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PARABOLIC BOUNDARY HARNACK PRINCIPLES
IN DOMAINS WITH THIN LIPSCHITZ COMPLEMENT

ARSHAK PETROSYAN AND WENHUI SHI

We prove forward and backward parabolic boundary Harnack principles for nonnegative solutions of the
heat equation in the complements of thin parabolic Lipschitz sets given as subgraphs

E = {(x, t) : xn−1 ≤ f (x ′′, t), xn = 0} ⊂ Rn−1
×R

for parabolically Lipschitz functions f on Rn−2
×R.

We are motivated by applications to parabolic free boundary problems with thin (i.e., codimension-two)
free boundaries. In particular, at the end of the paper we show how to prove the spatial C1,α-regularity of
the free boundary in the parabolic Signorini problem.

1. Introduction

The purpose of this paper is to study forward and backward boundary Harnack principles for nonnegative
solutions of the heat equation in certain domains in Rn

×R which are, roughly speaking, complements of
thin parabolically Lipschitz sets E . By the latter, we understand closed sets lying in the vertical hyperplane
{xn = 0} which are locally given as subgraphs of parabolically Lipschitz functions (see Figure 1).

Such sets appear naturally in free boundary problems governed by parabolic equations, where the
free boundary lies in a given hypersurface and thus has codimension two. Such free boundaries are also
known as thin free boundaries. In particular, our study was motivated by the parabolic Signorini problem,
recently studied in [Danielli et al. 2013].

The boundary Harnack principles that we prove in this paper provide important technical tools in
problems with thin free boundaries. For instance, they open up the possibility of proving that the
thin Lipschitz free boundaries have Hölder-continuous spatial normals, following the original idea in
[Athanasopoulos and Caffarelli 1985]. In particular, we show that this argument can indeed be successfully
carried out in the parabolic Signorini problem.

We have to point out that the elliptic counterparts of the results in this paper are very well known; see
e.g. [Athanasopoulos and Caffarelli 1985; Caffarelli et al. 2008; Aikawa et al. 2003]. However, there are
significant differences between the elliptic and parabolic boundary Harnack principles, mostly because of
the time-lag in the parabolic Harnack inequality. This results in two types of boundary Harnack principles
for parabolic equations: the forward one (also known as the Carleson estimate) and the backward one.

The authors were supported in part by NSF grant DMS-1101139.
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Moreover, those results are known only for a much smaller class of domains than in the elliptic case.
Thus, to put our results in a better perspective, we start with a discussion of the known results both in the
elliptic and parabolic cases.

Elliptic boundary Harnack principle. The by-now classical boundary Harnack principle for harmonic
functions [Kemper 1972a; Dahlberg 1977; Wu 1978] says that if D is a bounded Lipschitz domain in
Rn , x0 ∈ ∂D, and u and v are positive harmonic functions on D vanishing on Br (x0)∩ ∂D for a small
r > 0, then there exist positive constants M and C , depending only on the dimension n and the Lipschitz
constant of D, such that

u(x)
v(x)
≤ C

u(y)
v(y)

for x, y ∈ Br/M(x0)∩ D.

Note that this result is scale-invariant, and hence, by a standard iterative argument, one then immediately
obtains that the ratio u/v extends to D ∩ Br/M(x0) as a Hölder-continuous function. Roughly speaking,
this theorem says that two positive harmonic functions vanishing continuously on a certain part of the
boundary will decay at the same rate near that part of the boundary.

This boundary Harnack principle depends heavily on the geometric structure of the domains. The
scale-invariant boundary Harnack principle (among other classical theorems of real analysis) was extended
in [Jerison and Kenig 1982] from Lipschitz domains to the so-called NTA (nontangentially accessible)
domains. Moreover, if the Euclidean metric is replaced by the internal metric, then similar results hold
for so-called uniform John domains [Aikawa et al. 2003; Aikawa 2005].

In particular, the boundary Harnack principle is known for domains of the type

D = B1 \ E f , E f = {x ∈ Rn
: xn−1 ≤ f (x ′′), xn = 0},

where f is a Lipschitz function on Rn−2 with f (0) = 0; it is used, for instance, in the thin obstacle
problem [Athanasopoulos and Caffarelli 1985; Athanasopoulos et al. 2008; Caffarelli et al. 2008]. In
fact, there is a relatively simple proof of the boundary Harnack principle for domains as above already
indicated in [Athanasopoulos and Caffarelli 1985]: there exists a bi-Lipschitz transformation from D to
a half-ball B+1 , which is a Lipschitz domain. The harmonic functions in D transform to solutions of a
uniformly elliptic equation in divergence form with bounded measurable coefficients in B+1 , for which
the boundary Harnack principle is known [Caffarelli et al. 1981].

Parabolic boundary Harnack principle. The parabolic version of the boundary Harnack principle is
much more challenging than the elliptic one, mainly because of the time-lag issue in the parabolic Harnack
inequality. The latter is called sometimes the forward Harnack inequality, to emphasize the way it works:
for nonnegative caloric functions (solutions of the heat equation), if the earlier value is positive at some
spatial point, after a necessary waiting time, one can expect that the value will become positive everywhere
in a compact set containing that point. Under the condition that the caloric function vanishes on the
lateral boundary of the domain, one may overcome the time-lag issue and get a backward-type Harnack
principle (so, combining the two together, one gets an elliptic-type Harnack inequality).
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E f

u = 0

u > 0

1u− ut = 0

Figure 1. Domain with a thin Lipschitz complement.

The forward and backward boundary Harnack principle are known for parabolic Lipschitz domains, not
necessarily cylindrical; see [Kemper 1972b; Fabes et al. 1984; Salsa 1981]. Moreover, they were shown
more recently in [Hofmann et al. 2004] to hold for unbounded parabolically Reifenberg-flat domains.
In this paper, we will generalize the parabolic boundary Harnack principle to the domains of the type
(see Figure 1)

D =91 \ E f ,

where

91 = {(x, t) : |xi |< 1, i = 1, . . . , n− 2, |xn−1|< 4nL , |xn|< 1, |t |< 1},

E f = {(x, t) : xn−1 ≤ f (x ′′, t), xn = 0},

and f (x ′′, t) is a parabolically Lipschitz function satisfying

| f (x ′′, t)− f (y′′, s)| ≤ L(|x ′′− y′′|2+ |t − s|)1/2, f (0, 0)= 0.

Note that D is not cylindrical (E f is not time-invariant), and it does not fall into any category of domains
on which the forward or backward Harnack principle is known. Inspired by the elliptic inner NTA domains
(see e.g. [Athanasopoulos et al. 2008]), it seems natural to equip the domain D with the intrinsic geodesic
distance ρD((x, t), (y, s)), where ρD((x, t), (y, s)) is defined as the infimum of the Euclidean length of
rectifiable curves γ joining (x, t) and (y, s) in D, and consider the abstract completion D∗ of D with
respect to this inner metric ρD. We will not work directly with the inner metric in this paper since it
seems easier to work with the Euclidean parabolic cylinders due to the time-lag issues and different scales
in space and time variables. However, we do use the fact that the interior points of E f (in the relative
topology) correspond to two different boundary points in the completion D∗.

Even though we assume in this paper that E f lies on the hyperplane {xn = 0} in Rn
×R, our proofs

(except those on the doubling of the caloric measure and the backward boundary Harnack principle) are
easily generalized to the case when E f is a hypersurface which is Lipschitz in the space variable and
independent of the time variable.
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Structure of the paper. The paper is organized as follows.
In Section 2 we give basic definitions and introduce the notation used in this paper.
In Section 3 we consider the Perron–Wiener–Brelot (PWB) solution to the Dirichlet problem of the

heat equation for D. We show that D is regular and has a Hölder-continuous barrier function at each
parabolic boundary point.

In Section 4 we establish a forward boundary Harnack inequality for nonnegative caloric functions
vanishing continuously on a part of the lateral boundary, following the lines of [Kemper 1972b].

In Section 5 we study the kernel functions for the heat operator. We show that each boundary point
(y, s) in the interior of E f (as a subset of the hyperplane {xn = 0}) corresponds to two independent
kernel functions. Hence, the parabolic Euclidean boundary for D is not homeomorphic to the parabolic
Martin boundary.

In Section 6 we show the doubling property of the caloric measure with respect to D, which will imply
a backward Harnack inequality for caloric functions vanishing on the whole lateral boundary.

Section 7 is dedicated to various forms of the boundary Harnack principle from Sections 4 and 6,
including a version for solutions of the heat equation with a nonzero right-hand side. We conclude the
section and the paper with an application to the parabolic Signorini problem.

2. Notation and preliminaries

2A. Basic notation.

Rn n-dimensional Euclidean space

x ′ = (x1, . . . , xn−1) ∈ Rn−1 for x = (x1, . . . , xn) ∈ Rn

x ′′ = (x1, . . . , xn−2) ∈ Rn−2 for x = (x1, . . . , xn) ∈ Rn

Sometimes it will be convenient to identify x ′, x ′′ with (x ′, 0) and (x ′′, 0, 0), respectively.

x · y =
n∑

i=1

xi yi the inner product for x, y ∈ Rn

|x | = (x · x)1/2 the Euclidean norm of x ∈ Rn

‖(x, t)‖ = (|x |2+ |t |)1/2 the parabolic norm of (x, t) ∈ Rn
×R

E, E◦, ∂E the closure, the interior, the boundary of E

∂p E the parabolic boundary of E in Rn
×R

Br (x) := {y ∈ Rn
: |x − y|< r} open ball in Rn

B ′r (x
′), B ′′r (x

′′) (thin) open balls in Rn−1, Rn−2

Qr (x, t) := Br (x)× (t − r2, t) lower parabolic cylinders in Rn
×R

distp(E, F)= inf
(x,t)∈E
(y,s)∈F

‖(x − y, t − s)‖ the parabolic distance between sets E , F

We will also need the notion of a parabolic Harnack chain in a domain D ⊂ Rn
×R. For two points
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(z1, h1) and (z2, h2) in D with h2− h1 ≥ µ
2
|z2− z1|

2, 0< µ< 1, we say that a sequence of parabolic
cylinders Qri (xi , ti )⊂ D, i = 1, . . . , N , is a Harnack chain from (z1, h1) to (z2, h2) with constant µ if:

(z1, h1) ∈ Qr1(x1, t1), (z2, h2) ∈ QrN (xN , tN ),

µri ≤ distp(Qri (xi , ti ), ∂p D)≤ 1
µ

ri , i = 1, . . . , N ,

Qri+1(xi+1, ti+1)∩ Qri (xi , ti ) 6=∅, i = 1, . . . , N − 1,

ti+1− ti ≥ µ2r2
i , i = 1, . . . , N − 1.

The number N is called the length of the Harnack chain. By the parabolic Harnack inequality, if u is a
nonnegative caloric function in D and there is a Harnack chain of length N and constant µ from (z1, h1)

to (z2, h2), then
u(z1, h1)≤ C(µ, n, N ) u(z2, h2).

Further, for given L ≥ 1 and r > 0 we also introduce the (elongated) parabolic boxes, specifically adjusted
to our purposes:

9 ′′r = {(x
′′, t) ∈ Rn−2

×R : |xi |< r, i = 1, . . . , n− 2, |t |< r2
},

9 ′r = {(x
′, t) ∈ Rn−1

×R : (x ′′, t) ∈9 ′′r , |xn−1|< 4nLr},

9r = {(x, t) ∈ Rn
×R : (x ′, t) ∈9 ′r , |xn|< r},

9r (y, s)= (y, s)+9r .

We also define the neighborhoods

Nr (E) :=
⋃

(y,s)∈E

9r (y, s) for any set E ⊂ Rn
×R.

2B. Domains with thin Lipschitz complement. Let f : Rn−2
× R→ R be a parabolically Lipschitz

function with a Lipschitz constant L ≥ 1 in the sense that

| f (x ′′, t)− f (y′′, s)| ≤ L(|x ′′− y′′|2+ |t − s|)1/2, (x ′′, t), (y′′, s) ∈ Rn−2
×R

Then consider the following two sets:

G f = {(x, t) : xn−1 = f (x ′′, t), xn = 0},

E f = {(x, t) : xn−1 ≤ f (x ′′, t), xn = 0}.

We will call them the thin Lipschitz graph and subgraph respectively (with “thin” indicating their lower
dimension). We are interested in the behavior of caloric functions in domains of the type � \ E f , where
� is open in Rn

×R. We will say that � \ E f is a domain with a thin Lipschitz complement.
We are interested mostly in local behavior of caloric functions near the points on G f and therefore we

concentrate our study on the case
D = D f :=91 \ E f
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with a normalization condition

f (0, 0)= 0⇐⇒ (0, 0) ∈ G f .

We will state most of our results for D defined as above; however, the results will still hold if we
replace 91 in the construction above with a rectangular box

9̃ =

( n∏
i=1

(ai , bi )

)
× (α, β)

such that, for some constants c0,C0 > 0 depending on L and n, we have

9̃ ⊂9C0, 9c0(y, s)⊂ 9̃ for all (y, s) ∈ G f , s ∈ [α+ c2
0, β − c2

0],

and consider the complement

D̃ = D̃ f := 9̃ \ E f .

Even more generally, one may take 9̃ to be a cylindrical domain of the type 9̃ = O×(α, β) where O⊂Rn

has the property that O±= O∩{±xn > 0} are Lipschitz domains. For instance, we can take O= B1. Again,
most of the results that we state will be valid also in this case, with a possible change in constants that
appear in estimates.

2C. Corkscrew points. Since we will be working in D = 91 \ E f as above, it will be convenient to
redefine the sets E f and G f as follows:

G f = {(x, t) ∈91 : xn−1 = f (x ′′, t), xn = 0},

E f = {(x, t) ∈91 : xn−1 ≤ f (x ′′, t), xn = 0},

so that they are subsets of 91. It is easy to see from the definition of D that it is connected and that its
parabolic boundary is given by

∂p D = ∂p91 ∪ E f .

As we will see, the domain D has a parabolic NTA-like structure, with the catch that at points on E f (and
close to it) we need to define two pairs of future and past corkscrew points, pointing into D+ and D−,
respectively, where

D+ = D ∩ {xn > 0} = (91)+, D− = D ∩ {xn < 0} = (91)−.

More specifically, fix 0< r < 1
4 and (y, s) ∈ Nr (E f )∩ ∂p D, and define

A±r (y, s)= (y′′, yn−1+ r/2,±r/2, s+ 2r2) if s ∈ [−1, 1− 4r2),

A±r (y, s)= (y′′, yn−1+ r/2,±r/2, s− 2r2) if s ∈ (−1+ 4r2, 1].
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Note that, by definition, we always have A+r (y, s), A+r (y, s) ∈ D+ and A−r (y, s), A−r (y, s) ∈ D−. We
also have that

A±r (y, s), A±r (y, s) ∈92r (y, s),

9r/2(A±r (y, s))∩ ∂D =9r/2(A±r (y, s))∩ ∂D =∅.

Moreover, the corkscrew points have the following property.

Lemma 2.1 (Harnack chain property I). Let 0< r < 1
4 , (y, s)∈ ∂p D∩Nr (E f ) and (x, t)∈ D be such that

(x, t) ∈9r (y, s) and 9γ r (x, t)∩ ∂p D =∅.

Then there exists a Harnack chain in D with constant µ and length N , depending only on γ , L , and n,
from (x, t) to either A+r (y, s) or A−r (y, s), provided s ≤ 1− 4r2, and from either A+r (y, s) or A−r (y, s) to
(x, t), provided s ≥−1+ 4r2.

In particular, there exists a constant C = C(γ, L , n) > 0 such that, for any nonnegative caloric
function u in D,

u(x, t)≤ C max{u(A+r (y, s)), u(A−r (y, s))} if s ≤ 1− 4r2,

u(x, t)≥ C−1 min{u(A+r (y, s)), (A−r (y, s))} if s ≥−1+ 4r2.

Proof. This is easily seen when (y, s) 6∈ Nr (G f ) (in this case the chain length N does not depend on L).
When (y, s) ∈ Nr (G f ), one needs to use the parabolic Lipschitz continuity of f . �

Next, we want to define the corkscrew points when (y, s) is farther away from E f . Namely, if
(y, s) ∈ ∂p D \Nr (E f ), we define a single pair of future and past corkscrew points by

Ar (y, s)= (y(1− r), s+ 2r2) if s ∈ [−1, 1− 4r2),

Ar (y, s)= (y(1− r), s− 2r2) if s ∈ (−1+ 4r2, 1].

Note that the points Ar (y, s) and Ar (y, s) will have properties similar to those of A±r (y, s) and A±r (y, s).
That is,

Ar (y, s), Ar (y, s) ∈92r (y, s),

9r/2(Ar (y, s))∩ ∂D =9r/2(Ar (y, s))∩ ∂D =∅,

and we have the following version of Lemma 2.1 above.

Lemma 2.2 (Harnack chain property II). Let 0< r < 1
4 , (y, s)∈ ∂p D\Nr (E f ) and (x, t)∈ D be such that

(x, t) ∈9r (y, s) and 9γ r (x, t)∩ ∂p D =∅.

Then there exists a Harnack chain in D with constant µ and length N , depending only on γ , L , and n,
from (x, t) to Ar (y, s), provided s ≤ 1− 4r2, and from Ar (y, s) to (x, t), provided s ≥−1+ 4r2.
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In particular, there exists a constant C =C(γ, L , n)> 0 such that, for any nonnegative caloric function
u in D,

u(x, t)≤ C u(Ar (y, s)) if s ≤ 1− 4r2,

u(x, t)≥ C−1u(Ar (y, s)) if s ≥−1+ 4r2. �

To state our next lemma, we need to use a parabolic scaling operator on Rn
×R. For any (y, s)∈Rn

×R

and r > 0, we define

T r
(y,s) : (x, t) 7→

( x − y
r

,
t − s

r2

)
.

Lemma 2.3 (localization property). For 0 < r < 1
4 and (y, s) ∈ ∂p D, there exists a point (ỹ, s̃) ∈

∂p D ∩92r (y, s) and r̃ ∈ [r, 4r ] such that

9r (y, s)∩ D ⊂9r̃ (ỹ, s̃)∩ D ⊂98r (y, s)∩ D,

and the parabolic scaling T r̃
(ỹ,s̃)(9r̃ (ỹ, s̃)∩ D) is one of the following:

(1) a rectangular box 9̃ such that 9c0 ⊂ 9̃ ⊂ 9C0 for some positive constants c0 and C0 depending
on L and n, or

(2) a union of two rectangular boxes as in (1) with a common vertical side, or

(3) a domain D̃ f̃ = 9̃ \ E f with a thin Lipschitz complement, as defined at the end of Section 2B.

Proof. Consider the following cases:

Case 1: 9r (y, s)∩ E f =∅. In this case, we take (ỹ, s̃)= (y, s) and ρ = r . Then 9r (y, s)∩91 falls into
category (1).

Case 2: 9r (y, s)∩ E f 6= ∅, but 92r (y, s)∩G f = ∅. In this case, we take (ỹ, s̃) = (y, s) and ρ = 2r .
Then 92r (y, s)∩ D splits into the disjoint union of 92r (y, s)∩ (91)±, which falls into category (2).

Case 3: 92r (y, s)∩G f 6=∅. In this case, choose (ỹ, s̃) ∈93r (y, s)∩G f with the additional property
that −1+ r2/4 ≤ s̃ ≤ 1− r2/4, and let ρ = 4r . Then 9ρ(ỹ, s̃)∩ D = (9ρ(ỹ, s̃) \ E f )∩91 falls into
category (3). �

3. Regularity of D for the heat equation

In this section we show that the domains D with thin Lipschitz complement E f are regular for the heat
equation by using the existence of an exterior thin cone at points on E f and applying the Wiener-type
criterion for the heat equation [Evans and Gariepy 1982]. Furthermore, we show the existence of Hölder-
continuous local barriers at the points on E f , which we will use in the next section to prove the Hölder
continuity and regularity of the solutions up to the parabolic boundary.

3A. PWB solutions [Doob 1984; Lieberman 1996]. Given an open subset � ⊂ Rn
×R, let ∂� be its

Euclidean boundary. Define the parabolic boundary ∂p� of � to be the set of all points (x, t) ∈ ∂� such
that for any ε > 0 the lower parabolic cylinder Qε(x, t) contains points not in �.
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We say that a function u : �→ (−∞,+∞] is supercaloric if u is lower semicontinuous, finite on
dense subsets of �, and satisfies the comparison principle in each parabolic cylinder Q b�: if v ∈ C(Q)
solves 1v− ∂tv = 0 in Q and v = u on ∂p Q, then v ≤ u in Q.

A subcaloric function is defined as the negative of a supercaloric function. A function is caloric if it is
supercaloric and subcaloric.

Given any real-valued function g defined on ∂p�, we define the upper solution

H g = inf{u : u is supercaloric or identically +∞ on each component of �,

lim inf
(y,s)→(x,t)

u(y, s)≥ g(x, t) for all (x, t) ∈ ∂p�, u bounded below on �},

and the lower solution

H g = sup{u : u is subcaloric or identically −∞ on each component of �,

lim sup
(y,s)→(x,t)

u(y, s)≤ g(x, t) for all (x, t) ∈ ∂p�, u bounded above on �}.

If H g = H g, then Hg = H g = H g is the Perron–Wiener–Brelot (PWB) solution to the Dirichlet problem
for g. It is shown in §1.VIII.4 and §1.XVIII.1 in [Doob 1984] that if g is a bounded continuous function,
then the PWB solution Hg exists and is unique for any bounded domain � in Rn

×R.
Continuity of the PWB solution at points of ∂p� is not automatically guaranteed. A point (x, t) ∈ ∂p�

is a regular boundary point if lim(y,s)→(x,t) Hg(y, s)= g(x, t) for every bounded continuous function g
on ∂p D. A necessary and sufficient condition for a parabolic boundary point to be regular is the existence
of a local barrier for earlier time at that point (Theorem 3.26 in [Lieberman 1996]). By a local barrier at
(x, t) ∈ ∂p�, we mean here a nonnegative continuous function w in Qr (x, t)∩� for some r > 0 that has
the following properties: (i) w is supercaloric in Qr (x, t)∩�, and (ii) w vanishes only at (x, t).

3B. Regularity of D and barrier functions. For the domain D defined in the introduction, we have
∂p D = ∂p91∪ E f . The regularity of (x, t) ∈ ∂p91 follows immediately from the exterior cone condition
for the Lipschitz domain. For (x, t) ∈ E f , instead of the full exterior cone we only know the existence of
a flat exterior cone centered at (x, t) by the Lipschitz nature of the thin graph. This will still be enough
for the regularity, by the Wiener-type criterion for the heat equation. We give the details below.

For (x, t) ∈ E f , with f parabolically Lipschitz, there exist c1, c2 > 1, depending on n and L , such
that the exterior of D contains a flat parabolic cone C(x, t), defined by

C(x, t)= (x, t)+C,

C= {(y, s) ∈ Rn
×R : s ≤ 0, yn−1 ≤−c1|y′′| − c2

√
−s, yn = 0}.

Then by the Wiener-type criterion for the heat equation [Evans and Gariepy 1982], the regularity of
(x, t) ∈ E f will follow once we show that

∞∑
k=1

2kn/2 cap(A(2−k)∩C)=+∞,
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where
A(c)= {(y, s) : (4πc)−n/2

≤ 0(y,−s)≤ (2πc)−n/2
},

0 is the heat kernel

0(y, s)=
{
(4πs)−n/2e−|y|

2/4s if s > 0,
0 if s ≤ 0,

and cap(K ) is the thermal capacity of a compact set K , defined by

cap(K )= sup{µ(K ) : µ is a nonnegative Radon measure supported in K , with µ ∗0 ≤ 1 on Rn
×R}.

Since C is self-similar, it is enough to verify that

cap(A(1)∩C) > 0.

The latter is easy to see, since we can take as µ the restriction of H n , the Hausdorff measure, to A(1)∩C,
and note that

(µ ∗0)(x, t)=
∫

A(1)∩C
0(x − y, t − s) dy′ ds ≤

∫ 0

−1

1
√

4π(t − s)+
ds ≤

∫ 0

−1

1
√

4π(−s)
ds <∞

for any (x, t) ∈ Rn
×R. Since H n(A(1)∩C) > 0, we therefore conclude that cap(A(1)∩C) > 0. We

have therefore established the following fact:

Proposition 3.1. The domain D = D f is regular for the heat equation. �

We next show that we can use the self-similarity of C to construct a Hölder-continuous barrier function
at every (x, t) ∈ E f .

Lemma 3.2. There exists a nonnegative continuous function U on 91 with the following properties:

(i) U > 0 in 91 \ {(0, 0)} and U (0, 0)= 0;

(ii) 1U − ∂tU = 0 in 91 \C; and

(iii) U (x, t)≤C(|x |2+|t |)α/2 for (x, t) ∈91 and some C > 0 and 0<α < 1 depending only on n and L.

Proof. Let U be a solution of the Dirichlet problem in 91 \C with boundary values U (x, t)= |x |2+ |t |
on ∂p(91 \C). Then U will be continuous on 91 and will satisfy the following properties:

(i) U > 0 in 91 \ {(0, 0)} and U (0, 0)= 0; and

(ii) 1U − ∂tU = 0 in 91 \C.

In particular, there exists c0 > 0 and λ > 0 such that

U ≥ c0 on ∂p91 and U ≤ c0/2 on 9λ.

We then can compare U with its own parabolic scaling. Indeed, let MU (r) = sup9r
U for 0 < r < 1.

Then, by the comparison principle for the heat equation, we have

U (x, t)≤
MU (r)

c0
U (x/r, t/r2) for (x, t) ∈9r .
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(Carefully note that this inequality is satisfied on C by the homogeneity of the boundary data on C.)
Hence, we obtain that

MU (λr)≤
MU (r)

2
for any 0< r < 1,

which implies the Hölder-continuity of U at the origin by the standard iteration. The proof is complete. �

4. Forward boundary Harnack inequalities

In this section, we show the boundary Hölder-regularity of the solutions to the Dirichlet problem and
follow the lines of [Kemper 1972b] to show the forward boundary Harnack inequality (Carleson estimate).

We also need the notion of the caloric measure. Given a domain �⊂Rn
×R and (x, t)∈�, the caloric

measure on ∂p� is denoted by ω(x,t)� . The following facts about caloric measures can be found in [Doob
1984]. For a Borel subset B of ∂p�, we have ω(x,t)� (B)= HχB (x, t), which is the PWB solution to the
Dirichlet problem

1u− ut = 0 in �; u = χB on ∂p�,

where χB is the characteristic function of B. Given a bounded and continuous function g on ∂p�, the
PWB solution to the Dirichlet problem

1u− ut = 0 in �; u = g on ∂p�

is given by u(x, t) =
∫
∂p�

g(y, s) dω(x,t)� (y, s). For a regular domain �, one has the following useful
property of caloric measures:

Proposition 4.1 [Doob 1984]. If E is a fixed Borel subset of ∂p�, then the function (x, t) 7→ ω
(x,t)
� (E)

extends to (y, s) ∈ ∂p� continuously provided χE is continuous at (y, s).

4A. Forward boundary Harnack principle. From now on, we will write the caloric measure with respect
to D =91 \ E f as ω(x,t) for simplicity. Before we prove the forward boundary Harnack inequality, we
first show the Hölder-continuity of the caloric functions up to the boundary, which follows from the
estimates on the barrier function constructed in Section 3.

In what follows, for 0< r < 1
4 and (y, s) ∈ ∂p D, we will denote

1r (y, s)=9r (y, s)∩ ∂p D,

and call it the parabolic surface ball at (y, s) of radius r .

Lemma 4.2. Let 0< r < 1
4 and (y, s) ∈ ∂p D. Then there exist C =C(n, L) > 0 and α= α(n, L) ∈ (0, 1)

such that if u is positive and caloric in 9r (y, s)∩ D and u vanishes continuously on 1r (y, s), then

u(x, t)≤ C
(
|x − y|2+ |t − s|

r2

)α/2
Mu(r) (4-1)

for all (x, t) ∈9r (y, s)∩ D, where Mu(r)= sup9r (y,s)∩D u.
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Proof. Let U be the barrier function at (0, 0) in Lemma 3.2 and c0 = inf∂p91 U > 0. We then use the
parabolic scaling T r

(y,s) to construct a barrier function at (y, s). If (y, s)∈Nr (E f ), then there is an exterior
cone C(y, s) at (y, s) with a universal opening, depending only on n and L , and

U r
(y,s) :=U ◦ T r

(y,s)

will be a local barrier function at (y, s) and will satisfy

0≤U r
(y,s)(x, t)≤ C

(
|x − y|2+ |t − s|

r2

)α/2
for (x, t) ∈9r (y, s). (4-2)

This construction can be made also at (y, s) ∈ ∂p D \Nr (E f ), as these points also have the exterior cone
property, and we may still use the same formula for U r

(y,s), but after a possible rotation of the coordinate
axes in Rn .

Then, by the maximum principle in 9r (y, s)∩ D, we easily obtain that

u(x, t)≤
Mu(r)

c0
U r
(y,s)(x, t) for (x, t) ∈9r (y, s)∩ D. (4-3)

Combining (4-2) and (4-3), we obtain (4-1). �

The main result in this section is the following forward boundary Harnack principle, also known as the
Carleson estimate.

Theorem 4.3 (forward boundary Harnack principle or Carleson estimate). Let 0< r < 1
4 , (y, s) ∈ ∂p D

with s ≤ 1− 4r2, and u be a nonnegative caloric function in D, continuously vanishing on 13r (y, s).
Then there exists C = C(n, L) > 0 such that, for (x, t) ∈9r/2(y, s)∩ D,

u(x, t)≤ C
{

max{u(A+r (y, s)), u(A−r (y, s))} if (y, s) ∈ ∂p D ∩Nr (E f ),

u(Ar (y, s)) if (y, s) ∈ ∂p D \Nr (E f ).
(4-4)

To prove the Carleson estimate above, we need the following two lemmas on the properties of the
caloric measure in D, which correspond to Lemmas 1.1 and 1.2 in [Kemper 1972b], respectively.

Lemma 4.4. For 0< r < 1
4 , (y, s) ∈ ∂p D with s ≤ 1− 4r2, and γ ∈ (0, 1), there exists C = C(γ, L) > 0

such that

ω(x,t)(1r (y, s))≥ C for (x, t) ∈9γ r (y, s)∩ D.

Proof. Suppose first that (y, s) ∈ Nr (E f ). Consider the caloric function

v(x, t) := ω(x,t)9r (y,s)\C(y,s)(C(y, s)),

where C(y, s) is the flat exterior cone defined in Section 3. The domain9r (y, s)\C(y, s) is regular; hence,
by Proposition 4.1, v(x, t) is continuous on 9γ r (y, s). We next claim that there exists C =C(γ, n, L)> 0
such that

v(x, t)≥ C in 9γ r (y, s).
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Indeed, consider the normalized version of v,

v0(x, t) := ω(x,t)91\C
(C),

which is related to v through the identity v = v0 ◦ T r
(y,s). Then, from the continuity of v0 in 9γ , the

equality v0 = 1 on C, and the strong maximum principle we obtain that v0 ≥ C = C(γ, n, L) > 0 on 9γ .
Using the parabolic scaling, we obtain the claimed inequality for v. Moreover, applying the comparison
principle to v(x, t) and ω(x,t)(1r (y, s)) in D ∩9r (y, s), we have

ω(x,t)(1r (y, s))≥ v(x, t)≥ C for (x, t) ∈ D ∩9γ r (y, s).

In the case when (y, s) ∈ ∂p D \Nr (E f ), we may modify the proof by changing the flat cone C(y, s) with
the full cone contained in the complement of D, or directly applying Lemma 1.1 in [Kemper 1972b]. �

Lemma 4.5. For 0< r < 1
4 , (y, s) ∈ ∂p D with s ≤ 1−4r2, there exists a constant C = C(n, L) > 0 such

that, for any r ′ ∈ (0, r) and (x, t) ∈ D \9r (y, s), we have

ω(x,t)(1r ′(y, s))≤ C
{
ωAr (y,s)(1r ′(y, s)) if (y, s) 6∈ Nr (E f ),
max{ωA+r (y,s)(1r ′(y, s)), ωA−r (y,s)(1r ′(y, s))} if (y, s) ∈ Nr (E f ).

(4-5)

Proof. For notational simplicity, we define

1′ :=1r ′(y, s), 1 :=1r (y, s), 9k
:=92k−1r ′(y, s),

A±k := A±2k−1r ′(y, s) if 9k
∩ E f 6=∅,

Ak := A2k−1r ′(y, s) if 9k
∩ E f =∅ for k = 0, 1, . . . , ` with 2`−1r ′ < 3r/4< 2`r ′.

We want to clarify here that for (y, s) 6∈ E f and small r ′ and k, it may happen that9k does not intersect E f .
To be more specific, let `0 be the smallest nonnegative integer such that 9`0∩E f 6=∅. Then we define Ak

for 0≤ k ≤min{`0− 1, `} and the pair A±k for `0 ≤ k ≤ `.
To prove the lemma, we want to show that there exists a universal constant C , in particular independent

of k, such that, for (x, t) ∈ D \9k ,

ω(x,t)(1′)≤ C
{
ωAk (1′) if 1≤ k ≤min{`0− 1, `},
max{ωA+k (1′), ωA−k (1′)} if `0 ≤ k ≤ `.

(Sk)

Once this is established, (4-5) will follow from (Sl) and the Harnack inequality.
The proof of (Sk) is going to be by induction in k. We start with the observation that, by the Harnack

inequality, there is C1 > 0, independent of k and r ′, such that

ωAk (1′)≤ C1ω
Ak+1(1′) for 0≤ k ≤min{`0− 2, `− 1},

ωA`0−1(1′)≤ C1 max{ωA+`0 (1′), ω
A−`0 (1′)} if `0 ≤ `,

ωA±k (1′)≤ C1ω
A±k+1(1′) for `0 ≤ k ≤ `− 1.

(4-6)

Proof of (S1): Without loss of generality, assume (y, s) ∈ ∂p D ∩ D+.
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Case 1: Suppose first that 91
∩E f =∅, i.e., `0 > 1. In this case, A0= Ar ′/2(y, s)∈9(3/4)r ′(y, s), and by

Lemma 4.4 there exists a universal C0>0 such thatωA0(1′)≥C0. By (4-6) we haveωA0(1′)≤C1ω
A1(1′).

Letting C2 = C1/C0, we then have

ω(x,t)(1′)≤ 1≤ C2ω
A1(1′). (4-7)

Case 2: Suppose now that 91
∩ E f 6=∅, but 90

∩ E f =∅, i.e., `0 = 1. In this case, we start as in Case 1,
and finish by applying the second inequality in (4-6), which yields

ω(x,t)(1′)≤ 1≤ C2 max{ωA+1 (1′), ωA−1 (1′)}. (4-8)

Case 3: Finally, assume that 90
∩ E f 6= ∅, i.e., `0 = 0. Without loss of generality, assume also that

(y, s) ∈ ∂p D ∩ D+. In this case, A+0 ∈9(3/4)r ′(y, s), and therefore ωA+0 (1′)≥ C0. Besides, by (4-6), we
have that ωA+0 (1′)≤ C1ω

A+1 (1′), which yields

ω(x,t)(1′)≤ 1≤ C2ω
A+1 (1′). (4-9)

This proves (S1) with the constant C = C2.

We now turn to the proof of the induction step.

Proof of (Sk)=⇒ (Sk+1): More precisely, we will show that if (Sk) holds with some universal constant C
(to be specified) then (Sk+1) also holds with the same constant.

By the maximum principle, we need to verify (Sk+1) for (x, t) ∈ ∂p(D \9k+1). Since ω(x,t)(1′)
vanishes on (∂p D) \9k+1, we may assume that (x, t) ∈ (∂9k+1)∩ D. We will need to consider three
cases, as in the proof of (S1):

1. 9k+1
∩ E f =∅, i.e., `0 > k+ 1;

2. 9k+1
∩ E f 6=∅, but 9k

∩ E f =∅, i.e., `0 = k+ 1;

3. 9k
∩ E f 6=∅, i.e., `0 ≤ k.

Since the proof is similar in all three cases, we will treat only Case 2 in detail.

Case 2: Suppose that 9k+1
∩ E f 6= ∅ but 9k

∩ E f = ∅. We consider two subcases, depending on
whether (x, t) ∈ ∂9k+1 is close to ∂p D or not.

Case 2a: First, assume that (x, t)∈Nµ2kr ′(∂p D) for some small positive µ=µ(L , n)< 1
2 (to be specified).

Take (z, h) ∈9µ2kr ′(x, t)∩ ∂p D, and observe that ω(x,t)(1′) is caloric in 92k−1r ′(z, h)∩ D and vanishes
continuously on 12k−1r ′(z, h) (by Proposition 4.1). Besides, by the induction assumption that (Sk) holds,
we have

ω(x,t)(1′)≤ CωAk (1′) for (x, t) ∈92k−1r ′(z, h)∩ D ⊂ D \9k .

Hence, by Lemma 4.2, if µ= µ(n, L) > 0 is small enough, we obtain that

ω(x,t)(1′)≤
1

C1
CωAk (1′) for (x, t) ∈9µ2kr ′(z, h).
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Here C1 is the constant in (4-6). This, combined with (4-6), gives

ω(x,t)(1′)≤
C
C1
ωAk (1′)≤

C
C1
·C1 max{ωA+k+1(1′), ωA−k+1(1′)} = C max{ωA+k+1(1′), ωA−k+1(1′)}.

This proves (Sk+1) for (x, t) ∈ Nµ2kr ′(∂p D)∩ ∂9k+1.

Case 2b: Assume now that 9µ2kr ′(x, t)∩ ∂p D =∅. In this case, it is easy to see that we can construct a
parabolic Harnack chain in D of universal length from (x, t) to either A+k+1 or A−k+1, which implies that,
for some universal constant C3 > 0,

ω(x,t)(1′)≤ C3 max{ωA+k+1(1′), ωA−k+1(1′)}.

Thus, combining Cases 2a and 2b, we obtain that (Sk+1) holds provided C =max{C2,C3}. This completes
the proof of our induction step in Case 2. As we mentioned earlier, Cases 1 and 3 are obtained by a small
modification from the respective cases in the proof of (S1). This completes the proof of the lemma. �

Now we prove the Carleson estimate. With Lemma 4.4 and Lemma 4.5 at hand, we use ideas similar
to those in [Salsa 1981].

Proof of Theorem 4.3. We start with the remark that if (y, s) 6∈ Nr/4(E f ) then we can restrict u to D+
or D− and obtain the second estimate in (4-4) from the known result for parabolic Lipschitz domains. We
thus consider only the case (y, s) ∈ Nr/4(E f ). Besides, replacing (y, s) with (y′, s ′) ∈9r/4(y, s)∩ E f ,
we may further assume that (y, s) ∈ E f , but then we will need to change the assumption that u vanishes
on 12r (y, s) and prove the estimate (4-4) for (x, t) ∈9r (y, s)∩ D.

With these assumptions in mind, let 0< r < 1
4 and R = 8r . Let D̃R(y, s) :=9R̃(ỹ, s̃)∩ D be given

by the localization property Lemma 2.3. Note that we will be either in Case (2) or (3) of that lemma;
moreover, we can choose (ỹ, s̃)= (y, s).

For notational brevity, let

ω
(x,t)
R := ω

(x,t)
D̃R(y,s)

be the caloric measure with respect to D̃R(y, s). We will also omit the center (y, s) from the notations
D̃R(y, s), 9ρ(y, s) and 1ρ(y, s).

Since u is caloric in D̃R and continuously vanishes up to 12r , we have

u(x, t)=
∫
(∂p D̃R)\12r

u(z, h) dω(x,t)R (z, h), (x, t) ∈ D̃R. (4-10)

Note that for (x, t) ∈9r ∩D, we have (x, t) 6∈9r/2(z, h) for any (z, h) ∈ (∂p D̃R)\12r . Hence, applying
Lemma 4.51 to ω(x,t)R in D̃R , we will have that, for (x, t) ∈9r ∩ D and sufficiently small r ′,

ω
(x,t)
R (1r ′(z, h))≤ C max

{
ω

A+r/2,R(z,h)
R (1r ′(z, h)), ω

A−r/2,R(z,h)
R (1r ′(z, h))

}
1We have to scale the domain D̃R with T R̃

(ỹ,s̃) first and apply Lemma 4.5 to r/2R̃ < 1
8 if we are in case (3) of the localization

property Lemma 2.3; in the case (2) we apply the known results for parabolic Lipschitz domains.
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for (z, h) ∈ Nr/2(E f )∩ (∂p D̃R) \12r , and

ω
(x,t)
R (1r ′(z, h))≤ C ωAr/2,R(z,h)

R (1r ′(z, h))

for (z, h) ∈ ∂p D̃R \ (Nr/2(E f ) ∪12r ), where C = C(L , n) and by A±r/2,R and Ar/2,R we denote the
corkscrew points with respect to the domain D̃R . To proceed, we note that, for (z, h) ∈ ∂p D̃R with
h > s+ r2, by the maximum principle we have

ω
(x,t)
R (1r ′(z, h))= 0

for any (x, t) ∈ 9r ∩ D, provided r ′ is small enough. For (z, h) ∈ (∂p D̃R) \12r with h ≤ s + r2, we
note that with the help of Lemmas 2.1 and 2.2 we can construct a Harnack chain of controllable length
in D from A±r/2,R(z, h) or Ar/2,R(z, h) to A+r (y, s) or A−r (y, s) (corkscrew points with respect to the
original D). This implies that, for (x, t) ∈9r ∩ D and (z, h) ∈ ∂p D̃R \12r ,

ω
(x,t)
R (1r ′(z, h))≤ C max{ωA+r (y,s)

R (1r ′(z, h)), ωA−r (y,s)
R (1r ′(z, h))}. (4-11)

We now want to apply Besicovitch’s theorem on the differentiation of Radon measures. However, since
∂p D̃R locally is not topologically equivalent to a Euclidean space, we make the following symmetrization
argument. For x ∈Rn , let x̂ be its mirror image with respect to the hyperplane {xn = 0}. We then can write

u(x, t)+ u(x̂, t)=
∫
∂p D̃R\12r

[u(z, h)+ u(ẑ, h)] dω(x,t)R (z, h)

=
1
2

∫
∂p D̃R\12r

[u(z, h)+ u(ẑ, h)]
(
dω(x,t)R (z, h)+ dω(x̂,t)R (z, h)

)
=

∫
∂p((D̃R)+)\12r

[u(z, h)+ u(ẑ, h)]χ
(
dω(x,t)R (z, h)+ dω(x̂,t)R (z, h)

)
,

where χ = 1
2 on ∂p((D̃R)+)∩ {xn = 0} and χ = 1 on the remaining part of ∂p((D̃R)+) and the measures

dω(x,t)R and dω(x̂,t)R are extended as zero on the thin space outside E f , i.e., on ∂p((D̃R)+) \ ∂p D̃R . We
then use the estimate (4-11) for (x, t) and (x̂, t) in 9r ∩ D. Note that in this situation we can apply
Besicovitch’s theorem on differentiation, since we can locally project ∂p((D̃R)+) to hyperplanes, similarly
to [Hunt and Wheeden 1970]. This will yield

dω(x,t)R (z, h)+ dω(x̂,t)R (z, h)

dωA+r (y,s)
R (z, h)+ dωA−r (y,s)

R (z, h)
≤ C

dω(x,t)R (z, h)

dωAr (y,s)
R (z, h)

≤ C (4-12)

for (z, h) ∈ ∂p((D̃R)+) \12r and (x, t) ∈9r ∩ D. Hence, we obtain

u(x, t)+ u(x̂, t)≤ C
∫
∂p((D̃R)+)\12r

[u(z, h)+ u(ẑ, h)]
(
dωA+r (y,s)

R (z, h)+ dωA−r (y,s)
R (z, h)

)
≤ C

(
u(A+r (y, s))+ u(A−r (y, s))

)
≤ C max{u(A+r (y, s)), u(A−r (y, s))}, (x, t) ∈9r ∩ D.
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This completes the proof of the theorem. �

The following theorem is a useful consequence of Theorem 4.3; with that in hand, its proof is similar to
that of Theorem 1.1 in [Fabes et al. 1986]. Hence, we only state the theorem here without giving a proof.

Theorem 4.6. For 0 < r < 1
4 , (y, s) ∈ ∂p D with s ≤ 1− 4r2, let u be caloric in D and continuously

vanishing on ∂p D\1r/2(y, s). Then there exists C =C(n, L) such that, for (x, t)∈ D\9r (y, s), we have

u(x, t)≤ C
{

max{u(A+r (y, s)), u(A−r (y, s))} if (y, s) ∈ Nr (E f ),

u(Ar (y, s)) if (y, s) 6∈ Nr (E f ).
(4-13)

Moreover, applying Lemma 4.4 and the maximum principle, for (x, t) ∈ D \9r (y, s), we have

u(x, t)≤ Cω(x,t)(12r (y, s))×
{

max{u(A+r (y, s)), u(A−r (y, s))} if (y, s) ∈ Nr (E f ),

u(Ar (y, s)) if (y, s) 6∈ Nr (E f ).

5. Kernel functions

Before proceeding to the backward boundary Harnack principle, we need the notion of kernel functions
associated to the heat operator and the domain D. In [Fabes et al. 1986], the backward Harnack principle is
a consequence of the global comparison principle (Theorem 6.4) by a simple time-shifting argument. In our
case, since D is not cylindrical, this simple argument does not work. So we will first prove some properties
of the kernel functions which can be used to show the doubling property of the caloric measures, as in
[Wu 1979]. Then, using arguments as in [Fabes et al. 1986], we obtain the backward Harnack principle.

5A. Existence of kernel functions. Let (X, T ) ∈ D be fixed. Given (y, s) ∈ ∂p D with s < T , a function
K (x, t; y, s) defined in D is called a kernel function at (y, s) for the heat equation with respect to
(X, T ) if:

(i) K ( · , · ; y, s)≥ 0 in D,

(ii) (1− ∂t)K ( · , · ; y, s)= 0 in D,

(iii) lim
(x,t)→(z,h)
(x,t)∈D

K (x, t; y, s)= 0 for (z, h) ∈ ∂p D \ {(y, s)}, and

(iv) K (X, T ; y, s)= 1.

If s ≥ T , K (x, t; y, s) will be taken identically equal to zero. We note that, by the maximum principle,
K (x, t; y, s)= 0 when t < s.

The existence of the kernel functions (for the heat operator on domain D) follows directly from
Theorem 4.3. Let (y, s) ∈ ∂p D with s < T − δ2 for some δ > 0, and consider

vn(x, t)=
ω(x,t)(11/n(y, s))
ω(X,T )(11/n(y, s))

, (x, t) ∈ D, 1
n
< δ. (5-1)

We clearly have vn(x, t) ≥ 0, (1− ∂t)vn(x, t) = 0 in D and vn(X, T ) = 1. Given ε ∈
(
0, 1

4

)
small, by

Theorem 4.6 and the Harnack inequality, {vn} is uniformly bounded on D \9ε(y, s) if n≥ 2/ε. Moreover,
by the up-to-the-boundary regularity (see Proposition 4.1 and Lemma 4.2), the family {vn} is uniformly
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Hölder in D \9ε(y, s). Hence, up to a subsequence, {vn} converges uniformly on D \9ε(y, s) to some
nonnegative caloric function v satisfying v(X, T )= 1. Since ε can be taken arbitrarily small, v vanishes
on ∂p D \ {(y, s)}. Therefore, v(x, t) is a kernel function at (y, s).

Convention 5.1. From now on, to avoid cumbersome details we will make a time extension of the
domain D for 1≤ t < 2 by looking at

D̃ = 9̃ \ E f , 9̃ = (−1, 1)n × (−1, 2),

as in Section 2B. We then fix (X, T ) with T = 3
2 and X ∈ {xn = 0}, Xn−1 > 3nL , and normalize all

kernels K ( · , · ; · , · ) at this point (X, T ). In this way, we will be able to state the results in this section
for our original domain D. Alternatively, we could fix (X, T ) ∈ D, and then state the results in the part of
the domain D ∩ {(x, t) : −1< t < T − δ2

} with some δ > 0, with the additional dependence of constants
on δ.

5B. Nonuniqueness of kernel functions at E f \ G f . The idea is this: if we consider the completion D∗

of the domain D with respect to the inner metric ρD and let ∂∗D = D∗ \ D, then it is clear that each
Euclidean boundary point (y, s) ∈ G f and (y, s) ∈ ∂p91 will correspond to only one (y, s)∗ ∈ ∂∗D, and
each (y, s) ∈ E f \ G f will correspond to exactly two points (y, s)∗

+
, (y, s)∗

−
∈ ∂∗D. It is not hard to

imagine that the kernel functions corresponding to (y, s)∗
+

and (y, s)∗
−

are linearly independent, and they
are the two linearly independent kernel functions at (y, s). In this section we will make this idea precise
by considering the two-sided caloric measures ϑ+ and ϑ−. We will study the properties of ϑ+ and ϑ−
and their relationship with the caloric measure ωD .

First we introduce some more notation. Given (y, s) ∈ ∂p D \G f , let

r0 = sup
{
r ∈

(
0, 1

4

)
:12r (y, s)∩G f =∅

}
. (5-2)

Note that r0 is a constant depending on (y, s), and is such that, for any 0 < r < r0, 92r (y, s) ∩ D is
either separated by E f into two disjoint sets 9+2r and 9−2r , or 92r (y, s)∩ D ⊂ D+ (or D−). We define,
for 0< r < r0, the shifting operators F+r and F−r :

F+r (x, t)= (x ′′, xn−1+ 4nLr, xn + r, t + 4r2), (5-3)

F−r (x, t)= (x ′′, xn−1+ 4nLr, xn − r, t + 4r2). (5-4)

For any 0< r < r0, define

D+r = D \ (E+r,1 ∪ E+r,2 ∪ E+r,3 ∪ E+r,4), (5-5)

where
E+r,1 := {(x, t) ∈ Rn

×R : xn−1 ≤ f (x ′′, t),−r ≤ xn ≤ 0},

E+r,2 := {(x, t) : 1− r ≤ xn ≤ 1},

E+r,3 := {(x, t) : 4nL(1− r)≤ xn−1 ≤ 4nL},

E+r,4 := {(x, t) : 1− 4r2
≤ t ≤ 1}.
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It is easy to see that D+r ⊂D and F+r (D
+
r )⊂D. Similarly, we can define D−r ⊂D satisfying F−r (D

−
r )⊂D.

Notice that D+r ↗ D, D−r ↗ D as r ↘ 0. Moreover, it is clear that, for each r ∈
(
0, 1

4

)
,

N1/4(E f )∩ ∂p D ⊂ (∂p D+r ∪ ∂p D−r )∩ ∂p D, (5-6)

E f ⊂ ∂p D+r ∩ ∂p D−r . (5-7)

Let ω+r and ω−r denote the caloric measures with respect to D+r and D−r , respectively. Given (x, t)∈ D
and r > 0 small enough such that (x, t) ∈ D+r ∩ D−r , ω±

(x,t)

r are Radon measures on ∂p(D±r )∩ ∂p(D±)
(recall D± = D ∩ {xn ≷ 0}. Moreover, if K is a relatively compact Borel subset of ∂p(D±r )∩ ∂p(D±),
then, by the comparison principle, ω±

(x,t)

r (K ) ≤ ω±
(x,t)

r ′ (K ) for 0 < r ′ < r . Hence, there exist Radon
measures ϑ (x,t)± on ∂p(D±r )∩ ∂p(D±) such that

ω±
(x,t)

r |∂p(D±r )∩∂p(D±)
∗

⇀ϑ
(x,t)
± , r→ 0.

For (y, s) ∈ (N1/4(E f )∩ ∂p D) \G f and 0< r < r0, denote

1±r (y, s) :=1r (y, s)∩ ∂p D± if 1r (y, s)∩ ∂p(D±) 6=∅.

Note that if 1r (y, s)⊂ E f then 1±r (y, s)=1r (y, s). It is easy to see that (x, t) 7→ ϑ
(x,t)
± (1±r (y, s)) are

caloric in D.
To simplify the notation we will write 1r , 1±r instead of 1r (y, s), 1±r (y, s). If 1r (y, s)∩ ∂p(D+)

(or 1r (y, s)∩ ∂p(D−)) is empty, we set ϑ (x,t)+ (1+r (y, s))= 0 (or ϑ (x,t)− (1−r (y, s))= 0).
We also note that, with Convention 5.1 in mind, the future corkscrew points A±r (y, s) or Ar (y, s),

0< r < r0, are defined for all s ∈ [−1, 1].

Proposition 5.2. Given (y, s) ∈ (N1/4(E f )∩ ∂p D) \G f , for 0< r < r0, we have:

(i) sup
(x,t)∈∂p D+r ′∩D

ϑ
(x,t)
+ (1+r )→ 0 and sup

(x,t)∈∂p D−r ′∩D
ϑ
(x,t)
− (1−r )→ 0 as r ′→ 0.

(ii) ϑ (x,t)+ (1+r )+ϑ
(x,t)
− (1−r )= ω

(x,t)(1r ) for (x, t) ∈ D.

(iii) There exists a constant C = C(n, L) such that, for any 0< r ′ < r ,

ϑ
(x,t)
+ (1+r ′ )≤ Cϑ A+r (y,s)

+ (1+r ′ )ϑ
(x,t)
+ (1+2r ) for (x, t) ∈ D \9+r (y, s),

ϑ
(x,t)
− (1−r ′ )≤ Cϑ A−r (y,s)

− (1−r ′ )ϑ
(x,t)
− (1−2r ) for (x, t) ∈ D \9−r (y, s).

(iv) For (X, T ) as defined above and (y, s) ∈ E f \G f , there exists a positive constant C = C(n, L , r0)

such that
C−1ϑ

(X,T )
+ (1+r )≤ ϑ

(X,T )
− (1−r )≤ Cϑ (X,T )+ (1+r ).

Proof of (i). We assume that 1±r 6=∅. If either of them is empty, the conclusion obviously holds.
For 0< r < r0, we have

∂p D+r ∩ D = {(x, t) ∈ D : xn−1 = 4nL(1− r) or xn = 1− r}

∪ {(x, t) ∈ D : xn−1 ≤ f (x ′′, t), xn =−r or xn−1 = f (x ′′, t),−r ≤ xn < 0}.
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Given (y, s) ∈ (N1/4(E f )∩ ∂p D)\G f , let 0< r ′′ < r ′ < r0; then ω+
(x,t)

r ′′ (1+r (y, s)) is caloric in D+r ′′ , and
from the way r0 is chosen, vanishes continuously on 1r0(z, h) for each (z, h) ∈ ∂p D+r ′′ ∩ D. Notice that

∂p D+r ′ ∩ D ⊂
⋃

(z,h)∈∂p D+r ′′∩D

9r0(z, h),

hence, applying Lemma 4.2 in each 9r0(z, h)∩ D+r ′′ , we obtain constants C = C(n, L) and γ = γ (n, L),
γ ∈ (0, 1), such that

ω+
(x,t)

r ′′ (1+r )≤ C
(
|x − z| + |t − h|1/2

r0

)γ
≤ C

(
r ′

r0

)γ
for all (x, t) ∈ ∂p D+r ′ ∩ D. (5-8)

The constants C and γ above do not depend on (z, h)∈ ∂p D+r ′′ ∩D, r or r ′′ because of the existence of the
exterior flat parabolic cones centered at each (z, h) with an uniform opening depending only on n and L .

Let r ′′→ 0 in (5-8), we then get

ϑ
(x,t)
+ (1+r )≤ C

( r ′

r0

)γ
uniformly for (x, t) ∈ ∂p D+r ′ ∩ D.

Therefore

lim
r ′→0

sup
(x,t)∈∂p D+r ′∩D

ϑ
(x,t)
+ (1+r )= 0,

which finishes the proof.

Proof of (ii): Let χ1r be the characteristic function of 1r on ∂p D. Let gn be a sequence of nonnegative
continuous functions on ∂p D such that gn ↗ χ1r . Let un be the solution to the heat equation in D with
boundary values gn . Then, by the maximum principle, un(x, t)↗ ω(x,t)(1r ) for (x, t) ∈ D.

Now we estimate ϑ (x,t)+ (1+r )+ϑ
(x,t)
− (1−r ). Let u+n,r ′(x, t) be the solution to the heat equation in D+r ′

with boundary value equal to gn on ∂p D+r ′ ∩ ∂p D and equal to ϑ (x,t)+ (1+r ) otherwise. Since ϑ (x,t)+ (1+r )=

limr ′′→0 ω
+
(x,t)

r ′′ (1+r ) takes the boundary value χ1+r on ∂p D+r ′ ∩ ∂p D, then, by the maximum principle,
we have u+n,r ′(x, t) ≤ ϑ (x,t)+ (1+r ) for (x, t) ∈ D+r ′ . Similarly, u−n,r ′(x, t) ≤ ϑ (x,t)− (1−r ) for (x, t) ∈ D−r ′ .
Therefore, for (x, t) ∈ D+r ′ ∩ D−r ′ and 0< r ′ < r sufficiently small, we have

u+n,r ′(x, t)+ u−n,r ′(x, t)≤ ϑ (x,t)+ (1+r )+ϑ
(x,t)
− (1−r ). (5-9)

Let r ′↘ 0; then D+r ′ ∩ D−r ′ ↗ D. By the comparison principle, there is a nonnegative function ũn in 91,
caloric in D, such that

u+n,r ′(x, t)+ u−n,r ′(x, t)↗ ũn(x, t) as r ′↘ 0, (x, t) ∈ D. (5-10)

By (i) just shown above and (5-9),

sup
∂p D+r ′∩D

u+n,r ′(x, t)+ sup
∂p D−r ′∩D

u−n,r ′(x, t)≤ sup
∂p D+r ′∩D

ϑ
(x,t)
+ (1+r )+ sup

∂p D−r ′∩D
ϑ
(x,t)
− (1−r )→ 0 as r ′→ 0,
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hence it is not hard to see that ũn takes the boundary value gn continuously on ∂p D. Hence, by the
maximum principle, ũn = un in D. This, combined with (5-9) and (5-10), gives

un(x, t)≤ ϑ (x,t)+ (1+r )+ϑ
(x,t)
− (1−r ). (5-11)

Letting n→∞ in (5-11), we obtain

ω(x,t)(1r )≤ ϑ
(x,t)
+ (1+r )+ϑ

(x,t)
− (1+r ).

By taking the approximation gn ↘ χ1r , 0 ≤ gn ≤ 2 and supp gn ⊂ N2r (E f ) ∩ ∂p D, we obtain the
reverse inequality, and hence the equality.

Proof of (iii): We only show it for ϑ+, and assume additionally that 1±r ′ 6=∅.
First, for 0< r ′′ < r ′ < r0, by Lemma 1.1 in [Kemper 1972b], there exists C = C(n)≥ 0 such that

ω
A+r ′ (y,s)
92r ′ (y,s)∩D+(1

+

r ′ )≥ C.

Applying the comparison principle in 92r ′(y, s)∩ D+, we have

ϑ
A+r ′ (y,s)
+ (1+r ′ )≥ C. (5-12)

Next, for 0< r ′′ < r ′ < r0, applying the same induction arguments as in Lemma 4.5, we have

ω+
(x,t)

r ′′ (1+r ′ )≤ Cω+
A+r (y,s)

r ′′ (1+r ′ ) for (x, t) ∈ D+r ′′ \ (9r (y, s))+, (5-13)

where C = C(n, L) is independent of r ′ and r ′′. The reason that C is uniform in r ′′ is as follows. By
the maximum principle, it is enough to show (5-13) for (x, t) ∈ ∂(9r (y, s))+ ∩ D+r ′′ , which is contained
in D+. Hence, the same iteration procedure as in Lemma 4.5, but only on the D+ side, gives (5-13), and
the proof is uniform in r ′′. Therefore, letting r ′′→ 0 in (5-13), we obtain

ϑ
(x,t)
+ (1+r ′ )≤ Cϑ A+r (y,s)

+ (1+r ′ ).

Applying Lemma 4.4 and the maximum principle, we deduce (iii).

Proof of (iv): Applying (iii), (ii), the Harnack inequality and Lemma 4.4, we have that, for given
(y, s) ∈ E f \G f and 0< r < r0,

ϑ
(X,T )
− (1−r )≤ Cϑ

A−r0
(y,s)

− (1−r )≤ CωA−r0
(y,s)

(1r )≤ CωA+2r0
(y,s)

(1r )≤ Cϑ
A+2r0

(y,s)
+ (1+r )≤ Cϑ (X,T )+ (1+r )

for C = C(n, L , r0). The second-last inequality holds because

ϑ
A+2r0

(y,s)
+ (1+r )≥ ϑ

A+2r0
(y,s)

− (1−r ), (5-14)

which follows from the xn-symmetry of D and the comparison principle. Equation (5-14), together
with (ii) just shown above, yields the result. �

Now we use ϑ+ and ϑ− to construct two linearly independent kernel functions at (y, s) ∈ E f \G f .

Theorem 5.3. For (y, s)∈ E f \G f , there exist at least two linearly independent kernel functions at (y, s).
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Proof. Given (y, s) ∈ E f \G f , let r0 be as in (5-2). For m > 1/r0, we consider the sequence

v+m (x, t)=
ϑ
(x,t)
+ (1+1/m(y, s))

ϑ
(X,T )
+ (1+1/m(y, s))

, (x, t) ∈ D. (5-15)

By Proposition 5.2(iii) and the same arguments as in Section 5A, we have, up to a subsequence, that
vm(x, t) converges to a kernel function at (y, s) normalized at (X, T ). We denote it by K+(x, t; y, s).

If we consider instead

v−m (x, t)=
ϑ
(x,t)
− (1−1/m(y, s))

ϑ
(X,T )
− (1−1/m(y, s))

, (x, t) ∈ D, (5-16)

we will obtain another kernel function at (y, s), which we will denote K−(x, t; y, s).
We now show that, for fixed (y, s), K+( · , · ; y, s) and K−( · , · ; y, s) are linearly independent. In

fact, by Proposition 5.2(i), (5-15) and (5-16), we have K+(x, t; y, s)→ 0 as (x, t)→ (y, s) from D−
and K−(x, t; y, s) → 0 as (x, t) → (y, s) from D+. If K+(·, ·; y, s) = K−(·, ·; y, s), then we also
have K+(x, t; y, s)→ 0 as (x, t)→ (y, s) from D+, which will mean that K+(x, t; y, s) is a caloric
function continuously vanishing on the whole of ∂p D. By the maximum principle, K+ will vanish in
the entire domain D, which contradicts the normalization condition K+(X, T ; y, s) = 1. Moreover,
since K+(X, T ; y, s)= K−(X, T ; y, s)= 1, it is impossible that K+( · , · ; y, s)= λK−( · , · ; y, s) for a
constant λ 6= 1. Hence K+ and K− are linearly independent. �

Remark 5.4. The nonuniqueness of the kernel functions at (y, s) shows that the parabolic Martin boundary
of D is not homeomorphic to the Euclidean parabolic boundary ∂p D.

Next we show that K+ and K− in fact span the space of all the kernel functions at (y, s). We use an
argument similar to the one in [Kemper 1972b].

Lemma 5.5. Let (y, s) ∈ E f \G f . There exists a positive constant C = C(n, L , r0) such that, if u is a
kernel function at (y, s) in D, we have either

u ≥ C K+ (5-17)

or
u ≥ C K−. (5-18)

Here K+, K− are the kernel functions at (y, s) constructed from (5-15) and (5-16).

Proof. For 0< r < r0, we consider u±r : D
±
r → R, where u±r (x, t)= u(F±r (x, t)). The functions u±r are

caloric in D±r and continuous up to the boundary. Then, for (x, t) ∈ D±r ,

u±r (x, t)=
∫
∂p D±r

u±r (z, h) dω±
(x,t)

r (z, h)

≥

∫
1±r (y,s)

u±r (z, h) dω±
(x,t)

r (z, h)

≥ inf
(z,h)∈1±r (y,s)

u±r (z, h)ω±
(x,t)

r (1±r (y, s)).
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Note that the parabolic distance between F±r (1
±
r (y, s)) and ∂p D is equivalent to r , and the time lag

between it and A±r (y, s) is equivalent to r2; hence, by the Harnack inequality, there exists C = C(n, L)
such that

inf
(z,h)∈1±r (y,s)

u±r (z, h)≥ Cu(A±r (y, s)).

Hence,
u±r (x, t)≥ Cu(A±r (y, s))ω±

(x,t)

r (1±r (y, s)) for (x, t) ∈ D±r . (5-19)

On the other hand, u is a kernel function at (y, s), and u vanishes on ∂p D \1r/4(y, s) for any 0< r < 1.
Applying Theorem 4.6, we obtain

u(x, t)≤ C max{u(A+r/2(y, s)), u(A−r/2(y, s))}ω(x,t)(1r (y, s)) for (x, t) ∈ D \9r/2(y, s). (5-20)

Case 1: u(A+r/2(y, s))≥ u(A−r/2(y, s)) in (5-20).
By Proposition 5.2(ii) and the Harnack inequality,

u(x, t)≤ Cu(A+r (y, s))(ϑ (x,t)+ (1+r )+ϑ
(x,t)
− (1−r )), (x, t) ∈ D \9r/2(y, s).

In particular,
1= u(X, T )≤ Cu(A+r (y, s))(ϑ (X,T )+ (1+r )+ϑ

(X,T )
− (1−r )). (5-21)

Now (5-19) for u+r , (5-21) and Proposition 5.2(iv) yield the existence of C1 = C1(n, L , r0) such that, for
any 0< r < r0,

u+r (x, t)≥ C
ω+

(x,t)

r (1+r )

ϑ
(X,T )
+ (1+r )+ϑ

(X,T )
− (1−r )

≥ C1
ω+

(x,t)

r (1+r )

ϑ
(X,T )
+ (1+r )

, (x, t) ∈ D+r . (5-22)

Since, by the maximum principle in D+r ,

ω+
(x,t)

r (1+r )≥ ϑ
(x,t)
+ (1+r )− sup

(z,h)∈∂p D+r ∩D
ϑ
(z,h)
+ (1+r ), (5-23)

then (5-22) can be written as

u+r (x, t)≥ C1

(
ϑ
(x,t)
+ (1+r )

ϑ
(X,T )
+ (1+r )

− sup
(z,h)∈∂p D+r ∩D

ϑ
(z,h)
+ (1+r )

ϑ
(X,T )
+ (1+r )

)
, (x, t) ∈ D+r . (5-24)

By Proposition 5.2(iii) and the Harnack inequality, there exists C2 = C2(n, L , r0) such that, for (z, h) ∈
∂p D+r ∩ D,

ϑ
(z,h)
+ (1+r )

ϑ
(X,T )
+ (1+r )

≤ C
ϑ

A+r0
+ (1+r )

ϑ
(X,T )
+ (1+r )

·ϑ
(z,h)
+ (1+r0

)≤ C2ϑ
(z,h)
+ (1+r0

). (5-25)

Hence, (5-24) and (5-25) imply

u+r (x, t)≥ C1

(
ϑ
(x,t)
+ (1+r )

ϑ
(X,T )
+ (1+r )

−C2 sup
(z,h)∈∂p D+r ∩D

ϑ
(z,h)
+ (1+r0

)

)
, (x, t) ∈ D+r .
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Case 2: u(A+r/2(y, s))≤ u(A−r/2(y, s)) in (5-20). Similarly,

u−r (x, t)≥ C1

(
ϑ
(x,t)
− (1−r )

ϑ
(X,T )
− (1−r )

−C2 sup
(z,h)∈∂p D−r ∩D

ϑ
(z,h)
− (1−r0

)

)
, (x, t) ∈ D−r .

Note that as r ↘ 0, D±r ↗ D and u±r → u. Let r j → 0 be such that either Case 1 applies for all r j , or
Case 2 applies. Hence, over a subsequence, it follows by Proposition 5.2(i) and (5-15) that either

u(x, t)≥ C1 lim
r j→0

(
ϑ
(x,t)
+ (1+r j

)

ϑ
(X,T )
+ (1+r j )

−C2 sup
(z,h)∈∂p D+r j∩D

ϑ
(z,h)
+ (1+r0

)

)
= C1K+(x, t) for all (x, t) ∈ D,

or

u(x, t)≥ C1K−(x, t) for all (x, t) ∈ D. �

The next theorem says that K+( · , · ; y, s) and K−( · , · ; y, s) span the space of kernel functions at (y, s).

Theorem 5.6. If u is a kernel function at (y, s)∈E f \G f normalized at (X, T ), then there exists a constant
λ ∈ [0, 1], which may depend on (y, s), such that u( · , · )= λK+( · , · ; y, s)+ (1−λ)K−( · , · ; y, s) in D,
where K+ and K− are kernel functions obtained from (5-15) and (5-16).

Proof. By Lemma 5.5, if u is a kernel function at (y, s), then either (i) u ≥ C K+ or (ii) u ≥ C K− with
C = C(r0, n, L).

If (i) holds, let

λ= sup{C : u(x, t)≥ C K+(x, t) for all (x, t) ∈ D};

then we must have λ ≤ 1, because u(X, T )= K+(X, T )= 1. If λ= 1, then u(x, t)= K+(x, t) for all
(x, t) ∈ D, by the strong maximum principle, and we are done. If λ < 1, consider

u1(x, t) :=
u(x, t)− λK+(x, t)

1− λ
,

which is another kernel function at (y, s) satisfying either (i) or (ii). If (i) holds for u1 for some C > 0,
then u(x, t)≥ (C(1−λ)+λ)K+(x, t), with C(1−λ)+λ > λ, which contradicts the definition of λ as a
supremum. Hence (ii) must be true for u1. Let

λ̃= sup{C : u1(x, t)≥ C K−(x, t) ∀(x, t) ∈ D}.

The same reason as above gives λ̃≤ 1. We claim λ̃= 1.

Proof of the claim: If not, then λ̃ < 1. We get that

u2(x, t) :=
u1(x, t)− λ̃K−(x, t)

1− λ̃

is again a kernel function at (y, s). If u2 satisfies (i) for some C > 0, then

u1(x, t)≥ u1(x, t)− λ̃K−(x, t)≥ C(1− λ̃)K+(x, t),
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which implies
u(x, t)≥ (λ+C(1− λ̃))K+(x, t),

again a contradiction to the definition of λ. Hence, u2 has to satisfy (ii) for some C > 0, and then we have

u2(x, t)≥ (C(1− λ̃)+ λ̃)K−(x, t),

but this contradicts the definition of λ̃. This completes the proof of the claim.
The fact that λ̃= 1 implies that u1(x, t)= K−(x, t) in D, by the strong maximum principle. Hence,

if (i) applies to u, we have u(x, t)= λK+(x, t)+ (1−λ)K−(x, t) with λ ∈ (0, 1]. If (ii) applies to u, we
get the equality with λ ∈ [0, 1). �

5C. Radon–Nikodym derivative as a kernel function. We first show that the kernel function at (y, s) ∈
G f or (y, s)∈ ∂p D\E f is unique. The proof for the uniqueness is similar to Lemma 1.6 and Theorem 1.7
in [Kemper 1972b]. More precisely, we will need the direction-shift operator F0

r :

F0
r (x, t)= (x ′′, xn−1+ 4nLr, xn, t + 8r2), 0< r < 1

4 , (5-26)

D0
r = {(x, t) ∈ D : F0

r (x, t) ∈ D}.

Let ω0
r denote the caloric measure for D0

r . Note that D0
r is also a cylindrical domain with a thin

Lipschitz complement.

Theorem 5.7. For all (y, s) ∈ ∂p D, the limit of (5-1) exists. If we denote the limit by K0( · , · ; y, s), i.e.,

K0(x, t; y, s)= lim
n→∞

ω(x,t)(11/n(y, s))
ω(X,T )(11/n(y, s))

,

then:

(i) For (y, s) ∈ G f or (y, s) ∈ ∂p D \ E f , K0 is the unique kernel function at (y, s).

(ii) If (y, s) ∈ E f \G f , then K0 is a kernel function at (y, s), and

K0(x, t; y, s)= 1
2 K+(x, t; y, s)+ 1

2 K−(x, t; y, s), (5-27)

where K+ and K− are kernel functions at (y, s) given by the limits of (5-15) and (5-16), respectively.

Proof. For (y, s) ∈ G f and r small enough, we denote Ar (y, s)= (y′′, yn−1+ 4nr L , 0, s+ 4r2), which
is on {xn = 0} and has a time-lag 2r2 above A±r . Then, by the Harnack inequality,

ωA±r (y,s)(1r ′(y, s))≤ C(n, L)ωAr (y,s)(1r ′(y, s)) for all 0< r ′ < r.

Then one can proceed as in Lemma 1.6 of [ibid.] by using F0
r , D0

r , ω0 to show that any kernel function
u (at (y, s)) satisfies u ≥ C K0 for some C > 0. Then the uniqueness follows from Theorem 1.7 and
Remark 1.8 of [ibid.].

For (y, s)∈ ∂p D\E f , for r sufficiently small one has either 9r (y, s)∩D⊂ D+ or 9r (y, s)∩D⊂ D−.
In either case, one can proceed as in Lemma 1.6, Theorem 1.7 and Remark 1.8 of [ibid.].
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For (y, s) ∈ E f \G f , by Theorem 5.6, K0(x, t; y, s) = λK+(x, t; y, s)+ (1− λ)K−(x, t; y, s) for
some λ∈ [0, 1]. By Proposition 5.2(ii), the symmetry of the domain about xn−1 and the definitions of K±,
one has λ= 1

2 . �

Remark 5.8. From Theorem 5.7, we can conclude that the Radon–Nikodym derivative dω(x,t)/dω(X,T )

exists at every (y, s) ∈ ∂p D and it is the kernel function K0(x, t; y, s) with respect to (X, T ).

The following corollary is an easy consequence of Theorems 5.6 and 5.7.

Corollary 5.9. For fixed (x, t) ∈ D, the function (y, s) 7→ K0(x, t; y, s) is continuous on ∂p D, where K0

is given by the limit of (5-1).

Proof. Given (y, s) ∈ ∂p D, let (ym, sm) ∈ ∂p D with (ym, sm)→ (y, s) as m→∞.
If (y, s) ∈ G f or ∂p D \ E f , continuity follows from the uniqueness of the kernel function.
If (y, s) ∈ E f \G f , by Theorem 5.7(ii), for each m we have

K0(x, t; ym, sm)=
1
2 K+(x, t; ym, sm)+

1
2 K−(x, t; ym, sm). (5-28)

Given ε > 0, K+( · , · ; ym, sm) is uniformly bounded and equicontinuous on D \9ε(y, s) for m large
enough. Hence, by a similar argument as in Section 5A, up to a subsequence, K+( · , · ; ym, sm)→

v+( · , · ; y, s) uniformly on compact subsets, where v+( · , · ; y, s) is some kernel function at (y, s).
Moreover, by Theorem 5.6, we have

v+( · , · ; y, s)= λK+( · , · ; y, s)+ (1− λ)K−( · , · ; y, s) for some λ ∈ [0, 1]. (5-29)

By Proposition 5.2(i),

sup
(x,t)∈∂p D+r ∩D

K+(x, t; ym, sm)→ 0 as r→ 0,

which is uniform in m from the proof of the proposition. Hence, after m→∞, v+ satisfies

sup
(x,t)∈∂p D+r ∩D

v+(x, t)→ 0 as r→ 0,

which, combined with

K−(x, t; y, s) 6→ 0 as (x, t)→ (y, s), for (x, t) ∈ D−,

gives λ= 1 in (5-29).
Similarly, up to a subsequence, K−(x, t; ym, sm)→ K−(x, t; y, s).
Thus, along a subsequence, K ( · , · ; ym, sm)→ K0( · , · ; y, s) by (5-27). Since this holds for all the

convergent subsequences, then K0(x, t; y, s) is continuous on ∂p D for fixed (x, t). �

By using Corollary 5.9, Remark 5.8 and Theorem 4.6, we can prove some uniform behavior of K0 on
∂p D, as in Lemmas 2.2 and 2.3 of [Kemper 1972b]. We state the results in the following two lemmas
and omit the proof of the first.
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Lemma 5.10. Let (y, s) ∈ ∂p D. Then, for 0< r < 1
4 ,

sup
(y′,s′)∈∂p D\1r (y,s)

K0(x, t; y′, s ′)→ 0 as (x, t)→ (y, s) in D.

The following lemma says that if D′ is a domain obtained by a perturbation of a portion of ∂p D where
ω(x,t) vanishes, then the caloric measure ωD′ is equivalent to ωD on the common boundary of D′ and D.
We recall here that ω0

r is the caloric measure with respect to the domain D0
r defined in (5-26), and ω±r is

the caloric measure with respect to D±r defined in (5-5).

Lemma 5.11. (i) Let 0 < r < 1
4 and (y, s) ∈ G f ∪ (∂p D \ E f ) with s > −1+ 4r2. Then there exist

ρ0 = ρ0(n, L) > 0 and C = C(n, L) > 0 such that, for 0< ρ < ρ0, we have

ω0(X
′,T ′)

ρ (1r (y, s))≥ Cω(X
′,T ′)(1r (y, s)), (X ′, T ′) ∈91/4(X, T ), (5-30)

provided also r < |yn| for (y, s) ∈ ∂p D \ E f .

(ii) Let (y, s) ∈ (Nr (E f )∩ ∂p D) \G f . Then there exists δ0 = δ0(n, L) > 0, such that, for 0 < r ′ < δ0,
we have

ω+
(X ′,T ′)

r ′ (1+r (y, s))+ω−
(X ′,T ′)

r ′ (1−r (y, s))≥ 1
2ω

(X ′,T ′)(1r (y, s)) (5-31)

for (X ′, T ′) ∈91/4(X, T ) and 0< r < r0, where r0 is the constant defined in (5-2).

Proof. To show (5-31) we first argue similarly as in [Kemper 1972b] to show there exists δ0= δ0(n, L)> 0
such that, for any 0< r ′ < δ0,

ω±
(X ′,T ′)

r ′ (1±r (y, s))≥ 1
2ϑ

(X ′,T ′)
± (1±r (y, s)) (5-32)

for each 1±r (y, s) with 0< r < r0. Then using Proposition 5.2(ii) we get the conclusion. �

6. Backward boundary Harnack principle

In this section, we follow the lines of [Fabes et al. 1984] to build up a backward Harnack inequality for
nonnegative caloric functions in D. To prove this kind of inequality, we have to ask that these functions
vanish on the lateral boundary

S := ∂p D ∩ {s >−1},

or at least a portion of it. This will allow to control the time-lag issue in the parabolic Harnack inequality.
Some of the proofs in this section follow the lines of the corresponding proofs in [ibid.]. For that

reason, we will omit the parts that don’t require modifications or additional arguments.
For (x, t) and (y, s) ∈ D, denote by G(x, t; y, s) the Green’s function for the heat equation in the

domain D. Since D is a regular domain, the Green’s function can be written in the form

G(x, t; y, s)= 0(x, t; y, s)− V (x, t; y, s),

where 0( · , · ; y, s) is the fundamental solution of the heat equation with pole at (y, s), and V ( · , · ; y, s)
is a caloric function in D that equals 0( · , · ; y, s) on ∂p D. We note that, by the maximum principle, we
have G(x, t; y, s)= 0 whenever (x, t) ∈ D with t ≤ s.
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In this section, similarly to Section 5, we will work under Convention 5.1. In particular, in Green’s func-
tion we will allow the pole (y, s) to be in D̃ with s ≥ 1. But in that case we simply have G(x, t; y, s)= 0
for all (x, t) ∈ D.

Lemma 6.1. Let 0< r < 1
4 and (y, s)∈ S with s≥−1+8r2. Then there exists a constant C =C(n, L)> 0

such that, for (x, t) ∈ D ∩ {t ≥ s+ 4r2
}, we have

C−1rn max{G(x, t; A±r (y, s))} ≤ ω(x,t)(1r (y, s))≤ Crn max{G(x, t; A±r (y, s))}

if (y, s) ∈ Nr (E f ), (6-1)

and

C−1rnG(x, t; Ar (y, s))≤ ω(x,t)(1r (y, s))≤ CrnG(x, t; Ar (y, s)) if (y, s) 6∈ Nr (E f ). (6-2)

Proof. The proof uses Lemma 4.4 and Theorem 4.3, and is similar to that of Lemma 1 in [ibid.]. �

Theorem 6.2 (interior backward Harnack inequality). Let u be a positive caloric function in D vanishing
continuously on S. Then, for any compact K b D, there exists a constant C = C(n, L , distp(K , ∂p D))
such that

max
K

u ≤ C min
K

u.

Proof. The proof is similar to that of Theorem 1 in [ibid.], and uses Theorem 4.3 and the Harnack inequality.
�

Theorem 6.3 (local comparison theorem). Let 0 < r < 1
4 , (y, s) ∈ S with s ≥ −1+ 18r2, and u, v be

two positive caloric functions in 93r (y, s)∩ D vanishing continuously on 13r (y, s). Then there exists
C = C(n, L) > 0 such that, for (x, t) ∈9r/8(y, s)∩ D, we have

u(x, t)
v(x, t)

≤ C
max{u(A+r (y, s)), u(A−r (y, s))}
min{v(A+r (y, s)), v(A−r (y, s))}

if (y, s) ∈ Nr (E f ), (6-3)

and
u(x, t)
v(x, t)

≤ C
u(Ar (y, s))
v(Ar (y, s))

if (y, s) 6∈ N(E f ). (6-4)

Proof. The proof is similar to that of Theorem 3 in [ibid.]. First, note that if 9r/8(y, s)∩ E f =∅, we can
consider the restrictions of u and v to D+ or D− (which are Lipschitz cylinders) and apply the arguments
from [ibid.] directly there. Thus, we may assume that 9r/8(y, s)∩ E f 6=∅. If we now argue as in the
proof of the localization property (Lemma 2.3) by replacing (y, s) and r with (ỹ, s̃) ∈9(3/8)r (y, s)∩ E f ,
we may further assume that (y, s) ∈ E f , and that 9r (y, s)∩ D falls either into category (2) or (3) in
the localization property. For definiteness, we will assume category (3). To account for the possible
change in (y, s), we then change the hypothesis to assume that u = 0 on 12r (y, s), and prove (6-3) for
(x, t) ∈9r/2(y, s)∩ D.

With this simplification in mind, we proceed as in the proof of Theorem 3 in [ibid.]. By using Lemma 6.1
and Theorem 4.6, we first show

ω(x,t)r (αr )≤ Cω(x,t)r (βr ), (x, t) ∈9r/2(y, s)∩ D, (6-5)
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where αr = ∂p(9r (y, s) ∩ D) \ S, βr = ∂p(9r (y, s) ∩ D) \Nµr (S) with a small fixed µ ∈ (0, 1), and
where ωr denotes the caloric measure with respect to 9r (y, s)∩ D. Then by Theorem 4.3, the Harnack
inequality and the maximum principle, we obtain

u(x, t)≤ C max{u(A+r (y, s)), u(A−r (y, s))}ω(x,t)r (αr ),

v(x, t)≥ C min{v(A+r (y, s)), v(A−r (y, s))}ω(x,t)r (βr ),

which, combined with (6-5), completes the proof. �

Theorem 6.4 (global comparison theorem). Let u, v be two positive caloric functions in D, vanishing
continuously on S, and let (x0, t0) be a fixed point in D. If δ > 0, then there exists C = C(n, L , δ) > 0
such that

u(x, t)
v(x, t)

≤ C
u(x0, t0)
v(x0, t0)

for all (x, t) ∈ D ∩ {t >−1+ δ2
}. (6-6)

Proof. This is an easy consequence of Theorems 6.2 and 6.3. �

Now we show the doubling properties of the caloric measure at the lateral boundary points by using
the properties of the kernel functions we showed in Section 5. The idea of the proof is similar to that of
Lemma 2.2 in [Wu 1979], but with a more careful inspection of the different types of boundary points.

To proceed, we will need to define the time-invariant corkscrew points at (y, s) on the lateral boundary,
in addition to future and past corkscrew points. Namely, for (y, s) ∈ S, we let

Ar (y, s)= (y(1− r), s) if 9r (y, s)∩ E f =∅,

A±r (y, s)= (y′′, yn−1+ r/2,±r/2, s) if 9r (y, s)∩ E f 6=∅.

Theorem 6.5 (doubling at the lateral boundary points). For 0< r < 1
4 and (y, s) ∈ S with s ≥−1+ 8r2,

there exist ε0 = ε0(n, L) > 0 small and C = C(n, L) > 0 such that, for any r < ε0, we have:

(i) If (y, s) ∈ E f and 92r (y, s)∩G f 6=∅, then

C−1rnG(X, T ; A±r (y, s))≤ ω(X,T )(1r (y, s))≤ CrnG(X, T ; A±r (y, s)). (6-7)

(ii) If (y, s) ∈ Nr (E f )∩ ∂p D and 92r (y, s)∩G f =∅, then

C−1rnG(X, T ; A+r (y, s))≤ ϑ (X,T )+ (1+r (y, s))≤ CrnG(X, T ; A+r (y, s)), (6-8)

C−1rnG(X, T ; A−r (y, s))≤ ϑ (X,T )− (1−r (y, s))≤ CrnG(X, T ; A−r (y, s)). (6-9)

(iii) If (y, s) ∈ ∂p D \Nr (E f ), then

C−1rnG(X, T ; Ar (y, s))≤ ω(X,T )(1r (y, s))≤ CrnG(X, T ; Ar (y, s)). (6-10)

Moreover, there is a constant C = C(n, L) > 0 such that:

• For (y, s) ∈ S ∩ {s ≥−1+ 8r2
},

ω(X,T )(12r (y, s))≤ Cω(X,T )(1r (y, s))u(x, t). (6-11)
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• For (y, s) ∈ Nr (E f )∩ S ∩ {s ≥−1+ 8r2
},

ϑ
(X,T )
+ (1+2r (y, s))≤ Cϑ (X,T )+ (1+r (y, s)),

ϑ
(X,T )
− (1−2r (y, s))≤ Cϑ (X,T )− (1−r (y, s)). (6-12)

Proof. We start by showing the estimates from above in (6-7) and (6-8).

Case 1: (y, s) ∈ E f and 92r (y, s)∩G f 6=∅. By Lemma 2.3, there is (ỹ, s̃) ∈ G f such that

9r (y, s)∩ D ⊂94r (ỹ, s̃)∩ D ⊂98r (y, s)∩ D.

It is not hard to check, by (5-26), that F0
r (14r (ỹ, s̃)) ⊂ D. Moreover, the parabolic distance between

F0
r (14r (ỹ, s̃)) and ∂p D, and the t-coordinate distance from F0

r (14r (ỹ, s̃)) down to A±r , are greater
than cr for some universal c which only depends on n and L . Therefore, by the estimate of Green’s
function as in [Wu 1979], we have

G(x, t; A±r (y, s))≥ C(n, L)r−n, (x, t) ∈ F0
r (14r (ỹ, s̃)).

Applying the maximum principle to F0
r (D

0
r ), we have

G(x, t; A±r (y, s))≥ C(n, L)r−nω0F0−1
r (x,t)

r (14r (ỹ, s̃)).

In particular,

G(X, T ; A±r (y, s))≥ C(n, L)r−nω0F0−1
r (X,T )

r (14r (ỹ, s̃)).

Let (Xr , Tr ) := F0−1

r (X, T ) and take (X ′, T ′) ∈ D with T ′ = T − 1
4 , X ′ = X , so that T ′ > 1

4 + Tr . Then
we obtain, by the Harnack inequality, that

G(X, T ; A±r (y, s))≥ C(n, L)r−nω0(X
′,T ′)

r (14r (ỹ, s̃)). (6-13)

By Lemma 5.11(i), for 0< r <min
{1

4 , ρ0
}
, there exists C = C(n, L), independent of r , such that

ω0(X
′,T ′)

r (14r (ỹ, s̃))≥ Cω(X
′,T ′)(14r (ỹ, s̃)). (6-14)

By Theorem 5.7, for each (ỹ, s̃) ∈ G f ,

K0(X ′, T ′; ỹ, s̃)= lim
r→0

ω(X
′,T ′)(14r (ỹ, s̃))

ω(X,T )(14r (ỹ, s̃))
> 0,

and by Corollary 5.9, for (X ′, T ′) fixed, K0(X ′, T ′; · , · ) is continuous on ∂p D. Therefore, in the compact
set G f , there exists c> 0, only depending on n, L , such that K0(X ′, T ′; ỹ, s̃)≥ c> 0 for any (ỹ, s̃)∈G f .
Hence, by the Radon–Nikodym theorem for 0< r <min{ 14 , ρ0}, we have

ω(X
′,T ′)(14r (ỹ, s̃))≥ c

2
ω(X,T )(14r (ỹ, s̃))≥ c

2
ω(X,T )(1r (y, s)). (6-15)

Combining (6-13), (6-14) and (6-15), we obtain the estimate from above in (6-7) for Case 1.
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Case 2: (y, s) ∈ Nr (E f )∩ ∂p D and 92r (y, s)∩G f =∅.
In this case, 92r (y, s)∩D splits into the disjoint union of 92r (y, s)∩D±. We use F+r and F−r , defined

in (5-3) and (5-4), and apply the same arguments as in Case 1 in D+r and D−r . Then

ω±
(X,T )

r (1±r (y, s))≤ CrnG(X, T ; A±r (y, s)).

Taking 0< r < δ0, where δ0 = δ0(n, L) is the constant in Lemma 5.11(ii), we have

ϑ
(X,T )
± (1r (y, s))≤ 2ω±(X,T )r (1r (y, s))≤ CrnG(X, T ; A±r (y, s)).

Case 3: (y, s) ∈ ∂p D \Nr (E f ). We argue similarly to Cases 1 and 2.

Taking ε0 =min
{
ρ0, δ0,

1
4

}
, we complete the proof of the estimates from above in (6-7)–(6-10).

The proof of the estimate from below in (6-7)–(6-10) is the same as in [Wu 1979]. For (6-7) it is
a consequence of Lemma 4.4 and the maximum principle. (6-8) and (6-9) follow from (5-12) and the
maximum principle. The doubling properties of caloric measure ω(x,t) and θ (x,t)± are easy consequences
of (6-7)–(6-10) and Proposition 5.2(ii) for 0< r < ε0/2. For r > ε0/2 we use Lemma 4.4 and (5-12). �

Theorem 6.5 implies the following backward Harnack principle.

Theorem 6.6 (backward boundary Harnack principle). Let u be a positive caloric function in D vanishing
continuously on S, and let δ > 0. Then there exists a positive constant C = C(n, L , δ) such that, for
(y, s) ∈ ∂p D ∩ {s >−1+ δ2

} and for 0< r < r(n, L , δ) sufficiently small, we have

C−1u(A+r (y, s))≤ u(A+r (y, s))≤ Cu(A+r (y, s))

C−1u(A−r (y, s))≤ u(A−r (y, s))≤ Cu(A−r (y, s))

}
if (y, s) ∈ Nr (E f )

and

C−1u(Ar (y, s))≤ u(Ar (y, s))≤ Cu(Ar (y, s)) if (y, s) 6∈ Nr (E f ). (6-16)

Proof. Once we have Theorem 6.5, which is an analogue of Lemma 2.2 in [Wu 1979], we can proceed as
in Theorem 4 in [Fabes et al. 1984] to show the backward Harnack principle. �

Remark 6.7. From (6-7), and using the same proof as in Theorem 6.6, we can conclude that, for any
positive caloric function u vanishing continuously on S and (y, s) ∈ G f , there exists C = C(n, L , δ) > 0
such that

C−1u(A−r (y, s))≤ u(A+r (y, s))≤ Cu(A−r (y, s)),

C−1u(A−r (y, s))≤ u(A+r (y, s))≤ Cu(A−r (y, s)).

7. Various versions of boundary Harnack

In the applications, it is very useful to have a local version of the backward Harnack for solutions vanishing
only on a portion of the lateral boundary S. For the parabolically Lipschitz domains this was proved in
[Athanasopoulos et al. 1996] as a consequence of the (global) backward Harnack principle.
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To state the results, we use the following corkscrew points associated with (y, s)∈G f : for 0< r < 1
4 , let

Ar (y, s)= (y′′, yn−1+ 4nLr, 0, s+ 2r2),

Ar (y, s)= (y′′, yn−1+ 4nLr, 0, s− 2r2),

Ar (y, s)= (y′′, yn−1+ 4nLr, 0, s).

When (y, s)= (0, 0), we simply write Ar , Ar and Ar , in addition to 9r , 1r , A±r , A±r .

Theorem 7.1. Let u be a nonnegative caloric function in D, vanishing continuously on E f . Let m =
u(A3/4), M = supD u. Then there exists a constant C = C(n, L ,M/m) such that, for any 0 < r < 1

4 ,
we have

u(Ar )≤ Cu(Ar ). (7-1)

Proof. Using Theorems 6.6 and 6.5 and following the lines of Theorem 13.7 in [Caffarelli and Salsa
2005], we have

u(A±2r )≤ Cu(A±2r ), 0< r < 1
4 ,

for C =C(n, L ,M/m). Then (7-1) follows from Theorem 6.6 and the observation that there is a Harnack
chain with constant µ= µ(n, L) and length N = N (n, L) joining Ar to A±2r and A±2r to Ar . �

Theorem 7.1 implies the boundary Hölder-regularity of the quotient of two negative caloric functions
vanishing on E f . The proof of the following corollary is the same as for Corollary 13.8 in [Caffarelli and
Salsa 2005], and is therefore omitted.

Theorem 7.2. Let u1, u2 be nonnegative caloric functions in D continuously vanishing on E f . Let
Mi = supD ui and mi = ui (A3/4) with i = 1, 2. Then we have

C−1 u1(A1/4)

u2(A1/4)
≤

u1(x, t)
u2(x, t)

≤ C
u1(A1/4)

u2(A1/4)
for (x, t)∩91/8 ∩ D, (7-2)

where C = C(n, L ,M1/m1,M2/m2). Moreover, if u1 and u2 are symmetric in xn , then u1/u2 extends
to a function in Cα(91/8) for some 0 < α < 1, where the exponent α and the Cα-norm depend only on
n, L ,M1/m1,M2/m2. �

Remark 7.3. The symmetry condition in the latter part of the theorem is important to guarantee the
continuous extension of u1/u2 to the Euclidean closure 91/8 \ E f =91/8, since the limits at E f \G f as
we approach from different sides may be different. Without the symmetry condition, one may still prove
that u1/u2 extends to a Cα function on the completion (91/8 \ E f )

∗ with respect to the inner metric.

For a more general application, we need to have a boundary Harnack inequality for u satisfying a
nonhomogeneous equation with bounded right-hand side, but additionally with a nondegeneracy condition.
The method we use here is similar to the one used in the elliptic case [Caffarelli et al. 2008].

Theorem 7.4. Let u be a nonnegative function in D, continuously vanishing on E f , and satisfying

|1u− ∂t u| ≤ C0 in D, (7-3)

u(x, t)≥ c0 distp((x, t), E f )
γ in D, (7-4)
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where 0< γ < 2, c0 > 0, C0 ≥ 0. Then there exists C = C(n, L , γ,C0, c0) > 0 such that, for 0< r < 1
4 ,

we have

u(x, t)≤ Cu(Ar ), (x, t) ∈9r . (7-5)

Moreover, if M = supD u, then there exists a constant C = C(n, L , γ,C0, c0,M) such that, for any
0< r < 1

4 , we have

u(Ar )≤ Cu(Ar ). (7-6)

Proof. Let u∗ be a solution to the heat equation in 92r ∩ D that is equal to u on ∂p(92r ∩ D). Then, by
the Carleson estimate, we have u∗(x, t)≤ C(n, L)u∗(Ar ) for (x, t) ∈9r .

On the other hand, we have

u∗(x, t)+C(|x |2− t − 8r2)≤ u(x, t) on ∂p(92r ∩ D),

(1− ∂t)(u∗(x, t)+C(|x |2− t − 8r2))≥ C(2n− 1)≥ (1− ∂t)u(x, t) in 92r ∩ D

for C ≥ C0/(2n − 1). Hence, by the comparison principle, we have u∗ − u ≤ Cr2 in 92r ∩ D for
C = C(C0, n). Similarly, u− u∗ ≤ Cr2, and hence |u− u∗| ≤ Cr2 in 92r ∩ D. Consequently,

u(x, t)≤ C(n, L)(u(Ar )+C(C0, n)r2), (x, t) ∈9r . (7-7)

Next, note that, by the nondegeneracy condition (7-4),

u(Ar )≥ c0rγ ≥ c0r2, r ∈ (0, 1). (7-8)

Thus, combining (7-7) and (7-8), we obtain (7-5).
The proof of (7-6) follows in a similar manner from Theorem 7.1 for u∗. �

Remark 7.5. In fact, the nondegeneracy condition (7-4) is necessary. An easy counterexample is
u(x, t) = x2

n−1x2
n in 91 and E f = {(x, t) : xn−1 ≤ 0, xn = 0} ∩91. Then u(Ar ) = 0 for r ∈ (0, 1), but

obviously u does not vanish in 9r ∩ D.

We next state a generalization of the local comparison theorem.

Theorem 7.6. Let u1, u2 be nonnegative functions in D, continuously vanishing on E f , and satisfying

|1ui − ∂t ui | ≤ C0 in D,

ui (x, t)≥ c0 distp((x, t), E f )
γ in D

for i = 1, 2, where 0 < γ < 2, c0 > 0, C0 ≥ 0. Let M = max{supD u1, supD u2}. Then there exists a
constant C = C(n, L , γ,C0, c0,M) > 0 such that

C−1 u1(A1/4)

u2(A1/4)
≤

u1(x, t)
u2(x, t)

≤ C
u1(A1/4)

u2(A1/4)
, (x, t) ∈91/8 ∩ D. (7-9)

Moreover, if u1 and u2 are symmetric in xn , then u1/u2 extends to a function in Cα(91/8) for some
0< α < 1, with α and the Cα-norm depending only on n, L , γ,C0, c0,M.
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To prove this theorem, we will also need the following two lemmas, which are essentially Lemmas 11.5
and 11.8 in [Danielli et al. 2013]. The proofs are therefore omitted.

Lemma 7.7. Let 3 be a subset of Rn−1
× (−∞, 0], and h(x, t) a continuous function in 91. Then, for

any δ0 > 0, there exists ε0 > 0 depending only on δ0 and n such that, if :

(i) h ≥ 0 on 91 ∩3,

(ii) (1− ∂t)h ≤ ε0 in 91 \3,

(iii) h ≥−ε0 in 91,

(iv) h ≥ δ0 in 91 ∩ {|xn| ≥ βn}, βn = 1/(32
√

n− 1),

then h ≥ 0 in 91/2. �

Lemma 7.8. For any δ0 > 0, there exists ε0 > 0 and c0 > 0, depending only on δ0 and n, such that, if h is
a continuous function on 91 ∩ {0≤ xn ≤ βn}, βn = 1/(32

√
n− 1), satisfying:

(i) (1− ∂t)h ≤ ε0 in 91 ∩ {0< xn < βn},

(ii) h ≥ 0 in 91 ∩ {0< xn < βn},

(iii) h ≥ δ0 on 91 ∩ {xn = βn},

then

h(x, t)≥ c0xn in 91/2 ∩ {0< xn < βn}. �

Proof of Theorem 7.6. We first note that, arguing as in the proof of Theorem 7.4 and using Theorem 7.1,
we will have that

ui (x, t)≤ Cui (A1/4), (x, t) ∈91/8, (7-10)

for C = C(n, L , γ,C0, c0,M). Next, dividing ui by ui (A1/4), we can assume ui (A1/4) = 1. Then
consider the rescalings

uiρ(x, t)=
ui (ρx, ρ2t)

ργ
, ρ ∈ (0, 1), i = 1, 2.

It is immediate to verify that, for (x, t) ∈91/(8ρ) ∩ D, the functions uiρ satisfy

|(1− ∂t)uiρ(x, t)| ≤ C0ρ
2−γ , (7-11)

uiρ(x, t)≥ c0 distp((x, t), E fρ )
γ , (7-12)

uiρ(x, t)≤
C
ργ
, where C is the constant in (7-10), (7-13)

where fρ(x ′′, t)= (1/ρ) f (ρx ′′, ρ2t) is the scaling of f . By (7-12), there exists cn > 0 such that

uiρ(x, t)≥ c0cn, (x, t) ∈91/(8ρ) ∩ {|xn| ≥ βn}. (7-14)

Consider now the difference
h = u2ρ − su1ρ
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for a small positive s, specified below. By (7-11), (7-14) and (7-13), one can choose a positive ρ =
ρ(n, L , γ,C0, c0,M) < 1

16 and s = s(ρ, n, c0,C) > 0 such that

h(x, t)≥ c0cn − s ·
C
ργ
≥

c0cn

2
, (x, t) ∈91/(8ρ) ∩ {|xn| ≥ βn},

h(x, t)≥−s ·
C
ργ
≥−ε0, (x, t) ∈91/(8ρ),

|(1− ∂t)h(x, t)| ≤ C0ρ
2−γ
≤ ε0, (x, t) ∈91/(8ρ) ∩ D,

where ε0 = ε0(c0, cn, n) is the constant in Lemma 11.5 of [Danielli et al. 2013]. Thus, by that result,
h > 0 in 91/2 ∩ D, which implies

u1(x, t)
u2(x, t)

≤
1
s
, (x, t) ∈9ρ/2 ∩ D. (7-15)

By moving the origin to any (z, h) ∈91/8 ∩ E f , we will therefore obtain the bound

u1(x, t)
u2(x, t)

≤ C(n, L , γ,C0, c0,M) (7-16)

for any (x, t)∈91/8∩Nρ/2(E f )∩D. On the other hand, for (x, t)∈91/8 \Nρ/2(E f ), the estimate (7-16)
will follow from (7-4) and (7-10). Hence, (7-16) holds for any (x, t) ∈91/8 ∩ D, which gives the bound
from above in (7-9). Changing the roles of u1 and u2, we get the bound from below.

The proof of Cα-regularity follows by iteration from (7-9), similarly to the proof of Corollary 13.8 in
[Caffarelli and Salsa 2005]; however, we need to make sure that at every step the nondegeneracy condition
is satisfied. We will only verify the Hölder-continuity of u1/u2 at the origin, the rest being standard.

For k ∈ N and λ > 0 to be specified below, let

lk = inf
9
λk∩D

u1

u2
, Lk = sup

9
λk∩D

u1

u2
.

Then we know that 1/C ≤ lk ≤ Lk ≤ C for λ≤ 1
8 . Let also

µk =
u1(Aλk/4)

u2(Aλk/4)
∈ [lk, Lk].

Then there are two possibilities:

either Lk −µk ≥
1
2(Lk − lk) or µk − lk ≥

1
2(Lk − lk).

For definiteness, assume that we are in the latter case, the former case being treated similarly. Then
consider the two functions

v1(x, t)=
u1(λ

k x, λ2k t)− lku2(λ
k x, λ2k t)

u1(Aλk/4)− lku2(Aλk/4)
, v2(x, t)=

u2(λ
k x, λ2k t)

u2(Aλk/4)
.
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In 91 \ E f
λk , we will have

|(1− ∂t)v1(x, t)| ≤
λ2k(1+ lk)C0

u1(Aλk/4)− lku2(Aλk/4)
,

|(1− ∂t)v2(x, t)| ≤
λ2kC0

u2(Aλk/4)
.

To proceed, fix a small η0> 0, to be specified below. From the nondegeneracy of u2, we immediately have

|(1− ∂t)v2(x, t)| ≤ Cλ(2−γ )k < η0

if we take λ small enough. For v1, we have a dichotomy:

either |(1− ∂t)v1(x, t)| ≤ η0 or µk − lk ≤ Cλ(2−γ )k .

In the latter case, we obtain

Lk − lk ≤ 2(µk − lk)≤ Cλ(2−γ )k . (7-17)

In the former case, we notice that both functions v = v1, v2 satisfy

v ≥ 0, v(A1/4)= 1 and |(1− ∂t)v(x, t)| ≤ η0 in 91 \ E f
λk ,

and that v vanishes continuously on 91 ∩ E f
λk . We next establish a nondegeneracy property for such v.

Indeed, first note that, by the parabolic Harnack inequality (see Theorems 6.17 and 6.18 in [Lieberman
1996]), for small enough η0, we will have that

v ≥ cn on 91/8 ∩ {|xn| ≥ βn/8}.

Then, by invoking Lemma 7.8, we will obtain that

v(x, t)≥ cn|xn| in 91/16 \ E f
λk . (7-18)

We further claim that

v(x, t)≥ c distp((x, t), E f
λk ) in 91/32 \ E f

λk . (7-19)

To this end, for (x, t) ∈91/32 \ E f
λk , let d = sup{r :9r (x, t)∩ E f

λk =∅}, and consider the box 9d(x, t).
Without loss of generality, assume xn ≥ 0. Then let (x∗, t∗) = (x ′, xn + d, t − d2) ∈ ∂p9d(x, t). From
(7-18), we have that

v(x∗, t∗)≥ cn(xn + d)≥ cnd,

and, applying the parabolic Harnack inequality, we obtain

v(x, t)≥ cnv(x∗, t∗)−Cnη0d2
≥ cnd

provided η0 is sufficiently small. Hence, (7-19) follows.
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Having the nondegeneracy, we also have the bound from above for the functions v1 and v2. Indeed, by
Theorem 7.4 for v1 and v2, we have

sup
91

v1 ≤ Cv1(A1/4)= C
u1(Aλk/4)− lku2(Aλk/4)

u1(Aλk/4)− lku2(Aλk/4)
≤ C

u2(Aλk/4)

u2(Aλk/4)

Lk − lk

µk − lk
≤ C (7-20)

and

sup
91

v2 ≤ Cv2(A1/4)= C
u2(Aλk/4)

u2(Aλk/4)
≤ C, (7-21)

where we have also invoked the second part of Theorem 7.4 for u2.
We have thus verified all conditions necessary for applying the estimate (7-9) to the functions v1 and v2.

Particularly, the inequality from below, applied in 98λ \ E f
λk , will give

inf
9λ\E f

λk

v1

v2
≥ c

v1(A2λ)

v2(A2λ)
≥ cλ

for a small c > 0, or equivalently

lk+1− lk ≥ cλ(µk − lk)≥
cλ
2
(Lk − lk).

Hence, we will have

Lk+1− lk+1 ≤ Lk − lk − (lk+1− lk)≤
(

1− cλ
2

)
(Lk − lk). (7-22)

Summarizing, (7-17) and (7-22) give a dichotomy: for any k ∈ N,

either Lk − lk ≤ Cλ(2−γ )k or Lk+1− lk+1 ≤ (1− cλ/2)(Lk − lk).

This clearly implies that

Lk − lk ≤ Cβk for some β ∈ (0, 1),

for any k ∈ N, which is nothing but the Hölder-continuity of u1/u2 at the origin. �

We next want to prove a variant of Theorem 7.6, but with the 9r replaced with their lower halves

2r =9r ∩ {t ≤ 0}.

Theorem 7.9. Let u1, u2 be nonnegative functions in 21 \ E f , continuously vanishing on 21 ∩ E f ,
and satisfying

|1ui − ∂t ui | ≤ C0 in 21 \ E f ,

ui (x, t)≥ c0 distp((x, t), E f ) in 21 \ E f

for i = 1, 2, for some c0 > 0, C0 ≥ 0. Let also M =max{supD u1, supD u2}. If u1 and u2 are symmetric
in xn , then u1/u2 extends to a function in Cα(21/8) for some 0< α < 1, with α and Cα-norm depending
only on n, L , γ,C0, c0,M.
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The idea is that the functions ui can be extended to 9δ, for some δ > 0, while still keeping the same
inequalities, including the nondegeneracy condition.

Lemma 7.10. Let u be a nonnegative continuous function on 21 such that

u = 0 in 21 ∩ E f ,

|(1− ∂t)u| ≤ C0 in 21 \ E f ,

u(x, t)≥ c0 distp((x, t), E f ) in 21 \ E f ,

for some C0 ≥ 0, c0 > 0. Then there exist positive δ and c̃0, depending only on n, L , c0 and C0, and a
nonnegative extension ũ of u to 9δ, such that

ũ = 0 in 9δ ∩ E f ,

|(1− ∂t)ũ| ≤ C0 in 9δ \ E f ,

ũ(x, t)≥ c̃0 distp((x, t), E f ) in 9δ \ E f .

Moreover, we will also have that sup9δ ũ ≤ sup21
u.

Proof. We first continuously extend the function u from the parabolic boundary ∂p21/2 to ∂p91/2 by
keeping it nonnegative and bounded above by the same constant. Further, put u = 0 on E f ∩(91/2 \21/2).
Then extend u to 91/2 by solving the Dirichlet problem for the heat equation in (91/2 \21/2) \ E f , with
already defined boundary values. We still denote the extended function by u.

Then it is easy to see that u is nonnegative in 91/2, sup91/2
u ≤ sup21

u, u vanishes on 91/2 ∩ E f

and |(1 − ∂t)u| ≤ C0 in 91/2 \ E f . Note that we still have the nondegeneracy property u(x, t) ≥
c0 distp((x, t), E f ) for in 21/2 \ E f , so it remains to prove the nondegeneracy for t ≥ 0. We will be able
to do it in a small box 9δ as a consequence of Lemma 7.8.

For 0< δ < 1
2 , consider the rescalings

uδ(x, t)=
u(δx, δ2t)

δ
, (x, t) ∈91/(2δ).

Then we have

|(1− ∂t)uδ| ≤ C0δ in 91 \ E fδ ,

uδ(x, t)≥ c0|xn| in 21,

where fδ(x ′′, t)= (1/δ) f (δx ′′, δ2t) is the rescaling of f . Then, by using the parabolic Harnack inequality
(see Theorems 6.17 and 6.18 in [Lieberman 1996]) in 2±1 , we obtain that

uδ(x, t)≥ cnc0−CnC0δ > c1 on {|xn| = βn/2} ∩91/2.

Further, choosing δ small and applying Lemma 7.8, we deduce that

uδ(x, t)≥ c2|xn| in 91/4.
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Then, repeating the arguments based on the parabolic Harnack inequality, as for the inequality (7-19),
we obtain

u(x, t)≥ C distp((x, t), E fδ ) in 91/8.

Scaling back, this gives
u(x, t)≥ C distp((x, t), E f ) in 9δ/8. �

Proof of Theorem 7.9. Extend the functions ui as in Lemma 7.10 and apply Theorem 7.6. If we repeat this
at every (y, s) ∈21/8 ∩G f , we will obtain the Hölder-regularity of u1/u2 in Nδ/8(21/8 ∩G f )∩ {t ≤ 0}.
For the remaining part of 21/8, we argue as in the proof of localization property Lemma 2.3, cases (1)
and (2), and use the corresponding results for parabolically Lipschitz domains. �

7A. Parabolic Signorini problem. In this subsection, we discuss an application of the boundary Harnack
principle to the parabolic Signorini problem. The idea of such applications goes back to [Athanasopoulos
and Caffarelli 1985]. The particular result that we will discuss here can be found also in [Danielli et al.
2013], with the same proof based on our Theorem 7.9.

In what follows, we will use H `,`/2, ` > 0, to denote the parabolic Hölder classes, as defined for
instance in [Ladyženskaja et al. 1968].

For a given function ϕ ∈ H `,`/2(Q′1), `≥ 2, known as the thin obstacle, we say that a function v solves
the parabolic Signorini problem if v ∈W 2,1

2 (Q+1 )∩ H 1+α,(1+α)/2(Q+1 ), α > 0, and

(1− ∂t)v = 0 in Q+1 , (7-23)

v ≥ ϕ, −∂xnv ≥ 0, (v−ϕ)∂xnv = 0 on Q′1. (7-24)

This kind of problem appears in many applications, such as thermics (boundary heat control), biochemistry
(semipermeable membranes and osmosis), and elastostatics (the original Signorini problem). We refer to
the book [Duvaut and Lions 1976] for the derivation of such models as well as for some basic existence
and uniqueness results.

The regularity that we impose on the solutions of (7-23)–(7-24) is also well known in the literature; see,
e.g., [Athanasopoulous 1982; Ural′tseva 1985; Arkhipova and Uraltseva 1996]. It was proved recently in
[Danielli et al. 2013] that one can actually take α = 1

2 in the regularity assumptions on v, which is the
optimal regularity, as can be seen from the explicit example

v(x, t)= Re(xn−1+ i xn)
3/2,

which solves the Signorini problem with ϕ = 0. One of the main objects of study in the Signorini problem
is the free boundary

G(v)= ∂Q′1({v > ϕ} ∩ Q′1),

where ∂Q′1 is the boundary in the relative topology of Q′1.
As the initial step in the study, we make the following reduction. We observe that the difference

u(x, t)= v(x, t)−ϕ(x ′, t)
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will satisfy

(1− ∂t)u = g in Q+1 , (7-25)

u ≥ 0, −∂xn u ≥ 0, u∂xn u = 0 on Q′1, (7-26)

where g =−(1x ′−∂t)ϕ ∈ H `−2,(`−2)/2. That is, one can make the thin obstacle equal to 0 at the expense
of getting a nonzero right-hand side in the equation for u. For our purposes, this simple reduction will
be sufficient, however, to take the full advantage of the regularity of ϕ. When ` > 2, one may need to
subtract an additional polynomial from u to guarantee the decay rate

|g(x, t)| ≤ M(|x |2+ |t |)(`−2)/2

near the origin; see Proposition 4.4 in [Danielli et al. 2013]. With the reduction above, the free boundary
G(v) becomes

G(u)= ∂Q′1({u > 0} ∩ Q′1).

Further, it will be convenient to consider the even extension of u in the xn−1 variable to the entire Q1,
i.e., by putting u(x ′, xn, t)= u(x ′,−xn, t). Then, such an extended function will satisfy

(1− ∂t)u = g in Q1 \3(u),

where g has also been extended by even symmetry in xn , and where

3(u)= {u = 0} ∩ Q′1,

the so-called coincidence set.
As shown in [ibid.], a successful study of the properties of the free boundary near (x0, t0)∈G(u)∩Q′1/2

can be made by considering the rescalings

ur (x, t)= u(x0,t0)
r (x, t)=

u(x0+ r x, t0+ r2t)

H (x0,t0)
u (r)1/2

for r > 0 and then studying the limits of ur as r = r j → 0+ (so-called blowups). Here

H (x0,t0)
u (r) :=

1
r2

∫ t0

t0−r2

∫
Rn

u(x, t)2ψ2(x)0(x0− x, t0− t) dx dt,

where ψ(x)= ψ(|x |) is a cutoff function that equals 1 on B3/4. Then a point (x0, t0) ∈ G(u)∩ B1/2 is
called regular if ur converges in the appropriate sense to

u0(x, t)= cn Re(xn−1+ i xn)
3/2

as r = r j→ 0+, after a possible rotation of coordinate axes in Rn−1. See [ibid.] for more details. Let R(u)
be the set of regular points of u.
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Proposition 7.11 [Danielli et al. 2013]. Let u be a solution of the parabolic Signorini problem (7-25)–
(7-26) in Q+1 with g ∈ H 1,1/2(Q+1 ). Then the regular set R(u) is a relatively open subset of G(u).
Moreover, if (0, 0) ∈R(u), then there exists ρ = ρu > 0 and a parabolically Lipschitz function f such that

G(u)∩ Q′ρ =R(u)∩ Q′ρ = G f ∩ Q′ρ
3(u)∩ Q′ρ = E f ∩ Q′ρ .

Furthermore, for any 0< η < 1, we can find ρ > 0 such that

∂eu ≥ 0 in Qρ

for any unit direction e ∈ Rn−1 such that e · en−1 > η, and moreover

∂eu(x, t)≥ c distp((x, t), E f ) in Qρ

for some c > 0. �

We next show that an application of Theorem 7.9 implies the following result.

Theorem 7.12. Let u be as in Proposition 7.11 and (0, 0) ∈ R(u). Then there exists δ < ρ such that
∇
′′ f ∈ Hα,α/2(Q′δ) for some α > 0, i.e., R(u) has Hölder-continuous spatial normals in Q′δ.

Proof. We will work in parabolic boxes 2δ =9δ ∩ {t ≤ 0} instead of cylinders Qδ . For a small ε > 0, let
e = (cos ε)en−1+ (sin ε)e j for some j = 1, . . . , n− 2, and consider the two functions

u1 = ∂eu and u2 = ∂en−1u.

Then, by Proposition 7.11, the conditions of Theorem 7.9 are satisfied (after a rescaling), provided
cos ε > η. Thus, if we fix such ε > 0, we will have that for some δ > 0 and 0< α < 1,

∂eu
∂en−1u

∈ Hα,α/2(2δ).

This gives that
∂e j u
∂en−1u

∈ Hα,α/2(2δ), j = 1, . . . , n− 2.

Hence the level surfaces {u = σ } ∩2′δ are given as graphs

xn−1 = fσ (x ′′, t), x ′′ ∈2′′δ ,

with estimate on ‖∇ ′′ fσ‖Hα,α/2(2′′δ )
that is uniform in σ > 0. Consequently, this implies that

∇
′′ f ∈ Hα,α/2(2′′δ ),

and completes the proof of the theorem. �
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