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HOLDER CONTINUITY AND BOUNDS FOR FUNDAMENTAL SOLUTIONS
TO NONDIVERGENCE FORM PARABOLIC EQUATIONS

SEIICHIRO KUSUOKA

We consider nondegenerate second-order parabolic partial differential equations in nondivergence form
with bounded measurable coefficients (not necessary continuous). Under certain assumptions weaker
than the Holder continuity of the coefficients, we obtain Gaussian bounds and Holder continuity of the
fundamental solution with respect to the initial point. Our proofs employ pinned diffusion processes for
the probabilistic representation of fundamental solutions and the coupling method.

1. Introduction and main result

Leta(t, x) = (a;;(t, x)) be a symmetric d x d-matrix-valued bounded measurable function on [0, 00) x R4
which is uniformly positive-definite, i.e.,

A <a(, x) < Al (1-1)

where A is a positive constant and / is the unit matrix. Let b(¢, x) = (b; (¢, x)) be an R“-valued bounded
measurable function on [0, 0o) x R? and ¢(, x) a bounded measurable function on [0, oo) x R?. Consider
the parabolic partial differential equation

d 2 d
0 1 Z d 0
Eu(tv -x) = E - aij(t’ X) ax[laxju(t’ X) + ;:1 bi(tv X)B_Xiu(t? -x) +C(t, X)Lt(t, X), (1_2)
u(0, x) = f(x).

Generally, (1-2) does not have a unique solution. We will assume the continuity of a in spatial components
uniformly in ¢, and this implies the uniqueness of the weak solution; see [Stroock and Varadhan 1979]. In
the present paper, we always consider cases where the uniqueness of the weak solution holds. Set
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and denote the fundamental solution to (1-2) by p(s, x; ¢, y), i.e., p(s, x; t, y) is a measurable function
defined for s, ¢ € [0, 00) such that s <t and x, y € R which satisfies

d
" / f(y)p(s,-;r,ymy:Lt(/ f(y)p(s,-;r,y>dy> and lim / FO)PGs, - iry)dy = f
t R4 Rd rls Jrd
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for s, t € [0, oo) such that s < ¢ and a continuous function f with a compact support. In the present paper,
we consider the existence and the regularity of p(0, x; t, y).

The problem of regularity of the fundamental solutions to parabolic partial differential equations with
bounded measurable coefficients has a long history. Parabolic equations in divergence form has been
investigated more thoroughly than that those in nondivergence form, because the variational method is
applicable to them. The Holder continuity of the fundamental solution to d,u = V-aVu for a matrix-valued
bounded measurable function a with ellipticity condition A~!'7 <a < AT was originally obtained by De
Giorgi [1957] and Nash [1958] independently. Precisely speaking, in their results the o-Hdlder continuity
of the fundamental solution, with some positive number « € (0, 1], is obtained. The index « depends on
many constants appearing in the Harnack inequality and so on. These results have been extended to the
case of the more general equations d,u =V -aVu + b - Vu — cu, where b, ¢ are bounded measurable; see
[Aronson 1967; Stroock 1988]. The case for unbounded coefficients is also studied; see, for example,
[Metafune et al. 2009; Porper and Eidelman 1984; 1992]. An analogy to the case of a type of nonlocal
generators (the associated stochastic processes are called stable-like processes) is given by Chen and
Kumagai [2003]. In the results above, the index of the Holder continuity of the fundamental solution
depends on many constants appearing in the estimates, and it is difficult to calculate its exact value.
Moreover, it is difficult to obtain even a lower bound for the index.

The fundamental solutions to parabolic equations in nondivergence form with low-regular coefficients
have been studied mainly in the case of Holder-continuous coefficients. One of the most powerful tools
for the problem is the parametrix method, and it yields the existence, uniqueness and Holder continuity
of the fundamental solution; see [Friedman 1964; LadyZenskaja et al. 1967; Porper and Eidelman 1984,
Chapter I]. Furthermore, an a priori estimate (the so-called Schauder estimate) is known for the solutions,
and twice-continuous differentiability in x of the fundamental solution p(s, x; ¢, y) to (1-2) is obtained;
see, for example, [LadyZenskaja et al. 1967; Krylov 1996; Bogachev et al. 2009; Bogachev et al. 2005].
We remark that all the coefficients «, b, ¢ need to be Holder-continuous to apply the Schauder estimate.
Even in the case that a is the unit matrix and b is not continuous, we cannot expect the continuous
differentiability of the fundamental solution; see [Karatzas and Shreve 1991, Remark 5.2, Chapter 6].

In the present paper, we consider the Gaussian estimate and the lower bound of the index for the Holder
continuity in x of the fundamental solution p(s, x; ¢, y) to (1-2) by a probabilistic approach.

Now we fix some assumptions. Let B(x, R) be the open ball in R centered at x with radius R for
x € R? and R > 0. We assume that

d
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;2 rel0.00) Jre |9

[4

—a;i(s,x)| e ldx < M, (1-3)

Xj

where the derivatives are in the weak sense, 0 is a constant in [d, c0) N (2, o0), and m and M are
nonnegative constants. We also assume the continuity of a in spatial component uniformly in ¢, i.e., for
any R > 0 there exists a continuous and nondecreasing function pg on [0, 0o) such that pg(0) =0 and

sup supla;j(r, x) —a;j(t, y)| < pr(Ix —yD), x,y € B(O; R). (1-4)

te[0,00) 1,j
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We remark that under the assumptions (1-1) and (1-4), the equation (1-2) under consideration is well-
posed (see [Stroock and Varadhan 1979, Chapter 7]), and for fixed s € [0, oo) the fundamental solution
p(s, - ;t,-) exists for almost all ¢ € (s, 00) (see [Stroock and Varadhan 1979, Theorem 9.1.9]). However,
the fundamental solution does not always exist for all ¢ € (s, o) under assumptions (1-1) and (1-4); see
[Fabes and Kenig 1981]. We remark that under assumptions (1-1), (1-3) and (1-4), neither existence
of the fundamental solutions nor examples where the fundamental solution does not exist are known.
In the case that a does not depend on the time ¢, the fundamental solution exists for all ¢; see [Stroock
and Varadhan 1979, Theorem 9.2.6]. We also remark that (1-3) and (1-4) do not imply the local Holder
continuity of a in the spatial component.
Let pX(s, x; t, y) be the fundamental solution to the parabolic equation

iu(z‘ x) = Z a;j(t, x)

ljl

u(t x),

and let

Z @it x 8x, 8x] (1-5)

l]—

Suppose that {a" (¢, x)} is a sequence of symmetric d x d-matrix-valued functions with components
in C;°([0, c0) x R4) such that a™ (¢, x) converges to a(t, x) for each (¢, x) € [0, 00) X RY. We also
assume that (1-1), (1-3) and (1-4) hold for a™ instead of a, with the same constants m, M, 6, R and A,
and the same function pgr. Denote the fundamental solution to the parabolic equation associated with
the generator
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by pX:™. We assume the uniform Gaussian estimates for the fundamental solutions to p*>™, i.e., there
exist positive constants y; yg , Cg and Cg such that

Cs vg Ix —yI? Cg va lx —yI?
gmen( < ) < e < Somen(SHEER)

for s, ¢ € [0, 00) such that s < ¢, x, y € R, and n € N. The Gaussian estimates for the fundamental
solutions to parabolic equations in divergence form have been well investigated; see [Aronson 1967;
Karrmann 2001; Porper and Eidelman 1984; 1992]. However, there are not many known results in the
case of nondivergence form. A sufficient condition for the Gaussian estimate is obtained in [Porper and
Eidelman 1992, Theorem 19] by means of Dini’s continuity condition. The result includes the case of
Holder-continuous coefficients. We remark that two-sided estimates similar to the Gaussian estimates for
the equations with general coefficients are obtained in [Escauriaza 2000].
Now we state the main theorem of this paper:
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Theorem 1.1. Assume (1-1), (1-3), (1-4) and (1-6). Then, there exist constants Cy, Ca, y1 and y»
depending on d, y , yg, Cg» Cg, m, M, 0, A, ||b|le and ||c||eo Such that

Cie 1= yilx — y|? <p(s,x;t,y) < Cre 20— yalx —yI?
——exp[ ——— $, X506, Y) = 5 eXp| —
(t—s)a2 P i—s )77 V=i TP t—s

fors,t €0, 00) such that s <t and x, y € R%. Moreover, for any R > 0 and sufficiently small & > 0, there
exists a constant C depending on d, €, v , yg, Cs Cg, m, M, 0, R, pr, A, ||b|lcc and ||c||co Such that

—d/2-1,Ct

|p(0,x;1,y) — p(0,z; 1, y)| < Ct lx —z|'*

fort € (0,00),x,z€ B(0; R/2) and y € R.

The first assertion of Theorem 1.1 is the Gaussian estimate for p. The advantage of the result is
obtaining the Gaussian estimate of the fundamental solution to the parabolic equation in nondivergence
form without the continuity of b and c¢. Such a result seems difficult to obtain via the parametrix method.
The second assertion of Theorem 1.1 implies that p(0, x; ¢, y) is (1 — &)-Holder continuous in x, and
this is a clear lower bound for the continuity. The approach in this paper is mainly probabilistic. The
key method to prove Theorem 1.1 is the coupling method introduced by Lindvall and Rogers [1986].
This method enables us to discuss the Holder continuity of p(0, x; ¢, y) in x from the oscillation of the
diffusion processes without regularity of the coefficients.

If a is uniformly continuous in the spatial component, our proof below follows without restriction on
X, z, and the following corollary holds:

Corollary 1.2. Assume (1-1), (1-3), (1-6) and that there exists a continuous and nondecreasing function

p on [0, 00) such that p(0) =0 and

sup sup la;;(t, x) —a;;(t, V)| < p(lx —y), x,y e R’

te[0,00) i,j

Then, for sufficiently small ¢ > 0, there exists a constant C such that
PO, x;1,3) = p(0, 255, y)| < Ct~ 271 |x — ]!~
fort € (0,00)and x,y,z € R4,

The assumption (1-6) may seem strict. However, as mentioned above, Theorem 19 of [Porper and
Eidelman 1992] gives a Gaussian estimate for the parabolic equations with coefficients which satisfy
a version of Dini’s continuity condition. From this sufficient condition and Theorem 1.1, we have the
following corollary:

Corollary 1.3. Assume (1-1), (1-3), and that there exists a continuous and nondecreasing function p on
[0, o0) such that p(0) =0,

1 r
1 p(ry) d
— dri)dry <00 and sup supla;i(t,x)—a;j(t, )| < p(x—y], x,yeR" (1-7)
0 0

r r tel0,00) 1i,j
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Then, for sufficiently small ¢ > 0, there exists a constant C such that

—d/2=1,C1 o l=e

[p0,x;¢,y)—p0,z;5,y)| <Ct z

fort e (0,00)and x, y, z € R

We remark that, for o € (0, 1] and a positive constant C, p(r) = Cr® satisfies (1-7). Furthermore,
p(r) = Cmin{l, (—logr)~*} satisfies (1-7) for o € (2, 00). We also remark that continuity of b and ¢
are not assumed in Corollary 1.3.

The organization of the paper is as follows:

In Section 2, we prepare the probabilistic representation of the fundamental solution to (1-2). It
should be remarked that we consider the case where a is smooth in Sections 2—4, and the general case
is considered only in Section 5. The representation enable us to consider the Holder continuity of the
fundamental solution by a probabilistic way, and actually in Section 4 we prove the constant appearing in
the Holder continuity of p(0, x; ¢, y) in x depends only on the suitable constants. The representation is
obtained by the Feynman—Kac formula and the Girsanov transformation, and in the end of this section
p(s, x; t, y) is represented by the functional of the pinned diffusion process.

In Section 3, we prepare some estimates. The goal of this section is Lemma 3.5, which concerns the
integrability of a functional of the pinned diffusion process. Generally speaking, it is much harder to
see the integrability with respect to conditional probability measures than with respect to the original
probability measure. In our case, conditioning generates a singularity, and this fact makes the estimate
difficult. To overcome the difficulty, we begin with Lemma 3.1, which is an estimate of the derivative of
p(s, x; t,y). The proof of this lemma is analytic, and (1-3) is assumed for the lemma. In this section, we
also have the Gaussian estimate for p(s, x; ¢, ).

In Section 4, we prove that the constant appearing in the (1 — ¢)-Holder continuity of p(0, x; ¢, y) in
x depends only on the suitable constants. This section is the main part of our argument. To show this,
we apply the coupling method to diffusion processes. By virtue of the coupling method, the continuity
problem of the fundamental solution is reduced to the problem of the local behavior of the pinned diffusion
processes. To see the local behavior, (1-4) is needed. Finally, by showing an estimate of the coupling
time, we obtain the (1 — ¢)-Holder continuity of p(0, x; ¢, y) in x and the suitable dependence of the
constant appearing in the Holder continuity.

In Section 5, we consider the case of general @ and prove Theorem 1.1. Our approach is just smoothly
approximating a and using the result obtained in Section 4.

Throughout this paper, we denote the inner product in the Euclidean space R? by (-, - ), and all random
variables are considered on a probability space (€2, &, P). We denote the expectation of random variables
by E[ - ] and the expectation on the event A € F (i.e., f 4+ dP)by E[ - ; A]. We denote the smooth functions
with bounded derivatives on S by C;°(S) and the smooth functions on S with compact support by C5°(S).

2. Probabilistic representation of the fundamental solution

In this section, we assume that a;; (7, x) € Cg’oo([O, 00) x R?). Define a d x d-matrix-valued function
o (t, x) as the square root of a(z, x). Then, (1-1) implies that o0;;(z, x) € C2’°°([0, 00) x RY), a(t, x) =
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o(t,x)o(t,x)T and

sup sup |oj; (7, x) — 0y (t, )| < Cpr(lx —y), x,y € B(0; R), (2-1)

1€[0,00) i,j

where C is a constant depending on A. Note that (1-1) implies that
ATV <ot x) < AL (2-2)

Consider the stochastic differential equation:

{dng =o(1, X¥)dB,, 03

X
Xy =x.

Lipschitz continuity of o implies the existence of a solution and its pathwise uniqueness. Let (%;) be
the o-field generated by (B; : s € [0, ¢]). Then, pathwise uniqueness implies that the solution X7 is
%,-measurable. All stopping times appearing in this paper are associated with (%;). We remark that the
generator of (X;) is given by (1-5), and therefore the transition probability density of (X;) coincides
with the fundamental solution p* of the parabolic equation generated by (LX). The smoothness of o
implies the smoothness of pX (s, x;t,y)on (0,00) x R4 x (0, 00) x R?; see, for example, [Kusuoka and
Stroock 1985] for the probabilistic proof and [Lax and Milgram 1954] for the analytic proof.

There is a relation between the fundamental solution and the generator, as follows. Since p* is smooth,
by the definition of pX we have

0
5p"(s, x;t,y) = [LEpX(s, 51, )(x) (2-4)

for s, ¢ € [0, 00) such that s < ¢ and x, y € R?. Let (L¥)* be the dual operator of LX on L?(R?). Define
TS)’(, and (Tsf(t)* as the semigroups generated by LX and (LX)*, respectively. Since

/R ) (TN ) (x) dx = /R ) Y (O[T ¢ 1(x) d,

we have

/Rd ‘f’(x)(fw Y p¥ (s, xt,y) dy) dx = fR W")(fw PN (P (s, x5 1, y) dy) dx,

where (pX)*(s, x; t, y) is the fundamental solution associated with (Lf‘ )*. Hence, it holds that

pX(s, x5t 9) = (p)*(s, yi 1, x)

for s, ¢ € (0, o0) such that s < 7 and x, y € RY. Differentiating both sides of this equation with respect to
t, we obtain

[LXpX(s, -1, 1) =L () s, - 51, 010) = (L) p* (s, x5 1, 1) (2-5)
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for s, € [0, 00) such that s < ¢, and x, y € R?. By the Chapman—Kolmogorov equation, we have, for
s,t,ue€[0,00)suchthatu <s <tandx,ye€ R9, that

pXu,x;t,y) = /Rd pXu, x;5,8)p* (s, &5 1, y) dE.

Differentiating both sides of this equation with respect to s, we have

a 9
0:Ad(—PX(M,x;S,S))pX(S,S;t,y)d€+/ pX(u,x;s,S)(apX(s,g;z,y)> dE

as R4

for s, u € [0, 00) such that u < s and x, y € R?. Since (2-4) and (2-5) imply that

]
ap"(u,x; 5,6) = [LXpX(u,-;5,8)1x) =L p*(u, x; 5, 1),

we have, for s, 7, u € [0, 00) suchthatu <s <t and x, y € R<, that
0
/ pX . x;s, s)(—px<s, £:t, y)) g = —/ [ pX (w, x; 5, )1E) p¥ (s, &1, y) dE
R4 as R4
= —/dp"w,x; s ELY p¥ (s, 1, @) dE.
R
Noting that pX (u, x; s, £) converges to 8, (£) as u 1 s in the sense of Schwartz distributions, we obtain

0
gp’%s, x;t,y)=—[L¥p¥(s, 51, »)1(x) (2-6)

for s, € (0, 00) such that s <t and x, y € R4,

Next we study the probabilistic representation of p(s, x; ¢, y) by pX (s, x; ¢, y). By the Feynman-Kac
formula (see, for example, [Revuz and Yor 1999, Proposition 3.10, Chapter VIII]) and the Girsanov
transformation (see, for example, [Ikeda and Watanabe 1989, Theorem 4.2, Chapter IV]), we have the
following representation of u(t, x) by X;:

t t t
u(t,x) = E|:f(Xf) exp(/ (bs (s, X3),dBs) — %/ |bs (s, Xjf)|2ds +/ c(s, X3) ds)], (2-7)
0 0 0
where by (f, x) := o (t, x)"'b(t, x). For s <t and x € R, let

t t t
E(s, t; X*) = exp(f (ba(u,X;),dBu)—%/ Ib(,(u,Xﬁ)Izdu—f—/ c(u,Xj)du).
S N

N

Then, by the definition of the fundamental solution and (2-7), we obtain the probabilistic representation
of the fundamental solution:

PO, x:1,y) = pX(0, x; 1, y) EX =V[€(0, 1; XV)], (2-8)
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where PX7=Y is the conditional probability measure of P on X/ =yand E Xi=y[.]is the expectation
with respect to P*1 =Y. Hence, to see the regularity of p(0, x; ¢, y) in x, it is sufficient to see the regularity
of the function x — pX (0, x; ¢, y) EXi=Y[€(0, t; X*)]. We prove Theorem 1.1 by studying the regularity
of this function. The definition of € implies that

00, 1; XY —SC(r At t; X)) =T AL, t; X)@EO0, T AL X)—1) (2-9)

for any stopping time 7 and ¢ € [0, c0), and by Itd’s formula we have

t t
(s, 1; X*)—1 =/ €(s, u; X*)(bs(u, X;), dBy) +/ €(s, u; X )e(u, X)) du (2-10)

s s

for s, t € [0, 0o) such that s <t. We use these equations in the proof.
Now we consider the diffusion process X* pinned at y at time 7. Let s, t € [0, 00) such that s < ¢,
x,y € R? and ¢ > 0. By the Markov property of X, we have for A € %, that

P(AN (XY € BO: ) 50ie) ( fR PG EPANIX, € ds})) d'.
Hence, we obtain
PXI=Y(4) = ;f P (5.6 1, ) P(AN (XF € dE)) @-11)
pX(0,x;t,y) Jpe ’

for s, r € (0,00) suchthat s <t, Ae Fyand x, y € R“. This formula enables us to see the generator of
the pinned diffusion process. By 1to6’s formula, (2-6) and (2-11) we have, for f € Cg([Rd ), s, t €[0, 00)
such that s <t and x, y € R4,

pX0, x5, EX = F(XD]— p¥ (0, x3 2, y) f(x)
= E[f(X)pX(s, X5 t, )] — ELfF (X3 p* (0, X331, y)]

y X X X X * x 8 X
0 0 ou e
+EU FE&XDLYp @, st y))(Xij)du}
0
1 N
+5EU <a<u,X§)TVf(Xz:),a(u,Xﬁ)T(Vp"(u,-;t,y))(X;»du}
0

=pX(0,x;1,y) / CpX =LY X du
0

(VpX(u, -;t,y))(X§)>]d
u.

1 X § XX_
—pX (0, x; 1, EX =V £(XY), a(u, X*
TP O y)fo [< J X, at, X) pXu, X5, )

Hence, the generator of X pinned at y at time ¢ is

d 2 X .
1 0 1 \% s, y)x
5 § Clij(S,x) +<_a(s7-x> pX( R y)( ), V>
] 0x;0x; 2 pr(s,x;t,y)
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for s € [0, 1) and x € RY. Of course, pinned Brownian motion is an example of pinned diffusion processes;
see [Ikeda and Watanabe 1989, Example 8.5, Chapter IV].

3. Estimates

In this section we prepare some estimates for the proof of the main theorem. Assume that a is smooth
and fix notation as in Section 2.

Lemma 3.1. Let t € (0, 00) and ¢ be a nonnegative continuous function on (0,t) x R? such that
¢(-,x)€ wh 1((0, 1), ds) for x e R and ¢ (s, -) € wh Z(Rd, dx) for s € (0, t). Then, for s, s3 € (0, 1)

loc loc
such that s1 < s,

52 X s X ;
/fRd atu, §)Vep” W 83, 3), Vep™ W, 851, )) ) ey e

pX(u, &1, y)?

5c<1+|1og<z—s1>|>éd¢<s1,s>ds+ca—s1)—‘fRd Y —EPP(s1, £) dE

+C(1+|10g(f—82)|)/ ¢(sz,s>ds+ccz—sz>—1/Rd|y—5|2¢<s2,s)ds+c/ /Rdmu,smsdu

2 $2
+Cf / Ve .51 dgdu+c/ (1+|10g(t—u)|)/d‘i¢(u,5)'d§d”

pp ¢ ¢(u ‘é)
5)‘d§du+CZ[/

+c/ (t—u)~!
i,j=1

where C is a constant depending on d, yg , J/CJ{ ,Cg» Cg ,and A, and supp ¢ is the support of ¢.

¢(u §)dé du,

—a;j(u,

0&;

Remark 3.2. If ¢ is a continuous function on R¢, the Lebesgue measure of supp ¢ \ {x € RY: ¢ (x) > 0}
is zero.

Proof of Lemma 3.1. It is sufficient to show the theorem for ¢ € C3°([0, 7] x R4), because the general
case is obtained by approximation. Let u € (0, ). Recall that the components of the coefficient o of
(2-3) are in Cg’oo([O, 00) x RY) and o is uniformly positive-definite. Hence, the associated transition
probability density pX(- , -3 t,-)is smooth on (0, t) x R? x R4, and pX(s, x;t,y)>0fors € (0, ) and
X,y € R<; see, for example, [Aronson 1967]. By the Leibniz rule, we have

d
-~ f (log p* (u, £; 1, ) (u, &) dE
u Jrd

3/duw)pX(u,&; 1, )
re  pr(u,§5t,y) Rd du

The equality (2-6) and integration by parts imply
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(0/0u)pX(u, &;1, y)

“ px(u’g;t’y)l d¢(u’$)j-$<u £)(0%/0€:08) p™ (u, E; 1, y)
:_E,,;/Rd — px(ul,é‘;jt,py) e s
d .
! ,,,.Zzl ) (a/agi)(a”(”I;fsz/;if);xw’ S0 g 6 e
) .
. % MXZ% i ((a/asi)aij(ul;fzzt(’aé/;ajj)))f)f(u, 1, y)¢(”’ £)de
_ %/R <a<u,s>Vst<;};Z’fé;y::yV§fX(“’5;t’y”qs(u,s)dé
N fR<(i)vaps(r S 6o
: .
N % i;::l i ((a/asi)aij(ul;fzzt(’aé/;ajj)))f)f(u, &1, y)¢(”’ £) dE.
Hence, by (3-1) we have
%/Rd(logpx(u,g;t,y))¢(u,€)d§=—%/R <a(u,f)Vng;u);f;’té;y::yV)ssz(u,5;t,y))¢(u’g)d§
%/Rd<a(u’i)z‘ii;(i’f);t’y)’vg¢(u’§)>d§
d Ny ) pX 5
N MZZI ) ((3/38)a; (upim/affy))l’ WELY o g)de

0
+/ (log p* (u, &:1,y)) — (u, &) dé.
Rd ou
Integrating both sides from s; to s, with respect to u, we obtain

l/ﬂ/ (a(u, )Ve p* (u,&:1,y), Vep™ . & 1, )
2 51 JRA PX(M,$§I’)’)2

= /Rd“"g pX(s1, &8, Y)p(s1,6) dE — /Rd“"g pX(s2, &1, )P (52, §) dE

52 X )
+%/ /Rd<a(u,§)V§P (”’E’t’y),vg¢(u,s)>dgdu
1 4

¢ (u, &) d§ du

pX(u, &5, y)

52 R A\ X .
L1 an } ((9/9&i)aij(u, §))(8/08;)p” (u, §; 1, y)

X .
2.4~ PXw. &1, y)

¢u,§)d§ du

5 9
+ / / (og p¥ (u, & 1, 1) (u, &) d . (3-2)
1 R4 u
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Now we consider the estimates for the terms on the right-hand side of this equation. By (1-6), we have
for s € (0, ) that

_..d vGly —§P
‘/daogpx(s, £, ) (s, sms‘ §/d<| log C§+1log Cg |+ | og(t —s)|+ 7" ) (5. &) d&.
R R
Hence, there exists a constant C depending on d, v, yér , Cg» Ca’ , and A such that, for s € (0, 1),

[ oe gt 6
<ca+itoge =9 [ oo +C-7" [ Iy-ePo.ode. G

The third term of the right-hand side of (3-2) can be estimated as follows:

X .
) “(“’ilv(ﬁfgfii i;f’ Y Vepu, ) dé du
< lff (au, §)VepX (u, & 1.9), Ve p¥ (. &:1, y))
—8Js Jre pXu, &1, y)?
+8/52/ (a(u,&)Vepu, §), Vep (u, §))
supp ¢ du,§)

To estimate the fourth term of the right-hand side of (3-2), we observe that

¢u,§)d§ du

dt du. (3-4)

1 d

2

¢(u,§)d§ du

/” ((0/0&)a;j(u,£))(3/0&) p* (u, &1, y)
5 JR pX(u, &1, y)

ij=1""

1 1008 pX ey
SS_A;/M «/[Rd pX(u, &1, )2 ¢u,§)d& du

+8dA Z/ /Rd %, —a;j(u, £)*p(u, £) d€ du.

Hence, by (1-1) we have

/ / (341 (1. )55 pX (. E:1,y)
51 R4

&)ded
2], iy s
12 (a(u, §)Vep* u, &1, ), Vep* (u, 51, y))
fngl fRd e é,[ . (. €)dt du

a,J (u,

¢(M £)d& du, (3-5)

s1
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where C depends on d, vy, yg{ , Cg» CZ{ and A. By using (1-6), we estimate the final term of the
right-hand side of (3-2) as follows:

5 9
/ f (g p* (u,&: 1, 1)) 9, £) d€ du
s1 R4 u

0

—1y _ £2
M) — ¢ (u, g)‘ d€ du.
u ou

t—

$ d
sf / <|logcg|+|logcg,|+—|log<r—u>|+
S [Rd 2

Hence, there exists a constant C depending on d, v, yg , Cg» CE;L and A such that

‘/Rdaogp"(s,s;z,y))¢(s1,5)ds'

sc/2<1+|1og<t—u>|>/
51 R4

Therefore, by (3-2), (3-3), (3-4), (3-5) and (3-6) we obtain the lemma. O

2 5
a—¢<u,s>’d5du+6/ (r—u)”/ y—£P
u S1 R4

0
a—¢(u,$)‘d$du- (3-6)
u

Next, we state the fact on the integrability of € as a lemma. The proof is obtained by the standard
argument; see, for example, [Stroock and Varadhan 1979, Theorem 4.2.1]. So, we omit it.

Lemma 3.3. Let 11, 7 be stopping times such that 0 < 11 < 1o almost surely. It holds that, for any q € R,
E[€(t AT, t ATy X)1] < €O 150, x,yeRY,
where C is a constant depending on d, A, ||b|lc and ||c||co-

Lemma 3.4. Let 11, 1 be stopping times such that 0 < 1| < v, <t almost surely. It holds that

t )
X0, x; 1, y)EXf:y [/ ECuAT,UuNT X5 du:| < C1=d/2+1-e,Cl+q)r exp(—M)
0

fort € (0,00), x,y € RY, ¢q € R and sufficiently small ¢ > 0, where C and y are positive constants
depending ond, e, v, C&, A, |1l and ||c||so.

Proof. In view of Fubini’s theorem and (2-11), it is sufficient to show that there exist positive constants C
and y, depending on d, ¢, yé“, Cg, A, ||b]loo and ||¢]| 0, such that

t _vl2
/ E[€(unt,unt; Xx)"px(u, Xy t,y)]du < Ct_d/2+1_8ec(1+"2)t exp(——y|x ; l ) (3-7)
0
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for ¢ € (0, 00) and x, y € RY. By (1-6) and Holder’s inequality, we have

t
/E[%(u/\n,u/\rz;X")qu(u,Xu;t,y)]du
0
t . + X, — 2
SC;}F/ E|:%(u/\rl,u/\t2; Xx)q(t—u)_zlexp(—M)]du
0

t—u

&
d+e

t
= Cé (/ E[€unti,unt; Xx)(d""s)Q/S] du)
0

' +ivx _ 2 =
« (/ E|:(t _u)_(d+€)/2 exp(— (d+8)VG |Xu b >i| du) ‘
0 d(t —u)

Hence, in view of Lemma 3.3, to show (3-7) it is sufficient to prove that

t d Hixx — y)2 _ ]2
/ E| (¢t —uy- @002 gqp( “ 4TV IXu 3TN ) pmtrerznt g () (3-8)
0 dt —u) t

for ¢ € (0, 00) and x, y € R?, where C and y are constants depending on d, ¢, yg, Cg, A, ||b]lco and || ¢ so-
Lety :=(1 —|-8/d))/8_. By (1-6) again, we have for u € (0, t) that

JIX* — 2
E[(t—u)_d/zexp(——y| u )]
r—u
Sle 12 +ig 12
§C§u_d/2(t—u)_d/2f exp(——yIS i )exp(——yG & = x| )dé
R4 t—u u

VcJ;r); 2
~—+|X—)’|
MV"‘(I_M)VG

X/ exp(_u?ﬂt—u)yé : Vo (t —w)x + juy
Rd u(t —u) u)?—l—(t—u))/ér

= Cu™ "t —u)~9/? exp(—

2
)

+~
- _ YV 2
= Q2m)PCtuy + (t —u)y) " ex <—~—|x— |>
¢y Ya P u)/—l-(l‘—u)yér Y

+ 2
_ X
<(271)‘1/2C(J5yg}r d/ztd/zexp(——yG| ; l )

Hence, there exists a positive constant C depending on d, ya“ , Cg , A\, ||b]loo and ||¢||o0, such that
XX — 2 + ¥ — 2
E[(t —u)~4? exp(—ﬂt”—yl)} <C17? exp(—@), ue,t).
—u
Thus, we obtain (3-8). [

Lemma 3.5. Let t € (0, 00) and 11, T2 be stopping times such that 0 < 7y < 1y <t almost surely. Then, it
holds that

2
X_ X —
PX(0, x: 1, Y)EXT=[E(s ATy, s ATy X)) < Crmd/2eC0+a eXP(—u)
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fort e (0,00),x,y€ R4, g € Rands €[0,1), where C and y are positive constants depending on d, yg ,
Vo, Cg, C&om, M, 0, A, |||l and ||c|lo.

Proof. Let s1, sy € (0, t) such that s; < s;. In view of (2-10), by (2-11) and Itd’s formula we have

pX(0, x5 1, VYEX = [E((s AT1) V51, (s AT2) Asg; X))
= E[p¥(s2, X251, y)E((s AT1) V51, (s AT2) Asa; X¥)]

527

(SAT)AS
X 8 X
=pX(O.x:t,0)+E X &1, y) \g
(

SAT])VS] au

N E((s AT VS, u; X4 du:|

(SATY)AS2
+E[/ LEpX@u, -1, Y)XDE((s A1) Vs1, u; XF)1 du]
(

SAT])VS|
q (SAT2)AS2 Ny T ¥ .
+§E[/<ml>m EsAT) Vs, u; XD x (o (u, X3 Vop*u, z; t,y)|Z=X§,ba(u,Xu)>du]
q2 (SAT2)AS2
+?E[/ pX @, X5, )E((s AT1) V sy, u; Xx)q|bo(u,ij)|2dui|
(SAT1)VS]

(SAT)AS2
+qE[f pX(u, X5 t, MEs AT Vst uy X)) e(u, X)) du]
(

SAT)VS]

Hence, by (2-6) we obtain

pX(0, x5 1, V)EX = [E((s AT1) V51, (s AT2) Asy; X))

= pX(0,x:1, )
q (SAT2)AS2
+ EEU E(s AT Vst us XD x (o, XDV pX(u, 251, y)l=xr, bo (u, X;))du]
(SAT]) VS
q2 (SAT2)AS2
+ TEM ) pX(u, X251, E(s ATV st, u; X5 by (u, Xﬁ)lzdu]
SAT1)VS]

(SAT2)AS2
+qEU PX @, X211, VE((s ATy) Vst u; X)e(u, XF) du].
(

SAT])VS]

In view of the boundedness of det o, b and ¢, the desired estimate is obtained, once we show the estimates

E[/Sz%(u/\ [(s A1) Vsl u; X5 pX(u, X t, y)du:|

S1

d/2+1—¢ ,C(1+> x = yI?
< Ct 42176, CUHa exp [ —y p , (3-9)

52
E|:f ESwuA[(s AT VS, u; Xx)”’|Vng(u, Eit,y)|e=x: du]
S

2
< O d/2H(1-)/2,CU+gM) em(—@) (3-10)
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for sufficiently small & > 0, where C and y are positive constants depending on d, ¢, y, yg , Cg»
Cg, m, M, 0, A, ||b|ls and ||c||o. The first estimate (3-9) follows, because by (2-11) and Lemma 3.4
we have

$2
E[/ EuA(s AT Vsl u; X pXu, X5t y)du]
s
=pX<0,x;z,y)EXf=Y[/
S1

2
< O/ 14 exp(—y |x —tyl )

52

EuAn[(sAT) VS u; X du]

where C and y are positive constants depending on d, ¢, yg{ , Cg , A, ||P]loo and ||¢]|oo. Now we show
(3-10). By (2-11) and Holder’s inequality, we have

52
E[/ %(u/\[(s/\rl)\/sl],u;X")q|Vng(u,:§;t, Y)le=xx du}
S1

. & Ve pX(u, &1, y)le=x;
=p"<o,x;t,y)E"*:yf B AL At vl u; x5y Pt le=xil
S1 px(quﬁatay)

§2 1/2—¢
< pX(0, x; 1, y)(f EXi=Y [%(u Al ATV st], u; XX>24/“—2€>} du)
81

5 _ e T IVepX @, &t ) le—xx |\ 172
_ 1/2 _ e Xi=y p
([ o) ([ oo | (FEGEESE) )

Lemma 3.4 and (1-6) imply that

2
EU EuA(s AT) Vil u; X VepXu, &1, y)lemxs du}
S1

t

2 x Vi X L& 8, _yx 2 1/2
X pX(O, x;t, y)/ [u(r — u)]gEXi =y [Vep™ (u, &5 1, y)le=x:x| " |
51 px(l’tv XJMC, t, y)

2
< Cp/4+1/2=e (U4 exp<_y |x =yl )

where C and y are positive constants depending on d, ¢, yér , Car , I\, ||blloo and ||c||s. Hence, to show
(3-10), it is sufficient to prove

t X . 2
PX(O,x;t,y)/ [u(t—u)]g/zEXf:y[(lvép (u,é,t,y)lg:xﬂ) ]du
0

pX(u, Xx- t y)

u’

< C(t~97%e 417424 Jogt]), (3-11)



16 SEIICHIRO KUSUOKA

where C is a constant depending on d, ¢, y, yé’ , Cgs Cé{ ,m, M, 6 and A. Equation (2-11) implies
that

' [ IVerX &t ) e=x; [\
X . g2 pX =y D » 55 L, Y)le X3
p (O,x,t,y)/ [u(t —u)]*’“E* |:( >]du
0 pXu, X35 t,y)

! Ve pX (u, &5 1, y)le—xz |\
8/2 Ep ’ ’ ’y S Xu X X.
= t— E X't d
/O[M( u)l [( pX (@, X1, y) )p (u, X3 ,y)] u

t ‘VSPX(“’§§I’)’)‘ 2
=/ [u(z—u)]@fzf ( X ) pX . &1, y)p* (0, x; u, &) d& du.
0 R4 p (u"i:’t’y)

By (1-6), we have

t X V X 9 st’ =X 2
PX(O,x;t,y)/ [u(t—u)]g/zEXt=y|:(| LGt Xu') ]du
0 p*(u, X351, y)

+12 ! |VSPX(M»$J»)’)| 2 o —(d—e)/2
E(CG)/O/W( e )[u(r )]

2 e
xexp[—yg(ls ux| 4 =dl )]dgdu. (3-12)

r—u

For fixed ¢, x and y, let

— 1|2 12
6w, &) :=[u(r—u)1<df>/2exp[_yg<|5 uxl Lyt >]

t—u

Denote the surface area of the unit sphere in R by wy for d > 2. In the case d = 1, let wy = 2. Explicit
calculation implies that

/ ©-2)/0
/ (/ 2MIEVO=2) gy £)0/0-2) dé) du
0 \JRd
6-2)/6
= /t[u(l—u)]_(d_":)/2 X / e*ME =2 exp| — 760 (&=’ + by —¢F d§ o du
0 Rd 6—2 u t—u

Ty — vl2 t
:exp(_w)/ [t — )]~
0

t

_|_
X f 2MIEO-2) gyl VG Ot £ — (t—u)x +uy
R¢ @ —=2)u(t —u) t

2 (0-2)/0
] dé) du.




HOLDER CONTINUITY AND BOUNDS FOR SOLUTIONS TO PARABOLIC EQUATIONS 17
Hence, noting that for i € [0, 00), up € (0, 00) and v € R4
/ M exp(—pualé ) de
e
= fR e exp(—pual ) dt
< el fR exp(ui§] — palé ) dé

=a)de’“”/ rd-1 exp(u1r —,ugr2) dr
(0,00)

:a)d,uz_d/ze“l'”'/ rdlexp< il r—r2) dr
(0,00) 2

BN 0
:a)d,uz_dﬂ/ rd_lexp< 'ullzr—r )dr—i—wdﬂzd/z/ rd_lexp< Mllzr—rz) dr
0 v I+ /12 v

d [ee)
_ @y <1+ o ) exp[ Joa (1+ Jua >:|+wdﬂz_d/2f A1 r g
d 2 2 2 111/ /2

oo 2]

where C is a constant depending on d, we have

‘ ©-2)/0
/ (/ 2MIE/©O=2) (1) £10/60-2) dg) du
0 R4

+ _vl2
< C 1417+ oy (_M)

x/t[u(t—u)]_d/9+8/zexp|:C1 u(l—%)(l-ﬁ- u(l—%))]du
0

t
< Czt_d/2+d/0662t/ [l/l(t _ u)]—d/9+8/2 du
0

< Gy~ 4/2H1-d/6+8/2,Ct

where Cy, C, C3 are constants depending on d, ¢, yg , m and 6. Hence, by Holder’s inequality and (1-3),
we have

¢(u §)d§ du

(0-2)/6 d
§/</ ) o (o |
o \JRe i j=1 \uel0. ] IR

< Cd/2H1=d/0+¢/2,Ct.

a,j(u

—a;j(u,

2/0
o MIE] dé)

0&;
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where C is a constant depending on d, ¢, yér ,m, M and 8. On the other hand, by explicit calculation,
we have

1im<1+|log<t—s>|>f 6 (5. £)de =0,
s40 Rd
um(r—s>1/ y — £ (5. £) d =0,
510 Rd
lip<1+|log(r—s>|>/ 6 (5. £)dE =0,
sTt [Rd
lsiglo—s)—l/ |y — €% (s,8) d& =0,

/ / Ved@.OF (1~ cparve
R Pu,§)

f(1+|log(t—u)|>/ ‘—qs(u,s)‘d;%dusCz—d/Hﬂlogn,
0 R4 au

f t—u!
0

where C is a constant depending on d, ¢ and yg{ . In view of these results, applying Lemma 3.1 to (3-12),
we obtain (3-11). O

dé du < Ct=4/7+¢,

From Lemma 3.5 we can easily show the Gaussian estimate for p with constants depending on the
suitable constants.

Proposition 3.6. Fors, t € [0, 00) such thats < t,and x, y € RY,

Cre—Cit=s) Y CreC2(t=9) x—v|2
1—deXP<—u) <p(,x;t,y) < z—deXp(—u),
(t—s)2 r—s (t—s)2 r—=s

where y1, y2, C1 and Cy are positive constants depending on d, yg , )/(‘}L, Cs» Car, m,M,0, A, ||blleo
and ||¢|| co-

Proof. Since the argument follows even if a, b and c¢ are replaced by a(-—s, -), b(-—s,-)and c¢(-—s, -)
respectively, it is sufficient to show that there exist positive constants y1, y», C; and C, depending on d,
m, M, 0, A, ||b|l and ||c||oo such that

— 2 -y
Clt_d/ze—clzexp<_M> < p(0, x;1,y) < Cot ™42 exp(—M) (3-13)

fort € (0,00)and x, y € R?. The upper estimate in (3-13) follows immediately from (2-8) and Lemma 3.5.
Now we prove the lower estimate in (3-13). From Holder’s inequality, it follows that

1< EXi=V[&(s Ay, s Ao X5 TNEX =V[€(s ATy, s Ao XD
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Hence, by Lemma 3.5, we have
X0, x; 1, y)?

pX 0, x; 1, EXI=V[€(s ATy, s Ao X¥) 7]
> Cr2e 1 pX (0, x3 1, )2,

pX(0, x5 1, VEX = [€(s ATy, s AT2; XF)] >

where C and C’ are positive constants depending on d, m, M, 6, A, ||b|« and ||c||eo. This inequality,
(2-8) and (1-6) imply the lower bound in (3-13). Il

4. The regularity of p(0, x; ¢, y) in x

Assume that a is smooth and set notation as in Section 2. In this section, we prove the Holder continuity
of p(0, x; ¢, y) in x, with constant depending only on suitable ones. The precise statement is as follows:

Proposition 4.1. For any R > 0 and sufficiently small € > 0, there exists a constant C depending on d, €,
y(;’ yga C(_}, Cé}_, ma M’ 9, R’ IOR’ A’ ”b”OO Clnd ”C”OO SuCh that

—d/2=1,Ct (1=

Ip(0,x;¢,y)—p(0,z;: 1, y)| <Ct z

fort € (0,00),x,z€ B(O; R/2)and y € R4,

We use the coupling method; see, for example, [Lindvall and Rogers 1986; Cranston 1991]. Let
x, z € R?. Given (X*, B) defined by (2-3), we consider the stochastic process Z* defined by

t

AT
Zf:z—i—/ O’(S,Zf)st‘F/ G(S,Zf)dBm
0 t

5 /W(I_z(o@, Z§>—1<X§—Z§)>®<a<s,Z§>—1<X§—Z§)>) .
" o (s, ZH) "N (XX — ZD) |2 >

(4-1)

where 7 is the stopping time defined by t :=inf{r > 0: X} = Z;}.
To see the existence and uniqueness of Z<, for each n € N consider the following stochastic differential
equation for 7

. . 20 (t, ZMH "N (XF — 7 t, 2N (Xx — ZmF
dZ{”Z:o(z,Z?’Z)x(I— (0, 2, ) " Xy =2, )@t Z ) (Xy =~ Z, )))H{Kmd&

) o (2, ]9~ (XF = 2192
A Z
0 )

where 7, :=inf{r > 0: | X} — 2,"’Z| < 1/n}. Note that the equations have random coefficients, since we
are considering equations where X* is given. Now we see the existence and the uniqueness of Z"-%. Let

2(0(T,$)_1(Xf—5))®(0(I,$)_1(Xf—5))> : d
—— if (z,£) €[0,00) xR
|O-(t9€) 1(Xt _€)|2 and |X;c—§|21/l’l},

0 otherwise.

o(t, §)<I -
Gult. §)=
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Then, there exists a constant C,, such that |G,(t, §) — G,(t, n)| < C, for ¢ € [0, 00) and £, n € R?. Note
that C, is nonrandom. Let Y, W be stochastic processes satisfying

{dY[ = G, (t, Yt)l]{t<rny} dB;, {th = G,(t, W[)I]{,<IIYV} dBy, (4-2)

Yo =z, Wo =z,

where T,f :=inf{r >0:|X;—Y;|<1/n}and rnW :=inf{r > 0:|X;—W;| <1/n}. Then, by Proposition 1.1(iv),
Chapter II and (6.16) of Theorem 6.10, Chapter I of [Ikeda and Watanabe 1989], we have
]

Y w

SAT) AT,
/ (Gu(v, Yv)l]{v<r,}’}_Gn(Ua Wv)”{v<r’:’V})dBv
0

]

2
E|: sup |YsAt,{ArnW - WsAt,{'Ath | ] = E|: sup
se(0,¢] s€[0,1]

N
:E[ sup /(Gn(v,YU)—G,,(v,Wv))I]{vqny}l]{vqnw}dBv
0

s€[0,¢]
t

<4E U G (v, Yo) = G (v, W) Pl vy Uiy <oy dv}
0

t
< 4C,%/O E |:|Yu - Wv|2|]{v<rny}|]{v<tnw}j| dv

2
}dv.

Yipey nep = Wingracw, t€ [0, o0) (4-3)

t

2

=< 4Cn / E|: sup |Ys/\r,}’/\tnw - Ws/\r,f/\rnw
0 s€[0,v]

Hence, by Gronwall’s inequality, we have

almost surely. If 77 <7V and t ' < oo for some events, then by letting 1 — oo in (4-3) we have Y. =W,

Y = ¢V for these events. Similarly, if 77 > 7 and 7 < oo for some events, then we have

Hence, T

t¥ =t for these events. Therefore, we obtain

=
o =1, (4-4)
almost surely. On the other hand, (4-2) implies that Y.y = Y,y and W,w = W,,.w for 7 € [0, c0). Hence,

by (4-3) and (4-4) we obtain that ¥Y; = W, for ¢ € [0, 0co) almost surely. Thus, we have uniqueness. To see
existence, let

20, 6) (X =)@ (01,61 (X] —S)))

B..0i= o001 - 2

for 1 € [0, 00) and & € RY. Then, there exists a constant C,, such that |6n(t, &) — 6n(t, n| < C, for
t € [0, 00) and £, n € RY. Define a sequence of stochastic processes {Y” : m € NU {0}} by Yto =z for
t € [0, oc0) and

t
Y" =z +/ G,(s, Y"1 dB (4-5)
0
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for t € [0, c0) and m € N by iteration. Then, by a similar calculation as above, we have for m € N and
t € [0, oo) that

t
E|: sup |Y" T — Ysm|2:| < 4C,f/ E|: sup |¥," — Y;"1|2] dv.
s€[0,t] 0 s€[0,v]

Applying this inequality iteratively, for m € N and ¢ € [0, co) we obtain

E|: sup |YT—ym :|<(4C2)m/ / / [ sup |Y! — Ys0|2:| dvidvy - - - dvy,
s€[0,1] s€l0, U1]

=@cH" / / / [ sup

SEOU]]

(4C2)mtm [
- (m+1)!

2
:|dv1 dvy -+ - dvuy,

/ Ga(w, 2) dB,,

1

Since [Ikeda and Watanabe 1989, (6.16) of Theorem 6.10, Chapter I] implies

2 t
] 54E[/ |6n<w,z>|2dw] <00
0

o
> E|: sup |Y"T — Y;"|2} <00

m=1 s€[0,1]

sup
s€[0,1]

/ Gn(W, Z) dB,,
0

E|: sup
s5€[0,7]

s
/ Gn(wa Z) dB,,
0

for ¢ € [0, 00), we have

for ¢ € [0, 00). Hence, {Y™} is a Cauchy sequence in L?(2; €), where € is the complete metric space
C ([0, 00); R?) with distance function given by

D(w, w") ::Zz—k< sup |w(t)—w/(t)|> Al w,w e C([0, 00); RY).
k=

t€[0,k]
Therefore, there exists a stochastic process Y in L?($2; €) which satisfies
lim E[ sup |Yy — Y;"d =0
m=00 | se[0,r]
for ¢t € [0, 00). By taking the limit in (4-5) as m — oo, we have
t
Y,=¢ +/ G,(s,Yy)dB;, tel0,00) (4-6)
0

almost surely. Let rny :=inf{r > 0:|X;] —Y;| < 1/n}. Note that (2-2) implies that
o (6, Y (XF =Yl v (AP = 1o, Y THXT =Yl 1 €0, 7,)

almost surely. Applying [Ikeda and Watanabe 1989, Proposition 1.1(iv), Chapter II] to (4-6), we see that
the Y. ,.r satisfy the stochastic differential equation for Z™*. Thus, we obtain existence.
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We remark that {Z"* : n € N} is consistent; i.e., Z)F =Z%
n n

immediately obtained by [Ikeda and Watanabe 1989, Proposition 1.1(iv), Chapter II] and uniqueness.
Define the stochastic processes (Z;, Et; t €[0, 7)) by

for m > n almost surely. This fact is

7N,z
Z: = Z; <

t
5 _ f <1_ 20 (s, 257 (XE = Z3) @ (a (s, Zm—‘(xg—i:@») B
T o (s, ZE5)~ (XE = Z8)P2 “‘

for t € [0, t7) and n € N, where 7,7 :=inf{t > 0: | X — Zf| < 1/n}. Then, (4-1) holds for ¢ € [0, 7).
On the other hand, by applying [Ikeda and Watanabe 1989, Proposition 1.1(iv), Chapter II], we have
that Z?MnZ solves the stochastic differential equation of Z"% forn € N. Hence, (Z;, Et; t €0, 1)) are
determined almost surely and uniquely. Let

200, ZH) X = ZD1® Lo (1, ZH) T Xy = ZD)]

H =1
' lo(t, ZH)~V (X} — ZF)?

for t € [0, 7). Then, H, is an orthogonal matrix for all ¢ € [0, T), and hence E, is a d-dimensional
Brownian motion for ¢ € [0, 7). Hence, (Z7, §t; t € [0, 7)) are extended to (Z7, E,; t € [0, t]) almost
surely and uniquely. By the Lipschitz continuity of o, (4-1) is solved almost surely and uniquely for
t € [1, 00), and thus we obtain (Z;; ¢ € [0, 00)) almost surely and uniquely; see [Stroock and Varadhan
1979, Section 6.6]. From this fact we have that Z; is %,;-measurable for 7 € [0, c0). Hence, if x = z, X*
and Z* have the same law. Moreover, X; = Z; for t € [z, 00) almost surely.

Lemma 4.2. For R > 0 and sufficiently small ¢ > 0, there exist positive constants C and cy depending on
d, e, R, pr and A such that

Et ATl <CL+1)|x—z'* 4-7)
fort €10, 00) and x, z € B(0; R/2) such that |x — z| < co.
Proof. Let R > 0 and x, z € B(0; R/2). Define
&:=X; -7 and o, :=o0(t,X;)—o0(t, Z})H,;.

Then, by Itd’s formula we have, for 7 € [0, 1),

/ 1 L&
d(|§t|)=<%,atd3,>+ﬁ<tr(oz,af)— ‘7;;' )dt, (4-8)

where tr(A) is the trace of the matrix A. Now we follow the argument in [Lindvall and Rogers 1986,
Section 3]. Since
26® (o (1, Z))'&)
o (t, Z) & |?
268/ (01, Z))™ N
lo(t, ZH &1

=0, X;)—o(t,Z))+
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it holds that

Ts 2 Xy _ T & 12
%:u([aa, X —o(t, ZHo(t, X7) —o(t, ZH)]") — Lot i) |;|§t’z’)] d
t t

Hence, in view of (2-1), there exists a positive constant y; depending on d and A such that

tr(oz,oz,T) —

o/ &1

|12

On the other hand, following the argument in [Lindvall and Rogers 1986, Section 3], we have a positive
constant y, depending on d and A such that

T
o
T

& — 72

Note that if pr(|&]) <2A~! and X7, Z7 € B(0; R), then |0 (¢, X7) —o (¢, ZF)| <2A L. Lety :=y V.
Define stopping times 7, by 7, :=inf{r > 0: | X — Z7| < 1/n} for n € N. For a given ¢ > 0, let

tr(ot,a,T) — <yipr(&|) for t €0, 7) such that X7, Z7 € B(0; R). 4-9)

for ¢ € [0, ) such that |0 (r, X) — o (t, Z7)| <2A7". (4-10)

7= r/\inf{te[O, 00): prUE]) > ZLV?)/\ZA_I, X* & B(0; R) or Z% ¢ B(0; R)},
Z, = rn/\inf{te[o, 00): prl&]) > 2%/3/\2A_1, X* ¢ B(0; R) or Z¢ ¢ B(0; R)}

for n € N. Then, it holds that 7, 1 T almost surely as n — co. By Itd’s formula, (4-8), (4-9) and (4-10),
we have for ¢ € [0, c0) that

E[|En:, ' 1=1x—z' "+ (1 _8)E[/M &1 : (tr(asaT) - IaSTEs|2) dS]
' 0 206 RTNE

1— IAT, T z 2
2l ]

2

1— IATy 1— tAT,

<px—zioe U2 S)VE[/ |ss|—‘—8pR(|ss|>ds}—8( zg)EU |sx|—‘—8ds]
2 0 2]/ 0

B 1— 8) AT, o 8(1 _ 8) AT, L
< _ ql—e 8( E / 1 ¢ d _ E / 1 ¢d

1— AT,
<pr—gfte = & 8)E[/ |§s|_1_8ds}
0

4y2
- e(l—¢g) -
<|x—z| E—WEU/\W]-
Hence, it holds that
E[tAf]fCIx—zll_g for ¢ € [0, 00), 4-11)

where C is a constant depending on d, €, R and A.
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Now we consider the estimate of the expectation of T by using that of 7. To simplify the notation, let

50:= o=t (5o A2At
=37 (5,3 .

Since

|&| > 380 implies |X; — x| > 8o, |Z] —z| > 8o, or |x —z| > 8o,

L R R
X; € B(O; R) or Z; ¢ B(0; R) implies |X; — x| > 3 or |Z; —z| > X

we have, for x, z € B(0; R/2) such that |x — z| < 8o,

R R

Prx>t)<P(T> t)—i—P( sup X7 —x|> 80/\—> —|—P( sup |Z%—z| > 80/\—). (4-12)
s€l0,] 2 s€l0,1] 2

Let n = x or z. By Chebyshev’s inequality and Burkholder’s inequality we have

R R —2/e
P<SUP IX.?—nI>5oA—>§(50/\—> E[ sup IX‘?—nIM]
s€[0,1] 2 2 5€[0,]

R —2/e 2/e
< (80 A —> E[ sup i|
2 sel0,1]

R —2/e d t 1/e
5(80/\5> CE[(Z‘/O Gij(u,XZ)Uﬁ(u,XZ)du) :|

i j=1

—2/e
§d1/€<80/\§) CA]/SII/S,

/‘ o (u, X"dB,
0

where C is a constant depending on €. Hence, there exists a constant C depending on d, ¢, R, pg and A
such that

R
P< sup | X7 —n] >80/\—> <Clx—1z| (4-13)
sel0,1] 2

forn=x,zand t € [0, |x — z|?]. By (4-11), (4-12) and (4-13) we have, for x, z € B(0; R/2) such that
|x —z] < 80, and 1 € [0, |x — z|],

t
E[l‘/\‘[]f/ P(t >s)ds
0

! R R
5/ P(T Zs)ds+t|:P< sup | X7 —x| > 80/\—) —i—P( sup |Xi—z| > 80/\—>:|
0 sel0.1] 2 sel0.1] 2
<CU+Dlx -z,
where C is a constant depending on d, €, R, pg and A. Therefore, we obtain

EltAT]<C(+10)|x—2z]'* (4-14)
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for x, z € B(0; R/2) such that |[x — z| < g and ¢ € [0, |x — z|®]. By using Chebyshev’s inequality, we
calculate E[t A T] as

|x—z|® t
E[t/\r]:f P(rzs)ds—i-/ P(t>s)ds <E[lx —z|]° AT]+tP(t > |x —z|%)
0 |

x—z|°

<E[lx—z|I*At]+ E[t Alx —z/°]

lx —z|®
< (I +tlx =z Elx —z* ATl
Thus, applying (4-14) with t = |x — z|® and choosing another small &, we obtain (4-7) for all ¢ € [0, c0). [J

Lemma 4.3. For R > 0 and sufficiently small ¢ > 0, there exist positive constants C and cy depending on
d, e, Cér, R, pr and A such that

X0, x: t, NEXT =t At) < Ct P (1 + 1) |x — 2172,
pX0,z:t, VEZ=t ATl < Ct™ 4?1+ D) |x —z)'°
fort € (0,00), x,z € B(0; R/2) such that |x — z| < cg,and y € R

Proof. It holds that

EX =t ATl = EX 21 A D21 (O] + EXN 210 A D1 2.00(D]. 15

By (2-11) and (1-6), we have

x_ t _
pX0, x5 t, VYEX [t A j0,12(T)] = E[(I/\T)U[o,z/z](f) PX<§, Xi it y)] Szd/zcgt PE[AT].

Hence, in view of Lemma 4.2, there exists positive constants C and co depending on d, ¢, Cér , R, pr and
A such that

PXO, x; 1, EX [t AT, /2)(T)] < Ct (1 417 |x — 7| (4-16)

for x, z € B(0; R/2) such that |x —z| < ¢y and y € R?.
On the other hand, by (2-11) and (1-6), we have

X N X __ t
PX0, x; 1, YEXT T AD)1/2.00) (D] < 1p¥ (0, x5 2, y) PXT (r > 5)

X ! . ! X
=t de E,z,t,y P 1:>§, Xip€dz

<wcgrnp(e- 1)
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Hence, by applying Chebyshev’s inequality we have
PXO. x: £, YEX Tt AT /2,00 (1] < CtPE[t AT,
where C is a constant depending on d and Cér . Thus, Lemma 4.2 implies that
X, x; £, VEX=[(t A j,00) (D] < Ct72 (1 + 1) |x — 2|1 ~* (4-17)

for x, z € B(0; R/2) such that |[x — z| < ¢, where C and ¢y are positive constants depending on d, &, Car s
R, pg and A. Therefore, we obtain the assertion for x by (4-15), (4-16) and (4-17). Similar argument
yields the assertion for z. U

Lemma 4.4. For g > 1, R > 0 and sufficiently small ¢ > 0, there exist positive constants C and cg
depending on q,d, €, R, pgr, A, ||b|lco and ||¢|| oo, Such that

E[ sup [€(0, T As; X)) — 1|q} < CeC|x — 7| @D,
s€[0,7]

E[ sup [€(0, T As; Z5) — 1|‘1:| < CeC’|x _Z|2/(qV2)fe
s€[0,¢]

fort €[0,00), x,z € B(0; R/2) such that |x —z| < cg,and y € R4.

Proof. By (2-10) we have

E[ sup €0, v; X*) — 1|q}

ve[0,TAL]

v v q
=E|: sup / €0, u; X*)(bs (u, X)), dBu)—i-/ €0, u; X*)e(u, X)) du ]
vel0,TAt]1J0 0
v q v q
§CE[ sup / €0, u; X*)(bs(u, X)), dBy) :|+CE|: sup / €0, u; X")c(u, X)) du :|,
vel0,TAt]1J0 vel0,TAt]IJ0

where C is a constant depending on g. The terms of the right-hand side of this inequality are dominated
as follows: By Burkholder’s inequality and Holder’s inequality we have

]
TAL q/2

§CE[(/ %(O,M;Xx)zlbg(u,X,f)lzdu) }
0

AL
1-1 2)Vv1 . 2 2)vl1
< CAq||b||gol‘ /lg/2)v ]E[/O €0, u; X*) lq/2v11 g,

E[ sup

vel0,TAt]

/U%m, ws XY (by (u, X5, dBy)
0

] 1/l(g/2v1]

1-2 2 2(1 2 ' 2 2/
— \V] — \ .
< CAq||b||got /lq ]E[‘C At (1-¢)/(q )E|:(/O €(0, u; XX)(C]V )/& du):| ,
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where C is a constant depending on ¢, and by Holder’s inequality we have

v
/ €0, u; X*)c(u, X)) du
0

q TAL
E|: sup ] < ||c||goz1—1/qE[/ €0, u; X*)? du]
0

vel0,TAr]

t &
<l VIE[T A t]l_gE[/ €0, u; X*)4/¢ du] )
0
Thus, applying by Lemmas 3.3 and 4.2 to these inequalities and choosing another small ¢, we obtain

E[ sup |€(0, v; X*) — 1|’1} < CeC'|x — z|H@VD—E,

vel0,TAt]

where C is a constant depending on ¢, d, €, R, pr, A, ||b]lco and ||c|lc. Similar argument yields the
same estimate for Z%. O

Now we start the proof of Proposition 4.1. Let ¢ € (0, 00), x, z € B(0; R/2) such that x # z, y € R?
and s € (t/2, t). Recall that X* and Z* have the same law. By (2-11) and (2-9) we have

X _ t 7_ t
X0, x; ¢, y)EX=Y [%(0, 1 X%t < E] — pX(0, z; ¢, y)E4 =Y [%z(o, 179 1< E]‘

t t
= 'E[%(O, 53 X pX(s, X558, y); T < 5} — E[%(O, s; Z9pX(s, Z5 1, y); T < 5”

. 72 X X, X z. . !
SE[%(Oasaz)|p (S9X57t’y)_p (S,ZS’t,y)L TSE}

X z 7\ X X t

+E|€0, T As; X7)—C0, T As; Z9)[E(T As, s Z7)p~ (s, X5 8, y); TSE

t
—|—E|:(<€(0, TAS; X9)|€(t As, s XY) —E(T As,s; Z9)|pX (s, X;it,y); 1< 5}

Noting that
X; =27 fors>r,
we obtain
X, t 7_ t
pX(0, x5 1, y)EX =Y [%(0, 53 XY); T < E] — pX(0,z; 1, y)EZ=Y [%(o, s;Z%); 1< E]‘

1
< E[I%(O, TAS; X5 —€0, T As; Z9)[€(t As, ;. Z9) pX (s, Xit,y); T < 5] (4-18)

By the triangle inequality and Holder’s inequality, we obtain
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. yX . 72 .72\ 5 X X. . !
E[[€0,tAs; X7)—E0, T As; Z)[E(T As, s Z%)p~ (5, X758, Y); 155

t
< E[l%(o, TASs X5 — 1|8t As, 53 Z7) pX (s, Xt y); 1< 5]

N |~

+E[I%(0, TAS; ZY) = 1E(T As, 53 Z)pX (s, X558, y); T < —}
1—¢/2
< (E[%(o, TAS X =1 pX (s, XT 1, y) T < 5}

1—¢/2
+ E[|%<o, TAs; Z9) — 1O pX (s, X558, y); T < 5] )

t e/2
xE|:%(t/\s,s;Zz)z/SpX(S,Xf;l,yﬁTSE] .

Hence, by (2-11) and (1-6), we have

. yX . 72 .72\ o X X. . !
E[€0,tAs; X)) —€0, Tt As; ZY)|E€(T As, s Z)p~ (s, X531, Y); '555

;1e?
< (EXf:y[|%(o, TAS; XY — 1Y) ¢ < 5]

) ;-2
+ EX :y[l%(O, TASs; 29— 117079 ¢ < 5]
¢ e/2
x pX(0, x;t, y)EXi :y[%(t As,s; Z9)YE T < 5]

1—¢/2
< <E|:|%(O, TAs X)) = 1P/ pX /2, X i1, y); T < 5}

1—¢/2
+E[|%(o, TS 2 — 1P pX ()2, X1, y); T < E] )

. t e/2
X (pX(O,x; t,y)Ei ‘y[%(f NS, 53 Z9)HE T < ED

< (CH'TEP e A (pX (0, x; 1, ) EXi D[ (T A s, 53 Z9)2/°))/
X (E[|€(0, T As; X¥) — 11971162 L E[19(0, T A s; Z7) — 1|/ @9]1=¢/2),

Applying Lemmas 3.3 and 4.4 to this inequality, we obtain
x 2 o X x ! —d)2 Ct 1—¢
E[]€(0,TAs; X*)—€(0, TASs; Z)|[€(TAs, 55 ZY) p (s, X331, Y); TSE <Ct e |x—1] (4-19)

for x, z € B(0; R/2) such that |[x — z| < ¢, where C and c( are constants depending on d, ¢, Cg, R, pg,
A, ||b]lo and [|¢||o-
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Hoélder’s inequality and Chebyshev’s inequality imply

1—¢/2
x_ t Xy t x_
EXi=y [%(o, s: XY T > 5} < pXi=y <r > 5) EXT=V[€(0, s; X*)*/)P/?

yl-¢/2

< EXf=y[-L— /\t]l—S/ZEX,X=)’[%(O, s: XX)Z/E]S/Z'

= fl-e/2

Hence, by Lemmas 3.5 and 4.3, we obtain
Xy t —d/2— _
pX(0, x; ¢, y)EXI =Y [%(0, $: X5 T > E] < Ct P71 x — 7)1 —¢ (4-20)

for x, z € B(0; R/2) such that |x — z| < ¢g, where C and ¢y are constants depending ond, ¢, m, M, 6, R,
PRs A, |D]lco and ||c|lco. Similarly we have

z t
p*(0,z; 1, y)E#= [%(o, s;Z%); T > 5} < Ct 4271l x — g 17¢ (4-21)
for x, z € B(0; R/2) such that |x — z| < co, where C and ¢y are constants depending on d, €,y , yg{ , Cg»
CE,m, M, 6, R, pg, A, [|blloo and ||c||oo. Thus, (2-8), (4-18), (4-19), (4-20) and (4-21) imply
PO, x5 8, 3) = p(0, 251, y)| < 27 1He2eC |y — 7)1

for t € (0, 0), x,z € B(0; R/2) such that |x —z] < cg,and y € R4, with constants C and ¢ depending
ond, e, yg, yg, Cg» C(Jg, m, M, 0, R, pr, A, ||b|lc and ||¢||cc. By (1-6) we can remove the restriction
on |x — z|, and, therefore, we obtain Proposition 4.1.

5. The case of general a (proof of the main theorem)

Leta™ (t,x)= (al.(f) (t,x)) be symmetric d x d-matrix-valued bounded measurable functions on [0, c0) X R4
which converge to a(¢, x) for each (¢, x) € [0, 00) X R4 and satisfy (1-1), (1-3) and (1-4). Consider the
parabolic partial differential equation

2 d
) = LS )t )+ Yt x) 5t )+ e, ur, ),
lj 1 j i=1 0xi G-
u(0, x) = f(x).

Denote the fundamental solution to (5-1) by p™(s, x;t,y). From (1-6) and Proposition 3.6 we have
positive constants y1, y2, C1 and C; depending on d, v, yg, Cs» Céf, m, M, 0, A, ||blloo and ||c|lco
such that

Cre 1079 yilx —yP?
(t—s)2 r—

for s,t € [0,00) such thats < ¢, x,y € R4 and n € N.
It is known that local Holder continuity of the fundamental solution follows, with index and constant

C Ca(t—s) 12
2e exp(_yzlx yl) (5-2)

)fp(")(s,x;t, y) < 7
(t—s)2 t—s

depending only on the constants appearing in the Gaussian estimate; see [Stroock 1988]. This fact and (5-2)
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imply that the Arzela—Ascoli theorem is applicable to p™. Moreover, in view of Proposition 4.1, there
exists a constant C depending on d, ¢, v, yg, Cg» Cg, m, M, 0, R, pr, A, ||b]lco and ||¢|| such that

1p™(0, x; 1, y) — p™(0, z; 1, y)| < Ct=4/271eClx — 7)1

fort € (0,00), y € R? and x,z € B (0; R/2). Hence, there exists a continuous function p(oo) ©,-5 -,
on R? x (0, 00) x R? such that

lim sup [p™(0,x;1,y)— p(0,x;1, )| =0, (5-3)

0 x|<R/2

1P, x; 1, y) — p©(0, 21, y)| < Ct~ 271 x —2|'7F, x,z€ B(0; R/2), (5-4)

for ¢ € (0, 00) and y € RY, where C is a constant depending on d, ¢, YG» yg, Cg» Cér, m, M, 0, R, pg,
A, ||blloo and |||l Moreover, we have positive constants Cy, C2, y1 and y, depending on d, v, ya“ s
Cs» Ca’, m, M, 0, A, |b|lec and ||c|| such that

C e—Cl(t—s) x — 2 C eCz(t—s) X — 2
! - exP<—yl| )] )fp(“’)(s,x;t, y) < z—deXP(—u)

(t—s)2 r—s (t—s)2 r—s
for s, 1 € [0, 0o) such that s < ¢, and x, y € R?. To prove Theorem 1.1, we show that p®(0, - ; -, -)
coincides with the fundamental solution p(0, - ; -, -) of the original parabolic partial differential equation

(1-2). Let ¢, ¢ € C°(R?), and set

P g(x) = f gP™ (0, x: 1, y)dy for g € Cy(RY,

Lt(") = Z a(")(t x)

1]1

2 d 9
b;(t, x)— t,x).
axj+; (1 x) 5 et )

Noting that p™ (s, x; ¢, y) is smooth in (s, x, 7, y), we have P,(”)L,(")qﬁ(x) = (8/8t)P,(")¢(x). Hence,

L[ sommoxmna)pma [ swwema

= f [P (x)]y (x)dx — /R P (x)dx

/ / [ <">¢(x)]w<x)dxds
Rd

- f f [B;">L§">¢(x>]w<x>dxds

[ LALEE e

: 9 ()
+Zb,~<s,y>—+c<s,y) (NP0, x;5,y)dy | (x)dx ds.
CAY] iz dyi
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Taking the limit as n — 0o, we obtain

/W( Rd(ﬁ(y)p(oo)((),x;t,y)dy>xp(x)dx—/qus(x)w(x)dx

t d 2 d
1 0 0
— _ .. . . (00) .
_/0 /Rd </Rd[2i’]§:1a,j(s,y)8yiayj+iE:lbl(s,y)ayi +c(s,y)]¢(y)p (O,x,s,y)dy)w(x)dxds.

This equality implies that p® (0, x; ¢, y) is also the fundamental solution to the parabolic partial differen-
tial equation (1-2). Since the weak solution to (1-2) is unique, p®(0, x; t, ) coincides with p(0, x; , y).
Therefore, we obtain Theorem 1.1.
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