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WELL-POSEDNESS OF LAGRANGIAN FLOWS AND CONTINUITY EQUATIONS
IN METRIC MEASURE SPACES

LUIGI AMBROSIO AND DARIO TREVISAN

We establish, in a rather general setting, an analogue of DiPerna—Lions theory on well-posedness of flows
of ODE:s associated to Sobolev vector fields. Key results are a well-posedness result for the continuity
equation associated to suitably defined Sobolev vector fields, via a commutator estimate, and an abstract
superposition principle in (possibly extended) metric measure spaces, via an embedding into R*.

When specialized to the setting of Euclidean or infinite-dimensional (e.g., Gaussian) spaces, large parts
of previously known results are recovered at once. Moreover, the class of RCD(K, co) metric measure
spaces, introduced by Ambrosio, Gigli and Savaré [Duke Math. J. 163:7 (2014) 1405-1490] and the
object of extensive recent research, fits into our framework. Therefore we provide, for the first time, well-
posedness results for ODEs under low regularity assumptions on the velocity and in a nonsmooth context.
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1. Introduction

DiPerna-Lions theory, initiated in the seminal paper [DiPerna and Lions 1989], provides existence,
stability and uniqueness results for ODEs associated to large classes of nonsmooth vector fields, most
notably that of Sobolev vector fields. In more recent times Ambrosio [2004] extended the theory to
include BV vector fields and, at the same time, he introduced a more probabilistic axiomatization based
on the duality between flows and continuity equation, while the approach of [DiPerna and Lions 1989]
relied on characteristics and the transport equation. In more recent years the theory developed in many
different directions, including larger classes of vector fields, quantitative convergence estimates, mild
regularity properties of the flow, and non-Euclidean spaces, including infinite-dimensional ones. We refer
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to [Ambrosio 2008; Ambrosio and Crippa 2008] for more exhaustive, but still incomplete, description of
the developments on this topic.

The aim of this paper is to extend the theory of well-posedness for the continuity equation and the
theory of flows to metric measure spaces (X, d, m). Roughly speaking, and obviously under additional
structural assumptions, we prove that if {b;},c(.1) is a time-dependent family of Sobolev vector fields
then there is a unique flow associated to b,, namely a family of absolutely continuous maps {X(-, x)}xex
from [0, T] to X satisfying:

(i) X(-, x) solves the possibly nonautonomous ODE associated to b, for m-a.e. x € X;

(i1) the push-forward measures X(z, - )ym are absolutely continuous w.r.t. m and have uniformly bounded
densities.

Of course the notions of “Sobolev vector field” and even “vector field”, as well as the notion of solution
to the ODE have to be properly understood in this nonsmooth context, where not even local coordinates
are available. As far as we know, these are the first well-posedness results for ODEs under low regularity
assumptions and in a nonsmooth context.

One motivation for writing this paper has been the theory of “Riemannian” metric measure spaces
developed by the first author in collaboration with N. Gigli and G. Savaré, leading to a series of papers
[Ambrosio et al. 2014a; 2014b; 2014c] and to further developments in [Gigli 2012; 2013]. In this
perspective, it is important to develop new calculus tools in metric measure spaces. For instance, in the
proof of the splitting theorem in [Gigli 2013] a key role is played by the flow associated to the gradient
of a c-concave harmonic function, whose flow lines provide the fibers of the product decomposition;
therefore a natural question is under which regularity assumption on the potential V' the gradient flow
associated to V has a unique solution, where uniqueness is not understood pointwise, but in the sense
of the DiPerna—Lions theory (see Theorem 8.3 and Theorem 9.7 for a partial answer to this question).
We also point out the recent paper [Gigli and Bang-Xian 2014], where continuity equations in metric
measure spaces are introduced and studied in connection with absolutely continuous curves with respect
to the Wasserstein distance W», thus relying mainly on a “Lagrangian” point of view.

The paper is basically organized in three parts. In the “Eulerian” part, which has independent interest,
we study the well-posedness of continuity equations. In the “Lagrangian” part we define the notion of
solution to the ODE and relate well-posedness of the continuity equation to existence and uniqueness of
the flow (in the same spirit as [Ambrosio 2004; 2008], where the context was Euclidean). Eventually, in
the third part we see how a large class of previous results can be seen as particular cases of ours. On
the technical side, these are the main ingredients: for the first part, a new intrinsic way to write down
the so-called commutator estimate, obtained with I"-calculus tools (this point of view is new even for
such “nice” spaces as Euclidean spaces and Riemannian manifolds); for the second part, a more general
version of the so-called superposition principle (see, for instance, [Ambrosio et al. 2005, Theorem 8.2.1],
in the setting of Euclidean spaces), that allows us to lift, not canonically in general, nonnegative solutions
of the continuity equation to measures on paths.

We pass now to a more detailed description of the three parts.
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Part 1. This part consists of five sections, from Section 2 to Section 6. Section 2 is devoted to the
description of our abstract setup, which is the typical one of I'-calculus and of the theory of Dirichlet
forms; for the moment the distance is absent and we are given only a topology T on X and a reference
measure m on X, which is required to be Borel, nonnegative and o-finite. On L?(m) we are given a
symmetric, densely defined and strongly local Dirichlet form (€, D(€)) whose semigroup P is assumed
to be Markovian. We write V := D (%) and assume that a carré du champ T' : V x V — L'(m) is defined,
and that we are given a “nice” algebra A which is dense in V and which plays the role of the C2° functions
in the theory of distributions.

Using A, we can define in Section 3 “vector fields” as derivations, in the same spirit as [Weaver 2000]
(see also [Ambrosio and Kirchheim 2000] for parallel developments in the theory of currents); a derivation
b is a linear map from A to the space of real-valued Borel functions on X, satisfying the Leibniz rule
b(fg) = fb(g)+ gb(f), and a pointwise m-a.e. bound in terms of I'. We will use the more intuitive
notation (since differentials of functions are covectors) f + df (b) for the action of a derivation b on f.
An important example is provided by gradient derivations by induced by V €V, acting as follows:

df(by) =TV, f).

Although we will not need more than this, we would like to mention the forthcoming [Gigli 2014], which
provides equivalent axiomatizations, in which the Leibniz rule is not an axiom anymore, and it is shown
that gradient derivations generate, in a suitable sense, all derivations. Besides the basic example of
gradient derivations, the carré du champ also provides, by duality, a natural pointwise norm on derivations;
such duality can be used to define, via integration by parts, a notion of divergence div b for a derivation
(the divergence depends only on m, not on I'). In Section 4 we prove existence of solutions to the weak
formulation of the continuity equation du,/dt 4 div(u,b,) = 0 induced by a family (b,) of derivations,

%/fu,dmz/df(bt)u,dm VfedA.

The strategy of the proof is classical: first we add a viscosity term and get a V-valued solution by
Hilbert space techniques, then we take a vanishing viscosity limit. Together with existence, we recover
also higher (or lower, since our measure m might be not finite and therefore there might be no inclusion
between L’ spaces) integrability estimates on u, depending on the initial condition u. Also, under a
suitable assumption (4-3) on .A, we prove that the L' norm is independent of time. Section 5 is devoted to
the proof of uniqueness of solutions to the continuity equation. The classical proof in [DiPerna and Lions
1989] is based on a smoothing scheme that, in our context, is played by the semigroup P (an approach
already proved to be successful in [Ambrosio and Figalli 2009; Trevisan 2013] in Wiener spaces). For
fixed ¢, one has to estimate carefully the so-called commutator

6% (b, u;) :=div((Pqu,)b;) — Po(div(u,by))

as @ — 0. The main new idea here is to imitate Bakry and Emery’s '-calculus (see, e.g., the recent
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monograph [Bakry et al. 2014]), interpolating and writing, at least formally,
“d
by = [ 5P (v Paub)) ds (1-1)
0
o
= f [—APq_s (div(Pys (1)) 4 Pos (div(AP, (u)by)) ] ds.
0

It turns out that an estimate of the commutator involves only the symmetric part of the derivative (this, in
the Euclidean case, was already observed in [Capuzzo Dolcetta and Perthame 1996] for regularizations
induced by even convolution kernels). This structure can be recovered in our context: inspired by the
definition of the Hessian in [Bakry 1997] we define the symmetric part D¥™c of the gradient of a
deformation ¢ by

/Dsymc(f, g)dm = —%f[df(c)Ag—ng(c)Af—(divc)F(f, g)]dm. (1-2)

Using this definition in (1-1) (assuming here for simplicity div b, = 0), we establish the identity

ff‘@“(b,, u)dm = 2/“/ Db, (Py—s f, Psu,)dmds Vf € A. 1-3)
0

Then, we assume the validity of the estimates (see Definition 5.2 for a more general setup with different

§c</ F(f)zdm)4(/r‘(g)2dm)4, (1-4)

which, in a smooth context, amount to an L? control on the symmetric part of derivative. Luckily, the

powers)

' / D™b,(f, g) dm

control (1-4) on D%¥™b, can be combined with (1-1) and (1-3) to obtain strong convergence to 0 of the
commutator as @ — 0 and therefore well-posedness of the continuity equation. This procedure works
assuming some regularizing properties of the semigroup P, especially the validity of

(/ I‘(P,f)zdm>4 < %(/ |f|4dm>4 for every f € L>NL*(m), 1 € (0, 1),

for some constant ¢ > 0 (see Theorem 5.4). In particular, these hold assuming an abstract curvature
lower bound on the underlying space, as discussed in Section 6, where we crucially exploit the recent
results in [Savaré 2014; Ambrosio et al. 2013] to show that our structural assumptions on P and on A are
fulfilled in the presence of lower bounds on the curvature. Furthermore, gradient derivations associated to
sufficiently regular functions satisfy (1-4).

Finally, we remark that, as in [DiPerna and Lions 1989], analogous well-posedness results could be
obtained for weak solutions to the inhomogeneous transport equation

d
S+ du, (b)) = :
dl‘ut+ u; (b)) = cruy +wy
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under suitable assumptions on ¢, and w,. We confined our discussion to the case of the homogeneous
continuity equation (corresponding to ¢; = — div b; and w; = 0) for the sake of simplicity and for the
relevance of this PDE in connection with the theory of flows.

Part 2. This part consists of two sections. In Section 7 we show how solutions u to the continuity
equation du, /dt + div(u,b;) = 0 can be lifted to measures  in C ([0, T']; X). Namely, we would like that
(e;)#m = u,m for all r € (0, T') and that 5 is concentrated on solutions 7 to the ODE 7 = b,(n). This state-
ment is well-known in Euclidean spaces (or even Hilbert spaces) [Ambrosio et al. 2005, Theorem 8.2.1];
in terms of currents, it could be seen as a particular case of Smirnov’s [1993] decomposition of 1-currents
as superposition of rectifiable currents. Here, we realized that the most appropriate setup for the validity
of this principle is R*; see Theorem 7.1, where only the Polish structure of R* matters and neither
distance nor reference measure come into play.

In order to extend this principle from R to our abstract setup we assume the existence of a sequence

(&) C{f € AT (f)lloo = 1} satisfying:

span(gy) is dense in V and any function g is T-continuous; (1-5)
3 lim gi(x,) inRforallk — 3 lim x, in X. (1-6)
n—oo n—oo

This way, the embedding J : X — R mapping x to (g;(x)) provides an homeomorphism of X with
J(X) and we can first read the solution to the continuity equation in R (setting v; := Jx(u;m), with an
appropriate choice of the velocity in R>°) and then pull back the lifting obtained in ?(C([0, T]; R*>)) to
obtain n € P(C([0, T]; X)); see Theorem 7.6. It turns out that y is concentrated on curves 7 satisfying

d
E(f on)=df(b;)on in the sense of distributions in (0, T'), for all f € A, (1-7)

which is the natural notion of solution to the ODE 1 = b,(n) in our context (again, consistent with
the fact that a vector can be identified with a derivation). We show, in addition, that this property
implies absolute continuity of n-almost every curve n with respect to the possibly extended distance
d(x,y) :=supy |gk(x) — gk (y)|, with metric derivative || estimated from above by |b;| o . Notice also
that, in our setup, the distance appears only now. Also, we remark that a similar change of variables
appears in the recent paper [Kolesnikov and Rockner 2014], but not in a Lagrangian perspective: it is used
therein to prove well-posedness of the continuity equation when the reference measure is log-concave
(see Section 9E).

Section 8 is devoted to the proof of Theorem 8.3, which links well-posedness of the continuity equation
in the class of nonnegative functions Ltl (L)lc N L) with initial data u € L' N L% (m) to the existence and
uniqueness of the flow X according to (i), (ii) above, where (i) is now understood as in (1-7). The proof of
Theorem 8.3 is based on two facts: first, the possibility to lift solutions u to probabilities 7, discussed in
the previous section; second, the fact that the restriction of 7 to any Borel set still induces a solution to the
continuity equation with the same velocity field. Therefore we can “localize” 5 to show that, whenever
some branching of trajectories occurs, then there is nonuniqueness at the level of the continuity equation.
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Let us comment that, in this abstract setting, it seems more profitable to the authors to deal uniquely
with continuity equations, instead of transport equations as in [DiPerna and Lions 1989], since the latter
require in their very definition a choice of “coordinates”, while the former arise naturally as the description
of evolution of underlying measures.

Part 3. This part consists of Section 9 only, where we specialize the general theory to settings where
continuity equations and associated flows have already been considered, and to RCD(K, co)-metric
measure spaces. Since the transfer mechanism of well-posedness from the PDE to the ODE levels is
quite general, we mainly focus on the continuity equation. Moreover, in these particular settings (except
for RCD(K, oco) spaces), the proof of existence for solutions turns out to be a much easier task than
in the general framework, due to explicit and componentwise approximations by smooth vector fields.
Therefore, we limit ourselves to compare uniqueness results.

In Section 9A, we show how the classical DiPerna—Lions theory [1989] fits into our setting; in short,
we recover almost all the well-posedness results in [DiPerna and Lions 1989], with the notable exception
of Wl})’cl—regular vector fields. In Section 9B we also describe how our techniques provide intrinsic proofs,
i.e., without reducing to local coordinates, of analogous results for weighted Riemannian manifolds.

In Section 9C and Section 9D, we deal with (infinite-dimensional) Gaussian frameworks, comparing
our results to those established respectively in [Ambrosio and Figalli 2009; Da Prato et al. 2014]; large
parts of these can be obtained as consequences of our general theory, which turns out to be more flexible,
e.g., we can allow for vector fields that do not necessarily take values in the Cameron—Martin space (see
at the end of Section 9D), which is not admissible in their work. In Section 9E we consider the even more
general setting of log-concave measures and make a comparison with some of the results contained in
[Kolesnikov and Rockner 2014]. The strength of our approach is immediately revealed; for example, we
are not limited as they are to uniformly log-concave measures.

We conclude in Section 9F by describing how the theory specializes to the setting of RCD(K, co)-metric
measure spaces, that is one of our original motivations for this work. We show that Lagrangian flows do
exist in many cases (Theorem 9.7) and provide instances of so-called test plans. In the case of gradient
derivations, we also show that the trajectories satisfy a global energy dissipation identity (Theorem 9.6).

2. Notation and abstract setup

Let (X, t) be a Polish topological space, endowed with a o -finite Borel measure m with full support (i.e.,
suppm = X) and

a strongly local, densely defined and symmetric Dirichlet form € on L?(X, B(X), m)
enjoying a carré du champ I' : D(¢€) x D(€) — Ll(X, RB(X), m) and
generating a Markov semigroup (P;);>0 on L*(X, B(X), m). 2-1)

The precise meaning of (2-1) is recalled below in this section.

To keep notation simple, we write L” (m) instead of L? (X, %(X), m) and denote L” (m) norms by | - || ,.
We also write L?(m) for the space of m-a.e. equivalence classes of Borel functions f : X +— [—o0, +00]
that take finite values m-a.e. in X.
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Since (X, t) is Polish and m is o -finite, the spaces L” (m) are separable for p € [1, o). We shall also
use the duality relations

(LP(m)+ LIm))* =L NLY (m), p, q€[l,o0)

and the notation || - |zr4za, || - | .'~Le- In addition, we will use that the spaces L”(m), 1 < p < oo (and
p =0), are complete lattices with respect to the order relation induced by the inequality m-a.e. in X. This
follows at once from the general fact that, for any family of Borel functions f; : X — [—00, +00], there
exists f: X — [—o00, +0oc] Borel such that f > f; m-a.e.in X foralli € [, and f < g m-a.e. in X for
any function g with the same property. Existence of f can be achieved, for instance, by considering the
maximization of

J— /tan_l(sup fi)9 dm
iel
among the finite subfamilies J of I, with ¥ a positive function in L'(m) (notice that the pointwise
supremum could lead to a function which is not m-measurable).

2A. Dirichlet form and carré du champ. A symmetric Dirichlet form € is a L?(m)-lower semicontinuous
quadratic form satisfying the Markov property

€(mo f) <€(f) forevery normal contraction n: R — R, (2-2)

i.e., a 1-Lipschitz map satisfying n(0) = 0. We refer to [Bouleau and Hirsch 1991; Fukushima et al. 2011]
for equivalent formulations of (2-2). Recall that

V:=D(€) c L*(m) endowed with || f||3 := || f113 +€(f)

is a Hilbert space. Furthermore, V is separable because L?(m) is separable (see [Ambrosio et al. 2014c,
Lemma 4.9] for the simple proof).
We still denote by €( -, -) : V x V — R the associated continuous and symmetric bilinear form

€(f.8) =1 (E(f +8) —€(f — ).
We will assume strong locality of €, namely:
forall f,geV, €(f,g)=0, if (f+a)g=0 m-ae.in X, for some a € R.

It is possible to prove (see [Bouleau and Hirsch 1991, Proposition 2.3.2], for instance) that V N L°°(m) is
an algebra with respect to pointwise multiplication, so that for every f € VN L (m) the linear form on
VN L*®(m),

TLf; @1:=28(f, fo) —€(f% 9), ¢eVNL®m), (2-3)

is well-defined and, for every normal contraction 1 : R — R, it satisfies [Bouleau and Hirsch 1991,
Proposition 2.3.3]

0=<Tlno fi el =TLf; ¢l < llollc €(f) forall f, ¢ € VNL™(m), ¢ > 0. (2-4)
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The inequality (2-4) shows that for every nonnegative ¢ € V N L°°(m) the function f +— I'[f; ¢]is a
quadratic form in V N L (m) that satisfies the Markov property and can be extended by continuity to V.

We assume that for all f € V the linear form ¢ — I'[f; ¢] can be represented by an absolutely
continuous measure w.r.t. m with density I'(f) € LL(m), the so-called carré du champ. Since € is
strongly local, [Bouleau and Hirsch 1991, Theorem 1.6.1.1] yields the representation formula

2(, f):/ I'(f)dm forall feV. (2-5)
X

It is not difficult to check that I" as defined by (2-5) (see [Bouleau and Hirsch 1991, Definition 1.4.1.2],
for example) is a quadratic continuous map defined in V with values in L_lk(m), and thatT'[f — g; 9] >0
for all ¢ € VN L™ (m) yields

TSl =vT(HvT(g) m-ae. inX. (2-6)
We use the I" notation also for the symmetric, bilinear and continuous map
F(f.8)=3T(f+8)~T(f—g)eL(m). fgeV,

which, thanks to (2-5), represents the bilinear form € by the formula

‘é(f,g):%/xr‘(f,g)dm forall f, g € V.

Because of the Markov property and locality, I'( -, - ) satisfies the chain rule [Bouleau and Hirsch 1991,
Corollary 1.7.1.2]

C(f), g =n(/)T(f, g) forall f, g€V andn:R— R Lipschitz with n(0) =0, 2-7)
and the Leibniz rule
['(fg.h)=fT(g, h)+gl(fih) forall f, g, he VNL>(m).

Notice that, by [Bouleau and Hirsch 1991, Theorem 1.7.1.1], (2-7) is well-defined since, for every Borel
set N C R (in particular the set where 7 is not differentiable),

FYN)=0 = T(f)=0 m-ae. on f I(N). (2-8)

For p € [1, oo], we introduce the spaces
V, = {u eVNLP(m): /(F(u))p/2 dm < oo}, pell, 00), (2-9)

with the obvious extension to p = co. As in [Bouleau and Hirsch 1991, §1.6.2], one can endow each V,,
with the norm

I fllv, =1 fllv+ILF I + 1T @) 2, (2-10)

thus obtaining a Banach space, akin to the intersection of classical Sobolev spaces W2 N W7, Notice
that V, =V, with an equivalent norm. The Banach space structure plays a major role only starting from
Section 5, but the notation f €V, is conveniently used throughout.
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2B. Laplace operator and Markov semigroup. The Dirichlet form € induces a densely defined, neg-
ative and selfadjoint operator A : D(A) C V — L?(m), defined by the integration by parts formula
€(f,g) = — fx g Af dm for all g € V. The operator A is of “diffusion” type, since it satisfies the
following chain rule for every n € C 2(R) with 17(0) =0 and bounded first and second derivatives [Bouleau
and Hirsch 1991, Corollary 1.6.1.4]: whenever f € D(A) with I'(f) € L?(m), then n(f) € D(A) and

An(f)=n"(HAf +n"(HT . (2-11)

The “heat flow” P, associated to ¢ is well-defined starting from any initial condition f € L?(m). Recall
that in this framework the heat flow (P;);>¢ is an analytic Markov semigroup and that f; = P; f can be
characterized as the unique C ! map f : (0, 00) — L?(m) with values in D(A) satisfying

%f;:Af, for ¢ € (0, c0),
lim f, = f in L*(m).
t]0
Because of this, A can equivalently be characterized in terms of the strong convergence (P; f — f)/t — Af
in L>(m) as | 0.
Furthermore, we have the regularization estimates (in the more general context of gradient flows of
convex functionals, see [Ambrosio et al. 2005, Theorem 4.0.4(i1)], for instance)

2
v—u
€(Pu,Pu) < in@{%(v, v) + %} <00 Vi>0,uce Lz(m), (2-12)
ve
) > llv—ul3 2
|APull; < inf [Av|; +——F——= <00 Vi>0, ueL (m). (2-13)
veD(A) 1

For p € (1, 00), we shall also need an L? version of (2-13), namely

A
C
AP fll, < Tp||f||p for every f € L? DLZ(m) and every t € (0, 1). (2-14)

This can be obtained as a consequence of the fact that P is analytic [Stein 1970, Theorem III.1]; these are
actually equivalent [Yosida 1980, §X.10].
As an easy corollary of (2-14), we obtain the following estimate.

Corollary 2.1. Let p € (1, 00) and let cﬁ be the constant in (2-14). Then

/

. t
IPef —Pr fllp < mm{cﬁ 1og(1 + :) 2} I, VfeLPnL2m),

foreveryt, t' € (0,1) witht' <t.

Proof. The estimate with the constant 2 follows from L? contractivity. For the other one, we apply (2-14)
as follows:
A

Cp A
gy Ml =cplog{ 1+

/

t' t
P f —Pi—v fllp < / APy yr fllpdr < / )”f”p- O
0 0

r—t
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One useful consequence of the Markov property is the L? contraction of (P;);>o from L? N L? to
LPNL?. Because of the density of L”NL? in L? when p €[1, 00), this allows us to uniquely extend P; to
a strongly continuous semigroup of linear contractions in L”(m), p € [1, 0o), for which we retain the same
notation. Furthermore, (P;);>o is sub-Markovian (see [Bouleau and Hirsch 1991, Proposition 1.3.2.1]),
since it preserves one-sided essential bounds: f < C (resp. f > C) m-a.e. in X for some C > O (resp.
C <0) implies P, f < C (resp. P, f > C) m-a.e. in X, for all t > 0.

Finally, it is easy to check, using L!-contractivity of P, that the dual semigroup P> : L>°(m) — L>°(m)
given by

ngf’ofdm:/fPtgdm, feL®m), geL'(m), (2-15)

is well-defined. It is a contraction semigroup in L°°(m), sequentially w*-continuous, and it coincides
with P on L2 N L>®(m).

2C. The algebra A. Throughout the paper we assume that an algebra A C V is prescribed, with

AC ﬂ L?(m), A denseinV, (2-16)
PEll,00]
and
O(f1,..., fu) €A whenever ® € CI(R"), fis.ooy fne A 2-17)

Additional conditions on A will be considered in specific sections of the paper. A particular role is
played by the condition A C V,, for p € [2, oo]. By interpolation, if such an inclusion holds, then it
holds for every g between 2 and p. Concerning the inclusion A C V), for p € [1, 2], we prove:

Lemma 2.2. Let A CV be dense inV and satisfy (2-17). Then, there exists A C s, such that (2-16) and
(2-17) hold, and
A is contained in and dense in'V , for every p € [1, 2]. (2-18)

In particular, without any loss of generality, we assume throughout that (2-18) holds.

Proof. We define
A={P(f): fed, deF}Cd,

where ¥ consists of all functions ® : R — R bounded and Lipschitz, continuously differentiable and
null at the origin, with ®’(x)/x bounded in R. By the chain rule and Hélder’s inequality, it follows that
A C LP(m) for all p € [1, oo] and that (2-17) holds. We address the density of A in V, for p € [1, 2].

We consider Lipschitz functions ¢, : R — [0, 1] such that ¢,(z) = 0 for |z] < 1/(2n) and for
|z| > 2n, while ¢,(z) =1 for |z| € [1/n, n], and we set ®,(z) = fOZ ¢, (t)dt. Notice that &, = 0 on
[—1/(2n), 1/(2n)], that @, belongs to F, and that ¥/ (z) = ¢,(z) — 1 as n — oo. It is easily seen, by
the chain rule, that ®,(f) — finV, asn — oo for all f € V,, therefore density is achieved if we show
that all functions @, () belong to the closure of A. Since by assumption there exist f; € & convergent
to f in V (and m-a.e. on X), it will be sufficient to show that, for every n > 1, &, ( fr) converge to ®,(f)
inV, as k — oo.
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We claim that, as k — oo, ¢, (fx) converge to ¢,(f) in L?(m) for every g € [1, o0). To prove the
claim, it suffices to consider separately the sets {| f| > 1/(3n)} and {| f| < 1/(3n)}. On the first set, which
has finite m-measure, we can use m-a.e. and dominated convergence to achieve the thesis, taking into
account the boundedness of ¢, (since n is fixed); on the second set, we have

|Dn (i) — Pu () = X1 501217@3 | Pn (fi) — G (] = Xq1fe— f1=1/ 60y Min{2, Lip(é) | fx — f1}

and we can use Holder’s inequality for ¢ < 2 and uniform boundedness for g > 2.
To show convergence of ®,(f;) to ®,(f) in V), as k — 00, we use the following straightforward
identity, valid for any h;, h; € V and & € F:

L(®(h1) — D (h2) = (D' (h1) — @' (h2))’T (1, ha) + ' (h1)’T (1, hy — hy) + @' (h2) T (hy, ha — hy).

Adding and subtracting @’ (h2)?T (hy, hy — hy), and taking ® = P, since 0 < ¢, < 1 we obtain the
inequality

T(®,(h1) — Dy (h2))'/? < |p(h1) — ¢ (h)|T (1) V4T (h2) V4 4 b ()T (hy — ho)'/?
+ 2| (h1) — n (B2 () VAT (hy — ho) V4. (2-19)

Finally, we let h; = f and hy = f; in this inequality and use the convergence of ¢, (fx) to ¢,(f) in
every L9(m) space, g € [1, 00), as well as Holder’s inequality, to deduce that the right-hand side above
converges to 0 in L?(m) as k — oo. ]

We also deduce density in L? N L9-spaces, thanks to the following lemma.

Lemma 2.3. There exists a countable set % C A that is dense in LP N L9(m) forall 1 < p < g < 0o and
w*-dense in L= (m).

Proof. Since V is dense in L?(m) and we assume that A is dense in V, we obtain that A is dense in L?(m).

We consider first the case p = g € [2, oo]. Let h € L? (m). Assuming [ hpdm =0 forall ¢ € A, to
prove density in the w* topology (and then in the strong topology if p < co) we have to prove that & = 0.
Let § > 0, set fs5 = signhxn>s) (set equal to O wherever 7 = 0) and find an equibounded sequence
(¢n) C A convergent in L?*(m) to fs. Since (p,) are uniformly bounded in L°°(m), we obtain strong
convergence to f5in L? for p € [2, 00) and w*-convergence for p = co. It follows that f{l h|>8) Al dm =0
and wecanletd | Otogeth =0.

To cover the cases p =g € [, 2), by interpolation we need only to consider p = 1. Given f € L!(m)
nonnegative, we can find ¢, € A convergent to »/f in L?(m). It follows that the functions (pﬁ belong
to A and converge to f in L'(m). In order to remove the sign assumption, we split f € L!(m) into its
positive and negative parts.

Finally, in the case p < g we can use the density of bounded functions to reduce ourselves to the case
of approximation of a bounded function f € L” N L9 (m) by functions in A. Since f can be approximated
by equibounded functions f,, € A in L? norm, we need only to use the fact that f, — f also in L? norm.

Finally, a simple inspection of the proof shows that we can achieve the same density result with a
countable subset of A, since V is separable. ]
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Remark 2.4. Under the additional condition
A is invariant under the action of Py, (2-20)

our basic assumption that A is dense in V can be weakened to the assumption that A is dense in L?(m);
indeed, standard semigroup theory shows that an invariant subspace is dense in V if and only if it is dense
in L2(m); see, for instance, [Ambrosio et al. 2014c, Lemma 4.9], but also Lemma 5.6 below.

3. Derivations

Since A might be regarded as an abstract space of test functions, we introduce derivations as linear
operators acting on it, satisfying a Leibniz rule and a pointwise m-a.e. upper bound in terms of I" (even
though for some results an integral bound would be sufficient).

Definition 3.1 (derivation). A derivation is a linear operator b : A — L°(m), f — df (b), satisfying

d(fg)(b) = fdg(b)+ gdf(b) m-a.e.in X, for every f, g € A, and
ldf (b)] < g+/T(f) m-ae.in X, for every f € A, for some g € Lo(m).

The smallest function g with this property will be denoted by |b|. For p, g € [1, oo], we say that a
derivation b is in L? + L9 if |b| € L? (m) 4+ L (m).

Existence of the smallest function g can easily be achieved using the fact that L?(m) is a complete
lattice, that is by considering the supremum among all functions f € A of the expression |df (b)|[(f)~!/?
(set equal to O on the set {I"(f) = 0}).

N. Gigli pointed out to us that linearity and the m-a.e. upper bound are sufficient to entail “locality”
and thus the Leibniz and chain rules, with a proof contained in the work in preparation [Gigli 2014],
akin to that of [Ambrosio and Kirchheim 2000, Theorem 3.5]. Since our work focuses on the continuity
equation and related Lagrangian flows, but not on the fine structure of the space of derivations, for the
sake of simplicity we have chosen to retain this slightly redundant definition and deduce only the validity

of the chain rule.

Proposition 3.2 (chain rule for derivations). Let b be a derivation and let ® : R" — R be a smooth
Sfunction with ®(0) = 0. Then, for any f = (f1, ..., fu) € A", there holds

n
dO(f)(B) =) % d(f)dfi(b) m-ae. inX. (3-1)
i=1
Proof. Since ©(f) € A, b(®(f)) is well-defined. Arguing by induction and linearity, the Leibniz rule
entails that (3-1) holds when @ is a polynomial in n variables with ®(0) = 0. Since f is bounded, the
thesis follows by approximating & by a sequence (py) of polynomials converging to @, together with
their derivatives, uniformly on compact sets. (I

Remark 3.3 (derivations ub). Let b be a derivation in L? for some g € [1, oo] and let u € L" (m), with
g '+ r~!' < 1. Then, f — udf(b) defines a derivation ub in L*, where (s')"! = ¢~ +r7!, ie.,
g~ '+ r~' 457! = 1. By linearity, similar remarks apply when b is a derivation in L” + L9.
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Example 3.4 (gradient derivations). The main example is provided by derivations b, induced by g € V,
of the form

feArsdf(by,) :=T(f g) eL (m). (3-2)

These derivations belong to L?, because (2-6) yields |bg| < J/T(g). Since A is dense in V, it is not
difficult to show that equality holds.

By linearity, the L°°-module generated by this class of examples (i.e., finite sums ), x;b,, with
xi € L®(m) and g; € V) still consists of derivations in L2.

Definition 3.5 (divergence). Let p, g € [1, oo], assume that A C V,» NV, and let b be a derivation in
L? 4 L4, The distributional divergence div b is the linear operator on A defined by

A>fr> —/df(b)dm.

We say that divh € L?(m) 4 L9 (m) if the distribution div b is induced by g € L?(m) + L4 (m), that is

/df(b)dm:—/fgdm for all f € A.

Analogously, we say that divb~ € L”(m) if there exists a nonnegative g € L”(m) such that

/df(b)dmf/fgdm, forall feA, f>0.

Notice that we impose the additional condition A C V,» NV, to ensure integrability of df (b).

As we did for |b|, we define divb~ as the smallest nonnegative function g in L”(m) for which the
inequality above holds. Existence of the minimal g follows by a simple convexity argument, because the
class of admissible functions g is convex and closed in L”(m) (if p = 0o, one has to consider the w*

topology).

Example 3.6 (divergence of gradients). The distributional divergence of the “gradient” derivation b,
induced by g € V as in (3-2) coincides with the Laplacian Ag, still understood in distributional terms.

Although the definitions given above are sufficient for many purposes, the following extensions will be
technically useful in Section 4C, and in Section 5 for the case g € [1, 00).

Remark 3.7 (derivations in L? + L* extend to V). When a derivation b belongs to L? + L®, we can
use the density of A in V to extend b uniquely to a continuous derivation, still denoted by b, defined on
V, with values in the space L'(m) + L*(m). For all u €V, it still satisfies

|du(b)| < |b|y/T(v) me-ae.in X.

A similar remark holds for derivations belonging to LY + L°°, for some g € [1, 00), if A is assumed to be
dense in V,, for some r € [1, c0) with q_1 +r~! < 1. The extension is then a continuous linear operator
b mapping V, into LS (m)+ L%(m), where ¢ ' +r 1 +s71 = 1.
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By a similar density argument as above, any derivation b could be extended uniquely to a derivation
defined on V, with values in the space L%(m). However, such an extension is not useful when dealing with
integral functionals defined initially on A, e.g., divergence or weak solutions to the continuity equation,
because these are not continuous with respect to the topology of L°(m). Therefore, we avoid in what
follows considering such an extension, except for the case in the remark above.

We conclude this section noticing that if b is a derivation in L%+ L, with divh € L*(m) + L>®(m),
the following integration by parts formula can be proved by approximation with functions in A:

/du(b)fdm:—/df(b)udm-i—/ufdivbdm VfeA, YueV. (3-3)

4. Existence of solutions to the continuity equation

Let I = (0, T) with T € (0, 00). In this section we prove existence of weak solutions to the continuity
equation

d
Eut +diV(utbt) = WUy in I X X, (4'1)

under suitable growth assumptions on b, and its divergence.

Remark 4.1. Starting from this section, we always assume that A is contained in Vo, i.e., I'(f) € L>®(m)
for every f € A. We are motivated by the examples and by the clarity that we gain in the exposition,
although some variants of our results could be slightly reformulated and proved without this assumption.

Before we address the definition of (4-1), let us remark that a Borel family of derivations b = (b;);<;
is by definition a map ¢ — by, taking values in the space of derivations on X, such that r — df (b;) is
Borel in [ for all f € s and there exists a Borel function g : I x X + [0, co) satisfying

|b;| <g(t,-) m-ae.in X, forae.rel.

As in the autonomous case we denote by |b| the smallest function g (in the & '®@m-a.e. sense) with this
property. We say that Borel family of derivations (b;),c; belongs to L' (LY + L) if |b] € LT (LY + L1).

Definition 4.2 (weak solutions to the continuity equation with initial condition u). Let p, g € [1, 00],
i€ LPNLI(m),let (b,)c; be a Borel family of derivations in L} (LY + L) and let w € LI(LY + LY).
We say that u € L?O(sz N LY) solves (4-1) with the initial condition uo = & in the weak sense if

T
f f (=90 — wde (b)) — wilu; dmdt = v (0) f piidm, 4-2)
0

for all ¢ € A and all € C'([0, T']) with ¥ (T) = 0.

As usual with weak formulations of PDEs, the definition above has many advantages, the main one
being to provide a meaning to (4-1) without any regularity assumption on u. Notice that, without the
assumption A C V, one could define weak solutions u € L;’O(L)zc) to the equation associated to b
in L}(LY).
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In order to prove the mass-conservation property of solutions to the continuity equation we assume the
existence of (f,) C A satisfying

0<f, <1, fut1l mae inX, /I(fy)—0 weakly-*in L (m). (4-3)

The following theorem is our main result about existence; we address the case w = 0 only, the general
case following from a Duhamel’s principle that we do not pursue here.

Theorem 4.3 (existence of weak solutions in L;°(L )16 N L)%)). Assume that A C Voo, letii € L' N L™ (m)
for some r € [2,00] and let b = (b;);c; be a Borel family of derivations with |b| € L,1 (L)zC + L),
divb € Lt1 (LJZC + LY), and divb~ € Lt1 (LY°). Then, there exists a weakly continuous in [0, T) (in
duality with A) solution u € L;’O(L}C N L") of (4-1) according to Definition 4.2 with ug = u and w; = 0.
Furthermore, if u > 0, we can build a solution u in such a way that u; > 0 for all t € 1. Finally, if (4-3)
holds, then

/ut dm = / udm Vtel0,T). (4-4)
To prove existence of a solution u to (4-1) with w; = 0, we rely on a suitable approximation of the

equation. Following a classical strategy, we approximate the original equation by adding a diffusion term,
i.e., we solve, still in the weak sense of duality with test functions ¥ ()¢ (x),

8;1/[[ + diV(l/l[bt) = UAM[, (4-5)

where o > 0. By Hilbert space techniques, we show existence of a solution with some extra regularity,
namely u € L?(I; V). We use this extra regularity to derive a priori estimates and then we take weak
limits as o | O.

Let us remark that such a technique forces the introduction of stronger assumptions than those known
to prove existence in particular classes of spaces (e.g., Euclidean or Gaussian), where ad hoc methods are
available; here, we trade some strength in the result in favor of generality.

4A. Auxiliary Hilbert spaces. In all of what follows, we consider the Gelfand triple
V C L*(m) = (L*(m)* C V,
that is we regard V as a dense subspace in V' (proper if V # L?(m)) by means of
o> (@ fr> [fodm).

Notice that this is different from the identification V ~ V' provided by the Riesz—Fischer theorem applied
to the Hilbert space V (which has been applied to L?(m) instead).
Given a vector space F', we introduce a space of F-valued test functions on 7, namely

O :=span{y -¢: ¥ € C'([0,T]), Y(T)=0, ¢ € F}.

We notice that, for every ¢ € ®F, the function ¢ — ¢, is Lipschitz and continuously differentiable from /
to F, and there exists ¢p = lim; o ¢; in F (while lim;47 ¢, = 0 in F’ by construction).
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Assuming that F is a separable Hilbert space, starting from ® r one can consider completions with
respect to different norms. The classical space

L*(I; F), (¢, @2 = /(‘/’t, @) dt,
I
is indeed the closure of ®r with respect to the norm induced by the scalar product above. Similarly, the
space H'(I; F) is obtained by completing ®» with respect to the norm

d d
) G = 9 D -5 9_~ dt-
(@, OY 1 (F) /I(fﬂt §0t>F+<dt(Pt dt(pt>F

Arguing by mollification as in the case F = R", it is not difficult to prove that H'(I; F) = W'2(I; F),
where the latter space is defined as the subspace of functions ¢ € L?(I; F) such that there exists
g € L*(I; F) which represents the distributional derivative of ¢, i.e.,

d T
/<got, —(ZJ,> dt = —f (g, @:)rp dt forevery ¢ € O with gy =0.
I dt F 0

4B. Existence under additional ellipticity. We address now the existence of some u € L*(I; V) that
solves the following weak formulation of (4-5) with the initial condition uy = u:

T
/ / (—0,01 — der (B uts + 0T (@, uy) dmdt = f goiidm Vg € . (4-6)
0

We still assume that A C Vo, and that o € (0, 1/2], |b] € L?O(L)zc + L), divhb™ € L°(L°), u € L?(m).
Notice that the assumptions on |b| and div b~ are stronger than those in Theorem 4.3, but only with
respect to integrability in time.

We obtain, together with existence, the a priori estimate

_ il . N
lle ™ ull z2¢) < — with A := J|divd ™ | + 0. 4-7)

A

To this aim, we change variables setting 7, = e *'u, and we pass to the equivalent weak formulation

T
f / (=000 + . — gy (b)Vhs + 0 gy, hy) dmdt = f poiidm, Vo € . 4-8)
0

From now on we shall use the notation m for the product measure ' ® m in I x X. Existence of / is
a consequence of J. L. Lions’ extension of the Lax—Milgram theorem, whose statement is recalled below
[Showalter 1997, Theorem II1.2.1, Corollary I11.2.3] applied with H = LZ(I ;' V), V= ®, endowed with
the norm

ol = @l + lgoll3, (4-9)
B(so,h)=f[—3t¢+k<ﬂ—d¢(b)]h+al”(so, h) dm, €(¢)=/<poﬁdm-

Theorem 4.4 (Lions). Let V, H be respectively a normed and a Hilbert space, with V continuously
embedded in H, with ||vllg < ||[v|lv forallv e V,and let B : V x H — R be bilinear, with B(v, -)
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continuous for all v € V. If B is coercive, namely there exists ¢ > 0 satisfying B(v, v) > c||v||%,f0r all
v eV, thenforall £ € V' there exists h € H such that B(-, h) = £ and

VAIRYZ
Wl <) ﬂv . (4-10)

Let us start by proving continuity; to this end, let ¢ € V. The linear functional 4 +— B(g, h) is
L?(I; V)-continuous for all ¢ € V, since we can estimate | B(¢, )| from above with

||h||L2(I;\/)[||at‘p||L,2(L§) +)‘”¢)”L,2(L§) + ||b||L,2(L§+L§C) llv F((p)”L,OO(LfﬂLgO) +olly F((P)”L%(L%)]-

The functional £ satisfies ||£||y’ < ||u#]|2, immediately from the definition of || - ||y in (4-9).
To conclude the verification of the assumptions of Theorem 4.4, we show coercivity (here the change
of variables we did and the choice of A play a role):

~ 1 ~
[ V0= dvngdi= 1ol - 5 [ do®)a

1 C o~ )

= Mol — 5 [ ¢ dive d @11)

= (A= 311divD o) 9172,2) = 101722
Since ¢ € V = @4, we obtain 3,¢; = 2¢;9,¢; and [ —2¢,d¢ ditt = [ g5 dm. Hence, inequality (4-11)
entails that

~ _ 1
/[—azw +hg —de®]lp +ol(p)dn = 5 / ¢ dm+0 1911722 + O IVT @172 )

Since o < %, it follows from these two inequalities that

B(g,9) = ollglly- (4-12)
Finally, (4-7) follows at once from (4-10) and (4-12), taking into account that ||£||y: < ||u||>.

4C. A priori estimates. In this section we still consider weak solutions to

T
/ / —[8t§01‘ +d(p,(bt)]u, ‘JFO'F((DI, Mt) dmdt = / (0()12 dm V(p S CD‘A, (4-13)
0

obtained in the previous section. In order to state pointwise in time L” estimates in space, we use the
following remark.

Remark 4.5 (equivalent formulation). Assuming A C Vo, u € L?(1;V) and |b| € L} (L2 4+ L), an
equivalent formulation of (4-13), in terms of absolute continuity and pointwise derivatives w.r.t. time, is
the following: we are requiring that, for every f € A, r +— [ fu, dm is absolutely continuous in / and
that its a.e. derivative in [ is f df(b)u; + 0T (f, us)) dm. In addition, the Cauchy initial condition is
encoded by

lifg/fu, dm:/fﬁdm for every f € A (4-14)
t

(notice also that u is uniquely determined by (4-14), thanks to the density of A in L?(m)).
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Indeed, it is clear that the definition above implies the formula for the distributional derivative, because
for absolutely continuous functions the two concepts coincide; the converse can be obtained using the
set 9 of Lemma 2.3 to redefine u, in a negligible set of times in order to get a weakly continuous
representative in the duality with A; see [Ambrosio et al. 2005, Lemma 8.1.2] for details.

We prove, by a suitable approximation, the following result:

Theorem 4.6. Assume that A C Voo, |b| € LP(L2 4 L), divh € L®(L2 + L), divh™ € L®(LY),
and that the initial condition u belongs to L? N L1(m), with 1 < p <2 < g < oco. Then there exists a
weakly continuous (in duality with A) solution

ueLX(LPNLYNLAI; V)
to (4-13) satisfying

- 1 g
sup [, < =, exp( (1= ) I4ivE~ Iy )- (*-15)
©.7) r

foreveryr € [p, ql. In particular, ifu > 0, then u, > 0 forall t € (0, T).
At this stage, it is technically useful to introduce another formulation of the continuity equation, suitable

for V-valued solutions u, with the derivation acting on u.

Remark 4.7 (transport weak formulation). Using (3-3) we obtain an equivalent weak formulation of
(4-13), namely

T
f / —I/l[afgﬂt +dl/l[(bt)(p[ -I—u,(p, diVbt +UF((p[, M[) dmdt - / (poﬁ dm, V(p € CDA (4'16)
0

Remark 4.8 (basic formal identity). Before we address the proof of the a priori estimates, let us remark
that these, and uniqueness as well, strongly rely on the formal identity

%/ﬁ(ut)dm = —/[ﬂ/(uz)uz — B(u)]divb; dm, (4-17)

which comes from chain rule in (4-2) and the formal identity f div(B(u;)b;) = 0. To establish existence,
however, this computation is made rigorous by approximating the PDE (by vanishing viscosity, in
Theorem 4.6, or by other approximations), while to obtain uniqueness in Section 5B we approximate u.
In both cases technical assumptions on b will be needed.

A natural choice in (4-17) is a convex “entropy” function 8 : R — R with 8(0) = 0. In order to give a
meaning to the identity (4-17) also when g is not C! (z — zT will be a typical choice of B) we define
B, (2) = B(z) ifz=0,
2B (z) —B(z) ifz<0,

where we write B (z) :=lim,_, .+ B'(y). Notice that the convexity of g and the condition 8(0) = 0 give

$Lp(z) = { (4-18)

that 4 is nonnegative; for instance, if z > 0, there holds

B(0) =0 = B(z) —zB.(2) = B(z) — 2B, ().
The argument for z < 0 follows from iﬁlg(—z) = %4(z), where B(2) = B(—2).
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In order to approximate 8 with functions with linear growth in R, we will consider the approximations

B(—n)+pL(—n)(z+n) ifz<-—n,
Bu(2) =1 B(2) if —n<z<n, (4-19)
B(n)+ B (n)(z—n) if z>n,
that satisfy £g (z) = £g(—nV zAn),sothat £5 1 £Lg as n — oo. On the other hand, in order to pass
from smooth to nonsmooth 8, we will also need the following property, whose proof is elementary and
motivates our precise definition of ¥4 in (4-18):
limsup ¥5 < ¥g whenever f; are convex, f; — B uniformly on compact sets. (4-20)
i—00
Proof of Theorem 4.6. By Remark 4.5 we can assume with no loss of generality that ¢ — u, is weakly
continuous in [0, T'), in the duality with A.
We assume first that a weak solution u satisfies the strong continuity property
limu, =& in L*(m). (4-21)
t0
We shall remove this assumption at the end of the proof.
We claim that, for any convex function 8 : R — [0, co) where 8(0) = 0 and B'(z)/z is bounded on R,
the inequality J
o / Buy)dm < f Lg(u;)divh, dm (4-22)

holds in the sense of distributions in (0, 7). The assumption on the behavior of 8 near to the origin
is needed to ensure that both B(u) and £g(u) belong to LIZ(L)]C), since at present we only know that
ue L?(L%). By approximation, taking (4-19) and (4-20) into account, we can assume with no loss of
generality that 8 € C' with bounded derivative.

In the proof of (4-22), motivated by the necessity to get strong differentiability w.r.t. time, we shall use
the regularization u} := P,u, and the following elementary remark [Showalter 1997, Prop. 111.1.1].

Remark 4.9. Let X be a Banach space and let f, g € L' ((0, T); X) satisfy 9, f = g in the weak sense,

namely - r
- /0 v(0) / 6(f) dmdi = /0 o) / 6 (g) dmd,

for every ¢ € C1(0,T), ¢ € D C X*, dense w.r.t. the o (X*, X) topology. Then, f admits a unique
absolutely continuous representative from / to X and this representative is strongly differentiable a.e. in
I, with derivative equal to g.

Notice that X may not have the Radon—Nikodym property so that it might be the case that not all
absolutely continuous maps with values in X are strongly differentiable a.e. in their domain. Indeed, we
are going to apply it with X = L' (m) + L?(m), so that X* = L2N L>®(m), and & = A.

It is immediate to check, replacing ¢ in (4-16) by P;¢ and using (3-3), that for any s > O the function
t + u; solves

d
Euf +div(b,uj) = o Au; +€;
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in the weak sense of duality with A, where €} is the commutator between semigroup and divergence,
namely
@; :=div(buy) — Py (div(bsu,)).

Therefore, using (3-3) once more and expanding
(6; = M? div bt + duf(b,) — Ps (Mt div bt) — Ps (dut(bt))

we may use the assumption divh € L®(L? 4+ L) and the continuity of derivations to obtain that
% — 0 strongly in L%(L}C + Lﬁ) as s | 0. Similarly, expanding div(b,u;) = u} div b; 4+ du; (b;) and
using the regularization estimate (2-13) to estimate the Laplacian term in the derivative of u,, we obtain
iuf € LZZ(L }C + L)%) in the weak sense of duality with A; therefore by Remark 4.9, t — u} is strongly
(L' + L?)-differentiable a.e. in (0, T') and absolutely continuous.

Since B is convex, we can start from the inequality

fﬁ(uf) dm — f Buj)dm < /ﬂ/(uf)(uf —uj)dm
and use the uniform boundedness of 8'(z) and of B'(z)/z to obtain that 8’ (u}) € Ltz(Li N LS°); hence
/t
with g(1) = |/ (u) |l L2n1~ € L*(0, T). Since (again by the convexity of g) ¢ — fﬁ(uf) dm is lower

semicontinuous, a straightforward application of a calculus lemma [Ambrosio et al. 2014b, Lemma 2.9]
entails that 7 — f B(u;) dmis absolutely continuous in (0, 7') and that

dr
Ll+L?

/ Bl dm — / Bus)dm < g(1)

dr

%/ﬂ(uf)dm:/ﬁ/(uf)[— div(bu}) +o Au) +€;|dm forae. 1€ (0, 7). (4-23)

Since B(uf) € V we get [ B'(ud)Auf dm = — [ B”(ui)T (uf) dm < 0, hence we may disregard this
term. Using the chain rule twice and divb € L?(L2 + L), $5(u) € L*(L!) gives

%/ﬂ(uf)dmf —/,B’(uf)uf div b, —i—dﬂ(uf)(b,)dm—{—/ﬁ/(uf)cﬁf dm
_/(ﬂ’(ui)uf—ﬁ(uf))divbt dm+/ﬁ’(u§)<@§ dm
< [t - papyaivs; am+ [ gupe; am.

Eventually, since B’(u}) are bounded in L%(L% N L), uniformly w.r.t. s, we let s | O to obtain (4-22)
(convergence of the first term in the right-hand side follows from dominated convergence and convergence
in L%(m) of u; — Up).

We now prove (4-15). Let r € [p, g1, let B(z) = (z*)" and notice that £4(z) = (r — 1) B(z). We cannot
apply (4-22) directly to B, because B'(z)/z is unbounded near 0. If r < 2, we let
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(zF)?
Bu(z) = 2¢*"
(zh) — % if z>e¢,

ifz <e,

where ¢ = 1/n, so that 8, are convex, B,,(z)/z is bounded, £g, < B,, and B, — B as n — 0.

If r > 2, we use the approximations g, in (4-19), that satisfy £g (z) = Lg(z A n), so that we still have
£, < (r —1)By, and B, (z)/z is bounded.

Now, in both cases it is sufficient to apply Gronwall’s lemma to the differential inequality (4-22) with
B = By (here we use the assumption (4-21) to ensure that the value at O is the expected one) and then let
n — oo to conclude with Fatou’s lemma.

The correspondent inequalities for B(z) = (z7)" are settled similarly.

Finally, the assumption (4-21) can be removed by considering the solutions u; relative to the same
initial condition and to the derivations

be e b, ifrele,T),

"Tlo ifre(o,e).
Since u; coincides with Ps,u for t € (0, €), (4-21) is fulfilled. Then, we can take weak limits in
Le(LYNLDN L?(I;V) as ¢ | 0 to obtain a function u satisfying the desired properties. (I

4D. Vanishing viscosity and proof of Theorem 4.3. Let b= (b,);c; and it € L' N L™ (m) (r > 2) satisfy
the assumptions of Theorem 4.3. Let § > 0, let p be a mollifying kernel in C!(0, 1) and set bf =
fol b;s50(s)ds (where b, =0 fort > T), i.e., we let

1
¢ > dp(b)) = /O de(by45)p(s) ds.

Since b € L} (L2), divb € L} (L2 + L), it follows that |b°| € L®(L2), divb® € L>(L2 + L°) and the
assumptiondivbd™ € Lt1 (L}C NL$°) entails (div b~ e L;’O(L}C NLS). Moreover, as § | 0, d @(b%) converges
to do(b) in Lt] (L)ZC + L), for every ¢ € A and || (div by~ ||L,‘(L;0) converges to ||(divb)~ ||L}(L;c).

For fixed 8 > 0, consider a sequence u” = u®" of solutions to (4-13) with b° in place of b, 0 = 1/n,
n > 2, as provided by Theorem 4.6 with p =1 and ¢ = r, and notice that (4-7) gives

—(1+A)tun

1 _
;H@ 2wy < llull2,

so that v" := u" /n is bounded in L*(I; V). We would like to pass to the limit as n — oo in

T
//—[at<pt+d<p,(bf)]u;'+r(<p,,v;’)dmdt=f<poﬁdm Vo € dy. (4-24)
0

Inequality (4-15) entails that (u"), is bounded in LY°(L )]C N L"), sov" weakly converges to 0 in L*(I; V).
In addition, there exists a subsequence n(k) such that "R, converges, in duality with L}(Lﬁ + L),
to some u :=u® € L®(L! NL"). This gives that u° is a weak solution to the continuity equation with b°
in place of b.

We then let § | 0 and again extract a subsequence §(k) such that (u®®)); converges, in duality with
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LI(LY + L), to some u := LP(LL N L”) and is a weak solution to the continuity equation, thus
concluding the proof of Theorem 4.3, except for conservation of mass.

Finally, we prove conservation of mass for any weak solution to the continuity equation, assuming the
existence of f;, € A as in (4-3). The proof is based on the simple observation that our assumptions on b
and u imply ¢ :=ub € L (L!), and therefore

T
lim ffldfn(c,)|dmdt=0.
n—oo 0

Since

d
lim u,fndmzfu,dm Vt€[0,T), and E/utfndm=/dfn(ct)dm,

n—oo

we conclude that [u,dm = [admforallz € [0, T).

5. Uniqueness of solutions to the continuity equation

In this section, we provide conditions that ensure uniqueness, in certain classes, for the continuity equation;
these involve further regularity of b, expressed in terms of bounds on its divergence and its deformation
(introduced below), density assumptions of A in V,, and the validity of inequalities which correspond, in
the smooth setting, to integral bounds on the gradient of the kernel of P.

Definition 5.1 (L?-T" inequality). Let p € [1, co]. We say that the L”-I" inequality holds if there exists
cp > 0 satisfying

VTP, < %ufnp for every f € LENLP(m), 1 € (0, 1).

Although the L?-I" inequality is expressed for ¢ € (0, 1), from its validity and L? contractivity of P,
we easily deduce that

VTP Il <cpt ADTY2 £, forevery f e L*NLP(m), t € (0, 00). (5-1)

Notice also that, thanks to (2-12), the L2-T" inequality always holds, with ¢, =1/ V2. By Marcinkiewicz
interpolation, we obtain that if the L”-I" inequality holds then, for every ¢ between 2 and p, the L¢-T"
inequality holds as well.

Definition 5.2 (derivations with deformations of type (r, s)). Let ¢ € [1, oc], let b be a derivation in
L9+ L* with divh € L9(m) 4+ L>®(m), letr, s € [1, co] with g~! +r~1 4+ 57! =1 and assume that A
is dense both in V, and in V,;. We say that the deformation of b is of type (r, s) if there exists ¢ > 0

V D¥"b(f. ) dm‘ = cllvVTOIAVT @I, (5-2)

forall f €V, with Af € L" N L?(m) and all g € V, with Ag € L* N L?(m), where

satisfying

/ D¥"b(f, g)dm := —% /[df(b)Ag +dg(D)Af — (divh)['(f, g)]dm. (5-3)

We let || D¥™b||, s be the smallest constant ¢ in (5-2).



WELL-POSEDNESS OF LAGRANGIAN FLOWS AND CONTINUITY EQUATIONS 1201

The density assumption of A in V, and V; is necessary to extend the derivation b to all of V, and Vs,
by Remark 3.7. Notice that the expression [ D™b( f, g) dm is symmetric with respect to f, g, so the
role of r and s above can be interchanged.

Remark 5.3 (deformation in the smooth case). Let (X, (-, -)) be a compact Riemannian manifold, let m
be its associated Riemannian volume and let ['(f, g) = (V f, Vg). Let df (b) = (b, V f) for some smooth
vector field b and let Db be the covariant derivative of b. The expression

(Vg Vb, V) (V. V(b,Vg)) = (b, V(V [, Vg)) =(DbVg,Vf)+(DbVf Vg)

gives exactly twice the symmetric part of the tensor Db, namely 2(D*Y™bf, g). Integrating over X and
then integrating by parts, we obtain twice the expression in (5-3), so that the derivation b associated to a
smooth field b is of type (r, s) if |[DY™b| € L9 (m), where ¢ € [1, oo] satisfies ¢! +r 7! +s571 =1.
Theorem 5.4 (uniqueness of solutions). Let 1 <s <r < 00, q € (1,00] satisfy g~ ' +r 1 +s 1 =1.
Assume the existence of (f,) C A that satisfy (4-3) and that, for p € {r, s}, A is dense in \V,, and the
L?-T" inequality holds. Let b = (b;);c(0,7) be a Borel family of derivations, with

bl € LN (LY 4+ L), divb e L} (LY + L), divh™ € L (L) and | D¥™b,| ., € L' (0, T).

Then, for every initial condition u € L™ N L?(m), there exists at most one weak solution u in (0, T) x X to
the continuity equation du,/dt + div(u;b,) = 0 in the class

{fueL(L.N Li) 1t > u; is weakly continuous in [0, T) and ug = u}.

The proof of this result is given in Section 5B and relies upon the strong convergence to 0 as « |, 0 of
the commutator between divergence and action of the semigroup

6% (uy, by) 1= div((Paus)br) — Po(div(u:by)), (5-4)

proved in Lemma 5.8 in the next section. We end this section with some comments on the density
assumption on A.

Remark 5.5 (on the density of A in V). The assumption that A CV, is dense for p € {r, s} is fundamental
to show that the semigroup approximation ¢ — Pgu; is a solution to another continuity equation, (5-14)
below. This follows by the extension of the derivation on V), provided by Remark 3.7. One could argue
that the invariance condition (2-20) is sufficient to define b(P,, f), whenever f € A; indeed Theorem 5.4
holds, assuming (2-20) in place of the density of A in V,, and the same proof goes through, with minor
modifications (e.g., in Definition 5.2 above we require f, g € A). In view of Remark 2.4, one could also
wonder whether (2-20) and the L”-T" inequality are sufficient to entail density in V,; the next lemma
provides a partial affirmative answer (see Proposition 6.5 for an application of the lemma, assuming
curvature lower bounds).

Lemma 5.6. Let p € [2, 00), assume that (2-20) and the LP-I" inequality hold and that

lim %UPII\/ CP Oy = IVEN)Ip  forevery f eV, (5-5)
Then, A is dense in /. "
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Proof. Let f € V). Notice first that, since P, f converges to f in V as ¢ | 0, Fatou’s lemma gives
VT (H)Ip = liItIi(i)anI\/ TP OIlp

which combined with (5-5) gives convergence of I'(P; f )2 t0 T'( f Y2 in LP (m).

To prove density, we let f €V, and consider the functions ®,, : R — R, with derivative ¢,, introduced
in Lemma 2.2; since, by the chain rule, the ®,(f) converge to f in 'V, it is sufficient to approximate
each ®,(f) in V, with elements of A.

We first show that lim, o ®,(P; f) = ®,(f) in V. Since convergence in V and in L”(m) is obvious,
we prove I'(®,(P; f) — ®,(f))'/> = 0in LP(m). We let by =P, f and hy = f in (2-19) to get

T(®,(Pr ) = @u(N? < 1du (P f) — 9 (OIT(OVT P OV + 9 (HT (P f — )2
+21¢n (P £) — u(OI'PT(HOVAHT(HVH+T (P /). (5-6)

To handle the integral of the p-power of the term ¢, (f)I'(P; f — f)!/> we notice that, since I'(P; f)!/?
converges to I'(f)!/? in LP(m), they converge also in L”(m’) with m’ = ¢, (f)”m. Because m’ is
finite we obtain that I'(P, f)P/? are equiintegrable with respect to m’, and then the Lebesgue—Vitali
convergence ensures convergence to 0. The first term can be handled similarly, by adding and sub-
tracting |¢, (P f) — & (HIPT(FH)PAT(f)P/* and using dominated convergence, since 0 < ¢, < 1;
the integral of the p-th power of the last term can be estimated with dominated convergence for
f |pn (P ) — (;Sn(f)|l’/2f‘(f)1”/2 dm and with the same argument as we used for the first term for
S19u (P ) = @u(HIPPT(fIPIAT (P, )P/ dm.

We proceed then to approximate ®,(P; f) in V, by elements of A, at fixed n > 1 and ¢ > 0. Let
(fr) C A converge to f in L?>N LP(m). We show that &, (P, fi) converge to ®, (P, f) in V,,. Notice that
@, (P; f¢) belong to A, because of (2-20) and (2-17). Since convergence in L>N L” (m) holds, convergence
in V,, follows again by (2-19) with h; = P; f; and ho = P, f, because

T(®,(Pr fi) — @u(Pr N2 <1 (Pr fi) — $u(Pe )IT (P )HVAT (P fi) /4 + ¢ (P ST (Pe fi — P )12
+21¢n (P fi) — u (P P12 (P HHVHT (P, fi) V4 +T (P, ).

By the L2-T" inequality and the L”-T" inequality, I'(P; f)'/? converges to I'(P; £)'/? in L> N L? (m) as
k — oo and we can argue as we did in connection with (5-6) to obtain that I'(®,,(P; fr) —®,(P; f)) 172 50
in L?(m). O

Actually, the proof above entails the following result. Let p € [1, 00), assume that the L”-I" inequality
holds, and let A C V satisfy (2-17), (2-20), (5-5), and be dense in L?> N LP(m). Then A is dense in Vp.
Finally, notice that this gives another proof of Remark 2.4.

5A. The commutator lemma. We first collect some easy consequences of the L”"-I" inequality, for some
r € (1, 00), which allow for an approximation of the derivation b, via the action of P, as expressed in
the next proposition. We denote by B the linear operator thus obtained, to stress the fact that it is not a
derivation.
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Proposition 5.7. Let r, s € (1, 00), g € (1, 00] satisfy g~' +r~' + 57! = 1. Let b be a derivation in
L7+ L and assume that A C V, is dense and that the L"-T" inequality holds.

(1) For every a € (0, 00), the map
A>3 fi>d(Pyf)(b)

extends uniquely to B* € £(L" N L*(m), LS (m) + L%(m)), with
IBY|l < maxfe,, caba A 1)™V2 (|| oy 1. (5-7)
(2) Forall f € L" N L%(m) the map « — B*(f) is continuous from (0, c0) to L* (m) + L%(m) and, if
Af € L' N L*(m), it is C'((0, 00); L* (m) + L2(m)), with
%B“(f) =BY(Af).
(3) Assume that u € L" N L*(m), divh € LI (m) + L°°(m). Then,
div(B(Pou)b) = B(Pyu) div b+ B'(Puu)B () € L* (m) 4+ L*(m) (5-8)
foralla > 0andall B € ClR)N Lip(R) with 8(0) = 0. In particular (5-8) with B(z) = z gives
div((Pgu)b) = (Puu) divh + B* (1) € L* (m) + L>(m). (5-9)

(4) Assume u € L" N L%(m) and divb € L9(m) + L (m). Then €% (Psu, b) € L* (m) + L2(m) for every
6 >0and
1i%||<@“(|>5u, b)ll, g2 =0. (5-10)

Proof. (1) By Remark 3.7, if ¢ is a derivation in LY, then we can extend it to a linear operator on V,, thus
d(Pg f)(c) is well-defined. Since the L"-T" inequality holds for every f € A, we get

ld(Pe )@l < llellglvVT Pa )l < crle AT elglfIlr-
Analogously, if ¢ is a derivation in L*°, d(P, f)(c) is well-defined and there holds

ld(Pe )@ 2 < lelloollv/T(Pe £)ll2 < cala A D™ |lelloll £ 2.

This gives [B*(f)ll v, 2 < max{c,, c2}(@ A D7Y2bllgagr|l fllprar2 on A. By density of A in

L" N L*(m), this provides the existence of B® and the estimate on its norm.

(2) The semigroup law and the uniqueness of the extension give
BT (f) =B%(P, f) forevery f € L' NL*(m), a, o € (0, o0).
Then, continuity follows easily, combining identity with (5-7) and the strong continuity of Pj:
IB*7(f) = B* (Pl 12 < max{er, e} @ A DT 2l LasrIPo f = fllrnge-

A similar argument shows differentiability if Af € L" N L?(m).
(3) We obtain (5-9) by (3-3). By the chain rule, the identity (5-8) follows.
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(4) To prove that €*(Psu, b) € le(m) + L%(m), it is sufficient to apply (5-9) twice, to get
—€% (Psu, b) = Po[(Psu) div b] + Py (B (1)) — (Pyysu) divh — B+ (u) € L¥ (m) 4 L2 (m).
By strong continuity of o — P, at @ = 0 and continuity of o — B*(u) in (0, 00), the same expression
shows that €% (Psu, b) — 0 in LS/(m) + L%*(m) as « 0. O
We are now in a position to state and prove the following crucial lemma.

Lemma 5.8 (commutator estimate). Letr, s € (1, 00), g € (1, 00] satisfy g~ +r~ ' +s7 1 = 1. Let b be
a derivation in LY 4+ L* with divb € L1 (m) + L°°(m) and deformation of type (r, s). Assume that A is
dense in'V, and that the L?-T" inequality holds for p € {r, s}. Then

1€ (u, B) | o g2 < cllull a2 [ID¥ Bl s + N1div bl Loy 1< ] (5-11)
forallu e L" N L*(m) and all « € (0, 1), where c is a constant depending only on the constants ¢, and cy
in (5-1) and the constants crA and csA in (2-14). Moreover, 6*(u, b) — 0 in LS/(m) +L*(m)asa 0.

Proof. For brevity, we introduce the notation g% := P,g. By duality and density, inequality (5-11) is
equivalent to the validity of

/df”‘(b)u dm — / df byu® dm < c[ID¥™b|.s + Idiv bll o roo lull rag2 | fllspres (5-12)

for every f of the form f = P.¢, for some ¢ € A, ¢ > 0. Since both sides are continuous in u with respect
to L" N L?(m) convergence, it is also enough to establish it in a dense set; we therefore let u = Psv for
some v €A, §>0.

We also notice that, by Proposition 5.7, we know that for such a choice of u, €*(u, b) — 0 in
LS (m) + L%(m) as « | 0. Thus, once (5-11) is obtained, the same convergence as « | 0 holds for every
u € L" N L%(m), from a standard density argument.

Then, we have to estimate

/df“(b)udm—/df(b)u“dm=F(a)—F(O),

where we let F (o) = fdf" (b)u*=° dm, for o € [0, ]. Our assumption on f = P.¢ entails, via
Proposition 5.7, that the map o — df° (b) = B (¢?) is C!([0, «], L* (m) + L%(m)), with
d
d—[df" (b)] =B*(Agp?).
o

On the other hand, (2-14) entails that Au = APsv € L"NL?(m) and so o —> u° in C' ([0, ], L" N L2 (m)).
Thus, we are in a position to apply the Leibniz rule to obtain

o
F(ax)— F(0) = / (/ B*(A@?)u“"% —df° (b)Au*~° dm) do.
0
By applying (5-9) with A¢? in place of u, we integrate by parts to obtain

/ B*(Ap")u"" dm = — / AT du®~ (b) + (div b) (Af*)u® 7 dm.
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We now estimate separately the terms
I:=— / Af°du®* %) +df° (b)Au*"° dm, II:=— /(div b)(AfHu®"° dm,

at fixed o € (0, @) and then integrate over o.

To handle the first term, we add and subtract f (divh)['(f°, u*=) dm, and thus recognize twice the
deformation of b, applied to f° and u®~°, which are admissible functions in the sense of Definition 5.2,
because of (5-1) and (2-14):

1= 2/ Db (f, u*"°)dm — /(divb)F(f", u*"%)dm.
We use the assumption on D¥™b, divb and L’-T" and L°-T" as well as L>-T" inequalities to obtain that

c
I| < (2|1 D¥™b|,s+ ||divh 0 | ——= s ullprar2,
1] < [2ll llr.s +1Idiv bl LasrL ]mllflh ne2llullLrage

with ¢ = ¢, 4 ¢ + . To handle integration over o € (0, ), we use

/“ do
— =
0 ~o(a—o)

To estimate the second term, we add and subtract

/ (div ) (AF7)u® dm = c% f (divh) f7u® dm,
obtaining
= /(div BY(AFT)U® — u®") dm — % /(div b) £ u’ dm.

We then estimate the first part of /I by means of (2-14) and Corollary 2.1, to get

ﬁmm{z A lo <1+L)}||f|| 2llull g2
p ) g —o LsNL L'NL2»

with ¢® =c® + ¢+
The remaining part of // is estimated once we integrate over o € (0, ), as

“d : : .
- fo s / (divb) °u® dmdo = / divB(f — fu® < 20div Bllosr I f ozl o
To conclude, we notice that
o A o
/ min{g, C—log(l + L)}da < max{2, cA}/ min{l, L} do =2log?2max{2, cA};
0 o’ o o—0 0 o au—o

thus the proof of (5-12) is complete. ([

Remark 5.9 (time-dependent commutator estimate). By integrating the commutator estimate with respect
to time, we can achieve a similar estimate for time-dependent derivations b of type (r, s) satisfying

bl e L} (LY 4+ L), divbeL!(LI4+LP) and | D¥™b,|,, € L' (1),
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still assuming the validity of the L”-I" inequalities for p € {r, s}:
/H(@“(u;, bl Ly yp2dt < cllullpewrnr?) fllDSymthIr,s + 1ldiv by [| a4~ dt
1 R

forallu € LY°(L). N Li) and « € (0, 00). Moreover, dominated convergence gives
limfllcﬁ“(u,, b))l vy p2dt =0. (5-13)
al0 Jr

5B. Proof of Theorem 5.4. The proof of Theorem 5.4 is similar to that of Theorem 4.6, but it crucially

exploits Lemma 5.8 to show that the error terms are negligible.
Let (f,) C A be a sequence given by (4-3). Starting from |z] 147/ we define B as in (4-19), namely

1+”sﬂ(z—1) ifz>1,
B() = |z|'T7/s if |z] <1,
r—+s

I—T(z—i-l) if z < —1,

so that £g < (r/s)B and B has linear growth at infinity.

By the linearity of the equation we can assume & = 0 and the goal is to prove that u = 0. We first extend
the time interval / = (0, T) to (—1, T), setting b; = 0 for ¢ € (—1, 0) and given the weakly continuous (in
duality with A) solution in [0, T'), with u € L*(L’. N L)zc), we extend it to a weakly continuous solution
in (—1, T), setting u; =0 for ¢t € (—1,0).

For every a > 0, let u® = Pyu, € L>®°(L. N L?). As in the proof of Theorem 4.6, replacing ¢ in (4-16)
by Ps¢ (recall Remark 5.5), we can check that  — u{ is a weakly continuous solution to the continuity
equation

oruy +div(uy b)) = €% (uy, by). (5-14)

By (5-9) in Proposition 5.7 and (5-11) in Lemma 5.8, this equation entails that

d :
oy =6"(uy, by) — div(ui'h) € L}(LS + LY,

forae.r € (—1,T). Since t — [ f,B(u?) dm is lower semicontinuous (because B is convex and ¢ — u;
is weakly continuous) and since |B’(z)| ~ |z|"/* near the origin and r > s imply that g’ (uf) is uniformly
bounded in L* N L?(m), we can argue as in the proof of (4-23) to obtain that ¢t — f fuB ) dm is
absolutely continuous and

d d o
G [rpsam= [ 5w G am= [ £ e b - 56 @) diveu ) .
for a.e. t € I. Now, setting W, (¢, @) := f faBuy) dm, identities (5-8) and (5-9) in Proposition 5.7 give

%wna, @) = f FuB (W)€% (u, by dim — / Fo div(BUOB) + fuPs(u®) div by dim,
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fora.e. t € I. Hence, denoting L, := (r/s)||div b, ||~ € L'(—1, T), we can use the inequality £g < (r/s)B
to get

%wn(z, @) < LW, (1, @) + f FuB (Y€, by) dm + / B )df(by) dn.

Now we let « | 0 and use the strong convergence of commutators in le(m) + L2(m) and the boundedness
of /(u%¥) in L* N L?(m) to obtain that ¢ — f x fnB(u;) is absolutely continuous, and that

d
d_/ fnﬁ(ut)desz fnﬁ(uz)dm+/ﬁ(uz)dfn(bz)dm-
tJx X

By integration, taking into account that |, x JnB;)dm =0on (—1,0), we get

T
log<%/xfn,8(u,)dm+l> < ||L||1+/0 /,B(us)dfn(bs)dmds forallz € (—1,T) and all § > 0.

Eventually we use (4-3) and the monotone convergence theorem to obtain

1
log<5/ Bu;) dm—+ 1) <|IL|ly forallte (—1,T)and§ > 0.
X
Letting § | O gives u = 0.

6. Curvature assumptions and their implications

In this section we add to the basic setting (2-1) a suitable curvature condition, and see the implication of
this assumption on the structural conditions of density of A in the spaces V,, and the existence of f, € A
in (4-3) made in the previous sections.

In the sequel K denotes a generic but fixed real number, and Ix denotes the real function

t L ki .
— —1 fK#0
IK(t)::/ Krar=|x© D TEZO
0 t if K =0.
Definition 6.1 (Bakry—Emery conditions). We say that BE,(K, oo) holds if
CP, f) <e X"P(I'(f)) m-ae.in X, forevery f €V, t > 0. (6-1)

We say that BE; (K, co) holds if

VIPf) < e K P,(\/F(f)) m-a.e. in X, for every f eV, r > 0. (6-2)

We stated both the curvature conditions for the sake of completeness only, but we remark that BE; (K, 0o)
is sufficient for many of the results we are interested in this section. Obviously, BE; (K, oo) implies
BE> (K, 00); the converse, first proved by Bakry [1985], has been recently extended to a nonsmooth setting
by Savaré [2014, Corollary 3.5] under the assumption that € is quasiregular. The quasiregularity property
has many equivalent characterizations; a transparent one is, for instance, in terms of the existence of a
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sequence of compact sets F; C X such that
Jtf eV: f=0m-ae. in X\ F}
k

is dense in V.
The validity of the following inequality is actually equivalent to BE> (K, 00); see, for instance, [Ambrosio
et al. 2014a, Corollary 2.3] for a proof.

Proposition 6.2 (reverse Poincaré inequalities). If BE» (K, 00) holds, then

2o (OT (P f) <Pif? = (P f)? m-ae inX, (6-3)
forallt >0, f € L>(m).
Corollary 6.3 (L?-I" inequalities). If BE>(K, co) holds, then L?-T" inequalities hold for p € [2, oo].

Proof. The validity of L”-I" inequalities for p € [2, 0o] is obtained by integrating (6-3),
(2hox ()" / L(P /)P dm < f (P f2)P2dm < f fPdm

and using 2Lg ()" ' = 0@ ast | 0. O

Another consequence of BE,(K, 00) is the following higher integrability of I'(f), recently proved in
[Ambrosio et al. 2013, Theorem 3.1] assuming higher integrability of f and Af.

Theorem 6.4 (gradient interpolation). Assume that BE, (K, 00) holds and let . > K, p € {2, oo}. For
all f € L? N L% (m) with Af € LP(m), it holds that T'(f) € L?(m) with

ITCHIp = cllfllooll A+ 211, (6-4)

for a universal (independent of f, A, K, X, m) constant c.

Finally, we will need two more consequences of the BE, (K, oo) condition, proved under the quasireg-
ularity assumption in [Savaré 2014]. The first one, first proved in [Savaré 2014, Lemma 3.2] and then
slightly improved in [Ambrosio et al. 2013, Theorem 5.5], is the implication

feV, Afel*m) = T(f)eV. (6-5)

In particular, this implication provides L*-integrability of «/T'(f), consistently with the integrability of
the Laplacian. Secondly, and particularly useful for the quantitative estimate, we have

C(C(f)) <4y xk[fIT(f) m-ae.in X, whenever f €V, Af € L*(m), (6-6)

first proved in [Savaré 2014, Theorem 3.4] and then slightly improved in [Ambrosio et al. 2013, Corol-
lary 5.7]. The function y» k[ f] in (6-6) is nonnegative, it satisfies the L' estimate

/Vz,x[f]dmf/X((Af)z—KF(f))dm (6-7)
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and it can be represented as the density w.r.t. m of the nonnegative (and possibly singular w.r.t. m) measure
defined by

Vg fX =TT, @)+ AFT(f, 9)+(Af)? = KT (f)g dm. (6-8)

The nonnegativity of this measure is one of the equivalent formulations of BE, (K, 00); see [Savaré 2014,
§3] for a more detailed discussion.

6A. Choice of the algebra A. We first prove that the following “minimal” choice for the algebra A
provides (2-16), (2-17) and optimal density conditions.

Proposition 6.5. Under assumption BE;(K, 00), the algebra

A1:={fe () L’m:feV.yT(He () L”(m)} (6-9)

I<p=<oco I<p=<oo
satisfies (2-16), (2-17) and is dense in every space \V,, for p € [1, 00).

Proof. Since (2-17) is obviously satisfied by the chain rule, we need only to show density of A;. First,
we consider the algebra o = V, NV, which satisfies the invariance condition (2-20) because of (6-1).
Moreover, for p € [2, 00), the validity of the L”-T" inequality entails that s{ is dense in L? N L”, and
taking the L?/? norm in (6-1) gives that (5-5) holds. By Lemma 5.6 (in particular, the remark below its
proof) we conclude that o is dense in V,, for every p € [2, 00).

To establish density of A in V, for p € [1, 00) it is sufficient to notice that the “refining” procedure
in Lemma 2.2 applied to o preserves all the densities in V), for p € [2, 00), and provides an algebra
contained in A;. O

Retaining the density condition and the algebra property, one can also consider classes smaller than A1,
including, for instance, bounds in L” (m) for the Laplacian.

6B. Conservation of mass. In this section we prove that the curvature condition, together with the
conservativity condition P71 =1 for all # > 0 (recall that P° : L°°(m) — L°°(m) is the dual semigroup
in (2-15)), imply the existence of a sequence (f,) C A; as in (4-3). Notice that the conservativity is
loosely related to a mass conservation property, for the continuity equation with derivation induced by the
logarithmic derivative of the density; therefore, even though sufficient conditions adapted to the prescribed
derivation b could be considered as well, it is natural to consider the conservativity of P in connection
with (4-3).

Proposition 6.6. If BE>(K, 00) holds and P is conservative, then there exist (f,) C A1 satisfying (4-3).

Proof. Let (g,) C L' N L>®(m) be a nondecreasing sequence of functions (whose existence is ensured by
the o-finiteness assumption on m) with

0<g, <1 foreveryn=>1, and lim g, =1 m-ae.in X.
n—oo

These conditions imply in particular that g, — 1 weakly* in L°°(m).
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Let h, = fol Psgnds = fol P®g,ds and define f, := Pih, = P{°h,. By linearity and continuity of P>
we obtain that f, — P{°1 =1 weakly* in L°°(m). In addition, expanding the squares, it is easily seen that

lim | (1—f)?vdm=0 VveL'(m).

n—oo
Hence, by a diagonal argument we can assume (possibly extracting a subsequence) that f,, — 1 m-a.e.
in X.
Since h, <1, the reverse Poincaré inequality (6-3) entails
Pkt — () _ 1= ()’
2L (1) 7 2Dk (1)
Taking the square roots of both sides and using the a.e. convergence of f,, we obtain, thanks to dominated

convergence, that 4/T"(f,) weakly* converge to 0 in L°°(m).
Finally, we discuss the regularity of f,. Since

m-a.e. in X.

L(fn) <

2
Afn :/ APggnds =Pygn —P1gn € L>(m),
1

we can use Theorem 6.4 to obtain +/I"(f,) € L°°(m). In order to obtain integrability of the gradient for
powers between 1 and 2 we can replace f, by k, := ®(f,)/P(1), with ®; : R — R as introduced in
Lemma 2.2. O

6C. Derivations associated to gradients and their deformation. In this section, we study in more detail
the class of “gradient” derivations by in (3-2). More generally, we analyze the regularity of the derivation
f — ol'(f, V) associated to sufficiently regular V and w in V.

For p € (1, o0], let us denote

Diy(A):={feVNL’(m): Af € L’ (m)}. (6-10)
Thanks to the implication (6-5), D;+(A) C V4 and the Hessian
(f, &) HIVI(f. g) == 3[T(£, T(V,g) +T'(g. T'(V, £) =T (V,T(f, g))] € L' (m) (6-11)

is well-defined on D;4(A) x Dy4(A). Notice that the expression H[V](f, g) is symmetric in (f, g), that
(V, f, g8) — H[VI(f, g) is multilinear, and that

H[VI(f, g182) = H[VI(f, gg + g1 H[VI(f, g).
By [Savaré 2014, Theorem 3.4], we have the estimate

|HIVI(f, 9| < Vyk[VIVT(f)yT(g) m-ae. inX, (6-12)
for every f, g € D;a(A).

Theorem 6.7. If BE,(K, 00) holds and € is quasiregular, then for all V € D(A), w € VN L% (m) with
VT (w) € L®(m), and ¢ € R, the derivation b = (w + ¢)by has deformation of type (4, 4) according to



WELL-POSEDNESS OF LAGRANGIAN FLOWS AND CONTINUITY EQUATIONS 1211

Definition 5.2 with g = 2, and it satisfies

ID¥™blls4 < llo+ cllool(AV)? = KT (V)11 + VT (@) llo I T (V) 2 (6-13)

Proof. Assume first that V € D;4(A). Let f, g € D;4(A). After integrating by parts the Laplacians of f
and g, the very definition of DY™b gives

stymb(f, g)dm=/(w+C)H[V](f, &)+ 3T (@, HTV, &) +T (@, )TV, /)ldm.  (6-14)

By Holder inequality, we can use (6-12) to estimate } f DSY™b(f, g) dm’ from above with

[Holloollvy2,x V12 + VT @) ooV T (V) 2]V T () lallyT () lla-

Thus, by definition of || D*¥™b||4 4, (6-13) follows, taking also (6-7) into account. To pass to the general
case V € D(A), it is sufficient to approximate V with V,, € D;4(A) in such a way that V, — V in V
and AV, — AV in L*(m) and notice that f D%™p, (f, g) dm converge to f D™p(f, g) dm directly
from (5-3). The existence of such an approximating sequence is obtained arguing as in [Ambrosio et al.
2013, Lemma 4.2], i.e., given f € D(A),weleth= f — Af € L?(m),

h,, := max{min{h, n}, —n} € L>* N L>(m)

and define f, as the unique (weak) solution to f, — Af, = h,. The maximum principle for A (or
equivalently the fact that the resolvent operator R; = (I — A)~! is Markov) gives f, € L2 N L>(m), thus
Af, € L>NL>(m) and by L?-continuity of R;, as n — oo, both &, and f,, converge, respectively towards
h and f. By difference, also Af, converge towards Af in L?(m) and this also easily gives convergence
of f, to finV. O

We end this section with a technical result that will be useful when dealing with probability measures
on vector spaces, in particular in Section 9E.

Proposition 6.8. Assume that m(X) = 1, BEx(K, 00) holds, and € is quasiregular. Let (V;)i>1 C Dy4(A)
generate an algebra dense in'V and satisfy I'(V;, V;) = §; j m-a.e. in X. Then,

(@ T(f) =2 TV, £)? m-a.e. in X, for every f €V,
(b) H[V;]1=0, foreveryi > 1.

Moreover, for every q € [1, 00] and b = (b') € L4(X; £?)), the associated derivation b given by

frdf)=>_bT(V, f)

satisfies |b|* < > |b'|? and therefore belongs to L4. In addition, ifr, s € [4, 00) satisfy ¢ ' +r 14571 =1,
divh € L9(m), and b; €V for every i > 1, then

(DF(V,-, b+ T (V. b,->|2>2

i,j

ID¥™b]lrs < : (6-15)

q

1
2
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Proof. When f =y (V1, ..., V,) belongs to the algebra generated by (V;), the first identity is immediate
from I'(V;, V;) = §; ;. The general case of (a) follows by density.

From the definition (6-11) of Hessian, H[V;](V;, V) =0 for every i, j, k > 1. For fixed i, j > 1, the
derivation g — H[V;](V;, g) belongs to L?(m) in virtue of (6-12); thus it can be extended by density of
A to all of V. By the chain rule, the extended derivation is identically zero on the algebra generated by
(V;); thus by density it is the null derivation. In particular, for g € A, H[V;](V;, g) =0, for every j > 1.
Keeping g € A fixed, we argue similarly and obtain that H[V;](f, g) =0 m-a.e. in X, for every f, g € A,
thus proving (b).

If only a finite number of b'’s is different from 0, and they belong to V, the claimed estimate (6-15)
follows immediately by linearity, (6-14) and (b) above. The general case follows by “cylindrical”
approximation, where the assumption r, s > 4 plays a role. Indeed, given f € V, N Dy-(A) and
g €V;NDrs(A) we have f, g € Drs(A), thus I'(f, g) € V and we can integrate by parts the last term in
(5-3), obtaining

/Dsymb(f, g)dm = —%/df(b)Ag-i-dg(b)Af-i-d(F(f, 8))(b) dm. (6-16)

Let N > 1 and let by be the derivation associated to the sequence (b',...,b",0,0,...). Given h €V,

1
ld(h)by — d(h)b| < T'(h)? < Z|bi|2>2 m-a.e. in X.
i>N

By this estimate with h = f, h = g and h = I'(f, g), Holder’s inequality and dominated convergence
we conclude that the sequence [ DY™by(f, g) dm converges towards [ D¥¥™b(f, g)dm as N — oo,
entailing (6-15). O

Notice that the assumption r, s € [4, 00) is used only to obtain I'( f, g) € V and thus (6-16). The same
argument indeed shows that, for r, s € [1, c0) and g € (1, oco] with q‘l +r '45 1 =1,if A is dense
in the space V, N Drr(A), endowed with the norm || f[| = || fllv, + IAfl2Aze, for p € {r, s} and it
satisfies I'(f, g) € A for f, g € A, then the last statement in Proposition 6.8 holds, regardless of the
condition r, s € [4, 00).

7. The superposition principle in R* and in metric measure spaces

In this section we write R*® for RN endowed with the product topology and we shall denote by
"= (p1,..., pn) : R* — R" the canonical projections from R* to R”. On the space R>* we consider
the complete and separable distance

doo(x, y) := Y 27" min{1, | pa(x) = pa(3)1}-

n=1

Accordingly, we consider the space C ([0, T]; R*) endowed with the distance

8(n, i) 1= 27" max min(1, |pa(n(D) = paGi(E)I}
n=1 ’
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which makes C([0, T]; R*°) complete and separable as well. We shall also consider the subspace
AC, ([0, T]; R*) of C([0, T]; R*®) consisting of all n such that p; on € AC([0, T']) for all i > 1. Notice
that for this class of curves the derivative ’ € R* can still be defined a.e. in (0, T'), arguing componentwise.
We use the notation AC,, to avoid the confusion with the space of absolutely continuous maps from [0, 7T']
to (R*, doo).

It is immediate to check that for any choice of convex superlinear and lower semicontinuous functions
W, : [0, o0) — [0, oo], and for lower semicontinuous functions ®,, : [0, c0) — [0, oo] with ®,,(v) — oo
as v — 00, the functional & : C([0, T']; R*®) — [0, oo] defined by

o0

Y [@n(pnon©) + fy Wall(paon)D)dr] if n € AC,([0, T]: R®),
Am) = {n=1

o0 if n € C([0, T]; R*) \ ACy ([0, TT; R™),
is coercive in C ([0, T']; R*), that is to say all sublevels {s{ < M} are compact in C ([0, T']; R*).
We call a smooth cylindrical function any f : R* — R representable in the form

F@) =y @m&) =¥ (pi1(x), ..., pa(x)), x€R™,

with ¢ : R" — R bounded and continuously differentiable with bounded derivative. When we want to
emphasize n, we say that f is n-cylindrical. Given iy smooth cylindrical, we define Vf : R* — ¢
(where cq is the space of sequences (x,) null for n large enough) by

oy oy )

Vfx):= (z(nn(x)), cee 7(71’,1()6)),0, o,...

3 3 -

We fix a Borel vector field ¢ : (0, T') x R*® — R and a weakly continuous (in duality with smooth
cylindrical functions) family of Borel probability measures {v;};c(0,7) in R* satisfying

T
//Ipi(ct)ldvtdt<oo Vi>1, (7-2)
0

and, in the sense of distributions,
d
o /fdv, = f(c,, V)dv, 1in (0, T), for all f smooth cylindrical. (7-3)

Theorem 7.1 (superposition principle in R*). Under assumptions (7-2) and (7-3), there exists a Borel
probability measure A in C([0, T]; R*®) satisfying (e;)sh = v, for all t € (0, T), concentrated on
y € AC,, ([0, T]; R*) which are solutions to the ODE y = ¢;(y) a.e. in (0, T).

Proof. The statement is known in finite-dimensional spaces; for example, see [Ambrosio et al. 2005,
Theorem 8.2.1] for the case when f f le;|"dvidt < oo for some r > 1, and [Ambrosio and Crippa 2008,
Theorem 12] for the case r = 1. For i > 1 we choose convex, superlinear, lower semicontinuous functions
Y; : [0, 00) — [0, oo] with

T
ff‘lli(lpi(q)l)dvtdt <2 (7-4)
0
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and coercive ®; : [0, oo) — [0, 0o) satisfying

f ®; (pi(x)) dvo(x) <277, (7-5)

and define o accordingly.
Defining v’ := (7")4v; and cf’i, 1 <i <n, as the density of (7")#(p;(¢;)v;) w.r.t. to v/, it is immediate
to check with Jensen’s inequality that

T T
ffwc;iindv?dtsffw,-up,-(c,)ndvtdz, i>1, (7-6)
0 0

and that v}’ solves the continuity equation in R" relative to the vector field ¢" = (¢}, ..., c};). Therefore
the finite-dimensional statement provides probability measures A, in C ([0, T]; R"), concentrated on
absolutely continuous a.e. solutions to the ODE y = ¢}'(y) and satistying (e;)#A, = v} forall r € [0, T'].

In order to pass to the limit as n — oo, it is convenient to view A, as probability measures in
C([0, T]; R*) concentrated on curves y such that p;(y) is null for i > n, and v" as probability measures
in R* concentrated on {x € R* : p;(x) =0, Vi > n} C ¢g. Accordingly, if we set c;’,i =0fori > n, we
retain the property that A, is concentrated on absolutely continuous solutions to the ODE y = ¢'(y) and
satisfies (e;)#Ah, = v} forall t € [0, T].

Using (7-6) and our choice of W; and ®; we immediately obtain

/&ﬁ()/) dhn(y) =2

hence the sequence (A,) is tight in P (C ([0, T]; R*)).

We claim that any limit point A fulfills the properties stated in the lemma. Just for notational simplicity,
we assume in the sequel that the whole family (4,) weakly converges to A. The lower semicontinuity of
A gives ] A dL < 00; hence A is concentrated on AC,, ([0, T]; R*). Furthermore, since

yrmoy(), tel0,T],

are continuous maps from C([0, T]; R*®) to R¥, by passing to the limit as n — oo in the identity
(mi)s(e)ghy = (m)qvy it follows that (7rx)z(es)sA = (mi)zv; for all k. We can now use the fact that
cylindrical functions generate the Borel o -algebra of R* to obtain that (e;)sA = v;.

It remains to prove that A is concentrated on solutions to the ODE y = ¢;(y). To this aim, it suffices to

show that /

for any 7 € [0, T] and i > 1. The technical difficulty is that this test function, due to the lack of regularity
of ¢, is not continuous in C ([0, T']; R*). To this aim, we prove first that

/

for any bounded Borel function d where d (¢, - ) is k-cylindrical for all ¢ € (0, T'), with k independent of ¢.
It is clear that the space {d € L'(v,dt):d(t,-)is cylindrical for all ¢t € (0, T)} is dense in L'(v; dt); by

di(y) =0, (7-7)

t
pioy () — pioy(0) —/0 piocs(y(s))ds

pioy(t)—pioy(0) —/0 dy(y(s))ds

dl(V)S/ |pi oc—d|dv,dt, (7-8)
(0,T)xR>
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a further approximation, also the space

o.¢]
U{d e L'(v,dr):d(t, ) is k-cylindrical for all € (0, T')}
k=1

is dense. Hence, choosing a sequence (d”) of functions admissible for (7-8) converging to p; o ¢ in
L'(v, dt) and noticing that
| meaton-dredsam = [ ipec—d"dudi 0.
(0,T) xR 0,T)xR®
we can take the limit in (7-8) with d = d™ to obtain (7-7).
It remains to show (7-8). We first prove

limsupf |p,-oc"—d|dv§'ds§/ |pi oc—d|dvdt (7-9)
(0,T)xR>

n— oo (0,T)xR>

for all bounded Borel functions d with d(, - ) k-cylindrical for all ¢ € (0, T'), with k independent of ¢.
The proof is elementary, because for n > k and ¢ € (0, T')) we have

(pi o) —d)v) = (mp)4((pi o ¢t —d)vy).

Now we can prove (7-8), with a limiting argument based on the fact that (7-7) holds for ¢” and A,;:

/

pioy(t)—pioy(O)—/o dy(y(s))ds dln(y)=/v0 (pioci(y(s)) —ds(y(s))ds|dr,(y)

t
< / /0 (pi o ¢ — dy| (v (5)) dsdhn ()

S/ |pioc" —d|dvids.
(0,T)xR®

Since dj is cylindrical for all s and uniformly bounded w.r.t. s, the map

y pioy(t)—pioy(o)—/o di(y(s))ds

belongs to C (C ([0, 11; IROO)) and is nonnegative. Hence, taking the limit in the chain of inequalities
above and using (7-9), we obtain (7-8). [l

We next consider the case of a (possibly extended) metric measure space (X, T, m, d). Starting from
the basic setup of Section 2, we have only a topology t and the measure m. We assume the existence of a
countable set A* C{f e A: |IT(f)|lco < 1} satisfying:

RA* is dense in V and any function in A* has a T-continuous representative; (7-10)
3 lim f(x,)inRforall fe A* = 3 lim x,in X. (7-11)
n—oo n—oo

Since supp m = X, the T-continuous representative of an m-measurable function is unique if it exists, and
for this reason we do not use a distinguished notation for the continuous representative of functions in
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A* in (7-12) and in the sequel. Notice that (7-11) implies that the family A* separates the points of X
and that (7-10) and (7-11) can easily be fulfilled in many cases when an a priori distance d is given,
considering the distance functions from a countable and dense set of points; see Section 9F for details.

Remark 7.2 (extended distance induced by A*). Following [Biroli and Mosco 1995] (see also [Sturm
1995; Stollmann 2010]) we build dg+ : X x X — [0, o] as

das(x, ) =sup{|f() = fWI: fe AT}, x,yeX. (7-12)

A priori, dg+ is an extended distance in the sense of [Ambrosio et al. 2014b], since it may take the value
oo; nevertheless, by definition, all functions in A* are 1-Lipschitz w.r.t. d4+ and dg~ is the smallest
extended distance with this property. In particular the derivative d( f o n)/dt, which occurs in the next
definition, makes sense a.e. in (0, 7)) when f € A* and n € AC([0, T]; (X, d4+)) because f on belongs
to AC([0, T']). However, we will not use the topology induced by d 4+, which could be much finer than
the topology t and, in the next definition, we will require only continuity of n : [0, T] — X (with the
topology 7 in the target space X) and W1 (0, T') regularity of f on, for f € A. A posteriori, in Lemma 7.4
we are going to recover some absolute continuity for 7, with respect to d4+. In any case, whenever f € A
has a continuous representative (as it happens when f € A*), the continuity of f o7 in conjunction with
Sobolev regularity gives f on € AC([0, T]).

Definition 7.3 (ODE induced by a family (b,) of derivations). Let n € (C([0, T']; X)) and let (b;)/c(0.1)
be a Borel family of derivations. We say that 3 is concentrated on solutions to the ODE 7 = b, (1) if

fone WI’I(O, T) and %(fon)(t) =df(b;)(n(t)), forae.t€(0,7T),

for y-a.e. n € C([0, T]; X), for all f € A.

Notice that the property of being concentrated on solutions to the ODE implicitly depends on the
choice of Borel representatives of the maps f and (¢, x) — df(b;)(x), f € A. As such, it should be
handled with care. We will see, however, that in the class of regular flows of Definition 8.1 this sensitivity
to the choice of Borel representatives disappears; see Remark 8.2.

The following simple lemma shows that time marginals of measures y concentrated on solutions to the
ODE 7 = b,(n) provide weakly continuous solutions to the continuity equation.

Given a derivation b, we introduce the quantity

bl = sup{ldf ()| : f € A"} (7-13)

Notice that |b|, is well-defined up to m-a.e. equivalence and that one has |b|, < |b| m-a.e. in X. Also in
view of (7-14) below, it is natural to investigate the validity of the equality |b| = |b|, m-a.e. in X. We are
able to prove this in the setting of RCD spaces; see Lemma 9.2 below.

Lemma 7.4. Let n € P(C([0, T]; X)) be concentrated on solutions n to the ODE 1 = b;(n), where
|b| € L}(Lf?)for some p € [1, 00] and i, := (e;)sn € P(X) are representable as u,m with u € L?O(Lf ).
Then, the following two properties hold:
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(a) The family (u;):c.1) is a weakly continuous solution to the continuity equation.

(b) 5 is concentrated on AC([0, T]; (X, da~)), with

() = b« (n(t)) fora.e. t €(0,T), forny-ae. n. (7-14)

Remark 7.5. Arguing as in the last part of [Ambrosio et al. 2005, Theorem 8.3.1] one can prove that
u € LY°(LYY) implies that (u;); is an absolutely continuous curve in the Wasserstein space W), naturally
associated to d4+ (see [Gigli and Bang-Xian 2014] for a more systematic investigation of this connection
in metric measure spaces).

Proof. We integrate w.r.t. 5 the weak formulation

t T
fo W) fon(r) di = fo V(O df B () di

with fe A, ¢y € C Cl (0, T) to recover the weak formulation of the continuity equation for (u;,).
Given f € A*, for y-a.e. n the map ¢ — f on(¢) is absolutely continuous, with

Fon)—fon(s) =/ dF By dr foralls, 1 €0, T

In particular one has df (b,)(n(t) = (f on)'(¢) a.e. in (0, T), for p-a.e. n.
By Fubini’s theorem and the fact that the marginals of 5 are absolutely continuous w.r.t. m we obtain
that, for p-a.e. n, one has

sup [(f on) (1) = sup |df (b)) ()| = |b:|«(n(t)) forae.r€(0,T),
feA* feA*

and therefore

dA*(U(t)’U(S))=;u£ |(fom (@) = (f om)(s)] 5/ |bi|«(n(r))dr foralls, t €[0,T],

proving that n € AC([0, T']; (X, dg+)), with |7|(t) <|b;|+(n(t)), for a.e. t € (0, T). The converse inequality
follows from the fact that every f € A* is 1-Lipschitz with respect to d4+; thus for p-a.e. n one has
bl (n()) = sup |(f o)’ ()] < |0l(r) forae.te(0,T). O
feA*

Even though, as we explained in Remark 7.2, the (extended) distance is hidden in the choice of the
family A*, we call the next result “superposition in metric measure spaces”, because in most cases A*
consists precisely of distance functions from a countable dense set (see also the recent papers [Bate
2013; Schioppa 2014] for related results on the existence of suitable measures in the space of curves, and
derivations).

Theorem 7.6 (superposition principle in metric measure spaces). Assume (7-10), (7-11). Let b= (b;);c(0,1)
be a Borel family of derivations and let u; = uym € P(X),0 <t < T, be a weakly continuous solution to
the continuity equation

O e +div(bpy) =0 (7-15)
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with

IA

| —

T
ue LP(LY), //Ibzl’duzdmoo, %+ (7-16)
0

SR

Then there exists n € P(C ([0, T]; X)) satisfying

(a) n is concentrated on solutions n to the ODE 1 = b,;(n), according to Definition 7.3;
(b) u, = (er)un foranyt € [0, T].
Proof. We enumerate by f;, i > 1, the elements of A* and define a continuous and injective map
J: X - R*®by
J(x) == (fi(x), f200), f3(x),...). (7-17)

A simple consequence of (7-11), besides the injectivity we already observed, is that J(X) is a closed
subset of R and that J~! is continuous from J(X) to X.
Defining v; € P(R*>) by vy := Jeuy, ¢: (0, T) x R*® — R* by

¢ = {(df,-(b,)) oJ7! onJ(X),
o otherwise,

and noticing that
lciloJ <|b| m-ae.inX, (7-18)

the chain rule (see Proposition 3.2)
n

dpb)(x) =)

i=1

g—‘/f(fl (), s Fa(0))er (x)
Zi
for ¢p(x) = ¥ (f1(x), ..., fu(x)) shows that the assumptions of Theorem 7.1 are satisfied by v, with
velocity ¢, because (7-18) and p, < m give |ci| < |b;| o J ! v-a.e. in R,

As a consequence we can apply Theorem 7.1 to obtain A € P(C ([0, T']; R°°)) concentrated on solutions
y € AC([0, T']; R*™) to the ODE y = ¢;(y) such that (e;)sA = v, for all ¢ € [0, T]. Since all measures v;
are concentrated on J(X),

y()e J(X) fori-ae.y,forallre[0, T]NAQ.

Then, the closedness of J(X) and the continuity of y give y ([0, T]) C J(X) for A-a.e. y. For this reason,

it makes sense to define
N = Oud,

where ® : C([0, T]; J(X)) — C([0, T]; X) is the map y — O(y) := J ' oy. Since (J~Ngv; = 1;, we
obtain immediately that (e;)sn = u;.

Leti > 1 be fixed. Since f; o ®(y) = p; oy, taking the definition of ¢; into account we obtain that
fi on is absolutely continuous in [0, 7'] and that

(fion)'(t) =dfi(b)(n(t)) a.e.in (0, T), for y-a.e. n. (7-19)
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We will complete the proof by showing that (7-19) extends from A* to all of A. By the chain rule we
observe, first of all, that (7-19) extends from f; to smooth truncations of f;. Therefore, by the density of
A* inV, for any f € A we can find g, satisfying:

(@) gn— finVand ||gullco < Il flloo + 15
(b) gnon e AC([0, T]) and (g, 0o n) (t) = dg,(b,)(n(¢)) a.e. in (0, T), for y-a.e. n.

Since

T T
//O I(f—gn)(n(t))ldtdn(n)zfo / | f — gnlu; dmdt — 0 (7-20)

we can assume, possibly refining the sequence (g,), that g, on — fonin L'(0, T), for p-a.e. 1.
In order to achieve Sobolev regularity of f o7 it remains to show convergence of the derivatives of
gnon, namely dg,(b;)(n(t)), to df (b,)(n(t)). Arguing as in (7-20), we get

T T
f /0 (dF (B (0 (0) — dgn(Be) (7(0))] didn(n) = /0 / d(f = ) (B) s dmdi — O,

because of (7-16) and the convergence I'(f — g,) — 0 in L'(m). Therefore, possibly refining (g,) once
more, dg, (b)(n) — df(b)(n) in L'(0, T), for y-a.e. n. O

8. Regular Lagrangian flows
In this section we consider a Borel family of derivations b = (b;),c(0,1) satisfying
beL (L' +L%). (8-1)
Under the assumption that the continuity equation has uniqueness of solutions in the class
$y:={ue LfO(L}C ML) :t +— u, is weakly continuous in [0, T'], u > 0} (8-2)
for any initial datum i € L' N L>(m), and existence of solutions in the class
{uei:lulloo <C®luollos Ve €10, T}, (8-3)

for any nonnegative initial datum i € L' N L>(m), we prove existence and uniqueness of the regular
flow X associated to b. Here, the need for a class as large as possible where uniqueness holds is hidden
in the proof of Theorem 8.4, where solutions are built by taking the time marginals of suitable probability
measures on curves and uniqueness leads to a nonbranching result. The concept of regular flow, adapted
from [Ambrosio 2004], is the following.

Definition 8.1 (regular flows). We say that X : [0, T] x X — X is a regular flow (relative to b) if:
(1) X(0,x)=xand X(-,x) e C([0,T]; X) forall x € X;

(i) forall f € A, fF(X(-,x)) € WH1(0, T) and df (X(¢, x))/dt = df (b,)(X(¢, x)) for a.e. t € (0, T),
for m-a.e. x € X;

(iii) there exists a constant C = C(X) satisfying X(z, - )ym < Cwm for all ¢ € [0, T'].
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Remark 8.2 (invariance under modifications of b and f). Assume that b and b satisfy:
forall fe A, dfb)=df(b) ¢'@m-ae. in(0,7T)xX. (8-4)

Then X is a regular flow relative to b if and only if X is a regular flow relative to b. Indeed, let us fix feA
and notice that for all ¢ € (0, T') such that m({df (b;,) #df (l;t)}) = 0, condition (iii) of Definition 8.1
gives

df (b)) (X(t, x)) = df(l;,)(X(t, x)) form-ae. x € X.

Thanks to (8-4) and Fubini’s theorem, the condition m({df (b,;) # df (l;[)}) = 0 is satisfied for a.e.
t € (0, T). Hence, we may apply Fubini’s theorem once more to get

df (b)(X(t, x)) = df(l;,)(X(t, x)) a.e.in (0,7T), for m-a.e. x € X.

With a similar argument, one can show that if we modify not only df (b) but also f in an m-negligible set,
to obtain a Borel representative f, then £(X(-,x)) e W-1(0, T) and df (X(¢, x))/dt = b,(X(¢, x)) for
a.e.t€ (0, T)if and only if £(X(-,x))e W10, T) and d f(X(t, x))/dt = b,(X(t, x)) fora.e. 1 € (0, T),
because Fubini’s theorem gives f(X(t, x)) = f(X(t, x)) fora.e.t € (0, T), for m-a.e. x € X. For this
reason the choice of a Borel representative of f € A is not really important. Whenever this is possible,
the natural choice of course is given by the continuous representative.

The main result of the section is the following existence and uniqueness result. We stress that uniqueness
is understood in the pathwise sense, namely X (-, x) = Y(-, x) in [0, T] for m-a.e. x € X, whenever X
and Y are regular Lagrangian flows relative to b.

Theorem 8.3 (existence and uniqueness of the regular Lagrangian flow). Assume (8-1) and that the
continuity equation induced by b has uniqueness of solutions in £ for all initial data it € L' N L>(m),
as well as existence of solutions in the class (8-3) for all nonnegative initial data u € L' N L% (m). Then
there exists a unique regular Lagrangian flow relative to b.

Proof. Let B € B(X) with positive and finite m-measure and let us build first a “generalized” flow starting
from B. To this aim, we take u = x5 /m(B) as initial datum and we apply first the assumption on existence
of a solution u € & starting from u, with u, < C(b)/m(B), and then the superposition principle stated
in Theorem 7.6 to obtain y € P(C ([0, T]; X)) whose time marginals are u#,m, concentrated on solutions
to the ODE 7 = b,(n). Then, Theorem 8.4 below (which uses the uniqueness part of our assumptions

relative to the continuity equation) provides a representation

1
n= W /B 8y, dm(x),

with n, € C([0, T']; X), such that n, (0) = x and 1, = b,(n). Setting X(-, x) =n,(-) for x € B, it follows
that X : B x [0, T] is a regular flow, relative to b, with the only difference that (i) and (ii) in Definition 8.1
have to be understood for m-a.e. x € B, and

C(b)

n(B) m. (8-5)

X(t, - )u(um) = (e))un = um <
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Next we prove consistency of these “local” flows Xp. If By C B, with m(B;) > 0 and m(B;) < oo,
we can consider the measure

1
2m(By)

yi= / (81, 00+ 84, 0)) dm(x) € P(C([0, T]; X))
B,

to obtain from Theorem 8.4 that Xp, (-, x) =Xp,(-, x) for m-a.e. x € By.

Having gained consistency, we can build a regular Lagrangian flow by considering a nondecreasing
sequence of Borel sets B, with positive and finite m-measure whose union m-almost covers X and the
corresponding local flows X, : B, x [0, T] — X. Notice that we needed a quantitative upper bound on
X (t, - )#(x B, m) precisely in order to be able to pass to the limit in condition (iii) of Definition 8.1, since
(8-5) gives X(z, - )#(xpm) = C(b)m.

This completes the existence part. The uniqueness part can be proved using Theorem 8.4 once more
and the same argument used to show consistency of the “local” flows. (I

Theorem 8.4 (no splitting criterion). Assume (8-1) and that the continuity equation induced by b has at
most one solution in % forall it € L' N L>®(m). Let n € P(C([0, T1; X)) satisfy:

(1) n is concentrated on solutions n to the ODE 1 = b;(n);

(i) there exists Lg € [0, 00) satisfying
(e)sn < Lom Viel0,T] (8-6)

Then, the conditional measures n, € P(C([0, T]; X)) induced by the map ey are Dirac masses for
(ep)un-a.e. x; equivalently, there exist n, € C([0, T]; X) solving the ODE 1, = b;(ny), n,(0) = x, and
satisfying 1 = [ 8,,d(eo)un(x).

Proof. Using the uniqueness assumption at the level of the continuity equation, as well as the implication
provided by Lemma 7.4, the decomposition procedure of [Ambrosio and Crippa 2008, Theorem 18] (that
slightly improves the original argument of [Ambrosio 2004, Theorem 5.4], where comparison principle
for the continuity equation was assumed) gives the result. (I

9. Examples

In this section, on one hand we illustrate relevant classes of metric measure spaces for which our abstract
theory applies. On the other hand we try to compare our results on the well-posedness of the continuity
equation with the ones obtained in other papers, for particular classes of spaces. Several variants of the
existence and uniqueness results are possible, varying the regularity and the growth conditions imposed
on b and on the density u,; we focus mainly on the issue of uniqueness, since existence in particular classes
of spaces (e.g., the Euclidean ones) can be often be obtained by ad hoc methods (such as convolution
of the components of the vector field, which preserve bounds on divergence) not available in general
spaces. Also, we will not discuss the existence/uniqueness of the flow, which follow automatically from
well-posedness at the PDE level using the transfer mechanisms presented in Section 8. We list the
examples that follow, to some extent, in order of chronology and level of complexity.
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9A. Euclidean spaces: DiPerna—Lions theory. The theory of well-posedness for flows and for transport
and continuity equations was initiated by DiPerna and Lions [1989] and it (quite obviously) fits into our
abstract setting. More explicitly, in the basic setup (2-1) we let X = R”, m = &£" (the Lebesgue measure)
and

E(f) = / IVFP(x)d2"(x) for f e WHA(RY),

so that A is the usual Laplacian and (P;), is the heat semigroup, that corresponds (up to a factor 2 in the
time scale) to the transition semigroup of the Brownian motion, which is conservative. The algebra A of
Section 2C can be chosen to be the space of Lipschitz functions with compact support.

Given a Borel vector field b = Z?:l ble;, with b € (L' + L>)", its associated derivation b is

af

A3 frdf) =) b
i=1

Obviously, div b is the usual distributional divergence and D*™b is the symmetric part of the distributional
derivative of b. Then, the uniqueness Theorem 5.4 above corresponds to [DiPerna and Lions 1989,
Corollary II.1], as long as g € (1, oo].

On the other hand, in Euclidean spaces the strong local convergence of commutators depends on local
regularity assumptions on b (and the use of convolutions with compact support), while our setting is
intrinsically global. In order to adapt our methods to this case, one could “localize the Dirichlet form” by
considering X = B, (0) and the form

%r<f>=/ VfPdS" for f € H'(B,).
B,

Thus A would be the Laplacian with Neumann boundary conditions and (P;); would be the semigroup
correspondent to the Brownian motion reflected at the boundary 9 B, (0), which is still conservative. Since
the ball is convex, it can be proved that BE, (0, co) still holds; see, for instance, [Ambrosio et al. 2014c,
Theorem 6.20].

A second major difference is that uniqueness assuming the regularity » € (W!!)" (or even b € (BV)",
the case considered in [Ambrosio 2004]) is not covered. Indeed, the BV case seems difficult to reach in
the abstract setting, due to the present lack of a covariant derivative (but see [Gigli 2014]).

9B. Weighted Riemannian manifolds. Our arguments extend the classical DiPerna—Lions theory to
the setting of weighted Riemannian manifolds. Of course, in order to prove strong convergence of
commutators and the fact that solutions are renormalized one can always argue by local charts, but
computations become more cumbersome compared to the Euclidean case, and here the advantages of our
intrinsic approach become more manifest.

Let (M, g) be a smooth Riemannian manifold and let u be its associated Riemannian volume measure.
Assume that the Ricci curvature tensor Ricg is pointwise bounded from below (in the sense of quadratic
forms) by some constant K € R. More generally, one can add a “weight” V : M — R to the measure:
consider a smooth nonnegative function and assume that the Bakry—Emery curvature tensor is bounded
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from below by K € R, i.e.,
Ricg +Hess(V) > K.

The form (on smooth compactly supported functions)

Fro ey (f) = fM gV Ve du,

is closable and we are in the setup (2-1). Once more, the algebra A of Section 2C can be chosen to be the
space of Lipschitz functions with compact support.

When V =0, Bochner’s formula entails that BE, (K, oo) holds and it is a classical result due to S.-T.
Yau that the heat semigroup is conservative. In the case of weighted measures, analogous results can be
found in [Bakry 1994, Proposition 6.2] for the curvature bound and in [Grigor'yan 1999, Theorem 9.1]
for the conservativity of P, relying on a correspondent volume comparison theorem; see [Wei and Wylie
2009, Theorem 1.2], for example.

Given a Borel vector field b, i.e., a Borel section of the tangent bundle of M, its associated derivation
b acts on smooth functions by

fr>dfb)=g®b,Vf).

The divergence can be given in terms of the p-distributional divergence of b by
divb=divb—g(b,VV),

while the deformation is the symmetric part of the distributional covariant derivative; see Remark 5.3.

9C. Abstract Wiener spaces. Let (X, y, #) be an abstract Wiener space, i.e., X is a separable Banach
space, y is a centered nondegenerate Gaussian measure on X with covariance operator Q : X* > X
and # C X is its associated Cameron—Martin space, which is naturally endowed with a Hilbertian norm.
Moreover, Q X* C %.

We define the set of smooth cylindrical functions %6;°(X) as the set of all functions f (x) representable
as (x7(x), ..., x,(x)), with ¢ : R" — R smooth and bounded, x* € X* fori € {1, ..., n}, for some
integer n > 1.

We introduce a notion of “gradient” on functions f € F€;°(X) letting Vy f = Qdf, where df is the
Fréchet differential of f. With these definitions, for f = ¢(x{, ..., x;;), and any orthonormal basis (%;)
of 7, we have

n

Vi r =3 2 001 = 3 Mon, where 2L (o) = tim LEFEIDZS)

i 8ZJ 0 i £—0 &

It is well-known [Bouleau and Hirsch 1991] that Sobolev—Malliavin calculus on (X, y, #) fits into the
setting (2-1), considering the closure of the quadratic form

%(f):flv%ﬂ%gdy for every f € F€;°(X).
X
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The domain V coincides with the space W'2(X, y). The semigroup P is the Ornstein—Uhlenbeck
semigroup, given by Mehler’s formula

P,f(x):/f(e_’x+\/1—e—2’y)dy(y) for y-ae. x € X.
X

From this, it is easy to show that BE;(1, 00) holds (indeed, on cylindrical functions, VyP; f = e 'P,Vy f,
understanding the action of the semigroup componentwise); it is a classical result that € is quasiregular,
e.g., [Bogachev 1998, Theorem 5.9.9]. We let A = F€;°(X), which is well-known to be dense in every
LP-space and satisfy (2-20) by Mehler’s formula above: in particular we obtain density in V, spaces by
Lemma 5.6 and Lemma 2.2.

Given an ¥-valued field b = ), b'h;, we introduce the derivation f > b(f) =Y, b' df/dh; and
we briefly compare our well-posedness results for the continuity equation with those contained in
[Ambrosio and Figalli 2009]. Combining Proposition 6.8 and the subsequent remark, we obtain that our
notion of deformation for b is comparable to that of (Vb)*Y™ introduced in [Ambrosio and Figalli 2009,
Definition 2.6]. Precisely, it can be proved that if b € L D9 (y; ¥) for some g > 1, then the deformation of
b is of type (r, s), for any r, s, with q_l +r~ 14571 =1. Itis then easy to realize that Theorem 5.4 entails
the uniqueness part of [Ambrosio and Figalli 2009, Theorem 3.1], with the exception, as we observed in
connection to the Euclidean theory, of the case b € W1(X, y; %) (the case b € BV(X, y; %) has been
recently settled in [Trevisan 2013]).

9D. Gaussian Hilbert spaces. We let X = H be a separable Hilbert space, with norm | - |, in the setting
introduced in the previous section, namely y is a Gaussian centered and nondegenerate measure in H. By
identifying H = H* via the Riesz isomorphism induced by the norm, the covariance operator Q : H - H
is a symmetric positive trace class operator, thus compact. In this setting the Cameron—Martin space is
% = Q'/?H, with the norm |h|y% = |Q~/?h].

We let (¢;) C H be an orthonormal basis of H consisting of eigenvectors of Q, with eigenvalues
(Aj), i.e., Qe; = Aje; for every i > 1: in this setting, we define the class of smooth cylindrical functions
F€;°(H) as those functions f : X — R of the form f(x) = ¢((e;, x), ... {(en, x)), with ¢ : R" — R
smooth and bounded. Given f € F€,°(H), from its Fréchet derivative df : H — H* we introduce
Vf:Hw~ Hvia H= H*, in coordinates:

Vi) =30 f(xe,  where d; f(x) = lim fotee) = fO0
; e—0

&

2

To recover the abstract setting of the previous section, notice that the family 4; = Al.l e; is an orthonormal

basis of # and that d/0h; = );‘/23,-; thus QV f = Vg f. For @ € R, we introduce the form

€(f) = / 10092V fPdy,  f e FCRH),
X

which is closable: its domain is the space Wél(H , ¥); see [Da Prato 2004, Chapters 1 and 2] for more
details. Evidently, we recover (2-1), with '(f) =), )»l.l_“ | o f |2. Notice that the associated distance is
the one induced by the norm |Q@=D/2x| which is extended if and only if @ < 1.
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The associated semigroup can be still be seen as the transition semigroup of an infinite-dimensional
stochastic differential equation, and its infinitesimal generator A, is given by

Ag f(X) =TI Q' ™D f(x)] = {x, 0"V f(x)), feTFC (H).

It can be shown that BE,(1, oo) holds [Da Prato 2004, Proposition 2.60]. We let A = F€;°(H), which
is dense in every L?(m) space and satisfies (2-20), thus obtaining density results in V,,, p € [1, 00), by
Lemma 5.6 and Lemma 2.2.

For o = 0, we recover the abstract Wiener space setting discussed above, while for « = 1 we obtain
the setting of [Da Prato et al. 2014]. We show that our results encompass those in [Da Prato et al. 2014]
and analogues hold for any @ € R.

Givenb: H+— H,b = Zi b;e; Borel, we consider the map

FC(H)> fr>df (b):= (b, Vfiu=) bidif.

If |Q@=D/2p| e L4(H, y) for some g € [1, oc], then b is a well-defined derivation, with |b| < |Q@~D/2p|.
The Cameron—Martin theorem entails an integration by parts formula [Da Prato 2004, Theorem 1.4
and Lemma 1.5] that reads in our notation as

. (eisx>
dive;(x) = — TV where df (e;) = 0; f.

i

n
On smooth “cylindrical” fields b = ) b;e;, this gives
i

divb(x) = Z 3;bi(x) — %bh
where the series reduces to a finite sum. Notice that the expression does not depend on « but only on y,
in agreement with the notion of divergence as dual to derivation.

Notice also that the boundedness of the Gaussian Riesz transform [Bogachev 1998, Proposition 5.88]
entails that if b € W'P(H, y, %), then divh € L?(H, y). These are only sufficient conditions and
their assumptions would force us to limit the discussion to #-valued fields, as in [Da Prato et al. 2014,
Section 5]. Our results hold even for some classes of fields not taking values in ¥; see at the end of this
section.

Arguing on smooth cylindrical functions,

l—a o
L\ 2 A\ 2 i Y
stymb(f, g)dy:fZ%[(;) aibj+<k—{) ajbl}(xﬁl 2o, £) (0.0, f) dy. (9-1)
i j J !

thus our bound on D*¥™p is implied by an L? bound of the Hilbert—Schmidt norm of the expression

in square brackets above (a fact that could also be seen as a consequence of Proposition 6.8 and the
(@—1)/2 .

A (e;, x), fori > 1).

Comparing our setting with that in [Da Prato et al. 2014], it is clear that Theorem 2.3 therein is a

subsequent remark, setting V;(x) =

consequence of Theorem 5.4.
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We end this section by considering a field b taking values outside #, to which our theory applies
(although well-posedness was already shown in [Mayer-Wolf and Zakai 2005]). Assume that each
eigenvalue of Q admits a two-dimensional eigenspace, thus, slightly changing the notation, we write
(e;, €;) for an orthonormal basis of H consisting of eigenvectors of Q. We let

o o
b= 1 ldivae — Wivenél: s [10 bR dy =3
i=1 i=1
The series above converges if & = 1, and it does not if « = 0. Since (div e;, div ¢;); are independent,
Kolmogorov’s 0—1 law entails that b is well-defined as an H-valued map, but b(x) ¢ ¥ for y-a.e. x € H.
The derivation b is therefore well-defined if @ = 1, and |b| € L*(m). From its structure and (9-1), both its
divergence and its deformation are seen to be identically O, thus our results apply.

9E. Log-concave measures. Let (H, |-|) be a separable Hilbert space and let y be a log-concave prob-
ability measure on H, i.e., for all open sets B, C C H,

logy(1—=1)B+1tC)>(1—1t)logy(B)+tlogy(C) foreveryt |0, 1].

Assume also that y is nondegenerate, namely that it is not concentrated on a proper closed subspace of H.
Consider the quadratic form

€, (f) :f|Vf|2dy, defined for f € C}(H),

where C g (H) denotes the space of continuously Fréchet differentiable functions which are bounded with
bounded differential.

It is shown in [Ambrosio et al. 2009] that the €,, is closable, extending previous results obtained under
more restrictive assumptions on y. Actually, in [Ambrosio et al. 2009] the so-called EVI property for the
associated semigroup P is proved, and since in [Ambrosio et al. 2014c] this is proved to be one of the
equivalent characterizations of RCD, it follows that (H, |- |, y) is an RCD(0, co) space; thus the results
in Section 9F below apply and we already obtain an abstract well-posedness result under no additional
assumption on y. Recall that in that abstract setting A can be taken as the space of Lipschitz functions
with bounded support.

Let (e;)i>1 C H be an orthonormal basis. For every f €V, there exist f, € C,l(H ) such that f,, — f
in L2(y) and

pim &y (fo = fn) = O;

thus an H-valued “gradient” V f =", 9; fe; is y-a.e. defined in H.

Letb: H+— H,b=Y, bie;; we associate the derivation f > df(b) =), b; f;, thus |b| < |b|. For
v € H, we write v for the constant derivation corresponding to the constant vector field equal to v, and e;
for the derivation corresponding to e;.

Let us remark that, in this very general setting setting, bounds on the divergence of a given field b seem
to be difficult to obtain, even for constant vector fields; this is due to the fact that presently it is not known
whether every log-concave measure y admits at least one nonzero direction v such that divv € L' (m)
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[Bogachev 2010, §4.3]. On the other hand, our abstract arguments do not require any absolute continuity
of y with respect to a Gaussian or other product measures and, combining our abstract well-posedness
results with Theorem 6.7, we are able to provide nontrivial derivations that admit a well-posed flow,
e.g., gradient derivations of functions in Dy~ (A), such as those of the form f 12 P, fdt, for f € L*®(m).

To state an explicit sufficient condition to bound the deformation of b, we assume that dive; < m
and, denoting by §; the density, we require that 8; € V for i > 1, or equivalently that the function
x = Vi(x) = (e;, x) satisfies AV; €V, thus, provided that r, s > 4, Proposition 6.8 gives || D*Y™b||, ; < co
if [0;b; +9;b;1;,j € L1(y; CA(NQN)).

We conclude by comparing our results in this setting with [Kolesnikov and Réckner 2014, Theorem 7.6],
where uniqueness for the continuity equation is obtained in the case of log-concave measures formally
given by y = e~ Vd¥>, for convex Hamiltonians V of specific form. In particular, the assumptions on §;
imposed therein are stronger than ours. Their assumptions on the field b in [Kolesnikov and Rockner
2014] entail that |b| € L' (y), for some a; > 1 and that [9;b; + 9;b;]; ; € L (y; 22(N®N)), for some
ap > 4. Moreover, to deduce uniqueness, divb € L9(y) for some g > 1 is also assumed. Therefore, if
a; > 2 and g > 2, we are in a position to recover, via Proposition 6.8, such a uniqueness result as a special
case of Theorem 5.4.

9F. RCD(K, oo) metric measure spaces. Recall that the class CD(K, oo), introduced and deeply studied
in [Lott and Villani 2009; Sturm 2006a; 2006b] consists of complete metric measure spaces such that
the Shannon relative entropy w.r.t. m is K-convex along Wasserstein geodesics; see [Villani 2009] for a
full account of the theory and its geometric and functional implications. The class of RCD(K, co) metric
measure spaces was first introduced in [Ambrosio et al. 2014c¢], from a metric perspective, as a smaller
class than CD(K, oo), with the additional requirement that the so-called Cheeger energy is quadratic;
with this axiom, Finsler geometries are ruled out and stronger structural (and stability) properties can be
established. Subsequently, connections with the theory of Dirichlet forms gave rise to a series of works,
[Ambrosio et al. 2013; 2014a; Savaré 2014]. For a brief introduction to the setting and its notation, we
refer to Sections 4.1 and 4.2 in [Savaré 2014], and in particular to Theorem 4.1 therein, which collects
nontrivial equivalences among different conditions.

We will use the notation W!2(X, d, m) for the Sobolev space, Ch for the Cheeger energy arising from
the relaxation in L?(X, m) of the local Lipschitz constant

ID £|(x) := lim sup o) = feol (9-2)
yox d(y, x)

of L?(m) and Lipschitz maps f : X — R.
To introduce RCD(K, o) spaces we restrict the discussion to metric measure spaces (X, d, m) satisfying
the following three conditions:

(i) (X, d) is a complete and separable length space;

(i) m is a nonnegative Borel measure with supp(m) = X, satisfying

m(B,(x)) <c eAr2 for suitable constants ¢ > 0, A > 0; 9-3)
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(iii) (X, d, m) is infinitesimally Hilbertian according to the terminology introduced in [Gigli 2012], i.e.,
the Cheeger energy Ch is a quadratic form.

As explained in [Ambrosio et al. 2014a; 2014c], the quadratic form Ch canonically induces a strongly
regular, strongly local Dirichlet form € in (X, t) (where 7 is the topology induced by the distance d), as
well as a carré du champ I' : D(€) x D(€) — L'(m). Thus, we recover the basic setting of (2-1) and we
can identify WL2(X, d, m) with V. In addition, P is conservative because of (9-3) and the definition of
Ch provides the approximation property

3 f, € Lip(X) N L*(m) with f, — f in L>(m) and [D f,| = /T'(f) in L>(m)i, (9-4)

for all f € V.

The above discussions justify the following definition of RCD(K, 00). It is not the original one given
in [Ambrosio et al. 2014c] we mentioned at the beginning of this section, but it is more appropriate for
our purposes; the equivalence of the two definitions is given in [Ambrosio et al. 2014a].

Definition 9.1 (RCD(K, 0o) metric measure spaces). We say that (X, d, m), satisfying (a), (b), (c) above,
is an RCD(K, oo) space if:

(i) the Dirichlet form associated to the Cheeger energy of (X, d, m) satisfies BE; (K, 00) according to
Definition 6.1;

(ii) any f € Wh2(X, d, m) N L>®(m) with ||I‘(f)||OO < 1 has a 1-Lipschitz representative.

From [Ambrosio et al. 2014c, Lemma 6.7] we obtain that € is quasiregular. We let A be the class of
Lipschitz functions with bounded support. It is easily seen that A is dense in V.

Lemma 9.2. There exists a countable set A* C A with ||T'(f)|lco < 1 for every f € A*, such that (7-10)

and (7-11) are satisfied, the distance d 4+ defined by (7-12) in Remark 7.2 coincides with d, and for any
derivation b one has

|b| = |b|, m-a.e.in X, where|b| is defined in (7-13). (9-5)

Proof. Since both (X, d) and V are separable, it is not difficult to exhibit a countable family A* C A
such that (7-10) and (7-11) are satisfied: let (x;) C X be dense, and set fj x := (d(x;, -) —k)~ € A for
h, k € N, then define - -~
#:=J iU Jlen).
h, k=0 h=0
with (gp) C A dense in V. Then, defining A* ={f € B : [T (f)llo < 1} C A, since RA* = %B we obtain
(7-10), while (7-11) follows easily from the fact that all functions f, x belong to A*. To show that the
distances coincide, notice that d4+ < d is obvious, while d < d4+ follows from taking f = fj, x in (7-12),
with x;, arbitrarily close to x and k larger than d(x, y).
We show that, up to a further enlargement of A*, (9-5) holds (notice that d = d 4+ and (7-11) holds
automatically for the enlargement, and we need only to retain (7-10)). The problem reduces to arguing
that for f € A* one can improve the inequality |df (b)| < |b|. to |[df (b)| < T'(f)'/?|b|, m-a.e. in X. This
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is based on a localization procedure akin to [Ambrosio et al. 2014a, Proposition 3.11], which leads to the
key inequality (9-8) below; the thesis follows then by a density argument, using the curvature assumption.

For any ¢ > 0, let S, € C'(R) be a 1-Lipschitz truncation function, given by S, (r) = &S, (r/¢), where
S1(r) is a 1-Lipschitz function with

(9-6)

Sir)y=1 forr <1,
Si(r)y=0 forr>3.

We notice that S,(r) = ¢ if r <e.

Fix f e VN Cp(X) and assume that ¢ : X — [0, c0) is a bounded upper-semicontinuous function, such
that I'(f)!/? < ¢ m-a.e.in X. Forany 4 > 1, ¢ > 0, M > 0, such that M > SUP(y, 3¢) £ » We introduce
the following “localization” of f at x;, € X (as above, (x;);>1 C X is dense in X):

Tew(N() =TT

The following properties are easy to check:

Seod (-, xp)]V[=Ss0d(-, xp)].

(@) The.m(f) €Vis supported in B(xp, 3¢), and Ty oy (f)(xp) =0.

(b) T(Them (fN'? < (T(f)V2/M) < 1 on B(xp, 3¢) and I’ (Tj ey (f)) = 0 outside B(xy, 3¢); thus
Th.e.m(f) is 1-Lipschitz by condition (b) in Definition 9.1.

(c) Combining (a) and (b), we have |7}, o m (f)(x)| <d(xp, x) in X, thus [T}  m(f)(x)| < € in B(xp, €),
s0 that T ep(f) = (f — f(xn))/M in B(xp. ).

From (a) and (b) we obtain 7}, . » f € A, which together with (c) leads to the identity
df (b =MdTy . m(f)(b), m-ae.in B(xy,¢). (9-7)

Indeed, for every g € A and a € R, it holds that dg(b) = 0 m-a.e. in the set {g = a} as a consequence of
(2-8), with N = {a}, and the upper bound |dg(b)| < |b|T'(g)'/%. In the situation that we are considering,
take g=f —MTy . mf and a = f(xp).

Let us assume that Tj .y (f) € A*, for every h > 1 and rational numbers ¢, M > 0 such that
M > supp,, 3¢ ¢ We claim that

ldf (b)| <¢|bly m-ae.in X. 9-8)
Indeed, from (9-7), we deduce
ldf ()|(x) = M|dTye.m(f)(B)| < M|b|(x) for m-ae. x € B(xy, 3¢).

We pass to the infimum upon M (which is rational and greater than supp,, 3., ¢) and 2 > 1, then we let
¢ | 0, to obtain

|df (B)|(x) <limsup inf  sup [bl.(x) <L(@)|bli(x) for m-ae x €X,
g0 Md(xn.X)<€ B(x, 3¢)

where the second inequality holds by upper-semicontinuity of ¢.
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Thanks to the curvature assumption, it is not difficult to show that the class of functions f € VN Cp(X)
that admit functions ¢ as above is not empty: by [Ambrosio et al. 2014a, Theorem 3.17] the operator P,
maps L2 N L% (m) into C,(X) for every ¢ > 0. In addition, if f €V, it holds

C(P,f)<e ?(XP('(f)) m-ae.in X.

Thus, if T'(f) € L>(m) we may let ¢? be the continuous version of the expression in the right-hand side
above that we denote by e 2Ki ISI(F( f)); see also [Ambrosio et al. 2014a, Proposition 3.2].

We are in a position to prove that, up to enlarging A*, (9-5) holds. More precisely, we let (f,)n>1 €A
be any countable family, with I'(f,) < 1 m-a.e. in X, for n > 1, and such that the dilations (Af,)rer n>1
provide a dense set in V. We enlarge A* with the union of all functions

Ts,h,M(Ptfn)’

for n, h > 1 and rational numbers ¢, &, M > 0 such that M? > SUPB(x, 3¢) e_zKllst(l"(f)).
For every n > 1 and rational 7 > 0, (9-8) with P, f, in place of f and ¢ = e~ X![P,(I"(£))]'/? gives

dP, f,(B)] < e ®' [P (T (fu)]"?B], m-ae.in X.

We let ¢ | O to deduce that
ldf,(b)| < T(f,)'/?b], m-ae.in X.

By homogeneity, a similar inequality holds for Af; in place of f,,, for every A € R. To conclude, let g € A
and let (gx)x € (Afn)rer.n>1 converge towards g in V. Then

ldg(b)| < likminfr(gk>”2|b|* + (g — )'/*1b] =T()'/?|b], m-ae.in X,
— 00

and we deduce that |b| < |b|, m-a.e. in X. [l

We discuss now the fine regularity properties of functions in V, recalling some results developed in
[Ambrosio et al. 2014b]. We start with the notion of 2-plan.

Definition 9.3 (2-plans). We say that a positive finite measure 7 in P (C ([0, T']; X)) is a 2-plan if 7 is
concentrated on AC([0, T']; (X, d)) and the following two properties hold:
T
i [[ ik dranon < oo
0
(i1) there exists C € [0, co) satisfying (e;)sn < Cm forall t € [0, T].

Accordingly, we say that V : X — R is W12 along 2-almost every curve if, for all s <t and all 2-plans
n, the family of inequalities

t
/IV(n(S))— V()| dn(n) S// gmNIn(r)ldrdn(n) foralls, t €[0,T) withs <z, (9-9)

holds for some g € L?(m). Since Lipschitz functions with bounded support are dense in V, a density
argument [Ambrosio et al. 2014b, Theorem 5.14] based on (9-4) provides the following result.

Proposition 9.4. Any V €V is W2 along 2-almost every curve. In addition, (9-9) holds with g = /T (V).
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Actually, a much finer result could be established [Ambrosio et al. 2014b, §5], namely the existence of a
representative V of V in the L2(m) equivalence class, with the property that V o is absolutely continuous
for m-a.e. n for any 2-plan 7, with [(V o n)’| < VT (V)|i] a.e. in (0, T). However, we shall not need this
fact in the sequel. Here we notice only that since xpn is a 2-plan for any Borel set B C C([0, T']; X), it
follows from (9-9) with g = /T (V) that

t
[V (n(s)) = V)| = // VEWV)r)In(r)|dr for p-ae. n (9-10)

forall s, t € [0, T) with s <t.

Now, we would like to relate these known facts to solutions to the ODE 7 = b;(n). The first connection
between 2-plans and probability measures concentrated on solutions to the ODE is provided by the
following proposition.

Proposition 9.5. Let b = (b;) be a Borel family of derivations with |b| € Ltl (L?) and letu € L2 (LY).
Let 5 be concentrated on solutions to the ODE 1 = b, (n), with (e;)sn = u,m forallt € (0, T). Then 1 is
a 2-plan.

Proof. The fact that y has bounded marginals follows from the assumption u € L{°(L$°). By Lemma 7.4
and the identification d = d -,  is concentrated on AC([0, T'1; (X, d)), with |7|(¢) = |b;|(n(?)), £'-a.e.
in (0, T') for p-a.e. n. Thus,

T T
// 1913(t) dtdn () = f f|bt|2ut dmdt < oo. m
0 0

We now focus on the case of a “gradient” and time-independent derivation by associated to V € V.
Recall that in this case |by|> = (V) m-a.e. in X.

Theorem 9.6. Let V € D(A) with AV~ € L®(m). Then, there exist weakly continuous solutions
(in [0, T), in duality with A) u € L?o(L}C N L{°) to the continuity equation, for any initial condition
i e L'NL®(m). In addition, if y is given by Theorem 7.6 (namely 0 is concentrated on solutions to the
ODE 1 = by (n) and (e;)sn = uy, forall t € (0, T)), then:

(a) n is concentrated on curves n satisfying |n|(t) = F(V)l/z(n(t)),for ae. t€(0,7);
(b) foralls, t € [0,T) withs <t,
t
Voni)—Von(s)= / C(V)Y(n(r))dr forn-a.e. n.

Proof. The proof of the first statement follows immediately by Theorem 4.3 with r = co. Since

t
[/ v, f)urdmdrszu,—ffus forall s, t € [0, T) withs <t
)

for all f € A, we can use the density of A in V and a simple limiting procedure to obtain

t
ff '(Vu, dmdr = / Vu, —f Vu, foralls, te[0,T) withs <t. (9-11)
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If 5 is as in the statement of the theorem, since 7 is a 2-plan we can combine Proposition 9.4 and the
inequality |7| < |by|(n) stated in Lemma 7.4 to get

/ V() — Vn(s) duln) < / / L) 2 )1l (r) drdy(n) < / / L) () dn(n),

for all s, r € [0, T') with s <t. Since (e¢,)#n = u,m for all r € [0, T), it follows that

/Vut—/VusZ/V(n(t))—V(n(S))dﬂ(ﬂ)Sf F(V)u, dmdr. (9-12)

Combining (9-11) and (9-12) it follows that all the intermediate inequalities we integrated w.r.t.  are
actually identities, so that, for g-a.e. n, || = +/'(V) on a.e. in (0, T), and equality holds in (9-10). O

In particular, one could prove that 5 is a 2-plan representing the 2-weak gradient of V, according to
[Gigli 2012, Definition 3.7], where a weaker asymptotic energy dissipation inequality was required at
t = 0. Our global energy dissipation is stronger, but it requires additional bounds on the Laplacian.

We can also prove uniqueness for the continuity equation, considering just for simplicity still the
autonomous version.

Theorem 9.7. Let V € D(A) with AV~ € L*®(m). Then the continuity equation induced by by has
existence and uniqueness in L{°(L )lc N L) for any initial condition u € L'NL*®(m).

Proof. We already discussed existence in Theorem 9.6. For uniqueness, we want to apply Theorem 5.4
with ¢ =2 and r = s = 4 (which provides uniqueness in the larger class L? N L*(m)). In order to do
this we need only to know that (4-3) holds (this follows by conservativity of P and BE,(K, 00)), that
L*-T inequalities hold in RCD(K, co) spaces (this follows by BE> (K, 00), thanks to Corollary 6.3) and
that the deformation of by is of type (4, 4) (this follows by Theorem 6.7). O
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