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PROPAGATION OF SINGULARITIES FOR ROUGH METRICS

HART F. SMITH

We use a wave packet transform and weighted norm estimates in phase space to establish propagation of
singularities for solutions to time-dependent scalar hyperbolic equations that have coefficients of limited
regularity. It is assumed that the second order derivatives of the principal coefficients belong to L1

t L∞x ,
and that u is a solution to the homogeneous equation of global Sobolev regularity s0 = 0 or 1. It is then
proven that the H s0+1 wavefront set of u is a union of maximally extended null bicharacteristic curves.

1. Introduction

In this paper we establish a propagation of singularities theorem for second-order, scalar hyperbolic
operators of (t, x) ∈ (−T, T )×Rn of the form

L = D2
t − 2b j (t, x)D j Dt − ci j (t, x)Di D j + d0(t, x)Dt + d j (t, x)D j , 1≤ i, j ≤ n,

where summation notation is used, and Dt =−i∂t , D j =−i∂x j for 1≤ j ≤ n. Under the assumption that
the second derivatives of the principal coefficients belong to L1

t L∞x , we establish the following.

Theorem 1.1. Suppose that s0 ∈ {0, 1}. Suppose that Lu = 0 and that

u ∈ C0((−T, T ), H s0(Rn)), Dt u ∈ C0((−T, T ), H s0−1(Rn)). (1-1)

If γ (t) is a null bicharacteristic curve of L and γ (t0) /∈ WF s0+1(u) for some t0 ∈ (−T, T ), then γ ∩
WF s0+1(u)=∅.

The improvement of this paper over prior results for twice-differentiable coefficients is the gain of 1
derivative over the background regularity, which we show by example to be the best possible in the setting
we consider. Also, we assume integrability in t of the second order derivatives, as opposed to uniform
bounds, which by a limiting argument will show that the theorem holds for piecewise regular coefficients.
By Theorem B.2, the assumptions on u imply that WF s0+1(u) is contained in the characteristic set of L , so
the restriction to null bicharacteristics is natural. Theorem 1.1 can be localized in x ; see Remark B.7. Also,
for s0= 1, the regularity assumption on u may be reduced to u ∈ H 1((−T, T )×Rn) by Theorem B.6. For
s0 = 0, it is not clear how to interpret Lu in case u ∈ L2((−T, T )×Rn). However, if L is of divergence
form, or if the regularity assumption on the coefficients of L is increased to b j , ci j

∈C1,1((−T, T )×Rn),
and d0, d j

∈ C0,1((−T, T )×Rn), then Remark B.8 shows that Theorem 1.1 holds for L2 solutions.
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Hörmander’s theorem [1971] on propagation of singularities for operators of real principal type shows
that if the coefficients of L are C∞, then the conclusion of Theorem 1.1 holds for all s0, with no global
regularity condition required of u. Propagation of singularities theorems in the setting of nonsmooth
nonlinear equations were obtained by Bony [1981], where the method of paradifferential operators was
introduced. In that case a local regularity assumption is required of u. Related work on nonlinear equations
includes [Rauch and Reed 1980; Beals and Reed 1984]. More closely related to this paper, Taylor [2000]
used the positive commutator method and paradifferential theory to establish propagation of singularities
for linear differential equations, including results for coefficients of Hölder regularity less than 2. In
the case of C1,1 coefficients, [Taylor 2000, Proposition 11.4, Chapter 3] implies invariance of the H s0+1

wavefront set if u ∈ H s0+ε , any ε > 0, for s0 ∈ [−1, 1]. In [de Hoop et al. 2012], the authors studied
reflection of the H s0 wavefront set off conormal singularities of metrics with singularities of Hölder
regularity C1,α, where 0 < α ≤ 1. The limiting result in [de Hoop et al. 2012] for α = 1 would be a
gain of 1/2 derivative relative to the assumed background regularity of u. For C2 metrics in domains
with C3 boundary, Burq [1997] established the propagation result for microlocal defect measures. In the
setting of [Burq 1997], as well as in that of [de Hoop et al. 2012], there may be multiple generalized
bicharacteristics passing through a given initial point in phase space.

We now make more precise the regularity conditions that we place on the coefficients. We assume that
the coefficient functions b j and ci j are real, and that the equation is uniformly hyperbolic in t :

n∑
i, j=1

ci j (t, x)ξiξ j ≥ c0|ξ |
2, c0 > 0. (1-2)

The b j and ci j are assumed continuously differentiable, with uniform bounds

sup
|t |<T,x∈Rn

∑
|γ |≤1

(|∂
γ
t,x b j (t, x)| + |∂γt,x ci j (t, x)|)≤ C0. (1-3)

In addition, we assume that the second-order derivatives of b j and ci j belong to L1L∞. Precisely, we
assume that their distributional derivatives of second-order are locally integrable functions of (t, x), and
that there exists a function α(t) ∈ L1((−T, T )) such that

sup
x∈Rn

∑
|γ |=2

(|∂
γ
t,x b j (t, x)| + |∂γt,x ci j (t, x)|)≤ α(t). (1-4)

This condition in fact implies that the coefficients are continuously differentiable functions of (t, x), so
that the assumption of C1 coefficients (as opposed to Lipschitz) is redundant. It also follows from (1-4)
that

‖ci j (t, · )− ci j (s, · )‖C1(Rn) ≤

∫ t

s
α(r) dr, (1-5)

so the map s→ ci j (s, · ) is continuous from (−T, T ) into C1(Rn), similarly for b j .
The coefficients d0 and d j are assumed to have the same regularity as the first order derivatives of b j

and ci j ; that is, d0 and d j are assumed to be continuous functions of (t, x) with uniform upper bounds,
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with first order derivatives in L1L∞. Precisely, for d denoting either d0 or d j , we assume bounds with
α(t) as above:

sup
|t |<T,x∈Rn

|d(t, x)| ≤ C0, sup
x∈Rn

∑
|γ |=1

|∂
γ
t,x d(t, x)| ≤ α(t). (1-6)

The coefficients of L all admit extensions to R×Rn with the same regularity. For example, consider
c(t, x) defined on t > 0 with second order derivatives belonging to L1L∞(R+×Rn). By (1-5), c(t, x)
extends to a C1 function on t ≥ 0. For t < 0 define

c(t, x)= 3c(−t, x)− 2c(−2t, x). (1-7)

It is then easily verified that all second order distributional derivatives of c belong to L1L∞(R1+n), and
that the same extension preserves the first order regularity of d0, d j . For convenience, we will thus
assume when needed that all coefficients of L have been extended to R×Rn , and, in addition, that L
equals the standard wave operator for |t | ≥ T + 1.

We note that the product of functions satisfying (1-3) and (1-4) is of the same type, hence there is
no loss of generality in our assumption that the coefficient of D2

t is 1. Such an L can also be written in
divergence form:

L = D2
t − 2D j b j (t, x)Dt − Di ci j (t, x)D j + d̃0(t, x)Dt + d̃ j (t, x)D j

for d̃ satisfying (1-6). This form will be more convenient for certain proofs.
Consider the principal symbol of L , where (τ, ξ) are the phase space coordinates dual to (t, x),

H(t, x, τ, ξ)= τ 2
− 2

n∑
j=1

b j (t, x)ξ jτ −

n∑
i, j=1

ci jξiξ j .

This factors as

H(t, x, τ, ξ)= (τ − p+(t, x, ξ))(τ + p−(t, x, ξ)),

where
p±(t, x, ξ)= p(t, x, ξ)± b j (t, x)ξ j ,

p(t, x, ξ)= (ci j (t, x)ξiξ j + (b j (t, x)ξ j )
2)

1
2 .

(1-8)

We modify p(t, x, ξ) near ξ = 0 so that it is smooth in ξ and homogeneous of degree 1 for |ξ |> 1. The
symbols p and p± are continuously differentiable in (t, x) and satisfy

sup
|ξ |=1

sup
|β|≤1
|∂
γ

ξ ∂
β
t,x p(t, x, ξ)| ≤ Cγ ,

sup
|ξ |=1

sup
|β|=2
|∂
γ

ξ ∂
β
t,x p(t, x, ξ)| ≤ Cγα(t),

(1-9)

and similarly for p±. As a consequence, the Hamiltonian flow of ±p±,

dxt

dt
=±dξ p±(t, xt , ξt),

dξt

dt
=∓dx p±(t, xt , ξt),
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is well-posed and induces a bilipschitz homeomorphism on R2n
x,ξ , since the Lipschitz norm of p± with

respect to (x, ξ) is bounded by α(t) ∈ L1((−T, T )). The null bicharacteristics of H(t, x, τ, ξ) are, after
reparametrization, curves of the form

γ (t)= (t, xt ,±p±(t, xt , ξt), ξt),

where (xt , ξt) is, respectively, an integral curve of ±p±. We will refer to such curves γ (t) as the null
bicharacteristic curves of L .

The outline of this paper is as follows. In Section 2 we reduce the proof of Theorem 1.1 to an analogous
result for a first order pseudodifferential equation, which requires a careful factorization of L . In Section 3
we construct the evolution groups for the first order factors of L as one-parameter families of operators on
the appropriate range of Sobolev spaces, through the use of wave packet transform methods. In Section 4
we establish spatial-wavefront mapping properties (pseudolocality) for the evolution operators at fixed
time. This is the heart of the paper, where pseudolocality is established via weighted-norm estimates
on the fixed-time evolution operators expressed in the wave-packet frame. In Section 5 we deduce the
space-time wavefront propagation of Theorem 1.1 from the fixed time result. In Section 6 we show
that Theorem 1.1 applies, through a limiting process, to coefficients that satisfy the above regularity
assumptions on the elements of a partition of (−T, T )×Rn into time slices, with matching assumptions
at the endpoints. We then produce an example of such a metric showing that the assumption of H s0

regularity on u cannot be relaxed when establishing propagation of H s0+1 singularities. Appendix A
contains the various commutator and paraproduct estimates that are used throughout the paper. Some
of these results are standard in paraproduct theory, but we collect them here for reference. Appendix B
contains energy estimates and well-posedness results for the operators considered in this paper.

Notation. We use the following notation for function spaces. For 1≤ p ≤∞, and s ∈ R, L p H s denotes
functions for which ‖u(t)‖H s(Rn) belongs to L p((−T, T )) with norm

‖u‖L p H s =

(∫ T

−T
‖u(t)‖p

H s dt
)1/p

,

with the obvious modification if p =∞, and where we write L2 instead of H 0. Here and throughout this
paper, u(t) denotes the function x→ u(t, x). The L p Lq norm is similarly defined as ‖u‖L p((−T,T ),Lq (Rn).

The space Ck,1, for nonnegative integer k, consists of functions whose k-th derivatives satisfy a
Lipschitz condition,

‖ f ‖C0,1 = sup
x 6=y

| f (x)− f (y)|
|x − y|

,

‖ f ‖Ck,1 = sup
|α|≤k
‖∂αx f ‖C0,1 .

For k a nonnegative integer, Ck H s denotes the space of u such that t→ u(t) is a Ck map of (−T, T )→
H s(Rn) with the norm

‖u‖Ck H s = sup
t∈(−T,T )

sup
j≤k
‖∂

j
t u(t)‖H s .
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The notation ‖ f ‖H s denotes the norm in the Sobolev space H s(Rn). In case we use the norm in
H s((−T, T )×Rn) or H s(R1+n), we write the domain explicitly unless it is obvious from the context; in
the first case, s will be a nonnegative integer.

For a sequence of functions f = { fk}
∞

k=0,

‖ f ‖`2 L2 =

( ∞∑
k=0

‖ fk‖
2
L2

)1
2

, ‖ f ‖2kσ `2 L2 =

( ∞∑
k=0

22kσ
‖ fk‖

2
L2

)1
2

.

The space Sm
⊂ C∞(Rn) denotes smooth symbols satisfying the standard multiplier condition; that is,

for all multi-indices α,

|∂αξ q(ξ)| ≤ Cα(1+ |ξ |)m−|α|.

The space Sm
cl ⊂ Sm denotes symbols that are homogeneous of degree m on |ξ | ≥ 1,

q(rξ)= rmq(ξ), r ≥ 1, |ξ | ≥ 1.

Given two positive functions f and g, we say that f . g, respectively f ≈ g, if there is a constant
C <∞ such that

f ≤ Cg, respectively C−1g ≤ f ≤ Cg.

2. Reduction to a first order operator

In this section we reduce Theorem 1.1 to results for a first order pseudodifferential equation through a
factorization of the operator L . We introduce the notation

P = p(t, x, D), P± = p±(t, x, D)= P ± b j D j (2-1)

with p and p± defined by (1-8).
Throughout, D = (D1, . . . , Dn) = −i∂x , and always 1 ≤ i, j ≤ n. The operator P(t), respectively

P±(t), will denote the corresponding pseudodifferential operator acting on functions of x , obtained by
freezing the t variable.

We start with a factorization of L of the form

L = (Dt + P−+ d0)(Dt − P+)+ R+1 , (2-2)

where R+1 (t) is a one-parameter family of first-order operators acting on functions of x , with the precise
form of R+1 (t) stated below.

Since P± = P ± b j D j , the product of parentheses on the right-hand side expands to

D2
t − 2b j D j Dt + bi b j Di D j + d0 Dt − P2

+ R,

where

R =−((Dt b j )− bi (Di b j ))D j − [Dt , P] + [b j D j , P] − d0 P+.
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Using a symbol expansion of the homogeneous symbol p(t, x, ξ) as in (A-1), we see that R is a
convergent sum of terms of the form

d(t, x)q0(D) and a1(t, x)[a2(t, x), q1(D)]q2(D), (2-3)

where d satisfies (1-6), each a j satisfies the regularity conditions (1-3) and (1-4), and each q j (ξ)∈ S1
cl(R

n).
Next, observe that

p(t, x, D)2 = p2(t, x, D)+ R = ci j Di D j + bi b j Di D j + R,

with R again of the form (2-3), as seen by using the symbol expansion (A-1) of p. Thus, (2-2) holds
with R+1 a convergent sum of terms of the form (2-3). By (1-3) and (1-4), and Theorem A.1, we have the
following bounds, for each t ∈ (−T, T ):

‖R+1 (t) f ‖L2 ≤ C‖ f ‖H1, (2-4)

‖R+1 (t) f ‖H s ≤ Cα(t)‖ f ‖H s+1, − 1≤ s ≤ 1, (2-5)

‖Dt R+1 (t) f ‖L2 +‖[q1(D), R+1 (t)] f ‖L2 ≤ Cα(t)‖ f ‖H1, (2-6)

whenever q1(D) is an order 0 multiplier in the x-variable. Additionally, by (2-6) or (1-5), we have the
following norm-continuity of R+1 (t) with respect to t :

‖R+1 (t) f − R+1 (s) f ‖L2 ≤ C
(∫ t

s
α(r) dr

)
‖ f ‖H1 . (2-7)

We now fix s0 ∈ {0, 1} and produce a factorization of L modulo order 0 terms,

L = (Dt + P−+ d0
+ Q+)(Dt − P+− Q+)+ R+0 , (2-8)

where Q+ = Q+(t) will be a uniformly bounded family of operators on H s0(Rn), depending on the
parameter t , and where the form of Q+ will depend on the choice of s0 ∈ {0, 1}. Here, R+0 (t) is a
one-parameter family of operators on H s0(Rn), and we construct Q+(t) such that

‖R+0 (t) f ‖H s0 ≤ Cα(t)‖ f ‖H s0 , (2-9)

and such that

‖Q+(t) f ‖H s ≤ Cα(t)‖ f ‖H s , s0− 1≤ s ≤ s0+ 1,

‖Q+(t) f ‖H s0 ≤ C‖ f ‖H s0 ,

‖Q+(t) f − Q+(s) f ‖H s0 ≤ C
(∫ t

s
α(r) dr

)
‖ f ‖H s0 .

(2-10)

In particular, Q+(t) is a continuous function of t in the H s0 operator norm.
Expanding the product of parentheses in (2-8) leads to

L − R+1 (t)− P(t)Q+(t)− Q+(t)P(t)− R(t),

where
R = [Dt , Q+] − [b j , Q+]D j − b j

[D j , Q+] + (Q+)2+ d0 Q+.
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Assuming (2-10), and since ‖d0(t, · )‖C0,1 ≤ Cα(t), the last two terms satisfy the bound in (2-9), and
hence can be absorbed into the error R+0 (t). The estimates (2-12) below will imply that the first three
terms also satisfy the bound in (2-9).

So, given R+1 of the form (2-3), it suffices to construct Q+(t) solving

P(t)Q+(t)+ Q+(t)P(t)− R+1 (t)= R+0 (t), (2-11)

with R+0 (t) satisfying (2-9) and Q+(t) satisfying the conditions

‖Dt Q+(t) f ‖H s0 +‖[Q+(t), q(D)] f ‖H s0 ≤ Cα(t)‖ f ‖H s0 ,

‖[b, Q+(t)] f ‖H s0 ≤ Cα(t)‖b‖C0,1‖ f ‖H s0−1,
(2-12)

where q(D) denotes a general S1
cl(R

n) multiplier in the x-variable, and b(x) a general Lipschitz function
of x . An immediate corollary of (2-12) is that

‖[Q+(t), q0(D)] f ‖H s+1 ≤ Cα(t)‖ f ‖H s , s0− 1≤ s ≤ s0, (2-13)

whenever q0 ∈ S0
cl(R

n), as is seen by interpolation and writing

[Q+(t), q0(D)]D = [Q+(t), q0(D)D] − q0(D)[Q+(t), D],

D[Q+(t), q0(D)] = [Q+(t), q0(D)D] + [Q+(t), D]q0(D).

After adding a harmless constant to p(t, x, ξ), by Lemma A.10 the operator P(t) is invertible for every
t , and with uniform bounds over t ∈ (−T, T ),

‖P(t)−1 f ‖H s ≤ C‖ f ‖H s−1, 0≤ s ≤ 2.

For the case s0 = 1, we define
Q+(t)= 1

2 P(t)−1 R+1 (t). (2-14)

Then (2-11) holds with
R+0 (t)=

1
2 P(t)−1

[R+1 (t), P(t)].

Lemma 2.1 below will show that

‖R+0 (t) f ‖H1 ≤ Cα(t)‖ f ‖H1 .

Thus (2-9) holds with s0 = 1. Furthermore, the operator

(Dt Q+)(t)= 1
2 P(t)−1(Dt P)(t)P(t)−1 R+1 (t)+

1
2 P(t)−1(Dt R+1 )(t)

has the same mapping properties by (2-6). This also holds for [D j , Q+(t)]. Finally, if b ∈ C0,1, then

2[b, Q+(t)] = P(t)−1
[b, P(t)]P(t)−1 R+1 (t)+ P(t)−1

[b, R+1 (t)].

The first term on the right maps L2 to H 1 with norm . α(t)‖b‖C0,1 , which follows by Theorem A.1
together with (2-5) for s =−1. For the second term, we apply Lemma 2.1 below to see that it satisfies
similar bounds on H 1. Thus, (2-12) holds with s0 = 1.
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For the case s0 = 0, we set

Q+(t)= 1
2 R+1 (t)P(t)

−1. (2-15)

Then (2-11) holds with

R+0 (t)=
1
2 [P(t), R+1 (t)]P(t)

−1.

Hence, by Lemma 2.1,

‖R+0 (t) f ‖L2 ≤ Cα(t)‖ f ‖L2 .

Furthermore, (2-10) and (2-12) hold with s0 = 0, so that the other terms in R+0 (t) have the same mapping
property. Hence (2-9) holds with s0 = 0 for this choice of Q+(t).

Lemma 2.1. Assuming R+1 (t) is a convergent sum of terms of the form (2-3),

‖[P(t), R+1 (t)] f ‖L2 ≤ Cα(t)‖ f ‖H1,

and, for b ∈ C0,1(Rn),

‖[R+1 (t), b] f ‖L2 ≤ Cα(t)‖b‖C0,1‖ f ‖L2 .

Proof. In these estimates, the type of terms in R+1 (t) of the form d(t, x)q(D) lead to commutators that
are easily handled, so we replace R+1 (t) in the statement by an operator of the form a1[a2, q1(D)]q2(D).

For the first estimate, we take the symbol expansion (A-1) of p(t, x, ξ) and consider a term of the form

[a0q0(D), a1[a2, q1(D)]q2(D)] = a0[q0(D), a1][a2, q1(D)]q2(D)+ a0a1[q0(D), [a2, q1(D)]]q2(D)

+ a1[a0, [a2, q1(D)]]q2(D)q0(D)+ a1[a2, q1(D)][a0, q2(D)]q0(D),

where each q j ∈ S1
cl(R

n). Each term on the right satisfies the desired bound by Theorem A.1 and
Lemma A.7.

For the second estimate, we need consider

[[a2, q1(D)]q2(D), b] = [a2, q1(D)][q2(D), b] + [b, [a2, q1(D)]]q2(D),

which is handled similarly. �

The same calculation also constructs one-parameter families of operators R−1 (t), Q−(t), and R−0 (t)
satisfying the above conditions, such that

L = (Dt − P++ d0)(Dt + P−)+ R−1 (2-16)

and

L = (Dt − P++ d0
− Q−)(Dt + P−+ Q−)+ R−0 . (2-17)

Suppose now that we are given s0 from Theorem 1.1, and construct the corresponding Q±(t) as above.
In the next section we construct evolution groups E±(t, t0), for t, t0 ∈ (−T, T ), satisfying

Dt E±(t, t0)=±(P±(t)+ Q±(t))E±(t, t0), E±(t0, t0)= I. (2-18)
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Precisely, E±(t, t0) is a bounded family of maps on H s(Rn) for s0 ≤ s ≤ s0 + 1, which is strongly
continuous in t and t0 such that if f ∈ H s(Rn) and t0 ∈ (−T, T ), then

E±(t, t0) f ∈ C0 H s
∩C1 H s−1, s0 ≤ s ≤ s0+ 1,

and such that

Dt E±(t, t0) f =±(P±(t)+ Q±(t))E±(t, t0) f, E(t0, t0) f = f.

Then the above factorizations show that

L E±(t, t0) f = R±0 (t)E±(t, t0) f.

Given the E± and a u ∈ C0 H s0 ∩C1 H s0−1 that solves the Cauchy problem

Lu = 0, u(t0)= u0, Dt u(t0)= u1, (u0, u1) ∈ H s0 × H s0−1

for some given t0 ∈ (−T, T ), we can write u in the form

u = v+
∑
±

E±(t, t0) f±, where f± ∈ H s0, WF s0+1(v)∩ char(L)=∅.

To see this, we impose the conditions

f++ f− = u0, (P+(t0)+ Q+(t0)) f+− (P−(t0)+ Q−(t0)) f− = u1,

which is solved by

f± = (2P(t0)+ Q−(t0)+ Q+(t0))−1(P∓(t0)u0+ Q∓(t0)u0± u1) ∈ H s0(Rn),

where the inverse exists by Lemma A.10, after adding a harmless constant to p. We then write

L
(

u−
∑
±

E± f±

)
=−

∑
±

R±0 E± f± ∈ L1 H s0 .

Also, (
u−

∑
±

E± f±

)∣∣∣
t=t0
= 0, Dt

(
u−

∑
±

E± f±

)∣∣∣
t=t0
= 0.

Thus, by Theorem B.6,

v = u−
∑
±

E± f± ∈ C0 H s0+1
∩C1 H s0,

and, in particular, WF s0+1(v)∩ char(L)=∅, since char(L)⊂ {ξ 6= 0}.
We can thus reduce Theorem 1.1 to a result about the functions E±(t, t0) f±. Suppose for simplicity that

the γ in the statement of Theorem 1.1 is contained in the forward cone τ = p+(t, x, ξ). By Theorem B.4,

γ ∩WF s0+1(E−(t, t0) f−)=∅.

Since γ ∩WF s0+1(v)=∅, Theorem 1.1 is reduced to the following.
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Theorem 2.2. Suppose that s0 ∈ {0, 1} and that E+(t, t0) is the wave group constructed in Section 3 for

Dt E+(t, t0)= (P+(t)+ Q+(t))E+(t, t0), E(t0, t0)= I,

where Q+(t) is given by (2-14) or (2-15), if s0 = 1 or s0 = 0, respectively.
Let γ (t) = (t, xt , p+(t, xt , ξt), ξt) be a null bicharacteristic curve of L. If f ∈ H s0 , and for some

t0 ∈ (−T, T ), we have γ (t0) /∈WF s0+1(E+(t, t0) f ). It follows that

γ ∩WF s0+1(E+(t, t0) f )=∅.

The analogous result holds for the wave group E−(t, t0).

3. The wave packet transform and construction of the wave group

In this section we construct the wave groups E±(t, t0). For simplicity we drop the superscripts + and −,
and let P(t) be either P±(t). Given s0 ∈ {0, 1}, we let Q(t) denote either Q±(t), given by (2-14) or
(2-15) if s0 = 1 or s0 = 0, respectively, where R1(t) is a convergent sum of expressions of the form (2-3).
There is a minor inconsistency in that the P(t) in (2-14) and (2-15) refers to the original p(t, x, D) as in
(2-1), but this is unimportant as all three symbols p and p± have the same regularity.

We construct E(t, t0) : H s0 → C0 H s0 such that

Dt E(t, t0) f = (P(t)+ Q(t))E(t, t0) f, E(t0, t0) f = f, f ∈ H s0 .

By Theorem B.5, the evolution group E(t, t0) is uniquely determined, although in the proof of Theorem 1.1
the existence of E(t, t0) with the desired properties is all that is used. Our construction will show that
E(t, t0) is also uniformly bounded on H s for s0 ≤ s ≤ s0+ 1 and is strongly continuous in both t and t0
on each such H s . It follows from (2-10) that if f ∈ H s for some s0 ≤ s ≤ s0+ 1, then

Q(t)E(t, t0) f ∈ C0 H s0 ⊂ C0 H s−1.

The same holds for P(t)E(t, t0) f . Thus, for s0 ≤ s ≤ s0+ 1,

E(t, t0) f ∈ C0 H s
∩C1 H s−1, if f ∈ H s . (3-1)

Since the proof below works equally well if Q≡ 0, it will also construct the evolution groups E0,±(t, t0)
for the equation

Dt E0,±(t, t0) f =±P±(t)E0,±(t, t0) f, E0(t0, t0) f = f, (3-2)

and (3-1) holds for f ∈ H s if 0≤ s ≤ 2.
Following [Smith 2006], we work with a scaled wave-packet transform, similar to the FBI transform

used in [Tataru 2002], but based on a Schwartz function with Fourier transform of compact support
instead of a Gaussian.

We fix a real, even Schwartz function h(x)∈S(Rn) with ‖h‖L2 = (2π)−n/2 and assume that its Fourier
transform ĥ(ξ) is supported in the unit ball {|ξ | ≤ 1}. For k ≥ 0, we define Tk : S

′(Rn)→ C∞(R2n) by
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the rule

(Tk g)(x, ξ)= 2nk/4
∫

e−i〈ξ,z−x〉h(2k/2(z− x))g(z) dz.

A simple calculation shows that

g(y)= 2nk/4
∫

ei〈ξ,y−x〉h(2k/2(y− x))(Tk g)(x, ξ) dx dξ,

so that Tk
∗Tk = I . In particular,

‖Tk g‖L2(R2n) = ‖g‖L2 .

The following shows that the L2-continuity of Tk holds under relaxed conditions.

Lemma 3.1 [Smith 2006, Lemma 3.1]. Suppose that hx,ξ (z) is a family of Schwartz functions on Rn

depending on the parameters x and ξ , with uniform bounds over x and ξ on each Schwartz seminorm of h.
Then the operator

(Rk g)(x, ξ)= 2nk/4
∫

e−i〈ξ,z−x〉hx,ξ (2k/2(z− x))g(z) dz

satisfies the bound

‖Rk g‖L2(R2n) ≤ C‖g‖L2 .

We will apply Tk to the localization of u at frequency k. We introduce a nonnegative function
β(s) ∈ C∞c (R), supported in the interval [2−δ, 21+δ

], where δ > 0 will be taken sufficiently small. With
βk(ξ)= β(2−k

|ξ |) if k ≥ 1, and β0 an appropriate compactly supported function on Rn , we assume that

∞∑
k=0

βk(ξ)
2
= 1. (3-3)

Now define T : L2(Rn)→ `2(N, L2(R2n)) by

T g ≡ g̃ ≡ {g̃k}
∞

k=0, g̃k = Tkβk(D)g.

Then T is a norm isomorphism, hence T ∗T = I . Furthermore, for k large enough so that 2−k/2
≤

2−δ(1− 2−δ), g̃k is supported in the set {2k−2δ
≤ |ξ | ≤ 2k+1+2δ

}. It follows that, for σ ∈ R,

‖g‖Hσ ≈

( ∞∑
k=0

22kσ
‖g̃k‖

2
L2(R2n)

)1
2

. (3-4)

We obtain E(t, t0) by constructing its lift Ẽ(t, t0) to `2(N, L2(R2n)) via the wave packet transform T :

Ẽ(t, t0) f = T E(t, t0)T ∗ f.

The group Ẽ(t, t0) will be constructed in a manner similar to that used in [Smith 2006], approximating
the lifted equation by the Hamiltonian flow of an appropriately mollified p and obtaining Ẽ(t, t0) by a
convergent iteration from the Hamiltonian flow group.
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For k ∈ N, we introduce the spatial regularization of p,

pk(t, x, ξ)= φ(2−k/2 D)p(t, x, ξ),

which regularizes the symbol in x to frequencies of magnitude ≤ c2k/2, some small fixed c > 0. We let
Pk(t)= pk(t, x, D). We remark that in [Smith 2006] the symbol regularization was over both t and x
variables, but that is unimportant for [Smith 2006, Lemmas 3.2 and 3.3], the specific results that we use
in this paper.

Let Vk = Vk(t, x, ξ, ∂x , ∂ξ ) denote the real, linear first-order differential operator

Vk f = dξ pk(t, x, ξ) · dx f − dx pk(t, x, ξ) · dξ f,

This vector field is Lipschitz regular in (x, ξ) provided |ξ | is bounded above, with Lipschitz constant
α(t) ∈ L1((−T, T )). Hence the associated flow group is well-posed.

Let 2k
s,t denote the associated time t→ s flow map on R2n ,

∂t f (2k
s,t(x, ξ))= Vk f (2k

s,t(x, ξ)),

which is the Hamiltonian flow induced by pk . Also let 2s,t denote the t→ s Hamiltonian flow map for
p. By a simple extension of [Smith 1998, Lemma 3.6], if (xt , ξt) is the flow out of (x0, ξ0) through p,
(xk

t , ξ
k
t ) is the flow out of (x0, ξ0) through pk , and |ξ0| ≈ 1, then

|xk
t − xt | + |ξ

k
t − ξt |. 2−k/2.

Also 2s,t , and each 2k
s,t , are biLipschitz measure preserving maps on R2n , homogeneous of degree 1 in

ξ , and, by homogeneity, it holds that |ξt | ≈ |ξ0|, and similarly |ξ k
t | ≈ |ξ0|.

We define a unitary evolution group W (t, s) on `2(N, L2(R2n)) by evolving each fk along Vk . Thus,
for f = { fk(x, ξ)}∞k=0 ∈ `

2(N, L2(R2n)), we set

(W (t, s) f )k = fk ◦2
k
s,t .

Suppose that ũ(t)= T (u(t)). Then the equation Dt u− P(t)u = Q(t)u is equivalent to the collection
of equations for k ∈ N,

−i(∂t −Vk)ũk = (Tk Pk + iVk Tk)βk(D)u+ Tk[βk(D), Pk]u+ Tkβk(D)(P− Pk)u+ Tkβk(D)Qu. (3-5)

Inserting u = T ∗ũ, we can write this as a series of equations

(∂t − Vk)ũk(t)= (B(t)ũ(t))k, (3-6)

where (Bũ)k is the right-hand side of (3-5) applied to u = T ∗ũ. Note that (Bũ)k is supported where
|ξ | ∈ [2k−3δ, 2k+1+3δ

], by the frequency localization of Pk and Tk .
We will show that

‖B(t) f ‖2kσ `2 L2 ≤ Cα(t)‖ f ‖2kσ `2 L2, s0− 1≤ σ ≤ s0+ 1, (3-7)
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where the norm denotes the one on the right-hand side in (3-4). We can then obtain the solution to (3-6)
with given initial condition ũ(t0) by solving the integral equation

ũ(t)=W (t, t0)ũ(t0)+
∫ t

t0
W (t, s)B(s)ũ(s) ds. (3-8)

Indeed, for u(t0) ∈ Hσ (Rn), s0 − 1 ≤ σ ≤ s0 + 1, the integral equation (3-8) admits a series solution
ũ =

∑
∞

j=0 ũ( j), convergent in C0((−T, T ), 2kσ `2L2), where

ũ(0)(t)=W (t, t0)ũ(t0), ũ( j+1)(t)=
∫ t

t0
W (t, s)B(s)ũ( j)(s) ds.

We express the solution as ũ(t) = Ẽ(t, t0)u(t0), which by uniqueness determines an evolution group
Ẽ(t, t0). Note that each ũ( j+1)

k is supported where C−12k
≤|ξ |≤C2k , for some fixed C , by the localization

of (Bũ)k and homogeneity of W (t, s).
It is easily seen from its construction that the group is strongly continuous in the 2kσ `2L2 norm,

as a function of the parameters (t, t0) ∈ (−T, T )2. Since (3-6) is obtained by lifting the equation
Dt u−P(t)u=Q(t)u, it follows that Ẽ(t, t0) preserves the range of T , and thus is of the form T E(t, t0)T ∗,
where E(t, t0)= T ∗ Ẽ(t, t0)T is consequently strongly continuous on Hσ in both parameters. It follows
from (3-8) that E(t, t0)u(t0) is a distribution solution of the equation Dt u− P(t)u = Q(t)u, which, as
noted before, belongs to C0 Hσ

∩C1 Hσ−1 provided that s0 ≤ σ ≤ s0+ 1.
It remains to establish (3-7). Let Bk j (t) denote the k j component of B(t), so (Bũ)k(t)=

∑
j Bk j (t)ũ j (t).

By the above, Bk j is the sum of four terms:

Bk j = (Tk Pk + iVk Tk)βk(D)β j (D)T ∗j + Tk
[
βk(D), Pk

]
β j (D)T ∗j

+ Tkβk(D)(P − Pk)β j (D)T ∗j + Tkβk(D)Qβ j (D)T ∗j
≡ 1 Bk j + 2 Bk j + 3 Bk j + 4 Bk j .

The bounds in (3-7) are satisfied by the operator 4 B = T Q(t)T ∗ by (3-4) and (2-10), so we focus on
the first three components of B(t). The terms 1 Bk j and 2 Bk j vanish unless | j − k| ≤ 1. Thus, it suffices to
prove that each is bounded on L2(R2n) with norm . α(t), uniformly over j and k. For 2 B jk , this follows
by Theorem A.1 (or indeed the S1,1/2 pseudodifferential calculus). For 1 B jk , it follows by [Smith 2006,
Lemmas 3.1 and 3.2]. In the next section we will prove even stronger estimates for these terms.

To handle the term 3 B, we take the symbol expansion (A-1) of p(t, x, ξ) to reduce matters to considering
p(t, x, D)= a(t, x)q(D). For | j − k| ≤ 1, uniform boundedness of 3 B jk follows, since ‖a− ak‖L∞ .
2−kα(t).

If | j − k| ≥ 2, then, after this substitution,

3 Bk j = Tkβk(D)a(t, x)q(D)β j (D)T ∗j , | j − k| ≥ 2.

These off-diagonal terms give an operator which is in fact smoothing of order 1, as we now show.
Set P(t)= a(t, x)q(D). If 2≤ | j−k| ≤ 3, since ‖a(t, · )‖C1,1 ≤ α(t) and q(D) is of order 1, we have

‖Tkβk(D)a(t, x)q(D)β j (D)T ∗j ‖L2→L2 . Cα(t)2−k . (3-9)



1150 HART F. SMITH

If | j − k| ≥ 4, using the Littlewood–Paley partition of unity given by ψ j = β
2
j ,

3 Bk j =
∑
|l−m|≥2

Tkβk(D)ψl(D)a(t, x)q(D)ψm(D)β j (D)T ∗j ,

and hence

T Ra(t)q(D)T ∗−
∑
| j−k|≥4

3 Bk j (t)=
∑
| j−k|≤3
|l−m|≥2

Tkβk(D)ψl(D)a(t, x)q(D)ψm(D)β j (D)T ∗j ,

where Ra is defined as in Lemma A.4. In the latter sum, j, k, l,m differ by at most 5, and each term
satisfies the bound in (3-9). Combined with Lemma A.4, we see that∥∥∥∥ ∑

| j−k|≥2
3 Bk j (t) f j

∥∥∥∥
2k(σ+1)`2 L2

≤ Cα(t)‖ f ‖2kσ `2 L2, −1≤ σ ≤ 1. (3-10)

As a consequence, the operator 3 B satisfies the bound in (3-7) on the range −1≤ s ≤ 2, which contains
s0− 1≤ s ≤ s0+ 1 for s0 ∈ {0, 1}. This concludes the proof of (3-7), and hence the existence of E(t, t0).
If Q ≡ 0, then (3-7) holds on the union of the ranges, −1≤ σ ≤ 2, hence the wave group E0(t, t0) exists
on the range −1≤ s ≤ 2.

We summarize the results of this section.

Theorem 3.2. Suppose that s0 ∈ {0, 1} and that Q±(t) is respectively given by (2-15) or (2-14). Then
an evolution group E±(t, t0) for Equation (2-18) exists as a family of bounded maps on H s(Rn) for
s0− 1≤ s ≤ s0+ 1 and is strongly continuous in both t and t0. Additionally, for s0 ≤ s ≤ s0+ 1,

E±(t, t0) f ∈ C0 H s
∩C1 H s−1 when f ∈ H s .

The evolution group E0,±(t, t0) for the equation

Dt E0,±(t, t0)=±P±(t)E0,±(t, t0), E0,±(t0, t0)= I

similarly exists, is strongly continuous in both variables on H s for −1≤ s ≤ 2, and if 0≤ s ≤ 2, we have

E0,±(t, t0) f ∈ C0 H s
∩C1 H s−1 when f ∈ H s .

4. Weighted estimates for the wave group

The null bicharacteristics of τ ∓ p±(t, x, ξ) are in one-to-one correspondence with the Hamiltonian
curves (xt , ξt) for ±p±(t, x, ξ). In this section we prove the following result about wavefront mapping
properties on Rn for the fixed time wave groups E±(t, t0) constructed in the previous section, and in
Section 5 we derive Theorem 2.2 as a corollary.

Theorem 4.1. Given s0 ∈ {0, 1}, let E±(t, t0) be the wave group constructed in Section 3. Let (xt , ξt) be
the Hamiltonian curve of the corresponding ±p±(t, x, ξ) that passes through (x0, ξ0) at t = t0.

Then, given f ∈ H s0 , if (x0, ξ0) /∈WF s0+1( f ), it follows that

(xt , ξt) /∈WF s0+1(E±(t, t0) f ), t ∈ (−T, T ).



PROPAGATION OF SINGULARITIES FOR ROUGH METRICS 1151

Furthermore, if T <∞, there is a constant c> 0 such that if χt(x) is a C∞c (R
n)-bounded family of cutoffs

supported in the ball of radius c about xt , and if 0t(ξ) is an S0(Rn)-bounded family of conic cutoffs
supported in the cone of angle c about ξt , then, with uniform bounds over t ∈ (−T, T ),

0t(D)χt(x)(E±(t, t0) f ) ∈ H s0+1.

We consider the case of E+(t, t0) and denote the wavegroup simply by E(t, t0). We prove Theorem 4.1
through weighted-norm estimates on the lifted evolution group Ẽ(t, s)= T E(t, s)T ∗, where the weights
are time-dependent functions of (x, ξ). It suffices to consider the case t ≥ t0 in Theorem 4.1, which we
will assume in the rest of this section. Also, by making a smooth, t-dependent change of variables in x ,
we will from now on assume that ξt remains within a small cone about the positive ξ1 axis.

Suppose that M(t, x, ξ) is a family of strictly positive functions on (−T, T )×R2n , continuous in all
parameters, such that, for some C <∞,

C−1
〈ξ〉s0 ≤ M(t, x, ξ)≤ C〈ξ〉s0+1.

Assume that the following holds, where B(t) and W (t, s) are as in Section 3:

‖M(s, x, ξ)B(s) f ‖`2 L2 ≤ Cα(s)‖M(s, x, ξ) f ‖`2 L2 . (4-1)

In addition, for t0 ≤ s ≤ t ≤ T , assume that

‖M(t, x, ξ)W (t, s) f ‖`2 L2 ≤ C‖M(s, x, ξ) f ‖`2 L2 . (4-2)

It follows from (3-8) that

‖M(t, x, ξ)ũ( j+1)(t)‖`2 L2 ≤ C‖M(t0, x, ξ)ũ(t0)‖`2 L2 +C
∫ t

0
α(s)‖M(s, x, ξ)ũ( j)(s)‖`2 L2 ds.

Since α ∈ L1((−T, T )), the sum of the ũ( j) converges to ũ in the weighted norms, and we conclude that

sup
t∈(−T,T )

‖M(t, x, ξ)ũ(t)‖`2 L2 ≤ C exp
(

C
∫ t

t0
α(s) ds

)
‖M(t0, x, ξ)ũ(t0)‖`2 L2 . (4-3)

With data u(t0) ∈ H s0(Rn), we thus need to construct M(t, x, ξ) such that the right-hand side is finite if
(x0, ξ0) /∈WF s0+1(u(t0)), and such that finiteness of the left-hand side implies (xt , ξt) /∈WF s0+1(u(t)).
The weight M(t, x, ξ) we construct will be of size 〈ξ〉s0+1 on some locally uniform conic set about
(xt , ξt), so the statement about uniformity of the neighborhoods in Theorem 4.1 will be a consequence of
the following arguments, and we thus focus on the fixed time estimates.

We start by equating weighted L2(R2n) estimates on (T g)(x, ξ) to multiplier estimates on g(x).

Lemma 4.2. Suppose that w(ξ) ∈ C(Rn) is a strictly positive function for which there is a constant
m <∞ such that, if k ≥ 0 and 2k−1

≤ |ξ |, |η| ≤ 2k+2, we have

w(η)≤ Cw(ξ)(1+ 2−k/2
|ξ − η|)m .
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Assume also that C−1
〈ξ〉−N

≤ w(ξ) ≤ C〈ξ〉N for some N and C <∞. If g ∈ H s(Rn) for some s ∈ R,
then

‖w(D)±1g‖L2 ≈ ‖w(ξ)±1T g‖`2 L2,

and consequently
‖w(D)T ∗ f ‖L2 . ‖w(ξ) f ‖`2 L2 .

Proof. If χ ∈ C∞c is supported in the cube [−.6, .6]n such that
∑

j∈Zn χ(ξ − j) = 1, then, on the set
2k−1
≤ |ξ | ≤ 2k+2,

w(ξ)≈
∑
j∈Zn

w(2k/2 j)χ(2−k/2ξ − j).

If we replace w by the right-hand side, then, for |ξ |, |η| ≈ 2k ,

|∂αηw(η)
±1
| ≤ Cα2−k|α|/2w(ξ)±1(1+ 2−k/2

|ξ − η|)m . (4-4)

Smoothing out w in this way on each component of w with respect to a Littlewood–Paley decomposition,
we may assume that (4-4) is satisfied whenever 2k−1

≤ |ξ |, |η| ≤ 2k+2.
Since the conditions on w are symmetric in w and w−1, it suffices to show that

‖w(ξ)Tw(D)−1g‖2
`2 L2 . ‖g‖L2,

as writing g = T ∗T g and using the adjoint bound with w replaced by w−1 implies the reverse inequality.
Let gk = βk(D)g, and write

w(ξ)Tkw(D)−1gk = 2−nk/4
∫

ei〈ζ,x〉w(ξ)w(ζ )−1ĥ(2−k/2(ζ − ξ))ĝk(ζ ) dζ

= 2−nk/4
∫

ei〈ζ,x〉ĥξ (2−k/2(ζ − ξ))ĝk(ζ ) dζ,

where
ĥξ (η)= w(ξ)w(ξ − 2k/2η)−1ĥ(η).

Here, |ξ | ≈ 2k and |η| ≤ 1, so by (4-4) it follows that the function hξ (z) is a smooth function of z with
Schwartz seminorms bounded uniformly over ξ . By Lemma 3.1,

‖w(ξ)Tkw(D)−1gk‖L2 . ‖gk‖L2,

and the result follows. �

For weights in x , the analogue is the following result, which holds by a similar proof.

Lemma 4.3. Suppose that wk(x) ∈ C0(Rn) is a strictly positive function such that, for some m <∞,

wk(x)≤ Cwk(y)(1+ 2k/2
|x − y|)m .

Then
‖wk(x)±1Tk g‖L2(R2n) ≈ ‖wk(x)±1g‖L2,
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and consequently
‖wk(x)T ∗k f ‖L2 . ‖wk(x) f ‖L2(R2n).

Furthermore, the constants in the bounds are independent of k.

We can now use weighted estimates to characterize the Hσ -wavefront set of g.

Lemma 4.4. Suppose g ∈ H s(Rn) for some s. Then (x0, ξ0) /∈WFσ (g) if and only if there exists an open
ball � centered on x0 and an open conic set 0 ⊂ Rn centered on ξ0, such that

∞∑
k=0

∫
�×0

〈ξ〉2σ |g̃k(x, ξ)|2 dx dξ <∞. (4-5)

Proof. Suppose that (x0, ξ0) /∈WFσ (g). For χ(x) ∈ C∞c (R
n), and q(ξ) ∈ Sσcl real and homogeneous of

degree σ for |ξ | ≥ 1, we consider∫
χ(x)q(ξ)2|g̃k(x, ξ)|2 dx dξ =

∫
ei〈x,η−ζ 〉χ(x)bk(ζ, η)ĝ(η)ĝ(ζ ) dη dx dζ,

where
bk(ζ, η)= 2−nk/2

∫
q(ξ)2ĥ(2−k/2(η− ξ))ĥ(2−k/2(ζ − ξ))βk(η)βk(ζ )dξ.

Since ĥ is supported in the unit ball, bk(ζ, η) vanishes unless

2k−δ
≤ |η| ≤ 2k+1+δ, dist(η, supp(q))≤ 2−k/2,

and the same condition holds with η replaced by ζ . In particular, if 0′ is an open cone containing
the support of q, then bk(ζ, η) is supported in 0′ × 0′ for k sufficiently large. Additionally, a simple
calculation shows that

|∂αζ ∂
β
η bk(ζ, η)| ≤ Cα,β22kσ−(k/2)(|α|+|β|).

Hence, the compound symbol a(ζ, x, η) = χ(x)
∑
∞

k=0 bk(ζ, η) is of type Sσ,σ1/2,1/2,0. If the support of
χ(x)q(ξ) is contained in a small conic neighborhood of (x0, ξ0), then standard pseudodifferential calculus
arguments show that ∫

g(x)a(D, x, D)g(x) dx <∞.

The bound (4-5) follows by taking a sufficiently small conic neighborhood�×0 of (x0, ξ0)with χ(x)q(ξ)
equal to one on �×0.

Conversely, suppose (4-5) holds and g ∈ H s(Rn). Let q(ξ) ∈ Sσcl, and write

χ(y)(q(D)g)(y)=
∞∑

k=0

2−nk/4ei〈y−x,η〉χ(y)q(η)βk(η)ĥ(2−k/2(η− ξ))g̃k(x, ξ) dx dξ dη.

Let

K j,k(x ′, ξ ′; x, ξ)

= 2−n( j+k)/4
∫

ei〈y−x,η〉−i〈y−x ′,ζ 〉χ2(y)×q(ζ )β j (ζ )ĥ(2− j/2(ζ−ξ ′))q(η)βk(η)ĥ(2−k/2(η−ξ)) dη dy dζ.
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Then K j,k vanishes unless ξ and ξ ′ both lie in a small conic neighborhood of the support of q, and
|ξ | ≈ 2k , |ξ ′| ≈ 2 j . Additionally, for all N ,

|K j,k(x ′, ξ ′; x, ξ)| ≤ CN 2σ( j+k)2−N | j−k|(1+ 2min( j,k)/2
|x − x ′|)−N (1+ 2−max( j,k)/2

|ξ − ξ ′|)−N

× (1+ 2k/2 dist(x, supp(χ)))−N (1+ 2 j/2 dist(x ′, supp(χ)))−N .

An application of the Schur test and the Schwarz inequality then show that, if χ is supported inside �
and q is supported inside the open cone 0, we have

‖χ(x)q(D)g‖2L2 .
∞∑

k=0

∫
�×0

〈ξ〉2σ |g̃k(x, ξ)|2 dx dξ +
∞∑

k=0

∫
R2n
〈ξ〉2s
|g̃k(x, ξ)|2 dx dξ,

hence (x0, ξ0) /∈WFσ (g) by elliptic regularity. �

Suppose that (x0, ξ0) /∈WF s0+1(u(t0)). Given �×0 as in Lemma 4.4, we will produce a family of
t-dependent weight functions M(t, x, ξ) for t ≥ t0, such that

C−1
〈ξ〉s0 ≤ M(t, x, ξ)≤ C〈ξ〉s0+1,

M(t0, x, ξ)≤ C〈ξ〉s0 for (x, ξ) /∈�×0.
(4-6)

Also, for some ct > 0, if

�t = {x : |x − xt |< ct }, 0t =

{
ξ :

∣∣∣∣ ξ|ξ | − ξt

|ξt |

∣∣∣∣< ct

}
,

then
M(t, x, ξ)≥ C−1

〈ξ〉s0+1 for (x, ξ) ∈�t ×0t . (4-7)

In addition, we will show that (4-1) and (4-2) hold. Theorem 4.1 then follows immediately from Lemma 4.4
and (4-3).

The weight function. For ct > 0 and ξt close to the positive ξ1 axis, we take M(t, x, ξ) to be the weight
function

〈ξ〉s0+1
(

1+ |ξ |min
(
1, dist2(x, �ct (xt))

)
+ |ξ | dist2

(
ξ

|ξ |
, Kct (ξt)

))−1

,

where �ct (xt) is the ball of radius ct centered on xt , and Kct (ξt) is the closed conic set contained in the
half-space ξ1 > 0 whose intersection with the set ξ1 = 1 is the cube of side length 2ct centered on ξt/(ξt)1,
with sides parallel to the ξ j axes. The time-dependent number ct is given in Lemma 4.5 below, where ct0

is chosen as follows.
Provided that �2ct0

(x0) ⊂ � and K2ct0
(ξ0) ⊂ 0, condition (4-6) is seen to hold. Thus, if (x0, ξ0) /∈

WF s0+1
(
u(t0)

)
, we can choose ct0 small so that

‖M(t0, x, ξ)ũ(t0)‖`2 L2 <∞.

Also, (4-7) holds (with the same ct ), since 0t ⊂ Kct (ξt). It thus remains to verify the mapping bounds
(4-1) and (4-2) for t0 ≤ s ≤ t ≤ T .
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We start with the proof of (4-2), which reduces to showing that, uniformly in k, t, s,∫
M(t, x, ξ)2| f ◦2k

s,t |
2(x, ξ) dx dξ ≤ C

∫
M(s, x, ξ)2| f |2(x, ξ) dx dξ, s ≤ t.

Since each 2k
s,t is a volume preserving diffeomorphism, this is equivalent to the bound

M(t,2t,s(x, ξ))≤ M(s, x, ξ), s ≤ t. (4-8)

The map 2k
s,t is homogeneous of degree 1 in ξ , and preserves |ξ | up to a uniform multiple, so the factor

〈ξ〉s0+1 can be ignored. Furthermore, the projective map induced by 2k
s,t on the cosphere bundle is a

bilipschitz map with uniform bounds over k, s, t . Thus, (4-8) holds as a consequence of the following.

Lemma 4.5. For c0 > 0, let

ct = c0 exp
(
−C

∫ t

t0
α(r) dr

)
.

Then, for c0 sufficiently small and C given below,

2t,s(�cs (xs)× Kcs (ξs))⊃�ct (xt)× Kct (ξt), s ≤ t.

Proof. Write ξ = (ξ1, ξ
′), and consider the projection (xt , ξt)→ (xt , 1, (ξt)

−1
1 ξ ′t ) of a Hamiltonian curve

onto the set ξ1 = 1. Let ζt = (ξt)
−1
1 ξ ′t . Then, by homogeneity of pk ,

ẋt = dξ pk(xt , 1, ζt), ζ̇t =−dx ′ pk(xt , 1, ζt)+ dx1 pk(xt , 1, ζt)ζt .

On the set |ζ | ≤ 10, the right-hand side is Lipschitz in (x, ζ ) with Lipschitz constant Cα(t). Hence, if we
let

Qc(x0, ζ 0)= {(x, ζ ) : |x − x0
| + sup

2≤i≤n
|ζi − ζ

0
i | ≤ c},

then for t > s the image of Qct (xt , ζt) under the reverse-time projected flow is contained in Qcs (xs, ζs),
where cs is as in the statement. Since Kct (ξt) is the conic subset of Rn

∩ {ξ1 > 0}, whose intersection
with {ξ1 = 1} equals Qct (xt , ζt), then, by homogeneity of the Hamiltonian flow, for t > s,

2t,s(�cs (xs)× Kcs (ξs))⊃�ct (xt)× Kct (ξt),

provided we choose ct0 small enough so that Qct (xt , ζt) remains within the set |ζ |< 10. Here we use that
ζt remains in the set |ζt |< 1 by the assumption that ξt lies in a cone of small angle about the ξ1 axis. �

Fixed time weight bounds for B(t). We now turn to the proof of (4-1). The operator B(t) : `2L2
→ `2L2

is a sum of four terms, B = 1 B+ 2 B+ 3 B+ 4 B. As before, we let Bk j (t) : L2(R2n)→ L2(R2n) denote
the j→ k component of B(t), which we recall is localized dyadically in ξ on each side.

We start by considering the terms m B for m=1, 2, 3. Recall that 1 Bk j and 2 Bk j vanish unless | j−k|≤1.
For 3 Bk j we may also restrict attention to | j − k| ≤ 1, since (4-1) holds for the sum over | j − k| ≥ 2 by
(3-10) and (4-6).
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Consider then the terms for | j − k| ≤ 1. By finite overlap in ξ , these are almost orthogonal in k, hence
we are reduced to establishing, for m = 1, 2, 3, that uniformly for j, k with | j − k| ≤ 1 and f ∈ L2(R2n),

‖M(s, x, ξ)m Bk j (s) f ‖L2(R2n) ≤ Cα(s)‖M(s, x, ξ) f ‖L2(R2n). (4-9)

We will consider the case j = k, as the terms with j = k± 1 are handled the same way. We ignore the
factor 〈ξ〉s0+1 in the definition of M , since it introduces the same factor of 2k(s0+1) on both sides.

The terms 1 Bkk and 2 Bkk are the simplest to handle. The operator 1 Bkk is, by [Smith 2006, Lemmas 3.1
and 3.2], represented by an integral kernel operator K satisfying

|K (x, ξ ; y, η)| ≤ CNα(s)(1+ 2k/2
|x − y| + 2−k/2

|ξ − η|)−N .

On the other hand, if |ξ | ≈ |η| ≈ 2k , then[
M(s, x, ξ)
M(s, y, η)

]±1

≤ C(1+ 2k/2
|x − y| + 2−k/2

|ξ − η|)2,

so the term 1 Bkk is seen by the Schur test to satisfy the desired weighted L2 bound (4-9). The operator

2 Bkk is represented by a similar kernel; this follows from the fact that α(s)−1
[βk(D), ak(s, x)]q(D) is an

S0
1,1/2 pseudodifferential operator in x , dyadically localized to |ξ | ≈ 2k .

For the term 3 Bkk , after substituting p(t, x, D)= a(t, x)q(D), freezing t , and replacing q(D)βk(D)
by 2kβk(D) (since the exact form of β is unimportant), we can assume that

3 Bkk = Tkβk(D)2k(a(x)− ak(x))βk(D)T ∗k ,

and we need to show that (4-9) holds with α(s)= 1 if ‖D2a‖L∞ ≤ 1. The adjoint operator 3 B∗kk then has
the same form as 3 Bkk , so that in the estimate (4-9) we may replace M(s, x, ξ) by M(s, x, ξ)−1. Letting
� = �cs (xs), K = Kcs (ξs), since the estimate is over the region |ξ | ≈ 2k , we may thus work with the
weight

M(x, ξ)= 1+ 2k min(1, dist2(x, �))+ 2−k dist2(ξ, K ),

and show that the analogue of (4-9) holds for 3 Bkk .
The conic set K is obtained by intersecting 2n− 2 distinct half-spaces. Let {ω j }

2n−1
j=1 be the collection

of their outer normals, together with the vector −e1 pointing on the negative ξ1 axis. We let

〈ω j , ξ〉+ =max(〈ω j , ξ〉, 0),

and claim that

dist2(ξ, K )≈
2n−1∑
j=1

〈ω j , ξ〉
2
+
. (4-10)

To see this, we first note that each term on the right vanishes on K , so the right side is dominated by the
left. To prove the converse, we make an affine transformation preserving ξ1 so that K is centered on the
ξ1 axis. The collection of 〈ω j , ξ〉 are then equivalent to the collection of ±ξ j − cξ1 and −ξ1. In the case
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where ξ1 ≤ 0, we have 〈−e1, ξ〉+ = |ξ1|. Since ξ1 ≤ 0,

|ξ j | ≤
∑
±

(±ξ j − cξ1)+,

so the right-hand side of (4-10) dominates |ξ |2 ≥ dist2(ξ, K ). If ξ1 > 0, let η be the point in K closest to
ξ . If |ξ j | ≤ cξ1, then η j = ξ j , so by reducing dimension and multiplying ξ j by −1 if needed, we may
assume that ξ j > cξ1 for each j . Then

2n−1∑
j=1

〈ω j , ξ〉
2
+
=

n∑
j=2

|ξ j − cξ1|
2
= dist2(ξ, (ξ1, cξ1, . . . , cξ1))

2
≥ dist2(ξ, K ).

Including the spatial weight, we can thus replace M(x, ξ) by a sum of 2n weights, and it suffices to
establish the analogue of (4-9) separately for each. Precisely, by Lemmas 4.2 and 4.3, it suffices to show
that multiplication by 2k(a(x)− ak(x)) preserves the spaces with norms∥∥(1+ 2k min(1, dist2(x, �))

)
g(x)

∥∥
L2(dx), ‖(1+ 2−k

〈ω, ξ〉2
+
)ĝ(ξ)‖L2(dξ)

for a general unit vector ω.
Boundedness in the first norm is immediate, since ‖a− ak‖L∞ ≤ 2−k

‖D2a‖L∞ . For the second norm,
we make a rotation to reduce to the case ω = (1, 0, . . . , 0). Let b(x)= 2k(a− ak)(2−k/2x). Then

‖b‖L∞ +‖Db‖L∞ +‖D2b‖L∞ . 1.

Thus, after scaling x→ 2k/2x , we need to show that

‖(1+ (ξ1)
2
+
)b̂ f ‖L2(dξ) . ‖b‖C1,1‖(1+ (ξ1)

2
+
) f̂ ‖L2(dξ).

Since the weight is a function of ξ1 only and C1,1(Rn)⊂ L∞(Rn−1,C1,1(R)), we may assume that n = 1,
that b ∈ C1,1(R), and we need show that

‖(1+ ξ 2
+
)b̂ f ‖L2(R) . ‖b‖C1,1‖(1+ ξ 2

+
) f̂ ‖L2(R).

If f̂ is supported in [0,∞), the bound follows from the fact that

‖〈D〉2(b f )‖L2 . ‖b‖C1,1‖〈D〉2 f ‖L2 .

Hence we may assume f̂ is supported in −(∞, 0]. Since

‖χ(−∞,2]b̂ f ‖L2 ≤ ‖b f ‖L2 ≤ ‖b‖L∞‖ f ‖L2 ≤ ‖b‖C1,1‖(1+ ξ 2
+
) f̂ ‖L2,

it suffices to then bound

‖〈ξ〉2b̂ f ‖L2([2,∞)) . ‖b‖C1,1‖ f ‖L2, supp( f̂ )⊂ (−∞, 0].
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Given h ∈ L2(R) with ĥ supported in [2,∞), using the functions φ j and ψ j from (A-2), we may write∣∣∣∣∫ h〈D〉2(b f ) dx
∣∣∣∣= ∣∣∣∣ ∑

k≤ j+2

∫
(ψk(D)〈D〉2h)(ψ j (D)b)(φ j+4(D) f ) dx

∣∣∣∣
≤

∑
k≤ j+2

4k− j
∫
|2−2kψk(D)〈D〉2h||22 jψ j (D)b||φ j+4(D) f | dx

. ‖h‖L2

( ∞∑
j=0

∫
|22 jψ j (D)b|2|φ j+4(D) f |2 dx

)1
2

. ‖h‖L2‖b‖C1,1‖ f ‖L2,

where at the last step we use Theorem A.3. This completes the proof for 3 B jk .
We now establish (4-1) for the term 4 B(t)= T Q(t)T ∗. Recall that

Q(t)=
{

P(t)−1 R1(t), s0 = 1,
R1(t)P(t)−1, s0 = 0,

where R1(t) is a convergent sum of terms of the form (2-3). We observe that if Ms0 =Ms0(t, x, ξ) denotes
the weight for s0, then

‖M1T g‖`2 L2 ≈ ‖M0T 〈D〉g‖`2 L2 .

Also, if q(ξ) ∈ S0(Rn), then

‖Ms0 T q(D)T ∗ f ‖`2 L2 ≤ C‖Ms0 f ‖`2 L2,

since the operator Tkβk(D)q(D)β j (D)T ∗j vanishes unless | j − k| ≤ 1, and, for | j − k| ≤ 1, is given by
an integral kernel with bound

|K (x, ξ ; y, η)| ≤ CN (1+ 2k/2
|x − y| + 2−k/2

|ξ − η|)−N . (4-11)

Since T ∗T = I , it therefore suffices to show the bounds

‖M0T aT ∗ f ‖`2 L2 ≤ C‖a‖C0,1‖M0 f ‖`2 L2, (4-12)

‖M0T [a, q(D)]T ∗ f ‖`2 L2 ≤ C‖a‖C1,1‖M0 f ‖`2 L2, (4-13)

‖M0T 〈D〉P(t)−1T ∗ f ‖`2 L2 ≤ C‖M0 f ‖`2 L2, (4-14)

where in (4-13) the multiplier q(ξ) belongs to S1
cl(R

n).
To establish (4-12), it suffices to prove

‖M0T jβ j (D)aβk(D)T ∗k f ‖L2 ≤ C‖a‖C0,1‖M0 f ‖L2, | j − k| ≤ 1, (4-15)

since the terms for | j − k| ≥ 2 are handled by the arguments leading to (3-10), together with Lemma A.4
and the fact that c ≤ M0 ≤ 〈ξ〉.

By taking adjoints, we may replace M0 by M−1
0 in (4-15) and ignore the factor 〈ξ〉 in M0, since

| j − k| ≤ 1. Furthermore, we may replace a by the operator (φk(D)a)φk(D) for a compactly supported
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φ(ξ). As with the handling of the term 3 Bkk , it suffices to prove that if ‖a‖C0,1(Rn)≤1, then (φk(D)a)φk(D)
preserves the spaces with norms∥∥(1+ 2k min(1, dist2(x, �))

)
g(x)

∥∥
L2, ‖(1+ 2−k

〈ω, ξ〉2
+
)ĝ(ξ)‖L2 . (4-16)

Boundedness in the first norm is simple, since φk(D) is a convolution kernel that is rapidly decreasing on
scale 2−k . For the second norm, we can reduce to the one-dimensional case, and we need to prove that

‖(1+ 2−k D2
+
)(φk(D)a)(φk(D)g)‖L2(R) ≤ C‖a‖C0,1‖(1+ 2−k D2

+
)ĝ‖L2(R),

where D+ is the operator with multiplier ξ+ =max(ξ, 0).
Consider first the case that ĝ is supported in ξ ≤ 0. Then, since |ξ |. 2k on the frequency support of

(φk(D)a)(φk(D)g), this follows from the bound

‖(1+ D+)(ag)‖L2 ≤ C‖a‖C0,1‖(1+ D+)g‖L2,

which holds by Theorem A.1 since ξ+ is a classical first order multiplier. If ĝ is supported in ξ ≥ 0, it
suffices to prove the bound

‖2−k D2(φk(D)a)(φk(D)g)‖L2 ≤ C‖a‖C0,1(‖g‖L2 + 2−k
‖D2g‖L2).

This holds by distributing derivatives and using the fact that ‖D2φk(D)a‖L∞ . 2k
‖a‖C0,1 , in addition to

‖Dφk(D)g‖L2 . 2k
‖g‖L2 .

The estimate (4-13) is similarly reduced by Lemma A.4 to handling | j − k| ≤ 1. We then need to
show that the commutator [(φk(D)a), ρk(D)q(D)] is bounded in the norms (4-16) with operator norm
. ‖a‖C1,1 . Here ρk(ξ)q(ξ) is an order 1 classical symbol dyadically localized to |ξ | ≈ 2k . Thus, the
kernel K (x, y) of the commutator has bounds

|K (x, y)| ≤ CN‖a‖C0,12kn(1+ 2k
|x − y|)−N ,

so boundedness in the first norm in (4-16) follows by the Schur test as the weight is slowly varying over
distance 2−k . For boundedness in the second norm, we assume 〈ω, ξ〉 = ξ1, let qk(D)= ρk(D)q(D), and
need to show that, if ĝ vanishes for |ξ | ≥ 2k , then

‖(1+ D1,+)[(φk(D)a), qk(D)]g‖L2 ≤ C‖a‖C1,1‖(1+ D1,+)g‖L2, (4-17)

‖2−k D2
1[(φk(D)a), qk(D)]g‖L2 ≤ C‖a‖C1,1(‖g‖L2 + 2−k

‖D2
1g‖L2). (4-18)

The estimate (4-17) follows from Corollary A.9, since we may replace the multiplier 1+ ξ1,+ by its
truncation to |ξ |. 2k . The estimate (4-18) follows by distributing derivatives similar to those above, and
using that ‖D1a‖C0,1 + 2−k

‖D2
1φk(D)a‖C0,1 . ‖a‖C1,1 together with Theorem A.1.

We now turn to the proof of (4-14). By Lemma A.10,

〈D〉P(t)−1
= 〈D〉(p](t, x, D)+ c)−1

∞∑
n=0

(
p[(t, x, D)(p](t, x, D)+ c)−1)n

,



1160 HART F. SMITH

where the sum converges as a map on L2(Rn), uniformly over t . Since (p](t, x, D)+ c)−1 is a pseudo-
differential operator of class S−1

1,1/2, it follows from (A-6) that∥∥(p[(t, x, D)(p](t, x, D)+ c)−1)2g
∥∥

H1 ≤ C‖g‖L2

uniformly in t . Thus, the sum of terms over n ≥ 2 gives a bounded map from L2 to H 1, and the bound
(4-14) holds for these terms since c ≤ M0 ≤ 〈ξ〉.

It thus suffices to show that

‖M0T p[(t, x, D)〈D〉−1T ∗ f ‖`2 L2 ≤ C‖M0 f ‖`2 L2, (4-19)

‖M0T 〈D〉(p](t, x, D)+ c)−1T ∗ f ‖`2 L2 ≤ C‖M0 f ‖`2 L2 . (4-20)

In proving (4-19), we take the symbol expansion (A-1) of p, and use that order 0 multipliers are
bounded in the M0 norm to replace p[(x, D)〈D〉−1 by a[, and thus need to show

‖M0T a[T ∗ f ‖`2 L2 ≤ C0‖a‖C0,1‖M0 f ‖`2 L2 .

This is proven as for (4-12). Indeed, the off-diagonal terms of a[ are the same as for multiplication by a,
and if | j − k| ≤ 1, the bound holds for both a and φbk/2c(D)a.

The bound for (4-20) is simpler. The operator 〈D〉(p](t, x, D)+ c)−1 is a pseudodifferential operator
of type S0

1,1/2, so the off-diagonal part is a smoothing operator; in particular, it maps L2(Rn) to H 1(Rn).
And for | j − k| ≤ 1, the operator

T jβ j (D)〈D〉(p](t, x, D)+ c)−1βk(D)T ∗k

is an integral kernel operator with kernel satisfying (4-11). �

5. The space-time version: Proof of Theorem 2.2.

In this section we deduce the space-time wavefront estimate in Theorem 2.2 from the fixed-time wavefront
estimate established in Theorem 4.1. We use the notation of Section 3, with P = p(t, x, D) denoting a
choice of p±(t, x, D), and Q(t) constructed according to the choice of s0 ∈ {0, 1}.

Lemma 5.1. If u ∈ C0 H s0 satisfies Dt u− P(t)u− Q(t)u = 0, then

(t0, x0, p(t0, x0, ξ0), ξ0) /∈WF s0+1(u)H⇒ (x0, ξ0) /∈WF s0+1(u(t0)).

Proof. Let χ(t, x) and χ̃(t, x) denote cutoff functions, with χ̃ = 1 on a neighborhood of the support of
χ , and χ = 1 on a neighborhood of (t0, x0). Also, let 0(ξ) and 0̃(ξ) denote conic cutoffs, equal to one
on a neighborhood of ξ0, with 0̃ = 1 on a neighborhood of the support of 0.

Let φ ∈ C∞c (R) equal 1 near 0. If the support of φ ∈ C∞c (R) is suitably close to 0, and χ̃ and 0̃ also
have suitably small support, then γ (t0) /∈WF s0+1(u) implies that

0̃(D)φ(1− p(t0, x0, D)D−1
t )(χ̃u) ∈ H s0+1(R1+n).
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On the other hand, (2-10) implies that Q(t)u(t) ∈ C0 H s0 , so Theorem B.4 implies(
1−φ(1− p(t0, x0, D)D−1

t )
)
(χ̃u) ∈ L2 H s0+1,

hence

0̃(D)(χ̃u) ∈ L2 H s0+1. (5-1)

We next show that

(Dt − P(t)− Q(t))0(D)(χu) ∈ L1 H s0+1. (5-2)

Together with (5-1) and Theorem B.5, this implies 0(D)(χu)∈C0 H s0+1, hence (x0, ξ0) /∈WF s0+1(u(t0)).
To establish (5-2), we write

(Dt − P(t)− Q(t))0(D)χu

= [0(D)χ, Q(t)]u− [P(t), 0(D)χ ]0̃(D)χ̃u+0(D)χ P(t)(1− 0̃(D)χ̃)u

+ P(t)0(D)χ(1− 0̃(D)χ̃)u+0(D)(Dtχ)u. (5-3)

The next to last term on the right belongs to L1 H 2, since u ∈ C0L2 and the cutoffs give a smoothing
operator, and the last term belongs to L2 H s0+1 by (5-1), hence both are in L1 H s0+1.

Since u ∈ C0 H s0 , the first term on the right in (5-3) belongs to L1 H s0+1, by (2-13) and the fact that χ
is C∞c and the components of Q are smooth symbols in the ξ variable.

For the second and third terms in (5-3), by the symbol expansion (A-1) we may substitute p(t, x, D)=
a(t, x)q(D), with q(ξ) a symbol of order 1 and a ∈ C0,1

∩ L1C1,1. We note that, as a consequence of
Lemma A.4,

‖0(D)χa(t, · )q(D)(1− 0̃(D))u(t, · )‖H s0+1 ≤ C‖χa(t, · )‖C1,1‖u(t)‖H s0 ,

and, additionally, as a consequence of pseudolocality of q(D)0̃(D), where s0+ 1≤ 2,

‖0(D)χa(t, · )q(D)0̃(D)(1− χ̃)u(t, · )‖H s0+1 ≤ C‖a(t, · )‖C1,1‖u(t)‖H s0 .

Since u ∈ C0 H s0 , this handles the third term on the right in (5-3).
Now consider the second term on the right in (5-3), and write

[aq(D), 0(D)χ ] = a0(D)[q(D), χ] + [a, 0(D)]χq(D).

Consider the case s0 = 0. By Corollary A.2, we have

‖[aq(D), 0(D)χ ]v‖L2 H1 . ‖a‖L∞C0,1‖v‖L2 H1,

which we apply to v = 0̃(D)χ̃u ∈ L2 H 1.
In case s0 = 1, we use that v = 0̃(D)χ̃u ∈ L2 H 2

∩C0 H 1 by (5-1) and since u ∈ C0 H 1. We again
apply Corollary A.2 to obtain

‖D[a, 0(D)]χq(D)v‖L1 H1 ≤ ‖[(Da), 0(D)]χq(D)v‖L1 H1 +‖[a, 0(D)]Dχq(D)v‖L1 H1

. ‖Da‖L1C0,1‖v‖L∞H1 +‖a‖L∞C0,1‖v‖L1 H2 .
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Similarly, we use that 0(D)[q(D), χ]v ∈ L2 H 2
∩C0 H 1, and

‖aw‖L1 H2 ≤ ‖Da‖L1C0,1‖w‖L∞H1 +‖a‖L∞C0,1‖w‖L1 H2,

a consequence of the Leibniz rule, to handle the remaining term. �

We now observe that if the conditions of Theorem 2.2 hold and s ∈ (−T, T ), then, by Lemma 5.1 and
Theorem 4.1, there is a function χ ∈ C∞c (R

1+n) equal to 1 on a neighborhood of (s, xs), and conic cutoff
0(ξ) equal to 1 on a neighborhood of ξs , so that

0(D)χu ∈ L2 H s0+1,

where γ (s)= (s, xs, p(s, xs, ξs), ξs). Since p ≈ |ξ |, it follows that γ (s) /∈WF s0+1(u), which completes
the proof of Theorem 2.2. �

6. Piecewise regular coefficients

We work in this section with L of the form

L = D2
t − 2D j b j (t, x)Dt − Di ci j (t, x)D j + d0(t, x)Dt + d j (t, x)D j , (6-1)

where the coefficients satisfy certain piecewise regularity conditions with respect to a decomposition of
(−T, T )×Rn into disjoint time slabs −T = t1 < t2 < · · ·< tn−1 < tn = T . Given such a partition, we
assume that the coefficients ci j and b j satisfy the conditions (1-3) and (1-4) separately on each time slab
(t j , t j+1)×Rn . In addition, we assume that ci j and b j are continuous on [−T, T ] ×Rn . This implies
in particular that ci j and b j belong to C0,1([−T, T ]×Rn), and that the map t→ ci j (t, · ), respectively
t→ b j (t, · ), is continuous from [−T, T ] into C1(Rn).

Similarly, we assume d0 and d j satisfy (1-6) separately on each time slab, hence on each slab they
admit a continuous extension to [t j , t j+1] ×Rn . We allow d j to have jumps at t j for 1 ≤ j ≤ n. It is
unimportant how d j is defined at t = t j , but for definiteness we assume it is right continuous.

We assume the coefficient d0 belongs to C0([−T, T ] ×Rn), which with the above is equivalent to
assuming ∂t,x d0

∈ L1L∞((−T, T )×Rn). The continuity assumption on d0 is needed for weak solutions
of Lu = 0 to agree with solutions defined separately on each slab with matching Cauchy data at each t j .
At the end of this section, we indicate how to handle jumps in d0.

For s0 ∈ {0, 1, 2} and Cauchy data of regularity H s0 × H s0−1 at some t0, one obtains a solution to
Lu= 0 of regularity C0 H s0∩C1 H s0−1 by piecing together solutions on [t j , t j+1], and imposing continuity
of u and Dt u at t j . Such a solution is easily verified to satisfy

∫
uL tφ = 0 for φ ∈ C∞c ((−T, T )×Rn),

with L t the formal transpose of L .
That this u is the unique weak solution of regularity C0 H s0 ∩C1 H s0−1 follows immediately from

uniqueness for the Cauchy problem on each time slab, by the assumed continuity condition in t of
(u(t), Dt u(t)).

Since the first-order derivatives in x of ci j and b j satisfy the regularity conditions of d0, one can convert
between the standard form of L in the introduction and one of the form (6-1) and preserve the regularity
assumptions. Since the first order derivatives in t of b j satisfy the conditions on d j for 1≤ j ≤ n, one
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could also express a term of the form Dt b j D j in the form (6-1). Indeed, up to addition of an L1L∞

function, the class (6-1) is closed under transpose.
If we factor the principal symbol of L as before, as

H(t, x, τ, ξ)= (τ − p+(t, x, ξ))(τ + p−(t, x, ξ)),

then p± are C1, and ∂2
x,ξ p± belongs to L1L∞, hence the null bicharacteristics of L are well-defined C1

curves.

Theorem 6.1. Assume that the coefficients of L are as above. Suppose that s0 ∈ {0, 1}, that Lu = 0, and
that u ∈ C0 H s0 ∩C1 H s0−1.

Then, if γ (t) is a null bicharacteristic curve of L and γ (t0) /∈WF s0+1(u) for some t0 ∈ (−T, T ), then
γ ∩WF s0+1(u)=∅.

Proof. For simplicity, we assume that the partition consists of [−T, 0] ∪ [0, T ]. The general case follows
easily. By openness of the wavefront set, we may then assume t0 6= 0, and without loss of generality take
t0 < 0.

We derive the result as a limiting case of Theorem 1.1, using uniformity of the wavefront set estimates
over bounded sets of coefficients. Precisely, we use the fact that all of the bounds on wavefront sets
involve only uniform control over appropriate norms of the coefficients. To define uniform cutoffs, we
fix a smooth radial cutoff to the half-unit ball χ(t, x), supported in the unit ball, and let χc,t0,x0(t, x)=
χ(c−1(t − t0), c−1(x − x0)). We also fix a conic cutoff 0, rotationally symmetric about the ξ1 axis and
supported in the cone of angle cπ ,

0c(τ, ξ)= χ(c−1ξ−1
1 τ, c−1ξ−1

1 ξ ′, 0),

and define 0c,τ0,ξ0(τ, ξ) by composing 0c with a rotation that centers it on the ray through (τ0, ξ0). The
following result is then a consequence of the fact that the bounds and support of the cutoffs in the
wavefront estimates in the proof of Theorem 1.1 depend only on bounds for the cited quantities in L .

Corollary 6.2. Suppose that, for some 0 < c0,C0 <∞, the coefficients of L satisfy the bounds (1-2),
(1-3), (1-4), and (1-6), where ‖α‖L1 ≤ C0.

Suppose that u ∈ C0 H s0 ∩C1 H s0−1 satisfies Lu = 0, and that

sup
t∈(−T,T )

(‖u(t)‖H s0 +‖Dt u(t)‖H s0−1)≤ C0.

Let γ (t)= (t, xt , τt , ξt) be a null bicharacteristic for L , and suppose that the following holds for some
0< c1,C1 <∞ and some t0:

‖0c1,τt0 ,ξt0
(D)χc1,t0,xt0

u‖H s0+1 ≤ C1.

Then, if T ′ < T , there are 0< c2,C2 <∞, depending only on c0, C0, c1, C1, and T ′, so that

‖0c2,τt ,ξt (D)χc2,t,xt u‖H s0+1 ≤ C2

for all |t | ≤ T ′.
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We will consider a family of operators Ln of the form

Ln = D2
t − 2D j b j

n Dt − Di ci j
n D j + d0

n Dt + d j
n D j ,

which converge appropriately to L , and such that the coefficients of Ln satisfy (1-2), (1-3), (1-4), and
(1-6), with constants c0,C0 uniform over n. Since the class L of Theorem 1.1 can be expressed in the
form (6-1) with comparable c0,C0, the corollary applies to Ln .

To construct Ln , we fix an increasing function h ∈C∞(R) which vanishes for s<−1, equals 1 for s> 1,
and so that h(s)+h(−s)= 1. For ci j (t, x) as above, we let ci j

− denote its restriction to t ∈ [−T, 0], which,
using (1-7), we assume extended to a function on [−T, T ] satisfying (1-3) and (1-4) there. Similarly, let
ci j
+ denote its restriction to [0, T ], appropriately extended to [−T, T ]. Define

ci j
n (t, x)= h(−nt)ci j

−(t, x)+ h(nt)ci j
+(t, x)

= ci j
−(t, x)+ h(nt)(ci j

+(t, x)− ci j
−(t, x)).

Since ci j
+(0, x) = ci j

−(0, x), it is seen that the estimates (1-3) and (1-4) are satisfied by ci j
n on (−T, T )

with uniform bounds for ‖αn‖L1 . Furthermore,

ci j
n (t, x)= ci j (t, x) if |t |> 1

n
.

We apply this smoothing technique to the coefficients ci j and b j of L . Since d0 is already globally regular,
we set d0

n = d0. We also define

d j
n (t, x)= h(−nt)d j

−(t, x)+ h(nt)d j
+(t, x), 1≤ j ≤ n,

which satisfies (1-6) with uniform bounds on ‖αn‖L1 . We then define Ln to be the operator of form (6-1)
with modified coefficients, and note that L = Ln for |t |> 1/n.

If we factor the Hamiltonian of the principal part of Ln as

Hn(t, x, τ, ξ)= (τ − pn,+(t, x, ξ))(τ + pn,−(t, x, ξ)),

then pn,± = p± for |t |> 1/n, and Dx,ξ pn,± converges uniformly to Dx,ξ p± on compact sets. It follows
that the null bicharacteristic of Ln through a given initial point converges uniformly on [−T, T ] to the
null bicharacteristic of L through that point.

We henceforth assume n large so that t0 <−1/n. Then the solution to Lu = 0 with given Cauchy data
at t0 satisfies Lnu = 0 for −T < t < 1/n, in particular for t near t0. Thus, if we let un be the solution to
Lnun = 0, with the same Cauchy data as u at t0, then un = u for −T < t <−1/n. In particular, for all n
and c1 small,

‖0c1,τt0 ,ξt0
(D)χc1,t0,xt0

un‖H s0+1 ≤ C1.

Thus, since the null bicharacteristic of Ln through (t0, x0, τ0, ξ0) converges uniformly to the null bichar-
acteristic of L through (t0, x0, τ0, ξ0), Corollary 6.2 shows that, for n large and some small c2 > 0 with
C2 independent of n,

‖0c2,τt ,ξt (D)χc2,t,xt un‖H s0+1 ≤ C2.
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We will prove that some subsequence un j converges weakly as distributions to u, from which we obtain
the desired result,

‖0c2,τt ,ξt (D)χc2,t,xt u‖H s0+1 ≤ C2.

To show the convergence, we observe that, by weak compactness, some subsequence (un j , Dt un j )

converges weakly in L∞H s0 × L∞H s0−1 to (v, Dtv) ∈ L∞H s0 × L∞H s0−1. We next verify that v is in
fact of regularity C0 H s0 ∩C1 H s0−1 separately on [−T, 0]×Rn and [0, T ]×Rn . For t < 0, this is trivial,
since un = u for t < −1/n, hence v = u for t < 0. For t > 0, if s0 = 1, it follows from Theorem B.6,
since Lv = 0 and v ∈ H 1((−T, T )×Rn). If s0 = 0, then Lemma B.1 yields that L(〈D〉−1v) ∈ L1L2.
Since (〈D〉−1v, Dt 〈D〉−1v) ∈ L∞H 1

× L∞L2, the result again follows from Theorem B.6.
Thus v consists of regular solutions on (−T, 0) and (0, T ) to Lv = 0, and it remains only to show

that the Cauchy data match at t = 0, since v = u for t < 0. To see that the data match, we note that, for
ψ(t, x) ∈ C∞c ((−T, T )×Rn),

0=
∫
v(L tψ) dt dx .

Integration by parts separately on t > 0 and t < 0 leads to the condition∫
Rn
(v(0+, x)− v(0−, x))(Dtψ(0, x)− b j (0, x)D jψ(0, x)) dx

=

∫
Rn

(
Dtv(0+, x)− Dtv(0−, x)+ d0(0+, x)v(0+, x)− d0(0−, x)v(0−, x)

)
ψ(0, x)dx .

Since this vanishes for all ψ , we must have v(0+, x) = v(0−, x), and if d0(0+, x) = d0(0−, x), as we
assume, then also Dtv(0+, x)= Dtv(0−, x). �

We remark that if d0 is piecewise regular with jumps at t j , that is, of the same regularity as d j , then
the result still holds, but the solution u must be defined by piecing together C0 H s0 ∩C1 H s0−1 solutions
on [t j , t j+1] with the following matching conditions on u at each t j :

u(t+j )= u(t−j ), Dt u(t+j )− Dt u(t−j )+ d0(t+j )u(t
+

j )− d0(t−j )u(t
−

j )= 0. (6-2)

The proof shows that the limiting solution v agrees with this solution u, hence the result of Corollary 6.2
holds for u satisfying (6-2). The one modification to the proof is to define d0

n similar to d j
n , so that it

meets the regularity conditions (1-6).

An example showing sharpness. We now show that the assumption of global H s0 regularity on u cannot
be lowered in Theorem 6.1, hence it is necessary for Theorem 1.1 to hold with bounds depending only on
the appropriate norms of the coefficients. Precisely, we construct a piecewise smooth operator L and a
corresponding null bicharacteristic γ , and for each σ ≤ 2, a solution Lu = 0 with u of Hσ regularity,
such that u is microlocally smooth on γ (t) for t <−1, but for all ε > 1, we have γ (t) ∈WFσ+ε(u) for
t ≥−1.

Consider the following hyperbolic equation on Rt ×Rx :{
(∂2

t + t∂2
x )u(t, x)= 0, t ≤−1,

(∂2
t − ∂

2
x )u(t, x)= 0, t ≥−1.

(6-3)
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Let A(s)= Ai(ωs) be the solution to the Airy equation A′′(s)+ s A(s)= 0, where ω = e2π i/3. Then,
for s < 0,

A(s)= ei 2
3 (−s)3/2a(−s), a(s)∼

∞∑
k=0

aks−
1
4−

3
2 k .

Furthermore, A(s) 6= 0 for s < 0, and each ak 6= 0.
If ξ ≥ 1, we consider the solutions to (6-3)

uξ (t, x)=

eiξ x A(ξ 2/3t)
A(−ξ 2/3)

, t ≤−1,

eiξ x(c0(ξ)e−iξ(t+1)
+ c1(ξ)eiξ(t+1)), t ≥−1,

where the following matching conditions are met to yield u ∈ C1,1(R2):

c0(ξ)+ c1(ξ)= 1, −iξ(c0(ξ)− c1(ξ))= ξ
2/3 A′(−ξ 2/3)

A(−ξ 2/3)
=−iξ

(
1− iξ−1/3 a′(ξ 2/3)

a(ξ 2/3)

)
,

Then c0(ξ) and c1(ξ) are smooth on ξ ≥ 1, and admit an asymptotic expansion

c0(ξ)= 1− c1(ξ), c1(ξ)∼
i
8
ξ−1

(
1+

∞∑
k=1

dkξ
−k
)
.

If ξ ≤−1, we set
uξ (t, x)= u−ξ (t, x). (6-4)

For −1 ≤ ξ ≤ 1, we take a combination of the solutions A and Ā in the definition of uξ so that
uξ (−1, x)= eiξ x and (6-4) holds. Then

uξ (t, x)=
{

eiξ x+i 2
3 ξ(−t)3/2−i 2

3 ξa(t, ξ), t ≤−1,
eiξ x(c0(ξ)e−iξ(t+1)

+ c1(ξ)eiξ(t+1)), t ≥−1,

where a(t, ξ) and c0(ξ) are elliptic symbols in ξ of order 0, and c1(ξ) is elliptic of order −1.
Let b(ξ)= 〈ξ〉−1/2−σ log(2+ |ξ |)−1, and set

u(t, x)=
∫
∞

−∞

b(ξ)uξ (t, x) dξ.

Then u ∈ C0 Hσ
∩C1 Hσ−1

∩C2 Hσ−2. Consequently, WFσ (u)=∅ if σ ≤ 2.
For each σ ∈ R and ε > 0, on the set t <−1, we see by stationary phase that

WFσ+εu =
{
(t, x, τ, ξ) : x =− 2

3(−t)3/2+ 2
3 , τ + (−t)1/2ξ = 0

}
.

For t >−1 and 0< ε ≤ 1, since c1 is of order −1, we have

WFσ+εu = {(t, x, τ, ξ) : x = 1+ t, τ + ξ = 0},

On the other hand, for t >−1 and ε > 1, we have

WFσ+εu =
⋃
±

{(t, x, τ, ξ) : x =±(1+ t), τ ± ξ = 0}.
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Thus, if ε > 1, then WFσ+ε contains the null bicharacteristic γ (t)= (t,−(1+ t), 1, 1) for t ≥−1, but is
microlocally smooth on its continuation for t <−1, γ (t)=

(
t, 2

3(−t)3/2− 2
3 , (−t)1/2, 1

)
. �

Appendix A: Paraproduct estimates

In this section we collect the paraproduct and commutator estimates used throughout this paper. By a
standard multiplier of order m, we understand a function q(ξ) ∈ C∞(Rn) such that

|∂αξ q(ξ)| ≤ Cα(1+ |ξ |)m−|α|,

and denote the class of such multipliers by Sm(Rn). The best constants Cα form the seminorms of q . In
the statements of this section, it is implicit that the constant C in any given operator bound for a multiplier
depends on a finite number of the Cα. We say that q ∈ Sm is a classical multiplier if, in addition,

q(rξ)= rmq(ξ), r ≥ 1, |ξ | ≥ 1,

and denote this subspace by Sm
cl .

The homogeneous symbol p(t, x, ξ) admits a convergent expansion on the set |ξ | ≥ 1 of the form

p(t, x, ξ)=
∞∑

l=1

al(t, x)ql(ξ), ql(ξ)= |ξ |ωl(ξ/|ξ |) ∈ S1
cl(R

n), (A-1)

where ωl are spherical harmonics, and al(t, x) satisfies the regularity conditions in (1-3) and (1-4), with
constants Cl that decrease rapidly in l. We may smoothly extend the ql(ξ) near 0 so that this expansion is
valid for all ξ . The seminorms of ql grow at most polynomially in l, so the bounds in prior sections on
R±1 , etc., are convergent.

The Coifman–Meyer commutator theorem [1978], which generalizes the Calderón commutator theorem
[1965] for homogeneous multipliers, is the following.

Theorem A.1 (Coifman–Meyer commutator theorem). Suppose that a ∈ C0,1(Rn) and q ∈ S1(Rn). Then

‖[a, q(D)] f ‖L2 ≤ C‖a‖C0,1‖ f ‖L2 .

An immediate corollary, as seen by commuting or composing with D, is the following:

Corollary A.2. If q ∈ S1(Rn) and a ∈ C1,1(Rn), then

‖[a, q(D)] f ‖H s ≤ C‖a‖C1,1‖ f ‖H s , −1≤ s ≤ 1.

If q ∈ S0(Rn) and a ∈ C0,1(Rn), respectively a ∈ C1,1(Rn), then

‖[a, q(D)] f ‖H s+1 ≤ C‖a‖C0,1‖ f ‖H s , −1≤ s ≤ 0,

‖[a, q(D)] f ‖H s+1 ≤ C‖a‖C1,1‖ f ‖H s , −2≤ s ≤ 1.

A key ingredient in the proof of the commutator theorem is the following estimate, due to Carleson
[1962] and Fefferman and Stein [1972]; for a proof, see [Stein 1993, II.2.4, IV.4.3].
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Theorem A.3. Suppose that φ,ψ ∈S(Rn), and thatψ(0)=0. Letψ j (D)=ψ(2− j D), φ j (D)=φ(2− j D).
Then ( ∞∑

j=0

∫
Rn
|ψ j (D)a|2|φ j (D) f |2 dx

)1
2

≤ C‖a‖BMO‖ f ‖L2 .

Theorem A.3 yields smoothing estimates for the off-diagonal terms in paraproducts. To state these,
form a Littlewood–Paley partition of unity {ψk(ξ)}

∞

k=1 by taking ψk(ξ)= β
2
k (ξ), with βk as in (3-3). Then

let

φk(D)=
k−2∑
j=0

ψ j (D), ρk(D)=
k+1∑

j=k−1

ψ j (D). (A-2)

If g ∈ L2(Rn) and a ∈ L∞(Rn), we decompose ag = Rag+ Tag, where

Rag =
∑
| j−k|≥2

ψ j (D)(aψk(D)g)

=

∞∑
j=2

ψ j (D)(aφ j (D)g)+
∞∑

k=2

φk(D)(aψk(D)g)

and

Tag =
∑
| j−k|≤1

ψ j (D)(aψk(D)g)=
∞∑
j=0

ψ j (D)((φ j+4(D)a)(ρ j (D)g)).

With the exception of the last identity, in the above, a may be replaced by a general bounded linear
operator on L2.

Lemma A.4. Suppose a ∈ C1,1(Rn). If −1≤ σ ≤ 1, then

‖〈D〉1+σ Ra(〈D〉1−σ g)‖L2 . ‖a‖C1,1‖g‖L2 .

Suppose a ∈ C0,1(Rn). If 0≤ σ ≤ 1, then

‖〈D〉σ Ra(〈D〉1−σ g)‖L2 . ‖a‖C0,1‖g‖L2 .

Proof. We prove the first estimate; the second follows by similar steps. By interpolation we may restrict
attentions to σ = ±1, and by considering adjoints we can assume that σ = −1. We may then replace
〈D〉2 by D2, which denotes an arbitrary second-order derivative. First consider

∞∑
k=2

φk(D)(aψk(D)D2g)=
∞∑

k=2

φk(D)((ρk(D)a)ψk(D)D2g).

We take the inner product with h ∈ L2; by the Cauchy–Schwarz inequality and almost orthogonality over
k of ψk(D)g, we can dominate the result by( ∞∑

k=2

∫
|22kρk(D)a|2 · |φk(D)h|2 dx

)1
2

‖g‖L2 . ‖D2a‖BMO‖h‖L2‖g‖L2,
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where we use Theorem A.3 and write 22 jρ j (D)a = ρ̄ j (D)D2a.
Now consider the remaining term,

∞∑
j=2

ψ j (D)(aφ j (D)D2g)=
∞∑
j=2

ψ j (D)
(
(ρ j (D)a)φ j (D)D2g

)
.

By almost orthogonality over j we can dominate the L2 norm of this sum by( ∞∑
j=2

∫
|22 jρ j (D)a|2 · |2−2 jφ j (D)D2g|2 dx

) 1
2

. ‖D2a‖BMO‖g‖L2,

where we use Theorem A.3 and write 2−2 jφ j (D)D2g = φ̄ j (D)g. �

Corollary A.5. For a ∈ C0,1(Rn), define the operator a[ by

a[g =
∞∑
j=0

(a− (φb j/2c(D)a))ψ j (D)g.

Then
‖a[g‖H s+1/2 ≤ C‖a‖C0,1‖g‖H s , −1≤ s ≤ 1

2 .

If a ∈ C1,1(Rn), then
‖a[g‖H s+1 ≤ C‖a‖C1,1‖g‖H s , −2≤ s ≤ 1.

Proof. We write

a[g = Rag+
∞∑
j=0

ρ j (D)(a− (φb j/2c(D)a))ψ j (D)g.

The desired bound for Rag follows from Lemma A.4, and for the second term it follows by orthogonality
and the bound

‖a−φb j/2c(D)a‖L∞ ≤ C min(2− j/2
‖a‖C0,1, 2− j

‖a‖C1,1). �

Corollary A.6. Suppose a ∈ C1,1(Rn) and q ∈ S1(Rn). If 0≤ σ ≤ 1, then

‖〈D〉σ R[a,q(D)](〈D〉1−σ g)‖L2 . ‖a‖C1,1‖g‖L2 .

Proof. We note that R[a,q(D)] = [Ra, q(D)]. The estimate then follows by Lemma A.4, since it yields
that, for 0≤ σ ≤ 1,

‖q(D)〈D〉σ Ra(〈D〉1−σ g)‖L2 +‖〈D〉σ Raq(D)(〈D〉1−σ g)‖L2 . ‖a‖C1,1‖g‖L2 . �

We will need an extension of these results involving double commutators.

Lemma A.7. Suppose that a∈C1,1(Rn) and b∈C0,1(Rn), and that q0, q1∈ S1(Rn) are Fourier multipliers
on Rn . Then we have

‖[[a, q0(D)], q1(D)]g‖L2 ≤ C‖a‖C1,1‖g‖L2, (A-3)

‖[b, [a, q0(D)]]q1(D)g‖L2 ≤ C‖a‖C1,1‖b‖C0,1‖g‖L2 . (A-4)
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Proof. We start with the proof of (A-3). We decompose the multiplication operator a into Ta + Ra . By
Corollary A.6,

‖[Ra, q0(D)]q1(D)g‖L2 +‖q1(D)[Ra, q0(D)]g‖L2 ≤ C‖a‖C1,1‖g‖L2 .

For the term [Ta, q0(D)], since ψk(D) and ρ j (D) commute with the q(D) and have finite overlap of
support, it suffices to prove that, uniformly over j ,

‖ψ j (D)[[a, q0(D)], q1(D)]ρ j (D)g‖L2 ≤ C‖g‖L2 .

We may then replace q0(D) and q1(D) by their dyadic localization to |ξ | ≈ 2 j , in which case they are
represented by convolution kernels K0, j and K1, j for which

|K j (x − y)| ≤ CN 2 j (n+1)(1+ 2 j
|x − y|)−N for all N .

After this substitution, we may ignore the factors ψ j (D) and ρ j (D). We next expand

a(x)− a(y)= a′(x)(x − y)+ r(x, y)(x − y)2, ‖r(x, y)‖L∞ ≤ C‖a‖C1,1 . (A-5)

The integral kernel r(x, y)(x−y)2K0, j (x−y) has operator norm.2− j
‖a‖C1,1 , whereas K1, j has operator

norm . 2 j , hence this contribution to the double commutator is bounded on L2. Letting q ′0(D) denote
the L2-bounded operator with kernel (x − y)K0, j (x − y), the other term yields [a′, q1(D)]q ′0(D), which
is bounded on L2 with norm ‖a‖C1,1 by a similar argument, or using Theorem A.1.

To establish (A-4), we first use Corollary A.6 to see that

‖Raq0(D)g‖L2 +‖q0(D)Rag‖L2 ≤ C‖a‖C1,1‖g‖H−1 .

We may thus replace a by Ta . In the j -th term for [Ta, q0(D)], we may replace q0(D) and q1(D) by their
j-th dyadic localization as above. Expanding a as in (A-5), the second-order remainder term leads to a
bounded operator. It thus suffices to show that∥∥∥∥[b,

∑
j

ψ j (D)a′ρ j (D)q ′0(D)
]

q1(D)g
∥∥∥∥

L2
≤ C‖a′‖C0,1‖b‖C0,1‖g‖L2,

where q ′0(D) is a multiplier of order 0. We may write the commutator on the left-hand side as

a′[b, q ′0(D)]q1(D)− [b, Ra′q ′0(D)]q1(D).

The first term has the desired bound on L2 by Corollary A.2, and the second term has the desired bound
by Lemma A.4. �

Remark A.8. The estimate (A-4) can be established with ‖a‖C0,1‖b‖C0,1‖g‖L2 on the right-hand side.
This is the second commutator estimate; see for example [Stein 1993]. The simpler estimate in (A-4)
suffices for our purposes, however.

Corollary A.9. Suppose that q1(ξ1) ∈ S1(R) and q0(ξ) ∈ S1(Rn). Then, uniformly over k,

‖[[a, ρk(D)q0(D)], φk(D1)q1(D1)]g‖L2 ≤ C‖a‖C1,1‖g‖L2 .



PROPAGATION OF SINGULARITIES FOR ROUGH METRICS 1171

Proof. Let q0,k = ρkq0. As in the proof of (A-3), we write

[a, q0,k(D)] = a′(x)q ′0,k(D)+ rk, ‖rk g‖L2 ≤ C2−k
‖a‖C1,1‖g‖L2 .

The operator φk(D1)q1(D1) has norm . 2k , so [rk, φk(D1)q1(D1)] is suitably bounded. This leaves the
term [a′(x), φk(D1)q1(D1)]q ′0,k(D), which is bounded uniformly over k by Theorem A.1, since a′(x) is
a C0,1 function of x1, uniformly over (x2, . . . , xn), with norm less than ‖a‖C1,1 . �

Lemma A.10. Let s0 ∈ {0, 1} and Q± be constructed as in Section 2. Then, for c> 0 sufficiently large, the
operator 2P(t0)+Q+(t0)+Q−(t0)+c : H s0→ H s0−1 has a bounded right inverse for each t0 ∈ (−T, T ).
Furthermore, with uniform bounds over t ∈ (−T, T ),

(2P(t0)+ Q+(t0)+ Q−(t0)+ c)−1
: H s−1

→ H s, s0 ≤ s ≤ s0+ 1,

and the inverse is a continuous function of t0 into the operator norm topology. Also, P(t0)+c : L2
→ H−1

is invertible, and
(P(t0)+ c)−1

: H s−1
→ H s, 0≤ s ≤ 2,

with norm-continuity of the inverse over t ∈ (−T, T ).

Proof. Consider a fixed value of t0, and let p(x, ξ)= p(t0, x, ξ). We use only C0,1 bounds on the symbol
p(x, ξ), so all estimates on p in the following proof will be uniform over t and norm-continuous in t .
We write p(x, ξ)= p](x, ξ)+ p[(x, ξ) with

p](x, ξ)=
∞∑
j=0

(φb j/2c(D)p)(x, ξ)ψ j (ξ) ∈ S1
1,1/2,

where the frequency truncation is in the x variable. By Corollary A.5 and the symbol expansion (A-1),

‖p[(x, D)g‖H s ≤ C‖g‖H s+1/2, − 1
2 ≤ s ≤ 1. (A-6)

Since |p[(x, ξ)| ≤ C(1+ |ξ |)1/2, it follows that 2p](x, ξ) ≥ c1|ξ | − c0. For c > c0 + 1, the symbol
(2p](x, ξ)+ c)−1 is a bounded family in S−1

1,1/2, and c1/2(2p](x, ξ)+ c)−1 is a bounded family in S−1/2
1,1/2.

By the pseudodifferential calculus, the composition of the corresponding operator with 2p](x, D)+ c
differs from the identity by a pseudodifferential operator that has seminorm bounds in S0

1,1/2 of size
c−1/2. Hence, for c large, the operator 2p](x, D)+ c is left and right invertible on each given H s , and in
particular, for some c and all |s| ≤ 2,

‖(2p](x, D)+ cH s+1 ≤ Cs‖g‖H s ,

‖(2p](x, D)+ c)−1g‖H s+1/2 ≤ Csc−
1
2 ‖g‖H s .

Furthermore, the inverse is a pseudodifferential operator of class S−1
1,1/2.

It follows that, if s0−
1
2 ≤ s ≤ s0, where s0 ∈ {0, 1}, then

‖(2p[(x, D)+ Q+(t0)+ Q−(t0))(2p](x, D)+ c)−1g‖H s ≤ Cs‖g‖H s−1/2,

‖(2p[(x, D)+ Q+(t0)+ Q−(t0))(2p](x, D)+ c)−1g‖H s ≤ Csc−
1
2 ‖g‖H s .
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The operator 2P(t0)+ Q−(t0)+ Q+(t0) as a map from H s
→ H s−1 is invertible provided that

∞∑
n=0

(2p](x, D)+ c)−1((2p[(x, D)+ Q+(t0)+ Q−(t0))(2p](x, D)+ c)−1)n

converges as a map H s−1
→ H s , which by the above is true for s0 ≤ s ≤ s0 + 1. Continuity in t of

the inverse follows by norm-continuity of P(t) and Q±(t) as functions of t . The same proof works for
0≤ s ≤ 2 with Q±(t0) replaced by 0. �

Appendix B: Energy estimates

In this section we establish the energy bounds and well-posedness results we use for L and its factors.
Throughout this section, we assume L satisfies the conditions in the introduction, and make use of the
equivalent form (6-1). Since we work with space-time mollification of L in this section, we assume
that the coefficients of the operator L have been extended to R1+n , as in (1-7), with the same regularity
conditions, and that the coefficients of L are constant for |t | ≥ T + 1. The solution u is defined only
on (−T, T )×Rn , however, and function space norms of u are with respect to that domain. Recall that
D = (Dt , D1, . . . , Dn)= (Dt , D).

The following result will be used when obtaining bounds for solutions of L2 regularity.

Lemma B.1. The commutator [L , 〈D〉−1
] = 〈D〉−1

[L , 〈D〉]〈D〉−1 admits an expansion of the form

[L , 〈D〉−1
]u(t)= B1(t)(Du)(t)+ B2(t)(Du)(t), (B-1)

where

‖B1(t)g‖L2 ≤ C‖g‖H−1, ‖B2(t)g‖H1 ≤ Cα(t)‖g‖H−1 .

Proof. We write L = D2
t − 2D j b j Dt − Di ci j D j + d0 Dt + d j D j , after absorbing derivatives of b j and

ci j into d . We use the commutator bound for functions c ∈ C0,1(Rn)

‖[c, 〈D〉−1
]g‖H1 ≤ C‖c‖C0,1‖g‖H−1,

as seen by writing [c, 〈D〉−1
] = 〈D〉−1

[c, 〈D〉]〈D〉−1 and applying Theorem A.1.
The terms Di [ci j , 〈D〉−1

]D j and D j [b j , 〈D〉−1
]Dt can thus be written as B1(t)D, and the terms

[d j , 〈D〉−1
]D j and [d0, 〈D〉−1

]Dt as B2(t)D. �

Theorem B.2. If u ∈ H 1
loc and Lu ∈ L2

loc, then WF2(u)⊆ char(L). If u ∈C0L2
∩C1 H−1 and Lu ∈ L1L2,

then WF1(u)⊆ char(L).

Proof. The first result relies only on the Lipschitz nature of L . As in Lemma B.1, we write L =
D A DT

+ d0 Dt + d j D j , where A is an (n + 1)× (n + 1) matrix function consisting of 1, b j and ci j .
The terms d0 Dt u + d j D j u belong to L2

loc by the assumed regularity of u, so we absorb them into F .
We decompose multiplication by A into A = A]+ A[ as in Corollary A.5, but where the regularization
φb j/2c(D) takes place over both the t and x variables.
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Let 0(τ, ξ)χ(t, x) be supported away from the characteristic set of L , where 0 ∈ S0
cl is a conic cutoff

and χ ∈ C∞c ((−T, T )×Rn). Suppose u ∈ H 1
loc, and write

D A]DT0(D)(χu)= [D A DT , 0(D)χ ]u− D A[DT0(D)(χu).

The first term on the right belongs to L2 by Corollary A.2, and the second to H−1/2 by Corollary A.5.
The operator D A]DT has symbol in S2

1,1/2, and is elliptic away from the characteristic set of L , hence
0(D)χu ∈ H 3/2. Corollary A.5 now yields that the second term on the right belongs to L2, and we
conclude 0(D)(χu) ∈ H 2.

For the second result, we let v = 〈D〉−1u. By Lemma B.1, Lv ∈ L2
+ L1 H 1. By Theorem B.6 below,

there exists w ∈ C0 H 2
∩C1 H 1 so that L(v−w) ∈ L2. Since v−w ∈ H 1

loc, we may apply the preceding
result to see that WF2(v−w)⊂ char(L). On the other hand 〈D〉w ∈ H 1

loc, so WF1(〈D〉w)=∅. �

Under a strengthened regularity assumption we can obtain results for L2 solutions.

Corollary B.3. Suppose that L = D A DT
+d0 Dt +d j D j , where A, d0, and d j belong to C0,1(R1+n). If

u ∈ L2
loc and Lu ∈ H−1

loc , then WF1(u)⊂ char(L).

Proof. Under the assumptions on d0 and d j , we have D A DT u ∈ H−1
loc . The proof then follows the same

steps as for the first part of Theorem B.2. �

Theorem B.4. Let s0 ∈ {0, 1}. Suppose that Dt u− p(t, x, D)u ∈ L2 H s0 and u ∈ L2 H s0 . If 0(τ, ξ)χ(t, x)
vanishes on a neighborhood of the characteristic set τ = p(t, x, ξ), where χ ∈ C∞c ((−T, T )×Rn) and
0 ∈ S0

cl, then 0(D)(χu) ∈ L2 H s0+1. In particular,

WF s0+1(u)⊂ {τ = p(t, x, ξ)} ∪ {ξ = 0}.

Proof. Consider first the case that 0(τ, ξ) vanishes near the set ξ = 0. We write

(Dt − p](t, x, D))0(D)(χu)

= 0(D)χ(Dt − p(t, x, D))u+0(D)(Dtχ)u− [p, 0(D)χ ]u+ p[(t, x, D)0(D)(χu),

where the frequency regularization defining p] takes place over both t and x variables. The first two terms
on the right belong to H s0(R1+n), where, since 0 vanishes near ξ = 0, we have 0(D) : L2 H s0(R1+n)→

H s0(R1+n), and similarly the last term belongs to H s0−1/2(R1+n) by Corollary A.5. To see that the
third term also belongs to H s0 , we take the symbol expansion (A-1) to replace p by a(t, x)q(D). The
commutator of q(D) and χ is bounded on H s0 , so we check that

‖[a, 0(D)]〈D〉g‖H s0 ≤ C‖a‖C0,1‖g‖L2 H s0 .

This follows from Corollary A.2, since ‖〈D〉g‖H s0−1 ≤ ‖g‖L2 H s0 for s0 ≤ 1.
The symbol τ− p](t, x, ξ) has a microlocal parametrix of class S−1

1,1/2 away from the set {ξ = 0}∪{τ =
p(t, x, ξ)}, and the result follows as in Theorem B.2.

Suppose then that 0 and 0̃ are supported in a small cone about the τ axis, vanish near τ = 0, with
0̃0 = 0. We write

(I − p(t, x, D)D−1
t 0̃(D))Dt0(D)χu = 0(D)χ(Dt − p(t, x, D))u+0(D)(Dtχ)u− [p, 0(D)χ ]u.
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The right-hand side belongs to L2 H s0 by steps similar to those above.
The operator p(t, x, D)D−1

t 0̃(D) is of small norm on L2 H s for −1≤ s ≤ 1, as seen by the symbol
expansion (A-1), since |ξ | � τ on the support of 0̃. We conclude that Dt0(D)χu ∈ L2 H s0 , and hence
that 0(D)χu ∈ L2 H s0+1. �

Theorem B.5. Let s0 ∈ {0, 1} and assume that p(t, x, ξ) satisfies (1-9) and that Q(t) satisfies (2-10). Let
E(t, t0) be the wave group of Theorem 3.2. Suppose that, in the sense of distributions,

Dt u− p(t, x, D)u− Q(t)u = F, (B-2)

and u ∈ L2 H s0, F ∈ L1 H s0 . Then u ∈ C0 H s0 , and, for each t0 ∈ (−T, T ),

u(t)= E(t, t0)u(t0)+
∫ t

t0
E(t, s)F(s) ds. (B-3)

In particular, if u ∈ L2 H s0+1 and F ∈ L1 H s0+1, then u ∈ C0 H s0+1.

Proof. We start by proving uniqueness for the equation

Dt u− p(t, x, D)u = G, supp(u)⊂ {t >−T + δ}, δ > 0, (B-4)

under the condition u ∈ L2 and G ∈ L1L2, and T <∞. This will show that, for such u,

u(t)=
∫ t

−T
E0(t, s)G(s) ds, (B-5)

where E0(t, t0) is as in Theorem 3.2.
Suppose first that u ∈ C∞((−T, T )×Rn) and is supported where t >−T + δ and |x | ≤ R, for some

δ > 0 and R <∞. Let u satisfy (B-4). We calculate

∂t

∫
|u(t, x)|2 dx =−2 Im

∫
u(t)p(t, x, D)u(t) dx − 2 Im

∫
u(t)G(t) dx .

Since p(t, x, ξ) is real, it follows by Theorem A.1 and the symbol expansion (A-1) that, uniformly over t ,

‖p(t, x, D)∗u(t)− p(t, x, D)u(t)‖L2 ≤ C‖u(t)‖L2,

hence
∂t‖u(t)‖2L2 ≤ 2C‖u(t)‖2L2 + 2‖G(t)‖L2‖u(t)‖L2 .

By the Gronwall inequality,

‖u(t)‖L2 ≤ eC(t+T )
∫ t

−T
‖G(s)‖L2 ds,

and, in particular,
‖u‖L2((−T,T )×Rn) ≤ CT ‖G‖L1 L2((−T,T )×Rn). (B-6)

Suppose now that u ∈ L2((−T, T )×Rn) satisfies (B-4). We choose χ ∈ C∞c (R
1+n) supported in t > 0

satisfying χ̂(0)= 1, and φ ∈C∞c (R
1+n) satisfying φ(0)= 1. Let Jε denote the family of causal, compactly

supported mollifiers
Jεu = φ(ε−1(t, x))χ̂(εD)u.
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Note that Jε is a uniformly bounded family of pseudodifferential operators of class S0
1,0. By Theorem A.1,

the following holds uniformly over ε > 0:

‖[Dt − p(t, x, D), Jε]u‖L2 ≤ C‖u‖L2 .

Since Jε→ I strongly on both H 1 and L2, as well as L1L2, then by density of H 1
⊂ L2 it follows that

lim
ε→0
‖[Dt − p(t, x, D), Jε]u‖L2((−T,T )×Rn) = 0.

It follows that (B-6) holds for general u ∈ L2 and G ∈ L1L2 under the condition (B-4), yielding uniqueness
of the solution, and thus the identity (B-5).

Now suppose that u ∈ L2 H s0 is supported in t >−T + δ, and satisfies (B-2) with F = 0. Since Q(t)
and E0(t, s) are uniformly bounded on H s0 , taking G(t)= Q(t)u(t) in (B-5), we see that

‖u‖L2((−T,−T+c),H s0 ) ≤ Cc
1
2 ‖u‖L2((−T,−T+c),H s0 ),

and, by a continuation argument, we must have u ≡ 0. Hence we have uniqueness for (B-2) for solutions
supported in t >−T + δ.

Thus, if ψ(t) ∈ C∞(R) is supported in t >−T , and u ∈ L2 H s0 satisfies (B-2), then

ψ(t)u(t)=
∫ t

−T
E(t, s)((Dsψ)(s)u(s)+ψ(s)F(s)) ds, (B-7)

since the right-hand side is a solution belonging to C((−T, T ), H s0). Reversing time, we obtain the
following bound for solutions to (B-2) without restrictions on the time-support of u:

‖u‖C((−T,T ),H s0 ) ≤ CT (‖u‖L2 H s0 +‖F‖L1 H s0 ).

In particular, u(t0) is well defined in H s0 for each t0 ∈ (−T, T ). Now let ψ be an increasing function
in C∞(R), which vanishes for t < t0− ε and equals 1 for t > t0+ ε. Letting ε→ 0, the formula (B-7)
shows that, for t > t0,

u(t)= E(t, t0)u(t0)+
∫ t

t0
E(t, s)F(s) ds, (B-8)

and, by time reversal, this holds for all t , which establishes (B-3).
Finally, if u ∈ L2 H s0+1 and F ∈ L1 H s0+1, then (B-7) necessarily holds, and since E(t, s) is a strongly

continuous evolution group on H s0+1, the same steps as above show that u ∈ C0 H s0+1, and that (B-8)
holds. �

Theorem B.6. Given t0 ∈ (−T, T ) and u0 ∈ L2, u1 ∈ H−1, F ∈ L1 H−1, there exists a unique solution
u ∈ C0L2

∩C1 H−1 to the Cauchy problem

Lu = F, u(t0)= u0, Dt u(t0)= u1.

If 0≤ s ≤ 2, and if u0 ∈ H s , u1 ∈ H s−1, F ∈ L1 H s−1, then the solution satisfies u ∈ C0 H s
∩C1 H s−1.

Also, if u ∈ H 1((−T, T )×Rn) satisfies Lu ∈ L1L2, then u ∈ C0 H 1
∩C1L2.
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Proof. We start by proving the existence of such a solution to the Cauchy problem. Assume 0≤ s ≤ 2
and (u0, u1) ∈ H s

× H s−1. We seek a solution u of the form

u(t)=
∑
±

E0,±(t, t0) f±+
∫ t

t0
(E0,+− E0,−)(t, s)(2P(s))−1G(s) ds. (B-9)

Here E0,± is the wave group (3-2) for Dt ∓ P±. We take G ∈ L1 H s−1 and set

f± = (2P(t0))−1(P∓(t0)u0± u1) ∈ H s,

that last inclusion holding by Lemma A.10. Recall that P++ P− = 2P .
Applying L and using (2-2) and (2-16), the equation Lu = F reduces to

G(t)+
∫ t

t0
(R+1 (t)E0,+(t, s)− R−1 (t)E0,−(t, s))(2P(s))−1G(s) ds = F(t)−

∑
±

R±1 (t)E0,±(t, t0) f±.

By Theorem 3.2 and (2-5), the right-hand side belongs to L1 H s−1. Also, by Lemma A.10,

‖(R+1 (t)E0,+(t, s)− R−1 (t)E0,−(t, s))(2P(s))−1G(s)‖H s−1 ≤ α(t)‖G(s)‖H s−1,

so that the Volterra equation for G is uniquely solvable on L1 H s−1, with solution given by a convergent
expansion. Note that if ‖F(t)‖H s−1 ≤ Cα(t), the same holds for G. Then u ∈ C0 H s

∩C1 H s−1 follows
by (B-9) and Theorem 3.2.

We now consider uniqueness. Suppose first that u ∈ C1((−T, T ),C2(Rn)) satisfies Lu = F ∈ L1C0,
and assume that u is supported in |x | ≤ R, some R <∞. It follows from Lu = F that D2

t u ∈ L1C0.
Using integration by parts, we calculate

∂t

∫ (
|Dt u(t, x)|2+

n∑
i, j=1

ci j (t, x)Di u(t, x)D j u(t, x)+ |u(t, x)|2
)

dx

= 2i Im
∫

F(t, x)Dt u(t, x) dx +
∫
(B(t, x)(u, Du)(t, x)) · (u, Du)(t, x) dx,

where B(t, x) is an (n+2)×(n+2) matrix whose coefficients consist of first-order space-time derivatives
of the coefficients b j , ci j , as well as d0 and d j . Hence

‖Bi j (t)‖C0 ≤ C, ‖DBi j (t)‖L∞ ≤ Cα(t).

By the positive definite condition on ci j and the Gronwall inequality, we conclude

‖(u, Du)(t)‖L2 ≤ Ce
∫ t

t0
α
‖(u, Du)(t0)‖L2 +

∫ t

t0
e
∫ t

s α‖F(s)‖L2 ds. (B-10)

By mollification and truncation with respect to the x variable, the bound (B-10) holds under the assumption
u ∈ C0 H 1

∩C1L2 and F ∈ L1L2.
Suppose that u ∈ C0L2

∩C1 H−1 satisfies Lu = F ∈ L1 H−1. By Lemma B.1, v = 〈D〉−1u satisfies

Lv = B0(t)(Dv)(t)+〈D〉−1 F(t), ‖B0(t)g‖L2 ≤ Cα(t)‖g‖L2 .



PROPAGATION OF SINGULARITIES FOR ROUGH METRICS 1177

The Gronwall inequality and (B-10) applied to v then imply

‖(u, Du)(t)‖H−1 ≤ Ce
∫ t

t0
α
‖(u, Du)(t0)‖H−1 +

∫ t

t0
e
∫ t

s α‖F(s)‖H−1 ds, (B-11)

from which the desired uniqueness follows.
To complete the proof of Theorem B.6, suppose now that u ∈ H 1((−T, T )×Rn) satisfies Lu = 0. We

want to show that
u ∈ C0 H 1

∩C1L2, (B-12)

since, by the above, the inhomogeneous problem admits a solution of this regularity.
We consider ψ(t)u as in the proof of Theorem B.5, where ψ = 0 near either ±T , and easily verify

that L(ψ(t)u(t)) ∈ L2((−T, T )×Rn). By the above, there exists a solution of regularity (B-12) with
inhomogeneity L(ψ(t)u), which also vanishes for t near the chosen ±T . Hence it suffices to prove that
if u ∈ H 1((−T, T )×Rn) satisfies Lu = 0 with u = 0 for t near either ±T , then u ≡ 0. For this we note
that (B-10) implies

‖u‖H1((−T,T )×Rn) ≤ C‖F‖L2((−T,T )×Rn),

if u satisfies (B-12) and vanishes near either ±T . The same inequality holds if u ∈ H 1 and F ∈ L2, as
seen by using the space-time mollifiers Jε from Theorem B.5 and noting that [L , Jε] maps H 1 to L2,
uniformly in ε. �

Remark B.7. Theorem B.6 together with finite propagation velocity shows that Theorem 1.1 holds
for solutions on an open set; that is, it holds for solutions to Lu = 0 with u ∈ C0((−T, T ), H s0

loc(�)),
Dt u ∈ C0((−T, T ), H s0−1

loc (�)), for an open set � ⊂ Rn , as long as γ remains above �. To see this,
assume that |Dξ p±| ≤ C . If χ ∈ C∞c (�) equals 1 on a ball of radius 2r about the spatial projection
of γ (t0), then, by finite propagation velocity, u agrees on the ball of radius r and |t − t0| ≤ C−1r with
the solution ũ on (−T, T )×Rn to Lũ = 0, where ũ has Cauchy data (χu(t0), χDt u(t0)) at t = t0. By
Theorem B.6, ũ ∈C0 H s0 ∩C1 H s0−1, and Theorem 1.1 implies that γ (t) /∈WF s0+1(u) for |t− t0| ≤C−1r .
The argument may then be repeated starting at t0±C−1r . �

Remark B.8. Under increased regularity of the coefficients, solutions u ∈ L2 to Lu = 0 satisfy (1-1).
Suppose L = D2

t −2D j b j Dt−Di ci j D j+d0 Dt+d j D j , where b j and ci j satisfy (1-3) and (1-4) as before,
but we make the stronger assumption that d0, d j

∈ C0,1((−T, T )×Rn). Suppose that Lu ∈ L2 H−1. By
Corollary B.3, we then have Du ∈ L2

loc H−1. Hence L(ψ(t)u) ∈ L2 H−1 for ψ ∈ C∞c ((−T, T )).
Suppose now that u ∈ L2((−T, T ) × Rn) satisfies Lu = 0. By Theorem B.6, there is a solution

v ∈ C0L2
∩C1 H−1 satisfying Lv = L(ψ(t)u). Hence, to prove u ∈ C0L2

∩C1 H−1, it suffices to prove
uniqueness of L2 solutions to Lu = F ∈ L2 H−1 when u is supported in |t | ≤ T − δ.

Fix χ ∈ C∞c (R
1+n) with χ̂(0)= 1. Then the commutator [L , χ̂(εD)] maps L2 to L2 H−1, uniformly

in ε. This follows from Corollary A.2 by the C0,1 regularity of the coefficients, and the form of L; in
particular the D2

t term commutes with χ̂(εD). By a density argument,

lim
ε→0
‖[L , χ̂(εD)]u‖L2 H−1 = 0, u ∈ L2.
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It follows from (B-11) that
‖u‖L2((−T,T )×Rn) ≤ C‖F‖L1 H−1,

from which the uniqueness of solutions follows. �
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