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SMOOTH PARAMETRIC DEPENDENCE OF ASYMPTOTICS
OF THE SEMICLASSICAL FOCUSING NLS

SERGEY BELOV AND STEPHANOS VENAKIDES

We consider the one-dimensional focusing (cubic) nonlinear Schrödinger equation (NLS) in the semiclas-
sical limit with exponentially decaying complex-valued initial data, whose phase is multiplied by a real
parameter. We prove smooth dependence of the asymptotic solution on the parameter. Numerical results
supporting our estimates of important quantities are presented.

1. Introduction

We consider the semiclassical focusing nonlinear Schrödinger (NLS) equation

i" @tqC "
2 @2

xqC 2jqj2q D 0 (1)

with the initial data
q.x; 0/DA.x/e

i�
"

S.x/; A.x/;S.x/ 2 R; �� 0; (2)

in the asymptotic limit "! 0. Equation (1) is a well-known integrable system [Zakharov and Shabat
1972], and a lot of work has been done on this initial value problem (see below). The focus of the present
study is on the parameter � in the exponent of the initial data. For the specific data

A.x/D�sech x; S 0.x/D�tanh x; �� 0; (3)

studied in [Kamvissis et al. 2003; Tovbis et al. 2004], the solution undergoes a transition at �D 2. When
� < 2, the Lax spectrum contains discrete eigenvalues numbering O

�
1
"

�
, each eigenvalue giving rise

to a soliton in the solution, which thus consists of both a radiative and a solitonic part. When � � 2,
the spectrum is purely continuous and the solution is purely radiative (absence of solitons). We prove
that the local wave parameters (branch points of the Riemann surface that represents the asymptotic
solution locally in space-time) vary smoothly with �, even at the critical value �D 2. Indeed, numerical
experiments have shown absence of any noticeable transition in the behavior of the branch points at the
critical value [Miller and Kamvissis 1998]. Theorem 4.5 establishes this fact rigorously.

The reason � deserves special attention as a perturbation parameter is twofold. First, at the value
of �D 2 there is a phase transition in the nature of the solution (there is a solitonic part when � < 2;
see below). Perturbing � across this value allows continuation of the validity of rigorously derived
asymptotics [Tovbis et al. 2006] from the region �� 2 to the region � < 2. Ab initio derivation of such

Venakides thanks the NSF for supporting this work under grants NSF DMS-0707488 and NSF DMS-1211638.
MSC2010: primary 37K15, 37K40; secondary 35P25.
Keywords: NLS, semiclassical limit, Riemann–Hilbert problems.

257

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2015.8-2
http://msp.org


258 SERGEY BELOV AND STEPHANOS VENAKIDES

asymptotics in the region � < 2 would be technically more demanding. Also, � is a singularity of the
RH contour in a way that cannot be remedied by contour deformations. Such a difficulty is absent when
the perturbation parameters are space and time variables x and t . Indeed, the methods of [Tovbis and
Venakides 2009; 2010] are applied in this work, and amongst the surprises which allow the methods to
apply is a collection of explicit formulae for dependence on � summarized in Lemmas 4.1–4.3.

Essential mathematical difficulties are encountered in the solution of the initial value problem (1) and
(2) in general, and (1) and (3) in particular.

(1) The calculation of the scattering data at t D 0 is extremely delicate, as seen from the work of Klaus
and Shaw [2002].

(2) The linearizing Zakharov–Shabat eigenvalue problem [1972] is not self-adjoint. This is in contrast to
the self-adjointness of the initial value problem for the small-dispersion Korteweg–de Vries (KdV)
equation, in which a systematic steepest descent procedure was developed by Deift, Venakides and
Zhou [Deift et al. 1997] for calculating the asymptotic solution (see also [Deift et al. 1994]). The
approach in [Deift et al. 1997] extended the original steepest descent analysis of Deift and Zhou [1993]
for oscillatory Riemann–Hilbert problems by adding to it the g-function mechanism. A systematic
procedure then obtained the KdV solution, which consists of waves that are fully nonlinear. These
waves are typically modulated. In other words, the oscillations are rapid, exhibiting wavenumbers
and frequencies in the small spatiotemporal scale that vary in the large scale in accordance with
modulation equations.

(3) The system of modulation equations in the form of a set of PDEs for the NLS equation exhibits
complex characteristics [Forest and Lee 1986]. Posed naturally as an initial value problem, the
system is thus ill-posed and modulated NLS waves are unstable. The instability to the large-scale
spatio-temporal variation of the wave parameters (modulational instability) is the primary source of
problems in nonlinear fiber optical transmission, which is governed by the NLS equation.

In spite of the modulational instability, there exist initial data with a particular combination of A and S

that evolve into a profile of modulated waves. The ordered structure of modulated nonlinear waves was
first observed numerically by Miller and Kamvissis [1998], for the initial data of (3) with �D 0 and values
of " that allowed them to implement the multisoliton NLS formulae. Miller and Kamvissis observed
the phenomenon of wave breaking (see below) and the formation of more complex wave structures past
the break in this work. Later numerical findings by Ceniseros and Tian [2002], as well as by Cai, D. W.
McLaughlin, and K. D. T.-R. McLaughlin [Cai et al. 2002], also detected the ordered structures.

These studies were followed by analytic work of Kamvissis, K. D. T.-R. McLaughlin and Miller
[Kamvissis et al. 2003] for the same initial data (�D 0), the corresponding initial scattering data having
been earlier calculated explicitly by Satsuma and Yajima [1974]. This work set forth a procedure aiming
at the analytic determination of the observed phenomena that would practically extend the steepest descent
procedure cited above to the non-self-adjoint case. Following a similar approach, Tovbis, Venakides
and Zhou derived these phenomena rigorously from the initial data (3) with � > 0 [Tovbis et al. 2004];
the initial scattering data were previously obtained by Tovbis and Venakides [2000]. The asymptotic
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calculation of the wave solution was with error of order " for points in space-time that are off the break
point and off the caustic curves (see below). In further work [Tovbis et al. 2006; 2007], the same authors
also derived the long-time behavior of the asymptotic solution for �� 2 and generalized the prebreak
analysis to a wide class of initial data. The detailed asymptotic behavior in a neighborhood of the first
break point was derived recently by Bertola and Tovbis [2013].

The rigorous derivation of the mechanism of the second break remains an open problem. Using a
combination of theoretical and numerical arguments, Lyng and Miller [2007] obtained significant insights
for initial data (3) with �D 0 when the solution is an N -soliton, where N DO

�
1
"

�
. In particular, they

identified a mathematical mechanism for the second break, which depends essentially on the discrete
nature of the spectrum of the N -soliton and turns out to differ from the mechanism of the first break.

The asymptotic solution for shock initial data,

AD constant; S 0.x/D sign x; � > 0; (4)

was derived globally in time by Buckingham and Venakides [2007].
The work of the present paper relies on the determinant form of the modulation equations of the NLS

obtained by Tovbis and Venakides [2009]. The modulation equations are transcendental equations, not
differential equations, and thus the modulational instability does not hinder the analysis. Tovbis and
Venakides utilized the determinant form to study the variation of the asymptotic procedure as parameters
of the Riemann–Hilbert problem, in particular the spatial and the time variables that are parameters in
the Riemann–Hilbert problem analysis, change. They proved [2010] that, in the case of a regular break,
the nonlinear steepest descent asymptotics can be “automatically” continued through the breaking curve
(however, the expressions for the asymptotic solution will be different on different sides of the curve).
Although the results are stated and proven for the focusing NLS equation, they can be reformulated for
AKNS systems, as well as for the nonlinear steepest descent method in a more general setting. The
present paper examines the variation of the procedure with respect to the parameter � and proves that the
variation is smooth even as � crosses the critical value �D 2.

1A. Background: n-phase waves, inverse scattering, and the Riemann–Hilbert Problem. In order to
make the study accessible beyond the group of experts in the subject, we give an overview of our
understanding of the phenomenology of the time evolution of the semiclassical NLS equation and the
mathematics that represents this phenomenology.

In the ideal (and necessarily unstable) scenario, in which modulated wave profiles persist in space-time,
so does the separation in two space-time scales. In the large scale, a set of boundaries (breaking or caustic
curves) divides the space-time half-plane .x; t/, t > 0, into regions. Inside each region, and in the leading
order as "! 0, the solution is an n-phase wave (nD 0; 1; 2; 3; : : : ), with wave periods and wavelengths
in the small scale. The wave parameters vary in the large scale. The increase in n occurs typically as a
new phase is generated at a point in space-time, due, for example, to wave-breaking (more precisely, to
avert wave-breaking) or to two existing phases coming together. The newly generated oscillatory phase
spreads in space with finite speed and the trace of its fronts in space-time constitutes the set of breaking
curves.
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An n-phase NLS wave is a solution of (1) which exhibits a “carrier” plane wave and n nonlinearly
interacting wave-phases that control its oscillating amplitude. The wave is characterized by a set of
2nC2 real wave parameters: nC1 frequencies and nC1 wavenumbers. In the scenario discussed above,
waves with periods and wavelengths of order O."/ constitute the small space-time scale. The boundaries
separating phases in space-time exist in the large scale, which is of order O.1/. These boundaries play the
role of nonlinear caustic curves. The analytic wave profile of an n-phase wave is given explicitly in terms
of an elliptic (nD 1) or hyperelliptic (n> 1) Riemann theta function, derived from a compact Riemann
surface of genus n. This is true not only for the NLS but for most of the integrable wave equations studied.
The 2nC 2 branch points of the Riemann surface are the wave parameters of choice that determine the
nC1 frequencies and nC1 wavenumbers. In the case of the NLS, the 0-phase wave is simply a plane wave.

The initial data (2) have the structure of a modulated 0-phase wave. As t , increasing from zero, reaches
a value t D tbreak, the nD 0 initial phase breaks at a caustic point in space-time. As described above, a
wave-phase of higher n emerges then and spreads in space. As time increases, the endpoints of the spatial
interval of existence of the new phase define the two caustic curves in space-time that emanate from the
break point. The eventual breaking of this new phase is called the second break. The mechanism of the
second break is fundamentally different from that of the first.

The analytic description of n-phase waves [Belokolos et al. 1994] is in terms of an n-phase Riemann
theta function. This is an n-fold Fourier series obtained by summing expf2� iz �mC� i.Bm;m/g over
the multi-integer m. B is an n � n matrix with positive definite imaginary part that gives the series
exponential quadratic convergence. In the case of NLS waves, the matrix B arises from periods of the
Riemann surface of the radical

R.z/D

�2nC1Y
iD0

.z�˛i/

�1
2

; where ˛2jC1 D ˛2j I (5)

the elements of B are linear combinations of the hyperelliptic integralsI
zk

R.z/
; k D 0; 1; : : : ; n� 1;

along appropriate closed contours on the Riemann surface of R [Belokolos et al. 1994]. The series has a
natural quasiperiodic structure in the n complex arguments zD .z1; : : : ; zn/. Each zj is linear in x and t

and represents a nonlinear phase of the wave; the wavenumbers and frequencies are expressed in terms
of hyperelliptic integrals of the radical R and are thus functions of the ˛2j , whose status as preferred
parameters is obvious from (5).

The semiclassical limit procedure gives the emergent wave structure described above without any a
priori ansatz of such structure. The radical R.z/ and the wave parameters arise naturally in the procedure.
As mentioned above, these wave structures are modulated in space-time. In the large space-time scale, the
branch points ˛i vary and their number experiences a jump across the breaking curves. The branch points
are calculated from the modulation equations in determinant form (they are transcendental equations, not
partial differential equations, and thus there is no ill-posedness at hand). The number of branch points is
obtained with the additional help of sign conditions that are obtained in the procedure.
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Overview of scattering, inverse scattering, and the Riemann–Hilbert problem (RHP). The NLS was
solved by Zakharov and Shabat [1972], who discovered a Lax pair that linearizes it. The Lax pair consists
of two ordinary differential operators, one in the spatial variable x and the second in the time variable t .

The first operator of the Lax pair is a Dirac-type operator that is not self-adjoint. The corresponding
eigenvalue problem (Zakharov–Shabat) is a 2�2 first-order linear ODE, with independent variable x. The
NLS solution q.x; t; "/ plays the role of a scatterer, entering in the off-diagonal entries of the ODE matrix.
Scattering data are defined for those values of the spectral parameter z that produce bounded (Zakharov–
Shabat) solutions. This happens when z is real (these solutions are called scattering states) and at the
discrete set of proper eigenvalues zj (the eigenvalues come in complex-conjugate pairs; the normalized
L2 solutions are called bound states). The reflection coefficient r.z/, z 2R provides a connection between
the asymptotic behaviors of the scattering states as x!˙1. The norming constants cj , corresponding
to the proper eigenvalues zj , provide the asymptotic behavior of the bound states as x!C1.

The second operator of the Lax pair evolves the scattering states and the bound states in time and
is again a 2� 2 linear ODE system. The holding of the NLS equation guarantees that this evolution
involves the action of a time-dependent unitary operator. As a result, the spectrum of the first Lax operator
remains constant in time and the scattering data evolve in time through multiplication by simple explicit
exponential propagators. The continuous spectrum contributes radiation to the solution of the NLS. The
bound states contribute solitons.

Zakharov and Shabat [1972] developed the inverse scattering procedure for deriving q.x; t/ at any
.x; t/ given the scattering data at t D 0. In the modern approach initiated by Shabat [1976], the procedure
is recast into a matrix Riemann–Hilbert problem for a 2� 2 matrix on the complex plane of the spectral
variable z. One needs to determine the matrix m.z/ that is analytic on the closed complex plane, off
an oriented contour †, that consists of the real axis and of small circles surrounding the eigenvalues.
Modulo multiplication of its columns by normalizing factors e˙ixz=", the matrix m.z/ (the unknown of
the problem at t > 0) is a judiciously specified fundamental matrix solution of the eigenvalue problem of
the first operator of the Lax pair (Zakharov–Shabat eigenvalue problem). In order to determine the matrix
m.z/, one is given a jump condition on the contour †, and a normalization condition at z!1,

m.z/D

�
m11 m12

m21 m22

�
! identity, as z!1I mC.z/Dm�.z/V; when z 2†: (6)

The subscripts˙ indicate limits taken from the left/right of the contour. The 2�2 matrix V DV .z;x; t; "/,
defined on the jump contour and referred to as the jump matrix, is nonsingular and encodes the scattering
data (see below). The space-time variables x; t (and the semiclassical parameter ") are parameters in the
problem.

The solution to (1) is given by the simple formula

q.x; t; "/D lim
z!1

zm12.z;x; t; "/: (7)

The results and the calculations of this study are in the asymptotic limit of the semiclassical parameter
"! 0.
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1B. Background: the semiclassical limit "! 0. The Riemann–Hilbert approach is a major tool in the
asymptotic analysis of integrable systems, as established with the discovery of the steepest descent method
[Deift and Zhou 1993; 1995] and its extension through the g-function mechanism [Deift et al. 1997;
Tovbis et al. 2004]. The asymptotic methods via the RHP approach also apply to orthogonal polynomial
asymptotics [Deift 1999; Deift et al. 1999a] and to random matrices [Baik et al. 1999; Deift et al. 1999b;
Duits and Kuijlaars 2009; Ercolani and McLaughlin 2003].

The semiclassical asymptotic analysis of the highly oscillatory RHP is similar in spirit to the steepest
descent method for integrals in the complex plane. Throughout the analysis, the quantities x, t , and �
enter as parameters. The semiclassical analysis, performed with the aid of the g-function mechanism
[Deift et al. 1997; Tovbis et al. 2004], is constructive. An undetermined function g.z/ is introduced in
the RHP through a simple transformation of the independent matrix variable of the RHP. The contour
of the RHP, itself an unknown, is partitioned (in a way to be determined) into two types of interlacing
subarcs. The jump matrix is manipulated differently in the two subarc types. In one of them (main
arcs), the jump matrix is factored in a certain way. In the other type (complementary arcs), it is factored
differently or is left as is. The g-function mechanism then imposes on appropriate entries of the jump
matrix factors the condition of constancy in the complex spectral variable combined with boundedness
as "! 0, while imposing decay as "! 0 on other entries. The constancy conditions are equalities and
the decay conditions are sign conditions that act on exponents, forcing the decay of the corresponding
exponential entries. Put together, these conditions constitute a scalar RHP for the function g.z/ (or, as
below, on its sister function h.z/). The contour of the RHP, its partitioning, and finally the functions g.z/

and h.z/ follow from the analysis of this scalar RHP. This procedure allows the peeling-off of the leading
order solution of the original matrix RHP and leaves behind a matrix RHP for the error. This RHP is
solvable with the aid of a Neumann series.

The formulae for the conditions obtained through the g-function mechanism have an intuitive interpre-
tation that arises from (2D) potential theory in the complex plane of the spectral parameter z. The main
question is to determine the equilibrium measure for an energy functional [Deift 1999; Kamvissis and
Rakhmanov 2005; Simon 2011] that depends parametrically on the variables x and t . The support of
the measure depends on x and t . For problems with self-adjoint Lax operators (e.g., the Korteweg–de
Vries equation in the small dispersion limit), the support is on the real line (typically a set of intervals as
in [Lax and Levermore 1983a; 1983b; 1983c; Venakides 1985]). In a general non-self-adjoint case the
supports are in the complex plane. This is the case with the (focusing) NLS under study, whose spatial
Lax operator, the Zakharov–Shabat system, is of Dirac type and is non-self-adjoint.

The conditions obtained through the g-function mechanism are exactly the variational conditions for
the equilibrium measure. Deriving these conditions rigorously as such is highly taxing, especially in the
non-self-adjoint case. This is not needed though. The conditions are used essentially as an ansatz in the
RHP. As long as the calculation confirms the ansatz, the whole procedure is rigorous.

In the cases of the (focusing) NLS in the semiclassical limit that have been worked out so far [Boutet de
Monvel et al. 2011; Buckingham and Venakides 2007; Lyng and Miller 2007; Tovbis et al. 2004; 2007], the
support of the equilibrium measure is a finite union of arcs in the complex plane with complex-conjugate
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symmetry. Denote the endpoints of the “main arcs” (see below) by f j̨ g
N 0

jD0
, with some finite N 0 2 N.

The analysis leads naturally to the representation of these points as the roots of a monic polynomial, the
square root of which is exactly the radical in (5). This radical, a finite-genus Riemann surface, constitutes
the passage to the periodic structure of the local waveform. We refer to these endpoints henceforth as
“branch points”. It is necessary to establish the existence and the number of the branch points for each
pair .x; t/ as well as the existence of the arcs, which provide the leading contribution to the expression of
the local waveform.

The approach to obtaining the asymptotic solution from the initial data is to analyze the RHP for fixed
x and t , thus treating the space and time variables as parameters. The smooth dependence of the branch
points j̨ on the parameters x and t for the semiclassical NLS with q.x; 0/D sech.x/, �D 0 was studied
in [Kamvissis et al. 2003, pp. 148–162] by considering moment conditions. A different approach, to start
with local behavior near the j̨ , was applied in [Tovbis and Venakides 2009], leading to formulae of the
form

@ j̨

@x
.x; t/D�

2� i
@K

@x
. j̨ ; Ę;x; t/

D. Ę/

I
O


f 0.�;x; t/

.�� j̨ .x; t//R.�; Ę/
d�

; (8)

@ j̨

@t
.x; t/D�

2� i
@K

@t
. j̨ ; Ę;x; t/

D. Ę/

I
O


f 0.�;x; t/

.�� j̨ .x; t//R.�; Ę/
d�

; (9)

where Ę D Ę.x; t/.
In addition to [Tovbis and Venakides 2009; 2010], this work is similar in spirit to [Kuijlaars and

McLaughlin 2000], which pertains to random matrix theory. Those authors put a strong topology on
the set of allowable potentials (a potential is analogous to the function f in the present work) and
demonstrate that the so-called “regular case” is generic — i.e., if you find a potential with fixed genus and
all other side-conditions are satisfied in a strict sense, then the same genus holds for all potentials in a
neighborhood.

In this study, we obtain the following main results.

(1) We extend formulae (8) and (9) to include the dependence of the branch points and of the contour
O
 D O
 .�/ on the external parameter �,

@ j̨

@�
.x; t; �/D�

2� i
@K

@�
. j̨ ; Ę;x; t; �/

D. Ę/
I
O
.�/

f 0.�;x; t; �/

.�� j̨ .x; t; �//R.�; Ę/
d�
; (10)

where Ę D Ę.x; t; �/. We show that the dependence is smooth, meaning that the contour, the jump
matrix, and the solution of the scalar RHP evolve smoothly (they are continuously differentiable)
in �.

(2) We simplify the expression for @K
@�

in (43).
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Figure 1. The RHP jump contour in the case of genus 4 with complex-conjugate sym-
metry in the notation of [Tovbis et al. 2004].

(3) We show good agreement of formula (10) with the dependence of the branch points on the parameter�,
obtained by the direct numerical solution of the system (19) (see Figure 3).

(4) We prove the preservation of genus of the asymptotic solution in an open interval of parameter �. In
particular, the genus is preserved (0 or 2) for all x and t > 0 for some open interval (which depends
on x and t ) for � < 2.

This paper is organized as follows. Section 2 contains definitions and prior results. Section 3 discusses
the analyticity of f in � and the differentiability of the branch points j̨ D j̨ .�/. Section 4 studies the
�-dependence of the quantities that appear in Theorem 4.5. Section 5 is devoted to sign conditions and
the preservation of genus (Theorem 5.8). Section 6 provides numerical support for the main result of the
paper. The Appendix supplies explicit formulations of all relevant expressions and the main result in the
genus 0 and genus 2 cases.

2. Preliminaries

We consider a model scalar Riemann–Hilbert problem which arises in the process of the asymptotic
solution of the semiclassical focusing NLS (1) with the initial condition (3). The input to the problem is a
given function f .z/ that derives originally from the asymptotic limit of the scattering data for this initial
value problem. The function f .z/ (see (21)) depends parametrically on the space and time variables, x

and t . It also depends on the real parameter � in the initial data of the NLS (3). The following properties
of the function f .z/ are crucial for our calculations.

(1) f .z/ is analytic at all points of C nR except for branch cuts.

(2) f .z/ has a z ln z singularity at the point z D �=2.

(3) f .z/ is Schwarz-symmetric.

Other functions that satisfy these conditions are a priori admissible as inputs to our model problem;
whether they too lead to solutions is a matter of calculation.
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Contour O
 Contours O
m;j

Figure 2. Contours of integration for the function h.z/ of (14). The point z0 D �=2 is a
point of nonanalyticity of f .z/ on 
 .

The unknown of the problem is a function h.z/ that has the following properties.

(1) The function h.z/ is Schwarz-reflexive.

(2) The function h.z/ compensates for the points of nonanalyticity of f .z/ in the sense that hCf is
analytic at these points with only one exception, the point z D �=2.

(3) The function hC f is analytic in C n 
 , where 
 is a contour to be determined that passes through
point z D �=2 and is symmetric with respect to the real axis.

(4) The function h.z/ exhibits constant (independent of z) jumps across subarcs of the contour 
 . This
is made more specific below.

Remark. A cleaner formulation of the RHP could be achieved with the unknown f C h instead of h.
Indeed, the function

g.z/D 1
2
.h.z/Cf .z//

jumps only across the contour 
 , providing a cleaner RHP formulation. Yet the results are in terms of the
function h.z/; hence our choice in its favor.

Remark. Based on the previous remark, we still refer to the contour 
 as the contour of the RHP. Since
the contour itself is one of the unknowns, we refer to the problem as a “free contour RHP”, in analogy to
the well-known “free boundary value problems”.

We now set the precise conditions for the contour 
 and the jumps across it.

(1) The contour 
 is a finite-length, non-self-intersecting arc that is symmetric with respect to the real
axis. It intersects the real axis at a point z D �=2 (we refer to this point as z0) to be discussed below.

(2) The contour 
 is oriented from its endpoint in the lower complex half-plane to its endpoint in the
upper half-plane.
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(3) For some integer N , we consider 2N C 1 distinct points of the contour in the upper half-plane,
including the contour endpoint; we also consider their complex conjugates in the lower half-plane.
We label the points in the upper half-plane with even indices f˛

2i
g2N
iD0

that increase in the direction
of orientation of the contour and we label the points in the lower half-plane with odd indices
f˛

2iC1
g2N
iD0

that decrease in the direction of orientation. Clearly, the sequence of points in the
direction of orientation are

˛4NC1; ˛4N�1; ˛4N�3; : : : ; ˛3; ˛1„ ƒ‚ …
lower half-plane

; ˛0; ˛2; : : : ; ˛4N�4; ˛4N�2; ˛4N„ ƒ‚ …
upper half-plane

;

˛
4NC1

and ˛
4N

are the endpoints of the contour 
 , and

˛2iC1 D ˛2i
; i D 0; 1; 2; : : : ; 2N: (11)

The jumps of the RHP are defined on the arcs into which the contour is partitioned by these points.
Two alternative types of RHP jumps are imposed; each arc is labeled as a main arc or a complementary
arc, respectively. The two arc types interlace along the contour and the contour has main arcs at both
ends. All arcs inherit their orientation from the contour 
 .

It is trivial to check that arcs which are complex-conjugate to each other are either both main or both
complementary. It is convenient to lump such an arc pair into one entity; in the following definitions, we
retain the terms main arc and complementary arc for such arc pairs, by abuse of vocabulary.

(1) We define as main arcs 
m;j , where j D 0; 1; : : : ;N :


m;0 D Œ˛1; ˛0�; 
m;j D Œ˛4j�2; ˛4j �[ Œ˛4jC1; ˛4j�1�; j D 1; : : : ;N:

Thus, a main arc consists of a single arc when j D 0 and a union of two arcs when j > 0.

(2) We define as complementary arcs 
c;j , where j D 1; : : : ;N :


c;j D Œ˛4j�4; ˛4j�2�[ Œ˛4j�1; ˛4j�3�; j D 1; : : : ;N:

The jump conditions of the RHP are given by8̂<̂
:

hC.z/C h�.z/D 2Wj on 
m;j ; j D 0; 1; : : : ;N;

hC.z/� h�.z/D 2�j on 
c;j ; j D 1; : : : ;N;

h.z/Cf .z/ is analytic in C n 
;

(12)

where Wj and �j are real constants with a normalization W0 D 0.
We end our formulation of the free contour RHP for the function h.z/ by reiterating what the knowns

and what the unknowns of the problem are. The contour 
 is unknown, except for the requirement of
passing through the singular point z0D�=2. The positions of the 4N C2 partitioning points are unknown.
As we have formulated the problem so far, the value of the integer N is free. This freedom is lifted if
important additional conditions (“sign conditions”) are imposed on the RHP, as occurs in the case of
NLS [Tovbis et al. 2004]. The sign conditions guarantee the decay of certain jump matrix entries. In the
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presence of these conditions, the number of points turns into an important unknown; the n-phase wave
represented has nD 2N . Finally, the real constants in the jump conditions are unknown. To summarize,
the only known data is the function f .zI�; ˇ/.

Our main concern is the dependence of the solution of the problem on the parameter �. Any other
parameters (space and time if the RHP arises from the focusing NLS) are collectively labeled ˇ. A
multiparameter family of such functions f will be discussed below. The specific function f that
corresponds to the focusing NLS equation with initial data (3) is given in the beginning of Section 3.

Definition 2.1. Let

Ę D f˛0; ˛1; ˛2; : : : ; ˛4NC1g: (13)

We say


 2 �. Ę ; �/

if a contour 
 satisfies all the conditions set above and shown in Figure 1.

Note that for fixed Ę and �, the contour 
 , aside from passing through z D j̨ and z D �=2, is free to
deform continuously within a domain of analyticity of f . Thus for a fixed f , the notation 
 D 
 . Ę; �/
may indicate the general element of the set �. Ę; �/. The following lemma is an immediate consequence
of our definitions.

Lemma 2.2. Consider 
0 D 
0. Ę0; �0/ 2 �. Ę0; �0/.
There exist open neighborhoods of Ę0 and �0 such that for all Ę in the neighborhood of Ę0, for all � in

the neighborhood of �0 there is a contour 
 . Ę; �/ 2 �. Ę; �/.

Definition 2.3. We say that

O
 2 O�.
; Ę; �/

if O
 is a non-self-intersecting closed contour around 
 2 �. Ę; �/ within the domain of analyticity of f
except at z0 D �=2, with complex-conjugate symmetry O
 D O
 .

We define O
m;j and O
c;j similarly.

Remark 2.4. By considering the loop contours O
 , O
m;j , O
c;j , the explicit dependence of the contours
on the end points Ę is removed (for example in (32)–(35)). So even though 
 D 
 . Ę; �/, in all our
evaluations below O
 D O
 .�/.

Remark 2.5. Lemma 2.2 implies that if O
0 2
O�.
0; Ę0; �0/, then there is a contour 
 2 �. Ę; �/ such

that O
 2 O�.
; Ę; �/ for all Ę and � in some open neighborhoods of Ę0 and �0.

Definition 2.6. We denote the RHP (12) as

RHP.
; Ę; �; f /;

where 
 2 �. Ę; �/.
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The solution of the RHP (12), h.z/, can be found explicitly [Tovbis et al. 2004]:

h.z/D
R.z/

2� i

�I
O


f .�/

.� � z/R.�/
d�C

NX
jD1

I
O
m;j

Wj

.� � z/R.�/
d�C

NX
jD1

I
O
c;j

�j

.� � z/R.�/
d�

�
; (14)

or, in determinant form [Tovbis and Venakides 2009],

h.z/D
R.z/

D
K.z/; (15)

where z lies inside of O
 and outside all O
c;j and O
m;j , and where

K.z/D
1

2� i

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

I
O
m;1

d�

R.�/
: : :

I
O
m;1

�N�1d�

R.�/

I
O
m;1

d�

.��z/R.�/
:::

: : :
:::

:::I
O
m;N

d�

R.�/
: : :

I
O
m;N

�N�1d�

R.�/

I
O
m;N

d�

.��z/R.�/I
O
c;1

d�

R.�/
: : :

I
O
c;1

�N�1d�

R.�/

I
O
c;1

d�

.��z/R.�/
:::

: : :
:::

:::I
O
c;N

d�

R.�/
: : :

I
O
c;N

�N�1d�

R.�/

I
O
c;N

d�

.��z/R.�/I
O


f .�/ d�

R.�/
: : :

I
O


�N�1f .�/ d�

R.�/

I
O


f .�/ d�

.��z/R.�/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

(16)

and
D D det.A/; (17)

with

AD

0BBBBBBBBBBBBBBBB@

I
O
m;1

d�

R.�/
: : :

I
O
m;1

�N�1d�

R.�/
:::

: : :
:::I

O
m;N

d�

R.�/
: : :

I
O
m;N

�N�1d�

R.�/I
O
c;1

d�

R.�/
: : :

I
O
c;1

�N�1d�

R.�/
:::

: : :
:::I

O
c;N

d�

R.�/
: : :

I
O
c;N

�N�1d�

R.�/

1CCCCCCCCCCCCCCCCA
: (18)

The arc end points f j̨ g satisfy the system

K. j̨ /D 0; j D 0; 1; : : : ; 4N C 1: (19)

The dependence on x and t was considered in [Tovbis and Venakides 2009]. This is a simpler situation
when the jump contour 
 in the RHP (12) is independent of the parameters.
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The main related results in [Tovbis and Venakides 2009] are the determinant form (15) and:

Theorem 2.7. Let f .z; Ě/, where Ě 2 B � Rm. For all Ě 2 B assume f .z; Ě/ is analytic on S 2 C.
Moreover, 
 nS consists of no more than finitely many points and f is continuous on 
 . The modulation
equations (19) imply the system of 4N C 2 differential equations

. j̨ /ˇk
D�

2� i
@

@ˇk

K. j̨ /

D
I
O


f 0.�/

.�� j̨ /R.�/
d�
: (20)

In particular, one gets (8) and (9) for parameters x and t . Note that the contour 
 is assumed independent
of parameters x and t explicitly. The dependence on these parameters comes in through the branch points
Ę D Ę.x; t/.

The main related result in [Tovbis and Venakides 2010] is:

Theorem 2.8. Let the nonlinear steepest descent asymptotics for solution q.x; t; "/ of the NLS (1) be valid
at some point .x0; t0/. If .x�; t�/ is an arbitrary point, connected with .x0; t0/ by a piecewise-smooth
path †, if the contour 
 .x; t/ of the RHP (12) does not interact with singularities of f .z/ as .x; t/ varies
from .x0; t0/ to .x�; t�/ along †, and if all the branch points are bounded and stay away from the real
axis, then the nonlinear steepest descent asymptotics (with the proper choice of genus) are also valid at
.x�; t�/.

We extend Theorem 2.7 and make partial progress in the direction of Theorem 2.8 in the case when the
jump contour explicitly depends on the parameter �. We require that the point of logarithmic singularity
of f D f .z; �/, z0 D �=2 be always on 
 . Additionally, we prove preservation of genus for all x > 0,
t > 0, � > 0, under certain conditions which guarantee that the parameters are away from asymptotic
solution breaks (see Theorem 5.8). In particular, the genus is preserved in a neighborhood of the special
value of the parameter �D 2. Thus we obtain that for all x > 0, t > 0 (except on the first breaking curve),
there is a small neighborhood such that for all � < 2 in the neighborhood, the genus is the same as for
�D 2, where it is known to be 0 or 2.

3. �-dependence in the semiclassical focusing NLS

To apply the methods from [Tovbis and Venakides 2009] we need analyticity of f .z; �/ in the parameter �.
The function f .z/, obtained in [Tovbis et al. 2004] from a semiclassical approximation of the exactly

derived scattering data for the NLS with initial condition (3) [Tovbis and Venakides 2000], is given by

f .z; �;x; t/D

�
�

2
� z

��
� i

2
C ln

�
�

2
� z

��
C

zCT

2
ln.zCT /C

z�T

2
ln.z�T /

�T tanh�1 T

�=2
�xz� 2tz2

C
�

2
ln 2 when =z � 0; (21)

and
f .z/D f .z/ when =z < 0; (22)
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where the branch cuts are chosen as follows: for 0<�< 2, the logarithmic branch cuts are from zD�=2

along the real axis to C1, from z D T to 0 and along the real axis to C1, and from z D�T to 0 and
along the real axis to �1; for �� 2, the branch cuts are from z D T to C1 and from z D�T to �1
along the real axis, where

T D T .�/D

r
�2

4
� 1; =T � 0: (23)

For �� 2, T � 0 is real and for 0< � < 2, T is purely imaginary with =T > 0.

Lemma 3.1. f .z; �/ and f 0.z; �/ are analytic in � for �> 0, x> 0, t > 0, for all z, =z¤ 0, z 62 Œ�T;T �.

Proof. Consider

f 0.z; �/D�
� i

2
� ln

�
�

2
� z

�
C

1

2
ln
�

z2
�
�2

4
C 1

�
�x� 4tz; (24)

which is analytic in � > 0, for =z ¤ 0, z 62 Œ�T;T �.
For � > 0, �¤ 2, f .z; �/ is clearly analytic in � for =z ¤ 0. At �D 2 (T D 0) we find the power

series of f .z; �/ in T and show that it contains only even powers. Since

T 2k
D

�
�2

4
� 1

�k

D
.�C 2/k

4k
.�� 2/k ; (25)

it will show analyticity of f .z; �/ in �.
Start with expanding basic terms in series at T D 0:

1

�=2
D

p
1CT 2

�1
D

1X
kD0

ckT 2k ; ln.z˙T /D z ln z

1X
nD1

.�1/nC1

n

�
˙

T

z

�n

: (26)

Then the logarithmic terms in (21) become

zCT

2
ln.zCT /C

z�T

2
ln.z�T /D z ln z� z

X
n is even

1

n

�
T

z

�n

CT
X

n is odd

1

n

�
T

z

�n

D z ln zC

1X
kD1

1

2k.2k � 1/z2k�1
T 2k ; (27)

which has only even powers of T and is analytic in � for =z¤ 0. Next we consider the inverse hyperbolic
tangent term in (21), and taking into account that tanh�1 z is an odd function,

T tanh�1 T

�=2
D T tanh�1 Tp

1CT 2
D T tanh�1

1X
kD0

ckT 2kC1

D T

1X
kD0

QckT 2kC1
D

1X
kD0

QckT 2kC2; (28)

which also has only even powers of T .
So f .z;x; t; �/ is analytic in � for � > 0, x > 0, t > 0, =z ¤ 0, z 62 Œ�T .�/;T .�/�. �
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Then, for =z > 0,

@f

@�
.z; �/D

� i

4
C

1

2
ln
�
�

2
� z

�
C ln 2C

�

8T

�
ln.zCT /� ln.z�T /� 2 tanh�1 2T

�

�
; (29)

where tanh�1 x D xCO.x3/, as x! 0; then

@f

@�
.z; �/D

� i

4
C

1

2
ln
�
�

2
� z

�
C ln 2C

�

4z
�

1

2
CO.T /; T ! 0: (30)

So �D 2 is a removable singularity for f�.z; �/ and

lim
�!2
T!0

@f

@�
.z; �/D

� i

4
C

1

2
ln.1� z/C ln 2C

1

2z
�

1

2
; (31)

which is analytic in z for =z ¤ 0.

Remark 3.2. The jump of f .z/ is caused by the Schwarz reflection (22) on the real axis and is linear in
z since =f is a linear function on the real axis (as a limit) near �=2 with =f .�=2/D 0 [Tovbis et al.
2004].

4. Parametric dependence of the scalar RHP

The main difficulty is the dependence of f .z/ (thus the RHP (12)) and the modulation equations (19) on
parameter �, which also controls the logarithmic branch point z D �=2 on the contour O
 . We show that
the dependence on � is smooth.

To solve EK. Ę; �/D E0, we need nondegeneracy of the system and apply the implicit function theorem.
The following technical lemma simplifies expressions for partial derivatives in � of (14) and (16).

Lemma 4.1. Let the function f be given by (21), and consider a contour 
0 D 
 . Ę; �0/ 2 �. Ę; �0/

having fixed arc end points Ę. There is an open neighborhood of �0 such that for all � in the neighborhood
of �0, there is O
 .�/ 2 O�.
; Ę; �/, and for all j D 0; 1; : : : ; 4N C 1, n 2 N,

@

@�

I
O
.�/

�nf .�; �/ d�

R.�; Ę/
D

I
O
.�/

�n @f .�; �/

@�
d�

R.�; Ę/
; (32)

@

@�

I
O
.�/

f .�; �/ d�

.� � j̨ /R.�; Ę/
D

I
O
.�/

@f .�; �/

@�
d�

.� � j̨ /R.�; Ę/
; (33)

@

@�

I
O
m;k

�nd�

R.�; Ę/
D 0;

@

@�

I
O
m;k

d�

.� � j̨ /R.�; Ę/
D 0; k D 1; 2; : : : ;N; (34)

@

@�

I
O
c;k

�nd�

R.�; Ę/
D 0;

@

@�

I
O
c;k

d�

.� � j̨ /R.�; Ę/
D 0; k D 1; 2; : : : ;N: (35)
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Proof. The idea of the proof is to consider finite differences and take the limit as �� ! 0. The
complication is that both the integrands and the contours of integration depend on �.

Denote the integral on the left in (32) by I1:

I1.�/D

I
O
.�/

�nf .�; �/

R.�; Ę/
d�; (36)

where O
 .�/ 2 O�.
; Ę; �/. Consider

I1.�C��/� I1.�/

��
; (37)

with small real��¤ 0. There are two logarithmic branch cuts near the contours of integration, in f .z; �/
and in f .z; �C��/, with both branch cuts chosen from z0.�/D �=2 and z0.�C��/ horizontally to
the right along the real axis. Additionally, these functions have a jump on the real axis for z < �=2 from
Schwarz symmetry.

We choose some fixed points ı1 and ı2 to be real, satisfying

ı1 <
�

2
�
j��j

2
<
�

2
C
j��j

2
< ı2: (38)

Both contours of integration O
 .�/, O
 .�C��/ are pushed to the real axis near z0 and split into

Œı1; ı2� WD Œı1C i0; ı2C i0�[ Œı2� i0; ı1� i0� (39)

and its complement. On the complement, we can also deform both contours to coincide. So O
 .�C��/D
O
 .�/.

Across Œı1; ı2�, f .z; �/ has a jump � i jz0.�/� zj and f .z; �C��/ has a jump � i jz0.�C��/� zj.
So contributions near z0 in both cases are small.

Then

I1.�C��/� I1.�/

��
D

1

��

�I
O
.�C��/

�nf .�; �C��/

R.�; Ę/
d� �

I
O
.�/

�nf .�; �/

R.�; Ę/
d�

�
I (40)

we add and subtract
I
O
.�/

�nf .�; �C��/

R.�; Ę/
d�, giving

(40)D
1

��

�I
O
.�C��/� O
.�/

�nf .�; �C��/

R.�; Ę/
d�C

I
O
.�/

�n.f .�; �C��/�f .�; �//

R.�; Ę/
d�

�
: (41)

The first integral is 0, because O
 .�C��/D O
 .�/.
Thus

I1.�C��/� I1.�/

��
D

I
O
.�/

�n f .�; �C��/�f .�; �/

��

R.�; Ę/
d�: (42)

The last step is to take the limit as ��! 0 and to interchange it with the integral. The contour of
integration is split into two: a small neighborhood near z0 and its complement. For the integral near z0,
by a direct computation it can be shown that the limit can be passed under the integral. The integral over
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the second part of the contour has the integrand uniformly bounded in �, since log.� ��=2/ in @f=@� is
uniformly bounded away from �=2, so the limit and the integral can be interchanged. This completes the
proof for the first integral (32).

The second integral (33) is done similarly. The rest of the integrals (34), (35) are independent of �
since the only dependence on � sits in z0.�/ 2 
m;0. �

Using Lemma 4.1,
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I
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O
c;1

d�

R.�/
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I
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R.�/

I
O
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d�

.�� j̨ /R.�/
:::

: : :
:::

:::I
O
c;N

d�

R.�/
: : :

I
O
c;N

�N�1d�

R.�/

I
O
c;N

d�

.�� j̨ /R.�/I
O


f�.�/ d�

R.�/
: : :

I
O


�N�1f�.�/ d�

R.�/

I
O


f�.�/ d�

.�� j̨ /R.�/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

; (43)

where f� is given by (29).

Lemma 4.2. Let f be given by (21) and consider a contour 
0 D 
 . Ę0; �0/ 2 �. Ę0; �0/ having arc end
points Ę0. Then there are open neighborhoods of Ę0 and �0 such that for all Ę and � in the neighborhoods
of Ę0 and �0, respectively, there is a contour 
 D 
 . Ę; �/ 2 �. Ę; �/ and

Kj . Ę; �/ WDK. j̨ ; Ę; �/; j D 0; 1; : : : ; 4N C 1; (44)

is continuously differentiable in Ę and in �.

Proof. Since 
0 2 �. Ę0; �0/ by Lemma 2.2, there are neighborhoods of Ę0 and �0 such that for all Ę
and � in the neighborhoods of Ę0 and �0, respectively, there is a contour 
 D 
 . Ę; �/ 2 �. Ę; �/.

Kj . Ę; �/ is analytic in Ę by the determinant structure and the integral entries (16), where explicit
dependence on Ę is only in the R.z; Ę/ term, which is analytic away from z D j̨ , j D 0; : : : ; 4N C 1.

The integrals in the last row of the matrix in (43) involve the function f� given by (29), which is
integrable near z D �=2, and hence the whole determinant is continuous in �. Thus Kj . j̨ ; Ę; �/ is
continuously differentiable in Ę and in �. �

By Lemma 4.2, the modulation equations (19)

Kj . Ę; �/DK. j̨ ; Ę; �/D 0 (45)

are smooth in Ę and in the parameter �. Next we want to solve this system for Ę D Ę.�/ and derive
smoothness in � by the implicit function theorem.
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For the next lemma we need K0.z; Ę; �/D
dK
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.z; Ę; �/:
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; (46)

where z is inside of O
 .�/ and inside of O
m;j and O
c;j or O
c;jC1.

Lemma 4.3. Let f be given by (21) and consider a contour 
0 2 �. Ę0; �0/, where Ę0 and �0 satisfy

EK. Ę0; �0/D E0:

Assume that for Ę0 D f˛0
j g

4NC1
jD0

,

lim
z!˛0

j

K0.z; Ę0; �0/¤ 0; j D 0; 1; : : : ; 4N C 1:

Then the modulation equations
EK. Ę; �/D E0

can be uniquely solved for Ę D Ę.�/, which is continuously differentiable for all � in some open
neighborhood of �0 and Ę.�0/D Ę0.

Proof. EK is continuously differentiable in Ę and in � by Lemma 4.2.
As shown in [Tovbis and Venakides 2009], the matrix�

@ EK

@ Ę

�
j ;l

D

�
@K. j̨ /

@˛l

�
j ;l

is diagonal and
@K. j̨ /

@ j̨
D

3

2
D lim

z!˛0
j

�
h.z/

R.z/

�0
D

3

2
lim

z!˛0
j

K0.z; Ę; �/¤ 0: (47)

So

det
ˇ̌̌̌
@ EK

@ Ę
. Ę0/

ˇ̌̌̌
D

Y
j

@K. j̨ /

@ j̨
¤ 0; (48)

under the assumptions. By the implicit function theorem, Ę.�/ are uniquely defined in some neighborhood
of �0 and smooth in �. Note that Ę.�0/D Ę0 by assumption. �
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Remark 4.4. The condition lim
z!˛0

j

K0.z; Ę0; �0/¤ 0, j D 0; 1; : : : ; 4N C1, in Lemma 4.3 is equivalent to

lim
z!˛0

j

h0.z; Ę0; �0/

R.z; Ę0/
¤ 0; j D 0; 1; : : : ; 4N C 1:

All quantities below depend on parameters x and t . We assume that for the rest of the paper x and t

are fixed.

Theorem 4.5 (�-perturbation in genus N ). Consider a finite-length non-self-intersecting contour 
0 in
the complex plane consisting of a finite union of oriented arcs


0 D
�S


m;j

�
[
�S


c;j

�
2 �. Ę0; �0/

with the distinct arc end points Ę0 and depending on parameter � (see Figure 1). Assume Ę0 and �0

satisfy a system of equations
EK. Ę0; �0/D E0;

and f is given by (21). Let 
 D 
 . Ę; �/ be a contour of an RHP which seeks a function h.z/ which
satisfies the conditions 8̂<̂

:
hC.z/C h�.z/D 2Wj on 
m;j ; j D 0; 1; : : : ;N;

hC.z/� h�.z/D 2�j on 
c;j ; j D 1; : : : ;N;

h.z/Cf .z/ is analytic in C n 
 ,

(49)

where �j D �j . Ę; �/ and Wj D Wj . Ę; �/ are real constants (with normalization W0 D 0) whose
numerical values will be determined from the RH conditions. Assume that there is a function h.z; Ę0; �0/

which satisfies (49) and suppose h0.z; Ę0; �0/=R.z; Ę0/¤ 0 for all z on 
0.
Then there is a contour 
 . Ę; �/ 2 �. Ę; �/ such that the solution Ę D Ę.�/ of the system

EK. Ę; �/D E0 (50)

and h.z; Ę.�/; �/ which solves (49) are uniquely defined and continuously differentiable in � in some
open neighborhood of �0.

Moreover,

@ j̨

@�
.�/D�

2� i
@K

@�
. j̨ .�/; Ę.�/; �/

D. Ę.�/; �/

I
O
.�/

f 0.�; �/

.�� j̨ .�//R.�; Ę.�//
d�

; (51)

@h

@�
.z; �/D

R.z; Ę.�//

2� i

I
O
.�/

@f

@�
.�; �/

.� � z/R.�; Ę.�//
d�; (52)

where z is inside of O
 .
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Furthermore, �j .�/D�j . Ę.�/; �/ and Wj .�/DWj . Ę.�/; �/ are defined and continuously differ-
entiable in � in some open neighborhood of �0, and

@�j

@�
.�/D�

1

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

I
O
m;1

d�

R.�/
: : :

I
O
m;1

�N�1d�

R.�/
:::

: : :
:::I

O
m;N

d�

R.�/
: : :

I
O
m;N

�N�1d�

R.�/I
O
c;1

d�

R.�/
: : :

I
O
c;1

�N�1d�

R.�/
:::

: : :
:::I

O
c;j�1

d�

R.�/
: : :

I
O
c;j�1

�N�1d�

R.�/I
O


f�.�/

R.�; Ę/
d� : : :

I
O


�N�1f�.�/

R.�; Ę/
d�I

O
c;jC1

d�

R.�/
: : :

I
O
c;jC1

�N�1d�

R.�/
:::

: : :
:::I

O
c;N

d�

R.�/
: : :

I
O
c;N

�N�1d�

R.�/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

;

@Wj

@�
.�/D�

1

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

I
O
m;1

d�

R.�/
: : :

I
O
m;1

�N�1d�

R.�/
:::

: : :
:::I

O
m;j�1

d�

R.�/
: : :

I
O
m;j�1

�N�1d�

R.�/I
O


f�.�/

R.�; Ę/
d� : : :

I
O


�N�1f�.�/

R.�; Ę/
d�I

O
m;jC1

d�

R.�/
: : :

I
O
m;jC1

�N�1d�

R.�/
:::

: : :
:::I

O
m;N

d�

R.�/
: : :

I
O
m;N

�N�1d�

R.�/I
O
c;1

d�

R.�/
: : :

I
O
c;1

�N�1d�

R.�/
:::

: : :
:::I

O
c;N

d�

R.�/
: : :

I
O
c;N

�N�1d�

R.�/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

;

(53)

where R.�/DR.�; Ę/, f .�/D f .�; �/, f�.�/D
@f

@�
.�; �/, and D DD. Ę.�//.
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Proof. By Lemma 4.3, there is a contour 
 . Ę; �/ 2 �. Ę; �/ for all � in some neighborhood of �0 and
the j̨ .�/ are continuously differentiable in �. The formula for @ j̨=@� is derived similarly as in [Tovbis
and Venakides 2009]. We differentiate the modulation equations K. j̨ /DK. j̨ ; Ę; �/D 0 which define
Ę D Ę.�/ with respect to �,

4NC1X
lD0

@K. j̨ /

@˛l

@˛l

@�
C
@K

@�
. j̨ /D 0; (54)

where the matrix
�
@K. j̨ /

@˛l

�
j ;l

is diagonal [Tovbis and Venakides 2009], so

@K. j̨ /

@ j̨

@ j̨

@�
D�

@K. j̨ /

@�
: (55)

Since
@K. j̨ /

@ j̨
D

D. Ę; �/

2� i

I
O
.�/

f 0.�; �/

.� � j̨ /R.�; Ę/
d�; (56)

we arrive at the evolution equations for the j̨ :

@ j̨

@�
D�

2� i
@K

@�
. j̨ /

D. Ę; �/
I
O
.�/

f 0.�; �/

.�� j̨ /R.�; Ę/
d�
; j D 0; : : : ; 4N C 1: (57)

Next we compute
@h

@�
, which satisfies the scalar RHP

�
h�;C.z/C h�;�.z/D 0; z 2 
m;j ; j D 0; 1; : : : ;N;

h�.z/Cf�.z/ is analytic in C n 
:
(58)

Then

@h

@�
.z; �/D

R.z; Ę.�//

2� i

I
O
.�/

@f

@�
.�; �/

.� � z/R.�; Ę.�//
d�; (59)

where z is inside of O
 . The integrand @f
@�
.�; �/ behaves like log.� � z0/ near � D z0, and therefore is

integrable.
Constants Wj and �j are found from the linear system [Tovbis et al. 2004]I
O
.�/

�nf .�; �/

R.�; Ę/
d�C

NX
jD1

I
O
c;j

�n�j

R.�; Ę/
d�C

NX
jD1

I
O
m;j

�nWj

R.�; Ę/
d� D 0; nD 0; : : : ;N � 1: (60)

Differentiating in � and using Lemma 4.1 leads toI
O
.�/

�nf�.�; �/

R.�; Ę/
d�C

NX
jD1

I
O
c;j

�n.�j /�

R.�; Ę/
d�C

NX
jD1

I
O
m;j

�n.Wj /�

R.�; Ę/
d� D 0; nD 0; : : : ;N �1; (61)
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or in matrix form,0BBBBBBBBBBBBBBBB@

I
O
m;1

d�

R.�/
: : :

I
O
m;1

�N�1d�

R.�/
:::

: : :
:::I

O
m;N

d�

R.�/
: : :

I
O
m;N

�N�1d�

R.�/I
O
c;1

d�

R.�/
: : :

I
O
c;1

�N�1d�

R.�/
:::

: : :
:::I

O
c;N

d�

R.�/
: : :

I
O
c;N

�N�1d�

R.�/

1CCCCCCCCCCCCCCCCA

T

0BB@
@ EW

@�

@ E�

@�

1CCAD�
0BBBB@

I
O
.�/

f�.�; �/

R.�; Ę/
d�

:::I
O
.�/

�N�1f�.�; �/

R.�; Ę/
d�

1CCCCA : (62)

So
@�j

@�
and

@Wj

@�
satisfy (53). Note that D ¤ 0 for distinct j̨ ’s [Tovbis and Venakides 2009]. �

Remark 4.6. In [Tovbis and Venakides 2009], the case was considered where the contour 
 is independent
of external parameters x and t and the dependence of f on these parameters is linear. Here we apply the
methods of that paper to the case of a dependence on the parameter � when the jump contour explicitly
passes through z D �=2, a point of singularity of f . Despite this more complicated dependence on �,
the resulting formulae are the same. The main reason is Lemma 4.1, which allows us to find partial
derivatives with respect to � of contour integrals involving dependence on � in both integrands and
contours of integration.

Remark 4.7. Theorem 4.5 guarantees that the solution of the RHP (49) is uniquely continued with respect
to external parameters. Additional sign conditions on =h need to be satisfied for h to correspond to an
asymptotic solution of the NLS as in [Tovbis et al. 2004]. The sign conditions have to be satisfied near 

and additionally on semi-infinite complementary arcs connecting the arc end points of 
 to1.

5. Sign conditions and preservation of genus

If the scalar RHP (12) is implemented in the asymptotic solution of the semiclassical NLS, certain sign
conditions must be satisfied. Specifically, =h.z/ D 0 on 
m;j , =h.z/ < 0 on both sides of 
m;j , and
=h.z/� 0 on 
c;j (see Definition 5.3 below). In this section we investigate the preservation of the sign
structure of =h under perturbations of �.

Definition 5.1. Define 
1 D 
1. Ę; �/ as an extension of a contour 
 . Ę; �/ 2 �. Ę; �/ as 
1. Ę; �/D
.1; ˛4NC1�[
 . Ę; �/[Œ˛4N ;1/. Both additional arcs are considered as a complementary arc 
c;NC1D

.1; ˛4NC1�[ Œ˛4N ;1/, and assume 
c;NC1 D 
c;NC1, so 
1 D 
1. With a slight abuse of notation
we write 
1. Ę; �/ 2 �. Ę; �/.

Lemma 5.2. If the conditions of Theorem 4.5 hold on 
1. Ę0; �0/ 2 �. Ę0; �0/ for EK. Ę0; �0/D E0, the
statement of the theorem holds on 
1. Ę; �/, where EK. Ę; �/D E0.
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Proof. The proof is unchanged since f is analytic near the additional semi-infinite arcs in 
c;NC1 and
the jump condition on the additional complementary arc 
c;NC1 is taken to be zero (�NC1 D 0) [Tovbis
et al. 2004]. �

Note that the conditions in Lemma 5.2 are more restrictive since 
 � 
1.

Definition 5.3. A function h satisfies sign conditions on 
1 if =h.z/D 0 if z 2 
m;j , =h.z/ < 0 on both
sides of 
m;j for all j D 0; : : : ;N , and =h.z/ � 0 if z 2 
c;j for all j D 1; : : : ;N C 1. We then write
h 2 SC.
1/.

Note that the zero sign conditions (=h.z/D 0) on 
m;j are satisfied automatically through the construc-
tion of h.z/ by (14) in the case of h solving an RHP (49). We only need to check preservation of negative
signs of =h on both sides of the main arcs 
m;j and the nonnegativity of =h on the complementary arcs

c;j , especially on the semi-infinite arcs .1; ˛4NC1� and Œ˛4N ;1/.

Remark 5.4. Introducing the sign conditions in Definition 5.3 requires us to revisit Lemma 2.2, since the
main arcs 
m;j are now rigid (nondeformable like the complementary arcs) due to the requirement for =h

to be negative on both sides of 
 . Ę.�/; �/. It has been established [Kamvissis et al. 2003, Lemma 5.2.1;
Tovbis et al. 2007, Theorem 3.2] that all the contours persist under deformations of parameters x and t

provided all sign inequalities are satisfied. This can be adapted to the deformations of �. The danger of a
main arc splitting into several disconnected branches as we perturb � is averted by the fact that in the
limit as �! �0, nonlinear local behavior would be produced near the main arcs, while the condition
h0=R¤ 0 on 
 implies linear local behavior. Thus Lemma 2.2 is valid even with the added new sign
conditions. Thus we only need to show that the sign conditions are satisfied.

Theorem 5.5. Let f be defined by (21). Let EK. Ę0; �0/ D E0, 
1
0
2 �. Ę0; �0/ and assume h solves

RHP.
1
0
; Ę0; �0; f / with h0.z; �0/=R.z; �0/¤ 0 for all z 2 
1

0
, and h 2 SC.
1

0
/.

Then there is an open neighborhood of�0 where for all�, there is an h which solves RHP.
1; Ę; �; f /
with 
1 D 
1. Ę; �/, EK. Ę; �/D E0, h0.z; �/=R.z; �/¤ 0 for all z 2 
1, and h 2 SC.
1/.

Proof. Take any � in a small enough open neighborhood of �0. There are two things we need to prove in
addition to Lemma 5.2: h0.z; �/=R.z; Ę.�//¤ 0 on 
1 and the sign conditions of =h on 
1.

Assume h0.z; �0/=R.z; Ę.�0//¤ 0 on 
1
0

. Then there is a constant C > 0 such thatˇ̌̌̌
h0.z; �0/

R.z; Ę.�0//

ˇ̌̌̌
> C

for all z 2 
0. Consider the solution h.z; �/ of RHP.
1; Ę; �/, where EK. Ę; �/D E0. By Theorem 4.5
and Lemma 5.2, such a function exists and is continuously differentiable in �. Moreover, h0.z; �/ is
continuous in �. Since 
 is a compact set in C and h0.z; �/=R.z; Ę.�// is continuous in z and �, we
have h0.z; �/=R.z; Ę.�//¤ 0 for all z 2 
 .

To show that h0.z; �/=R.z; Ę.�//¤ 0 holds on 
1, we will now make use of the following properties
of f .z/. On the real axis (in the nontangential limit from the upper half-plane),

=f .zC i0/D lim
ı!0C

f .zC iı/; z 2 R;
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is a piecewise linear function [Tovbis et al. 2004]

=f .zC i0/D

8̂̂<̂
:̂
�

2

�
�

2
� jzj

�
if z <

�

2
;

�

2

�
z�

�

2

�
if z �

�

2
;

(63)

and since g.z/ is real on the real axis, =h.zC i0/D�=f .zC i0/. It is important for us that j=h.z/j can
be bounded away from zero as z!1.

Similarly,

=f 0.zC i0/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�

2
if z � 0;

�
�

2
if 0< z �

�

2
;

�

2
if z >

�

2
;

and since g0.z/ is real on the real axis, =h0.zC i0/D�=f 0.zC i0/.
Recall that 
1 D .1; ˛4NC1�[ 
 [ Œ˛4N ;1/. The semi-infinite arcs .1; ˛4NC1� and Œ˛4N ;1/

can be pushed to the real axis as .�1� i0;��=2� i0/[ Œ��=2� i0; ˛4NC1� and Œ˛4N ;��=2C i0�[

.��=2C i0;�1C i0/, respectively.
On Œ��=2� i0; ˛4NC1� and Œ˛4N ;��=2C i0�, we have h0.z; �/=R.z; Ę.�// ¤ 0 by continuity on

a compact set. Finally, =h0.z; �/ D ��=2 and R.z; Ę/ 2 R for all z 2 .��=2C i0;�1C i0/. So
h0.z; �/=R.z; Ę.�//¤ 0 for all z 2 .��=2C i0;�1C i0/. The interval .�1� i0;��=2� i0/ is done
similarly. So h0.z; �/=R.z; Ę.�//¤ 0 for all z 2 
1, for any � in the neighborhood of �0.

Let h2SC.
1
0
/. Then h2SC.
 .�// by continuity of h in z and �, compactness of 
 , and harmonicity

of =h combined with h0.z; �/=R.z; Ę.�// ¤ 0 for all z 2 
1, which guarantees that the (negative)
signs near the main arcs O
m;j are preserved. On the semi-infinite arcs .�1 � i0;��=2 � i0/ and
.��=2C i0;�1C i0/, =h.z/D .�=2/.jzj��=2/ is positive and Œ˛4N ;��=2� and Œ��=2; ˛4NC1� are
compact. So =h� 0 on 
1.�/, that is, h 2 SC.
1.�//. �

Definition 5.6. We define the (finite) genus G D G.�/ of the asymptotic solution of the semiclassical
one-dimensional focusing NLS with initial condition defined through f .z; �/ as (finite) N 2 N if
there exists an asymptotic solution of the NLS through the solution h.z; �/ of RHP.
1; Ę; �; f / with
Ę D .˛0; ˛1; : : : ; ˛4NC1/, such that h0.z; �/=R.z/¤ 0 for all z 2 
1 and the sign conditions of h on

1 are satisfied: h 2 SC.
1/.

Remark 5.7. This definition of the genus of the asymptotic solution coincides with the genus of the
(limiting) hyperelliptic Riemann surface of R.z/.

Theorem 5.8 (preservation of genus). Suppose that for �0, the genus of the asymptotic solution of the
NLS with initial condition defined through f .z; �0/ in (21) is G.�0/.

Then there is an open neighborhood of�0 such that, for all� in the neighborhood of�0, the genus of the
asymptotic solution of the NLS with initial condition defined through f .z; �/ is preserved: G.�/DG.�0/.
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x = 0.4 , t = 0.5 , mµ ∈ [1, 3]
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
−2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0

Re (α )j

α (µ)4

α (µ)0

α (µ)2

Im
 (α

 ) j

Figure 3. Comparison of � evolution of Ę D .˛0; ˛2; ˛4/ using (82) (solid lines) and (83) (circles).

Proof. Follows from Theorem 5.5 and Definition 5.6. �

Corollary 5.9. Fix x and t > t0, where t0.x/ is the time of the first break in the asymptotic solution. Then
in some open neighborhood of �D 2, the genus of the solution is 2.

Proof. For �D 2 and t > t0.x/ the genus is 2 for all x [Tovbis et al. 2004]. By Theorem 5.8, the genus is
preserved in some open neighborhood of �D 2, including some open interval for � < 2. �

6. Numerics

Figure 3 compares solutions of (50) and (51) in genus 2 (see also (82) and (83) in the Appendix for more
explicit expressions). The solutions are practically indistinguishable in the figure, with absolute difference
less than 10�3 for �2 Œ1; 3�. This interval includes the critical value �D 2, which is the transition between
the (solitonless) pure radiation case (�� 2) and the region with solitons (0< � < 2). Computations are
based on the code we developed for long-time studies of an obstruction in the g-function mechanism
[Belov and Venakides 2015].

Appendix

A1. Genus 0 region. It was shown in [Tovbis et al. 2004] that for all � > 0 and for all x, there is a
breaking curve t D t0.x/ in the .x; t/ plane. The region 0� t < t0.x/ has genus 0 in the sense of genus
of the underlying Riemann surface for the square root

R.z; ˛0/D
p
.z�˛0/.z�˛1/; ˛1 D ˛0;
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γm,0

α0

α1

µ
2z =0 −

γm,0

α0

α1

α4 α2

α5 α3

µ
2z =0 −

Figure 4. The jump contour in the case of genus 0 (left diagram) and genus 2 (right)
with complex-conjugate symmetry in the notation of [Tovbis et al. 2004].

where the branch cut is chosen along the main arc connecting ˛0 and ˛1 D ˛0 through z D �=2, and the
branch is fixed by R.z/!�z as z!C1. The asymptotic solution of the NLS is expressed in terms of
˛0 D ˛0.x; t; �/.

All expressions in the genus 0 region (N D 0) have a simpler form. In particular,

h.z; ˛0; �/D
R.z; ˛0/

2� i

I
O
.�/

f .�; �/ d�

.� � z/R.�; ˛0/
; (64)

K.z; ˛0; �/D
1

2� i

I
O
.�/

f .�; �/ d�

.� � z/R.�; ˛0/
; (65)

and with a slight abuse of notation,

K.˛0; �/ WDK.˛0; ˛0; �/D
1

2� i

I
O
.�/

f .�; �/d�

.� �˛0/R.�; ˛0/
; (66)

@K

@�
.˛0; �/ WD

@K

@�
.˛0; ˛0; �/D

1

2� i

I
O
.�/

f�.�; �/d�

.� �˛0/R.�; ˛0/
: (67)

Theorem A.1 (�-perturbation in genus 0). Consider a finite-length non-self-intersecting oriented arc

0 D Œ˛0.�0/; ˛0.�0/� 2 �. Ę; �0/ in the complex plane with the distinct end points (˛0 ¤ ˛0) and
depending on a parameter � (see Figure 4). Assume ˛0 and �0 satisfy the equation

K.˛0; �0/D 0;

and f is given by (21). Let 
 D 
 . Ę; �/ be the contour of an RHP which seeks a function h.z/ which
satisfies the conditions �

hC.z/C h�.z/D 0 on 
;
h.z/Cf .z/ is analytic in C n 
:

(68)

Assume that there is a function h.z; ˛0; �0/ which satisfies (68) and suppose
h0.z; ˛0; �0/

R.z; ˛0/
¤ 0 for all z

on 
0.
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Then there is a contour 
 . Ę; �/ 2 �. Ę; �/ such that the solution ˛0.�/ of the equation

K .˛0; �/D 0 (69)

and h.z; ˛.�/; �/ which solves (68) are uniquely defined and continuously differentiable in � in some
open neighborhood of �0.

Moreover,

@˛0

@�
.�/D�

2� i
@K

@�
.˛0.�/; �/I

O
.�/

f 0.�; �/

.��˛0.�//R.�; ˛0.�//
d�

(70)

and

@h

@�
.z; �/D

R.z; ˛0.�//

2� i

I
O
.�/

@f

@�
.�; �/

.� � z/R.�; ˛0.�//
d�; (71)

where z is inside of O
 .

A2. Genus 2 region. We now consider the genus 2 region (N D 2), with underlying Riemann surface
for the square root

R.z/D
p
.z�˛0/.z�˛1/.z�˛2/.z�˛3/.z�˛4/.z�˛5/;

where the branch cut is chosen along the main arcs connecting ˛0 and ˛1, ˛2 and ˛4, ˛5 and ˛3; and the
branch is fixed by R.z/!�z3 as z!C1.

Taking into account the complex-conjugate symmetry

˛1 D ˛0; ˛3 D ˛2; ˛5 D ˛4; (72)

we have

h.z/D
R.z/

2� i

�I
O


f .�/

.� � z/R.�/
d�C

I
O
m

W

.� � z/R.�/
d�C

I
O
c

�

.� � z/R.�/
d�

�
; (73)

where z is inside of O
 , O
m is a loop around the main arc 
m D Œ˛2; ˛4�[ Œ˛5; ˛3�, and O
c is a loop around
the complementary arc 
c D Œ˛0; ˛2�[ Œ˛3; ˛1� (see Figure 4). The real constants W and � solve the
system 8̂̂̂<̂

ˆ̂:
I
O


f .�/

R.�/
d�C�

I
O
c

d�

R.�/
CW

I
O
m

d�

R.�/
D 0;

I
O


�f .�/

R.�/
d�C�

I
O
c

�

R.�/
d�CW

I
O
m

�

R.�/
d� D 0:

(74)
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Other useful expressions written explicitly in the genus 2 region are

K.z/D
1

2� i

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

I
O
m

d�

R.�/

I
O
m

�d�

R.�/

I
O
m

d�

.��z/R.�/I
O
c

d�

R.�/

I
O
c

�d�

R.�/

I
O
c

d�

.��z/R.�/I
O


f .�/ d�

R.�/

I
O


�f .�/ d�

R.�/

I
O


f .�/ d�

.��z/R.�/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(75)

and

K.z/D
1

2� i

�I
O


f .�/

.� � z/R.�/
d�C

I
O
m

W

.� � z/R.�/
d�C

I
O
c

�

.� � z/R.�/
d�

�
; (76)

where z is inside of O
 ; and

@K

@�
. j̨ ; Ę; �/D

1

2� i

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

I
O
m

d�

R.�/

I
O
m

� d�

R.�/

I
O
m

d�

.�� j̨ /R.�/I
O
c

d�

R.�/

I
O
c

� d�

R.�/

I
O
c

d�

.�� j̨ /R.�/I
O


f�.�/ d�

R.�/

I
O


�f�.�/ d�

R.�/

I
O


f�.�/ d�

.�� j̨ /R.�/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

(77)

or

@K

@�
. j̨ ; Ę; �/D

1

2� i

�I
O


f�.�/

.� � j̨ /R.�/
d�C

I
O
m

W�

.� � j̨ /R.�/
d�C

I
O
c

��

.� � j̨ /R.�/
d�

�
; (78)

where f� is given by (29). The real constants W� and �� solve the system8̂̂̂<̂
ˆ̂:
I
O


f�.�/

R.�/
d�C��

I
O
c

d�

R.�/
CW�

I
O
m

d�

R.�/
D 0;I

O


�f�.�/

R.�/
d�C��

I
O
c

�

R.�/
d�CW�

I
O
m

�

R.�/
d� D 0:

(79)

Also,

D D

ˇ̌̌̌
ˇ̌̌
I
O
m

d�

R.�/

I
O
m

� d�

R.�/I
O
c

d�

R.�/

I
O
c

� d�

R.�/

ˇ̌̌̌
ˇ̌̌ : (80)

Theorem A.2 (�-perturbation in genus 2). Consider a finite-length non-self-intersecting contour 
0 in
the complex plane consisting of a union of oriented arcs 
0 D 
m[ 
c [ Œ˛0; ˛0� with the distinct arc end
points Ę0 D .˛0; ˛2; ˛4/ in the upper half-plane and depending on a parameter � (see Figure 4). Assume
Ę0 and �0 satisfy a system of equations
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:

K.˛0; Ę0; �0/D 0;

K.˛2; Ę0; �0/D 0;

K.˛4; Ę0; �0/D 0;

and f is given by (21). Let 
 D 
 . Ę; �/ be the contour of an RHP which seeks a function h.z/ which
satisfies the conditions 8̂̂̂̂

<̂
ˆ̂̂:

hC.z/C h�.z/D 0 on 
m;0 D Œ˛0; ˛0�,

hC.z/C h�.z/D 2W on 
m,

hC.z/� h�.z/D 2� on 
c ,

h.z/Cf .z/ is analytic in C n 
 ,

(81)

where �D�. Ę; �/ and W DW . Ę; �/ are real constants whose numerical values will be determined
from the RH conditions. Assume that there is a function h.z; Ę0; �0/ which satisfies (81) and suppose
h0.z; Ę0; �0/=R.z; Ę0/¤ 0 for all z on 
0.

Then there is a contour 
 . Ę; �/ 2 �. Ę; �/ such that the solution Ę D Ę.�/ of the system8̂<̂
:

K.˛0; Ę; �/D 0;

K.˛2; Ę; �/D 0;

K.˛4; Ę; �/D 0

(82)

and h.z; Ę.�/; �/ which solves (81) are uniquely defined and continuously differentiable in � in some
neighborhood of �0.

Moreover,

@˛0

@�
.x; t; �/D�

2� i
@K

@�
.˛0; Ę; �/

D

I
O
.�/

f 0.�/

.��˛0/R.�/
d�

;

@˛2

@�
.x; t; �/D�

2� i
@K

@�
.˛2; Ę; �/

D

I
O
.�/

f 0.�/

.��˛2/R.�/
d�

; (83)

@˛4

@�
.x; t; �/D�

2� i
@K

@�
.˛4; Ę; �/

D

I
O
.�/

f 0.�/

.��˛4/R.�/
d�

;

@h

@�
.z;x; t; �/D

R.z/

2� i

I
O
.�/

@f

@�
.�/

.� � z/R.�/
d�; (84)

where z is inside of O
 .
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Furthermore,�.�/D�. Ę.�/; �/ and W .�/DW . Ę.�/; �/ are defined and continuously differentiable
in � in some open neighborhood of �0, and

@�

@�
.x; t; �/D�

1

D

ˇ̌̌̌
ˇ̌̌
I
O
m

d�

R.�/

I
O
m

� d�

R.�/I
O


f�.�/

R.�/
d�

I
O


�f�.�/

R.�/
d�

ˇ̌̌̌
ˇ̌̌ ; (85)

@W

@�
.x; t; �/D�

1

D

ˇ̌̌̌
ˇ̌̌
I
O


f�.�/

R.�/
d�

I
O


�f�.�/

R.�/
d�I

O
c

d�

R.�/

I
O
c

� d�

R.�/

ˇ̌̌̌
ˇ̌̌ ; (86)

where j̨ D j̨ .x; t; �/, R.�/ D R.�; Ę.x; t; �//, f .�/ D f .�;x; t; �/, f�.�/ D
@f

@�
.�;x; t; �/, and

D DD. Ę.x; t; �//.
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