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ON THE UNCONDITIONAL UNIQUENESS OF SOLUTIONS
TO THE INFINITE RADIAL CHERN–SIMONS–SCHRÖDINGER HIERARCHY

XUWEN CHEN AND PAUL SMITH

In this article, we establish the unconditional uniqueness of solutions to an infinite radial Chern–Simons–
Schrödinger (IRCSS) hierarchy in two spatial dimensions. The IRCSS hierarchy is a system of infinitely
many coupled PDEs that describes the limiting Chern–Simons–Schrödinger dynamics of infinitely many
interacting anyons. The anyons are two-dimensional objects that interact through a self-generated field.
Due to the interactions with the self-generated field, the IRCSS hierarchy is a system of nonlinear PDEs,
which distinguishes it from the linear infinite hierarchies studied previously. Factorized solutions of
the IRCSS hierarchy are determined by solutions of the Chern–Simons–Schrödinger system. Our result
therefore implies the unconditional uniqueness of solutions to the radial Chern–Simons–Schrödinger
system as well.
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1. Introduction

1A. The Chern–Simons–Schrödinger system. The Chern–Simons–Schrödinger system is given by
Dtφ = i

∑2
`=1 D`D`φ+ ig|φ|2φ,

∂t A1− ∂1 A0 =− Im(φD2φ),

∂t A2− ∂2 A0 = Im(φD1φ),

∂1 A2− ∂2 A1 =−
1
2 |φ|

2,

(1)

where the associated covariant differentiation operators are defined in terms of the potential A by

Dα := ∂α + i Aα, α ∈ {0, 1, 2}, (2)
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and where we adopt the convention that ∂0 := ∂t and Dt := D0. The wavefunction φ is complex-valued,
the potential A a real-valued 1-form, and the pair (A, φ) is defined on I ×R2 for some time interval I .
The Lagrangian action for this system is

L(A, φ)=
1
2

∫
R2+1

[
Im(φDtφ)+ |Dxφ|

2
−

g
2
|φ|4

]
dx dt +

1
2

∫
R2+1

A∧ d A, (3)

where here |Dxφ|
2
:= |D1φ|

2
+ |D2φ|

2. Although the potential A appears explicitly in the Lagrangian,
it is easy to see that locally L(A, φ) only depends upon the field F = d A. Precisely, the Lagrangian is
invariant with respect to the gauge transformations

φ 7→ e−iθφ, A 7→ A+ dθ (4)

for compactly supported real-valued functions θ(t, x). The Chern–Simons–Schrödinger system (1),
obtained as the Euler–Lagrange equations of (3), inherits this gauge freedom.

The system (1) is a basic model of Chern–Simons dynamics [Jackiw and Pi 1992; Ezawa, Hotta, and
Iwazaki 1991a; 1991b; Jackiw and Pi 1991]. It plays a role in describing certain physical phenomena,
such as the fractional quantum Hall effect, high-temperature superconductivity, and Aharonov–Bohm
scattering, and also provides an example of a Galilean-invariant planar gauge field theory [Jackiw and
Templeton 1981; Deser, Jackiw, and Templeton 1982; Jackiw, Pi, and Weinberg 1991; Martina, Pashaev,
and Soliani 1993; Wilczek 1990].

One interpretation of (1) is as a mean-field equation. Informally, one may consider (1) as describing the
behavior of a large number of anyons, interacting with each other directly and through a self-generated
field, in the case where the N -body wave function factorizes. There are a number of challenges one
encounters in trying to formalize and prove this statement, and this paper addresses some of them. We
will postpone further discussion of many-body dynamics to the next subsection and instead point out that,
because the main evolution equation in (1) includes a cubic nonlinearity, one might hope to prove for (1)
what one can prove for the cubic nonlinear Schrödinger equation (NLS). It is important to note, however,
that (1) has many nonlinear terms, some nonlocal and some involving the derivative of the wave function.
These terms appear because of the geometric structure that arises from modeling the interactions with
the self-generated field. Due to the complexity of the nonlinearity in (1) and the gauge freedom (4), the
system (1) is significantly more challenging to analyze than the cubic NLS. This difference is seen even
at the level of the wellposedness theory, to which we now turn.

The system (1) is Galilean-invariant and has conserved charge

chg(φ) :=
∫

R2
|φ|2 dx (5)

and energy

E(φ) :=
1
2

∫
R2

[
|Dxφ|

2
−

g
2
|φ|4

]
dx . (6)

Moreover, for each λ > 0, there is the scaling symmetry

φ(t, x) 7→ λφ(λ2t, λx), A j (t, x) 7→ λA j (λ
2t, λx), j ∈ {1, 2},

φ0(x) 7→ λφ0(λx), A0(t, x) 7→ λ2 A0(λ
2t, λx),
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which preserves both the system and the charge of the initial data φ0. Therefore, from the point of view
of wellposedness theory, the system (1) is L2-critical. We remark that system (1) is defocusing when
g < 1 and focusing when g ≥ 1. The defocusing/focusing dichotomy is most readily seen by rewriting
the energy (6) using the so-called Bogomol’nyi identity. After using this identity, one may also see
the dichotomy manifested in the virial and Morawetz identities. For more details, see [Liu and Smith
2014, §4, §5]. Note also that the sign convention for g that we adopt, which is the one used in the
Chern–Simons literature, is opposite to the usual one adopted for the cubic NLS. A more significant
difference between Chern–Simons systems and the cubic NLS is that, unlike the case for the cubic NLS,
the coupling parameter g cannot be rescaled to belong to a discrete set of canonical values.

Nevertheless, (1) is ill-posed so long as it retains the gauge freedom (4). This freedom is eliminated
by imposing an additional constraint equation. The most common gauge choice for studying (1) is the
Coulomb gauge, which is the constraint

∂1 A1+ ∂2 A2 = 0. (7)

Coupling (7) with the field equations quickly leads to explicit expressions for Aα, α = 0, 1, 2, in terms
of φ. These expressions also happen to be nonlinear and nonlocal:

A0 =1
−1
[∂1 Im(φD2φ)− ∂2 Im(φD1φ)], A1 =

1
21
−1∂2|φ|

2, A2 =−
1
21
−1∂1|φ|

2. (8)

Local wellposedness of (1) with respect to the Coulomb gauge at the Sobolev regularity of H 2 is
established in [Bergé, De Bouard, and Saut 1995]. This is improved to H 1 in [Huh 2013]. Local
wellposedness for data small in H s , s > 0, is established in [Liu, Smith, and Tataru 2012] using the heat
gauge, whose defining condition is ∂1 A1+ ∂2 A2 = A0. This result relies upon various Strichartz-type
spaces as well as more sophisticated U p and V p spaces. We refer the reader to [Liu, Smith, and Tataru
2012, §2] for a comparison of the Coulomb and heat gauges.

In symmetry-reduced settings, one may say more, and in particular, [Liu and Smith 2014] establishes
large-data global wellposedness results at the critical regularity for the equivariant Chern–Simons–
Schrödinger system. To introduce the equivariance (or vortex) ansatz, it is convenient to use polar
coordinates. Define

Ar =
x1

|x |
A1+

x2

|x |
A2, Aθ =−x2 A1+ x1 A2. (9)

We can invert the transform by writing

A1 = Ar cos θ − 1
r Aθ sin θ, A2 = Ar sin θ + 1

r Aθ cos θ. (10)

Note that these relations are analogous to

∂r =
x1

|x |
∂1+

x2

|x |
∂2, ∂θ =−x2∂1+ x1∂2

and

∂1 = (cos θ)∂r −
1
r (sin θ)∂θ , ∂2 = (sin θ)∂r +

1
r (cos θ)∂θ .
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The equivariant ansatz, then, is

φ(t, x)= eimθu(t, r), A1(t, x)=−
x2

r
v(t, r), A2(t, x)=

x1

r
v(t, r), A0(t, x)= w(t, r), (11)

where we assume that m is a nonnegative integer, u is real-valued at time zero, and v and w are real-valued
for all time. This ansatz implies that Ar = 0 and that Aθ is a radial function. It also places us in the
Coulomb gauge, i.e., ∂1 A1+∂2 A2= 0 or equivalently ∂r Ar+

1
r Ar+

1
r2 ∂θ Aθ = 0. For some motivation for

studying vortex solutions in Chern–Simons theories, see [Paul and Khare 1986; de Vega and Schaposnik
1986a; 1986b; Jackiw and Weinberg 1990; R. M. Chen and Spirn 2009; Byeon, Huh, and Seok 2012].

Converting (1) into polar coordinates and utilizing (11), we obtain the equivariant Chern–Simons–
Schrödinger system (see [Liu and Smith 2014, §1] for full details):

(i∂t +1)φ =
2m
r2 Aθφ+ A0φ+

1
r2 A2

θφ− g|φ|2φ,

∂r A0 =
1
r (m+ Aθ )|φ|2,

∂t Aθ = r Im(φ∂rφ),

∂r Aθ =− 1
2 |φ|

2r,

Ar = 0.

(12)

Global wellposedness holds for equivariant L2 data of arbitrary (nonnegative) charge in the defocusing
case g < 1 and for L2 data with charge less than that of the ground state in the focusing case g ≥ 1; this
is the main result of [Liu and Smith 2014].

In this paper, we are interested in the radial case (m = 0) of system (12), which is

(i∂t +1)φ = A0φ+
1
r2 A2

θφ− g|φ|2φ,

∂r A0 =
1
r Aθ |φ|2,

∂t Aθ = r Im(φ∂rφ),

∂r Aθ =− 1
2 |φ|

2r,

Ar = 0.

(13)

1B. The infinite Chern–Simons–Schrödinger hierarchy. The infinite Chern–Simons–Schrödinger hier-
archy is a sequence of trace class nonnegative operator kernels that are symmetric in the sense that

γ (k)(t, xk, x′k)= γ (k)(t, x′k, xk),

and

γ (k)(t, xσ(1), . . . , xσ(k), x ′σ(1), . . . , x ′σ(k))= γ
(k)(t, x1, . . . , xk, x ′1, . . . , x ′k), (14)

for any permutation σ , and which satisfy the two-dimensional infinite Chern–Simons–Schrödinger
hierarchy of equations

∂tγ
(k)
+

k∑
j=1

[i A0(t, x j ), γ
(k)
] =

k∑
j=1

2∑
`=1

i[Dx (`)j
Dx (`)j

, γ (k)] + ig
k∑

j=1

B j,k+1γ
(k+1), (15)
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where R2
3 x j = (x

(1)
j , x (2)j ) for each j , as well as the corresponding field-current identities from [Jackiw

and Pi 1990, (1.7a)–(1.7c)], i.e.,
F01 =−P2(t, x)− A2(t, x)ρ(t, x),

F02 = P1(t, x)+ A1(t, x)ρ(t, x),

F12 =−
1
2ρ(t, x),

(16)

where, as before, F := d A. Here g is the coupling constant,

B j,k+1γ
(k+1)
:= Trk+1[δ(x j − xk+1), γ

(k+1)
], (17)

the momentum P(t, x) is given by

P(t, x) :=
∫

ei(ξ−ξ ′)x ξ + ξ
′

2
γ̂ (1)(t, ξ, ξ ′) dξ dξ ′,

and ρ(t, x) is a shorthand for

ρ(t, x) := γ (1)(t, x, x). (18)

Each x j ∈ R2, and xk := (x1, . . . , xk) ∈ R2k . Given a compactly supported θ(t, x), the kernels γ (k) and
potential A transform under a change of gauge according to

γ (k) 7→ γ (k)
k∏

j=1

e−iθ(t,x j )eiθ(t,x ′j ), A 7→ A+ dθ.

The invariance of (15) and (16) under such transformations can be checked straightforwardly.
For the purposes of our analysis, it is more convenient to write (15) as

i∂tγ
(k)
+

k∑
j=1

[1x j , γ
(k)
] =

k∑
j=1

2∑
`=1

[−2i Ax (`)j
∂x (`)j
− i∂x (`)j

Ax (`)j
+ A2

x (`)j
, γ (k)]

+

k∑
j=1

[A0(t, x j ), γ
(k)
] − g

k∑
j=1

B j,k+1γ
(k+1). (19)

The Coulomb gauge condition (7), upon being coupled to (16), leads to

A0 =1
−1
[∂1(P2+ A2ρ)− ∂2(P1+ A1ρ)], A1 =

1
21
−1∂2ρ, A2 =−

1
21
−1∂1ρ.

This is analogous to how (8) for the Chern–Simons–Schrödinger system (1) is obtained by coupling to
the field equations in (1) the gauge condition (7). Because each Aα involves ρ, defined in (18), it is clear
that each term involving γ (k) in the right-hand side of (19) is best thought of as a nonlinear term. This
nonlinear dependence persists under changes of gauge, though some gauges lead to tamer nonlinearities
than others.

We remark that, while the specific form the nonlinearity of (19) takes indeed depends upon the gauge
selection made, the observables associated with the system do not depend upon the gauge choice.

We note that the system (1) generates a special solution to the infinite hierarchy (15)–(16). In particular,
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if (A, φ) solves (1), then (A, {γ (k)}) solves (15)–(16), where each γ (k) is given by

γ (k)(t, xk, x′k)=
k∏

j=1

φ(t, x j )φ(t, x ′j ).

We start our analysis of many-body dynamics with the above infinite hierarchy. Ideally, one would
prefer instead to begin with a many-body system with only finitely many quantum particles. Because
the basic particles in question are neither bosons nor fermions, there are difficulties to overcome with
such an approach. Concerning the difficulties in dealing with microscopic statistics, one can refer to
[Benedetto, Castella, Esposito, and Pulvirenti 2005], for instance. Fortunately, as remarked in [Benedetto,
Castella, Esposito, and Pulvirenti 2005], microscopic statistics disappear as the particle number tends to
infinity. Thus, the infinite hierarchy satisfies the symmetry condition (14). We finally remark that the
field equations (16) depend merely on the 1-particle density γ (1), as has been observed formally in the
physics literature [Deser, Jackiw, and Templeton 1982; Jackiw, Pi, and Weinberg 1991; Jackiw and Pi
1991; Jackiw and Templeton 1981; Jackiw and Weinberg 1990].

One motivation for pursuing an analysis of the infinite hierarchy even without first specifying the
finite hierarchy is that the known approaches to rigorously deriving mean-field equations, e.g., the
Boltzmann equation and the cubic NLS, all require a uniqueness theorem for the corresponding infinite
hierarchy. Establishing uniqueness of the infinite hierarchy is, moreover, a critical step. We therefore
anticipate that our result in this article will be the linchpin of any future rigorous derivation of the
Chern–Simons–Schrödinger system.

As remarked before, the analysis of the Chern–Simons–Schrödinger system with general data is, at the
moment, very delicate. The same remark applies all the more to the associated infinite hierarchy, to which
(1) is a special solution. Thus, we consider the radial version of the infinite Chern–Simons–Schrödinger
hierarchy in this paper. The nonradial equivariant case (m > 0), though still much simpler than the
general system, is slightly more challenging than the radial case. Unfortunately, the techniques we employ
for studying the radial case do not immediately extend to the nonradial equivariant case due to certain
logarithmic divergences.

The infinite radial Chern–Simons–Schrödinger hierarchy. The Chern–Simons–Schrödinger system (1)
simplifies to (13) under the assumption of radiality. Similarly, by assuming radiality, we reduce Equations
(15) through (18) to the infinite radial Chern–Simons–Schrödinger hierarchy

i∂tγ
(k)
+

k∑
j=1

[1x j , γ
(k)
] =

k∑
j=1

[
A0(t, |x j |)+

1
|x j |

2 A2
θ (t, |x j |), γ

(k)
]
− g

k∑
j=1

B j,k+1γ
(k+1) (20)

and the field equations

Frθ (t, |x |)=− 1
2 |x |ρ(t, |x |)

and
F0θ (t, |x |)= |x |Pr (t, |x |),

F0r (t, |x |)=− 1
|x | Aθ (t, |x |)ρ(t, |x |),
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for γ (k) = γ (k)(t, rk, r ′k). In particular, here we assume that

γ (k) = u(t, rk, r ′k),

Ar = 0,

Aθ = v(t, r),

where u is real-valued at time zero and v is real-valued for all time. This assumption enforces the Coulomb
gauge. Recall that B j,k+1 is defined in (17) and ρ is given by (18). As before, F := d A, though now we
are adopting polar coordinates for A. Though we could rewrite everything exclusively in terms of polar
coordinates, we choose instead to use both Cartesian and polar coordinates.

Putting everything together, we see that we are studying solutions γ (k) = γ (k)(t, rk, r ′k) of

i∂tγ
(k)
+
∑k

j=1[1x j , γ
(k)
] =

∑k
j=1
[
A0(t, |x j |)+

1
|x j |2

A2
θ (t, |x j |), γ

(k)
]
− g

∑k
j=1 B j,k+1γ

(k+1),

∂r A0(t, |x |)= 1
|x | Aθρ(t, |x |),

∂t Aθ (t, |x |)= |x |Pr (t, |x |),

∂r Aθ (t, |x |)=− 1
2 |x |ρ(t, |x |),

Ar = 0.

(21)

We interpret γ (k) as a complex-valued function on Rt ×Rk
+
×Rk

+
subject to the symmetries

γ (k)(t, rk, r ′k)= γ (k)(t, r ′k, rk)

and

γ (k)(t, rσ(1), . . . , rσ(k), r ′σ(1), . . . , r
′

σ(k))= γ
(k)(t, r1, . . . , rk, r ′1, . . . , r

′

k). (22)

Though each r j ∈ R+, we associate to this space the measure rdr , as indeed we think of r j = |x j |

for x j ∈ R2.
Note that we can eliminate Aθ and A0 in (21). In particular, we have

Aθ (t, r)=−
1
2

∫ r

0
ρ(t, s)s ds (23)

and

A0(t, r)=
1
2

∫
∞

r
ρ(t, s)

∫ s

0
ρ(t, u)u du

ds
s
, (24)

which reflect the natural boundary conditions for Aθ and A0 that we adopt for (1). Therefore, we may
rewrite (21) as

i∂tγ
(k)
+

k∑
j=1

[1x j , γ
(k)
] =

k∑
j=1

[
1
2

∫
∞

r j

ρ(t, s)
∫ s

0
ρ(t, u)u du

ds
s
+

1
r2

j

(
−

1
2

∫ r j

0
ρ(t, s)s ds

)2
, γ (k)

]
− g

k∑
j=1

B j,k+1γ
(k+1),

γ (k)(0)= γ (k)0 , k ∈ N. (25)
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1C. Main results. Our main theorem says that any admissible mild solution of the radial infinite CSS
hierarchy is unconditionally unique in L∞t∈[0,T )H

2/3
rad . To explain what this means, for s ∈ R, we define

the space Hs
rad to be the collection of sequences {γ (k)}k∈N of density matrices in L2

sym(R
2k) such that

γ (k) = γ (k)(t, rk, r ′k) and

Tr(|S(k,s)γ (k)|) < M2k for all k ∈ N and for some constant M > 0,

where

S(k,s) :=
k∏

j=1

(1−1x j )
s/2(1−1x ′j )

s/2.

Here L2
sym denotes the space of L2 functions satisfying (14). Let U (k)(t) denote the propagator

U (k)(t) := e
i t1xk e

−i t1x′k . (26)

A mild solution of (25) in the space L∞
[0,T ]H

s
rad is a sequence of marginal density matrices 0 =

(γ (k)(t))k∈N solving

γ (k)(t)=U (k)(t)γ (k)(0)−i
∫ t

0
U (k)(t−s)

( k∑
j=1

[
1
2

∫
∞

r j

ρ(t, v)
∫ v

0
ρ(t, u)u du

dv
v

+
1
r2

j

(
−

1
2

∫ r j

0
ρ(t, v)v dv

)2

, γ (k)
]
−g

k∑
j=1

B j,k+1γ
(k+1)

)
ds

and satisfying

sup
t∈[0,T )

Tr(|S(k,s)γ (k)(t)|) < M2k

for a finite constant M independent of k. Note that, if we are given factorized initial data

γ
(k)
0 (rk, r ′k)=

k∏
j=1

φ0(r j )φ0(r ′j ),

then the condition that (γ (k)(0)) ∈ Hs
rad is equivalent to

Tr(|S(k,s)γ (k)(0)|)= ‖φ0‖
2k
H s < M2k, k ∈ N,

which is to say that ‖φ0‖H s <M for some M <∞. Then a solution to the IRCSS hierarchy in L∞t∈[0,T )H
s
rad

is given by the sequence of factorized density matrices

γ (k)(t, rk, r ′k)=
k∏

j=1

φt(r j )φt(r ′j )

provided the corresponding 1-particle wave function φt satisfies the radial Chern–Simons–Schrödinger
system (13).
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Admissibility we take to mean that Tr γ (k) = 1 for all k ∈ N and

γ (k) = Trk+1(γ
(k+1)), k ∈ N. (27)

This is required in our application of the quantum de Finetti theorem. As there are weak analogues of the
quantum de Finetti theorem applicable to limiting hierarchies, we expect our techniques to apply to the
problem of rigorously deriving the radial CSS from large, finite systems.

Theorem 1.1 (unconditional uniqueness for the infinite hierarchy). There is at most one L∞t∈[0,T )H
2/3
rad

admissible solution to the infinite radial Chern–Simons–Schrödinger hierarchy (21).

Theorem 1.2 (unconditional uniqueness for the Chern–Simons–Schrödinger system). There is at most
one L∞t∈[0,T )H

2/3(R2) solution to the radial Chern–Simons–Schrödinger system (13).

Before explaining our main theorem, we first remark that deriving mean-field equations from many-
body systems by studying infinite hierarchies is a very rich subject. For works related to the Boltzmann
equation, see [Lanford 1975; King 1975; Arkeryd, Caprino, and Ianiro 1991; Cercignani, Illner, and
Pulvirenti 1994; Gallagher, Saint-Raymond, and Texier 2013]. For works related to the Hartree equation,
see [Spohn 1980; Fröhlich, Knowles, and Schwarz 2009; Erdős and Yau 2001; Rodnianski and Schlein
2009; Knowles and Pickl 2010; Grillakis, Machedon, and Margetis 2010; 2011; X. Chen 2012b; L. Chen,
Lee, and Schlein 2011; Michelangeli and Schlein 2012; Ammari and Nier 2008; 2011; Lewin, Nam, and
Rougerie 2014]. For works related to the cubic NLS, see [Adami, Golse, and Teta 2007; Elgart, Erdős,
Schlein, and Yau 2006; Erdős, Schlein, and Yau 2006; 2007; 2010; 2009; Klainerman and Machedon
2008; Kirkpatrick, Schlein, and Staffilani 2011; T. Chen and Pavlović 2011; 2010; T. Chen, Pavlović,
and Tzirakis 2012; T. Chen and Pavlović 2014; Pickl 2011; X. Chen 2012a; 2013; Benedikter, Oliveira,
and Schlein 2012; Grillakis and Machedon 2013; X. Chen and Holmer 2013c; 2013b; T. Chen, Hainzl,
Pavlović, and Seiringer 2014; X. Chen and Holmer 2013a; Hong, Taliaferro, and Xie 2014; Gressman,
Sohinger, and Staffilani 2014; Sohinger and Staffilani 2014; Sohinger 2014a; 2014b]. For works related
to the quantum Boltzmann equation, see [Benedetto, Castella, Esposito, and Pulvirenti 2006; 2005; 2008;
2004]. The infinite hierarchies considered previously to the present one are all linear. In contrast to this,
the infinite radial Chern–Simons–Schrödinger hierarchy is nonlinear.

For our problem, we have taken the phrase “unconditional uniqueness” from the study of the NLS.
It is shown by Cercignani’s counterexample [Cercignani, Illner, and Pulvirenti 1994] that solutions
to infinite hierarchies like the Boltzmann hierarchy and the Gross–Pitaevskii hierarchy are generally
not unconditionally unique in the sense that a solution is not uniquely determined by the initial datum
unless one assumes appropriate space-time bounds on the solution. In the NLS literature, “unconditional
uniqueness” usually means establishing uniqueness without assuming that some Strichartz norm is finite.
Since we are using tools from the study of the NLS, we therefore call our main theorems unconditional
uniqueness theorems.1

1In other words, the uniqueness theorems regarding the Gross–Pitaevskii hierarchies [Klainerman and Machedon 2008; Kirk-
patrick, Schlein, and Staffilani 2011; X. Chen 2012a; X. Chen and Holmer 2013a; Gressman, Sohinger, and Staffilani 2014] are
conditional, whereas [Adami, Golse, and Teta 2007; Erdős, Schlein, and Yau 2007; T. Chen, Hainzl, Pavlović, and Seiringer 2014;
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Finally, we remark that, for the proof of the main theorems, we apply the quantum de Finetti theorem
in a manner similar to [T. Chen, Hainzl, Pavlović, and Seiringer 2014; Hong, Taliaferro, and Xie 2014]
but with adjustments tailored to deal with the nonlinearity in the infinite hierarchy that we consider. The
quantum de Finetti theorem is a version of the classical Hewitt–Savage theorem. T. Chen, C. Hainzl,
N. Pavlović, and R. Seiringer are the first to apply the quantum de Finetti theorem to the study of infinite
hierarchies in the quantum setting. For results regarding the uniqueness of the Boltzmann hierarchy using
the Hewitt–Savage theorem, see [Arkeryd, Caprino, and Ianiro 1991].

2. Proof of the main theorem

We will prove that, if we are given two L∞
[0,T ]H

2/3
rad solutions {γ (k)1 } and {γ (k)2 } to system (21) subject to

the same initial datum, then the trace norm of the difference {γ (k) = γ (k)1 − γ
(k)
2 } is zero. In contrast to

the usual infinite hierarchies (e.g., Boltzmann, Gross–Pitaevskii, . . . ), system (21) is nonlinear. Thus, γ (k)

does not solve system (21). In order to show that γ (k) has zero trace norm, we first express γ (k) as a
suitable Duhamel–Born series, which contains a nonlinear part and an interaction part (see Section 2A).
These two parts we estimate separately with bounds contained respectively in Theorems 2.3 and 2.4,
which together constitute our main estimates. In Section 2B, we prove the main theorem, Theorem 1.1,
assuming the main estimates. The proof of Theorem 2.3 is postponed to Section 4 (and Theorem 2.4 we
handle in this section).

2A. Setup. Set for short

a(r j ) := A0(t, r j )+
1
r2

j
A2
θ (t, r j ) (28)

and

a(rk) :=

k∑
j=1

a(r j ). (29)

Let A(k) denote the operator that acts according to

A(k) f := [a(rk), f ]. (30)

Also, set for short

Bk+1 :=

k∑
j=1

B j,k+1 =

k∑
j=1

Trk+1[δ(x j − xk+1), · ]. (31)

With these abbreviations, the first equation of (21) assumes the form

i∂tγ
(k)
+ [1xk , γ

(k)
] =A(k)γ (k)− gBk+1γ

(k+1). (32)

Remark 2.1. The operator A(k) is linear but itself depends upon γ (1). In fact, it only depends upon the
diagonal ρ(t, r)= γ (1)(t, r, r). The term A(k)γ (k) is therefore better thought of as a nonlinear term rather
than a linear one.

Hong, Taliaferro, and Xie 2014; Sohinger 2014b] are unconditional in the NLS sense. Yet they are all considered conditional in
the Boltzmann literature.
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Let {γ (k)1 } and {γ (k)2 } be solutions subject to the same initial data with, respectively, ρ1(t, r) :=
γ
(1)
1 (t, r, r) and ρ2(t, r) := γ

(1)
2 (t, r, r). Let γ (k) := γ (k)1 − γ

(k)
2 . Then

i∂tγ
(k)
+ [1xk , γ

(k)
] =A(k)

1 γ
(k)
1 −A(k)

2 γ
(k)
2 − gBk+1γ

(k+1). (33)

We can rewrite (33) using the relation

A(k)
1 γ

(k)
1 −A(k)

2 γ
(k)
2 =A(k)

1 γ (k)+A(k)γ
(k)
2 ,

where now
A(k)
:=A(k)

1 −A(k)
2 ,

so that it becomes

i∂tγ
(k)
+ [1xk , γ

(k)
] =A(k)

1 γ (k)+A(k)γ
(k)
2 − gBk+1γ

(k+1) (34)

or, equivalently,
(i∂t +1xk −1x′k )γ

(k)
=A(k)

1 γ (k)+A(k)γ
(k)
2 − gBk+1γ

(k+1).

Recalling the corresponding linear propagator U (k)(t) defined in (26), we write (34) in integral form, i.e.,

γ (k)(tk)=−ig
∫ tk

0
dtk+1U (k)(tk − tk+1)

[
A(k)

1 γ (k)(tk+1)+A(k)γ
(k)
2 (tk+1)+ Bk+1γ

(k+1)(tk+1)
]
. (35)

In invoking this formula in future calculations, we set g=−1 for simplicity and we ignore the i in front so
that we do not need to keep track of its exact power, as the precise power is not relevant to the estimates.

Remark 2.2. The choice of g = −1 corresponds to a defocusing case in (12). It is important to note,
however, that the choice g=−1 at this step is purely for the sake of convenience; all subsequent arguments
can accommodate any g 6= −1 at the cost of certain powers of |g|. In particular, our arguments apply to
the self-dual case g = 1, which is the most interesting from the physical point of view.

For the purpose of proving unconditional uniqueness, it suffices to show γ (1) = 0. Iterating (35)
lc times,2 we obtain

γ (1)(t1)=
∫ t1

0
dt2U (1)(t1− t2)

(
A(1)

1 γ (1)(t2)+A(1)γ
(1)
2 (t2)

)
+

∫ t1

0
dt2U (1)(t1− t2)B2γ

(2)(t2)

=

∫ t1

0
dt2U (1)(t1− t2)

(
A(1)

1 γ (1)(t2)+A(1)γ
(1)
2 (t2)

)
+

∫ t1

0
dt2U (1)(t1− t2)B2

∫ t2

0
dt3U (2)(t2− t3)

(
A(2)

1 γ (2)(t3)+A(2)γ
(2)
2 (t3)

)
+

∫ t1

0
dt2U (1)(t1− t2)B2

∫ t2

0
dt3U (2)(t2− t3)B3γ

(3)(t3)

= · · ·

= NP(lc)+ IP(lc), (36)

2Here, lc stands for the level of coupling. When lc = 0, one recovers (34).
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where NP(lc) and IP(lc), the nonlinear part and the interaction part, respectively, are given by

NP(lc) = G(1)
+

lc∑
r=1

∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1) (37)

and

IP(lc) =

∫ t1

0
· · ·

∫ tlc+1

0
dt2 · · · dtlc+1U (1)(t1− t2)B2 · · ·U (lc+1)(tlc − tlc+1)Blc+2γ

(lc+2)(tlc+2), (38)

where

G(k)(tk) :=
∫ tk

0
dtk+1U (k)(tk − tk+1)

(
A(k)

1 γ (k)(tk+1)+A(k)γ
(k)
2 (tk+1)

)
.

2B. Proof assuming the main estimates.

Theorem 2.3. There exists a constant C > 0 such that

Tr|NP(lc)(t1)| ≤ Ct1 sup
t∈[0,t1]

Tr|γ (1)(t)|

for all coupling levels lc and all sufficiently small t1.

Proof. We postpone the proof to Section 3. �

Theorem 2.4. There exists a constant C > 0 such that

Tr|IP(lc)(t1)| ≤ (Ct1/3
1 )lc

for all coupling levels lc.

Proof. This estimate follows from the same method used for the corresponding term in [T. Chen, Hainzl,
Pavlović, and Seiringer 2014], which relies on the quantum de Finetti theorem and on a combinatorial
analysis of the graphs that one can associate to the Duhamel expansions. One merely needs to replace the
three-dimensional trilinear estimates [T. Chen, Hainzl, Pavlović, and Seiringer 2014, (6.19), (6.20)] with
(55) and (56), respectively, taking s = 2

3 , and replace the three-dimensional Sobolev estimate

‖ f ‖L6(R3) . ‖ f ‖H1(R3)

with the two-dimensional Sobolev estimate

‖ f ‖L6(R2) . ‖ f ‖H2/3(R2).

We remark that it is because of this Sobolev estimate that we take s = 2
3 in H s rather than a smaller s. �

With Theorems 2.3 and 2.4, we then infer from (36) that

Tr|γ (1)(t1)| ≤ Tr|NP(lc)(t1)| +Tr|IP(lc)(t1)|

≤ Ct1 sup
t∈[0,t1]

Tr|γ (1)(t)| + (Ct1/3
1 )lc

≤ CT sup
t∈[0,T ]

Tr|γ (1)(t)| + (CT 1/3)lc
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for all t1 ∈ [0, T ]. Take the supremum in time on both sides to get

sup
t∈[0,T ]

Tr|γ (1)(t)| ≤ CT sup
t∈[0,T ]

Tr|γ (1)(t)| + (CT 1/3)lc .

Therefore, for all T small enough, we obtain

1
2 sup

t∈[0,T ]
Tr|γ (1)(t)| ≤ (CT 1/3)lc → 0 as lc→∞,

i.e.,

sup
t∈[0,T ]

Tr|γ (1)(t)| = 0.

Hence, we have finished the proof of the main theorem assuming Theorem 2.3. The bulk of the rest of
the paper is devoted to proving Theorem 2.3.

3. Estimate for the nonlinear part

Recall

NP(lc) = G(1)
+

lc∑
r=1

∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1)

=: I+ II,

where

G(k)(tk)=
∫ tk

0
dtk+1U (k)(tk − tk+1)

(
A(k)

1 γ (k)(tk+1)+A(k)γ
(k)
2 (tk+1)

)
. (39)

We will first treat Tr|G(1)(t1)| coming from part I and then, with some additional tools, the corresponding
term coming from part II. Both of the estimates rely upon the quantum de Finetti theorem stated below.

Theorem 3.1 (quantum de Finetti theorem [Hudson and Moody 1976; Størmer 1969; Ammari and Nier
2008; 2011; Lewin, Nam, and Rougerie 2014]). Let H be a separable Hilbert space, and let Hk

=
⊗k

sym H

denote the corresponding bosonic k-particle space. Let 0 denote a collection of bosonic density matrices
on H, i.e.,

0 = (γ (1), γ (2), . . .)

with γ (k) a non-negative trace class operator on Hk . If 0 is admissible, i.e., for all k ∈ N we have
Tr γ (k) = 1 and γ (k) = Trk+1 γ

(k+1), where Trk+1 denotes the partial trace over the (k+ 1)-th factor, then
there exists a unique Borel probability measure µ, supported on the unit sphere in H, and invariant under
multiplication of φ ∈H by complex numbers of modulus one, such that

γ (k) =

∫
dµ(φ)(|φ〉〈φ|)⊗k for all k ∈ N.

Remark 3.2. The µ determined by Theorem 3.1 is finite and so, in particular, σ -finite. Therefore, the
Fubini–Tonelli theorem, which is crucial in the proof, applies. See [Dunford and Schwartz 1988, p. 190].
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Using Theorem 3.1, we write

γ
(k)
j (t)=

∫
dµ( j)

t (φ)(|φ〉〈φ|)⊗k, j = 1, 2,

and

γ (k)(t)=
∫

dµt(φ)(|φ〉〈φ|)
⊗k,

where µt := µ
(1)
t −µ

(2)
t is a signed measure supported on the unit sphere of L2(R2). We remark that

Tr|γ (1)(t)| =
∫

d|µt |(φ)‖φ‖
2
L2 =

∫
d|µt |(φ)

while

Tr|γ (1)j (t)| =
∫

dµ( j)
t ‖φ‖

2
L2 =

∫
dµ( j)

t = 1.

Here |µt | is defined, in the usual way, as the sum of the positive part and the negative part of µt , which
itself is another finite measure since |µt | ≤ µ

(1)
t +µ

(2)
t . Write µ(0)t = µt for convenience. The main

properties of µ(i)t that we need are

sup
t∈[0,T ]

∫
d|µ(i)t |(φ)‖φ‖

2k
H2/3

x
≤ M2k for i = 0, 1, 2 (40)

and
|µ
(i)
t |
({
φ ∈ L2(R2)

∣∣ ‖φ‖H2/3 > M
})
= 0 for i = 0, 1, 2, (41)

where |µ(i)t | is of course µ(i)t if i = 1 or 2. For i = 1, 2, estimate (40) is equivalent to the energy condition

sup
t∈[0,T ]

Tr
( k∏

j=1

〈∇x j 〉
2/3
)
γ
(k)
i (t)

( k∏
j=1

〈∇x ′j 〉
2/3
)
≤ M2k for i = 1, 2, (42)

and (41) then follows from (40) using Chebyshev’s inequality.3 The i = 0 case then follows from the
definition.

Putting these structures into A, for `= 1, 2, we have

A(k)
` f (t)=

∫∫
dµ(`)t (ψ) dµ(`)t (ω)

k∑
j=1

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]

f (43)

and

A(k) f (t)= (A(k)
1 −A(k)

2 ) f

=

∫∫
dµ(1)t (ψ) dµt(ω)

k∑
j=1

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]

f

+

∫∫
dµt(ψ) dµ(2)t (ω)

k∑
j=1

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]

f, (44)

3See [T. Chen, Hainzl, Pavlović, and Seiringer 2014, Lemma 4.4] or [Hong, Taliaferro, and Xie 2014, (2.17)].
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where a|ψ |2,|ω|2 is defined by

a|ψ |2,|ω|2(t, r) := A(|ψ |
2,|ω|2)

0 (t, r)+
1
r2 A(|ψ |

2)
θ (t, r)A(|ω|

2)
θ (t, r)

with

A(|ψ |
2,|ω|2)

0 (t, r)=−
∫
∞

r
A(|ψ |

2)
θ (t, s)|ω|2(t, s)

ds
s
, A(ρ)θ (t, r)=−

1
2

∫ r

0
ρ(t, s)s ds.

Informally speaking, a|ψ |2,|ω|2(r) is similar to a(r) defined in (28) but is linear with respect to |ψ |2 and
|ω|2 independently rather than quadratic with respect to a single |φ|2.

This notation enables us to represent the core term of G(k) by

A(k)
1 γ (k)(t)+A(k)γ

(k)
2 (t)

=

k∑
j=1

∑
(l,m,n)∈P

∫∫∫
dµ(l)t (ψ) dµ(m)t (ω) dµ(n)t (φ)

[
a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )
]
(|φ〉〈φ|)⊗k (45)

if we take P= {(1, 1, 0), (2, 2, 0), (1, 0, 2), (0, 2, 2)}. The set P is for bookkeeping, incorporating the
terms from (43) and (44), and we remind the readers that dµ(0)t := dµt . We remark that, to reach (45),
we used the quantum de Finetti theorem (i.e., Theorem 3.1) four times: twice for the γ (k) term (once
for γ1 and once for γ2) and twice for the terms in the self-generated potential A (they are quadratic in ρ).

3A. Estimate of Tr|G(1)(t1)|. Putting k = 2 in (45) and replacing ψ , ω, and φ with φ1, φ2, and φ3,
respectively, we have

Tr|G(1)(t1)| = Tr
∣∣∣∣∫ t1

0
dt2U (1)(t1− t2)

(
A(1)

1 γ (1)(t2)+A(1)γ
(1)
2 (t2)

)∣∣∣∣
≤

∑
(l,m,n)∈P

∫ t1

0
dt2

∫∫∫
d|µ(l)t2 |(φ1) d|µ(m)t2 |(φ2) d|µ(n)t2 |(φ3)

×Tr
∣∣U (1)(t1− t2)

[
a|φ1|2,|φ2|2(r1)− a|φ1|2,|φ2|2(r

′

1)
]
φ3(r1)φ3(r ′1)

∣∣.
Using the fact that

Tr|U (1)(t) f (r1)g(r ′1)| =
∫ ∣∣ei t1 f (r1)e−i t1g(r1)

∣∣ dx1

≤ ‖ei t1 f ‖L2
x
‖ei t1g‖L2

x

= ‖ f ‖L2
x
‖g‖L2

x
,

we have

Tr|G(1)(t1)| ≤
∑

(l,m,n)∈P

∫ t1

0
dt2

∫∫∫
d|µ(l)t2 |(φ1) d|µ(m)t2 |(φ2) d|µ(n)t2 |(φ3)‖a|φ1|2,|φ2|2φ3‖L2

x
‖φ3‖L2

x
.

Corollary 4.9, i.e., the main nonlinear estimate, turns the above into

Tr|G(1)(t1)| ≤
∑

(l,m,n)∈P

∫ t1

0
dt2

∫∫∫
d|µ(l)t2 |(φ1) d|µ(m)t2 |(φ2) d|µ(n)t2 |(φ3)×‖φ3‖L2

x

×‖φ1‖Ḣ1/2
x
‖φ2‖Ḣ1/2

x
min
τ∈S3
‖φτ(1)‖Ḣ1/2

x
‖φτ(2)‖Ḣ1/2

x
‖φτ(3)‖L2

x
.
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One of l, m, or n is zero, and we may put the corresponding term in L2, i.e.,

Tr|G(1)(t1)| ≤
2∑

l=1

∫ t1

0
dt2

∫∫∫
dµ(l)t2 (φ1) dµ(l)t2 (φ2) d|µ(0)t2 |(φ3)‖φ1‖

2
Ḣ1/2

x
‖φ2‖

2
Ḣ1/2

x
‖φ3‖

2
L2

x

+

∫ t1

0
dt2

∫∫∫
dµ(1)t2 (φ1) d|µt2 |(φ2) dµ(2)t2 (φ3)‖φ1‖

2
Ḣ1/2

x
‖φ2‖L2

x
‖φ2‖Ḣ1/2

x
‖φ3‖Ḣ1/2

x
‖φ3‖L2

x

+

∫ t1

0
dt2

∫∫∫
d|µt2 |(φ1) dµ(2)t2 (φ2) dµ(2)t2 (φ3)‖φ1‖L2

x
‖φ1‖Ḣ1/2

x
‖φ2‖

2
Ḣ1/2

x
‖φ3‖Ḣ1/2

x
‖φ3‖L2

x
.

Using the fact that each µ( j)
t is supported on the unit sphere in L2 and thanks to (40) and (41), we obtain

Tr|G(1)(t1)| ≤ 4M3t1 sup
t∈[0,t1]

∫
d|µt |(φ)≤ C M3t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
.

Thus, we have proved that

Tr|G(1)(t1)| ≤ Ct1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
. (46)

3B. Estimate for part II. Recall that

II=
lc∑

r=1

∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1).

Because each B j is a sum of 2( j−1) terms (see (31)), integrands of summands of NP(lc) have up to O(k!)
summands themselves. We use the Klainerman–Machedon board game argument to combine them and
hence reduce the number of terms that need to be treated. Define

J (t j+1)( f ( j+1))=U (1)(t1− t2)B2 · · ·U ( j)(t j − t j+1)B j+1 f ( j+1),

where t j+1 means (t2, . . . , t j+1). Then the Klainerman–Machedon board game argument implies the
lemma.

Lemma 3.3 (Klainerman–Machedon board game [2008]). One can express∫ t1

0
· · ·

∫ t j

0
J (t j+1)( f ( j+1)) dt j+1

as a sum of at most 4 j terms of the form∫
D

J (t j+1, σ )( f ( j+1)) dt j+1,

or in other words,∫ t1

0
· · ·

∫ t j

0
J (t j+1)( f ( j+1)) dt j+1 =

∑
σ

∫
D

J (t j+1, σ )( f ( j+1)) dt j+1.

Here D ⊂ [0, t2] j , the σ range over the set of maps from {2, . . . , j + 1} to {1, . . . , j} satisfying σ(2)= 1
and σ(l) < l for all l, and

J (t j+1, σ )( f ( j+1))=U (1)(t1− t2)B1,2U (2)(t2− t3)Bσ(3),3 · · ·U ( j)(t j − t j+1)Bσ( j+1), j+1( f ( j+1)).
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With Lemma 3.3, we can write a typical summand of part II as∫ t1

0
· · ·

∫ tr

0
dt2 · · · dtr+1U (1)(t1− t2)B2 · · ·U (r)(tr − tr+1)Br+1G(r+1)(tr+1)

=

∑
σ

∫
D

dtr+1 J (tr+1, σ )(G(r+1)),

where the sum has at most 4r terms inside. Let

II(r,σ ) =
∫

D
dtr+1 J (tr+1, σ )(G(r+1)). (47)

To estimate part II, it suffices to prove the following lemma:

Lemma 3.4. There is a C0 depending on M in (42) such that, for all r , we have

Tr|II(r,σ )|(t1)≤
[
(r + 1)

(
C0t1/3

1

)r ]t1( sup
t∈[0,t1]

Tr|γ (1)(t)|
)
.

With the above lemma, we have

Tr|II|(t1)≤
lc∑

r=1

∑
σ

[
(r + 1)

(
C0t1/3

1

)r ]t1( sup
t∈[0,t1]

Tr|γ (1)(t)|
)

≤ t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

) ∞∑
r=1

4r [(r + 1)
(
C0t1/3

1

)r ]
≤ Ct1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
(48)

for t1 small enough so that the series converges.
Together the estimates (46) and (48) establish Theorem 2.3.
Before proving Lemma 3.4, we illustrate how to obtain the estimate for a specific example.

Example 3.5. To avoid heavy notation and demonstrate the main idea of the proof of Lemma 3.4, we
first prove it for a concrete example. The general case uses the same underlying idea, which turns out
to be quite simple as compared to what must be done for the interaction part IP. We adapt the example
and use the notation in [T. Chen, Hainzl, Pavlović, and Seiringer 2014, §6.1] for our II(r,σ ). Denoting
U ( j)(tk − tl) by U ( j)

k,l , we consider

Tr|II(3,σ )|(t1)=
∫

D
dt4U (1)

1,2 B1,2U (2)
2,3 B2,3U (3)

3,4 B3,4[G(4)(t4)]

≤

4∑
j=1

∑
(l,m,n)∈P

∫
[0,t1]3

dt4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)

×Tr
∣∣U (1)

1,2 B1,2U (2)
2,3 B2,3U (3)

3,4 B3,4U (4)
4,5

(
[a|ψ |2,|ω|2(r j )− a|ψ |2,|ω|2(r

′

j )](|φ〉〈φ|)
⊗4)∣∣. (49)

Remark 3.6. In the above, there is a U (4)
4,5 after B3,4. This is the main difference between the nonlinear

part NP and the interaction part IP. As noted in [T. Chen, Hainzl, Pavlović, and Seiringer 2014], since
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the last B in IP is not followed by a Schrödinger propagator, it creates a factor of |φ|2φ, which has to be
handled by Sobolev embedding rather than Strichartz estimates.

It suffices to treat∑
(l,m,n)∈P

∫
[0,t1]3

dt4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)

×Tr
∣∣U (1)

1,2 B+1,2U (2)
2,3 B+2,3U (3)

3,4 B+3,4U (4)
4,5

(
[a|ψ |2,|ω|2(r4)](|φ〉〈φ|)

⊗4)∣∣, (50)

where B+1,2 is half of B1,2, namely

B+1,2(γ
(2))= γ (2)(x1, x1, x ′1, x1).

When we plug the estimate of (50) into (49), we will pick up a 23 since there are three B’s in (49).
However, compensating for this is the factor

(
t2/3
1

)3 that emerges by the end. Hence, our simplification is
a valid one.

Step I (structure). We enumerate the four factors of (|φ〉〈φ|)⊗4 for the purpose of bookkeeping even
though these factors are physically indistinguishable. So we write

⊗4
i=1 ui , ordered with increasing

index i . We first have

B+3,4U (4)
4,5a|ψ |2,|ω|2(r4)(|φ〉〈φ|)

⊗4
=

(
U (2)

4,5

( 2⊗
i=1

ui

))
⊗23,

where
23 = B+1,2(U

(2)
4,5(u3⊗ a|ψ |2,|ω|2(r4)u4))

= B+1,2(U4,5φ(x3))(U5,4φ(x ′3))(U4,5[a|ψ |2,|ω|2(r4)φ(x4)])(U5,4φ(x ′4))

= (U4,5φ(x3))(U4,5[a|ψ |2,|ω|2(r3)φ(x3)])(U5,4φ(x3))(U5,4φ(x ′3))

≡ T3(x3)(U5,4φ(x ′3)) (51)

with U4,5 = ei(t4−t5)1. Here T3 stands for the trilinear form

(U4,5[a|ψ |2,|ω|2(r3)φ(x3)])(U5,4φ(x3))(U5,4φ(x ′3)).

We make similar substitutions below and, to bound these terms, shall invoke the trilinear estimate (56),
which states that

‖T ( f1, f2, f3)‖L1
t∈[0,t0)

L2
x
.s t s/2

0 ‖ f1‖L2‖ f2‖L2‖ f3‖Ḣ s

for 0< s ≤ 2.
Applying B+2,3U (3)

3,4 , we reach

B+2,3U (3)
3,4 B+3,4U (4)

4,5(aρl ,ρm (r j )(|φ〉〈φ|)
⊗4)= B+2,3U (3)

3,4(U
(1)
4,5u1⊗U (1)

4,5u2⊗23)

=U (1)
3,4U (1)

4,5u1⊗22

=U (1)
3,5u1⊗22,
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where
22 = B+1,2U (2)

3,4(U
(1)
4,5u2⊗23)

= B+1,2(U
(1)
3,5u2⊗U (1)

3,423)

= B+1,2
(
(U3,5φ(x2))(U5,3φ(x ′2))(U3,4T3(x3))(U4,3U5,4φ(x ′3))

)
= (U3,5φ(x2))(U3,4T3(x2))(U5,3φ(x2))(U5,3φ(x ′2))

≡ T2(x2)(U5,3φ(x ′2)). (52)

Finally, with U (1)
1,2 B+1,2U (2)

2,3 , we get

U (1)
1,2 B+1,2U (2)

2,3 B+2,3U (3)
3,4 B+3,4U (4)

4,5(a|ψ |2,|ω|2(r j )(|φ〉〈φ|)
⊗4)

=U (1)
1,2 B+1,2U (2)

2,3(U
(1)
3,5u1⊗22)

=U (1)
1,2 B+1,2(U

(1)
2,5u1⊗U (1)

2,322)

=U (1)
1,2 B+1,2

[
(U2,5φ(x1))(U5,2φ(x ′1))(U2,3T2(x2))(U3,2U5,3φ(x ′2))

]
=U (1)

1,2

[
(U2,5φ(x1))(U2,3T2(x1))(U5,2φ(x1))(U5,2φ(x ′1))

]
=U (1)

1,2[T1(x1)U5,2φ(x ′1)]. (53)

Step II (iterative estimate). Plugging the calculation in Step I into (50), we have

(50)≤
∑

(l,m,n)∈P

∫
[0,t1]3

dt4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖T1(x1)‖L2‖φ‖L2

≤

∑
(l,m,n)∈P

∫
[0,t1]2

dt3t4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)×‖T1‖L1

t2
L2,

where
‖T1‖L1

t2
L2 ≤ Ct1/3

1 ‖φ‖H2/3‖T2‖L2‖φ‖L2

by (56). Thus,

(50)≤ Ct1/3
1

∑
(l,m,n)∈P

∫
[0,t1]

t4

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖φ‖H2/3‖T2‖L1

t3
L2 .

By (56) again,
‖T2(x2)‖L1

t3
L2

x2
≤ Ct1/3

1 ‖φ‖H2/3‖T3‖L2‖φ‖L2,

and hence,

(50)≤
(
Ct1/3

1

)2 ∑
(l,m,n)∈P

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖φ‖

2
H2/3‖T3‖L1

t4
L2

x2

≤
(
Ct1/3

1

)3 ∑
(l,m,n)∈P

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)‖φ‖

3
H2/3

∥∥a|ψ |2,|ω|2(r3)φ(x3)
∥∥

L2 .
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By the fact that |µ(i)t | is supported in the set

{φ ∈ L2(R2) | ‖φ‖H2/3 ≤ M},

we have

(50)≤
(
C Mt1/3

1

)3 ∑
(l,m,n)∈P

∫ t1

0
dt5

∫∫∫
d|µ(l)t5 |(ψ) d|µ(m)t5 |(ω) d|µ(n)t5 |(φ)

∥∥a|ψ |2,|ω|2(r3)φ(x3)
∥∥

L2 .

One then proceeds as in the estimate of Tr|G(1)(t1)| to reach

(50)≤
(
C Mt1/3

1

)3 M3t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
.

Selecting a C0 bigger than M2 and 1, we obtain

(50)≤
(
C0t1/3

1

)3t1

(
sup

t∈[0,t1]
Tr|γ (1)(t)|

)
.

Plugging the above estimate back into (49), we get

Tr|II(3,σ )|(t1)≤
[
4 · 23
·
(
C0t1/3

1

)3]t1( sup
t∈[0,t1]

Tr|γ (1)(t)|
)

as desired. This finishes the proof of the example.

One observation to make concerning our approach in Example 3.5 is that the structure found in Step I
is crucial. Such a structure generated by the collision operator B and propagator U is found in general,
and we state its relevant properties in the following lemma:

Lemma 3.7. Let M ∈ N, M > 1, and for each j , 1 ≤ j ≤ M , suppose that the two functions f j (x j )

and f ′j (x
′

j ) belong to4 L1
t H s

x (R
2), 1

2 ≤ s ≤ 2
3 . Then there exist L1

t H s
x (R

2) functions h and h′ such that

B±σ(M),MU (M)
M,M+1

[
M∏

j=1

f j (x j ) f ′j (x
′

j )

]
= hσ(M)(xσ(M))h′σ(M)(x

′

σ(M))U
(M−2)
M,M+1

[
M−1∏
j=1

j 6=σ(M)

f j (x j ) f ′j (x
′

j )

]
.

In the case where B is B+σ(M),M , h is a trilinear form of the type (54) and h′ is a linear evolution. In the
case where B is B−σ(M),M , the roles of h and h′ are reversed.

Proof. The collision operator leaves untouched each term for which j /∈ {M, σ (M)}. Only the propagator
affects these terms. So we have

B+σ(M),MU (M)
M,M+1

[
M∏

j=1

f j (x j ) f ′j (x
′

j )

]

=U (M−2)
M,M+1

[ ∏
j∈{1,...,M}\{M,σ (M)}

f j (x j ) f ′j (x
′

j )

]
· Tσ(M),M(xσ(M))e

−i(tM−tM+1)1x ′
σ(M) f ′σ(M)(x

′

σ(M)),

4We suppress the time dependence in the notation and allow restriction to time intervals, which may be achieved, for instance,
by introducing sharp time cutoffs.
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where

Tσ(M),M(xσ(M))

:= ei(tM−tM+1)1xσ(M) fσ(M)(xσ(M)) · e
i(tM−tM+1)1xσ(M) fM(xσ(M)) · e

−i(tM−tM+1)1xσ(M) f ′M(xσ(M)).

Similarly,

B−σ(M),MU (M)
M,M+1

[
M∏

j=1

f j (x j ) f ′j (x
′

j )

]

=U (M−2)
M,M+1

[ ∏
j∈{1,...,M}\{M,σ (M)}

f j (x j ) f ′j (x
′

j )

]
· T ′σ(M),M(x

′

σ(M))e
i(tM−tM+1)1xσ(M) fσ(M)(xσ(M)),

where

T ′σ(M),M(x
′

σ(M))

:= e
i(tM−tM+1)1x ′

σ(M) fM(x ′σ(M)) · e
−i(tM−tM+1)1x ′

σ(M) f ′σ(M)(x
′

σ(M)) · e
−i(tM−tM+1)1x ′

σ(M) f ′M(x
′

σ(M)).

The L1
t H s

x bounds follow from (55) and Strichartz. �

Proof of Lemma 3.4. Using (47), (39), and (45), we write

II(r,σ ) =
r+1∑
j=1

∑
(l,m,n)∈P

∫
D

dtr+1 J (tr+1, σ )

{∫ tr+1

0
dtr+2U (r+1)(tr+1− tr+2)

×

∫∫∫
dµ(l)tr+2

(ψ) dµ(m)tr+2
(ω) dµ(n)tr+2

(φ)
[
a|ψ |2,|ω|2(|x j |)− a|ψ |2,|ω|2(|x

′

j |)
]
(|φ〉〈φ|)⊗(r+1)

}
.

We abbreviate
J (tr+1, σ )=U (1)

1,2 B1,2U (2)
2,3 Bσ(3),3 · · ·U

(r)
r,r+1 Bσ(r+1),r+1

and write

Tr|II(r,σ )|(t1)

≤

r+1∑
j=1

∑
(l,m,n)∈P

∫
[0,t1]r

dtr+1

∫ t1

0
dtr+2

∫∫∫
d|µ(l)tr+2

|(ψ) d|µ(m)tr+2
|(ω) d|µ(n)tr+2

|(φ)

×Tr
∣∣U (1)

1,2 B1,2 · · ·U
(r)
r,r+1 Bσ(r+1),r+1U (r+1)

r+1,r+2

[
a|ψ |2,|ω|2(|x j |)− a|ψ |2,|ω|2(|x

′

j |)
]
(|φ〉〈φ|)⊗(r+1)∣∣.

To simplify calculations, we drop, without loss of generality, the −a|ψ |2,|ω|2(|x ′j |) term. Also, we split
each B j,k into two pieces B±j,k so that B j,k = B+j,k − B−j,k .

Consider first the innermost terms

B±σ(r+1),r+1U (r+1)
r+1,r+2a|ψ |2,|ω|2(|x j |)(|φ〉〈φ|)

⊗(r+1).

The index j ∈ {1, . . . , r + 1} and the permutation σ together determine at what point a|ψ |2,|ω|2(|x j |) is
directly affected by a collision operator. In any case, we claim that, with respect to the variables xσ(r+1)
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and x ′σ(r+1), the term

B+σ(r+1),r+1U (r+1)
r+1,r+2a|ψ |2,|ω|2(|x j |)(|φ〉〈φ|)

⊗(r+1)

is a trilinear form of the form T in (54) (see (51), (52), and (53) for examples of these trilinear forms) in
the xσ(r+1) variable and a linear flow in the x ′σ(r+1) variable (the term with B− instead of B+ is similar
but with the roles of the primed and unprimed variables reversed). Note that precisely one of the terms in
the trilinear form T involves a|ψ |2,|ω|2(|x j |). This follows from Lemma 3.7. Additionally, Lemma 3.7
is formulated so that we can apply it iteratively until termination, at which point we have one term that
is trilinear of the form (54) in precisely one of x1 or x ′1 and another term that is a linear evolution of a
function of the remaining spatial variable. Step I of Example 3.5 illustrates such a process.

The final step is to iteratively bound the terms. We follow Step II of Example 3.5. The underlying idea
behind the iterative bounds is relatively straightforward. We start by controlling the trace norm using
Cauchy–Schwarz in space. One factor is simply a φ term associated to the measure and so will have L2

norm equal to one. This leaves us with the other term in L1
t L2. The next step is to apply (56). This places

one factor in Ḣ s and the remaining ones in L2. So that we can eventually apply (70), it is important to
always place in L2 the term appearing in the right-hand side that involves a|ψ |2,|ω|2(|x j |). To control the
term placed in Ḣ s , we apply (55). For the terms in L2, we use (56) or (70) as appropriate. �

Remark 3.8. We first remind the reader that, because at each step we are estimating a linear term of
the type ei t1 f or a trilinear term of the form (54), we do not need to apply Sobolev embedding as is
necessary for estimating the interaction part. Secondly, the “a” term cannot be generated by B, and thus,
we do not need to keep track of multiple “copies” of |φ|2φ generated by B in contrast to what must be
done in controlling the interaction part. In particular, there is no need to introduce binary tree graphs or
keep track of complicated factorization structures of kernels in controlling the nonlinear part.

4. Multilinear estimates

In this section, we will need the following fractional Leibniz rule from [Christ and Weinstein 1991,
Proposition 3.3]:

Lemma 4.1. Let 0< s ≤ 1 and 1< r, p1, p2, q1, q2 <∞ such that 1
r =

1
pi
+

1
qi

for i = 1, 2. Then

‖|∇|
s( f g)‖Lr . ‖ f ‖L p1‖|∇|

s g‖Lq1 +‖|∇|
s f ‖L p2‖g‖Lq2 .

Define the trilinear form T by

T ( f, g, h)= ei(t−t1)1 f · ei(t−t2)1g · ei(t−t3)1h. (54)

Lemma 4.2. Let 0< s ≤ 2
3 . The trilinear form T given by (54) satisfies5

‖T ( f, g, h)‖L1
t∈[0,t0)

Ḣ s
x
. t s

0‖ f ‖Ḣ s‖g‖Ḣ s‖h‖Ḣ s . (55)

5Such trilinear estimates are the precursors to the Klainerman–Machedon collapsing estimates widely used in the literature.
For those estimates, see [Klainerman and Machedon 2008; Kirkpatrick, Schlein, and Staffilani 2011; Grillakis and Margetis
2008; T. Chen and Pavlović 2011; X. Chen 2011; 2012a; Beckner 2014; Gressman, Sohinger, and Staffilani 2014].
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Proof. By the fractional Leibniz rule, we have

‖T ( f, g, h)‖L1
t Ḣ s

x
. ‖ei(t−t1)1 f ‖L3

t Ẇ s,6
x
‖ei(t−t2)1g‖L3

t L6
x
‖ei(t−t3)1h‖L3

t L6
x

+‖ei(t−t1)1 f ‖L3
t L6

x
‖ei(t−t2)1g‖L3

t Ẇ s,6
x
‖ei(t−t3)1h‖L3

t L6
x

+‖ei(t−t1)1 f ‖L3
t L6

x
‖ei(t−t2)1g‖L3

t L6
x
‖ei(t−t3)1h‖L3

t Ẇ s,6
x
.

By Sobolev embedding, we bound the first term by

‖ei(t−t1)1 f ‖L3
t Ẇ s,6

x
‖ei(t−t2)1g‖L3

t Ẇ s,p
x
‖ei(t−t3)1h‖L3

t Ẇ s,p
x
,

where 1
p =

1
6 +

s
2 . Note that 2≤ p < 6. Let q be given by 1

q +
1
p =

1
2 so that (q, p) forms a Schrödinger-

admissible Strichartz pair (see, for instance, [Tao 2006, §2]). So we use Hölder in time to bound the
expression by

‖ei(t−t1)1 f ‖L3
t Ẇ s,6

x
t1/3−1/q
0 ‖ei(t−t2)1g‖Lq

t Ẇ s,p
x

t1/3−1/q
0 ‖ei(t−t3)1h‖Lq

t Ẇ s,p
x
.

Finally, we conclude by applying Strichartz estimates and noting that 1
3 −

1
q =

s
2 . The second and third

terms are similar. �

Lemma 4.3. Let 0< s ≤ 2. The trilinear form T given by (54) satisfies

‖T ( f, g, h)‖L1
t∈[0,t0)

L2
x
. t s/2

0 ‖ f ‖L2‖g‖L2‖h‖Ḣ s . (56)

Proof. By Hölder’s inequality,

‖T ( f, g, h)‖L1
t∈[0,t0)

L2
x
≤ t s/2

0 ‖e
i(t−t1)1 f ‖Lq

t Lr
x
‖ei(t−t2)1g‖Lq

t Lr
x
‖ei(t−t3)1h‖L∞t L p

x
,

where 1
q =

1
2 −

s
4 , r = 4

s , and p = 2/(1− s). Using Strichartz estimates and Sobolev embedding, we
control the right-hand side by

t s/2
0 ‖ f ‖L2

x
‖g‖L2

x
‖ei(t−t3)1h‖L∞t Ḣ s

x
.

Finally, we conclude the bound stated in the lemma by noting that the Schrödinger propagator is an
isometry on L2-based spaces. �

Remark 4.4. From the proofs of both (55) and (56), it is evident that any of ei(t−t1)1 f , ei(t−t2)1g, and
ei(t−t3)1h can be replaced by its complex conjugate in the trilinear form (54).

For the next set of estimates, recall

∂r A0 =
1
r Aθρ, ∂r Aθ =− 1

2rρ

and

A0(t, r) := −
∫
∞

r

Aθ (s)
s

ρ(s) ds, Aθ (t, r) := −
1
2

∫ r

0
ρ(s)s ds. (57)

When it is important to indicate the dependence upon the density function ρ, we write A(ρ)θ (t, r) for
Aθ (t, r). Recall

A(ρ1,ρ2)
0 (t, r)=−

∫
∞

r
A(ρ1)
θ (s)ρ2(s)

ds
s
, (58)
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where A(ρ1)
θ is defined using (57) but with ρ1 in place of ρ in the right-hand side, i.e.,

A(ρ1)
θ (t, r)=−

1
2

∫ r

0
ρ1(s)s ds.

Define the operators [∂r ]
−1, [r−n∂r ]

−1, and [r∂r ]
−1 acting on radial functions by

[∂r ]
−1 f (r)=−

∫
∞

r
f (s) ds, [r−n∂r ]

−1 f (r)=
∫ r

0
f (s)sn ds, [r∂r ]

−1 f (r)=−
∫
∞

r

1
s

f (s) ds.

Then it follows by a direct argument that

‖[r∂r ]
−1 f ‖L p .p ‖ f ‖L p , 1≤ p <∞, (59)

‖r−n−1
[r−n∂r ]

−1 f ‖L p .p ‖ f ‖L p , 1< p ≤∞, (60)

‖[∂r ]
−1 f ‖L2 . ‖ f ‖L1 . (61)

These estimates appear, for instance, in [Bejenaru, Ionescu, Kenig, and Tataru 2013, (1.5)] and also find
application in [Liu and Smith 2014, §2].

Remark 4.5. In these estimates and those below, we use the Lebesgue measure on R2 for all L p spaces.
In particular, for radial functions of r , we essentially adopt the rdr measure.

Lemma 4.6 (elementary bounds for A). The connection coefficients Aθ and A0, given by (57), satisfy

‖Aθ‖L∞x . ‖ρ‖L1
x
,

∥∥1
r Aθ

∥∥
L∞x
. ‖ρ‖L2

x
,

∥∥ 1
r2 Aθ

∥∥
L p

x
. ‖ρ‖L p

x
, where 1< p ≤∞, (62)

and

‖A0‖L p
x
. ‖ρ‖L1

x
‖ρ‖L p

x
, where 1≤ p <∞, ‖A0‖L∞x . ‖ρ‖

2
L2

x
. (63)

Moreover, A2
θ satisfies the bounds∥∥ 1

r2 A2
θ

∥∥
L p

x
. ‖ρ‖L1

x
‖ρ‖L p

x
, where 1< p ≤∞,

∥∥ 1
r2 A2

θ

∥∥
L∞x
. ‖ρ‖2L2

x
. (64)

Proof. These estimates are essentially contained in [Liu and Smith 2014, §2].
The first inequality of (62) is trivial. The second follows from Cauchy–Schwarz:

|Aθ (t, r)|. r
(∫

∞

0
|ρ(s)|2s ds

)1/2

.

The third is an application of (60) with n = 1.
The first inequality of (63) follows from the first inequality of (62) and from (59). The second is a

consequence of Cauchy–Schwarz and the third inequality of (62) with p = 2.
The first inequality of (64) follows from the first and third inequalities of (62). The second follows

from two applications of the second inequality of (62). �
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Lemma 4.7 (weighted estimates). Let 1
p +

1
q = 1 with 1 < q < ∞, and suppose that ρ = |ψ |2 and

ρ j = |ψ j |
2 for j = 1, 2. Then

‖r−2/q A(ρ)θ ‖L∞x . ‖ψ‖
2
Ḣ1/q

x
, (65)

‖r−1/q A(ρ)θ ‖L∞x . ‖ψ‖Ḣ1/q
x
‖ψ‖L2

x
(66)

and

‖r1/p A(ρ1,ρ2)
0 ‖L∞x .min

τ∈S2
‖ψτ(1)‖

2
Ḣ1/q

x
‖ψτ(2)‖Ḣ1/p

x
‖ψτ(2)‖L2

x
, (67)

where S2 denotes the set of permutations on two elements.

Proof. To establish (66), use Hölder’s inequality to obtain

|Aθ |. r2/q
‖ψ‖2L2p

and then use Sobolev embedding. The estimate (65) follows from Hölder’s inequality, which yields

|Aθ |. r1/q
‖r−1/qψ‖L2

x
‖ψ‖L2

x
,

and Hardy’s inequality.
To prove (67), use Hölder to write

|A(ρ1,ρ2)
0 |. ‖r−2/q A(ρ1)

θ ‖L∞x ‖r
−1/pψ2‖L2

x
‖ψ2‖L2

x
r−1/p.

Then, using (65) and Hardy’s inequality, we obtain

‖r1/p A(ρ1,ρ2)
0 ‖L∞x . ‖ψ1‖

2
Ḣ1/q

x
‖ψ2‖Ḣ1/p

x
‖ψ2‖L2

x
.

Finally, we may repeat the argument with the roles of ψ1 and ψ2 reversed. �

Lemma 4.8 (bounds for the nonlinear terms). Suppose that ρ j = |ψ j |
2 for j = 1, 2. Then

‖A(ρ1,ρ2)
0 2‖L2

x
+
∥∥ 1

r2 A(ρ1)
θ A(ρ2)

θ 2
∥∥

L2
x
. ‖ψ1‖Ḣ1/2

x
‖ψ2‖Ḣ1/2

x
‖2‖Ḣ1/2

x
min
τ∈S2
‖ψτ(1)‖Ḣ1/2

x
‖ψτ(2)‖L2

x
. (68)

Proof. We start with

‖A(ρ1,ρ2)
0 2‖L2

x
. ‖r1/2 A(ρ1,ρ2)

0 ‖L∞x ‖r
−1/22‖L2

x
. ‖r1/2 A(ρ1,ρ2)

0 ‖L∞x ‖2‖Ḣ1/2
x

and then appeal to (67) with p = q = 2.
Similarly, ∥∥ 1

r2 A(ρ1)
θ A(ρ2)

θ 2
∥∥

L2
x
. ‖r−1 A(ρ1)

θ ‖L∞x ‖r
−1/2 A(ρ2)

θ ‖L∞x ‖r
−1/22‖L2

x

. ‖ψ1‖
2
Ḣ1/2

x
‖ψ2‖Ḣ1/2

x
‖ψ2‖L2

x
‖2‖Ḣ1/2

x
,

where we have used (66) and (65) with p = q = 2 and Hardy’s inequality. Finally, we may repeat the
estimate but with the roles of ψ1 and ψ2 reversed. �
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Now we introduce (see (28) to compare)

aρ1,ρ2(t, r) := A(ρ1,ρ2)
0 (t, r)+ 1

r2 A(ρ1)
θ (t, r)A(ρ2)

θ (t, r). (69)

For the definitions of the terms on the right-hand side, see the equations and comments from (57) to (58).

Corollary 4.9. Suppose ρ j = |ψ j |
2 for j = 1, 2. Then

‖aρ1,ρ2ψ3‖L2
x
. ‖ψ1‖Ḣ1/2

x
‖ψ2‖Ḣ1/2

x
min
τ∈S3
‖ψτ(1)‖Ḣ1/2

x
‖ψτ(2)‖Ḣ1/2

x
‖ψτ(3)‖L2

x
, (70)

where S3 denotes the set of permutations on three elements.

Proof. For all but two permutations, the estimate follows from (68). To establish the estimate for the
remaining two cases, we need L∞x bounds on A(ρ1,ρ2)

0 and 1
r2 A(ρ1)

θ A(ρ2)
θ . Using the second estimate of (62)

twice and Sobolev embedding, we obtain∥∥ 1
r2 A(ρ1)

θ A(ρ2)
θ

∥∥
L∞x
≤
∥∥1

r A(ρ1)
θ

∥∥
L∞x

∥∥1
r A(ρ2)

θ

∥∥
L∞x
. ‖ψ1‖

2
L4

x
‖ψ2‖

2
L4

x
. ‖ψ1‖

2
Ḣ1/2

x
‖ψ2‖

2
Ḣ1/2

x
.

To bound A(ρ1,ρ2)
0 , we proceed in a manner similar to that of the second estimate of (63) and (67). In

particular, invoking (66) with q = 2 and Hardy, we obtain

‖A(ρ1,ρ2)
0 ‖L∞x =

∥∥∥∥∫ ∞
r

s−1 A(ρ1)
θ s−1

|ψ2|
2s ds

∥∥∥∥
L∞x

. ‖r−1 A(ρ1)
θ ‖L∞x ‖r

−1/2ψ2‖
2
L∞x
. ‖ψ1‖

2
Ḣ1/2

x
‖ψ2‖

2
Ḣ1/2

x
. �

Remark 4.10. From the proofs of these estimates, we see that the limiting factor in lowering the regularity
of the unconditional uniqueness result lies in the interaction part, which requires s= 2

3 rather than the s= 1
2

required for the nonlinear part. By using negative-regularity Sobolev spaces, [Hong, Taliaferro, and Xie
2014] lowers the regularity required for the interaction part. Such a procedure does not seem to work, at
least directly, for the problem at hand. This is because one would need to obtain the same negative-order
Sobolev index in the right-hand side of (70) for the purpose of moving the term arising from controlling
the nonlinear part back over to the left-hand side (see the argument following the proof of Theorem 2.4).
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