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Short time existence for a surface diffusion evolution equation with curvature regularization is proved in
the context of epitaxially strained three-dimensional films. This is achieved by implementing a minimizing
movement scheme, which is hinged on the H�1-gradient flow structure underpinning the evolution law.
Long-time behavior and Liapunov stability in the case of initial data close to a flat configuration are also
addressed.
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1. Introduction

In this paper we study the morphologic evolution of anisotropic, epitaxially strained films, driven by
stress and surface mass transport in three dimensions. This can be viewed as the evolutionary counterpart
of the static theory developed in [Bonnetier and Chambolle 2002; Fonseca et al. 2007; 2011; Fusco and
Morini 2012; Bonacini 2013a; Capriani et al. 2013] in the two-dimensional case and in [Bonacini 2013b]
in three dimensions. The two-dimensional formulation of the same evolution problem has been addressed
in [Fonseca et al. 2012] (see also [Piovano 2014] for the case of motion by evaporation–condensation).

The physical setting behind the evolution equation is the following. The free interface is allowed to
evolve via surface diffusion under the influence of a chemical potential �. Assuming that mass transport
in the bulk occurs at a much faster time scale, and thus can be neglected (see [Mullins 1963]), we have,
according to the Einstein–Nernst relation, that the evolution is governed by the volume-preserving equation

V D C�
�
�; (1-1)

where C > 0, V denotes the normal velocity of the evolving interface � ,�
�

stands for the tangential lapla-
cian, and the chemical potential � is given by the first variation of the underlying free energy functional.
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In our case, the free energy functional associated with the physical system is given byZ
�h

W .E.u// dzC

Z
�h

 .�/ dH2; (1-2)

where h is the function whose graph �h describes the evolving profile of the film, �h is the region
occupied by the film, u is displacement of the material, which is assumed to be in (quasistatic) elastic
equilibrium at each time, E.u/ is the symmetric part of Du, W is a positive definite quadratic form,
and H2 denotes the two-dimensional Hausdorff measure. Finally,  is an anisotropic surface energy
density, evaluated at the unit normal � to �h. The first variation of (1-2) can be written as the sum of three
contributions: a constant Lagrange multiplier related to mass conservation, the (anisotropic) curvature of
the surface, and the elastic energy density evaluated at the displacement of the solid on the profile of the
film. Hence, (1-1) takes the form (assuming C D 1)

V D��
�
Div�.D .�//CW .E.u//

�
; (1-3)

where Div� stands for the tangential divergence along �h. � ;t/, and u. � ; t/ is the elastic equilibrium in
�h. � ;t/, i.e., the minimizer of the elastic energy under the prescribed periodicity and boundary conditions
(see (1-6) below).

In the physically relevant case of a highly anisotropic nonconvex interfacial energy, there may exist
certain directions � at which the ellipticity condition

D2 .�/Œ�; � � > 0 for all � ? �; � ¤ 0

fails; see for instance [Di Carlo et al. 1992; Siegel et al. 2004]. Correspondingly, the above evolution
equation becomes backward parabolic and thus ill-posed. To overcome this ill-posedness, and following
the work of Herring [1951], an additive curvature regularization to surface energy has been proposed; see
[Di Carlo et al. 1992; Gurtin and Jabbour 2002]. Here we consider the regularized surface energyZ

�h

�
 .�/C

"

p
jH jp

�
dH2;

where p > 2, H stands for the sum �1C �2 of the principal curvatures of �h, and " is a (small) positive
constant. The restriction on the range of exponents p > 2 is of technical nature and it is motivated by the
fact that, in two dimensions, the Sobolev space W 2;p embeds into C 1;.p�2/=p if p > 2. The extension of
our analysis to the case p D 2 seems to require different ideas.

The regularized free energy functional then readsZ
�h

W .E.u// dzC

Z
�h

�
 .�/C

"

p
jH jp

�
dH2; (1-4)

and (1-1) becomes

V D��

h
Div�.D .�//CW .E.u//� "

�
��.jH j

p�2H /� jH jp�2H
�
�2

1 C �
2
2 �

1

p
H 2

��i
: (1-5)

Sixth-order evolution equations of this type have already been considered in [Gurtin and Jabbour 2002]
for the case without elasticity. Its two-dimensional version was studied numerically in [Siegel et al. 2004]
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for the evolution of voids in elastically stressed materials, and analytically in [Fonseca et al. 2012] in the
context of evolving one-dimensional graphs. We also refer to [Rätz et al. 2006; Burger et al. 2007] and
references therein for some numerical results in the three-dimensional case. However, to the best of our
knowledge no analytical results were available in the literature prior to ours.

As in [Fonseca et al. 2012], in this paper we focus on evolving graphs, and to be precise on the case where
(1-5) models the evolution toward equilibrium of epitaxially strained elastic films deposited over a rigid
substrate. Given Q WD .0; b/2, b > 0, we look for a spatially Q-periodic solution to the Cauchy problem8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1

J

@h

@t
D��

�
Div�.D .�//CW .E.u//� "

�
��.jH j

p�2H /� jH jp�2H
�
�2

1
C �2

2
�

1
p

H 2
���

in R2 � .0;T0/;

Div CE.u/D 0 in �h;

CE.u/Œ��D 0 on �h, u.x; 0; t/D .e1
0
x1; e

2
0
x2; 0/;

h. � ; t/ and Du. � ; t/ are Q-periodic,
h. � ; 0/D h0;

(1-6)
where, we recall, h W R2 � Œ0;T0� ! .0;C1/ denotes the function describing the two-dimensional
profile �h of the film;

J WD
p

1CjDxhj2I

W .A/ WD 1
2

CA W A for all A 2 M2�2
sym with C a positive definite fourth-order tensor; e0 WD .e1

0
; e2

0
/,

with e1
0

, e2
0
> 0, is a vector that embodies the mismatch between the crystalline lattices of the film and

the substrate; and h0 2H 2
loc.R

2/ is a Q-periodic function. Note that, in (1-6), the sixth-order (geometric)
parabolic equation for the film profile is coupled with the elliptic system of elastic equilibrium equations
in the bulk.

It was observed by Cahn and Taylor [1994] that the surface diffusion equation can be regarded as
a gradient flow of the free energy functional with respect to a suitable H�1-Riemannian structure. To
formally illustrate this point, consider the manifold of subsets of Q� .0;C1/ of fixed volume d , which
are subgraphs of a Q-periodic function, that is,

M WD

�
�h W h Q-periodic, h 2H 2.Q/;

Z
Q

h dx D d

�
;

where �h WD f.x;y/ W x 2Q; 0< y < h.x/g. The tangent space T�h
M at an element �h is described by

the kinematically admissible normal velocities:

T�h
M WD

�
V W �h! R W V is Q-periodic, V 2L2.�hIH

2/;

Z
�h

V dH2
D 0

�
;

where �h is the graph of h over the periodicity cell Q; it is endowed with the H�1 metric tensor

g�h
.V1;V2/ WD

Z
�h

r�h
w1r�h

w2 dH2 for all V1; V2 2 T�h
M;
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where wi , i D 1; 2, is the solution to 8<:
���h

wi D Vi on �h;

wi is Q-periodic,R
�h
wi dH2 D 0:

Consider now the reduced free energy functional

G.�h/ WD

Z
�h

W .E.uh// dzC

Z
�h

�
 .�/C

"

p
jH jp

�
dH2;

where uh is the minimizer of the elastic energy in �h under the boundary and periodicity conditions
described above. Then, the evolution described by (1-6) is such that at each time the normal velocity V

of the evolving profile h.t/ is the element of the tangent space T�h.t/
M corresponding to the steepest

descent of G, i.e., (1-6) may be formally rewritten as

g�h.t/
.V; zV /D�@G.�h.t//Œ zV � for all zV 2 T�h.t/

M;

where @G.h.t//Œ zV � stands for the first variation of G at �h.t/ in the direction zV .
In order to solve (1-6), we take advantage of this gradient flow structure and we implement a minimizing

movements scheme (see [Ambrosio 1995]), which consists in constructing discrete time evolutions by
solving iteratively suitable minimum incremental problems.

It is interesting to observe that the gradient flow of the free energy functional G with respect to an
L2-Riemannian structure (instead of H�1) leads to a fourth-order evolution equation, which describes
motion by evaporation–condensation (see [Cahn and Taylor 1994; Gurtin and Jabbour 2002] and [Piovano
2014], where the one-dimensional case was studied analytically).

This paper is organized as follows. In Section 2 we set up the problem and introduce the discrete
time evolutions. In Section 3 we prove our main local-in-time existence result for (1-6), by show-
ing that (up to subsequences) the discrete time evolutions converge to a weak solution of (1-6) in
Œ0;T0� for some T0 > 0 (see Theorem 3.16). By a Q-periodic weak solution we mean a function
h 2H 1.0;T0IH

�1
# .Q//\L1.0;T0IH

2
# .Q// such that .h;uh/ satisfies the system (1-6) in the distribu-

tional sense (see Definition 3.1). To the best of our knowledge, Theorem 3.16 is the first (short time)
existence result for a surface diffusion-type geometric evolution equation in the presence of elasticity in
three dimensions. Moreover, the use of minimizing movements also appears to be new in the context
of higher-order geometric flows (the only other paper we are aware of in which a similar approach is
adopted, but in two dimensions, is [Fonseca et al. 2012]).

Compared to mean curvature flows, where the minimizing movements algorithm is nowadays classical
after the pioneering work of [Almgren et al. 1993] (see also [Chambolle 2004; Bellettini et al. 2006;
Caselles and Chambolle 2006]), a major technical difference lies in the fact that no comparison principle is
available in this higher-order framework. The convergence analysis is instead based on subtle interpolation
and regularity estimates. It is worth mentioning that, for geometric surface diffusion equation without
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elasticity and without curvature regularization,

V D��H

(corresponding to the case W D 0,  D 1, and "D 0), short time existence of a smooth solution was
proved in [Escher et al. 1998] using semigroup techniques. See also [Bellettini et al. 2007; Mantegazza
2002]. It is still an open question whether the solution constructed via the minimizing movement scheme
is unique, and thus independent of the subsequence.

In Section 4 we address the Liapunov stability of the flat configuration, corresponding to a horizontal
(flat) profile. Roughly speaking, we show that if the surface energy density is strictly convex and
the second variation of the functional (1-2) at a given flat configuration is positive definite, then such a
configuration is asymptotically stable, that is, for all initial data h0 sufficiently close to it the corresponding
evolutions constructed via minimizing movements exist for all times, and converge asymptotically to
the flat configuration as t !C1 (see Theorem 4.8). We remark that Theorem 4.8 may be regarded as
an evolutionary counterpart of the static stability analysis of the flat configuration performed in [Fusco
and Morini 2012; Bonacini 2013a; 2013b]. In Theorem 4.7 we address also the case of a nonconvex
anisotropy, and we show that, if the corresponding Wulff shape contains a horizontal facet, then the
Asaro–Grinfeld–Tiller instability does not occur and the flat configuration is always Liapunov stable (see
[Bonacini 2013a; 2013b] for the corresponding result in the static case). Both results are completely
new even in the two-dimensional case, to which they obviously apply (see Section 4C). We remark that
our treatment is purely variational and it is hinged on the fact that (1-4) is a Liapunov functional for the
evolution.

Finally, in the Appendix, we collect several auxiliary results that are used throughout the paper.

2. Setting of the problem

Let Q WD .0; b/2 � R2, b > 0, p > 2, and let h0 2W
2;p

# .Q/ be a positive function, describing the initial
profile of the film. We recall that W

2;p
# .Q/ stands for the subspace of W 2;p.Q/ of all functions whose

Q-periodic extension belong to W
2;p

loc .R2/. Given h 2W
2;p

# .Q/, with h� 0, we set

�h WD f.x;y/ 2Q�R W 0< y < h.x/g

and we denote by �h the graph of h over Q. We will identify a function h 2W
2;p

# .Q/ with its periodic
extension to R2, and denote by �#

h
and �#

h
the open subgraph and the graph of this extension, respectively.

Note that �#
h

is the periodic extension of �h. Set

LD#.�hIR
3/

WD
˚
u 2L2

loc.�
#
hIR

3/ W u.x;y/D u.xCbk;y/ for .x;y/ 2�#
h and k 2 Z2; E.u/j�h

2L2.�hIR
3/
	
;

where E.u/ WD 1
2
.DuCDT u/, with Du the distributional gradient of u and DT u its transpose, is

the strain of the displacement u. We prescribe the Dirichlet boundary condition u.x; 0/ D w0.x; 0/

for x 2Q, with w0 2H 1.U �.0;C1// for every bounded open subset U �R2 and such that Dw0. � ;y/

is Q-periodic for a.e. y > 0. A typical choice is given by w0.x;y/ WD .e
1
0
x1; e

2
0
x2; 0/, where the vector
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e0 WD .e1
0
; e2

0
/, with e1

0
, e2

0
> 0, embodies the mismatch between the crystalline lattices of film and

substrate. Define

X WD f.h;u/ Wh2W
2;p

# .Q/; h� 0; u W�#
h!R3; u�w0 2LD#.�hIR

3/; u.x; 0/Dw0 for all x 2R2
g:

The elastic energy density W WM3�3
sym ! Œ0;C1/ takes the form

W .A/ WD 1
2

CA WA;

with C a positive definite fourth-order tensor, so that W .A/ > 0 for all A 2 M3�3
sym n f0g. Given

h 2W
2;p

# .Q/, h� 0, we denote by uh the corresponding elastic equilibrium in �h, i.e.,

uh WD argmin
�Z

�h

W .E.u// dz W u 2 w0CLD#.�hIR
3/; u.x; 0/D w0.x; 0/

�
:

Let  WR3! Œ0;C1/ be a positively one-homogeneous function of class C 2 away from the origin. Note
that, in particular,

1

c
j�j �  .�/� cj�j for all � 2 R3 (2-1)

for some c > 0.
We now introduce the energy functional

F.h;u/ WD

Z
�h

W .E.u// dzC

Z
�h

�
 .�/C

"

p
jH jp

�
dH2; (2-2)

defined for all .h;u/ 2X , where � is the outer unit normal to �h, H D Div�h
� denotes the sum of the

principal curvatures of �h, and " is a positive constant. In the sequel we will often use the fact that

�Div
�

Dh
p

1CjDhj2

�
DH in Q; (2-3)

which, in turn, implies Z
Q

H dx D 0: (2-4)

Remark 2.1 (notation). In the sequel we denote by z a generic point in Q�R and we write z D .x;y/

with x 2Q and y 2 R. Moreover, given g W �h! R, where �h is the graph of some function h defined
in Q, we denote by the same symbol g the function from Q to R given by x 7! g.x; h.x//. Consistently,
Dg will stand for the gradient of the function from Q to R just defined.

2A. The incremental minimum problem. In this subsection we introduce the incremental minimum
problems that will be used to define the discrete time evolutions. As a standing assumption throughout
this paper, we start from an initial configuration .h0;u0/ 2X such that

h0 2W
2;p

# .Q/; h0 > 0; (2-5)

and u0 minimizes the elastic energy in �h0
among all u with .h0;u/ 2X .
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Fix a sequence �n& 0 representing the discrete time increments. For i 2 N we define inductively
.hi;n;ui;n/ as a solution of the minimum problem

min
�

F.h;u/C
1

2�n

Z
�i�1;n

jD�i�1;n
vhj

2 dH2
W .h;u/ 2X; kDhkL1.Q/ �ƒ0;

Z
Q

h dx D

Z
Q

h0 dx

�
;

(2-6)
where �i�1;n stands for �hi�1;n

, ƒ0 is a positive constant such that

ƒ0 > kh0kC 1
# .Q/

; (2-7)

and vh is the unique solution in H 1
# .�hi�1;n

/ to the following problem:8̂<̂
:
��i�1;n

vh D
.h�hi�1;n/

p
1CjDhi�1;nj

2
ı�;R

�hi�1;n

vh dH2 D 0;

(2-8)

where � is the canonical projection �.x;y/D x. We note that the formulation of the problem in (2-6)
with the upper bound ƒ0 is usually adopted in the literature in order to ensure existence of solutions of
the minimal surface equation (see Chapter 12 in [Giusti 1984]).

For x 2Q and .i � 1/�n � t � i�n, i 2 N, we define the linear interpolation

hn.x; t/ WD hi�1;n.x/C
1

�n
.t � .i � 1/�n/.hi;n.x/� hi�1;n.x//; (2-9)

and we let un. � ; t/ be the elastic equilibrium corresponding to hn. � ; t/, i.e.,

F.hn. � ; t/;un. � ; t//D min
.hn. � ;t/;u/2X

F.hn. � ; t/;u/ : (2-10)

The remainder of this subsection is devoted to the proof of the existence of a minimizer for the minimum
incremental problem (2-6).

Theorem 2.2. The minimum problem (2-6) admits a solution .hi;n;ui;n/ 2X .

Proof. Let f.hk ;uk/g � X be a minimizing sequence for (2-6). Let Hk denote the sum of principal
curvatures of �hk

. Since the sequence fHkg is bounded in Lp.Q/ and kDhkkL1# .Q/ �ƒ0, it follows
from (2-3) and Lemma A.3 that khkkW 2;p

# .Q/
� C . Then, up to a subsequence (not relabelled), we

may assume that hk * h weakly in W 2;p
# .Q/, and thus strongly in C

1;˛
# .Q/ for some ˛ > 0. As a

consequence, Hk *H in Lp.Q/, where H is the sum of the principal curvatures of �h. In turn, the
Lp-weak convergence of fHkg and the C 1-convergence of fhkg imply by lower semicontinuity thatZ

�h

�
 .�/C

"

p
jH jp

�
dH2

� lim inf
k

Z
�hk

�
 .�/C

"

p
jHk j

p
�

dH2: (2-11)

Moreover, we also have that vhk
! vh strongly in H 1.�i�1;n/, and thus

lim
k

1

2�n

Z
�i�1;n

jD�i�1;n
vhk
j
2 dH2

D
1

2�n

Z
�i�1;n

jD�i�1;n
vhj

2 dH2: (2-12)
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Finally, since supk

R
�hk

jEuk j
2 dz <C1, reasoning as in [Fonseca et al. 2007, Proposition 2.2], from

the uniform convergence of fhkg to h and Korn’s inequality we conclude that there exists u2H 1
loc.�

#
h
IR3/

such that .h;u/ 2X and, up to a subsequence, uk * u weakly in H 1
loc.�

#
h
IR3/. Therefore, we have thatZ

�h

W .E.u// dz � lim inf
k

Z
�hk

W .E.uk// dz;

which, together with (2-11) and (2-12), allows us to conclude that .h;u/ is a minimizer. �

3. Existence of the evolution

In this section we prove short time existence of a solution of the geometric evolution equation

V D��

h
Div�.D .�//CW .E.u//� "

�
��.jH j

p�2H /�
1

p
jH jpH CjH jp�2H jBj2

�i
; (3-1)

where V denotes the outer normal velocity of �h. � ;t/, jBj2 is the sum of the squares of the principal curva-
tures of �h. � ;t/, u. � ; t/ is the elastic equilibrium in �h. � ;t/, and W .E.u// is the trace of W

�
E.u. � ; t//

�
on �h. � ;t/. In the sequel, we denote by H�1

# .Q/ the dual space of H 1
# .Q/. Note that, if f 2 H 1

# .Q/,
then �f can be identified with the element of H�1

# .Q/ defined by

h�f;gi WD �

Z
Q

DfDg dx for all g 2H 1
# .Q/:

Moreover, a function f 2L2.Q/ can be identified with the element of H�1
# .Q/ defined by

hf;gi WD

Z
Q

fg dx for all g 2H 1
# .Q/:

Definition 3.1. Let T0 > 0. We say that h 2 L1.0;T0IW
2;p

# .Q//\H 1.0;T0IH
�1
# .Q// is a solution

of (3-1) in Œ0;T0� if:

(i) Div�.D .�//CW .E.u//�"
�
��.jH j

p�2H /�
1

p
jH jpHCjH jp�2H jBj2

�
2L2.0;T0IH

1
# .Q//,

(ii) for a.e. t 2 .0;T0/, in H�1
# .Q/ we have

1

J

@h

@t
D��

h
Div�.D .�//CW .E.u//� "

�
��.jH j

p�2H /�
1

p
jH jpH CjH jp�2H jBj2

�i
;

where J WD
p

1CjDhj2, u. � ; t/ is the elastic equilibrium in �h. � ;t/, and where we wrote � in place
of �h. � ;t/.

Remark 3.2. An immediate consequence of the above definition is that the evolution is volume-preserving,
that is,

R
Q h.x; t/ dx D

R
Q h0.x/ dx for all t 2 Œ0;T0�. Indeed, for all t1, t2 2 Œ0;T0� and for ' 2H 1

# .Q/,
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we haveZ
Q

Œh.x; t2/� h.x; t1/�' dx

D

Z t2

t1

D@h
@t
. � ; t/; '

E
dt

D

Z t2

t1

D
J��

h
Div�.D .�//CW .E.u//� "

�
��.jH j

p�2H /�
1

p
jH jpH CjH jp�2H jBj2

�i
; '
E
dt

D�

Z t2

t1

Z
�

D�

h
Div�.D .�//CW .E.u//

� "
�
��.jH j

p�2H /�
1

p
jH jpH CjH jp�2H jBj2

�i
D�.' ı�/ dH2 dt:

Choosing ' D 1, we conclude that Z
Q

Œh.x; t2/� h.x; t1/� dx D 0:

Remark 3.3. In the sequel, we consider the following equivalent norm on H�1
# .Q/. Given �2H�1

# .Q/,
we set

k�kH�1
# .Q/ WD sup

�
h�;gi W g 2H 1

# .Q/;

ˇ̌̌̌Z
Q

g dx

ˇ̌̌̌
CkDgkL2.Q/ � 1

�
:

Note that, if f 2L2.Q/ with
R

Q f dx D 0, we have

kf kH�1
# .Q/ D kDwkL2.Q/;

where w 2H 1
# .Q/ is the unique periodic solution to the problem�

�w D f in Q;R
Qw dx D 0:

(3-2)

To see this, first observe that, since
R

Q f dx D 0, we have

kf kH�1
# .Q/ D sup

�Z
Q

fg dx W g 2H 1
# .Q/;

Z
Q

g dx D 0 and kDgkL2.Q/ � 1

�
:

Thus, since by (3-2) Z
Q

fg dx D�

Z
Q

DwDg dx � kDwkL2.Q/;

we have kf kH�1
# .Q/ � kDwkL2.Q/. The opposite inequality follows by taking g D�w=kDwkL2.Q/.
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Theorem 3.4. For all n, i 2 N, we haveZ C1
0





@hn

@t





2

H�1
# .Q/

dt � CF.h0;u0/; (3-3)

F.hi;n;ui;n/� F.hi�1;n;ui�1;n/� F.h0;u0/; (3-4)

and sup
t2Œ0;C1/

khn. � ; t/kW 2;p
# .Q/

<C1 (3-5)

for some C D C.ƒ0/ > 0. Moreover, up to a subsequence,

hn! h in C 0;˛.Œ0;T �IL2.Q// for all ˛ 2
�
0; 1

4

�
; hn * h weakly in H 1.0;T IH�1

# .Q// (3-6)

for all T > 0 and for some function h such that h. � ; t/ 2W
2;p

# .Q/ for every t 2 Œ0;C1/ and

F.h. � ; t/;uh. � ;t//� F.h0;u0/ for all t 2 Œ0;C1/: (3-7)

Proof. By the minimality of .hi;n;ui;n/ (see (2-6)) we have that

F.hi;n;ui;n/C
1

2�n

Z
�i�1;n

jD�i�1;n
vhi;n
j
2 dH2

� F.hi�1;n;ui�1;n/ (3-8)

for all i 2 N, which yields in particular (3-4). Hence,

1

2�n

Z
�i�1;n

jD�i�1;n
vhi;n
j
2 dH2

� F.hi�1;n;ui�1;n/�F.hi;n;ui;n/

and, summing over i , we obtain

1X
iD1

1

2�n

Z
�i�1;n

jD�i�1;n
vhi;n
j
2 dH2

� F.h0;u0/: (3-9)

Let whi;n
2H 1

# .Q/ denote the unique periodic solution to the problem�
�whi;n

D hi;n� hi�1;n in Q;R
Qwhi;n

dx D 0:

Note thatZ
Q

jDwhi;n
j
2 dx D

Z
Q

�whi;n
whi;n

dx D

Z
�i�1;n

hi;n� hi�1;n
p

1CjDhi�1;nj
2
ı�whi;n

dH2

D

Z
�i�1;n

��i�1;n
vhi;n

whi;n
dH2

D�

Z
�i�1;n

D�i�1;n
vhi;n

D�i�1;n
whi;n

dH2

� kD�i�1;n
vhi;n
kL2.�i�1;n/

kD�i�1;n
whi;n

kL2.�i�1;n/

� C.ƒ0/kD�i�1;n
vhi;n
kL2.�i�1;n/

kDwhi;n
kL2.Q/:

Combining this inequality with (3-9) and recalling (2-9) and Remark 3.3, we get (3-3).
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Note from (3-4) it follows that

sup
i;n

Z
�i;n

jH jp dH2 <C1:

Hence, (3-5) follows immediately by Lemma A.3, taking into account that kDhi;nkL1.Q/ �ƒ0. Using a
diagonalizing argument, it can be shown that there exist h such that hn*h weakly in H 1.0;T IH�1

# .Q//

for all T > 0. Note also that, by (3-3) and using Hölder’s inequality, we have for t2 > t1 that

khn. � ; t2/� hn. � ; t1/kH�1.Q/ �

Z t2

t1





@hn. � ; t/

@t






H�1.Q/

dt � C.t2� t1/
1
2 : (3-10)

Therefore, applying Theorem A.4 to the solution w 2H 1
# .Q/ of the problem�

�w D hn. � ; t2/� hn. � ; t1/ in Q;R
Qw dx D 0;

we get

khn. � ; t2/� hn. � ; t1/kL2.Q/ D k�wkL2.Q/ � CkD3wk
1
2

L2.Q/
kDwk

1
2

L2.Q/

� CkDh. � ; t2/�Dh. � ; t1/k
1
2

L2.Q/
kh. � ; t2/� h. � ; t1/k

1
2

H�1.Q/

� C.ƒ0/.t2� t1/
1
4 ; (3-11)

where the last inequality follows from (3-10). By the Ascoli–Arzelà theorem (see, e.g., [Ambrosio
et al. 2008, Proposition 3.3.1]), we get (3-6). Finally, inequality (3-7) follows from (3-4) by lower
semicontinuity, using (3-6) and (3-5). �

In what follows, fhng and h are the subsequence and the function found in Theorem 3.4, respectively.
The next result shows that the convergence of fhng to h can be significantly improved for short time.

Theorem 3.5. There exist T0 > 0 and C > 0 depending only .h0;u0/ such that:

(i) hn! h in C 0;ˇ.Œ0;T0�IC
1;˛
# .Q//

for every ˛ 2 .0;p� 2=p/ and ˇ 2 .0; .p� 2�˛p/.pC 2/=.16p2//;

(ii) sup
t2Œ0;T0�

kDun. � ; t/k
C

0;
p�2

p .�hn. � ;t//
� C I

(iii) E.un. � ; hn//!E.u. � ; h// in C 0;ˇ.Œ0;T0�IC
0;˛
# .Q//

for every ˛ 2 .0; .p� 2/=p/ and 0� ˇ < .p� 2�˛p/.pC 2/=.16p2/, where u. � ; t/ is the elastic
equilibrium in �h. � ;t/.

Moreover, h. � ; t/! h0 in C
1;˛
# .Q/ as t ! 0C, hn, h� C0 > 0 for some positive constant C0, and

sup
t2Œ0;T0�

kDhn. � ; t/kL1.Q/ <ƒ0 (3-12)

for all n.
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Proof. To prove assertion (i), we start by observing that, by Theorem A.6, (3-5), Theorem A.6 again, and
(3-11) we have

kDhn. � ; t2/�Dhn. � ; t1/kL1 � CkD2hn. � ; t2/�D2hn. � ; t1/k
pC2
2p

Lp khn. � ; t2/� hn. � ; t1/k
p�2
2p

Lp

� Ckhn. � ; t2/� hn. � ; t1/k
p�2
2p

Lp

� C
�
kD2hn. � ; t2/�D2hn. � ; t1/k

p�2
2p

L2 khn. � ; t2/� hn. � ; t1/k
pC2
2p

L2

�p�2
2p

� C jt2� t1j
p2�4

16p2 (3-13)

for all t1, t2 2 Œ0;T0�. Notice that from (3-5) we have

sup
n;t2Œ0;T0�

khn. � ; t/k
C

1;
p�2

p
# .Q/

<C1: (3-14)

Take ˛ 2 .0; .p� 2/=p/ and observe that

ŒDhn. � ; t2/�Dhn. � ; t1/�˛ � ŒDhn. � ; t2/�Dhn. � ; t1/�
˛p

p�2

p�2
p

�
oscŒ0;b�.Dhn. � ; t2/�Dhn. � ; t1//

�p�2�˛p
p�2 ;

where Œ � �ˇ denotes the ˇ-Hölder seminorm. From this inequality, (3-13), (3-14), and the Ascoli–Arzelà
theorem [Ambrosio et al. 2008, Proposition 3.3.1], assertion (i) follows.

Standard elliptic estimates ensure that, if hn. � ; t/ 2 C
1;˛
# .Q/ for some ˛ 2 .0; 1/, then Dun. � ; t/ can

be estimated in C 0;˛.�hn. � ;t// with a constant depending only on the C 1;˛-norm of hn. � ; t/; see for
instance [Fusco and Morini 2012, Proposition 8.9], where this property is proved in two dimensions but an
entirely similar argument works in all dimensions. Hence, assertion (ii) follows from (3-14). Assertion (iii)
is an immediate consequence of (i) and Lemma A.1. Finally, (3-12) follows from (2-7) and (i). �

Remark 3.6. Note that in the previous theorem we can take

T0 WD supft > 0 W kDhn. � ; s/kL1.Q/ <ƒ0 for all s 2 Œ0; t/g:

In Theorem 3.16 we will show that h is a solution to (3-1) in Œ0;T0/, in the sense of Definition 3.1.

We begin with some auxiliary results.

Proposition 3.7. Let h2W
3;q

# .Q/ for some q> 2 and let � be its graph. Letˆ WQ�R�.�1; 1/!Q�R

be the flow
@ˆ

@t
DX.ˆ/; ˆ. � ; 0/D Id;

where X is a smooth vector field Q-periodic in the first two variables. Set �t WDˆ. � ; t/.�/, denote by �t

the normal to �t , let Ht be the sum of principal curvatures of �t , and let jBt j
2 be the sum of squares of
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the principal curvatures of �t . Then

d

dt

1

p

Z
�t

jHt j
p dH2

D

Z
�t

D�t
.jHt j

p�2Ht /D�t
.X � �t / dH2

�

Z
�t

jHt j
p�2Ht

�
jBt j

2
�

1

p
H 2

t

�
.X � �t / dH2: (3-15)

Proof. Set ˆt . � / WD ˆ. � ; t/. We can extend �t to a tubular neighborhood of �t as the gradient of the
signed distance from �t . We have

d

dt

1

p

Z
�t

jHt j
p dH2

D
d

ds

�
1

p

Z
�tCs

jHtCsj
p dH2

�ˇ̌̌̌
sD0

D
d

ds

�
1

p

Z
�t

jHtCs ıˆsj
pJ2ˆs dH2

�ˇ̌̌̌
sD0

;

where J2 denotes the two-dimensional Jacobian of ˆs on �t . Then we have

d

dt

1

p

Z
�t

jHt j
p dH2

D
1

p

Z
�t

jHt j
p Div�t

X dH2
C

Z
�t

jHt j
p�2Ht

d

ds
.HtCs ıˆs/

ˇ̌̌
sD0

dH2:

Concerning the last integral, we observe that

d

ds
.HtCs ıˆs/

ˇ̌̌
sD0
D

d

ds
.Div�tCs

�tCs/
ˇ̌̌
sD0
CDHt �X:

Set

P�t WD
d

ds
�tCs

ˇ̌̌
sD0

:

By differentiating with respect to s the identity D�tCs Œ�tCs �D 0, we get

D P�t Œ�t �CD�t Œ P�t �D 0:

Multiplying this identity by �t and recalling that D� is a symmetric matrix, we get

D P�t Œ�t � � �t D�D�t Œ�t � � P�t D 0:

This implies that Div�t
P�t D Div P�t , and so

d

ds
.Div�tCs

�tCs/
ˇ̌̌
sD0
D Div�t

P�t :

In turn — see [Cagnetti et al. 2008, Lemma 3.8(f)] —

P�t D�.D�t
X /T Œ�t ��D�t

�t ŒX �D�D�t
.X � �t /:
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Collecting the above identities, integrating by parts, and using the identity @�t
Ht D� trace..D�t /

2/D

�jBt j
2 proved in [Cagnetti et al. 2008, Lemma 3.8(d)], we have

d

dt

1

p

Z
�t

jHt j
p dH2

D
1

p

Z
�t

jHt j
p Div�t

X dH2
C

Z
�t

jHt j
p�2Ht .���t

.X � �t /CDHt �X / dH2

D�

Z
�t

jHt j
p�2HtD�t

Ht �X dH2
C

1

p

Z
�t

jHt j
pHt .X � �t / dH2

C

Z
�t

jHt j
p�2Ht .���t

.X � �t /CDHt �X / dH2

D

Z
�t

jHt j
p�2Ht

�
���t

.X � �t /C @�t
Ht .X � �t /C

1

p
H 2

t .X � �t /
�

dH2

D

Z
�t

D�t
.jHt j

p�2Ht /D�t
.X � �t / dH2

�

Z
�t

jHt j
p�2Ht

n�
jBt j

2
�

1

p
H 2

t

�
.X � �t /

o
dH2: (3-16)

Thus (3-15) follows. �

Proposition 3.7 motivates the following definition:

Definition 3.8. We say that .h;uh/ 2 X is a critical pair for the functional F defined in (2-2) if
jH jp�2H 2H 1.�h/ and

"

Z
�h

D�h
.jH jp�2H /D�h

� dH2
C "

Z
�h

�
1

p
jH jpH � jH jp�2H jBj2

�
� dH2

C

Z
�h

�
Div�h

.D .�//CW .E.uh//
�
� dH2

D 0

for all � 2H 1
# .�h/ with

R
�h
� dH2 D 0. We will also say that h is a critical profile if .h;uh/ is a critical

pair.

Lemma 3.9. Let h 2W
2;p

# .Q/ be such that jH jp�2H 2W
1;q

# .Q/ for some q > 2. Then there exists a
sequence fhj g � W

3;q
# .Q/ such that hj ! h in W

2;p
# .Q/ and jHj j

p�2Hj ! jH j
p�2H in W

1;q
# .Q/,

where Hj stands for the sum of the principal curvatures of �hj .

Proof. We may assume without loss of generality that H ¤ 0, otherwise h would have already the required
regularity (see (2-3)). By the Sobolev embedding theorem it follows that jH jp�2H 2 C

0;1�2=q
# .Q/

and, in turn, using the 1=.p � 1/ Hölder continuity of the function t 7! t1=.p�1/, H 2 C
0;˛
# .Q/ for

˛ WD .q� 2/=.q.p� 1//. Standard Schauder estimates yield h 2 C
2;˛
# .Q/.

For ı > 0 set

Hı WD

8<:
H � ı if H � ı;

H C ı0 if H � �ı0;

0 otherwise,
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where ı0 is chosen in such a way that
R

Q Hı dx D 0. Observe that this choice of ı0 is always possible,
although not necessarily unique. Indeed, by (2-4) and the fact that H ¤ 0, if ı is sufficiently smallZ

fH>ıg

.H � ı/ dxC

Z
fH<0g

H dx < 0 and
Z
fH>ıg

.H � ı/ dx > 0:

By continuity it is then clear that we may find ı0 > 0 such thatZ
fH>ıg

.H � ı/ dxC

Z
fH<�ı0g

.H C ı0/ dx D 0: (3-17)

We now show that, independently of the choice of ı0 satisfying (3-17), ı0! 0 as ı! 0. Indeed, if not,
there would exist a sequence ın! 0 and a corresponding sequence ı0n! ı0 > 0 such that (3-17) holds
with ı and ı0 replaced by ın and ı0n, respectively. But then, passing to the limit as n!1, we would getZ

fH>0g

H dxC

Z
fH<�ı0g

.H C ı0/ dx D 0;

which contradicts (2-4).
Note that Hı!H in C

0;ˇ
# .Q/ for all ˇ<˛ as ı!0. Moreover, we claim that jHıj

p�2Hı!jH j
p�2H

in W
1;q

# .Q/. Indeed, observe that H 2 W 1;q.Aı/ where Aı WD fH > ıg [ fH < �ı0g for all ı > 0.
Hence,

D.jH jp�2H /D

�
.p� 1/jH jp�2DH if H ¤ 0;

0 elsewhere,
and

D.jHıj
p�2Hı/D

�
.p� 1/jHıj

p�2DH in Aı;

0 elsewhere.

The claim follows by observing that D.jHıj
p�2Hı/!D.jH jp�2H / a.e. and that jD.jHıj

p�2Hı/j �

jD.jH jp�2H /j. Note now that H 2W 1;q.Aı/ implies Hı 2W
1;q

# .Q/. In order to conclude the proof it
is enough to show that for ı sufficiently small there exists a unique periodic solution hı to the problem�

�Div.Dhı=
p

1CjDhıj
2/DHıR

Q hı dx D
R

Q h dx:
(3-18)

This follows from Lemma 3.10 below. �

Lemma 3.10. Let h 2 C
2;˛
# .Q/ and let H be the sum of the principal curvatures of �h. Then there exist

� , C > 0 with the following property: for all K 2 C
0;˛
# .Q/ with

R
Q K dx D 0 and kK�Hk

C
0;˛
# .Q/

� � ,

there exists a unique periodic solution k 2 C
2;˛
# .Q/ to�

�Div.Dk=
p

1CjDkj2/DKR
Q k dx D

R
Q h dx;

and

kk � hk
C

2;˛
# .Q/

� CkK�Hk
C

0;˛
# .Q/

: (3-19)

Proof. Without loss of generality we may assume that
R

Q h dx D 0.
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Set X WD fk 2 C
2;˛
# .Q/ W

R
Q k dx D 0g and Y WD fK 2 C

0;˛
# .Q/ W

R
Q K dx D 0g, and consider the

operator T WX ! Y defined by

T .k/ WD �Div
�

Dk
p

1CjDkj2

�
:

By assumption we have that T .h/DH . We now use the inverse function theorem (see, e.g., [Ambrosetti
and Prodi 1993, Chapter 2, Theorem 1.2]) to prove that T is invertible in a C 2;˛-neighborhood of h with
a C 1-inverse. To see this, note that for any k 2X we have that T 0.k/ WX ! Y is the continuous linear
operator defined by

T 0.h/Œ'� WD �Div
�

1
p

1CjDhj2

�
I �

Dh˝Dh

1CjDhj2

�
D'

�
:

It is easily checked that T 0 is a continuous map from X to the space L.X;Y / of linear bounded operators
from X to Y , so that T 2 C 1.X;Y /. Finally, standard existence arguments for elliptic equations imply
that for any k 2X the operator T 0.k/ is invertible. Thus we may apply the inverse function theorem to
conclude that there exist � >0 such that, for all K 2C

0;˛
# .Q/with

R
Q K dxD0 and kK�Hk

C
0;˛
# .Q/

�� ,

there exists a unique periodic function k D T �1K 2C
2;˛
# .Q/. Moreover, the continuity of T �1, together

with standard Schauder estimates, implies that (3-19) holds for � sufficiently small. �

In what follows, Ji;n stands for

Ji;n WD

p
1CjDhi;nj

2;

Hi;n is the sum of the principal curvatures of �i;n, jBi;nj
2 denotes the sum of the squares of the principal

curvatures of �i;n, and zHnWQ� Œ0;T0�! R is the function defined as

zHn.x; t/ WDHi;n.x; hi;n.x/; t/ if t 2 Œ.i � 1/�n; i�n/: (3-20)

Theorem 3.11. Let T0 be as in Theorem 3.5 and let zHn be given in (3-20). Then there exists C > 0 such
that Z T0

0

Z
Q

jD2.j zHnj
p�2 zHn/j

2 dx dt � C (3-21)

for n 2 N.

Proof. Step 1. We claim that jHi;nj
p�2Hi;n 2 W

1;q
# .�i;n/ for all q � 1 and that hi;n 2 C

2;�
# .Q/ for

all � 2 .0; 1=.p� 1//.
We recall that hi;n is the solution to the incremental minimum problem (2-6). We are going to show

that hi;n 2W
2;q

# .Q/ for all q � 2. Fix a function ' 2C 2
# .Q/ such that

R
Q ' dxD 0. Then, by minimality

and by (3-12), we have

d

ds

�
F.hi;nC s';ui;n/C

1

2�n

Z
�i�1;n

jD�i�1;n
vhi;nCs' j

2 dH2

�ˇ̌̌̌
sD0

D 0;
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where, we recall, vhi;nCs' solves (2-8) with h replaced by hi;nC s'. It can be shown thatZ
Q

W
�
E
�
ui;n.x; hi;n.x//

��
' dxC

Z
Q

D .�Dhi;n; 1/ � .�D'; 0/ dxC
"

p

Z
Q

jHi;nj
p Dhi;n �D'

Ji;n
dx

� "

Z
Q

jHi;nj
p�2Hi;n

�
�' �

D2'ŒDhi;n;Dhi;n�

J 2
i;n

�
�hi;nDhi;n �D'

J 2
i;n

� 2
D2hi;nŒDhi;n;D'�

J 2
i;n

C 3
D2hi;nŒDhi;n;Dhi;n�Dhi;n �D'

J 4
i;n

�
dx

�
1

�n

Z
Q

vhi;n
' dx D 0; (3-22)

where the last integral is obtained by observing that vhi;nCs' D vhi;n
C sv' , with v' solving8<:

��i�1;n
v' D

'
p

1CjDhi�1;nj
2
ı�;R

�hi�1;n

v' dH2 D 0:

Setting w WD jHi;nj
p�2Hi;n,

A WD "

�
I �

Dhi;n˝Dhi;n

J 2
i;n

�
;

b WD �.D .�Dhi;n; 1//�
"

p
jHi;nj

p Dhi;n

Ji;n

C "w

�
�
�hi;nDhi;n

J 2
i;n

� 2
D2hi;nŒDhi;n�

J 2
i;n

C 3
D2hi;nŒDhi;n;Dhi;n�Dhi;n

J 4
i;n

�
;

c WD �W
�
E
�
u.x; hi;n.x//

��
C

1

�n
vhi;n

;

(3-23)

we have by (3-5) and Theorem 3.5 that A 2W
1;p

# .QIM2�2
sym /, b 2L1.QIR2/, c 2 C

0;˛
# .Q/ for some ˛,

and we may rewrite (3-22) asZ
Q

wAD2' dxC

Z
Q

b �D'C

Z
Q

c' dx D 0 for all ' 2 C1# .Q/ with
Z

Q

' dx D 0: (3-24)

By Lemma A.2 we get that w 2 Lq.Q/ for q 2 .p=.p � 1/; 2/. Therefore, for any such q we have
Hi;n 2Lq.p�1/.Q/ and thus, by Lemma A.3, hi;n 2W

2;q.p�1/
# .Q/. In turn, using Hölder’s inequality,

this implies that b, wDiv A2Lr0.QIR2/, where r0 WD q.p�1/=p. Observe that r0 2 .1; 2/. By applying
Lemma A.2 again, we deduce thatw 2W

1;r0

# .Q/ and thusw 2L2r0=.2�r0/.Q/. In turn, arguing as before,
this implies that b, wDiv A2Lr1.QIR2/, where r1 WD 2r0.p�1/=..2�r0/p/ > r0. If r1� 2, then using
again Lemma A.2 we conclude thatw2W

1;r1

# .Q/, which implies the claim, since D2hi;n2Lq.QIM2�2
sym /

and, in turn, b, wDiv A 2Lq.QIR2/ for all q. Then the conclusion follows by Lemma A.2. Otherwise,
we proceed by induction. Assume that w 2W

1;ri�1

# .Q/. If ri�1 � 2 then the claim follows. If not, a
further application of Lemma A.2 implies that w 2W

1;ri

# .Q/ with ri WD 2ri�1.p � 1/=..2� ri�1/p/.
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Since ri�1 < 2, we have ri > ri�1. We claim that there exists j such that rj > 2. Indeed, if not, the
increasing sequence frig would converge to some ` 2 .1; 2� satisfying

`D
2`.p� 1/

.2� `/p
:

However, this is impossible since the above identity is equivalent to `D 2=p < 1.
Finally, observe that, since jHi;nj

p�2Hi;n 2W
1;q

# .Q/ for all q � 1, we have jHi;nj
p�1 2 C

0;˛
# .Q/ for

every ˛ 2 .0; 1/. Hence Hi;n 2C
0;�
# .Q/ for all � 2 .0; 1=.p�1// and so, by standard Schauder estimates,

hi;n 2 C
2;�
# .Q/ for all � 2 .0; 1=.p� 1//.

Step 2. By Step 1 we may now write the Euler–Lagrange equation for hi;n in intrinsic form. To be
precise, we claim that, for all ' 2 C 2

# .Q/ with
R

Q ' dx D 0, we have

"

Z
�i;n

D�i;n
.jHi;nj

p�2Hi;n/D�i;n
� dH2

� "

Z
�i;n

jHi;nj
p�2Hi;n

�
jBi;nj

2
�

1

p
H 2

i;n

�
� dH2

C

Z
�i;n

�
Div�i;n

.D .�i;n//CW .E.ui;n//
�
� dH2

�
1

�n

Z
�i;n

vhi;n
� dH2

D 0; (3-25)

where � WD .'=Ji;n/ı� . To see this, fix h 2W
3;q

# .Q/ for some q > 2, denote by � and �t the graphs of
h and hC t', respectively, and by H and Ht the corresponding sums of the principal curvatures. Then,
by Proposition 3.7 and arguing as in the proof of (3-22), we haveZ
�

D�.jH j
p�2H /D�� dH2

�

Z
�

jH jp�2H
�
jBj2�

1

p
H 2

�
� dH2

D
1

p

Z
Q

jH jp
Dh �D'

J
dx

�

Z
Q

jH jp�2H

�
�'�

D2'ŒDh;Dh�

J 2
�
�hDh �D'

J 2
�2

D2hŒDh;D'�

J 2
C3

D2hŒDh;Dh�Dh �D'

J 4

�
dx;

where � stands for .'=J /ı� and J WD
p

1CjDhj2. By the approximation Lemma 3.9, this identity still
holds if h 2 C

2;˛
# .Q/ and thus (3-25) follows from (3-22), recalling that, by Step 1, hi;n 2 C

2;�
# .Q/ for

some � > 0.
In order to show (3-21), observe that Lemma A.3, together with the bound kDhi;nkL1 �ƒ0, implies

that
kD2hi;nkLq.Q/ � C.q; ƒ0/kHi;nkLq.Q/: (3-26)

Moreover, since �i;n is of class C 2;� , (3-25) yields that jHi;nj
p�2Hi;n 2 H 2.�i;n/, and in turn that

jHi;nj
p�2Hi;n 2H 2.Q/ (see Remark 2.1).

As before, setting w WD jHi;nj
p�2Hi;n, by approximation we may rewrite (3-25) asZ

Q

A.x/DwD
�
'

Ji;n

�
Ji;n dx� "

Z
Q

w'
�
jBi;nj

2
�

1

p
H 2

i;n

�
dx

C

Z
Q

�
Div�i;n

.D .�i;n//CW .E.ui;n//
�
' dx�

1

�n

Z
Q

vhi;n
' dx D 0 (3-27)
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for all ' 2H 1
# .Q/ with

R
Q ' dx D 0, where A, defined as in (3-23), is an elliptic matrix with ellipticity

constants depending only on ƒ0. Recall that w 2H 2.Q/. We now choose ' DDs� with � 2H 2
# .Q/,

and observe that integrating by parts twice yieldsZ
Q

ADwD
�Ds�

Ji;n

�
Ji;n dx

D�

Z
Q

AD.Dsw/D
� �

Ji;n

�
Ji;n dx�

Z
Q

Ds.AJi;n/DwD
� �

Ji;n

�
dxC

Z
Q

ADwD
��DsJi;n

J 2
i;n

�
Ji;n dx

D�

Z
Q

AD.Dsw/D
� �

Ji;n

�
Ji;n dx�

Z
Q

Ds.AJi;n/DwD
� �

Ji;n

�
dx

�

Z
Q

AD2w
�DsJi;n

Ji;n
dx�

Z
Q

D.AJi;n/Dw
�DsJi;n

J 2
i;n

dx:

Therefore, recalling (3-27) and by density, we may conclude that, for every � 2H 1
# .Q/,Z

Q

AD.Dsw/D
� �

Ji;n

�
Ji;n dx

D�

Z
Q

Ds.AJi;n/DwD
� �

Ji;n

�
dx�

Z
Q

AD2w
�DsJi;n

Ji;n
dx

�

Z
Q

D.AJi;n/Dw
�DsJi;n

J 2
i;n

dx� "

Z
Q

wDs�
�
jBi;nj

2
�

1

p
H 2

i;n

�
dx

C

Z
Q

�
Div�i;n

.D .�i;n//CW .E.ui;n//
�
Ds� dx�

1

�n

Z
Q

vhi;n
Ds� dx:

Finally, choosing �DDswJi;n, we obtainZ
Q

AD.Dsw/D.Dsw/Ji;n dx

D�

Z
Q

Ds.AJi;n/DwD.Dsw/ dx�

Z
Q

AD2wDswDsJi;n dx�

Z
Q

D.AJi;n/Dw
DswDsJi;n

Ji;n
dx

� "

Z
Q

wDs.DswJi;n/
�
jBi;nj

2
�

1

p
H 2

i;n

�
dx

C

Z
Q

�
Div�i;n

.D .�i;n//CW .E.ui;n//
�
Ds.DswJi;n/ dx�

1

�n

Z
Q

vhi;n
Ds.DswJi;n/ dx:

Summing the resulting equations for s D 1, 2, estimating D.AJi;n/ by D2hi;n, and using Young’s
inequality several times, we deduceZ

Q

jD2wj2 dx

� C

Z
Q

�
jDwj2jD2hi;nj

2 dxCjHi;nj
2pC2

CjHi;nj
2p�2
jD2hi;nj

4
C

v2
i;n

.�n/2
C 1

�
dx (3-28)
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for some constant C depending only on ƒ0, D2 , and on the C 1;˛ bounds on ui;n provided by
Theorem 3.5. Note that, by Young’s inequality and (3-26), we haveZ

Q

jHi;nj
2p�2
jD2hi;nj

4 dx � C

Z
Q

.jHi;nj
2pC2

CjD2hi;nj
2pC2/ dx � C

Z
Q

jHi;nj
2pC2 dx:

Combining the last estimate with (3-28), we therefore haveZ
Q

jD2wj2 dx � C0

Z
Q

�
jD2hi;nj

2
jDwj2Cjwj

2.pC1/
p�1 C

v2
i;n

.�n/2
C 1

�
dx: (3-29)

To deal with the first term on the right-hand side, we use Hölder’s inequality, (3-26) and Theorem A.6
twice to get

C0

Z
Q

jD2hi;nj
2
jDwj2 dx � C0

�Z
Q

jD2hj2.p�1/ dx

� 1
p�1

�Z
Q

jDwj
2.p�1/

p�2 dx

�p�2
p�1

� Ckwk
2

p�1

2
kDwk22.p�1/

p�2

� Ckwk
2

p�1

2

�
kD2wk

p
2.p�1/

2
kwk

p�2
2.p�1/

2

�2
D CkD2wk

p
p�1

2
kwk

p
p�1

2
� CkD2wk

p
p�1

2

�
kD2wk

p�2
2p
p

p�1

kwk
pC2
2p
p

p�1

� p
p�1

� CkD2wk
3p�2

2.p�1/

2
kwk

pC2
2.p�1/

p
p�1

�
1
4
kD2wk22CC;

where in the last inequality we used the fact that .3p�2/=.2.p�1// < 2 and that kwk p
p�1
D kHi;nk

p�1
p

is uniformly bounded with respect to i , n. Using Theorem A.6 again, we also have

C0

Z
Q

jwj
2.pC1/

p�1 dx � CkD2wk
pC2

p
p

p�1

kwk
p2CpC2
p.p�1/
p

p�1

�
1
4
kD2wk22CC;

where, as before, we used the fact that .pC 2/=p < 2 and kwk p
p�1

is uniformly bounded. Inserting the
two estimates above in (3-29), we then getZ

Q

jD2wj2 dx � C

Z
Q

�
1C

v2
i;n

.�n/2

�
dx: (3-30)

Integrating the last inequality with respect to time and using (3-9) we conclude the proof of the theorem. �
Remark 3.12. The same argument used in Step 1 of the proof of Theorem 3.11 and in the proof of (3-25)
shows that, if .h;uh/ 2X satisfiesZ

Q

W
�
E
�
uh.x; h.x//

��
' dxC

Z
Q

D .�Dh; 1/ � .�D'; 0/ dxC
"

p

Z
Q

jH jp
Dh �D'

J

� "

Z
Q

jH jp�2H

�
�' �

D2'ŒDh;Dh�

J 2
�
�hDh �D'

J 2
� 2

D2hŒDh;D'�

J 2

C 3
D2hŒDh;Dh�Dh �D'

J 4

�
dx D 0

for all ' 2 C 2
# .Q/ such that

R
Q ' dx D 0, then .h;uh/ is a critical pair for the functional F .
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Lemma 3.13. With T0 and zHn as in Theorem 3.11, j zHnj
p is a Cauchy sequence in L1.0;T0IL

1.Q//.
Moreover, j zHnj

p�2 zHn is a Cauchy sequence in L1.0;T0IL
2.Q//.

For the proof of the lemma we need the following inequality:

Lemma 3.14. Let p > 1. There exists cp > 0 such that

1

cp
.xp�1

Cyp�1/�
jxp �ypj

jx�yj
� cp.x

p�1
Cyp�1/:

Proof. By homogeneity it is enough to assume y D 1 and x > 1 and to observe that

lim
x!C1

xp � 1

.x� 1/.xp�1C 1/
D 1 and lim

x!1

xp � 1

.x� 1/.xp�1C 1/
D

p

2
: �

Proof of Lemma 3.13. We split the proof into two steps.

Step 1. We start by showing that j zHnj
p is a Cauchy sequence in L1.0;T0IL

1.Q//. Set k WD Œp�,
where Œ � � denotes the integer part. Note that k � 2 since p > 2. From Lemma 3.14 we getZ T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt

D

Z T0

0

Z
Q

ˇ̌
j zH k

n j
p
k � j zH k

mj
p
k

ˇ̌
dx dt

� c

Z T0

0

Z
Q

ˇ̌
j zH k

n j � j
zH k

mj
ˇ̌
.j zHnj

k
Cj zHmj

k/
p
k
�1 dx dt

� c

Z T0

0

�Z
Q

j zH k
n �
zH k

mj
2 dx

�1
2

.k zHnk1Ck
zHmk1/

p�k dt

� c

Z T0

0

.k zH k
n �
zH k

m�Mm;nk2CjMm;nj/.k zHnk1Ck
zHmk1/

p�k dt; (3-31)

where Mm;n WD
R

Q.
zH k

n �
zH k

m/ dx. Set

wn WD j
zHnj

p�2 zHn (3-32)

and observe that zH k
n D .w

C
n /

k
p�1 C .�1/k.w�n /

k
p�1 . Thus,

jD zH k
n j � jD.w

C
n /

k
p�1 jC jD.w�n /

k
p�1 j � cjDwnjjwnj

k
p�1
�1
D cjDwnjj

zHnj
k�pC1: (3-33)

From Lemma A.7 and inequalities (3-31), (3-33) we getZ T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt

� c

Z T0

0

�
k zH k

n �
zH k

m�Mm;nk
1
2

H�1kD zH
k
n �D zH k

mk
1
2

2
CjMm;nj

�
.k zHnk1Ck

zHmk1/
p�k dt
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� c

Z T0

0

k zH k
n �
zH k

m�Mm;nk
1
2

H�1.kDwnk2CkDwmk2/
1
2 .k zHnk1Ck

zHmk1/
p�kC1

2 dt

C

Z T0

0

jMm;nj.k zHnk1Ck
zHmk1/

p�k dt: (3-34)

Fix n, m2N. We now estimate the H�1-norm of zH k
n �
zH k

m�Mm;n. Recall that, in view of Remark 3.3,

k zH k
n �
zH k

m�Mm;nkH�1 D kDuk2; (3-35)

where u is the unique Q-periodic solution of�
��uD zH k

n �
zH k

m�Mm;n in Q;R
Q u dx D 0:

(3-36)

Thus,Z
Q

jDuj2 dx D

Z
Q

u. zH k
n �
zH k

m�Mm;n/ dx D

Z
Q

u. zHn�
zHm/

k�1X
iD0

zH k�1�i
n

zH i
m dx; (3-37)

where we also used that
R

Q u dx D 0. Fix ı 2 .0; 1/ (to be chosen) and let T ı.t/ WD .t _�ı/^ ı. Then

zHn D Œ. zHn� ı/
C
C ı�CT ı. zHn/� Œ.� zHn� ı/

C
C ı� (3-38)

and (see (3-32))

. zHn� ı/
C
C ı D

(
w

1
p�1

n if wn � ı
p�1;

ı otherwise.
Hence,

jDŒ. zHn� ı/
C
C ı�j � c

jDwnj

ıp�2
; (3-39)

and a similar estimate holds for DŒ.� zHn� ı/
CC ı�. We now set

Vn;ı WD Œ. zHn� ı/
C
C ı�� Œ.� zHn� ı/

C
C ı�: (3-40)

From (3-37) we haveZ
Q

jDuj2 dx

D

Z
Q

u. zHn�
zHm/

k�1X
iD0

k�1�iX
rD0

iX
sD0

�k�1�i

r

�� i

s

�
V k�1�i�r

n;ı V i�s
m;ı ŒT

ı. zHn/�
r ŒT ı. zHm/�

s dx

D

Z
Q

u. zHn�
zHm/

k�1X
iD0

V k�1�i
n;ı V i

m;ı dx

C

Z
Q

u. zHn�
zHm/

k�1X
iD0

X
.r;s/¤.0;0/

�k�1�i

r

�� i

s

�
V k�1�i�r

n;ı V i�s
m;ı ŒT

ı. zHn/�
r ŒT ı. zHm/�

s dx

DWLCM: (3-41)
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We start by estimating the last term in the previous chain of equalities:

jM j � c

Z
Q

jujj zHn�
zHmj

k�1X
iD0

X
.r;s/¤.0;0/

ırCsV k�1�i�r
n;ı V i�s

m;ı dx

� c

Z
Q

juj.j zHnjC j
zHmj/

k�1X
`D1

ı`ŒV k�1�`
n;ı CV k�1�`

m;ı � dx

� cı

Z
Q

juj.j zHnjC j
zHmj/.1CV k�2

n;ı CV k�2
m;ı / dx

� cı

�Z
Q

u2 dx

� 1
2

.1Ck zHnk1Ck
zHmk1/

k�1

�
1

6

Z
Q

jDuj2 dxC cı2.1Ck zHnk1Ck
zHmk1/

2.k�1/; (3-42)

where we used (3-40) and the Poincaré and Young inequalities. To deal with L, we integrate by parts and
use (2-3) and the periodicity of u, Qhn, and Qhm to get

LD

Z
Q

�
D Qhn

zJn

�
D Qhm

zJm

�
Du

k�1X
iD0

V k�1�i
n;ı V i

m;ı dxC

Z
Q

�
D Qhn

zJn

�
D Qhm

zJm

�
u

k�1X
iD0

D.V k�1�i
n;ı V i

m;ı/ dx;

where

Qhn.x; t/ WD hi;n.x/ if t 2 Œ.i � 1/�n; i�n/ and zJn.x:t/ WD
p

1CjD Qhn.x; t/j
2: (3-43)

From the equality above, recalling (3-32), (3-39), and (3-40), and setting

"n;m WD sup
t2Œ0;T0�





D Qhn

zJn

. � ; t/�
D Qhm

zJm

. � ; t/






1

;

we may estimate

jLj � c"n;m

Z
Q

jDuj.1Cj zHnj
k�1
Cj zHmj

k�1/ dx

C c"n;m

Z
Q

juj

k�1X
iD0

ŒjDV k�1�i
n;ı jV i

m;ıCjDV i
m;ıjV

k�1�i
n;ı � dx

�
1

6

Z
Q

jDuj2 dxC c"2
n;m.1Ck

zHnk1Ck
zHmk1/

2.k�1/

C c"n;m

Z
Q

juj
jDwnj

ıp�2

k�2X
iD0

V k�2�i
n;ı V i

m;ı dxC c"n;m

Z
Q

juj
jDwmj

ıp�2

k�2X
iD0

V i�1
m;ı V k�i�1

n;ı dx

�
1

6

Z
Q

jDuj2 dxC c"2
n;m.1Ck

zHnk1Ck
zHmk1/

2.k�1/

C c
"n;m

ıp�2

Z
Q

juj.jDwnjC jDwmj/.1Ck zHnk1Ck
zHmk1/

k�2 dx
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�
1

3

Z
Q

jDuj2 dxC c"2
n;m.1Ck

zHnk1Ck
zHmk1/

2.k�1/

C c
"2

n;m

ı2.p�2/

Z
Q

.jDwnjC jDwmj/
2.1Ck zHnk1Ck

zHmk1/
2.k�2/ dx:

From this estimate, (3-35), (3-36), (3-41), and (3-42), choosing ı2.p�2/ D "n;m, with n, m so large
that "n;m < 1 (see Theorem 3.5(i)), we obtain

k zH k
n �
zH k

m�Mm;nk
2
H�1 � c"˛n;m

�
.1Ck zHnk1Ck

zHmk1/
2.k�1/

C.kDwnk2CkDwmk2/
2.1Ck zHnk1Ck

zHmk1/
2.k�2/

�
; (3-44)

where ˛ WDminf1; 1=.p� 2/g.
We now estimate Mm;n. Since

Mm;n D

Z
Q

. zH k
n �
zH k

m/ dx D

Z
Q

. zHn�
zHm/

k�1X
iD0

zH k�1�i
n

zH i
m dx;

using the same argument with u� 1 (see (3-44)) gives

jMm;nj � c."n;m/
˛
2

�
.1Ck zHnk1Ck

zHmk1/
k�1
C.kDwnk2CkDwmk2/.1Ck zHnk1Ck

zHmk1/
k�2

�
:

From this inequality, recalling (3-32), (3-34), and (3-44), we deduceZ T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt

� c."n;m/
˛
4

Z T0

0

.kDwnk2CkDwmk2/
1
2 .1Ckwnk1Ckwmk1/

p
2.p�1/ dt

C c."n;m/
˛
4

Z T0

0

.kDwnk2CkDwmk2/.1Ckwnk1Ckwmk1/
1
2 dt

C c."n;m/
˛
2

Z T0

0

.1Ckwnk1Ckwmk1/ dt

C c."n;m/
˛
2

Z T0

0

.kDwnk2CkDwmk2/.kwnk1Ckwmk1/
p�2
p�1 dt:

Observe now that, by (3-5) and (3-20), there exists C > 0 such that
R

Q jwnj dx � k zHnk
p�1
p�1
�C for all n

and thus, using the embedding of H 2.Q/ into C.Q/ and Poincaré’s inequality,

kDwnk2Ckwnk1 � C.1CkD2wnk2/: (3-45)

Therefore, from the above inequalities and also using the fact that 1
2
C p=.2.p � 1// < 2 and that

1C .p� 2/=.p� 1/ < 2, we conclude thatZ T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt � c."n;m/

˛
4

Z T0

0

.1CkD2wnk2CkD
2wmk2/

2 dt � c."n;m/
˛
4 ;
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where the last inequality follows from (3-21). This proves that the sequence j zHnj
p is a Cauchy sequence

in L1.0;T0IL
1.Q//. Note also that using Lemma 3.14 we haveZ T0

0

Z
Q

ˇ̌
j zHnj � j

zHmj
ˇ̌p

dx dt � c

Z T0

0

Z
Q

ˇ̌
j zHnj � j

zHmj
ˇ̌
.j zHnjC j

zHmj/
p�1 dx dt

� c

Z T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt: (3-46)

Step 2. We now conclude the proof by showing that wn is a Cauchy sequence in L1.0;T0IL
2.Q//. To

this purpose, we use Lemma A.7 to obtainZ T0

0

kwn�wmk2 dt �

Z T0

0

kwn�wm�Nm;nk2 dt C

Z T0

0

jNm;nj dt

� c

Z T0

0

kwn�wm�Nm;nk
2
3

H�1kD
2wn�D2wmk

1
3

2
dt C

Z T0

0

jNm;nj dt; (3-47)

where Nm;n WD
R

Q.wn�wm/ dx. As observed in (3-35) and (3-36) , kwn�wm�Nm;nkH�1 D kDvk2,
where v is the unique Q-periodic solution of�

��v D wn�wm�Nm;n in Q;R
Q v dx D 0:

As in (3-37), using the fact that
R

Q v dx D 0, we haveZ
Q

jDvj2 dx D

Z
Q

.wn�wm�Nm;n/v D

Z
Q

.j zHnj
p�2 zHn� j

zHmj
p�2 zHm/v dx

D

Z
Q

.j zHnj
p�2
� j zHmj

p�2/ zHnv dxC

Z
Q

. zHn�
zHm/j zHmj

p�2v dx

DW zLC zM : (3-48)

Now, by Hölder’s inequality twice and the Sobolev embedding theorem,

j zLj �

Z
Q

ˇ̌
.j zHnj

p/
p�2

p � .j zHmj
p/

p�2
p

ˇ̌
j zHnjjvj dx

�

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌p�2

p j zHnjjvj dx

� kvkpk zHnk1

�Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌p�2

p�1 dx

�p�1
p

� ckDvk2k zHnk1kj
zHnj

p
� j zHmj

p
k

p�2
p

1

�
1

6

Z
Q

jDvj2 dxC ck zHnk
2
1kj
zHnj

p
� j zHmj

p
k

2.p�2/
p

1
: (3-49)
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To estimate zM , arguing as in the previous step (see (3-38)) and observing that .�j zHmj
p�2� ı/C D 0,

we write

zM D

Z
Q

. zHn�
zHm/

�
.j zHmj

p�2
� ı/CC ı

�
v dxC

Z
Q

. zHn�
zHm/

�
T ı.j zHmj

p�2/� ı
�
v dx

D

Z
Q

�
D Qhn

zJn

�
D Qhm

zJm

�
Dv

�
.j zHmj

p�2
� ı/CC ı

�
dx

C

Z
Q

�
D Qhn

zJn

�
D Qhm

zJm

�
vD
�
.j zHmj

p�2
� ı/CC ı

�
dxC

Z
Q

. zHn�
zHm/

�
T ı.j zHmj

p�2/� ı
�
v dx:

Similarly to what we proved in (3-39), we have

ˇ̌
D
�
.j zHmj

p�2
� ı/CC ı

�ˇ̌
� c
jDwmj

ı
1

p�2

:

Therefore, arguing as in the previous step, we obtain

j zM j �
1

6

Z
Q

jDvj2 dxC c"2
n;m.1Ck

zHmk1/
2.p�2/

C c"n;m

Z
Q

jvj
jDwmj

ı
1

p�2

dx

C cı

Z
Q

jvj.k zHnk1Ck
zHmk1/ dx

�
1

3

Z
Q

jDvj2 dxC c"2
n;m.1Ck

zHmk1/
2.p�2/

C c
"2

n;m

ı
2

p�2

kDwmk
2
2C cı2.k zHnk1Ck

zHmk1/
2;

where in the last line we used the Young and Poincaré inequalities. Choosing ı so that ı2=.p�2/ D "n;m

and recalling (3-48) and (3-49), we conclude that

kwn�wm�Nm;nkH�1

� ck zHnk1kj
zHnj

p
�j zHmj

p
k

p�2
p

1
Cc."n;m/

ˇ
2 .1Ck zHnk1Ck

zHmk1Ck
zHmk

p�2
1 CkDwmk2/; (3-50)

where ˇ Dminf1; p� 2g.
Since, by (3-32),

Nm;n D

Z
Q

.wn�wm/ dx D

Z
Q

.j zHnj
p�2
� j zHmj

p�2/ zHn dxC

Z
Q

. zHn�
zHm/j zHmj

p�2 dx;

the same argument used to estimate the last two integrals in (3-48) (with v � 1) gives

jNm;nj � ck zHnk1kj
zHnj

p
� j zHmj

p
k

p�2
p

1
C c."n;m/

ˇ
2 .k zHnk1Ck

zHmk1Ck
zHmk

p�2
1 CkDwmk2/:
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From this estimate, recalling (3-32), (3-47) and (3-50), we have thatZ T0

0

kwn�wmk2 dt

� c

Z T0

0

kj zHnj
p
� j zHmj

p
k

2.p�2/
3p

1
kwnk

2
3.p�1/

1 .kD2wnk2CkD
2wmk2/

1
3 dt

Cc."n;m/
ˇ
3

Z T0

0

�
1Ckwnk

1
p�1

1 Ckwmk

1
p�1

1 Ckwmk

p�2
p�1

1 CkDwmk2

� 2
3 .kD2wnk2CkD

2wmk2/
1
3 dt

Cc

Z T0

0

kwnk

1
p�1

1 kj zHnj
p
� j zHmj

p
k

p�2
p

1
dt

C c."n;m/
ˇ
2

Z T0

0

.kwnk

1
p�1

1 Ckwmk

1
p�1

1 Ckwmk

p�2
p�1

1 CkDwmk2/ dt:

Using (3-45) and Hölder’s inequality, we can bound the right-hand side of this inequality by

c

Z T0

0

kj zHnj
p
� j zHmj

p
k

2.p�2/
3p

1
.1CkD2wnk2CkD

2wmk2/
1
3
C 2

3.p�1/ dt

C c."n;m/
ˇ
3

Z T0

0

�
1CkD2wnk2CkD

2wmk2

� 2
3 .kD2wnk2CkD

2wmk2/
1
3 dt

Cc

Z T0

0

�
1CkD2wnk2

� 1
p�1 kj zHnj

p
�j zHmj

p
k

p�2
p

1
dtCc."n;m/

ˇ
2

Z T0

0

.1CkD2wnk2CkD
2wmk2/ dt

�c

�Z T0

0

Z
Q

ˇ̌
j zHnj

p
�j zHmj

p
ˇ̌
dx dt

�2.p�2/
3p

�Z T0

0

�
kD2wnk2CkD

2wmk2

� p.pC1/
.p�1/.pC4/

�pC4
3p

C c

�Z T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt

�p�2
2
�Z T0

0

�
1CkD2wnk2

� p
2.p�1/

� 2
p

C c."n;m/
ˇ
3

Z T0

0

.1CkD2wnk2CkD
2wmk2/ dt:

Since p.pC 1/=..p� 1/.pC 4// < 2 and p=.2.p� 1// < 2, recalling (3-21), we finally haveZ T0

0

kwn�wmk2 dt

� c

�Z T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt

�2.p�2/
3p
C c

�Z T0

0

Z
Q

ˇ̌
j zHnj

p
� j zHmj

p
ˇ̌
dx dt

�p�2
2
C c."n;m/

ˇ
3 :

The conclusion follows from Step 1. �

Corollary 3.15. Let zHn be the functions defined in (3-20), let h be the limiting function provided by
Theorem 3.5, and set

H WD �Div
�

Dh

1CjDhj2

�
:
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Then,

j zHnj
p
! jH jp in L1.0;T0IL

1.Q// and j zHnj
p�2 zHn! jH j

p�2H in L1.0;T0IL
2.Q//: (3-51)

Proof. Let Qhn and zJn be as in the proof of Lemma 3.13. From Theorem 3.5(i) we get that, for all
t 2 .0;T0/ and for all ' 2 C 1

# .Q/, we haveZ
Q

zHn' dx D

Z
Q

D Qhn

zJn

�D' dx �!

Z
Q

Dh

J
�D' dx D

Z
Q

zH' dx;

where J D
p

1CjDhj2. Since, for every t , zHn. � ; t/ is bounded in Lp.Q/, we deduce that, for
all t 2 .0;T0/,

zHn. � ; t/ *H. � ; t/ weakly in Lp.Q/: (3-52)

On the other hand, from Lemma 3.13 we know that there exist a subsequence nj and two functions z, w
such that, for a.e. t ,

j zHnj . � ; t/j
p
�!z. � ; t/ in L1.Q/ and .j zHnj j

p�2 zHnj /. � ; t/�!w. � ; t/ in L2.Q/: (3-53)

Moreover, for any such t there exists a further subsequence (depending on t), not relabelled, such
that j zHnj .x; t/j

p, j zHnj .x; t/j
p�2 zHnj .x; t/, and thus zHnj .x; t/ converge for a.e. x. Then, by (3-52),

zHnj .x; t/!H.x; t/ for a.e. x. Thus, we conclude that z D jH jp and w D jH jp�2H . �

We now prove short time existence for (3-1).

Theorem 3.16. Let h0 2W
2;p

# .Q/, let h be the function given in Theorem 3.4, and let T0 > 0 be as in
Theorem 3.5. Then h is a solution of (3-1) in Œ0;T0� in the sense of Definition 3.1 with initial datum h0.
Moreover, there exists a nonincreasing g such that

F.h. � ; t/;uh. � ; t//D g.t/ for t 2 Œ0;T0� nZ0; (3-54)

where Z0 is a set of zero measure, and

F.h. � ; t/;uh. � ; t//� g.tC/ for t 2Z0: (3-55)

This result motivates the following definition:

Definition 3.17. We say that a solution to (3-1) is variational if it is the limit of a subsequence of the
minimizing movements scheme as in Theorem 3.5(i).

Proof of Theorem 3.16. Let zHn, Qhn, zJn be the functions given in (3-20), and (3-43). Set zWn.x; t/ WD

W
�
E.ui;n/.x; hi;n.x//

�
and Qvn.x; t/ WD vhi;n

.x/ for t 2 Œ.i � 1/�n; i�n/. Moreover, define Ovn WD Qvn=�n.
Note that, for all t , Ovn. � ; t/ is the unique Q-periodic solution to8<:�� Qhn. � ;t��n/

w D
1

zJn. � ; t��n/

@hn. � ; t/

@tR
� Qhn. � ;t��n/

w dH2 D 0:
(3-56)
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Fix t 2 .0;T0/ and a sequence .ik ; nk/ such that tk WD ik�nk
! t . Summing (3-22) from i D 1 to i D ik ,

we getZ tk

0

Z
Q

zWnk
' dx dt C

Z tk

0

Z
Q

D .�D Qhnk
; 1/ � .�D'; 0/ dx dt C

"

p

Z tk

0

Z
Q

j zHnk
j
p D Qhnk

�D'

zJnk

dx dt

�"

Z tk

0

Z
Q

j zHnk
j
p�2 zHnk

�
�'�

D2'ŒD Qhnk
;D Qhnk

�

zJ 2
nk

�
� Qhnk

D Qhnk
�D'

zJ 2
nk

�2
D2 Qhnk

ŒD Qhnk
;D'�

zJ 2
nk

C 3
D2 Qhnk

ŒD Qhnk
;D Qhnk

�D Qhnk
�D'

zJ 4
nk

�
dx dt

�

Z tk

0

Z
Q

Ovnk
' dx dt D 0: (3-57)

We claim that we can pass to the limit in the above equation to getZ t

0

Z
Q

W
�
E
�
u.x; h.x; s/; s/

��
' dx dsC

Z t

0

Z
Q

D .�Dh; 1/ � .�D'; 0/ dx ds

C
"

p

Z t

0

Z
Q

jH jp
Dh �D'

J
dx ds

� "

Z t

0

Z
Q

jH jp�2H

�
�' �

D2'ŒDh;Dh�

J 2
�
�hDh �D'

J 2
� 2

D2hŒDh;D'�

J 2

C 3
D2hŒDh;Dh�Dh �D'

J 4

�
dx ds�

Z t

0

Z
Q

Ov' dx ds D 0; (3-58)

where Ov. � ; t/ is the unique periodic solution in H 1
# .�.t// to(

��h. � ;t/
w D

1

J. � ; t/

@h. � ; t/

@t
;R

�h. � ;t/
w dH2 D 0

(3-59)

for a.e. t 2 .0;T0/. To prove the claim, observe that the convergence of the first two integrals in (3-57)
immediately follows from (i) and (iii) of Theorem 3.5. The convergence of the third integral in (3-57)
follows from (3-51) and Theorem 3.5(i). Similarly, (3-51) and of Theorem 3.5(i) imply thatZ tk

0

Z
Q

j zHnk
j
p�2 zHnk

�
�'�

D2'ŒD Qhnk
;D Qhnk

�

zJ 2
nk

�
dx dt!

Z t

0

Z
Q

jH jp�2H

�
�'�

D2'ŒDh;Dh�

J 2

�
dx ds:

Next we show the convergence ofZ tk

0

Z
Q

j zHnk
j
p�2 zHnk

�
�
� Qhnk

D Qhnk
�D'

zJ 2
nk

� 2
D2 Qhnk

ŒD Qhnk
;D'�

zJ 2
nk

C 3
D2 Qhnk

ŒD Qhnk
;D Qhnk

�D Qhnk
�D'

zJ 4
nk

�
dx dt
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to the corresponding term in (3-58). To this purpose, we only show thatZ tk

0

Z
Q

j zHnk
j
p�2 zHnk

� Qhnk
D Qhnk

�D'

zJ 2
nk

dx dt �!

Z t

0

Z
Q

jH jp�2H
�hDh �D'

J 2
dx ds; (3-60)

since the convergence of the other terms can be shown in a similar way. To prove (3-60), we first observe
that, by (3-5) and Theorem 3.5(i), we have � Qhnk

. � ; t/ * �h. � ; t/ in Lp.Q/ for all t 2 .0;T0/. On
the other hand, (3-51) yields that for a.e. t 2 .0;T0/ we have . zHnk

jp�2 zHnk
/. � ; t/! .jH jp�2H /. � ; t/

in L2.Q/. Therefore, for a.e. t 2 .0;T0/,Z
Q

j zHnk
j
p�2 zHnk

� Qhnk
D Qhnk

�D'

zJ 2
nk

dx �!

Z
Q

jH jp�2H
�hDh �D'

J 2
dx:

The conclusion then follows by applying the Lebesgue dominated convergence theorem after observing
that, by (2-9) and (3-5),ˇ̌̌̌Z

Q

j zHnk
j
p�2 zHnk

� Qhnk
D Qhnk

�D'

zJ 2
nk

dx

ˇ̌̌̌
� Ck� Qhnk

kL2.Q/kj
zHnk
j
p�2 zHnk

kL2.Q/

� Ckj zHnk
j
p�2 zHnk

kL2.Q/

and that kj zHnk
jp�2 zHnk

kL2.Q/ converges in L1.0;T0/ thanks to (3-51).
Note (3-51) implies that for a.e. t 2 .0;T0/ we have k zHnk

. � ; t/kLp.Q/ ! kH. � ; t/kLp.Q/. Since
zHnk

. � ; t/ *H. � ; t/ in Lp.Q/ (see (3-52)), we may conclude that zHnk
. � ; t/!H. � ; t/ in Lp.Q/ for

a.e. t 2 .0;T0/. Therefore, by (2-3) and [Acerbi et al. 2013, Lemma 7.2], we also have Qhnk
. � ; t/! h. � ; t/

in W
2;p

# .Q/ for a.e. t 2 .0;T0/. Thus, by (2-9) and (3-5) and the Lebesgue dominated convergence
theorem we infer that Z T0

0

Z
Q

jD2 Qhnk
�D2hjp dx dt �! 0: (3-61)

This, together with the fact that hn * h weakly in H 1.0;T0IH
�1
# .Q// (see (3-6)), implies that

1

zJnk
. � ; � � �nk

/

@hnk

@t
*

1

J

@h

@t
in L2.0;T0IH
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# .Q//: (3-62)

Indeed, for any ' 2L2.0;T0IH
1
# .Q//,ˇ̌̌̌Z T0
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Z
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@h

@t

�
' dx dt

ˇ̌̌̌
�

ˇ̌̌̌Z T0

0

Z
Q

� 1

zJnk
. � ; � � �nk

/
�

1

J

�@hnk

@t
' dx dt
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dx dt
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�

Z T0
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 '

zJnk
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/
�
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J





H 1

dx dt C

ˇ̌̌̌Z T0

0

Z
Q

�@hnk

@t
�
@h

@t

�'
J

dx dt

ˇ̌̌̌
:

(3-63)

Since H 1
# .Q/ is embedded in Lq.Q/ for all q � 1, we deduce from (3-61) that '= zJnk

. � ; � � �nk
/! '=J

in L2.0;T0IH
1
# .Q//. This convergence together with (3-3) shows that the second-to-last integral in
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(3-63) vanishes in the limit. On the other hand, the last integral in (3-63) also vanishes in the limit, since
hnk

* h weakly in H 1.0;T0IH
�1
# .Q//. Thus, (3-62) follows.

Arguing as in the proof of Theorem 3.11 and integrating with respect to t , we have, from (3-56),Z t

0

Z
Q

Ank
D Ovn �D' dx ds D

Z t

0

Z
Q

1

zJnk
. � ; � � �nk

/

@hnk

@t
' dx ds (3-64)

for all ' 2L2.0;T0IH
1
# .Q//, where

Ank
.x; t/ WD

�
I �

D Qhnk
. � ; � � �nk

/˝D Qhnk
. � ; � � �nk

/

zJnk
. � ; � � �nk

/2

�
zJnk
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/:

Note that (3-12) implies that Ank
.x; t/ is an elliptic matrix with ellipticity constants depending only

on ƒ0 for all .x; t/. Therefore, (3-64) immediately implies thatZ T0
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Z
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jD Ovnk
j
2 dx dt � c

Z T0
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dt � c

thanks to (3-3). Since Ank
! A WD .I � .Dh˝Dh/=J 2/J in L1.0;T0IL

1.Q// by Theorem 3.5(i),
from the estimate above and recalling (3-62) and (3-64) we conclude that

Ovnk
* Ov weakly in L2.0;T0IH

1
# .Q//;

where Ov satisfies Z t
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Z
Q

AD Ov �D' dx ds D

Z t

0

Z
Q

1

J

@h

@t
' dx ds

for all ' 2L2.0;T0IH
1
# .Q// and for all t 2 .0;T0/. In turn, letting ' vary in a countable dense subset

of H 1
# .Q/ and differentiating the above equation with respect to t , we conclude that, for a.e. t 2 .0;T0/,

Ov. � ; t/ is the unique solution in H 1
# .�h. � ;t// to (3-59) for a.e. t 2 .0;T0/. This shows that the last integral

in (3-57) converges and thus (3-58) holds. Again letting ' vary in a countable dense subset of H 1
# .Q/

and differentiating (3-58) with respect to t , we obtainZ
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for all ' 2H 1
# .Q/. Since, by (3-21), jH jp�2H 2L2.0;T0IH

2
# .Q//, arguing as in Step 2 of the proof

of Theorem 3.11 we have that the above equation is equivalent to

"

Z
�h

D�h
.jH jp�2H /D�h

� dH2
� "

Z
�h

jH jp�2H
�
jBj2�

1

p
H 2

�
� dH2

C

Z
�h

�
Div�h

.D .�//CW .E.u//
�
� dH2

�

Z
�h

Ov� dH2
D 0
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for a.e. t 2 .0;T0/, where � WD '=J . This equation, together with (3-59), implies that h is a solution to
(3-1) in the sense of Definition 3.1.

Next, to show that the energy decreases during the evolution, we observe first that, for every n, the map
t 7! F. Qhn. � ; t/; Qun. � ; t// is nonincreasing, as shown in (3-4). Note also that thanks to (3-51) we may
assume up to extracting a further subsequence that, for a.e. t , zHn!H in Lp.Q/. This fact, together
with (i) and (iii) of Theorem 3.5, implies that for all such t , F. Qhn. � ; t/; Qun. � ; t//! F.h. � ; t/;u. � ; t//.
Thus also (3-54) follows. Let t 2 Z0 and choose tn ! tC with tn 62 Z0 for every n. Finally, since
h. � ; tn/ * h. � ; t/ weakly in W

2;p
# .Q/ by (3-5), by lower semicontinuity we get that

F.h. � ; t/;u. � ; t//� lim inf
n

F.h. � ; tn/;u. � ; tn//D lim
n

g.tn/D g.tC/: �

4. Liapunov stability of the flat configuration

In this section we are going to study the Liapunov stability of an admissible flat configuration. Take
h.x/� d > 0 and let ud denote the corresponding elastic equilibrium. Throughout this section we assume
that the Dirichlet datumw0 is affine, i.e., of the formw0.x;y/D .AŒx �; 0/ for some A2M2�2. As already
mentioned, a typical choice is given by w0.x;y/ WD .e

1
0
x1; e

2
0
x2; 0/, where the vector e0 WD .e

1
0
; e2

0
/ with

e1
0

, e2
0
> 0 embodies the mismatch between the crystalline lattices of film and substrate.

A detailed analysis of the so-called Asaro–Tiller–Grinfeld morphological stability/instability was
undertaken in [Bonacini 2013b; Fusco and Morini 2012]. It was shown that, if d is sufficiently small,
then the flat configuration .d;ud / is a volume constrained local minimizer for the functional

G.h;u/ WD

Z
�h

W .E.u// dzC

Z
�h

 .�/ dH2: (4-1)

To be precise, it was proved that, if d is small enough, then the second variation @2G.d;ud / is positive
definite and that, in turn, this implies the local minimality property. In order to state the results of this
section, we need to introduce some preliminary notation. In the following, given h 2 C 2

# .Q/, h � 0,
� will denote the unit vector field coinciding with the gradient of the signed distance from �#

h
, which is

well defined in a sufficiently small tubular neighborhood of �#
h
. Moreover, for every x 2 �h we set

B.x/ WDD�.x/: (4-2)

Note that the bilinear form associated with B.x/ is symmetric and, when restricted to Tx�h�Tx�h, it
coincides with the second fundamental form of �h at x. Here Tx�h denotes the tangent space to �h at x.
For x 2 �h we also set H.x/ WD Div �.x/ D trace B.x/, which is the sum of the principal curvatures
of �h at x. Given a (sufficiently) smooth and positively one-homogeneous function ! W RN n f0g ! R,
we consider the anisotropic second fundamental form defined as

B! WDD.D! ı �/;

and we set

H!
WD trace B! D Div .D! ı �/: (4-3)



MOTION OF THREE-DIMENSIONAL FILMS BY ANISOTROPIC SURFACE DIFFUSION 405

We also introduce the space of periodic displacements

A.�h/ WD fu 2 LD#.�hIR
3/ W u.x; 0/D 0g: (4-4)

Given a regular configuration .h;uh/ 2X with h 2 C 2
# .Q/ and ' 2 zH 1

# .Q/, where

zH 1
# .Q/ WD

�
' 2H 1

# .Q/ W

Z
Q

' dx D 0

�
; (4-5)

we recall that the second variation of G at .h;uh/ with respect to the direction ' is

d2

dt2
G.hC t';uhCt'/

ˇ̌̌̌
tD0

;

where, as usual, uhCt' denotes the elastic equilibrium in �hCt' . It turns out (see [Bonacini 2013b,
Theorem 4.1]) that

d2

dt2
G.hC t';uhCt'/

ˇ̌̌̌
tD0

D @2G.h;uh/Œ'��

Z
�h

�
W .E.uh//CH 

�
Div�h

��
.Dh; jDhj2/
p

1CjDhj2
ı�

�
�2

�
dH2; (4-6)

where @2G.h;uh/Œ'� is the (nonlocal) quadratic form defined as

@2G.h;uh/Œ'� WD �2

Z
�h

W .E.v�// dzC

Z
�h

D2 .�/ŒD�h
�;D�h

�� dH2

C

Z
�h

�
@�
�
W .E.uh//

�
� trace.B B/

�
�2 dH2;

� WD
'

p
1CjDhj2

ı�;

(4-7)

and v� the unique solution in A.�h/ toZ
�h

CE.v�/ WE.w/ dz D

Z
�h

Div�h
.� CE.uh// �w dH2 for all w 2A.�h/: (4-8)

Note that, if .h;uh/ is a critical pair of G (see Definition 3.8 with " D 0), then the integral in (4-6)
vanishes, so that

d2

dt2
G.hC t';uhCt'/

ˇ̌̌̌
tD0

D @2G.h;uh/Œ'�:

Throughout this section ˛ will denote a fixed number in the interval .0; 1� 2=p/. The next result is a
simple consequence of [Bonacini 2013b, Theorem 6.6].

Theorem 4.1. Assume that the surface density  is of class C 3 away from the origin, it satisfies (2-1),
and the following convexity condition holds: for every � 2 S2,

D2 .�/Œw;w� > 0 for all w ? �; w ¤ 0: (4-9)
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If
@2G.d;ud /Œ'� > 0 for all ' 2 zH 1

# .Q/ n f0g; (4-10)

then there exists ı > 0 such that
G.d;ud / <G.k; v/

for all .k; v/ 2X with j�k j D j�d j, 0< kk � dk
C

1;˛
# .Q/

� ı.

Proof. By condition (4-10) and [Bonacini 2013b, Theorem 6.6] there exists ı0 > 0 such that, if
0< kk � dkC 1

# .Q/
� ı0 and kD�k1 � 1CkDudk1 with .k; �/ 2X , then

G.d;ud / <G.k; �/: (4-11)

Note that we may choose 0< ı < ı0 such that, if kk � dk
C

1;˛
# .Q/

� ı and uk is the elastic equilibrium
corresponding to k, by elliptic regularity (see also Lemma A.1) we have that kDukk1 � 1CkDudk1.
Therefore, using (4-11) with � WD uk , we may conclude that

G.d;ud / <G.k;uk/�G.k; v/;

where in the last inequality we used the minimality of uk , and the result follows. �

Remark 4.2. It can be shown that Theorem 4.1 continues to hold if (4-9) is replaced by the weaker
condition

D2 .e3/Œw;w� > 0 for all w ? e3; w ¤ 0: (4-12)

Indeed, (4-12) implies that (4-9) holds for all � belonging to a suitable neighborhood U � S2 of e3. In
turn, by choosing ı sufficiently small we can ensure that the outer unit normals to �k lie in U provided
kk � dk

C
1;˛
# .Q/

< ı. A careful inspection of the proof of [Bonacini 2013b, Theorem 6.6] shows that,
under these circumstances, condition (4-9) is only required to hold at vectors � 2 U .

Remark 4.3. Under assumption (4-9), it can be shown that (4-10) is equivalent to having

inff@2G.d;ud /Œ'� W ' 2 zH
1
# .Q/; k'kH 1

# .Q/
D 1g DWm0 > 0 (4-13)

(see [Bonacini 2013b, Corollary 4.8]), i.e.,

@2G.d;ud /Œ'��m0k'k
2

H 1
# .Q/

for all ' 2 zH 1
# .Q/:

Remark 4.4. Note that, if the profile h� d is flat, then the corresponding elastic equilibrium ud is affine.
It immediately follows that .d;ud / is a critical pair in the sense of Definition 3.8.

We now consider the case of a nonconvex surface energy density  , and introduce the “relaxed”
functional defined for all .h;u/ 2X as

G.h;u/ WD

Z
�h

W .E.u// dzC

Z
�h

 ��.�/ dH2; (4-14)

where  �� is the convex envelope of  . It turns out that, if the boundary of the Wulff shape W associated
with the nonconvex density  contains a flat horizontal facet, then the flat configuration is always an
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isolated volume-constrained local minimizer, irrespective of the value of d . We recall that the Wulff
shape W is given by

W WD fz 2 R3
W z � � <  .�/ for all � 2 S2

g

(see [Fonseca 1991, Definition 3.1]). The following result can be easily obtained from [Bonacini 2013b,
Theorem 7.5 and Remark 7.6] arguing as in the last part of the proof of Theorem 4.1.

Theorem 4.5. Let  WR3! Œ0;C1/ be a Lipschitz positively one-homogeneous function satisfying (2-1),
and let f.x;y/ 2 R3 W jxj � ˛;y D ˇg � @W for some ˛, ˇ > 0. Then there exists ı > 0 such that

G.d;ud / <G.k; v/

for all .k; v/ 2X with j�k j D j�d j, 0< kk � dk
C

1;˛
# .Q/

� ı.

In the next two subsections we use the previous theorems to study the Liapunov stability of the flat
configuration both in the convex and nonconvex case.

Definition 4.6. We say that the flat configuration .d;ud / is Liapunov stable if, for every � > 0, there
exists ı.�/ > 0 such that, if .h0;u0/ 2 X with j�h0

j D j�d j and kh0 � dk
W

2;p
# .Q/

� ı.�/, then every
variational solution h to (3-1) according to Definition 3.17, with initial datum h0, exists for all times, and
kh. � ; t/� dk

W
2;p

# .Q/
� � for all t > 0.

4A. The case of a nonconvex surface density. In this subsection will show that, if the boundary of the
Wulff shape W associated with  contains a flat horizontal facet, then the flat configuration is always
Liapunov stable.

Theorem 4.7. Let  W R3! Œ0;C1/ be a positively one-homogeneous function of class C 2 away from
the origin such that (2-1) holds, and let f.x;y/ 2 R3 W jxj � ˛;y D ˇg � @W for some ˛, ˇ > 0. Then
for every d > 0 the flat configuration .d;ud / is Liapunov stable (according to Definition 4.6).

Proof. We start by observing that, from the assumptions on  , e3 is normal to boundary @W of
the Wulff shape W associated with  . Thus, by [Fonseca 1991, Proposition 3.5(iv)], it follows that
 .e3/D  

��.e3/. In turn, by Theorem 4.5, we may find ı > 0 such that

F.d;ud /DG.d;ud / <G.k; v/� F.k; v/ (4-15)

for all .k; v/2X with j�k jDj�d j and 0<kk�dk
C

1;˛
# .Q/

�ı. Fix � >0 and choose ı02
�
0;min

˚
ı; 1

2
�
	�

so small that
kh� dk

C
1;˛
# .Q/

� ı0 H) kDhk1 <ƒ0; (4-16)

where ƒ0 is as in (2-6). For every � > 0, set

!.�/ WD supfkk � dk
C

1;˛
# .Q/

g;

where the supremum is taken over all .k; v/ 2X such that

j�k j D j�d j; kk � dk
C

1;˛
# .Q/

� ı; and F.k; v/�F.d;ud / < �:
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Clearly, !.�/ > 0 for � > 0. We claim that !.�/! 0 as � ! 0C. Indeed, to see this we assume by
contradiction that there exists a sequence .kn; vn/ 2X with j�kn

j D j�d j such that

lim inf
n

F.kn; vn/� F.d;ud / and 0< c0 � kkn� dk
C

1;˛
# .Q/

� ı (4-17)

for some c0 > 0. By Lemma A.3, up to a subsequence we may assume that kn * k in W
2;p

# .Q/ and
that vn *v in H 1

loc.�k IR
3/ for some .k; v/ 2 X satisfying ı � kk � dk

C
1;˛
# .Q/

� c0, since W
2;p

# .Q/

is compactly embedded in C
1;˛
# .Q/. By lower semicontinuity we also have that

F.k; v/� lim inf
n

F.kn; vn/� F.d;ud /;

which contradicts (4-15).
Choose ı.�/ so small that, if kh0� dk

W
2;p

# .Q/
� ı.�/, then

kh0� dk
C

1;˛
# .Q/

< ı0 and F.h0;u0/�F.d;ud /� !
�1
�

1
2
ı0
�
;

where !�1 is the generalized inverse of ! defined as !�1.s/ WD supf� > 0 W !.�/� sg for all s > 0. Note
that, since !.�/ > 0 for � > 0 and !.�/! 0 as � ! 0C, we have that !�1.s/! 0 as s! 0C. Let h be
a variational solution as in Theorem 3.4 (see Definition 3.17). Let

T1 WD supft > 0 W kh. � ; s/� dk
C

1;˛
# .Q/

� ı0 for all s 2 .0; t/g:

Note that, by Theorem 3.5, T1>0. We claim that T1DC1. Indeed, if T1 were finite, then, recalling (3-7),
we would get, for all s 2 Œ0;T1�,

F.h. � ;T1/;uh. � ;T1//�F.d;ud /� F.h0;u0/�F.d;ud /� !
�1
�

1
2
ı0
�
; (4-18)

which implies kh. � ;T1/ � dk
C

1;˛
# .Q/

�
1
2
ı0 by the definition of !. Then, (4-16), Remark 3.6, and

Theorem 3.5 would imply that there exists T > T1 such that kh. � ; t/�dkC 1;˛
# .Q/ � ı0 for all t 2 .T1;T /,

thus giving a contradiction. We conclude that T1 D C1 and that kh. � ; t/ � dk
C

1;˛
# .Q/

� ı0 for
all t > 0. Therefore, (4-16) implies that kDh. � ; t/k1 < ƒ0 for all times, which, together with
Remark 3.6, gives that h is a solution to (3-1) for all times. Moreover, by (4-18) we have also shown that
F.h. � ; t/;uh. � ;t//�F.d;ud /� !

�1
�

1
2
ı0
�

for all t > 0, which by (4-15) implies that

"

Z
�h. � ;t/

jH jp dH2
� !�1

�
1
2
ı0
�
:

Using elliptic regularity (see (2-3)), this inequality and the fact that kh. � ; t/� dk1 �
1
2
� for all t > 0

imply that kh. � ; t/�dk
W

2;p
# .Q/

� � provided that ı0 and, in turn, ı.�/ are chosen sufficiently small. �

4B. The case of a convex surface density. In this section we will show that, under the convexity assump-
tion (4-9), the condition @2G.d;ud / > 0 implies that .d;ud / is asymptotically stable for the regularized
evolution equation (3-1) (see Theorem 4.14 below). We start by addressing the Liapunov stability (see
Definition 4.6).
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Theorem 4.8. Assume that the surface density  satisfies the assumptions of Theorem 4.1 and that the
flat configuration .d;ud / satisfies (4-10). Then .d;ud / is Liapunov stable.

Proof. Since (4-15) still holds with G replaced by G in view of Theorem 4.1, we can conclude as in the
proof of Theorem 4.7. �

Remark 4.9 (stability of the flat configuration for small volumes). If the surface density  satisfies
the assumptions of Theorem 4.1, then there exists d0 > 0 (depending only on the Dirichlet boundary
datum w0) such that (4-10) holds for all d 2 .0; d0/ (see [Bonacini 2013b, Proposition 7.3]).

Definition 4.10. We say that a flat configuration .d;ud / is asymptotically stable if there exists ı > 0 such
that, if .h0;u0/ 2X with j�h0

j D j�d j and kh0� dk
W

2;p
# .Q/

� ı, then every variational solution h to
(3-1) according to Definition 3.17, with initial datum h0, exists for all times and kh. � ; t/�dk

W
2;p

# .Q/
! 0

as t !C1.

We start by showing that, if a variational solution to (3-1) exists for all times, then there exists a sequence
ftng � .0;C1/, with tn!1, such that h. � ; tn/ converges to a critical profile (see Definition 3.8).

Proposition 4.11. Assume that for a certain initial datum h0 2W
2;p

# .Q/ there exists a global-in-time
variational solution h. Then there exists a sequence ftng � .0;C1/ nZ0, where Z0 is the set in (3-54),
and a critical profile Nh for F such that tn!1 and h. � ; tn/! Nh strongly in W

2;p
# .Q/.

Proof. From (3-3), by lower semicontinuity we have thatZ 1
0





@h@t




2

H�1.Q/

dt � CF.h0;u0/:

Since the set Z0 has measure zero, we may find a sequence ftng � .0;C1/ nZ0, tn!1, such that
k@h. � ; tn/=@tkH�1.Q/!0. Since h2L1.0;1IW

2;p
# .Q//\H 1.0;1IH�1

# .Q//, setting hnDh. � ; tn/

we may also assume that there exists Nh 2 W
2;p

# .Q/ such that hn * Nh weakly in W
2;p

# .Q/. In turn,
denoting by uhn the corresponding elastic equilibria, by elliptic regularity (see also Lemma A.1 ) we have
that uhn. � ; hn. � //! u Nh. � ;

Nh. � // in C
1;˛
# .QIR3/. Let Ovn be the unique Q-periodic solution to (3-59)

with t D tn and note that Ovn ! 0 in H 1
# .Q/, since k@h. � ; tn/=@tkH�1.Q/ ! 0. Writing the equation

satisfied by hn as in (3-22), we have, for all ' 2 C 2
# .Q/ with

R
Q ' dx D 0,Z

Q

W
�
E
�
uhn.x; hn.x//

��
' dxC

Z
Q

D .�Dhn; 1/ � .�D'; 0/ dxC
"

p

Z
Q

jH n
j
p Dhn �D'

J n

� "

Z
Q

jH n
j
p�2H n

�
�' �

D2'ŒDhn;Dhn�

.J n/2
�
�hnDhn �D'

.J n/2

� 2
D2hnŒDhn;D'�

.J n/2
C 3

D2hnŒDhn;Dhn�Dhn �D'

.J n/4

�
dx

�

Z
Q

Ovn' dx D 0; (4-19)
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where H n stands for the sum of the principal curvatures of hn and J n D
p

1CjDhnj2. Arguing exactly
as in the proof of Theorem 3.11 (see (3-30)), we deduce thatZ

Q

jD2.jH n
j
p�2H n/j2 dx � C

Z
Q

.1C . Ovn/2/ dx (4-20)

for some constant C independent of n. Thus, passing to a subsequence, if necessary, we may also assume
that there exists w 2 H 2

# .Q/ such that jH njp�2H n * w weakly in H 2
# .Q/ and jH njp�2H n ! w

strongly in H 1
# .Q/. Since H 1

# .Q/ is continuously embedded in Lq.Q/ for every 1 � q <1 by the
Sobolev embedding theorem, there exists z 2L1.Q/ such that jH njp! z in L1.Q/. The same argument
used at the end of the proof of Corollary 3.15 shows that z D jH jp and w D jH jp�2H , where H is the
sum of the principal curvatures of Nh.

Using all the convergences proved above, and arguing as in the proof of Theorem 3.16, we may pass
to the limit in (4-19), thus getting that Nh is a critical profile by Remark 3.12. �

Lemma 4.12. Assume that (4-9) and (4-10) hold. Then there exist � > 0 and c0 > 0 such that

@2G.h;uh/Œ'�� c0k'k
2

H 1
# .Q/

for all ' 2 zH 1
# .Q/

provided kh� dk
C

2;˛
# .Q/

� � , where zH 1
# .Q/ is defined in (4-5).

Proof. Throughout this proof, with a slight abuse of notation, we denote by C the tensor acting on a
generic 3� 3 matrix M as CM WD C.M CM T /=2. Let m0 be the positive constant defined in (4-13).
We claim that there exists � > 0 such that

inff@2G.h;uh/Œ'� W ' 2 zH
1
# .Q/; k'kH 1

# .Q/
D 1g � 1

2
m0

whenever kh� dk
C

2;˛
# .Q/

� � . Indeed, if not, then there exist two sequences fhng � C
2;˛
# .Q/ with

hn! d in C
2;˛
# .Q/ and f'ng �

zH 1
# .Q/ with k'nkH 1

# .Q/
D 1 such that

@2G.hn;uhn
/Œ'n� <

1
2
m0: (4-21)

Set
�n WD

'n
p

1CjDhnj
2
ı�; (4-22)

where we recall that �.x;y/D x. Let v�n
be the unique solution in A.�hn

/— see (4-4) — toZ
�hn

CE.v�n
/ WE.w/ dz D

Z
�hn

Div�hn
.�nCE.uhn

// �w dH2 for all w 2A.�hn
/ (4-23)

and let v'n
be the unique solution in A.�d / toZ

�d

CE.v'n
/ WE.w/ dz D

Z
�d

Div�d
.'nCE.ud // �w dH2 for all w 2A.�d /: (4-24)

Observe that (see, e.g., Lemma A.1)

kDiv�hn
.�n CE.uhn

//kL2.�hn /
� Ck'nkH 1

# .Q/
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for some constant C > 0 depending only on

sup
n

�
kCE.uhn

/kC 1.�hn /
CkhnkC 2

# .Q/

�
and thus independent of n. Therefore, choosing w D v�n

in (4-23), and using Korn’s inequality, we
deduce that

sup
n
kv�n
kH 1.�hn /

<C1: (4-25)

The same bound holds for the sequence fv'n
g.

Next we show that Z
�hn

W .E.v�n
// dz�

Z
�d

W .E.v'n
// dz �! 0 (4-26)

as n!1. Consider a sequence fˆng of diffeomorphismsˆn W�d!�hn
such thatˆn�Id is Q-periodic

with respect to x, ˆn.x;y/D .x;yCd �hn.x// in a neighborhood of �d , and kˆn� Id kC 2;˛.�d IR
3/ �

Ckhn� dk
C

2;˛
# .Q/

! 0. Set wn WD v�n
ıˆn. Changing variables, we get that wn 2A.�d / satisfiesZ

�d

AnDwn WDw dz D

Z
�d

�
Div�hn

.�nCE.uhn
// ıˆn

�
�wJˆn

dH2 (4-27)

for every w 2A.�d /, where Jˆn
stands for the .N�1/-Jacobian ofˆn and the fourth-order tensor-valued

functions An satisfy An! C in C 1;˛.�d /. We claim thatZ
�d

W .E.wn� v'n
// dz �! 0 (4-28)

as n ! 1. Note that this would immediately imply
R
�d

W .E.wn// dz �
R
�d

W .E.v'n
// dz ! 0

and, in turn, taking also into account that An ! C uniformly and that 1
2

R
�d

AnDwn W Dwn dz DR
�hn

W .E.v�n
// dz, claim (4-26) would follow. In order to prove (4-28), we writeZ

�d

CD.v'n
�wn/ WD.v'n

�wn/ dz

D

Z
�d

CDv'n
WD.v'n

�wn/ dz�

Z
�d

.C�An/Dwn WD.v'n
�wn/ dz�

Z
�d

AnDwn WD.v'n
�wn/ dz

D

Z
�d

Div�d
.'nCE.ud // � .v'n

�wn/ dH2
�

Z
�d

.C�An/Dwn WD.v'n
�wn/ dz

�

Z
�d

�
Div�hn

.�nCE.uhn
// ıˆn

�
� .v'n

�wn/Jˆn
dH2

DW I1� I2� I3;

where we used (4-24) and (4-27). From (4-25), the analogous bound for the sequence fv'n
g, and the

uniform convergence of An to C we deduce that I2 tends to 0.
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Fix �D .�1; �2; �3/2C 1
# .�d IR

3/'C 1
# .QIR

3/. Using the fact that ˆ�1
n .x;y/D .x;y�hn.x/Cd/

in a neighborhood of �hn
, we have

D�hn
.�j ıˆ

�1
n /D .I � �hn

˝ �hn
/D�d

�j ıˆ
�1
n ;

where we set �hn
WD .�Dhn; 1/=

p
1CjDhnj

2. Using this fact, we then have, by repeated integrations
by parts and changes of variables,Z
�d

�
Div�hn

.�nCE.uhn
//ıˆn

�
��Jˆn

dH2
D

Z
�hn

Div�hn
.�nCE.uhn

//��ıˆ�1
n dH2

D�

Z
�hn

�nCE.uhn
/ WD�hn

.�ıˆ�1
n / dH2

D�

Z
�hn

.I��hn
˝�hn

/�nCE.uhn
/ WD�d

�ıˆ�1
n dH2

D�

Z
�d

Œ.I��hn
˝�hn

/�nCE.uhn
/�ıˆn WD�d

�Jˆn
dH2

D

Z
�d

Div�d

�
Œ.I��hn

˝�hn
/�nCE.uhn

/�ıˆnJˆn

�
�� dH2:

Hence, we may rewrite

I1� I3 D

Z
�d

Div�d
gn � .v'n

�wn/ dH2; (4-29)

where, by (4-22),

gn :D 'nCE.ud /� Œ.I � �hn
˝ �hn

/�nCE.uhn
/� ıˆnJˆn

D 'n

�
CE.ud /� Œ.I � �hn

˝ �hn
/CE.uhn

/� ıˆn
Jˆn

p
1CjDhnj

2

�
:

Since hn! d in C
2;˛
# .Q/, by standard Schauder estimates for the elastic displacements uhn

we get

CE.ud /� Œ.I � �hn
˝ �hn

/CE.uhn
/� ıˆn

Jˆn
p

1CjDhnj
2
�! 0 in C 1;˛.�d /:

Therefore, by (4-29) and the equiboundedness of fv�n
g and fwng, we have that I1 � I3 ! 0. This

concludes the proof of (4-28) and, in turn, of (4-26).
Finally, again from the C 2;˛-convergence of fhng to d and the fact that

@�
�
W .E.uhn

/
�
ıˆn �! @�

�
W .E.ud //

�
in C

0;˛
# .�d /

by standard Schauder elliptic estimates, recalling (4-7) we easily infer that�
@2G.hn;uhn

/Œ'n�C2

Z
�hn

W .E.v�n
// dz

�
�

�
@2G.d;ud /Œ'n�C2

Z
�d

W .E.v'n
// dz

�
�!0 (4-30)

as n!1. Thus, recalling (4-26), we also have

@2G.hn;uhn
/Œ'n�� @

2G.d;ud /Œ'n� �! 0
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and, in turn, by (4-21)

lim sup @2G.d;ud /Œ'n��
1
2
m0;

which is a contradiction to (4-13). This concludes the proof of the lemma. �

Next we prove that .d;ud / is an isolated critical pair.

Proposition 4.13. Assume that (4-9) and (4-10) hold. Then there exists � > 0 such that, if .h;uh/ 2 X

with j�hj D j�d j and 0< kh� dk
W

2;p
# .Q/

� � , then .h;uh/ is not a critical pair.

Proof. Assume by contradiction that there exists a sequence hn ! d in W
2;p

# .Q/ with hn ¤ d

and j�hn
j D j�d j such that .hn;uhn

/ is a critical pair. Using the Euler–Lagrange equation and arguing
as in the proof of Theorem 3.11, one can show thatZ

Q

ˇ̌
D2.jHnj

p�2Hn/
ˇ̌2

dx � C

Z
Q

�
jD2hnj

2
jD.jHnj

p�2Hn/j
2
CjHnj

2.pC1/
C 1

�
dx:

Indeed, this can obtained in the same way as (3-29), taking into account that there is no contribution from
the time derivative. From this inequality, arguing exactly as in the final part of the proof of Theorem 3.11
we deduce that Z

Q

ˇ̌
D2.jHnj

p�2Hn/
ˇ̌2

dx � C

for some C independent of n. In particular, by the Sobolev embedding theorem, fjHnj
p�2Hng is

bounded in C
0;ˇ
# .Q/ for every ˇ 2 .0; 1/. Hence, fHng is bounded in C

0;ˇ
# .Q/ for all ˇ 2 .0; 1=.p�1//.

In turn, by (2-3) and standard elliptic regularity this implies that fhng is bounded in C
2;ˇ
# .Q/ for

all ˇ 2 .0; 1=.p � 1// and thus hn! d in C 2;ˇ.Q/ for all such ˇ. Since .d;ud / is a critical pair (see
Remark 4.4),

d

ds
F.d C s.hn� d/;udCs.hn�d//

ˇ̌̌
sD0
D 0;

and so by (4-6) to reach a contradiction it is enough to show that, for n large,

d2

ds2
F.d C s.hn� d/;udCs.hn�d//

ˇ̌̌̌
sDt

D @2G.hn;t ;uhn;t
/Œhn� d �

�

Z
�hn;t

�
W .E.uhn;t

//CH
 

hn;t

�
Div�hn;t

�
.Dhn;t ; jDhn;t j

2/.hn;t � d/2

.1CjDhn;t j/
3
2

ı�

�
dH2

C "
d2

ds2
Wp.d C s.hn� d//

ˇ̌̌̌
sDt

> 0

for all t 2 .0; 1/, where hn;t WD d C t.hn� d/, H
 

hn;t
is defined as in (4-3) with h replaced by hn;t , and

Wp.h/ WD

Z
�h

jH jp dH2:
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To this purpose note that, since hn! d in C 2;ˇ, by Lemma A.1 we have

sup
t2.0;1/

kW .E.uhn;t
//CH 

�WdkL1.�hn;t
/! 0

as n!1, where Wd is the constant value of W .E.ud // on �d (see Remark 4.4). Therefore, also by
Lemma 4.12, we deduce that

@2G.hn;t ;uhn;t
/Œhn�d ��

Z
�hn;t

�
W .E.uhn;t

//CH
 

hn;t

�
Div�hn;t

�
.Dhn;t ; jDhn;t j

2/.hn;t � d/2

.1CjDhn;t j/
3
2

ı�

�
dH2

D @2G.hn;t ;uhn;t
/Œhn� d �

�

Z
�hn;t

�
W .E.uhn;t

//CH
 

hn;t
�Wd

�
Div�hn;t

�
.Dhn;t ; jDhn;t j

2/.hn;t � d/2

.1CjDhn;t j/
3
2

ı�

�
dH2

� c0khn�dk2
H 1

# .Q/
�CkW .E.uhn;t

//CH
 

hn;t
�WdkL1.�hn;t

/khn�dk2
H 1

# .Q/
�

1
2
c0khn�dk2

H 1
# .Q/

for n large and for some constant c0 > 0 independent of n, where we used the facts thatZ
�hn;t





Div�hn;t

�
.Dhn;t ; jDhn;t j

2/.hn;t � d/2

.1CjDhn;t j/
3
2

ı�

�



 dH2
� CkhnkC 2

# .Q/
khn� dk2

H 1
# .Q/

and that hn! d in C 2;ˇ.Q/.
Since

Wp.d C t.hn� d//D tp

Z
Q

ˇ̌̌̌
Div

Dhn
p

1C t2jDhnj
2

ˇ̌̌̌p
dx DW fn.t/;

in order to conclude it is enough to show that f 00n .t/� 0 for all t 2 .0; 1/. Set

gn.x; t/ WD

ˇ̌̌̌
Div

Dhn.x/
p

1C t2jDhn.x/j
2

ˇ̌̌̌2
so that

f 00n D

Z
Q

h
p.p�1/tp�2g

p
2
n Cp2tp�1g

p�2
2

n @tgnC
p
2

tp
��p

2
�1
�
g

p�4
2

n .@tgn/
2
Cg

p�2
2

n @t tgn

�i
dx: (4-31)

On the other hand, observe that

gn D
j�hnj

2

1C t2jDhnj
2
C t4 jD

2hnŒDhn;Dhn�j
2

.1C t2jDhnj
2/3

� 2t2 D2hnŒDhn;Dhn��hn

.1C t2jDhnj
2/2

so that, for n large,

gn �
1
2
j�hnj

2
�C jD2hnj

2
jDhnj

2 and j@tgnjC j@t tgnj � C jD2hnj
2
jDhnj

2:

We then deduce from (4-31) that there exist C0, C1 > 0 independent of n and t 2 .0; 1/ such that

f 00n .t/� C0

Z
Q

j�hnj
p dx�C1kDhnk

p
1

Z
Q

jD2hnj
p dx:
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Since kDhnk1 ! 0, by Lemma A.3 we conclude that the right-hand side in the above inequality is
nonnegative for n large, thus concluding the proof of the proposition. �

Finally, we prove the main result of this section, namely, the asymptotic stability of the flat configuration
(see Definition 4.10).

Theorem 4.14. Under the assumptions of Theorem 4.8, .d;ud / is asymptotically stable.

Proof. By Proposition 4.13 there exists � > 0 such that, if h is a critical profile with j�hj D j�d j and
kh� dk

W
2;p

# .Q/
� � , then hD d . In view of Theorem 4.1 we may take � so small that

F.d;ud / < F.k;uk/ for all .k;uk/ 2X with 0< kk � dk
W

2;p
# .Q/

� �: (4-32)

Since .d;ud / is Liapunov stable by Theorem 4.8, for every fixed .h0;u0/ 2X with j�h0
j D j�d j and

kh0� dk
W

2;p
# .Q/

� ı.�/, we have

kh. � ; t/� dk
W

2;p
# .Q/

� � for all t > 0: (4-33)

Here ı.�/ is the number given in Definition 4.6. We claim that

F.h. � ; t/;uh. � ; t// �! F.d;ud / as t !C1: (4-34)

By Proposition 4.11 there exists a sequence ftng � .0;C1/ nZ0 such that tn !C1 and fh. � ; tn/g
converges to a critical profile in W

2;p
# .Q/, where Z0 is the set in (3-54). In view of the choice of � and

by (4-33), we conclude that h. � ; tn/! d in W
2;p

# .Q/.
In particular, F.h. � ; tn/;uh. � ;tn// ! F.d;ud /. Then, by (3-54), F.h. � ; t/;uh. � ; t// ! F.d;ud /

as t!C1, t 62Z0. On the other hand, for t 2Z0 we have that F.h. � ; t/;uh. � ; t//�F.h. � ; �/;uh. � ; �//

for all � < t , � 62Z0, by (3-55). Therefore,

lim sup
t!C1;t2Z0

F.h. � ; t/;uh. � ; t//� F.d;ud /:

Recalling (4-32), we finally obtain (4-34). In turn, reasoning as in the proof of Theorem 4.7 (see (4-17)),
it follows from (4-32) and (4-33) that, for every sequence fsng � .0;C1/ with sn!C1, there exists a
subsequence such that fh. � ; sn/g converges to d in W

2;p
# .Q/. This implies that h. � ; t/! d in W

2;p
# .Q/

as t !C1 and concludes the proof. �

4C. The two-dimensional case. As remarked in the introduction, the arguments presented in the previous
subsections apply to the two-dimensional version of (3-1), with p D 2, studied in [Fonseca et al. 2012],
with

V D
�
.g�� Cg/kCW .E.u//� "

�
k�� C

1
2
k3
��
��
: (4-35)

Here V denotes the outer normal velocity of �h. � ;t/, k is its curvature, W .E.u// is the trace of
W
�
E.u. � ; t//

�
on �h. � ;t/, with u. � ; t/ the elastic equilibrium in �h. � ;t/ under the conditions that

Du. � ;y/ is b-periodic and u.x; 0/D e0.x; 0/ for some e0 > 0; and . � /� stands for tangential differenti-
ation along �h. � ;t/. The constant e0 > 0 measures the lattice mismatch between the elastic film and the
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(rigid) substrate. Moreover, g W Œ0; 2��! .0;C1/ is defined as

g.�/D  .cos �; sin �/ (4-36)

and is evaluated at arg.�. � ; t//, where �. � ; t/ is the outer normal to �h. � ;t/. The underlying energy
functional is then given by

F.h;u/ WD

Z
�h

W .E.u// dzC

Z
�h

�
 .�/C 1

2
"k2

�
dH1:

In the two-dimensional framework, given b > 0 we search for b-periodic solutions to (4-35). A local-in-
time b-periodic weak solution to (4-35) is a function h 2H 1.0;T0IH

�1
# .0; b//\L1.0;T0IH

2
# .0; b//

such that:

(i) .g�� Cg/kCW .E.u//� "
�
k�� C

1
2
k3
�
2L2.0;T0IH

1
# .0; b//,

(ii) for almost every t 2 Œ0;T0�,

@h

@t
D J

�
.g�� Cg/kCQ.E.u//� "

�
k�� C

1
2
k3
��
��

in H�1
# .0; b/:

Given .h0;u0/ with h0 2H 2
# .0; b/, h0 > 0, and u0 the corresponding elastic equilibrium, local-in-time

existence of a unique weak solution with initial datum .h0;u0/ has been established in [Fonseca et al.
2012]. The Liapunov and asymptotic stability analysis of the flat configuration established in Sections 4A
and 4B extends to the two-dimensional case, where, in addition, the range of those d under which (4-10)
holds can be analytically determined for isotropic elastic energies of the form

W .�/ WD �j�j2C 1
2
�.trace �/2:

In the above formula, the Lamé coefficients � and � are chosen to satisfy the ellipticity conditions � > 0

and �C�> 0; see [Fusco and Morini 2012; Bonacini 2013a]. The stability range of the flat configuration
depends on �, �, and the mismatch constant e0 appearing in the Dirichlet condition u.x; 0/D e0.x; 0/.
For the reader’s convenience, we recall the results. Consider the Grinfeld function K defined by

K.y/ WDmax
n2N

1

n
J.ny/; y � 0; (4-37)

where

J.y/ WD
yC .3� 4�p/ sinh y cosh y

4.1� �p/2Cy2C .3� 4�p/ sinh2 y
;

and �p is the Poisson modulus of the elastic material, i.e.,

�p WD
�

2.�C�/
: (4-38)

It turns out that K is strictly increasing and continuous, K.y/� Cy, and limy!C1K.y/D 1 for some
positive constant C . We also set, as in the previous subsections,

G.h;u/ WD

Z
�h

W .E.u// dzC

Z
�h

 .�/ dH1:
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Combining [Fusco and Morini 2012, Theorem 2.9] and [Bonacini 2013a, Theorem 2.8] with the results
of the previous subsection, we obtain the two-dimensional asymptotic stability of the flat configuration.

Theorem 4.15. Assume @2
11
 .0; 1/ > 0 and define

B D
�

4

.2�C�/@2
11
 .0; 1/

e2
0
�.�C�/

:

Let dloc W .0;C1/! .0;C1� be defined as dloc.b/ WD C1 if 0< b � B, and as the solution to

K

�
2�dloc.b/

b

�
D

B

b
(4-39)

otherwise. Then the second variation of G at .d;ud / is positive definite, i.e.,

@2G.d;ud /Œ'� > 0 for all ' 2H 1
# .0; b/ n f0g with

Z b

0

' dx D 0;

if and only if 0 < d < dloc.b/. In particular, for all d 2 .0; dloc.b// the flat configuration .d;ud / is
asymptotically stable.

Appendix

A1. Regularity results. In this subsection we collect a few regularity results that have been used in the
previous sections. We start with the following elliptic estimate, whose proof is essentially contained in
[Fonseca et al. 2012, Lemma 6.10].

Lemma A.1. Let M > 0, c0 > 0. Let h1, h2 2 C
1;˛
# .Q/ for some ˛ 2 .0; 1/, with khikC 1;˛

# .Q/
�M

and hi � c0, D i D 1; 2, and let u1 and u2 be the corresponding elastic equilibria in �h1
and �h2

,
respectively. Then,

E

�
u1. � ; h1. � //

�
�E

�
u2. � ; h2. � //

�


C

1;˛
# .Q/

� Ckh1� h2kC 1;˛
# .Q/

(A-1)

for some constant C > 0 depending only on M , c0, and ˛.

The following lemma is probably well known to the experts, however for the reader’s convenience we
provide a proof.

Lemma A.2. Let p > 2, u 2L
p

p�1 .Q/ such thatZ
Q

u AD2' dxC

Z
Q

b �D'C

Z
Q

c' dx D 0 for all ' 2 C1# .Q/ with
Z

Q

' dx D 0;

where A 2W
1;p

# .QIM2�2
sym / satisfies standard uniform ellipticity conditions (see (A-6)), b 2L1.QIR2/,

and c 2L1.Q/. Then u 2Lq.Q/ for all q 2 .1; 2/. Moreover, if b, u Div A 2Lr .QIR2/ and c 2Lr .Q/

for some r > 1, then u 2W
1;r

# .Q/.
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Proof. We only prove the first assertion, since the other one can be proven using similar arguments.
Denote by A", u", b", and c" the standard mollifications of A, u, b, and c, and let v" 2 C1# .Q/ be the
unique solution to the problem�R

Q.A"Dv"Cu" Div A"� b"/ �D' dx�
R

Q c"' dx D 0 for all ' 2 C 1
# .Q/;

R
Q ' dx D 0;R

Q v" dx D
R

Q u dx:

Denoting by G" the Green’s function associated with the elliptic operator

�Div.A"Du/

it is known [Dong and Kim 2009, Equation (3.66); Grüter and Widman 1982, Equation (1.6)] that for all
q 2 Œ1; 2/ and for all x 2Q we have

kDyG".x; � /kLq.Q/ � C;

with C depending only on the ellipticity constants and q and not on ". Since

v".x/D

Z
Q

G".x;y/Œ�Div.u" Div A"�b"/Cc"� dyD

Z
Q

Œ.u" Div A"�b"/�DyG".x;y/CG".x;y/c"� dy;

it follows by standard properties of convolution that for all q 2 .1; 2/ there exists C > 0, depending only
on q and the L1-norms of u" Div A", b", c", and hence on the L1-norms of b, c, the Lp=.p�1/ norm of
u, and the W 1;p norm of A, such that kv"kLq.Q/ � C for " sufficiently small. Thus, we may assume (up
to subsequences) that v"*v weakly in Lq.Q/, where v solvesZ

Q

vAD2' dxC

Z
Q

.vDiv A�u Div AC b/ �D' dxC

Z
Q

c' dx D 0 (A-2)

for all ' 2 C 2
# .Q/ with

R
Q ' dx D 0, and satisfiesZ

Q

v dx D

Z
Q

u dx: (A-3)

Since by assumption u solves the problem (A-2)–(A-3), it is enough to show that the problem admits a
unique solution. Let v1 and v2 be two solutions and set w WD v2� v1. Then, we haveZ

Q

wAD2' dxC

Z
Q

wDiv A �D' dx D 0 (A-4)

for all ' 2 C 2
# .Q/ with

R
Q ' dx D 0. Let g 2 C 1

# .Q/ with
R

Q g dx D 0 and denote by 'g the unique
solution in W

1;2
# .Q/ to the equation Div.AŒD'g�/D g such that

R
Q 'g dx D 0. By a standard elliptic

regularity argument and using the fact that A 2W
1;p

# .QIM2�2
sym / for p > 2 it follows that 'g 2W

2;2
# .Q/.

Therefore, setting f WD g�Div A �D'g, we have that AD2'g D f and that f 2Ls.Q/ for all s 2 .1;p/.
Thus, we may apply Lemma A.3 to get that 'g 2W

2;s
# .Q/ for all s 2 .1;p/. In turn, this implies that

f 2Lp.Q/ and Lemma A.3 again yields that 'g 2W
2;p

# .Q/. Therefore 'g is an admissible test function
for equation (A-4) and thus we deduce that

R
Qwg dx D 0 for all g 2 C 1

# .Q/ with
R

Q g dx D 0. This
implies that w is constant and, in turn, w � 0 since

R
Qw dx D 0. �
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In the next lemma we denote by Lu an elliptic operator of the form

Lu WD
X
ij

aij .x/Dij uC
X

i

bi.x/Diu; (A-5)

where all the coefficients are Q-periodic functions, the aij are continuous, and the bi are bounded.
Moreover, there exist �, ƒ> 0 such that

ƒj�j2 �
X
ij

aij .x/�i�j � �j�j
2 for all � 2 R2;

X
i

jbi j �ƒ: (A-6)

Lemma A.3. Let p � 2. Then, there exists C > 0 such that for all u 2W
2;p

# .Q/ we have

kD2ukLp.Q/ � CkLukLp.Q/;

where L is the differential operator defined in (A-5). The constant C depends only on p, �, ƒ and the
moduli of continuity of the coefficients aij .

Proof. We argue by contradiction, assuming that there exists a sequence fuhg �W
2;p

# .Q/, a modulus of
continuity !, and a sequence of operators fLhg as in (A-5), with periodic coefficients ah

ij , bh
i satisfying

(A-6) and
jah

ij .x1/� ah
ij .x2/j � !.jx1�x2j/

for all x1, x2 2Q, such that
kD2uhkLp.Q/ � hkLhuhkLp.Q/:

By homogeneity we may assume that

kD2uhkLp.Q/ D 1 for all h 2 N: (A-7)

Recall that, by periodicity, Z
Q

Duh dx D 0:

Moreover, by adding a constant if needed, we may also assume that
R

Q uh dx D 0. Therefore, by
Poincaré’s inequality and up to a subsequence, uh * u weakly in W

2;p
# .Q/. Moreover, we may also

assume that there exist aij and bi satisfying (A-6) such that

ah
ij ! aij uniformly in Q and bh

i
�* bi weakly* in L1.Q/:

Since kLhuhkLp.Q/! 0, we have that u is a periodic function satisfying LuD 0, where L is the operator
associated with the coefficients aij and bi . Thus, by the maximum principle [Gilbarg and Trudinger
1983, Theorem 9.6] u is constant, and thus uD 0. On the other hand, by elliptic regularity (see [ibid.,
Theorem 9.11]) there exists a constant C > 0 depending on p, �, ƒ, and ! such that

kD2uhkLp.Q/ � C.kuhkW 1;p.Q/CkLhuhkLp.Q//:

Since the right-hand side vanishes, we reach a contradiction to (A-7). �
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A2. Interpolation results.

Theorem A.4. Let � � Rn be a bounded open set satisfying the cone condition. Let 1 � p �1 and
j , m be two integers such that 0� j �m and m� 1. Then there exists C > 0 such that

kDjf kLp.�/ � C.kDmf k
j
m

Lp.�/
kf k

m�j
m

Lp.�/
Ckf kLp.�// (A-8)

for all f 2W m;p.�/. Moreover, if � is a cube, f 2W
m;p

# .�/ and, if either f vanishes at the boundary
or
R
� f dx D 0, then (A-8) holds in the stronger form

kDjf kLp.�/ � CkDmf k
j
m

Lp.�/
kf k

m�j
m

Lp.�/
: (A-9)

Proof. Inequality (A-8) follows by combining inequalities (1) and (3) in [Adams and Fournier 2003,
Theorem 5.2]. If � is a cube, f is periodic and, if either f vanishes at the boundary or

R
� f dx D 0,

then inequality (A-9) follows by observing that

kf kW m;p.�/ � CkDmf kLp.�/;

as a straightforward application of the Poincaré inequality. �

The next interpolation result is obtained by combining [Adams and Fournier 2003, Theorem 5.8]
with (A-8).

Theorem A.5. Let � � Rn be a bounded open set satisfying the cone condition. If mp > n, let
1 � p � q � 1; if mp D n, let 1 � p � q < 1; if mp < n, let 1 � p � q � np=.n �mp/. Then
there exists C > 0 such that

kf kLq.�/ � C.kDmf k�Lp.�/kf k
1��
Lp.�/Ckf kLp.�// (A-10)

for all f 2W m;p.�/, where � WD n=.mp/� n=.mq/. Moreover, if � is a cube, f 2W
m;p

# .�/ and, if
either f vanishes at the boundary or

R
� f dx D 0, then (A-10) holds in the stronger form

kf kLq.�/ � CkDmf k�Lp.�/kf k
1��
Lp.�/: (A-11)

Combining Theorems A.4 and A.5, and arguing as in the proof of [Fonseca et al. 2012, Theorem 6.4],
we have the following theorem:

Theorem A.6. Let � � Rn be a bounded open set satisfying the cone condition. Let s, j , and m be
integers such that 0 � s � j � m. Let 1 � p � q <1 if .m� j /p � n, and let 1 � p � q � 1 if
.m� j /p > n. Then, there exists C > 0 such that

kDjf kLq.�/ � C.kDmf k�Lp.�/kD
sf k1��Lp.�/CkD

sf kLp.�// (A-12)

for all f 2W m;p.�/, where

� WD
1

m�s

�
n

p
�

n

q
C j � s

�
:
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Moreover, if � is a cube, f 2W
m;p

# .�/ and, if either f vanishes at the boundary or
R
� f dx D 0, then

(A-12) holds in the stronger form

kDjf kLq.�/ � CkDmf k�Lp.�/kD
sf k1��Lp.�/: (A-13)

Finally, we conclude with an interpolation estimate involving the H�1-norm; see Remark 3.3.

Lemma A.7. There exists C > 0 such that, for all f 2H 1
# .Q/ with

R
Q f dx D 0, we have

kf kL2.Q/ � CkDf k
1
2

L2.Q/
kf k

1
2

H�1
# .Q/

:

Similarly, there exists C > 0 such that, for all f 2H 2
# .Q/ with

R
Q f dx D 0, we have

kf kL2.Q/ � CkD2f k
1
3

L2.Q/
kf k

2
3

H�1
# .Q/

:

Proof. Let w be the unique Q-periodic solution to�
��w D f in Q;R

Qw dx D 0:

Combining Lemma A.3 with (A-9) we obtain

kf kL2.Q/ D k�wkL2.Q/ � CkD2wkL2.Q/ � CkD3wk
1
2

L2.Q/
kDwk

1
2

L2.Q/

� Ck�.Dw/k
1
2

L2.Q/
kDwk

1
2

L2.Q/
D CkDf k

1
2

L2.Q/
kf k

1
2

H�1
# .Q/

:

The second inequality of the statement is proven similarly. �
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