?max)= 0 and
∫ π/2

r?max

[|u′|2+ r2u2
] dr? <∞.

(36)

As explained above, (36) can be seen as a linear eigenvalue problem because h0, and therefore Pbase(h0),
depends only on ` (but not on ω).

Remark 4.2. By Proposition 4 of [Holzegel and Warnick 2014], (36) is a well-posed eigenvalue problem.
This is a nontrivial statement because the potential Vmass is unbounded on the domain (r?max, π/2i)
unless α = 2. The condition

∫ π/2
r?max
[|u′|2+ r2u2

] dr? <∞ implies that ψ =
√

r2+ a2 u · S0`(θ) ∈ H 1
AdS

(in particular, r1/2−εu(π/2)= 0 for any ε > 0) and ensures the existence of a positive discrete spectrum
with eigenfunctions in the energy space.8

To prove that eigenvalues h2
0ω

2 for (36) exist in a suitable range, we will perform a semiclassical-type
analysis for a semiclassical operator whose principal part should be −h2

0u′′ + Vσu. Since h2
0 Vjunk is

controlled by h2
0 Vσ , this term will be of lower order and hence negligible. On the other hand, unless one

considers the conformal case α = 2, the a priori lower-order (in powers of h0) potential term h2
0 Vmass is

unbounded near r? = π/2, so that some care (a Hardy inequality) is required.
Observe finally that if we set a = 0 in Vσ , Vjunk and Vmass in (36), then

Pa=0
base (h0)u = κ · u (37)

8Using the twisted derivatives of [Holzegel and Warnick 2014], i.e., writing u′′+Vmassu = rn(r−2n(rnu)′ )′+Vtwist ·u with
n = 1

2 (1−
√

9− 4α), so Vtwist is uniformly bounded, one could generalize our construction to other boundary conditions.
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would be precisely the eigenvalue problem one needs to study for Schwarzschild–AdS. In any case, in
the next section we will establish the existence of eigenvalues κ = h2

0ω
2 of the more general eigenvalue

problem (36) as the latter is easier to connect to the full problem (34).

4A. Weyl’s law for the linear eigenvalue problem (36). The aim of this section is to prove a Weyl’s-
law-type result for the linear problem (36). This is a classical problem which we will approach using
a slight modification of the usual Dirichlet–Neumann bracketing argument (see for instance [Reed and
Simon 1978], Section XIII.15, for an introduction to this method).

For the purpose of this section, it will be convenient to introduce the following notation. For all c < d ,
we define Pbase

DD (c, d) as the eigenvalue problem

Pbase(h0)u = κu,

with Dirichlet boundary conditions u(c) = u(d) = 0, plus the condition
∫ d

c dr?(|u′|2 + r2
· u2) <∞

if d = π/2 (see Remark 4.2); here Pbase(h0) is the operator defined by (36). Similarly, we will write
Pbase

N N (c, d) for the Neumann problem (which will never be considered with d = π/2). Finally, we
write Pbase

N D (c, d) for the Neumann boundary at c and Dirichlet at d. In the latter case we again impose∫ d
c dr?(|u′|2 + r2

· u2) <∞ if d = π/2 to ensure that all eigenfunctions live in the energy space; see
Remark 4.2. Note that Pbase

DD (r
?
max, π/2) is precisely the linear eigenvalue problem (36).

Proposition 4.3. Let α < 9
4 , M > 0 and |a| < l be fixed, and E ∈ (1/l2, Vmax) be given. Then, for any

δ > 0 such that [E−δ, E+δ] ⊂ (1/l2, Vmax), there exists an H0 > 0, such that, for any 0< h0 ≤ H0, there
exists a smooth solution uh0 of the eigenvalue problem Pbase

DD (r
?
max, π/2), with corresponding eigenvalue

κ lying in [E−δ, E+δ]. In particular, there exists a sequence ((h0)n, u(h0)n ) such that the associated
eigenvalues κ((h0)n)→ E as (h0)n→ 0.

In the rest of this section, (a,M, l, α) are fixed parameters satisfying the assumptions of the proposition.
We shall in fact prove in this section a stronger result than Proposition 4.3, namely a version of

Weyl’s law adapted to our problem. This is the statement of Lemma 4.5, from which Proposition 4.3
immediately follows. The proof of Lemma 4.5 in turn requires the following auxiliary lemma, which
ensures nonexistence of eigenvalues below a certain threshold.

Lemma 4.4. Let E > 0 be given. Then there exists an H0 > 0 so that for all 0 < h0 ≤ H0, there exists
a r?K (E, h0, α) such that the problems Pbase

DD (r
?
K , π/2) and Pbase

N D (r
?
K , π/2) have no solutions with κ ≤ E.

Moreover,
rmax < rK ≤

C
h0
· E, (38)

where C depends only on M , a, l and α.

Proof. Assume there was a solution u of Pbase
DD (r

?
K , π/2) or Pbase

N D (r
?
K , π/2) with κ ≤ E . Then we would

have ∫ π/2

r?K

dr?
[
h2

0 |u
′
|
2
+ (Vσ + h2

0 Vjunk+ h2
0 Vmass− E)|u|2

]
≤ 0 (39)

for this u. On the other hand, since u solves Pbase
DD (r

?
K , π/2) or Pbase

N D (r
?
K , π/2), we have r1/2u(r)= o(1),
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so that the Hardy inequality ∫ π/2

r?K

dr?
1−

r2+ a2 |u|
2
≤ 4l2

∫ π/2

r?K

dr?|u′|2 (40)

proven in [Holzegel and Smulevici 2013a] holds for u. This implies that∫ π/2

r?K

dr?
[(

h2
0

1
4l2

1−

r2+ a2 + Vσ + h2
0 Vjunk+ h2

0 Vmass− E
)
|u|2

]
≤ 0.

The dominant term in the integrand near infinity is h2
0

( 9
4 − α

)
r2/l2, which is positive, while all other

terms remain bounded. Hence by choosing r?K sufficiently large (rK ≥ C/h0 · E for some constant C) we
obtain a contradiction as the parenthetical in the integrand eventually becomes positive. �

Consider now the eigenvalue problem Pbase
DD (r

?
max, π/2) and fix an energy level E ∈ (1/l2, Vmax).

Lemma 4.4 produces an r?K (E, h0, α), to which we associate the phase space volume

PE,h0,α = Vol
{
(ξ, r?) ∈ R×[r?max, r

?
K ]
∣∣ ξ 2
+ Vσ + h2

0 Vmass+ h2
0 Vjunk ≤ E

}
= 2

∫ r?K

r?max

dr?
√

E− V (r?) ·χ{V (r?)≤E}. (41)

Note that for fixed E this expression converges uniformly in h0 as h0→ 0. This is already immediate for
α ≤ 2: V (r?) is then bounded below and hence the integrand itself is obviously uniformly bounded in h0.
For 2< α < 9

4 , the integral (41) also converges uniformly in h0 since∫ r?K

r?max

dr? h0r ≤ C
∫ rK

rmax

dr h0
1
r
≤ Ch0 log

(
C
h0

E
)

goes to zero as h0→ 0. Here we have used the estimate (38) on rK .
Finally, to state and prove Weyl’s law, we also introduce an expression for the phase space volume

between two energy levels, say [E − δ, E + δ] ⊂ (1/l2, Vmax):

QE,α = lim
h0→0

PE+δ,h0,α − lim
h0→0

PE−δ,h0,α = Vol{(ξ, r?) | E − δ ≤ ξ 2
+ Vσ ≤ E + δ} .

By an elementary computation, we have a lower bound QE,α ≥ CE,M,l,αδ for a constant independent
of h0.

Lemma 4.5. Consider the eigenvalue problem Pbase
DD (r

?
max, π/2). Fix an energy level Vmax > E > 1/l2

and prescribe a small δ > 0. Then the number of eigenvalues of Pbase
DD (r

?
max, π/2) lying in the interval

[E−δ, E+δ] ⊂ (1/l2, Vmax), denoted by N [E−δ, E+δ], satisfies Weyl’s law

N [E−δ, E+δ] ∼
h0→0

1
2πh0

QE,α. (42)

Proof. Choose r?K (E + δ, h0) such that by Lemma 4.4 there are no eigenvalues below E + δ of
Pbase

DD (r
?
K , π/2) and Pbase

N D (r
?
K , π/2). We equipartition the domain [r?max, r

?
K (E, h0)] into k intervals
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of length β = (π/2− r?K )/k. We then consider two comparison problems:

• The Dirichlet problem Pbase
DD (r

?
K , π/2) in conjunction with k Dirichlet problems P i+

D (i = 1, . . . , k)
arising as follows: They are the problems Pbase

DD (r
?
max, r

?
max+β), . . . , Pbase

DD (r
?
K −β, r

?
K ) but with the

potential replaced by a constant, which equals the maximum of the potential on the interval.

• The mixed problem Pbase
N D (r

?
K , π/2) in conjunction with k Neumann problems P i−

N (i = 1, . . . , k)
arising as follows: They are the problems Pbase

N N (r
?
max, r

?
max+β), . . . , Pbase

N N (r
?
K −β, r

?
K ) but with the

potential replaced by a constant, which equals the minimum of the potential on the interval.

We can estimate the number of eigenvalues of Pbase
DD (r

?
max, π/2) below a threshold E by

k∑
i=1

N≤E(P i+
D )+ N≤E

(
Pbase

DD (r
?
K , π/2)

)
≤ N≤E

(
Pbase

DD (r
?
max, π/2)

)
≤

k∑
i=1

N≤E(P i−
N )+ N≤E

(
Pbase

N D (r
?
K , π/2)

)
.

By our choice of r?K , we have N≤E

(
Pbase

DD (r
?
K , π/2)

)
= N≤E

(
Pbase

N D (r
?
K , π/2)

)
= 0 for E= E + δ. On the

other hand, for each P i+
D and each P i−

N , the number of eigenvalues can be estimated directly (as each
problem can be solved explicitly). We have

k∑
i=1

N≤E(P i+
D )=

k∑
i=1

⌊
β

2πh0
max(0,E−V i

+
)
√

E−V i
+

⌋
=

k∑
i=1

β

2πh0
max(0,E−V i

+
)
√

E−V i
+
+O(k).

The estimate for P i−
N is similar, with the potential replaced by V i

−
and the number of eigenvalues in each

cell being ⌊
β

2πh0
max(0,E− V i

−
)
√

E− V i
−

⌋
+ 1.

To conclude, let us choose the number of cells k such that k(h0) tends to ∞ as h0 goes to 0 and
moreover k(h)= o(1/h0). The sums converge as a Riemann sum and the errors are then of order o(1/h0).
Therefore we get

k∑
i=1

N≤E(P i+
D ) ∼

h0→0

1
2πh0

∫ r?K

r?max

dr?
√

E− V (r?) ·χV (r?)≤E. (43)

The statement of the lemma then follows from

N [E−δ, E+δ] = N≤E+δ − N≤E−δ

using the previous formula with E= E ± δ. �

4B. Kerr–AdS. In the last section we showed that for any fixed given parameters M > 0, |a|< l, α < 9
4 ,

the eigenvalue problem (36), Pbase(h0)u = κ · u with Dirichlet conditions, admits (lots of) eigenvalues κ
in the range E − δ ≤ κ = h2

0ω
2 < E + δ, provided h0 is chosen sufficiently small (i.e., ` large).
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As an immediate corollary, we obtain the existence of eigenvalues in the desired range for Schwarzschild–
AdS, simply by setting a = 0; see (37). For the Kerr–AdS case, we still need to relate the above result to
the full problem, which we recall is the nonlinear eigenvalue problem (34) given by

P(h)u = κ · u, with κ = ω2h2

and boundary conditions u(r?max)= 0 as well as
∫ π/2

r?max
dr?[|u′|2+ r2u2

]<∞. To achieve this, consider

for fixed |a|< l, M > 0, α < 9
4 the two-parameter family of linear eigenvalue problems

Q`(b2, ω2)u =3(b2, ω2)u (44)

for the operator

Q`(b2, ω2)u := −u′′+
(
Vσ µ`(b2a2ω2)u+ (Vjunk+ Vmass−ω

2)
)
u, (45)

complemented by the above boundary conditions. Here b2
∈ [0, 1] is a dimensionless parameter and

ω2
∈ R+. Our goal is to show that for b = 1 there exists an ω2 such that the above problem has a zero

eigenvalue and, moreover, to suitably control the size of this ω2.
By the results of the previous section, we know that for b= 0 there exists, for any sufficiently large `, an

ω2
0,` (satisfying E−δ≤ω2

0,`/µ`(0)≤ E+δ) such that Q`(0, ω2
0,`) admits a zero eigenvalue. Moreover, this

eigenvalue is nondegenerate, by standard Sturm–Liouville theory. Listing the eigenvalues of Q`(0, ω2
0,`)

in ascending order, let us say that it is the n`-th eigenvalue, which is zero.
The strategy, now, is the following: We will show by an application of the implicit function theorem

that for any b ∈ [0, 1] we can find an ω2
b,` such that the n`-th eigenvalue of the operator Q(b2, ω2

b,`) is
zero. As a second step, we will provide a global estimate on the quotient ω2

b,`/µ`(b
2a2ω2

b,`). For this last
step, an important monotonicity will be exploited.

Lemma 4.6. Fix parameters |a|< l, M > 0 and α < 9
4 . Suppose we are given parameters b0 ∈ [0, 1] and

ω2
b0,`
∈ R+ such that the n`-th eigenvalue of Q`(b2

0, ω
2
b0,`
) is zero. Then, there exists an ε > 0 such that:

1. For any b2
∈ (max(0, b2

0 − ε), b2
0 + ε) one can find an associated ω2

b,` ∈ R+ such that the n`-th
eigenvalue of Q`(b2, ω2

b,`) is zero,

2. ω2
b,` changes differentiably in b2

∈ (max(0, b2
0− ε), b2

0+ ε), and we have the estimate

0≤
dω2

b,`

db2 ≤ Cω2
b,`,

for some constant C > 0 which is independent of b0, ` and ε.

3. The ε > 0 can be taken to be independent of b0 (but may depend on `).

4. ω2
b,` satisfies the estimate

c−1
≤

ω2
b,`

`(`+ 1)
≤ c,

for some c > 0 depending only on the parameters a, l,M, α.
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Proof. The n-th eigenvalue of Q`(b2, ω2
b,`), denoted by 3n(b2, ω2), moves smoothly in the parameters

b2 and ω2, and we have the formula

3n(b2, ω2)=

∫ π/2

r?max

dr?ψn(b2, ω2)Q`(b2, ω2)ψn(b2, ω2) (46)

for the eigenvalue, provided we normalize the associated eigenfunctions ψn(b2, ω2) by∫ π/2

r?max

dr?|ψn(b2, ω2)|2 = 1.

By assumption, 3n(b2
0, ω

2
b0,`
)= 0. Note that from the normalized condition on the eigenfunctions∫ π/2

r?max

dr∗
∂ψn

∂ω2 (b
2, ω2)ψn(b2, ω2)= 0,

which, combined with the eigenvalue equation 3nψn = Q`ψn , leads to∫ π/2

r?max

dr∗
∂ψn

∂ω2 (b
2, ω2)Q`(b2, ω2)ψn(b2, ω2)= 0.

Thus, differentiating (46), we get

∂3n

∂ω2 =

∫ π/2

r?max

dr∗ψn(b2, ω2)
∂Q`

∂ω2 (b
2, ω2)ψn(b2, ω2),

and a similar formula holds replacing ∂

∂ω2 with ∂

∂b2 . Using this, we compute

∂3n

∂ω2 (b
2
0, ω

2
b0,`
)=

∫ π/2

r?max

dr?ψ2
n (b

2
0, ω

2
b0,`
) ·

(
Vσ ·

∂µ`

∂ω2 (b
2
0, ω

2
b0,`
)− 1

)
, (47)

∂3n

∂b2 (b
2
0, ω

2
b0,`
)=

∫ π/2

r?max

dr?ψ2
n (b

2
0, ω

2
b0,`
) ·

(
Vσ ·

∂µ`

∂b2 (b
2
0, ω

2
b0,`
)

)
. (48)

The angular eigenvalue µ`(b2, ω2) is itself a smooth function of the two parameters b2 and ω2. We have
the formula

µ`(b2, ω2)=

∫ π

0
dθ sin θ φ`(b2, ω2)[Pθ,α(b2a2ω2)+ b2a2ω2

]φ`(b2, ω2) (49)

for the eigenvalues, provided we normalize the associated eigenfunctions φ`(b2, ω2) by∫ π

0
dθ sin θ |φ`(b2, ω2)|2.

Recalling from (18) that

Pθ,α(b2a2ω2) f + b2a2ω2 f =−
1

sin θ
∂θ (1θ sin θ∂θ f )+

sin2 θ

1θ
b2a2ω2 f +

|α|

l2 a2
{

cos2 θ f
sin2 θ f

, (50)
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to be read with the upper (lower) line if α < 0 (α ≥ 0), we obtain

∂µ`

∂ω2 (b
2
0, ω

2
b0,`
)= b2

0l2
· Tx and

∂µ`

∂b2 (b
2
0, ω

2
b0,`
)= ω2

b0,`
l2
· Tx , (51)

where

Tx =

∫ π

0
dθ sin θ

sin2 θ

1θ

a2

l2 |φ`(b
2
0, ω

2
b0,`
)|2 ≤ sup

θ

(
sin2 θ

1θ

a2

l2

)∫ π

0
dθ sin θ |φ`(b2

0, ω
2
b0,`
)|2 ≤

a2

l2 , (52)

where we have used the estimate supθ∈[0,π)(sin2 θ/1θ ) ≤ 1, which can be easily checked using (11).
Going back to (47) and (48), the implicit function theorem allows us to solve for ω2 as a (smooth) function
of b2 locally near (b2

0, ω
2
b0,`
), provided that the right-hand side of (47) is nonzero. To achieve this, note

that

1− Vσ
∂µ`

∂ω2 ≥ 1− b2
0a2Vσ ≥ 1− a2Vσ ,

using the estimate obtained for ∂µ`
∂ω2 from (51) and (52). On the other hand, using (30),

a2Vσ =
a2

l2 +
4a2

r2+a2 =
a2

l2 +4−
4r2

r2+a2 < 1− cM,l,a,

where cM,l,a is a constant depending only on the parameters M, l, a. It then follows that the right-hand
side of (47) is bounded away from zero with the lower bound being independent of b0 (and `), i.e.,

−
∂3n

∂ω2 (b
2
0, ω

2
b0,`
)≥ cM,l,a . (53)

This concludes the proof of the first item of the lemma (with ε a priori depending also on b2
0).

The implicit function theorem also provides a formula for the derivative of the function ω2(b2) just
obtained, namely

dω2
b,`

db2 (b
2)=

∂3n
∂b2 (b

2, ω2
b,`)

−
∂3n
∂ω2 (b

2, ω2
b,`)

for any b2
∈ (max(0, b2

0− ε), b2
0+ ε). (54)

We can now repeat the computations following (47) with b2
0 replaced by any b2

∈ (max(0, b2
0−ε), b2

0+ε).
Proceeding in this way, we obtain the uniform lower bound on the denominator (53) for any such b2. The
numerator is easily estimated in view of (51), again replacing b2

0 by b2. Note moreover that this derivative
has a positive sign since µ` is an increasing function of b and (48). We thus obtain an estimate of the form

0≤
dω2

b,`

db2 (b
2)≤ CM,l,aω

2
b,` for any b2

∈ (max(0, b2
0− ε), b2

0+ ε), (55)

establishing item 2 of the lemma.
We can now apply part 1 of the lemma, first with b2

0 = 0, then with b2
0 + δ, etc. Integrating the

differential inequality (55) from b2
0 = 0 to any point in the interval thus produced will provide the uniform

bound ω2
b,` ≤ CM,l,aω

2
0,`. Now, 3n(b2, ω2) is a smooth function on the compact set [0, 1]× [0, ω2

max,`],
where ω2

max,` denotes an upper bound for ω2
b2,`

(independent of b!). Since we also have the uniform bound
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(53) we obtain uniform control of the errors arising in the implicit function theorem and can conclude
that the ε in the implicit function theorem does not depend on b0. This is item 3.

To establish item 4, we observe that the identity 3n(ω
2, b2)= 0 implies (using the Hardy inequality

(40) as well as Vσ ≥ 1/l2) that ω2
b,`≥ (1/2l2)µ`(b2ω2)≥ (1/2l2)µ`(0)≥ cM,l,a`(`+1) for any b2

∈ [0, 1].
Hence the quantity ω2

b,` will stay strictly away from zero and

CM,l,a ≥
ω2

0,`

`(`+ 1)
≥ C−1

M,l,a

ω2
b,`

`(`+ 1)
≥ cM,l,a, (56)

the first inequality following from the analysis of the linear eigenvalue problem (36) in Section 4A, and
the second from the uniform estimate (55) on dω2

b,`/db2. �

In view of the fact that ε is uniform in b2
0, we can apply the implicit function theorem all the way

from b0 = 0 to b = 1. Note that ε can depend on `. However, for each fixed ` it only takes finitely many
applications of the implicit function theorem to reach b = 1.

To gain quantitative global control beyond (56) on the behavior of ω2
b,`(b

2), let us look at the quotient

En(b2) :=
ω2

b,`(b
2)

µ`(b2a2ω2
b,`(b2))

with b2
∈ [0, 1], (57)

which by construction is the n`-th eigenvalue of the semiclassical operator

Q̃b(u)= En(b2)u

with

Q̃b(u)=−u′′
(
µ`(b2a2ω2

b,`)
)−1
+
(
Vσ + [µ`(b2a2ω2

b,`)]
−1(Vjunk+ Vmass)

)
u.

Recall that E is an energy level such that E ∈ (1/l2, Vmax) and that, with the notation just introduced,
En(0) ∈ [E−δ, E+δ] for some small δ > 0.

Lemma 4.7. For all δ′ > 0, there exists an L such that, for all ` > L , we have

1
l2 ≤ En(1)≤ E + δ+ δ′. (58)

Proof. We first establish the upper bound. Using the Hardy inequality (40) together with (19) (which
implies that σ := 1/µ`(0)− 1/µ`(b2a2ω2

b,`)≥ 0 for any 1≥ b > 0), we can estimate∫ π/2

r?max

dr?[u(Q̃0− Q̃b)u] ≥ σ
∫ π/2

r?max

dr?|u|2
(

1
4l2

1−

r2+ a2 + Vjunk+ Vmass

)

≥ σ

∫ π/2

r?max

dr?
((

9
4
−α

)
1
l2

1−

r2+ a2 |u|
2
−CM,l,a|u|2

)
, (59)

since Vjunk is bounded uniformly. In view of |σ | ≤ CM,l,a
`(`+1)

, we conclude that

Q̃0 ≥ Q̃b−
CM,l,a

`(`+ 1)
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holds for any 1≥ b > 0. Hence, by min-max, we infer in particular that (independently of the parameters
a, M , ` and α)

En(1)≤ En(0)+ δ′ ≤ E + δ+ δ′, (60)

where δ′ can be chosen arbitrarily small by choosing ` sufficiently large.
For the lower bound, we will establish that

∫
dr?u(Q̃b(u)u) > 1/l2 holds for any u ∈ H 2

AdS and ` large.
To prove the latter, note first that the Hardy inequality (40) reduces the problem to showing that

Vσ + h2
(

1
4

1−

r2+ a2 + Vjunk+ Vmass

)
>

1
l2 . (61)

The square bracket is manifestly positive in a region [r?L , π/2) for some large r?L close to π/2 (depending
only on the parameters M , |a|< l and α < 9

4 ). We fix this r?L and, in view of Vσ ≥ 1
l2 , have established

(61) in [r?L , π/2). In [r?max, r
?
L ], we have the global estimate

Vσ ≥
1
l2 +

Mr
(r2+ a2)2

. (62)

The second term on the right will dominate the term h2
· (Vjunk) pointwise in [r?max, r

?
L ], provided h is

chosen small depending only on M , l, a, α. �

We summarize our results in the following analogue of Proposition 4.3.

Proposition 4.8. Let α < 9
4 , M > 0, |a| < l be fixed and E ∈ (1/l2, Vmax) be given. Then, there exists

an L > 0 such that for any ` > L there exist an ω2
` ∈ R+ and a smooth solution u` of the axisymmetric

reduced equation

−u′′` +
(
Vσ ·µ`(a2ω2

`)+ Vjunk+ Vmass
)
u` = ω2

` · u` (63)

satisfying u`(r?max)=0 and
∫ π/2

r?

(
|u′`|

2
+|u`|2r2) dr?<∞. Moreover, the ω2

` satisfy the uniform estimates

1
l2 <

ω2
`

µ`(a2ω2
`)
≤ E +

Vmax− E
2

and cM,l,a ≤
ω2
`

`(`+ 1)
≤ CM,l,a . (64)

5. Agmon estimates

In this section, we recall the Agmon estimates. These are (well-known) exponential decay estimates for
eigenfunctions for Schrödinger-type operators, in the so-called forbidden regions.

5A. Energy inequalities. The Agmon estimates will rely on the following identity.

Lemma 5.1 (energy identity for conjugated operator). Let r?1 > r?0 . Let h > 0 and let W , φ be smooth
real-valued functions on [r?0 , r

?
1 ]. For all smooth functions u defined on [r?0 , r

?
1 ], we have the identity
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r?0

(∣∣∣∣ d
dr?

(
e
φ
h u
)∣∣∣∣2+h−2

(
W−

(
dφ
dr?

)2 )
e2 φh |u|2

)
dr?

=

∫ r?1

r?0

(
−

d2ū
dr?2+h−2W ū

)
ue2 φh dr?+

∫ x1

x0

h−1 dφ
dr?

e2 φh 2i=
(

ū du
dr?

)
dr?

+

(
e2 φh dū

dr?
u
)
(r?1)−

(
e2 φh dū

dr?
u
)
(r?0).

In particular, if u is real-valued and vanishes at r?0 and r?1 , then∫ r?1

r?0

(∣∣∣∣ d
dr?

(
e
φ
h u
)∣∣∣∣2+h−2

(
W−

(
dφ
dr?

)2 )
e2 φh |u|2

)
dr? =

∫ r?1

r?0

(
−

d2u
dr?2+h−2W u

)
ue2 φh dr?.

The same identity holds if instead of assuming that W is smooth on [r?0 , r
?
1 ], we assume only that

W |u|2 ∈ L1(r?0 , r
?
1). By density, we may also replace smoothness of u and φ by the conditions that

u ∈ H 1
0 [r

?
0 , r

?
1 ] and φ is a Lipschitz function.

Proof. This follows easily from the computations∫ r?1

r?0

(
−

d2

dr?2 + h−2W
)(

e
φ
h u
)
ue

φ
h dr?

=

∫ r?1

r?0

∣∣∣∣ d
dr?

e
φ
h u
∣∣∣∣2+ h−2W e2 φh |u|2 dr?−

(
d

dr?
(
e
φ
h u
)
ue

φ
h

)
(r?1)+

d
dr?

(
e
φ
h u
)
ue

φ
h (r?0)

and∫ r?1

r?0

(
−

d2

dr?2

)(
e
φ
h u
)
ue

φ
h dr?

=

∫ r?1

r?0

−
d

dr?

(
h−1 dφ

dr?
ūe

φ
h+

du
dr?

e
φ
h

)
ue

φ
h dr?

=

∫ r?1

r?0

[
−h−1 dφ

dr?
du
dr?

ue2 φh−
d2ū
dr?2 ue2 φh

]
dr?+

∫ r?1

r?0

[
h−1 dφ

dr?
du
dr?

ūe2 φh+h−2
(

dφ
dr?

)2

ūue2 φh

]
dr?

−h−1
(

dφ
dr?
|u|2e2 φh

)
(r?1)+h−1

(
dφ
dr?
|u|2e2 φh

)
(r?0)

=

∫ r?1

r?0

(
h−2

(
dφ
dr?

)2

|u|2e2 φh−
d2ū
dr?2 ue2 φh

)
dr?+

∫ r?1

r?0

h−1 dφ
dr?

e2 φh 2i=(ūur?) dr?

−h−1
(

dφ
dr?
|u|2e2 φh

)
(r?1)+h−1

(
dφ
dr?
|u|2e2 φh

)
(r?0). �

5B. The Agmon distance. We will rely on the Agmon distance to establish our exponential decay
estimates.9 Given any energy level E > 0 and a potential V = V (r?) (which may also depend on a

9The Agmon distance is actually typically used to obtain optimal exponential decay estimates; see for instance [Fournais
and Helffer 2010]. For the main purpose of this paper (the construction of quasimodes), we could have used smooth cut-off
constructions to prove slightly weaker exponential decay estimates. However, the Agmon distance (despite leading only to
Lipschitz cut-offs) has a nice interpretation, which is why we choose to use it here.
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parameter h), we define the Agmon distance d between r?1 and r?2 as

d = d(V−E)+(r
?
1 , r

?
2)=

∣∣∣∣∫ r?2

r?1

χ{V≥E}(r?)(V (r?)−E)1/2 dr?
∣∣∣∣,

where χ{V≥E} is the characteristic function of the set of r? satisfying V (r?)≥ E. In other words, d is the
distance associated to the Agmon metric (V −E)+ dr?2, where f+ =max(0, f ) for any function f .

It is easily checked that d satisfies the triangular inequality and that

|∇r?d(r?, r?2)|
2
≤ (V −E)+(r?).

The distance to a set can also be defined as usual. In particular, we define

dE(r?) := inf
r?0∈{E≥V }

d(r?, r?0),

which measures the distance to the classical region. We have again

|∇r?dE(r?)|2 ≤ (V −E)+(r?).

For a given small ε ∈ (0, 1) we define the two complementary r?-regions

�+ε =�
+

ε (E) := {r
?
| V (r?) > E+ ε},

�−ε =�
−

ε (E) := {r
?
| V (r?)≤ E+ ε}.

E

E+ ε

r ?�−ε �+ε �−ε

5C. The main estimate. We would like to apply Lemma 5.1 between r?max and π/2 for u, a solution to
the eigenvalue problem (34), and for suitable φ.

Lemma 5.2. Let u be a solution to the eigenvalue problem (34); i.e., κ · u = P(h)u for some κ = h2ω2.
Define, for any ε ∈ (0, 1),

φκ,ε := (1− ε)dκ . (65)

Then, for all ε sufficiently small, u satisfies∫ π/2

r?max

h2
∣∣∣ d
dr?

eφκ,ε/hu
∣∣∣2 dx + ε2

∫
�+ε

e2φκ,ε/h
|u|2 dr? ≤ D(κ + ε)e2a(ε)/h

‖u‖2L2(r?max,π/2)
, (66)

where a(ε)= sup�−ε dκ and D > 0 is a constant depending only on the parameters a,M, l and α.
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Remark 5.3. Note

aκ(ε)= sup
�−ε

dκ→ 0 as ε→ 0,

uniformly in h (and κ) for h sufficiently small. In view of the exponential weight in the second term on
the left, the estimate (66) quantifies that u is exponentially small in the forbidden region, provided we can
show a uniform lower bound for φκ,ε in a suitable subset of �+ε . This will be achieved in Lemma 5.4.

Proof. Applying Lemma 5.1 between r?max and π/2, we get∫ π/2

r?max

h2
∣∣∣∣ d
dr?

e
φ
h u
∣∣∣∣2 dr?+

∫
�+ε

(
V −κ−

∣∣∣∣ dφ
dr?

∣∣∣∣2)e2 φh |u|2 dr? =
∫
�−ε

(
κ−V +

∣∣∣∣ dφ
dr?

∣∣∣∣2)e2 φh |u|2 dr?. (67)

In view of our choice φ = φκ,ε , we have in �+ε the estimate

V − κ −
∣∣∣∣dφκ,εdr?

∣∣∣∣2 ≥ (1− (1− ε)2)(V − κ)≥ ε2 (68)

for ε sufficiently small, which we will use to estimate the left-hand side of (67).
For the right-hand side of (67), we note that if V ≥ 0 (which occurs if α ≤ 2), then we immediately

obtain ∫
�−ε

(
κ − V +

∣∣∣∣dφκ,εdr?

∣∣∣∣2)e2φκ,ε/h
|u|2 dr? ≤ (κ + ε)e2a(ε)/h

‖u‖2L2(r?max,π/2)
, (69)

so that combining (68) and (69) yields (66).
To obtain (66) also in the case α > 2 (for which we have V (r?)→−∞ as r?→ π/2), we need once

again to appeal to a Hardy-type inequality to absorb the error by the derivative term on the left-hand side
of (67). This we do as follows.

Recall that V = Vσ + h2(Vjunk+ Vmass), and the unbounded term is h2Vmass = h2 2−α
l2

1−r2

(r2+a2)2
< 0

for α > 2. Note that
1−r2

(r2+ a2)2
=

1−

(r2+ a2)
−

1−a2

(r2+ a2)2
.

The second term is bounded (and in fact will contribute with the right sign if α ≥ 2) so its contribution
can be treated as before. Thus, we only need to estimate∫

�−ε

1−

(r2+ a2)
e2φκ,ε/h

|u|2 dr?.

By [Holzegel and Smulevici 2013a, Lemma 7.2] (see (40)) we have, for any function v in H 1
0 (r

?
max, π/2),∫ π/2

R?

1−

(r2+ a2)
|v|2 dr? ≤ 4l2

∫ π/2

R?

∣∣∣∣ dv
dr∗

∣∣∣∣2 dr∗ for any R? ≥ r?max. (70)

Applying the above Hardy inequality to v = eφκ,ε/hu, we obtain that there exists a uniform constant C > 0
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such that∫ π/2

r?max

h2
(

9
4
−α

)∣∣∣∣ d
dr?

eφκ,ε/hu
∣∣∣∣2dr?+

∫
�+ε

(
V − κ −

∣∣∣∣dφκ,εdr?

∣∣∣∣2)e2φκ,ε/h
|u|2 dr?

≤ C(κ + ε)e2a(ε)/h
‖u‖2L2(r?max,π/2)

;

i.e., there exists a constant D > 0 (which degenerates as α→ 9
4 ) such that∫ π/2

r?max

h2
∣∣∣∣ d
dr?

eφκ,ε/hu
∣∣∣∣2 dr?+

∫
�+ε

(
Vσ − κ −

∣∣∣∣dφκ,εdr?

∣∣∣∣2)e2φκ,ε/h
|u|2 dr?

≤ D(κ + ε)e2a(ε)/h
‖u‖2L2(r?max,π/2)

. (71)

This estimate, when combined with (68), yields again (66) from (67). �

5D. Application of the main estimate. Before we can exploit (66), we need the following lemma, which
quantifies the size of the forbidden region for a given energy level.

Lemma 5.4. Let E ∈ (1/l2, Vmax) and suppose that κ ∈ (1/l2, E+δ] for some δ>0 such that E+δ<Vmax.
Then there exists δ′ > 0 and C > 0, both constants independent of h, such that Vσ − κ > 2C , in
[rmax, rmax+ δ

′
], for all κ ∈ [E−δ, E+δ].

Proof. This is a simple consequence of the continuity of Vσ at r?max. �

In view of the full potential being V = Vσ + h2(Vjunk+ Vmass) we also obtain:

Corollary 5.5. For h sufficiently small (depending only on M , l and a) we have V − κ > C in
[rmax, rmax+ δ

′
] for all κ ∈ [E−δ, E+δ], with both δ′ and C depending only on M , l and a.

With E ∈ (1/l2, Vmax) given, we now fix δ′ > 0 and C > 0 as promised by Lemma 5.4. This implies
that φκ,ε ≥ cM,l,a in [rmax, rmax+ δ

′
] uniformly in ε (the constant cM,l,a being of size C · δ′). Next we fix

ε > 0 sufficiently small so that, in particular, a(ε)≤ cM,l,a/2. We finally conclude from (66) that there
exists a C̃ > 0 (independent of h) such that∫ r?max+δ

′

r?max

|u|2 dr? ≤ C̃e−C̃/h
‖u‖2L2(r?max,π/2)

. (72)

Turning to the derivative term on the left of (71), we also have∫ r?max+δ
′

r?max

h2e2φκ,ε/h
(

1
h2

∣∣∣∣dφκ,εdr?

∣∣∣∣2|u|2+ 2
h

dφκ,ε
dr?

u
du
dr?
+

∣∣∣∣ du
dr?

∣∣∣∣2) dr? . e2a(ε)/h
‖u‖2L2(r?max,π/2)

.

The |u|2 term in the above integral can be ignored since it has the right sign. The cross-term can be
absorbed using (72) and 1

2 of the derivative term. Therefore,∫ r?max+δ
′

r?max

∣∣∣∣ du
dr?

∣∣∣∣2 dr? ≤ C̃h−2e−C̃/h
‖u‖2L2(r?max,π/2)

.
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�+ε
r?

2δ′

r?max

κ
κ + ε

�−ε �−ε

Summarizing these decay estimates, we have proven:

Lemma 5.6. Let E ∈ (1/l2, Vmax) be fixed and let δ be sufficiently small so that [E − δ, E + δ] ⊂
(1/l2, Vmax). Then there exist constants D, δ′ > 0, depending only on the parameters M , l, a and α, such
that the sequence of eigenfunctions [u`]∞`≥L arising from Proposition 4.8 satisfies the estimate∫ r?max+δ

′

r?max

(∣∣∣∣du`
dr?

∣∣∣∣2+ |u`|2) dr? ≤ De−D/h
‖u`‖2L2(r?max,π/2)

,

where h = (µ`(a2ω2
`))
−1/2 and ω` are as in Proposition 4.8.

We remark that by reusing once again the equation, we can obtain such exponential decay estimates on
all higher-order derivatives, with the constants in the above lemma depending on the order of commutation.

6. The construction of quasimodes

By now we have established the existence (Proposition 4.8) of a sequence of functions [u`] such that for
each ` the corresponding u` solves

ω2
`h

2u` = P(h)u`,

where h = (µ`(a2ω2
`))
−1/2
→ 0 as `→∞, and such that these u` obey the estimate of Lemma 5.6 with

some constants D, δ′ > 0 independent of h (or equivalently `).
Now let χ be a smooth function such that χ = 1 on [r?max+ δ

′, π/2] and χ = 0 on (−∞, r?max]. We
then define ψ`(t, r, θ, φ̃) as

ψ`(t, r, θ, φ̃)= eiω`tχ(r?(r))(r2
+ a2)−1/2u`(r?(r))S`0(θ). (73)

Remark 6.1. As defined above, the ψ` are complex functions but, of course, we could have worked
below with <(ψ`) or =(ψ`).

We now show that the ψ` satisfy the Klein–Gordon equation up to an exponentially small error.

Lemma 6.2. For each ` and each k ≥ 0, ψ` ∈ CH k
AdS. Moreover, there exists L > 0 such that we have the

following estimates. For all k ≥ 0, there exists a Ck > 0 such that for all `≥ L and all t ≥ t0,∥∥∥∥�gψ`+
α

l2ψ`

∥∥∥∥
H k

Ads(6t )

≤ Cke−Ck`‖ψ`‖H0
AdS(6t0 )

.
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Moreover, the error
∣∣�gψ`+ (α/ l2)ψ`

∣∣ is supported on [rmax, rmax+δ′], for some δ′ > 0 independent of `.
Finally, all the H k

AdS-norms of ψ` and of its time derivatives on each 6t are constant in t .

Proof. By standard elliptic estimates, any u` is smooth on (r?max, π/2). Thus, as far as the regularity of ψ`
is concerned, it is sufficient to check that ψ` and its derivative decay sufficiently fast near r =∞, which
is easy and therefore omitted.

Moreover, in view of our construction, we have (�g +α/ l2)ψ` = 0 in [r+, rmax] ∪ [r(r?max+ δ
′),∞].

Hence, the error is supported in a bounded strip in which we have the following naïve estimate: For all
(t, r, θ, φ) with r ∈ [rmax, rmax+ δ

′
],∣∣∣∣�gψ`+

α

l2ψ`

∣∣∣∣. (ω2
|u`| + |u′′` | + |u

′

`| + h−2
|u`|

)
S`0(θ),

which gives the required estimate for k = 0 after integration, using the Agmon estimates of the previous
section and the equation satisfied by u` in order to estimate u′′` . For higher k, it suffices to commute the
equation and to use the equation for u` every time two radial derivatives occur, or the equation for S`0
every time angular derivatives occur. �

Note that we finally proved Theorem 1.5. Indeed, the ψ` are of the form claimed in (1) by construction
of (73). The estimate on the ω` in (2) was obtained as part of Proposition 4.8. The error estimate (3) is
the statement of Lemma 6.2, while the localization properties (4) and (5) are obvious from (73) itself.

7. Proof of Corollary 1.6

In this section, we prove Corollary 1.6. Given the quasimodes, the proof is standard, but we include it for
the paper to be self-contained.

Let us therefore fix a Kerr–AdS spacetime such that the assumption of Corollary 1.6 is satisfied, and
also a Klein–Gordon mass α < 9

4 . For convenience, we set t?0 = 0. Recall also that t? = t in r ≥ rmax.
We shall consider solutions ψ to homogeneous and inhomogeneous Klein–Gordon equations with

initial data ψ |6t and ∂tψ |6t given on slices of constant t . We shall avoid completely issues regarding the
facts that ∂t is not always timelike and that the coordinate t breaks down at the horizon by considering
only axisymmetric data which is compactly supported away from the horizon.

Thus, given any t, s ∈ R and given any smooth, axisymmetric initial data set w = (ψ, Tψ) whose
support is bounded away from the horizon and which decays sufficiently fast near infinity, we will denote
by P(t, s)w the unique solution at time t of the homogenous problem(

�g +
α

l2

)
ψ = 0, ψ |6s = ψ,

∂ψ

∂t

∣∣∣∣
6s

= Tψ.

Given a smooth axisymmetric function F defined on R, compactly supported in r away from the
horizon and infinity, we can consider the inhomogeneous problem(

�g +
α

l2

)
ψ = F, ψ |60 = ψ,

∂ψ

∂t

∣∣∣∣
60

= Tψ.
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For regular data as above, this problem is well-posed in CH 2
AdS and we shall denote its solution by ψF (t),

suppressing the dependence on r and the angular variables. If the data is axisymmetric, then ψF will be
axisymmetric and, writing v(s)= (0, F(s)(gt t)−1), ψF (t) is given by the Duhamel formula

ψF (t)= P(t, 0)w+
∫ t

0
P(t, s)v(s) ds.

We now consider the family of ψ` given by Theorem 1.5. For each `, ψ` provides an initial data set

w` =

(
ψ`(t = 0),

∂ψ`

∂t
(t = 0)

)
for (1) on the slice t = 0. Moreover, each ψ` satisfies the inhomogeneous Klein–Gordon equation(

�g +
α

l2

)
ψ` = F`,

for some F` satisfying ‖F`‖H k,−2
AdS
≤ Cke−Ck`‖ψ`‖H0

AdS
.

Note that since, from Lemma 6.2, the error F` is supported away from r =+∞ independently of `,
we can safely ignore all powers of r in the following estimates.

Let ψ̃` denote the solution of the homogeneous problem associated with the same initial data w`, i.e.,
ψ̃` = P(t, 0)w`. From Duhamel’s formula, we then get

‖ψ`− ψ̃`‖H1
AdS(6t∩{r≥rmax})

≤ t sup
s∈[0,t]
‖P(t, s)(0, F`)(s)‖H1

AdS(6t∩{r≥rmax})

≤ tC‖F`‖H0,−2
AdS (60)

≤ tCe−C`
‖ψ`‖H0

AdS(60∩{r≥rmax})

≤ tCe−C`
‖ψ`‖H1

AdS(60∩{r≥rmax})
, (74)

where we use the boundedness statement of Theorem 1.1 to bound ‖P(t, s)(0, F`)(s)‖H0
AdS(6t∩{r≥rmax})

in
terms of the data, as well as Lemma 6.2. In particular, since the norms of ψ` are time-invariant, for any
t ≤ eC`/2C , the reverse triangle inequality and (74) yield(∫

6t∩{r≥rmax}

e1[ψ̃`]r2 dr sin θ dθ dφ
)1

2

≥ ‖ψ̃`‖H1
AdS(6t∩{r≥rmax})

≥
1
2
‖ψ̃`‖H1

AdS(60∩{r≥rmax})

≥
c

2`
[
‖�i ψ̃`‖H1

AdS(60∩{r≥rmax})
+‖∂t?ψ̃`‖H1

AdS(60∩{r≥rmax})

]
≥

c
2`

(∫
60

e2[ψ̃`]r2 dr sin θ dθ dφ
)1

2

. (75)

Here we have used — in the step from the second to the third line — that the data for ψ̃` is frequency-
localized, which allows us to exchange angular and time derivatives with powers of ` using the second
item of Theorem 1.5, and radial derivatives by angular and time derivatives using the wave equation the
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ψ̃` satisfy. From the third to the fourth line we exploited the fact that the data is localized in r ≥ rmax.
The constant c depends only on the parameters M , l, a and α.

Finally, setting t`= eC`/2C , we obtain from (75) a family (t`, ψ`) such that, for any sufficiently large `,
Q[ψ̃`](t`) > C > 0 holds, which proves the corollary.

Appendix: The improved boundedness statement

The boundedness statement at the H 2-level proven in [Holzegel 2010; 2012] is the estimate (3) for the
ẽ2[ψ]-based energies (see Section 2B). It is remarked in the second of these references that stronger norms
can be shown to be uniformly bounded using commutation by angular momentum operators leading to the
statement (3). Since the latter statement has been used in this paper and also in [Holzegel and Smulevici
2013a], we provide here a sketch of the proof of this well-known (but absent from the literature) argument.
We define the energies

E1[ψ](t?)=
∫
6t∗

e1[ψ](t?) r2 sin θ dr dθ dφ (76)

and, with the obvious replacement, E2[ψ](t?) and Ẽ2[ψ](t?). Recall that uniform boundedness for the
Ẽ2[ψ] energy is derived by, in addition to using known techniques near the horizon (cf. the red-shift
vector field), commuting the Klein–Gordon equation with ∂t (which yields (2) with ψ replaced by ∂tψ)
followed by elliptic estimates on spacelike slices, which control the H 2

AdS norm.
Let us sketch how to prove boundedness (3) for the E2[ψ] energy. If we commute the Klein–Gordon

equation with angular momentum operators we obtain

�g(�iψ)+
α

l2 (�iψ)= 2(�i )πµν · ∇µ∇νψ +
(
2∇α

(
(�i )παµ

)
−∇µ

(
(�i )παα

))
∇
µψ, (77)

with (�i )π the (nonvanishing in Kerr!) deformation tensor of �i . The right-hand side decays suitably
in r but not in t . More precisely, in view of the fact that there is no integrated decay estimate available,
we cannot close the basic energy estimate on its own. Let us instead commute with localized angular
momentum operators �̃i = χ(r)�i , where χ(r) is equal to 1 for r ≥ 2R and equal to 0 for r ≤ R.
Applying the energy estimate for the vector field ∂t? , we can derive

‖�̃iψt‖H0,−2
AdS (6t?∩{r≥2R})+‖�̃iψ‖H1

AdS(6t?∩{r≥2R})

≤CM,l,a,α
(
‖�̃iψt‖H0,−2

AdS (6t?0 )
+‖�̃iψ‖H1

AdS(6t?0 )
)
+(τ2−τ1)

(
ε sup
τ∈(τ1,τ2)

E2[ψ](τ )+ε · Ẽ2[ψ](0)
)
, (78)

where ε can be made small by choosing R large. The last term arises from the spacetime error term which
decays strongly in r .

The idea is to combine this with an integrated decay estimate for the �̃iψ which loses linearly in τ .
Recall that if �9 + (α/ l2)9 = f , then we have the identity

∇a9∇
aψ −

α

l29
2
=∇

µ(9∇µ9)− gt?t?
∇t?9∇t?9 − 2gt?b

∇t?9∇b9 − f9, (79)
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where a, b run over r, θ, φ only. When integrating this identity (with 9 replaced by �̃iψ and f the error
arising from the commutation in (77)) with the usual spacetime volume we observe that:

• The left-hand side is nonnegative and controls all spatial derivatives after applying the standard
Hardy inequality (40).

• The second and third terms on the right are essentially controlled by the Ẽ2[ψ] energy times the
length of the time interval (τ2− τ1):

gt?t?
∇t?(�̃iψ)∇t?(�̃iψ)∼

1
r2 r2
|∂t? /∇ψ |

2
/g = |∂t? /∇ψ |

2
/g ≤ e1[∂t?ψ],

gt?r
∇t?(�̃iψ)∇r (�̃iψ)∼

1
r3 r2(|∂t? /∇ψ |

2
/g + |∂r /∇ψ |

2
/g)≤ e1[∂t?ψ],

gt?φ
∇t?(�̃iψ)∇φ(�̃iψ)∼

1
r2 r2

(1
ε
|∂t? /∇ψ |

2
/g + ε|∂φ

/∇ψ |2
/g

)
≤ Cε · e1[∂t?ψ] + ε · e2[ψ],

(80)

and gt?θ
= 0. (We need to borrow an ε of e2[ψ] because the t?φ coordinates are not optimal

near infinity.) The cross-term gt?φ would have much stronger decay in coordinates adapted to the
asymptotically AdS end, which would allow us to estimate all terms by the weaker energy Ẽ2[ψ].

• The first term on the right-hand side is a boundary term, which can be estimated by∣∣∣∣∫
D(τ1,τ2)

∇
µ(�̃iψ∇µ(�̃iψ))

∣∣∣∣≤ sup
t?

∫
6t∗

ẽ2[ψ]r2 sin θ dr dθ dφ. (81)

• The last term in (79) is controlled as previously by the last line in the energy estimate (78).

It follows that integrating (79) furnishes the estimate∫
D(τ1,τ2)∩{r≥2R}

r2 sin θ dt? dr dθ dφ
(
r2
|∂r�iψ |

2
+ | /∇�iψ |

2)
≤max(1, τ2− τ1)

(
ε sup
τ∈(τ1,τ2)

E2[ψ](τ )+C · Ẽ2[ψ](0)
)
. (82)

Now note that

Ẽ2[ψ](t?)+‖�iψt‖
2
H0,−2

AdS (6t?∩{r≤2R})
+‖�iψ‖

2
H1

AdS(6t?∩{r≤2R})≤CR · Ẽ2[ψ](t?)≤CR · Ẽ2[ψ](0) (83)

follows right from the boundedness statement for the Ẽ2[ψ] energy and estimating the weights away
from infinity. We can integrate (83) in time and add it to (82) which yields (first without the boxed terms)

E2[ψ](τ2) +

∫ τ2

τ1

E2[ψ](τ ) dτ

≤ CM,l,a,α · E2[ψ](τ1) +max(1, τ2− τ1)

(
ε sup
τ∈(τ1,τ2)

E2[ψ](τ )+Cε · Ẽ2[ψ](0)
)
. (84)

The estimate also holds with the boxed terms included, as follows from adding (78) and (83). We claim
that (84) implies E2[ψ](t?). E2[ψ](0) provided ε is sufficiently small depending only on the parameters
(the constant CM,l,a,α), and leave the verification to the reader.



1088 GUSTAV HOLZEGEL AND JACQUES SMULEVICI

Remark. An easier proof is available if one is willing to go to H 3
AdS. The Carter operator

Qψ =1S2ψ − ∂2
φψ + (a

2 sin2 θ)∂2
t ψ (85)

commutes with the wave operator. Since ∂2
φ and ∂2

t trivially commute, we have

E1[1S2ψ](t?). E1[Qψ](t?)+ E1[∂
2
φψ](t

?)+ E1[∂
2
t ψ](t

?)

. E1[Qψ](0)+ E1[∂
2
φψ](0)+ E1[∂

2
t ψ](0),

(86)

and we can control all derivatives on S2 from controlling the Laplacian via elliptic estimates. This yields
the desired gain, albeit at the level of three derivatives. This is analogous to commuting with angular
momentum operators twice.
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