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EXPONENTIAL CONVERGENCE TO EQUILIBRIUM
IN A COUPLED GRADIENT FLOW SYSTEM MODELING CHEMOTAXIS

JONATHAN ZINSL AND DANIEL MATTHES

We study a system of two coupled nonlinear parabolic equations. It constitutes a variant of the Keller–
Segel model for chemotaxis; i.e., it models the behavior of a population of bacteria that interact by means
of a signaling substance. We assume an external confinement for the bacteria and a nonlinear dependency
of the chemotactic drift on the signaling substance concentration.

We perform an analysis of existence and long-time behavior of solutions based on the underlying
gradient flow structure of the system. The result is that, for a wide class of initial conditions, weak
solutions exist globally in time and converge exponentially fast to the unique stationary state under
suitable assumptions on the convexity of the confinement and the strength of the coupling.

1. Introduction

1A. The equations and their variational structure. This paper is concerned with existence and long-time
behavior of weak nonnegative solutions to the initial value problem

∂t u(t, x)= div
(
u(t, x)D[u(t, x)+W (x)+ εφ(v(t, x))]

)
, (1)

∂tv(t, x)=1v(t, x)− κv(t, x)− εu(t, x)φ′(v(t, x)), (2)

u(0, x)= u0(x)≥ 0, v(0, x)= v0(x)≥ 0, (3)

where the sought functions u and v are defined for (t, x) ∈ [0,∞)×R3. Below, we comment in detail on
the origin of (1)–(2) from mathematical biology. In brief, u is the spatial density of bacteria that interact
with each other by means of a signaling substance of local concentration v.

In (1)–(2), ε and κ are given positive constants; we are mainly concerned with the case where the
coupling strength ε is sufficiently small. Strict positivity of κ is essential for our approach, as explained
below. The response function φ ∈ C2([0,∞)) is assumed to be convex and strictly decreasing, with

0<−φ′(w)≤−φ′(0) <∞, 0≤ φ′′(w)≤ φ′′ <∞ for all w ≥ 0 (4)
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for an appropriate constant φ′′ ≥ 0, the paradigmatic examples being

φ(w)=−w (classical Keller–Segel model), (5)

φ(w)=− log(1+w) (weak saturation effect), (6)

φ(w)=
1

1+w
(strong saturation effect). (7)

The external potential W ∈C2(R3) is assumed to grow quadratically: it has globally bounded second-order
partial derivatives and is uniformly convex with a constant λ0 > 0, that is,

D2W (x)≥ λ01 for all x ∈ R3 in the sense of symmetric matrices. (8)

Without loss of generality, we may assume that W ≥ 0.
Equations (1)–(2) possess a variational structure. Formally, they can be written as a gradient flow of

the entropy functional

H(u, v) :=
∫

R3

( 1
2 u2
+ uW + 1

2 |Dv|
2
+

1
2κv

2
+ εuφ(v)

)
dx

with respect to a metric dist, defined on the space X := P2(R
3)× L2

+
(R3) by

dist((u1, v1), (u2, v2)) :=

√
W2

2 (u1, u2)+‖v1− v2‖
2
L2(R3)

for (u1, v1), (u2, v2) ∈ X . (9)

Here W2 is the L2-Wasserstein metric on the space P2(R
3) of probability measures on R3 with finite

second moment; see Section 2A for the definition. This gradient flow structure is at the basis of our
proof for global existence of weak solutions to (1)–(3), and it is also the key element for our analysis of
long-time behavior. We remark that, even with this variational structure at hand, the analysis is far from
trivial since H is not convex along geodesics. Therefore, the established general theory on λ-contractive
gradient flows in metric spaces [Ambrosio et al. 2008] is not directly applicable.

1B. Statement of the main results. In the first part of this work, we show that a weak solution to
(1)–(2) can be obtained by means of the time-discrete implicit Euler approximation (also known as
minimizing movement or the JKO scheme). More precisely, for each sufficiently small time step τ > 0, let
(u0
τ , v

0
τ ) := (u0, v0), and then define inductively for each n ∈ N

(un
τ , v

n
τ ) ∈ argmin

(u,v)∈P2(R3)×L2(R3)

(
1

2τ
dist

(
(u, v), (un−1

τ , vn−1
τ )

)2
+H(u, v)

)
. (10)

We will prove in Section 4A that this construction is well defined, i.e., that a minimizer exists for every
n ∈ N. Further, introduce the piecewise-constant interpolation (uτ , vτ ) : R+→ P2(R

3)× L2(R3) by

uτ (t)= un
τ , vτ (t)= vn

τ for all t ∈ ((n− 1)τ, nτ ]. (11)

Our existence result — which does not require a small coupling strength ε— reads as follows.

Theorem 1.1 (existence of weak solutions to (1)–(2)). Let κ > 0 and ε > 0 be given, and assume that the
response function φ satisfies (4) and that the convex confinement potential W grows quadratically.
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Let further initial conditions u0 ∈ P2(R
3) ∩ L2(R3) and v0 ∈ W 1,2(R3) be given, with v0 ≥ 0, and

define for each τ > 0 a function (uτ , vτ ) by means of the scheme (10) and (11). Then there is a sequence
(τk)k∈N with τk ↓ 0 such that (uτk , vτk ) converges to a weak solution (u, v) : [0,∞)×R3

→ [0,∞]2 of
(1)–(3) in the following sense:

uτk (t)→ u(t) narrowly in P(R3), pointwise with respect to t ∈ [0, T ],

vτk (t)→ v(t) in L2(R3), uniformly with respect to t ∈ [0, T ],

u ∈ C1/2([0, T ],P2(R
3))∩ L∞([0, T ], L2(R3))∩ L2([0, T ],W 1,2(R3)),

v ∈ C1/2([0, T ], L2(R3))∩ L∞([0, T ],W 1,2(R3))∩ L2([0, T ],W 2,2(R3))∩W 1,2([0, T ], L2(R3))

for all T > 0, and (u, v) satisfies

∂t u = div(uD[u+W + εφ(v)]) in the sense of distributions, (12)

∂tv =1v− κv− εuφ′(v) a.e. in (0,+∞)×R3, (13)

u(0)= u0, v(0)= v0. (14)

The convergence of (uτk , vτk ) is actually much stronger; see Proposition 4.7 for details.
The key a priori estimate yielding sufficient compactness of (uτ , vτ ) follows from a dissipation estimate,

which formally amounts to

−
d
dt

∫
R3

(
u log u+ 1

2 |Dv|
2
+

1
2κv

2) dx ≥
1
2

∫
R3
(|Du|2+ (1v− κv)2) dx

−C
(
‖u‖2L2(R3)

+‖v‖2W 1,2(R3)
+‖1W‖L∞(R3)

)
.

Related existence results have been proved recently for similar systems of equations, using essentially the
same technique, in [Laurençot and Matioc 2013; Blanchet and Laurençot 2013; Zinsl 2014; Blanchet
et al. 2014]. Therefore, we keep the technical details to a minimum. Note that our method of proof yields
neither contractivity of the flow nor uniqueness of weak solutions due to the lack of convexity of the
entropy functional.

Our main result is the following on the long-time behavior of solutions:

Theorem 1.2 (exponential convergence to equilibrium). Let κ , φ and W be as in Theorem 1.1 above. Then
there are constants ε > 0, L > 0 and C > 0 such that, for every ε ∈ (0, ε) and with3ε :=min(κ, λ0)− Lε,
the following is true.

Let initial conditions u0 ∈ P2(R
3) ∩ L2(R3) and v0 ∈ W 1,2(R3) be given, with v0 ≥ 0, and assume

in addition that v0 ∈ L6/5(R3). Let further (u, v) be a weak solution to (1)–(3) obtained as a limit
of the scheme (10) and (11). Then (u, v) converges to the unique nonnegative stationary solution
(u∞, v∞) ∈ (P2 ∩ L2)(R3)×W 1,2(R3) of (1)–(2) exponentially fast with rate 3ε in the sense

W2(u(t, · ), u∞)+‖u(t, · )− u∞‖L2(R3)+‖v(t, · )− v∞‖W 1,2(R3)

≤ C
(
1+‖v0‖L6/5(R3)

)
(H(u0, v0)−H(u∞, v∞)+ 1)e−3ε t for all t ≥ 0. (15)
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We give a brief and formal indication of the main idea for the proof of Theorem 1.2. First, we
decompose the entropy in the form

H(u, v)−H(u∞, v∞)= Lu(u)+Lv(v)+ εL∗(u, v), (16)

where

Lu(u) :=
∫

R3

( 1
2(u

2
− u2
∞
)+ [W + εφ(v∞)](u− u∞)

)
dx,

Lv(v) :=

∫
R3

1
2(|D(v− v∞)|

2
+ κ(v− v∞)

2) dx,

L∗(u, v) :=
∫

R3

(
u[φ(v)−φ(v∞)] − u∞φ′(v∞)[v− v∞]

)
dx .

There, Lu and Lv are λε-convex and κ-convex functionals — with λε = λ0−Cε > 0 — in (P2,W2) and
in L2, respectively, which are minimized by the stationary solution (u∞, v∞); the functional L∗ has
no useful convexity properties. On a very formal level — pretending that Lu , Lv and L∗ are smooth
functionals on Euclidean spaces and denoting their “gradients” by ∇u and ∇v — the dissipation of the
principal entropy Lu +Lv amounts to

−
d
dt
(Lu +Lv)=∇uLu · ∇uH+∇vLv · ∇vH

= ‖∇uLu‖
2
+‖∇vLv‖

2
+ ε∇uLu · ∇uL∗+ ε∇vLv · ∇vL∗

≥ (1− ε)‖∇uLu‖
2
+ (1− ε)‖∇vLv‖

2
−

1
2ε(‖∇uL∗‖

2
+‖∇vL∗‖

2). (17)

By convexity of Lu and Lv, one has the inequalities

‖∇uLu‖
2
≥ 2λεLu, ‖∇vLv‖

2
≥ 2κLv,

and so we are almost in the situation to apply the Gronwall estimate to (17) and conclude convergence
to equilibrium with an exponential rate of min(λε, κ) > 0. However, it remains to estimate the terms
involving the “gradients” of L∗. This is relatively straightforward if the entropy H(u, v) is sufficiently
close to its minimal value H(u∞, v∞) but is rather difficult for (u, v) far from equilibrium. Moreover,
rigorous estimates have to be carried out on the time-discrete level (with subsequent passage to continuous
time) since our notion of solution is too weak to carry out the respective estimates in continuous time.

In the language of gradient flows, our results can be interpreted as follows. For ε = 0, the functional H

is30-convex along geodesics in (X,dist) with30=min(λ0, κ)> 0. Consequently, there is an associated
30-contractive gradient flow defined on all of X that satisfies (1)–(2), and in particular, all solutions
converge with the exponential rate 30 to the unique equilibrium. For every ε > 0, the convexity of H is
lost; see [Zinsl 2014] for a discussion of (non)convexity in a similar situation. By Theorem 1.1, Equations
(1)–(2) still define a continuous flow on the proper domain of H, which is X ∩ (L2(R3)×W 1,2(R3)).
Further, we show that, on the (almost exhaustive) subset of those (u, v) with v ∈ L6/5(R3), this flow still
converges to an equilibrium with an exponential rate 3ε ≥ 30 − Lε > 0 (Theorem 1.2) for all ε > 0
sufficiently small.
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From this point of view, our result is perturbative: the uncoupled system (ε = 0) exhibiting a strictly
contractive flow is perturbed in such a way that the perturbed system (ε > 0) still yields exponential
convergence towards the unique equilibrium — with a slightly slower convergence rate than in the
unperturbed case. For this approach to work, we obviously need to require κ > 0 and λ0 > 0. On the
other hand, this theorem is stronger than a usual perturbation result: the crucial point is that we do not
require the initial condition (u0, v0) to be close to equilibrium, apart from the rather harmless additional
hypothesis that v0 ∈ L6/5(R3), which could be weakened further with additional technical effort.

Our result on global existence of weak solutions (Theorem 1.1), however, can be generalized to the
case of κ = 0 and no convexity assumption on the confinement potential (see, e.g., [Zinsl 2014]). Further
generalization of Theorem 1.1 to the case of nonlinear, but nonquadratic, diffusion can be achieved
with similar techniques as in [Zinsl 2014]. However, in our analysis of the long-time behavior, the right
entropy dissipation estimates are not at hand to the best of our knowledge when dealing with nonquadratic
diffusion. To keep technicalities to a minimum, we consider the quadratic case throughout this work.

We expect that similar results can be proved for system (1)–(2) on a bounded domain�⊂R3, even with
vanishing confinement W ≡ 0. The role of the confinement will then be played by Poincaré’s inequality.
Our setup with a convex confinement on R3 fits much more naturally into the variational framework.

1C. Modeling background. The system of equations (1)–(2) is a variant of the so-called Keller–Segel
model for chemotaxis describing the time-dependent distribution of biological cells or microorganisms in
response to gradients of chemical substances (chemotaxis). The original model — corresponding to the
linear response function from (5) — has been developed by Keller and Segel [1970] to describe slime mold
aggregation. However, chemotactic processes occur in many (and highly different) biological systems;
for the biological details, we refer to the book by Eisenbach [Eisenbach 2004]. For example, many
bacteria like Escherichia coli possess flagella driven by small motors that respond to gradients of signaling
molecules in the environment. Chemotaxis also plays an important role in embryonal development, e.g.,
in the development of blood vessels (angiogenesis), which is also a crucial step in tumor growth. Starting
from the basic Keller–Segel model, many different model extensions are conceivable. A broad range of
those is summarized in the review articles by Hillen and Painter [2009] and Horstmann [2003]. Details
on the modeling aspects can be found, e.g., in the books by Murray [2003] and Perthame [2007].

In the model (1)–(2) under consideration here, u is the time-dependent spatial density of the cells and
v is the time-dependent concentration of the signaling substance. Equation (1) describes the temporal
change in cell density due to the directed drift of cells towards regions with a higher concentration of the
substance and due to undirected diffusion. Equation (2) models the degradation of the signaling substance
as well as its production by the cells. Two special aspects are included in this particular model: nonlinear
diffusion, i.e., the use of a nonconstant, u-dependent mobility coefficient for the diffusive motion of
the bacteria, and signal-dependent chemotactic sensitivity, i.e., the use of the — in general nonlinear —
response φ(v) instead of the concentration v itself. For the first, we refer to [Hillen and Painter 2009] and
the references therein for biological motivation. The second is motivated by the fact that the conversion
of an external signal into a reaction of the considered microorganism (signal transduction) often occurs
by binding and dissociation of molecules to certain receptors. The movement of the cell is then caused
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by gradients in the number of receptors occupied by signaling molecules rather than by concentration
gradients of signaling molecules themselves. For growing concentrations, the number of bound receptors
can exhibit a saturation such that the gradient vanishes. In [Hillen and Painter 2009; Segel 1977; Lapidus
and Schiller 1976], this was incorporated into the model by the chemotactic sensitivity function

φ′(v)=−
1

(1+ v)2
,

which fits into our model with the response function φ defined in (7). Finally, an external background
potential W is included in order to generate a spatial confinement of the bacterial population.

For the dynamics of the signaling substance, we assume linear diffusion according to Fick’s laws and
degradation with a constant, exponential rate κ . The nonnegative term −εuφ′(v) models the production
of signaling substance by the microorganisms; here it is taken into account that the cells might be less
active in producing additional substance the higher its local concentration already is. This is consistent
with the models presented in [Horstmann 2003, §6]. Often, the two processes of chemotactic response
and production of the chemoattractant are modeled with different response functions. Here we require
them to be equal (or scalar multiples of each other) to ensure that the system has a gradient flow structure.

By definition, u and v are density/concentration functions and thus should be nonnegative. Note that it
is part of our results that, for given nonnegative initial data (of sufficient regularity), there exists a weak
solution that is nonnegative for all times t > 0. On a formal level, nonnegativity is an easy consequence
of the particular structure of the system (1)–(2).

1D. Relation to the existing literature. The rapidly growing mathematical literature about the Keller–
Segel model and its manifold variants is devoted primarily to the dichotomy global existence versus
finite-time blow-up of (weak, possibly measure-valued) solutions, but the long-time behavior of global
solutions has been intensively investigated as well.

Global existence and blow-up in the classical parabolic-parabolic Keller–Segel model, which is (1)–(2)
with φ(v)=−v, W ≡ 0 and linear diffusion, has been thoroughly studied by Calvez and Corrias [2008]
in space dimension d = 2 and by Corrias and Perthame [2008] in higher space dimensions d > 2; see
also [Biler et al. 2011; Kozono and Sugiyama 2009; Mizoguchi 2013; Nagai et al. 2003; Senba and
Suzuki 2006; Sugiyama and Kunii 2006; Yamada 2011]. Recently, in [Carrapatoso and Mischler 2014],
uniqueness and long-time behavior of solutions of the parabolic-parabolic Keller–Segel system was
studied by means of a perturbation of the parabolic-elliptic framework.

Variants with nonlinear diffusion and drift have been studied for instance by Sugiyama [2006; 2007].
The results from [Sugiyama 2006] already indicate that, in the model (1)–(2) under consideration, blow-up
never occurs, in accordance with Theorem 1.1.

In the aforementioned works [Corrias and Perthame 2008; Nagai et al. 2003], the intermediate
asymptotics of global solutions have been studied as well: it is proved that the cell density converges
to the self-similar solution of the heat equation at an algebraic rate, i.e., in a properly scaled frame,
the density approaches a Gaussian. See also [Di Francesco and Rosado 2008] for an extension of this
result to a model with size-exclusion. Similar asymptotic behavior has been proved in models with
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nonlinear, homogeneous diffusion, e.g., by Luckhaus and Sugiyama [2006; 2007]. There, the intermediate
asymptotics are that of a porous medium equation with the respective homogeneous nonlinearity; i.e., the
rescaled bacterial density converges to a Barenblatt profile. These intermediate asymptotics are — at least
morally — related to Theorem 1.2: recall that algebraic convergence to self-similarity for the unconfined
porous medium equation is comparable to exponential convergence to an equilibrium for the equation
with λ-convex confinement.

The fully parabolic model (1)–(2) with a nonlinear response φ has not been rigorously analyzed so far,
with the following exception: in her thesis, Post [1999] proves existence and uniqueness of solutions to a
similar system with linear diffusion and vanishing confinement on a bounded domain by nonvariational
methods and obtains convergence to the (spatially homogeneous) stationary solution from compactness
arguments. Variants of the classical parabolic-parabolic or parabolic-elliptic Keller–Segel models with
a nonlinear chemotactic sensitivity coefficient have also been studied, e.g., in [Nagai and Senba 1998;
Winkler 2010].

Despite the fact that energy/entropy methods are one of the key tools for the analysis of Keller–Segel-
type systems, the use of genuine variational methods is relatively recent in that context. The variational
machinery of gradient flows in transportation metrics, originally developed by Jordan, Kinderlehrer and
Otto [Jordan et al. 1998] for the linear Fokker–Planck equation, has been applied to a variety of dynamical
systems: mainly to nonlinear diffusion [Carrillo and Toscani 2000; Otto 2001; Carrillo et al. 2006a; Agueh
2008] but also to aggregation [Carrillo et al. 2003; 2006b; 2011] and fourth-order equations [Giacomelli
and Otto 2001; Gianazza et al. 2009; Matthes et al. 2009].

For the parabolic-elliptic Keller–Segel model, which can be reduced to a single nonlocal scalar equation,
the variational framework was established by Blanchet, Calvez and Carrillo [Blanchet et al. 2008], who
represented the evolution as a gradient flow of an appropriate potential with respect to the Wasserstein
distance and constructed a numerical scheme on these grounds. Later, the gradient flow structure has
been used for a detailed analysis of the basin of attraction in the critical mass case by Blanchet, Carlen
and Carrillo [Blanchet et al. 2012] (see also, e.g., [Blanchet et al. 2009; Calvez and Carrillo 2012;
López-Gómez et al. 2013]).

The parabolic-parabolic Keller–Segel model was somewhat harder to fit into the framework since the
two equations are (formally) gradient flows with respect to different metrics: Wasserstein and L2. The first
rigorous analytical result on grounds of this structure was given by Blanchet and Laurençot [2013], where
they constructed weak solutions for the system with critical exponents of nonlinear diffusion. Later their
result was generalized to other, noncritical parameter situations in [Zinsl 2014]. In the recent work by
Blanchet et al. [2014], a similar strategy was used to reprove the result in [Calvez and Corrias 2008] about
the global existence of weak solutions to the classical Keller–Segel system in two spatial dimensions.
To the best of our knowledge, our approach taken here to prove long-time asymptotics by gradient flow
techniques in a combined Wasserstein-L2-metric is novel.

1E. Plan of the paper. First, we summarize common facts and definitions on gradient flows in metric
spaces in Section 2. After that, various properties of the entropy functional are derived in Section 3.
On grounds of these properties, we construct a weak solution by means of the minimizing movement
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scheme in Section 4, proving Theorem 1.1. Existence, uniqueness and regularity of stationary solutions
are studied in Section 5, and the proof of Theorem 1.2 is completed in Section 6.

2. Preliminaries

In this section, we recall the relevant definitions and properties related to gradient flows in metric spaces
(X, d), following [Ambrosio et al. 2008]. The two metric spaces of interest here are L2(Rd)with the metric
induced by the norm and the space P2(R

d) of probability measures, endowed with the L2-Wasserstein
distance W2. We also discuss the compound metric dist from (9).

2A. Spaces of probability measures and the Wasserstein distance. We denote by P(Rd) the space of
probability measures on Rd . By abuse of notation, we will frequently identify absolutely continuous
measures µ ∈ P(Rd) with their respective (Lebesgue) density functions u = dµ/dx ∈ L1

+
(Rd), where

L p
+(R

d) for p ≥ 1 denotes the subspace of those L p(Rd) functions with nonnegative values.
A sequence (µn)n∈N in P(Rd) is called narrowly convergent to its limit µ ∈ P(Rd) if

lim
n→∞

∫
Rd
ϕ(x) dµn(x)=

∫
Rd
ϕ(x) dµ(x)

for every bounded, continuous function ϕ : Rd
→ R. By P2(R

d), we denote the subspace of those
µ ∈ P(Rd) with finite second moment

m2(µ) :=

∫
Rd
|x |2 dµ(x).

P2(R
d) turns into a complete metric space when endowed with the L2-Wasserstein distance W2. We do

not recall the general definition of W2 here. Instead, since we are concerned with absolutely continu-
ous measures in P2(R

d) only, we remark that, for probability density functions u1, u2 ∈ L1
+
(Rd), the

Wasserstein distance is given by the infimum

W2
2 (u1, u2)= inf

{∫
Rd
|t (x)− x |2u1(x) dx

∣∣∣∣ t : Rd
→ Rd Borel-measurable and t # u1 = u2

}
,

where t # u denotes the push-forward with respect to the map t . In this case, the infimum above is
attained by an optimal transport map [Villani 2003, Theorem 2.32]. Convergence in the metric space
(P2(R

d),W2) is equivalent to narrow convergence and convergence of the second moment. Further, W2

is lower semicontinuous in both components with respect to narrow convergence.

2B. Geodesic convexity and gradient flows in metric spaces. A functional A : X → R∪ {∞} defined
on the metric space (X, d) is called geodesically λ-convex for some λ ∈ R if, for every w0, w1 ∈ X and
s ∈ [0, 1], one has

A(ws)≤ (1− s)A(w0)+ sA(w1)−
1
2λs(1− s)d2(w0, w1),

where ws : [0, 1] → X, s 7→ ws is a geodesic connecting w0 and w1.
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On L2(Rd), the (unique up to rescaling) geodesic from w0 to w1 is given by linear interpolation, i.e.,
ws = (1− s)w0+ sw1. Hence, a functional F : L2(Rd)→ R∪ {∞} of the form

F(w)=

∫
Rd

f (w(x),Dw(x),D2w(x)) dx

with a given continuous function f : R × Rd
× Rd×d

→ R is λ-convex if and only if (z, p, Q) 7→
f (z, p, Q)− 1

2λz2 is (jointly) convex.
In the metric space (P2(R

d),W2), geodesic λ-convexity is a much more complicated concept. We
recall two important classes of λ-convex functionals (see, e.g., [Ambrosio et al. 2008, Chapter 9.3; Villani
2003, Theorem 5.15]).

Theorem 2.1 (criteria for geodesic convexity in (P2(R
d),W2)). The following statements are true:

(a) Let a function h ∈ C0([0,∞)) be given, and define the functional H on P2(R
d) by H(u) :=∫

Rd h(u(x)) dx for u ∈ (P2 ∩ L1)(Rd). If h(0)= 0 and r 7→ rdh(r−d) is convex and nonincreasing
on (0,∞), then H is 0-geodesically convex and lower semicontinuous in (P2(R

d),W2).

(b) Let a function W ∈ C0(Rd) be given, and define the functional H(µ) :=
∫

Rd W (x) dµ(x) for all
µ ∈ P2(R

d). If W is λ-convex (as a functional on the metric space Rd with the Euclidean distance)
for some λ ∈ R, then H is λ-geodesically convex in (P2(R

d),W2).

Next, we introduce a notion of gradient flow. There are various possible characterizations. For our
purposes here, we need the following very strong one:

Definition 2.2. Let A : X→ R∪ {∞} be a lower semicontinuous functional on the metric space (X, d).
A continuous semigroup SA( · ) on (X, d) is called κ-flow for some κ ∈ R if the evolution variational
inequality

1
2

d+

dt
d2(SAt (w), w̃)+

κ

2
d2(SAt (w), w̃)+A(SAt (w))≤ A(w̃) (18)

holds for arbitrary w and w̃ in the domain of A and for all t ≥ 0.

If SA( · ) is a κ-flow for the λ-convex functional A, then SA( · ) is also a gradient flow for A in essentially all
possible interpretations of that notion. For the metric spaces (P2(R

d),W2) and L2(Rd), it can be proved
that every lower semicontinuous and geodesically λ-convex functional possesses a unique κ-flow, with
κ := λ (see [Ambrosio et al. 2008, Theorem 11.1.4, Corollary 4.3.3], respectively).

In these metric spaces, λ-geodesic convexity with λ>0 implies existence and uniqueness of a minimizer
wmin of A, for which the following holds (see, e.g., [Ambrosio et al. 2008, Lemma 2.4.8, Theorem 4.0.4]):

λ

2
d2(w,wmin)≤ A(w)−A(wmin)≤

1
2λ

lim
h↓0

A(w)−A(SAh (w))

h
. (19)

Remark 2.3 (formal calculation of evolution equations associated to gradient flows). In the metric spaces
of interest here, one can explicitly write an evolution equation for the flow SA( · ) of a sufficiently regular
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functional A; see, e.g., [Villani 2003, §8.2]. On (P2(R
d),W2), one has

∂tS
A
t (w)= div

(
SAt (w)D

(
δA

δw
(SAt (w))

))
,

and on L2(Rd), one has

∂tS
A
t (w)=−

δA

δw
(SAt (w)).

Here, δA/δw stands for the usual first variation of the functional A on L2.

2C. The metric dist. It is easily verified that X := P2(R
3)× L2

+
(R3) becomes a complete metric space

when endowed with the compound metric dist defined in (9). The topology on X induced by dist is that
of the cartesian product. Moreover:

Lemma 2.4. The distance dist is weakly lower semicontinuous on X in the following sense: if (un, vn)n∈N

is a sequence in X such that un converges to u ∈P2(R
3) narrowly and vn converges to v ∈ L2(R3) weakly

in L2(R3), then
dist((u, v), (ũ, ṽ))≤ lim inf

n→∞
dist((un, vn), (ũ, ṽ))

holds, for every (ũ, ṽ) ∈ X .

For our purposes, it suffices to discuss convexity and gradient flows for functionals 8 : X→ R∪ {∞}

of the separable form 8(u, v)=81(u)+82(v). One immediately verifies:

Lemma 2.5. Assume that81 and82 are λ-convex and lower semicontinuous functionals on the respective
spaces (P2(R

3),W2) and L2(R3), and denote their respective gradient flows by S1
( · ) and S2

( · ). Then
8 : X → R∪ {∞} with 8(u, v) = 81(u)+82(v) is a λ-convex and lower semicontinuous functional
on (X,dist), and the semigroup S8( · ) given by S8t (u, v)= (S

1
t (u), S

2
t (v)) is a λ-flow for 8.

3. Properties of the entropy functional

Recall the definition of the metric space (X,dist). We define the entropy functional H : X→ R∪{∞} as
follows. For all (u, v) ∈ X ∩ (L2(R3)×W 1,2(R3)), set

H(u, v) :=
∫

R3

( 1
2 u2
+ uW + 1

2 |Dv|
2
+

1
2κv

2
+ εuφ(v)

)
dx, (20)

which is a finite value by our assumptions on φ and W . For all other (u, v) ∈ P2(R
3)× L2(R3), we set

H(u, v)=+∞.

Proposition 3.1 (properties of the entropy functional H). The functional H defined in (20) has the
following properties:

(a) There exist C0,C1 > 0 such that

H(u, v)≥ C0
[
‖u‖2L2(R3)

+m2(u)+‖v‖2W 1,2(R3)
−C1

]
. (21)

In particular, H is bounded from below.
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(b) H is weakly lower semicontinuous in the following sense: for every sequence (un, vn)n∈N in X , where
(un)n∈N converges narrowly to some u ∈ P2(R

3) and where (vn)n∈N converges weakly in L2(R3) to
some v ∈ L2(R3), one has

H(u, v)≤ lim inf
n→∞

H(un, vn).

(c) For sufficiently small ε > 0, H is λ′-geodesically convex for some λ′ > 0 with respect to the distance
induced by the norm ‖(ũ, ṽ)‖L2×L2 :=

√
‖ũ‖2L2(R3)

+‖ṽ‖2L2(R3)
.

Proof. For part (a), we observe that, due to λ0-convexity of W , one has W (x) ≥ 1
4λ0|x |2− 1

2λ0|xmin|
2,

where xmin ∈ R3 is the unique minimizer of W . Moreover, with convexity of φ, we deduce∫
R3

uφ(v) dx ≥ φ(0)+φ′(0)‖uv‖L1(R3) ≥ φ(0)+Cφ′(0)‖Dv‖L2(R3)‖u‖
1/3
L2(R3)

,

using that ‖u‖L1(R3) = 1 and the chain of inequalities

‖uv‖L1(R3) ≤ ‖u‖L6/5(R3)‖v‖L6(R3) ≤ C‖Dv‖L2(R3)‖u‖
2/3
L1(R3)
‖u‖1/3L2(R3)

. (22)

All in all, we arrive at

H(u, v)≥ 1
2‖u‖

2
L2(R3)

+
1
4λ0m2(u)− λ0|xmin|

2
+

1
2‖Dv‖

2
L2(R3)

+
1
2κ‖v‖

2
L2(R3)

− ε|φ(0)| − εC |φ′(0)|‖Dv‖L2(R3)‖u‖
1/3
L2(R3)

.

From this, the desired estimate follows by Young’s inequality.
In (b), the claimed lower semicontinuity of the integral with ε=0 follows from joint convexity of the map

R+×R+×R3
3 (r, z, p) 7→ 1

2r2
+W (x)r + 1

2 |p|
2
+

1
2κz2,

for every x ∈ R3. It thus remains to prove semicontinuity of the integral of uφ(v). Let a sequence
(un, vn)n∈N with the mentioned properties be given, and assume — without loss of generality — that
H(un, vn)→ H <∞. With these prerequisites at hand, we are even able to prove the continuity of the
integral of uφ(v): it follows by (21) that (un)n∈N and (vn)n∈N are bounded sequences in L2(R3) and
in W 1,2(R3), respectively. Moreover, the sequence of second moments (m2(un))n∈N is bounded. Hence,
(un)n∈N converges to u weakly in L2(R3), and (vn)n∈N converges to v weakly in W 1,2(R3) and strongly
in L2(BR(0)), for every ball BR(0)⊂ R3. Recalling our assumptions (4) on φ, we conclude that

|φ(vn)−φ(v)|
2
≤ φ′(0)2|vn − v|

2,

and thus, (φ(vn))n∈N converges to φ(v) strongly in L2(BR(0)). We proceed by a truncation argument.
Let therefore R > 0, and choose βR ∈ C∞(R3) with

0≤ βR ≤ 1, βR ≡ 1 on BR(0), βR ≡ 0 on R3
\ B2R(0).
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Using the triangle inequality, we see∣∣∣∣∫
R3
(unφ(vn)− uφ(v)) dx

∣∣∣∣
≤

∣∣∣∣∫
R3
φ(v)(un − u) dx

∣∣∣∣+ ∣∣∣∣∫
R3
βRun(φ(vn)−φ(v)) dx

∣∣∣∣+ ∣∣∣∣∫
R3
(1−βR)un(φ(vn)−φ(v)) dx

∣∣∣∣. (23)

Since un ⇀ u weakly on L2(R3) and φ(v) ∈ L2(R3), the first term in (23) converges to zero. The same
holds for the second one due to strong convergence of φ(vn) to φ(v) on L2(B2R(0)) and boundedness
of ‖un‖L2(R3). The third term in (23) can be estimated using (22):∣∣∣∣∫

R3
(1−βR)un(φ(vn)−φ(v)) dx

∣∣∣∣≤ ‖φ(vn)−φ(v)‖L6(R3)‖un‖L6/5(R3\BR(0)).

Consequently,∣∣∣∣∫
R3
(1−βR)un(φ(vn)−φ(v)) dx

∣∣∣∣≤ C‖φ(vn)−φ(v)‖W 1,2(R3)‖un‖
1/3
L2(R3)

(∫
R3\BR(0)

|x |2

R2 un(x) dx
)2/3

≤ C R−4/3(‖φ(vn)‖W 1,2(R3)+‖φ(v)‖W 1,2(R3))‖un‖
1/3
L2(R3)

(m2(un))
2/3

≤ 2C̃ R−4/3.

Hence, for all R > 0,

lim sup
n→∞

∣∣∣∣∫
R3
(unφ(vn)− uφ(v)) dx

∣∣∣∣≤ 2C̃ R−4/3,

proving the claim.
Finally, to prove (c), consider a geodesic ws = (us, vs) with respect to the flat metric induced by
‖ · ‖L2×L2 ; that is, us = (1− s)u0+ su1 and vs = (1− s)v0+ sv1 for given u0, u1 ∈ (P2 ∩ L2)(R3) and
v0, v1 ∈W 1,2(R3). It then follows that

d2

ds2 H(us, vs)=

∫
R3

(
(u1− u0)

2
+ |D(v1− v0)|

2
+ κ(v1− v0)

2

+ 2εφ′(vs)(u1− u0)(v1− v0)+ εusφ
′′(vs)(v1− v0)

2) dx

≥

∫
R3

(
u1− u0

v1− v0

)T

As

(
u1− u0

v1− v0

)
dx with As :=

(
1 εφ′(vs)

εφ′(vs) κ

)
,

where we have used that φ is convex. Thus, H is λ′-convex with respect to the flat distance above if
As ≥ λ

′1 for all s ∈ [0, 1]. Recalling that 0 < −φ′(vs) ≤ −φ
′(0) by hypothesis (4), it follows from

elementary linear algebra that ε2φ′(0)2 < κ is sufficient to find a suitable λ′ > 0 with As ≥ λ
′1. �

4. Existence of weak solutions

In this section, we prove Theorem 1.1 by construction of a weak solution using the minimizing movement
scheme.
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4A. Time discretization. Recall the discretization scheme from (10). We introduce the step size τ > 0
and define the associated Yosida penalization Hτ of the entropy by

Hτ (u, v | ũ, ṽ) :=
1

2τ
dist2((u, v), (ũ, ṽ))+H(u, v) (24)

for all (u, v), (ũ, ṽ) ∈ X . Set (u0
τ , v

0
τ ) := (u0, v0), and define the sequence (un

τ , v
n
τ )n∈N inductively by

choosing
(un
τ , v

n
τ ) ∈ argmin

(u,v)∈X
Hτ (u, v | un−1

τ , vn−1
τ ). (25)

Lemma 4.1. For every (ũ, ṽ) ∈ X , there exists at least one minimizer (u, v) ∈ X of Hτ ( · | ũ, ṽ) that
satisfies u ∈ L2(R3) and v ∈W 1,2(R3).

Proof. The proof is an application of the direct methods from the calculus of variations to the functional
Hτ ( · | ũ, ṽ).

First, observe that, on any given sublevel S of Hτ ( · | ũ, ṽ), both W2(u, ũ) and ‖v‖L2(R3) are uniformly
bounded. The first bound implies that also the second moment m2(u) is uniformly bounded, and thus, the
u-components in S belong to a subset of P2(R

3) that is relatively compact in the narrow topology by
Prokhorov’s theorem. The other bound implies via Alaoglu’s theorem that the v-components belong to a
weakly relatively compact subset of L2(R3).

Next, recall the properties of H and of dist given in Proposition 3.1 and Lemma 2.4. From these, it
follows that Hτ ( · | ũ, ṽ) is lower semicontinuous with respect to narrow convergence in the first and
L2-weak convergence in the second components.

Combining these properties with the fact that Hτ ( · | ũ, ṽ) is bounded from below (e.g., by zero), the
existence of a minimizer follows. The additional regularity is a consequence of the fact that the proper
domain of H is a subset of L2(R3)×W 1,2(R3). �

Given the sequence (un
τ , v

n
τ )n∈N, define the discrete solution (uτ , vτ ) : [0,∞)→ X as in (11) by

piecewise constant interpolation:

(uτ , vτ )(t) := (un
τ , v

n
τ ) for t ∈ ((n− 1)τ, nτ ] and n ≥ 1. (26)

We start be recalling a collection of estimates on (uτ , vτ ) that follows immediately from the construction
by minimizing movements.

Proposition 4.2 (classical estimates). The following hold for T > 0:

H(un
τ , v

n
τ )≤H(u0, v0) <∞ for all n ≥ 0, (27)

∞∑
n=1

(
W2

2 (u
n
τ , un−1

τ )+‖vn
τ − v

n−1
τ ‖

2
L2(R3)

)
≤ 2τ(H(u0, v0)− inf H), (28)

W2(uτ (s), uτ (t))+‖vτ (s)− vτ (t)‖L2(R3) ≤ 2[2(H(u0, v0)− inf H)max(τ, |t − s|)]1/2

for all 0≤ s, t ≤ T , (29)

the infimum inf H of H on X being finite.
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By the well known JKO method [Jordan et al. 1998], we derive an approximate weak formulation
satisfied by (uτ , vτ ). The idea is to choose test functions η, γ ∈C∞c (R

3) and perturb the minimizer (un
τ , v

n
τ )

of the functional Hτ ( · | un−1
τ , vn−1

τ ) over an auxiliary time s ≥ 0 as follows:

un
τ  SDη

s # un
τ , vn

τ  v+ sγ.

Here S
Dη
( · ) is the flow on R3 generated by the gradient vector field Dη. Since the calculations are very

similar to the ones performed in [Zinsl 2014], we skip the details and directly state the result.

Lemma 4.3. For all n ∈ N and all test functions η, γ ∈ C∞c (R
3) and ψ ∈ C∞c ((0,∞))∩C([0,∞)), the

following discrete weak formulation holds:

0=
∫
∞

0

∫
R3
[uτ (t, x)η(x)− vτ (t, x)γ (x)]

ψ(bt/τcτ)−ψ(bt/τcτ + τ)
τ

dx dt + O(τ )

+

∫
∞

0

∫
R3
ψ(bt/τcτ)

(
−

1
2 uτ (t, x)21η(x)+ uτ (t, x)DW (x) ·Dη(x)

+Dvτ (t, x) ·Dγ (x)+ κvτ (t, x)γ (x)

+ εuτ (t, x)φ′(vτ (t, x))[γ (x)+Dvτ (t, x) ·Dη(x)]
)

dx dt. (30)

Our goal for the rest of this section is to pass to the limit τ ↓ 0 in (30) and obtain the (time-continuous)
weak formulation (12)–(13).

4B. Regularity of the discrete solution. Since the discrete weak formulation (30) contains nonlinear
terms with respect to uτ and vτ , further compactness estimates are needed to pass to the continuous time
limit τ → 0. As a preparation, we state:

Lemma 4.4 (flow interchange lemma [Matthes et al. 2009, Theorem 3.2]). Let A be a proper, lower semi-
continuous and λ-geodesically convex functional on (X,dist), which is defined on X ∩ L2(R3)×W 1,2(R3)

at least. Further, assume that SA( · ) is a λ-flow for A. Then, the following holds for every n ∈ N:

A(un
τ , v

n
τ )+ τDAH(un

τ , v
n
τ )+

1
2λdist2((un

τ , v
n
τ ), (u

n−1
τ , vn−1

τ ))≤ A(un−1
τ , vn−1

τ ).

There, DAH(w) denotes the dissipation of the entropy H along SA( · ), i.e.,

DAH(w) := lim sup
h↓0

H(w)−H(SAh (w))

h
.

The necessary additional regularity is provided by the following estimate on the minimizers of Hτ :

Proposition 4.5 (additional regularity). Let (u, v), (ũ, ṽ) ∈ X ∩ (L2(R3) × W 1,2(R3)) with (u, v) ∈
argmin Hτ ( · | ũ, ṽ). Denoting E(u) :=

∫
R3 u log(u) dx and F(v) :=

∫
R3(

1
2 |Dv|

2
+

1
2κv

2) dx , the following
estimate holds for some constant K > 0:

‖Du‖2L2(R3)
+‖1v− κv‖2L2(R3)

≤ K
(
‖u‖2L2(R3)

+‖v‖2W 1,2(R3)
+‖1W‖L∞(R3)+

1
τ
(E(ũ)−E(u)+F(ṽ)−F(v))

)
. (31)
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Proof. The method of proof used here is based on the flow interchange lemma (Lemma 4.4). The idea is
to calculate the dissipation of H along the gradient flow of an auxiliary functional, namely the heat flow
and the heat flow with decay, respectively.

Therefore, we recall that the functional E(u) :=
∫

R3 u log(u) dx is 0-geodesically convex on P2(R
3)

and its gradient flow SE
( · ) is the heat flow satisfying

∂sS
E
s (u)=1SE

s (u).

Moreover, with the evolution variational inequality (18), we deduce as in [Blanchet and Laurençot
2013; Zinsl 2014] by integration over time using that E is a Lyapunov functional along SE

( · )

1
2(W

2
2 (S

E
s (u), ũ)−W2

2 (u, ũ))≤
∫ s

0
(E(ũ)−E(SE

σ (u))) dσ ≤ s[E(ũ)−E(SE
s (u))]. (32)

Analogous to that, F(v) :=
∫

R3(
1
2 |Dv|

2
+

1
2κv

2) dx is κ-geodesically convex on L2(R3) and its gradient
flow SF

( · ) is given by

∂sS
F
s (v)=1SF

s (v)− κS
F
s (v).

The application of the evolution variational inequality (18) then shows

1
2

(
‖SF

s (v)− ṽ‖
2
L2(R3)

−‖v− ṽ‖2L2(R3)

)
≤

∫ s

0
(F(ṽ)−F(SF

σ (v))) dσ ≤ s[F(ṽ)−F(SF
s (v))]. (33)

Well known results of parabolic theory ensure that (SE
s (u), S

F
s (v))∈ X∩(L2(R3)×W 1,2(R3)) if (u, v)∈

X ∩ (L2(R3)×W 1,2(R3)). For the sake of clarity, we introduce the notation (Us,Vs) := (S
E
s (u), S

F
s (v))

and calculate for s > 0

d
ds

H(Us,Vs)

=

∫
R3

(
[Us +W + εφ(Vs)]1Us + [−1Vs + κVs + εUsφ

′(Vs)][1Vs − κVs]
)

dx

=

∫
R3

(
−|DUs |

2
−Us1W − (1Vs − κVs)

2
− εφ′(Vs)DVs ·DUs + εUsφ

′(Vs)[1Vs − κVs]
)

dx, (34)

where the last line follows by integration by parts. An application of Young’s inequality yields∫
R3

(
−|DUs |

2
−Us1W − (1Vs − κVs)

2
− εφ′(Vs)DVs ·DUs + εUsφ

′(Vs)[1Vs − κVs]
)

dx

≤

∫
R3

(
−

1
2 |DUs |

2
−Us1W − 1

2(1Vs − κVs)
2
+

1
2ε

2φ′(0)2(|DVs |
2
+U2

s )
)

dx .

Exploiting the monotonicity of the L2 norm along SE
( · ) and of the W 1,2 norm along SF

( · ), one gets∫
R3

(
−

1
2 |DUs |

2
−Us1W − 1

2(1Vs − κVs)
2
+

1
2ε

2φ′(0)2(|DVs |
2
+U2

s )
)

dx

≤−
1
2‖DUs‖

2
L2(R3)

−
1
2‖1Vs − κVs‖

2
L2(R3)

+‖1W‖L∞(R3)+
1
2ε

2φ′(0)2
(
‖Dv‖2L2(R3)

+‖u‖2L2(R3)

)
.
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All in all, we have estimated the dissipation of H along SE
( · ) and SF

( · ):

d
ds

H(Us,Vs)≤−
1
2(‖DUs‖

2
2+‖1Vs − κVs‖

2
2)+C‖u‖22+C‖v‖2W 1,2(R3)

+‖1W‖∞. (35)

As a final step of the proof of Proposition 4.5, we use the minimizing property of (u, v). Clearly,

0≤Hτ (Us,Vs | ũ, ṽ)−Hτ (u, v | ũ, ṽ).

We insert (32), (33) and (35) and obtain

1
s

∫ s

0

(
‖DUσ‖

2
L2(R3)

+‖1Vσ − κVσ‖
2
L2(R3)

)
dσ

≤ K
(
‖u‖2L2(R3)

+‖v‖2W 1,2(R3)
+‖1W‖L∞(R3)+

1
τ
(E(ũ)−E(Us)+F(ṽ)−F(Vs))

)
,

for some constant K > 0. Similar to [Blanchet and Laurençot 2013; Zinsl 2014; Blanchet 2013], passing
to the lim inf as s→ 0 yields (31) by lower semicontinuity of norms and continuity of the entropies E

and F along their respective gradient flows. �

4C. Compactness estimates and passage to continuous time. The following compactness estimates in
addition to the results of Proposition 4.2 are needed to pass to the limit τ → 0 in the nonlinear terms of
the discrete weak formulation (30) afterwards. The method of proof is essentially the same as in [Zinsl
2014, §7]. For the sake of brevity, the details are omitted here.

Proposition 4.6 (additional a priori estimates). Let (uτ , vτ ) be the discrete solution obtained by the
minimizing movement scheme (25). Then the following hold for T > 0:

m2(un
τ )≤ C1 <∞ for all n ≤ bT/τc, (36)

‖un
τ‖L2(R3) ≤ C3 <∞ for all n ≥ 0, (37)

‖vn
τ ‖W 1,2(R3) ≤ C5 <∞ for all n ≥ 0, (38)∫ T

0
‖uτ (t)‖2W 1,2(R3)

dt ≤ C6 <∞, (39)∫ T

0
‖vτ (t)‖2W 2,2(R3)

dt ≤ C7 <∞, (40)

with constants C j > 0 only depending on T and the initial condition (u0, v0).

The estimates (36)–(38) are a consequence of those in Proposition 4.2. Also employing Proposition 4.5
yields (39)–(40).

The estimates of Propositions 4.2 and 4.6 enable us to prove the existence of the continuous-time limit
of the discrete solution.

Proposition 4.7 (continuous-time limit). Let (τk)k≥0 be a vanishing sequence of step sizes, i.e., τk→ 0
as k →∞, and let (uτk , vτk )k≥0 be the corresponding sequence of discrete solutions obtained by the
minimizing movement scheme.
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Then there exists a subsequence (nonrelabeled) such that, for fixed t ∈ [0, T ], uτk (t) converges to
a limit u(t) narrowly in P(R3) and vτk (t) converges to a limit v(t) strongly in L2(R3). The second
convergence is uniform with respect to t ∈ [0, T ]. The limit curves satisfy u ∈ C1/2([0, T ],P2(R

3)) and
v ∈C1/2([0, T ], L2

+
(R3)). Furthermore, the following additional convergence properties hold for k→∞:

(a) uτk ⇀ u weakly in L2([0, T ],W 1,2(R3)),

(b) vτk ⇀v weakly in L2([0, T ],W 2,2(R3)),

(c) uτk → u strongly in L2([0, T ], L2(�)) for all bounded domains �⊂ R3,

(d) vτk → v strongly in L2([0, T ],W 1,2(�)) for all bounded domains �⊂ R3.

Now, to complete the proof of Theorem 1.1, one needs to verify that the obtained limit curve (u, v)
indeed satisfies the weak formulation (12)–(13). This will be omitted here for the sake of brevity.

5. The stationary solution

In this section, we provide the characterization of a stationary state of system (1)–(2) and prove some
relevant properties.

5A. Existence and uniqueness. At first, we show existence and uniqueness of the stationary solution to
system (1)–(2).

Proposition 5.1. For each sufficiently small ε > 0, there exists a unique minimizer (u∞, v∞) ∈ X ∩
(W 1,2(R3)×W 2,2(R3)) of H, for which the following holds: (u∞, v∞) is a stationary solution to (1)–(2)
and to the Euler–Lagrange system

1v∞− κv∞ = εu∞φ′(v∞), (41)

u∞ = [Uε −W − εφ(v∞)]+, (42)

where Uε ∈ R is chosen such that ‖u∞‖L1(R3) = 1 and [ · ]+ denotes the positive part.
Moreover, v∞ ∈ C0(R3) and there exists V > 0 independent of ε > 0 such that ‖v∞‖L∞(R3) ≤ V .

Proof. We prove that H possesses a unique minimizer (u∞, v∞). Let a minimizing sequence (un, vn)n∈N

be given such that limn→∞H(un, vn)= inf H>−∞. As the sequence (H(un, vn))n∈N is bounded, we can,
by the same argument as in the proof of Proposition 3.1, extract a (nonrelabeled) subsequence, on which
(un)n∈N converges weakly in L2(R3) to some u∞ ∈ L2

+
(R3) and (vn)n∈N converges weakly in W 1,2(R3)

to some v∞ ∈ L2
+
(R3)∩W 1,2(R3) as n→∞. By the same argument as in the proof of Proposition 3.1(b),

(u∞, v∞) is indeed a minimizer of H and hence an element of X ∩ (L2(R3)×W 1,2(R3)).
Since (u∞, v∞) ∈ argmin Hτ ( · | u∞, v∞) for arbitrary τ > 0, Proposition 4.5 immediately yields

‖u∞‖2W 1,2(R3)
+‖v∞‖

2
W 2,2(R3)

≤ V0(H(u∞, v∞)+‖1W‖L∞(R3)+ V1)

for some constants V0, V1 > 0. Because of the continuous embedding of W 2,2(R3) into C0(R3), it follows
that ‖v∞‖L∞(R3) ≤ V for some V > 0.
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Uniqueness of the minimizer is, by [Villani 2003, Theorem 5.32], a consequence of λ′-geodesic convex-
ity of H with respect to the distance induced by ‖ · ‖L2×L2 for some λ′ > 0 as proved in Proposition 3.1(c).

It remains to show that there is a set of Euler–Lagrange equations characterizing (u∞, v∞).
The following variational inequality holds thanks to the minimizing property of (u∞, v∞):

0≤
d+

ds

∣∣∣∣
s=0

H(u∞+ sũ, v∞+ sṽ)

=

∫
R3
(u∞+W + εφ(v∞))ũ dx +

∫
R3
(−1v∞+ κv∞+ εu∞φ′(v∞))ṽ dx (43)

for arbitrary maps ũ and ṽ such that u∞+ ũ ≥ 0 on R3 and
∫

R3 ũ dx = 0.
First, we consider the second component and thus set ũ = 0 in (43). As there are no constraints on v∞,

it is allowed to replace ṽ by −ṽ in (43), yielding equality and hence (41).
Second, we consider the first component and set ṽ = 0 in (43). For arbitrary ψ such that

∫
R3 ψ dx ≤ 1

and ψ + u∞ ≥ 0 on R3, we put

ũψ := 1
2ψ −

1
2 u∞

∫
R3
ψ dx

and observe that u∞+uψ ≥ 0 on R3 and
∫

R3 ũψ dx = 0 since u∞ has mass equal to 1. By straightforward
calculation, we obtain

0≤
∫

R3
(u∞+W + εφ(v∞)−Uε)ψ dx (44)

for all ψ as above and the constant

Uε :=

∫
R3
(u2
∞
+W u∞+ εu∞φ(v∞)) dx ∈ R.

Fix x ∈ R3. If u∞(x) > 0, choosing ψ supported on a small neighborhood of x and replacing by −ψ
in (44) eventually yields

u∞(x)=Uε −W (x)− εφ(v∞(x)).

If u∞(x)= 0, we obtain

Uε −W (x)− εφ(v∞(x))≤ 0.

Hence, for all x ∈ R3,

u∞(x)= [Uε −W (x)− εφ(v∞(x))]+. �

5B. Properties. As a preparation to prove some crucial regularity estimates on the stationary solution
(u∞, v∞), several properties of solutions to the elliptic partial differential equation −1h+ κh = f are
needed.

Therefore, we introduce for κ > 0 the Yukawa potential (also called screened Coulomb or Bessel
potential) Gκ by

Gκ(x) :=
1

4π |x |
exp(−

√
κ|x |) for all x ∈ R3

\ {0}. (45)
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Additionally, we define for σ > 0 the kernel Yσ by

Yσ :=
1
σ

G1/σ .

In subsequent parts of this work, we will need the iterates Y k
σ for k ∈ N defined inductively by

Y 1
σ := Yσ , Y k+1

σ := Yσ ∗Y k
σ .

The relevant properties of Gκ and Yσ are summarized in Lemma 5.2 below. For the proof, we refer to
Appendix A.

Lemma 5.2 (Yukawa potential). The following statements hold for all κ > 0, σ > 0 and k ∈ N:

(a) Gκ and Yσ are the fundamental solutions to −1h+κh = f and −σ1h+h = f on R3, respectively.

(b) Let p > 1. If f ∈ L p(R3), then Gκ ∗ f ∈W 2,p(R3) and

κ‖Gκ ∗ f ‖L p(R3)+
√
κ‖D(Gκ ∗ f )‖L p(R3)+‖D

2(Gκ ∗ f )‖L p(R3) ≤ C p‖ f ‖L p(R3) (46)

for some p-dependent constant C p>0. (Note that this fact is not obvious as D2(Gκ) /∈ L1(R3,R3×3).)

(c) For all x ∈ R3
\ {0},

Yσ (x)=
∫
∞

0
Hσ t(x)e−t dt,

where Ht is the heat kernel on R3 at time t > 0, i.e.,

Ht(ξ)= t−3/2 H1(t−1/2ξ) with H1(ζ )= (4π)−3/2 exp
(
−

1
4 |ζ |

2).
Additionally, one has

Y k
σ =

∫
∞

0
Hσr

r k−1e−r

0(k)
dr. (47)

Moreover, Y k
σ ∈W 1,q(R3) for each q ∈ [1, 3

2), and there are universal constants Yq such that

‖DY k
σ ‖Lq (R3) ≤ Yq(σk)−Q, where Q := 2−

3
2q
∈
[ 1

2 , 1
)
. (48)

Now, we are in position to prove several estimates on the stationary solution.

Proposition 5.3 (estimates on the stationary solution). The following uniform estimates hold for all x ∈R3:

(a) u∞(x)≤U0−εVφ′(0), where U0 ∈R is chosen in such a way that
∫

R3[U0−W ]+ dx = 1 and V > 0
is the constant from Proposition 5.1.

(b) |Dv∞(x)| ≤ Cε for some constant C > 0.

(c) −C ′ε1≤ D2v∞(x)≤ C ′ε1 in the sense of symmetric matrices, for some constant C ′ > 0.

Proof. (a) We first prove that Uε ≤U0+ εφ(0), which in turn follows if∫
R3
[U0+ εφ(0)−W − εφ(v∞)]+ dx ≥ 1.
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One has∫
R3
[U0+ εφ(0)−W − εφ(v∞)]+ dx =

∫
{U0−W≥0}

[U0−W + ε(φ(0)−φ(v∞))] dx

+

∫
{0>U0−W≥ε(φ(v∞)−φ(0))}

[U0−W + ε(φ(0)−φ(v∞))] dx . (49)

From φ(0)− φ(v∞) ≥ 0 and the definition of U0, we deduce that the first term on the right-hand side
of (49) is larger than or equal to 1. The second term on the right-hand side of (49) is nonnegative because
the integrand is nonnegative on the domain of integration.

Now, if u∞(x) > 0 for some x ∈ R3, we also have due to convexity of φ

u∞(x)≤Uε −W (x)− εφ(0)− εv∞(x)φ′(0)≤U0+ εφ(0)− εφ(0)− εVφ′(0),

from which the desired estimate follows.

(b) Define
fv : R3

→ R, fv(x) := ε[Uε −W (x)− εφ(v(x))]+φ′(v(x)).

Then, fv ∈ L∞(R3) with compact support supp( fv)⊂ BR(0) where R > 0 can be chosen independently
of ε ∈ (0, 1). Moreover, by Lemma 5.2(a), (u∞, v∞) is the solution to the integral equation

v =−(Gκ ∗ fv)

with the Yukawa potential Gκ defined in (45). Since W 2,4(R3) is continuously embedded in C1(R3)

[Zeidler 1990, Appendix, §(45) et seq.] and fv ∈ L4(R3), we deduce from Lemma 5.2(b) that

‖v‖C1(R3) ≤ C̃‖ fv‖L4(R3),

for some constant C̃ > 0. Hence, we obtain (b) by using (a):

‖Dv∞‖L∞(R3) ≤ C̃‖ fv∞‖L4(R3) ≤ C̃ε(U0− εVφ′(0))|φ′(0)||BR(0)|1/4 =: Cε.

(c) First, consider x ∈ R3
\ BR+1(0), where R > 0 is such that supp( fv∞)⊂ BR(0). Smoothness of Gκ

on R3
\ {0} yields for all i, j ∈ {1, 2, 3}

|∂i∂ jv∞(x)| =
∣∣∣∣∫

BR(0)
(∂xi ∂x j Gκ(x − y)) fv∞(y) dy

∣∣∣∣
=

∣∣∣∣∫
x+BR(0)

(∂i∂ j Gκ(z)) fv∞(x − z) dz
∣∣∣∣,

where the last equality follows by the transformation z := x − y. Obviously, we obtain the estimate

|∂i∂ jv∞(x)| ≤ ‖ fv∞‖L∞(R3)

∫
R3\B1(0)

|∂i∂ j Gκ(z)| dz.

Since, for |z| ≥ 1, one has (see Appendix B for the derivatives of Gκ )

|∂i∂ j Gκ(z)| ≤
C(κ) exp(−

√
κz)

4π |z|
,
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we arrive at

|∂i∂ jv∞(x)| ≤ C(κ)‖ fv∞‖L∞(R3)

∫
∞

1
exp(−

√
κr)r dr,

the last integral obviously being finite.
Consider now the case |x | ≤ R+ 1, and set y := (R+ 2)e1 6= x . By the triangular inequality, we have

for α ∈ (0, 1) that

|∂i∂ jv∞(x)| ≤ |∂i∂ jv∞(y)| +
|∂i∂ jv∞(x)− ∂i∂ jv∞(y)|

|x − y|α
|x − y|α.

By the arguments above, fv∞ is α-Hölder-continuous for some α ∈ (0, 1) since u∞ is Lipschitz-continuous
and of compact support. By Lemma B.1 in Appendix B, we know that there exists C > 0 such that

[∂i∂ jv∞]C0,α(R3) ≤ C[ fv∞]C0,α(R3).

Hence, since |x − y| ≤ 2R+ 3, one has

|∂i∂ jv∞(x)| ≤ |∂i∂ jv∞(y)| +C(2R+ 3)α[ fv∞]C0,α(R3).

Combining both cases yields

|∂i∂ jv∞(x)| ≤ |∂i∂ jv∞((R+ 2)e1)| +C(2R+ 3)α[ fv∞]C0,α(R3)

≤ C0‖ fv∞‖L∞(R3)+C1‖ fv∞‖W 1,∞(R3)

for some C0,C1 > 0 and all x ∈ R3. Using (a) and (b), it is straightforward to conclude that there exists
C2 > 0 with

(‖D f ‖C0(R3)+‖ f ‖L∞(R3))≤ C2ε.

All in all, we proved the existence of C3 > 0 such that for all x ∈ R3 and all i, j ∈ {1, 2, 3}

|∂i∂ jv∞(x)| ≤ C3ε.

Obviously, this estimate yields the assertion (for a different constant C ′ > 0). �

6. Convergence to equilibrium

In this section, we prove Theorem 1.2. The strategy of proof is as follows. We first show that the entropy
H(u, v)−H∞ can indeed be decomposed as in (16). Furthermore, the second component vn

τ of the
discrete solution admits a control estimate enabling us to prove boundedness of the auxiliary entropy
Lu(u)+Lv(v) in (16) for large times. From that, we can deduce an explicit temporal bound such that
exponential decay to zero of this entropy occurs for sufficiently large times. The previous two steps
essentially comprise a rigorous version of (17) from the introduction. Finally, these estimates are converted
into the desired estimate for the continuous weak solution, completing the proof of Theorem 1.2.

Since our claim only concerns the solutions (u, v) to (1)–(3) that are constructed as in the proof of
Theorem 1.1, i.e., by the minimizing movement scheme, we assume in the following that we are given
a family of time-discrete approximations (un

τ , v
n
τ )n∈N that converge to the weak solution (u, v) in the
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sense discussed in Section 4 as τ ↓ 0. Therefore, we may assume without loss of generality that τ > 0 is
sufficiently small.

Throughout this section, we shall use the abbreviation [a]τ := (1/τ) log(1+ aτ), where a > 0. Note
that, for every τ > 0 and an index mτ ∈ N given such that mτ τ ≥ T with a fixed T ≥ 0,

(1+ aτ)−mτ ≤ e−[a]τ T
↓ e−aT as τ ↓ 0. (50)

In order to keep track of the dependencies of certain quantities on ε, we are going to define several
positive numbers ε j such that the estimates in a certain proof are uniform with respect to ε ∈ (0, ε j ).
When we want to emphasize that a quantity is independent of ε ∈ (0, ε j )— and also of τ and the initial
condition (u0, v0)— we call it a system constant. System constants are (in principle) expressible as a
function of λ0, κ and φ and truly universal constants. Finally, we write H∞ :=H(u∞, v∞).

6A. Decomposition of the entropy. The key element in the proof of Theorem 1.2 is the decomposition
of the entropy functional as announced in (16). Introduce the perturbed potential Wε by

Wε(x) :=W (x)+ εφ(v∞(x)). (51)

Recall that (u∞, v∞) is the minimizer of H on X , and define

Lu(u) :=
∫

R3

( 1
2(u

2
− u2
∞
)+Wε(u− u∞)

)
dx,

Lv(v) :=

∫
R3

1
2

(
|D(v− v∞)|2+ κ(v− v∞)2

)
dx,

L∗(u, v) :=
∫

R3

(
u[φ(v)−φ(v∞)] − u∞φ′(v∞)[v− v∞]

)
dx .

Finally, let L(u, v) := Lu(u)+Lv(v) denote the auxiliary entropy.

Lemma 6.1. The decomposition (16) holds:

H(u, v)−H∞ = L(u, v)+ εL∗(u, v).

Proof. By the properties of φ and the fact that u∞ has compact support, L∗ is well defined on all of X
while Lu and Lv are finite precisely on (P2 ∩ L2)(R3) and W 1,2(R3), respectively. Thus, both sides in
(16) are finite on the same subset of X . Now, for every such pair (u, v), we have on the one hand that

Lu(u)=
∫

R3

( 1
2 u2
+ uW + εuφ(v∞)

)
dx −

∫
R3

( 1
2 u2
∞
+ u∞W + εu∞φ(v∞)

)
dx (52)

and on the other hand that

Lv(v)=

∫
R3

(1
2 |Dv|

2
+

1
2κv

2) dx +
∫

R3

( 1
2 |Dv∞|

2
+

1
2κv

2
∞

)
dx −

∫
R3
(Dv ·Dv∞+ κvv∞) dx .

Integration by parts in the last integral yields, recalling the defining equation (41) for v∞, that

−

∫
R3
(Dv ·Dv∞+ κvv∞) dx =

∫
R3
(1v∞− κv∞)v dx = ε

∫
R3

u∞φ′(v∞)v dx .
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Similarly, integration by parts in the middle integral leads to∫
R3

( 1
2 |Dv∞|

2
+

1
2κv

2
∞

)
dx =−

ε

2

∫
R3

u∞φ′(v∞)v∞ dx .

And so,

Lv(v)=

∫
R3

( 1
2 |Dv|

2
+

1
2κv

2) dx −
∫

R3

( 1
2 |Dv∞|

2
+

1
2κv

2
∞

)
dx + ε

∫
R3

u∞φ′(v∞)(v− v∞) dx . (53)

Combining (52) and (53) with the definition of L∗ yields (16). �

We summarize some useful properties of the auxiliary entropy L in the following:

Proposition 6.2 (properties of L). There are constants K , L > 0 and some ε0 > 0 such that the following
are true for every ε ∈ (0, ε0):

(a) Wε ∈ C2(R3) is λε-convex with λε := λ0− Lε > 0.

(b) Lu is λε-convex in (P2(R
3),W2), and for every u ∈ (P2 ∩W 1,2)(R3), one has

1
2‖u− u∞‖2L2(R3)

≤ Lu(u)≤
1

2λε

∫
R3

u|D(u+Wε)|
2 dx . (54)

(c) Lv is κ-convex in L2(R3), and for every v ∈W 2,2(R3), one has

1
2κ‖v− v∞‖

2
L2(R3)

≤ Lv(v)≤
1

2κ

∫
R3
(1(v− v∞)− κ(v− v∞))

2 dx . (55)

(d) For every (u, v) ∈ X ,
L(u, v)≤ (1+ K ε)(H(u, v)−H∞). (56)

Proof. (a) Since Wε =W + εφ(v∞), the chain rule yields

D2Wε = D2W + εφ′′(v∞)Dv∞⊗Dv∞+ εφ′(v∞)D2v∞.

Using our assumptions on φ and by Proposition 5.3, there are some L > 0 and some ε0 such that

φ′′(v∞)Dv∞⊗Dv∞+φ′(v∞)D2v∞ ≥−L1

holds uniformly with respect to ε ∈ (0, ε0). And thus also D2Wε ≥ λε1 with the indicated definition of λε.

(b) Since Wε is λε-convex, Lu is also λε-geodesically convex in W2 because it is the sum of a 0-geodesically
convex functional and a λε-geodesically convex functional; see Theorem 2.1.

The Wasserstein subdifferential of Lu has been calculated in [Ambrosio et al. 2008, Lemma 10.4.1].
Together with (19), this shows the second inequality in (54). For the first inequality, observe that

Lu(u)=
1
2

∫
R3
(u− u∞)2 dx +

∫
R3
(Wε + u∞)(u− u∞) dx .

It thus suffices to prove nonnegativity of the second integral term for all u ∈P2(R
3). First, as u and u∞

have equal mass, and by the definition of u∞,

0=
∫

R3
(u∞− u) dx =

∫
{Uε−Wε>0}

u∞ dx −
∫

R3
u dx,
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and consequently, ∫
{Uε−Wε>0}

(u− u∞) dx =−
∫
{Uε−Wε≤0}

u dx . (57)

Also, by the definition of u∞,∫
R3
(Wε + u∞)(u− u∞) dx =

∫
{Uε−Wε>0}

Uε(u− u∞) dx +
∫
{Uε−Wε≤0}

Wεu dx .

Combining this with (57) yields∫
{Uε−Wε>0}

Uε(u− u∞) dx +
∫
{Uε−Wε≤0}

Wεu dx =
∫
{Uε−Wε≤0}

(Wε −Uε)u dx ≥ 0

as the integrand is nonnegative on the domain of integration.

(c) This is an immediate consequence of (19) for the L2 subdifferential of Lv.

(d) Since φ is convex, we have

φ(v)−φ(v∞)−φ
′(v∞)[v− v∞] ≥ 0,

and so we can estimate L∗ from below by

L∗(u, v)=
∫

R3
(u− u∞)[φ(v)−φ(v∞)] dx +

∫
R3

(
φ(v)−φ(v∞)−φ

′(v∞)[v− v∞]
)

dx

≥−
1
2

∫
R3
(u− u∞)2 dx −

φ′(0)2

2

∫
R3
(v− v∞)

2 dx

≥−Lu(u)−
φ′(0)2

κ
Lv(v),

using the properties (b) and (c) above. By (16), we conclude

(1− K ′ε)L(u, v)=H(u, v)−H∞ with K ′ :=max
(

1,
φ′(0)2

κ

)
,

which clearly implies (56) for all ε ∈ (0, ε0), possibly after diminishing ε0. �

6B. Dissipation. We can now formulate the main a priori estimate for the time-discrete solution.

Proposition 6.3. Given (ũ, ṽ) ∈ X with H(ũ, ṽ) <∞, let (u, v) ∈ X be a minimizer of the functional
Hτ ( · | ũ, ṽ) introduced in (24). Then

Lu(u)+ τDu(u, v)≤ Lu(ũ), Lv(v)+ τDv(u, v)≤ Lv(ṽ), (58)

where the dissipation terms are given by

Du(u, v)=
(

1−
ε

2

) ∫
R3

u|D(u+Wε)|
2 dx −

ε

2

∫
R3

u|D(φ(v)−φ(v∞))|2 dx, (59)

Dv(u, v)=
(

1−
ε

2

) ∫
R3
(1(v− v∞)− κ(v− v∞))

2 dx −
ε

2

∫
R3
(uφ′(v)− u∞φ′(v∞))2 dx . (60)
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Proof. Naturally, these estimates are derived by means of the flow interchange lemma (Lemma 4.4).
For given ν > 0, introduce the regularized functional Lν

u = Lu + νE, where

E(u)=
∫

R3
u log u dx .

Note that E is finite on (P2 ∩ L2)(R3); see, e.g., [Zinsl 2014, Lemma 5.3]. Moreover, Lν
u is λε-convex

in W2 by Theorem 2.1. We claim that the λε-flow associated to Lν
u satisfies the evolution equation

∂sU= ν1U+ 1
21U2

+ div(UDWε). (61)

Since ν > 0, this equation is strictly parabolic. Therefore, for every initial condition U0 ∈ (P2 ∩ L2)(R3),
there exists a smooth and positive solution U : R+×R3

→ R such that U(s, · )→ U0 both in W2 and
in L2(R3) as s ↓ 0. By [Ambrosio et al. 2008, Theorem 11.2.8], the solution operator to (61) can be
identified with the λε-flow of Lν

u .
Now, let U be the smooth solution to (61) with initial condition U0 = u. By smoothness of U, the

equation (61) is satisfied in the classical sense at every time s > 0, and the following integration by parts
is justified:

−
d
ds

H(U, v)=−

∫
R3
[U+Wε + ε(φ(v)−φ(v∞))] div[UD(U+Wε)+ νDU] dx

=

∫
R3

U|D(U+Wε)|
2 dx + ε

∫
R3

UD(φ(v)−φ(v∞)) ·D(U+Wε) dx

+ ν

∫
R3

D[U+W + εφ(v)] ·DU dx .

The very last integral has already been estimated in the proof of Proposition 4.5 (see (34) and following).
Rewriting the middle integral by means of the elementary inequality

2ab ≤ a2
+ b2, (62)

we arrive at

−
d
ds

H(U, v)≥
(

1−
ε

2

) ∫
R3

U|D(U+Wε)|
2 dx −

ε

2

∫
R3

U|D(φ(v)−φ(v∞))|2 dx

− νK
(
‖U‖2L2(R3)

+‖v‖2W 1,2(R3)

)
.

We pass to the limit s ↓ 0. Recall that U converges (strongly) to its initial datum U0 = u in L2(R3),
and observe that the expressions on the right-hand side are lower semicontinuous with respect to that
convergence. In fact, this is clear except perhaps for the first integral, which however can be rewritten,
using integration by parts, in the form∫

R3
U|D(U+Wε)|

2 dx =
4
9

∫
R3
|DU3/2

|
2 dx −

∫
R3

U21Wε dx +
∫

R3
U|∇Wε|

2 dx,
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in which the lower semicontinuity is obvious since1Wε ∈ L∞(R3). Applying now Lemma 4.4, we arrive at

Lν
u(u)+ (1− ε)

∫
R3

u|D(u+Wε)|
2 dx −

ε

2

∫
R3

u|D(φ(v)−φ(v∞))|2 dx

≤ Lν
u(ũ)+ νK

(
‖u‖2L2(R3)

+‖u‖2W 1,2(R3)

)
.

Finally, passage to the limit ν ↓ 0 yields the dissipation (59).
The dissipation (60) is easier to obtain. It is immediate that the κ-flow in L2(R3) of Lv satisfies the

linear parabolic evolution equation

∂sV=1(V− v∞)− κ(V− v∞). (63)

Solutions V to (63) exist for arbitrary initial conditions V0 ∈ L2(R3), and they have at least the spatial
regularity of v∞. Hence, with V0 := v, we have, also recalling the defining equation (41) for v∞,

−
d
ds

H(u,V)=

∫
R3

[
1(V−v∞)−κ(V−v∞)−ε(uφ′(V)−u∞φ′(v∞))

]
·
[
1(V−v∞)−κ(V−v∞)

]
dx .

Another application of the elementary inequality (62) yields

−
d
ds

H(u,V)≥
(

1−
ε

2

) ∫
R3
[1(V− v∞)− κ(V− v∞)]

2 dx −
ε

2

∫
R3
(uφ′(V)− u∞φ′(v∞))2 dx .

We pass to the limit s ↓ 0 so that V converges to v in L2(R3). The first integral is obviously lower
semicontinuous. Concerning the second integral, note that the integrand converges pointwise a.e. on R3

on a subsequence and that it is pointwise a.e. bounded by the integrable function 2φ′(0)2(u2
+ u2
∞
).

Hence, we can pass to the limit using the dominated convergence theorem. Now another application of
Lemma 4.4 yields the desired result. �

We will need below two further estimates for the dissipation terms from (59)–(60).

Lemma 6.4. There is a constant θ > 0 such that, for every ε ∈ (0, ε0) and every u ∈ (P2 ∩W 1,2)(R3),

‖u‖4L3(R3)
≤ θ

(
1+

∫
R3

u|D(u+Wε)|
2 dx

)
. (64)

Proof. Integrating by parts, it is easily seen that

4
9

∫
R3

∣∣Du3/2∣∣2 dx +
∫

R3
u|DWε|

2 dx =
∫

R3
u|D(u+Wε)|

2 dx +
∫

R3
u21Wε dx .

By Proposition 5.3 on the regularity of u∞ and v∞, there exists a constant C such that

1Wε =1W + εφ′(v∞)1v∞+ εφ′′(v∞)|Dv∞|2 ≤ C on R3

for all ε ∈ (0, ε1). Moreover,

1
2

∫
R3

u2 dx ≤
∫

R3
u2
∞

dx +
1
λε

∫
R3

u|D(u+Wε)|
2 dx
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by (54). Invoking again Proposition 5.3, it follows that there exists an ε-uniform constant C ′ such that

‖Du3/2
‖

2
L2(R3)

≤ C ′
(

1+
∫

R3
u|D(u+Wε)|

2 dx
)

holds for all u ∈ P2(R
3). On the other hand, Hölder’s and Sobolev’s inequalities provide

‖u‖L3(R3) ≤ ‖u
3/2
‖

1/2
L6(R3)
‖u‖1/4L1(R3)

≤ C ′′‖Du3/2
‖

1/2
L2(R3)

,

where we have used that u is of unit mass. Together, this yields (64). �

Lemma 6.5. For every v ∈W 2,2(R3),

min(1, 2κ, κ2)‖v− v∞‖
2
W 2,2(R3)

≤

∫
R3
(1(v− v∞)− κ(v− v∞))

2 dx . (65)

Proof. Set v̂ := v− v∞ for brevity. Integration by parts yields∫
R3
(1v̂− κv̂)2 dx =

∫
R3
(1v̂)2 dx − 2κ

∫
R3
v̂1v̂ dx + κ2

∫
R3
v̂2 dx

=

∫
R3
‖D2v̂‖2 dx + 2κ

∫
R3
|Dv̂|2 dx + κ2

∫
R3
v̂2 dx,

which clearly implies (65). �

6C. Control of the v component. For our estimates below, we need some preliminaries concerning
solutions to the time-discrete heat equation. Here, we use the iterates Y k

σ defined in (47) to write a
semiexplicit representation of the components vn

τ for a particular choice of σ .

Lemma 6.6. For every n ∈ N,

vn
τ = (1+ κτ)

−nY n
σ ∗ v0+ τ

n∑
m=1

(1+ κτ)−mY m
σ ∗ f n+1−m

τ , (66)

where we have set
f k
τ := −εu

k
τφ
′(vk

τ ), σ :=
τ

1+ κτ
.

Proof. We proceed by induction on n. By the flow interchange lemma (Lemma 4.4), using the auxiliary
functional A(u, v) :=

∫
R3 γ v dx for an arbitrary test function γ ∈ C∞c (R

3), one sees by analogous (but
easier) arguments as in the proof of (60) that vn

τ is the — unique in L2(R3)— distributional solution to

vn
τ − σ1v

n
τ = (1+ κτ)

−1vn−1
τ + τ(1+ κτ)−1 f n

τ .

Hence, it can be written as

vn
τ = (1+ κτ)

−1Yσ ∗ vn−1
τ + τ(1+ κτ)−1Yσ ∗ f n

τ .

For n = 1, this is (66) because v0
τ = v0. Now, if n > 1 and (66) holds with n− 1 in place of n, then

vn
τ = (1+ κτ)

−nYσ ∗ (Y n−1
σ ∗ v0)+ τ

n−1∑
m=1

(1+ κτ)−(m+1)Yσ ∗ (Y m
σ ∗ f n−m

τ )+ τ(1+ κτ)−1Yσ ∗ f n
τ .

Using that Yσ ∗ (Y k
σ ∗ f )= Y k+1

σ ∗ f , we obtain (66). �
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We are now able to prove the main result of this section.

Proposition 6.7. Provided that v0 ∈ L6/5(R3), then Dvn
τ ∈ L6/5(R3) for every n ∈ N, and the following

estimate holds:
‖Dvn

τ ‖L6/5(R3) ≤ a‖v0‖L6/5(R3)e
−[κ]τ nτ (nτ)−1/2

+ εM1 (67)

with the system constants

a := (1+ κ)Y1, M1 := |φ
′(0)|Y6/5(1+ κ)3/4

∫
∞

0
(1+ κ)−ss−3/4 ds. (68)

Proof. From the representation formula (66), it follows that

‖Dvn
τ ‖L6/5(R3) ≤ (1+ κτ)

−n
‖DY n

σ ‖L1(R3)‖v0‖L6/5(R3)+ τ

n∑
m=1

(1+ κτ)−m
‖DY m

σ ‖L6/5(R3)‖ f n+1−m
τ ‖L1(R3).

Now apply estimate (48), once with q := 1 and Q := 1
2 to the first term and once with q := 6

5 and Q := 3
4

to the second term on the right-hand side. Further, since un
τ is of unit mass, one has

‖ f k
τ ‖L1(R3) = ε‖u

k
τφ
′(vk

τ )‖L1(R3) ≤ ε|φ
′(0)|.

This yields

‖Dvn
τ ‖L6/5(R3) ≤ Y1‖v0‖L6/5(R3)(1+ κτ)

−n(σn)−1/2
+ ε|φ′(0)|Y6/5 τ

n∑
m=1

(1+ κτ)−m(σm)−3/4. (69)

The sum in (69) is bounded uniformly in n and τ because

τ

∞∑
m=1

(1+ κτ)−m(σm)−3/4
≤ (1+ κτ)3/4

∫
∞

0
e−[κ]τ t t−3/4 dt.

Without loss of generality, we assume that τ ≤ 1. By the monotone convergence e−[κ]τ t
↓ e−κt as τ ↓ 0,

we can estimate the sum in (69) as

τ

∞∑
m=1

(1+ κτ)−m(σm)−3/4
≤ (1+ τ)3/4

∫
∞

0
(1+ κ)−t t−3/4 dt,

and the right-hand side is finite. Thus, (69) implies (67) with the given constants. �

In view of (50), we can draw the following conclusion from (67) with ε1 :=min(ε0,
1
2), where ε0 > 0

was implicitly characterized in Proposition 6.2:

Corollary 6.8. Assume that v0 ∈ L6/5(R3), and define

T1 :=max
(

0, 1
κ

log
a‖v0‖L6/5(R3)

M1

)
(70)

with the system constants a and M1 from (68). Then for every ε ∈ (0, ε1), for every sufficiently small τ
and for every n such that nτ ≥ T1, one has

‖Dvn
τ ‖L6/5(R3) ≤ 2M1. (71)
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6D. Bounds on the auxiliary entropy. We are now in position to prove the main estimate leading towards
exponential decay and boundedness of the auxiliary entropy L along the discrete solution.

Lemma 6.9. There are system constants L ′ and M ′ and an ε2 ∈ (0, ε1) such that, for every ε ∈ (0, ε2),
for every sufficiently small τ > 0 and for every n with nτ > T1, we have that

(1+ 23′ετ)L(u
n
τ , v

n
τ )≤ L(un−1

τ , vn−1
τ )+ τεM ′ (72)

with 3′ε :=min(κ, λ0)− L ′ε.

Proof. For brevity, we simply write u and v in place of un
τ and vn

τ , respectively, and we introduce
v̂ := v− v∞. Since nτ > T1 by hypothesis, Corollary 6.8 implies that

‖Dv̂‖L6/5(R3) ≤ ‖Dv‖L6/5(R3)+‖Dv∞‖L6/5(R3) ≤ Z := 2M1+ sup
0<ε<ε1

‖Dv∞‖L6/5(R3) <∞.

Now, since

|D(φ(v)−φ(v∞))|2 ≤ 2φ′(v)2|Dv̂|2+ 2(φ′(v)−φ′(v∞))2|Dv∞|2 ≤ α|Dv̂|2+βv̂2,

with the system constants

α := 2φ′(0)2, β := 2φ′′2 sup
0<ε<ε1

‖Dv∞‖2L∞(R3)
, (73)

we conclude that∫
R3

u|D(φ(v)−φ(v∞))|2 dx ≤ α
∫

R3
u|Dv̂|2 dx +β

∫
R3

uv̂2 dx

≤ α‖u‖L3(R3)‖Dv̂‖
2
L3(R3)

+β‖u‖L1(R3)‖v̂‖
2
L∞(R3)

≤ ‖u‖4L3(R3)
+α4/3

‖Dv̂‖8/3L3(R3)
+β‖v̂‖2L∞(R3)

≤ ‖u‖4L3(R3)
+α4/3(S1‖v̂‖

3/4
W 2,2(R3)

‖Dv̂‖1/4L6/5(R3)

)8/3
+βS2‖v̂‖

2
W 2,2(R3)

≤ θ

(
1+

∫
R3

u|D(u+Wε)|
2 dx

)
+
α4/3S8/3

1 Z2/3
+βS2

min(1, 2κ, κ2)

∫
R3
(1v̂− κv̂)2 dx, (74)

where θ is the constant from (64) and S1 and S2 are Sobolev constants. Next, observe that

(uφ′(v)− u∞φ′(v∞))2 ≤ 2(u− u∞)2φ′(v)2+ 2u2
∞
(φ′(v)−φ′(v∞))

2
≤ α(u− u∞)2+β‖u∞‖2L∞(R3)

v̂2

with the same constants as in (73). Therefore, using (54), (55) and Proposition 5.3(a),∫
R3
(uφ′(v)− u∞φ′(v∞))2 dx ≤ α‖u− u∞‖2L2(R3)

+β(U0− εVφ′(0))2‖v̂‖2L2(R3)

≤ 2αLu(u)+
2β
κ
(U0− εVφ′(0))2Lv(v).
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Altogether, we have shown that there is a system constant M ′ such that (recall the dissipation terms
Du(u, v) and Dv(u, v) from (59)–(60))

Du(u, v)+Dv(u, v)≥ (1−M ′ε)
∫

R3
u|D(u+Wε)|

2 dx + (1−M ′ε)
∫

R3
(1v̂− κv̂)2 dx

−M ′εLu(u)−M ′εLv(v)−M ′ε (75)

for all ε ∈ (0, ε1). Provided that M ′ε < 1, we can apply (54) and (55) to estimate further:

Du(u, v)+Dv(u, v)≥
(
2λε(1−M ′ε)−M ′ε

)
Lu(u)+

(
2κ(1−M ′ε)−M ′ε

)
Lv(v)−M ′ε.

Finally, we can choose ε2 ∈ (0, ε1) so small that the coefficients of Lu and Lv above are nonnegative for
every ε ∈ (0, ε2), and thus, we arrive at the final estimate

Du(u, v)+Dv(u, v)≥ 2(min(κ, λε)− L ′ε)L(u, v)− εM ′

with a suitable choice of L ′. Now estimate (58) implies (72) with 3′ε given as above. �

Diminishing ε2 such that the constant 1+K ε2 in (56) is less than or equal to 2, we derive the following
explicit estimate:

Proposition 6.10. Assume that v0 ∈ L6/5(R3), and let T1 be defined as in (70). Then, for every ε ∈ (0, ε2),
for every sufficiently small τ and for every n with nτ > T1, the following estimate holds:

L(un
τ , v

n
τ )≤ 2(H(u0, v0)−H∞)e−2[3′ε]τ (nτ−T1)+ εM2 (76)

with the system constant

M2 :=
M ′

2 inf0<ε<ε2 3
′
ε

.

Proof. We prove a slightly refined estimate: given n ∈N with nτ ≥ T1, we conclude by induction on n ≥ n
that

L(un
τ , v

n
τ )≤ 2(H(u0, v0)−H∞)(1+ 23′ετ)

−(n−n)
+

M ′ε
23′ε

(1− (1+ 23′ετ)
−(n−n)), (77)

which clearly implies (76). For n = n, (77) is a consequence of (56) and the energy estimate (27). Now
assume (77) for some n ≥ n, and apply the iterative estimate (72):

L(un+1
τ , vn+1

τ )≤ (1− 23′ετ)
−1L(un

τ , v
n
τ )+ (1+ 23′ετ)

−1τM ′ε

≤ 2(H(u0, v0)−H∞)(1+ 23′ετ)
−((n+1)−n)

+
M ′ε
23′ε

(
(1+ 23′ετ)

−1
− (1+ 23′ετ)

−((n+1)−n))
+ (1+ 23′ετ)

−1τM ′ε.

Elementary calculations show that the last expression above equals the right-hand side of (77) with n+ 1
in place of n. �

Invoking again (50), we obtain the following analog to Corollary 6.8:
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Corollary 6.11. Assume that v0 ∈ L6/5(R3), and define

T2 := T1+max
(

0,
1

23′ε
log

2(H(u0, v0)−H∞)

M2

)
. (78)

Then for every ε ∈ (0, ε2), for every sufficiently small τ and for every n such that nτ ≥ T2, one has

L(un
τ , v

n
τ )≤ 2M2. (79)

We have thus proved that, for t ≥ T2, the auxiliary entropy L is bounded by a system constant. Next,
we prove that L is not only bounded but actually convergent to zero exponentially fast.

6E. Exponential decay for large times.

Lemma 6.12. There is a constant L ′′ > L ′ and some ε3 ∈ (0, ε2) such that, for every ε ∈ (0, ε3), for every
sufficiently small τ > 0 and for every n such that nτ > T2, we have

(1+ 23′′ετ)L(u
n
τ , v

n
τ )≤ L(un−1

τ , vn−1
τ ) (80)

with 3′′ε :=min(λ0, κ)− L ′′ε.

Proof. We proceed like in the proof of Lemma 6.9 with the following modification. By Corollary 6.11,
we know that

Lu(un
τ )≤ L(un

τ , v
n
τ )≤ 2M2.

Using the first inequality in (54), we can estimate the L2-norm of un
τ by a system constant:

‖u‖L2(R3) ≤ ‖u∞‖L2(R3)+‖u− u∞‖L2(R3) ≤ Z := sup
0<ε<ε2

‖u∞‖L2(R3)+ 2
√

M2.

This allows us to replace the chain of estimates (74) by a simpler one:∫
R3

u|D(φ(v)−φ(v∞))|2 dx ≤ ‖u‖L2(R3)

(
α‖Dv̂‖2L4(R3)

+β‖v̂‖2L4(R3)

)
with the constants from (73). Using the Sobolev inequalities

‖Dv̂‖L4(R3) ≤ S‖v̂‖W 2,2(R3), ‖v̂‖L4(R3) ≤ S‖v̂‖W 1,2(R3)

in combination with (65) and (55), respectively, we arrive at∫
R3

u|D(φ(v)−φ(v∞))|2 dx ≤
αZ S2

min(1, 2κ, κ2)

∫
R3
(1v̂− κv̂)2 dx +

2βZ S2

min(1, κ)
Lv(v).

This eventually leads to the dissipation estimate (75) again, with a different constant M ′, but without the
constant term −εM ′. By means of (58), this implies (80) for appropriate choices of L ′′ and ε3. �

By iteration of (80), starting from (79), one immediately obtains

Proposition 6.13. For all sufficiently small τ and every n such that nτ ≥ T2, we have

L(un
τ , v

n
τ )≤ 2M2e−2[3′′ε ]τ (nτ−T2). (81)
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6F. Passage to continuous time. To complete the proof of Theorem 1.2, we consider the limit τ ↓ 0 of
the estimates obtained above. Here τ ↓ 0 means that we consider a vanishing sequence (τk)k∈N such that
the corresponding sequence of discrete solutions (uτk , vτk )k∈N converges in the sense of Section 4 to a
weak solution (u, v) to (1)–(3). Since the convergence of (uτk , vτk )k∈N in X is locally uniform on each
compact time interval, the lower semicontinuity of L in X allows one to conclude that

L(t) := L(u(t), v(t))≤ lim inf
τ↓0

L(uτ (t), vτ (t)) for every t ≥ 0.

We prove that

L(t)≤ C(1+‖v0‖L6/5(R3))
2(1+H(u0, v0)−H∞)

2e−23′′ε t for all t ≥ 0. (82)

From this, claim (15) in Theorem 1.2 follows with 3ε :=3′′ε .
Recalling (50), we conclude from (81) that

L(t)≤ 2M2e−23′′ε (t−T2) for all t ≥ T2. (83)

Moreover, from (56) and the energy estimate (27), we obtain

L(t)≤ 2(H(u0, v0)−H∞) for all t ≥ 0. (84)

We distinguish:

Case 1 (H(u0, v0)−H∞ ≤
1
2 M2). Then, from the definition of T2 in (78), one has T2 = T1, and in

consequence of (83),

L(t)≤ 2M2e−23′′ε (t−T1) for all t ≥ T2 = T1.

Since further L(t)≤ M2 for all t ≥ 0 by (84), the first inequality extends to all times t ≥ 0:

L(t)≤ 2M2e−23′′ε (t−T1) for all t ≥ 0. (85)

Case 2 (H(u0, v0)−H∞ >
1
2 M2). Substitute

T2 = T1+
1

23′ε
log
(

2(H(u0, v0)−H∞)

M2

)
in (83) to find

L(t)≤ 2M2e−23′′ε (t−T1)

(
2(H(u0, v0)−H∞)

M2

)3′′ε/3′ε
for all t ≥ T2 > T1. (86)

Using 3′′ε ≤3
′
ε, we conclude from (86)

L(t)≤ 4(H(u0, v0)−H∞)e−23′′ε (t−T1) for all t ≥ T2 > T1. (87)

Define A := 4(H(u0, v0)−H∞)max(1, (H(u0, v0)−H∞)/M2). Then, from (87) and the fact that
Ae−23′′ε (T2−T1) ≥ 2(H(u0, v0)−H∞), we deduce

L(t)≤ Ae−23′′ε (t−T1) for all t ≥ 0. (88)
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Together, (85) and (88) yield

L(t)≤max(2M2, 4(H(u0, v0)−H∞))max
(

1,
1

M2
(H(u0, v0)−H∞)

)
e−23′′ε (t−T1)

≤
2

M2
e23′′εT1 max(M2, 2(H(u0, v0)−H∞))

2e−23′′ε t for all t ≥ 0.

Since κ ≥3′′ε , we have

e23′′εT1 ≤ e2κT1 ≤max
(

1,
[

a
M1
‖v0‖L6/5(R3)

]2)
and consequently (82):

L(t)≤ C(1+‖v0‖L6/5(R3))
2(1+H(u0, v0)−H∞)

2e−23′′ε t for all t ≥ 0.

Appendix A: Proof of Lemma 5.2

(a) The proof of the first assertion can be found in [Lieb and Loss 2001, Theorem 6.23]. From that, the
second one follows by elementary calculations.

(b) According to [Stein 1970, Chapter V, §3.3, Theorem 3], one has for p > 1

‖G1 ∗ f ‖W 2,p(R3) ≤ C p‖ f ‖L p(R3). (89)

To prove assertion (b), we use a rescaling of the equation −1h+ κh = f by x̃ :=
√
κx . Consequently,

h(x̃) = (Gκ ∗ f )(x̃/
√
κ) is a solution to −1x̃ h + h = f/κ , i.e., h(x̃) = (G1 ∗ ( f/κ))(x̃). By the

transformation theorem, we obtain(∫
R3

∣∣∣∣ f (x̃)
κ

∣∣∣∣p

dx̃
)1/p

= κ3/2−1
‖ f ‖L p(R3),(∫

R3

∣∣∣∣(G1 ∗
f
κ

)
(x̃)
∣∣∣∣p

dx̃
)1/p

= κ3/2
‖Gκ ∗ f ‖L p(R3),(∫

R3

∣∣∣∣Dx̃

(
G1 ∗

f
κ

)
(x̃)
∣∣∣∣p

dx̃
)1/p

= κ3/2−1/2
‖Dx(Gκ ∗ f )‖L p(R3),(∫

R3

∣∣∣∣D2
x̃

(
G1 ∗

f
κ

)
(x̃)
∣∣∣∣p

dx̃
)1/p

= κ3/2−1
‖D2

x(Gκ ∗ f )‖L p(R3),

which yields (46) after insertion into (89) and simplification.

(c) The first statement is a straightforward consequence of the integral-type representation of Gκ in [Lieb
and Loss 2001, Theorem 6.23]. To prove the first claim of the second statement, we proceed by induction.
For k = 1, Equation (47) is just the definition of Yσ . Now assume that (47) holds for some k ∈ N. Using
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the semigroup property Ht1+t2 = Ht1 ∗ Ht2 of the heat kernel, we find that

Y k+1
σ =

∫
∞

0

∫
∞

0
Hσr1 ∗ Hσr2e−r1r k−1

2 e−r2
dr1 dr2

0(k)

=

∫
∞

0

∫
∞

0
Hσ(r1+r2)e

−(r1+r2)r k−1
2

dr1 dr2

0(k)
.

Now perform a change of variables

r := r1+ r2, s := r2,

which is of determinant 1 and leads to

Y k+1
σ =

∫
∞

0
Hσr e−r

(∫ r

0
sk−1 ds

)
dr
0(k)

=

∫
∞

0
Hσr

e−rr k dr
k0(k)

,

which is (47) with k+ 1 in place of k, using that k0(k)= 0(k+ 1).
For (48), first observe that r 7→ r k−1e−r/0(k) defines a probability density on R+. We can thus apply

Jensen’s inequality to obtain

‖DY k
σ ‖Lq (R3) ≤

∫
∞

0
‖DHσr‖Lq (R3)

r k−1e−r dr
0(k)

. (90)

The Lq -norm of DHσr is easily evaluated using its definition,

‖DHσr‖Lq (R3) = (σr)−3/2
(∫

R3
|Dξ H1((σr)−1/2ξ)|q dξ

)1/q

= (σr)−3/2
(∫

R3
|(σr)−1/2Dζ H1(ζ )|

q (σr)3/2 dζ
)1/q

= (σr)−Q
‖DH1‖Lq (R3).

By definition of the gamma function, we thus obtain from (90) that

‖DY k
σ ‖Lq (R3) ≤ ‖DH1‖Lq (R3)

0(k− Q)
0(k)

σ−Q .

For further estimation, observe that the sequence (ak)k∈N with ak = k Q0(k− Q)/0(k) is monotonically
decreasing (to zero). Indeed,

ak+1

ak
=
(k+ 1)k Q (k− Q)0(k− Q)0(k)

k Q k0(k)0(k− Q)
=

(
1+

1
k

)Q(
1−

Q
k

)
is always smaller than 1 since ξ 7→ (1+ ξ)−Q is convex. Therefore, ak ≤ a1 for all k ∈ N, and so (48)
follows with Yq := 0(1− Q)‖DH1‖Lq (R3). �
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Appendix B: Hölder estimate for the kernel Gκ

As a preparation, we calculate the derivatives of Gκ in R3
\ {0}. For all i, j, k ∈ {1, 2, 3}, one has

∂i Gκ(x)=−
1

4π
exp(−

√
κ|x |)

|x |3
(
√
κ|x | + 1)xi ,

∂i∂ j Gκ(x)=−
1

4π
exp(−

√
κ|x |)

[(
κ

|x |3
+

3
√
κ

|x |4
+

3
|x |5

)
xi x j −

(√
κ

|x |2
+

1
|x |3

)
δi j

]
,

∂i∂ j∂k Gκ(x)=−
1

4π
exp(−

√
κ|x |)
−
√
κxk

|x |

[(
κ

|x |3
+

3
√
κ

|x |4
+

3
|x |5

)
xi x j −

(√
κ

|x |2
+

1
|x |3

)
δi j

]
−

1
4π

exp(−
√
κ|x |)

[(
−

3κ
|x |4
−

12
√
κ

|x |5
−

15
|x |6

)
xi x j xk

|x |

+ δi j

(
2
√
κ

|x |3
+

3
|x |4

)
xk

|x |
+

(
κ

|x |3
+

3
√
κ

|x |4
+

3
|x |5

)
(δik x j + δ jk xi )

]
,

where δi j denotes Kronecker’s delta.
We prove the following:

Lemma B.1 (Hölder estimate for second derivative). Let f ∈ C0,α(R3) for some α ∈ (0, 1), and assume
that it is of compact support. Then, there exists C > 0 such that for all i, j ∈ {1, 2, 3} the following
estimate holds:

[∂i∂ j (Gκ ∗ f )]C0,α(R3) ≤ C[ f ]C0,α(R3).

Here,

[g]C0,α(R3) := sup
x,y∈R3, x 6=y

|g(x)− g(y)|
|x − y|

denotes the Hölder seminorm of g : R3
→ R.

Proof. This result is an extension of the respective result for Poisson’s equation (corresponding to κ = 0)
proved by Lieb and Loss [2001, Theorem 10.3]. Their method of proof is adapted here. In the following,
C and C̃ denote generic nonnegative constants.

The following holds for arbitrary test functions ψ ∈ C∞c (R
3):

−

∫
R3
(∂ jψ)(x)(∂iv)(x) dx =

∫
R3

f (y)
∫

R3
(∂ jψ)(x)∂xi Gκ(x − y) dx dy,

which can be rewritten by the dominated convergence theorem and integration by parts as∫
R3

f (y)
∫

R3
(∂ jψ)(x)∂xi Gκ(x − y) dx dy

= lim
δ→0

∫
R3

f (y)
∫

R3\Bδ(y)
(∂ jψ)(x)∂xi Gκ(x − y) dx dy

= lim
δ→0

∫
R3

f (y)
[
−

∫
∂Bδ(y)

ψ(x)∂xi Gκ(x − y)e j · νy,δ(x) dS(x)−
∫

R3\Bδ(y)
ψ(x)∂xi ∂x j Gκ(x − y) dx

]
dy,
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where e j is the j-th unit vector and νy,δ(x) = (x − y)/δ is the unit outward normal vector in x on the
sphere ∂Bδ(y).

The first part can be simplified explicitly by the transformation z := (x − y)/δ:

−

∫
∂Bδ(y)

ψ(x)∂xi Gκ(x − y)e j · νy,δ(x) dS(x)=
1

4π

∫
∂B1(0)

ψ(δz+ y) exp(−
√
κδ)(
√
κδ+ 1)zi z j dS(z),

which converges as δ→ 0 to ψ(y)δi j/3.
For the second part, we split the domain of integration R3

\ Bδ(y) into two parts:∫
R3\Bδ(y)

ψ(x)∂xi ∂x j Gκ(x − y) dx

=

∫
R3\Bδ(1)

ψ(x)∂xi ∂x j Gκ(x − y) dx +
∫
{1≥|x−y|≥δ}

ψ(x)∂xi ∂x j Gκ(x − y) dx .

We use integration by parts to insert convenient additional terms:∫
R3\Bδ(1)

ψ(x)∂xi ∂x j Gκ(x − y) dx +
∫
{1≥|x−y|≥δ}

ψ(x)∂xi ∂x j Gκ(x − y) dx

=

∫
R3\Bδ(1)

ψ(x)∂xi ∂x j Gκ(x − y) dx +
∫
{1≥|x−y|≥δ}

ψ(x)∂xi ∂x j Gκ(x − y) dx

−

∫
{1≥|x−y|≥δ}

ψ(y)∂xi ∂x j Gκ(x − y) dx

+

∫
∂B1(y)

ψ(y)∂x j Gκ(x − y)ei · νy,1(x) dS(x)−
∫
∂Bδ(y)

ψ(y)∂x j Gκ(x − y)ei · νy,δ(x) dS(x).

Now we calculate again explicitly and obtain in the limit δ→ 0∫
∂B1(y)

ψ(y)∂x j Gκ(x − y)ei · νy,1(x) dS(x)−
∫
∂Bδ(y)

ψ(y)∂x j Gκ(x − y)ei · νy,δ(x) dS(x)

→−
1
3δi j [exp(−

√
κ)(
√
κ + 1)− 1]ψ(y).

In summary, one gets

−

∫
R3
(∂ jψ)(x)(∂iv)(x) dx=

∫
R3
ψ(x)

[
1
3δi j f (x) exp(−

√
κ)(
√
κ+1)+

∫
R3\B1(x)

f (y)∂xi ∂x j Gκ(x−y) dy

+ lim
δ→0

∫
{1≥|x−y|≥δ}

( f (x)− f (y))∂xi ∂x j Gκ(x − y) dy
]

dx .

From α-Hölder continuity of f , we conclude that, independent of δ,

1{1≥|x−y|≥δ}(y)
∣∣[ f (x)− f (y)]∂xi ∂x j Gκ(x − y)

∣∣≤ C |x − y|α−3,
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which is integrable as α− 3+ 2 > −1. So using again the dominated convergence theorem, we have,
with [Lieb and Loss 2001, Theorem 6.10],

(∂i∂ jv)(x)= 1
3δi j exp(−

√
κ)(
√
κ + 1)

+

∫
R3\B1(x)

f (y)∂xi ∂x j Gκ(x − y) dy+
∫

B1(x)
[ f (x)− f (y)]∂xi ∂x j Gκ(x − y) dy. (91)

Obviously, the first term in (91) is Hölder-continuous. For the second term in (91), we obtain for all
x, z ∈ R3, x 6= z,∣∣∣∣∫

R3\B1(x)
f (y)∂xi ∂x j Gκ(x − y) dy−

∫
R3\B1(z)

f (y)∂zi ∂z j Gκ(z− y) dy
∣∣∣∣

=

∣∣∣∣∫
B1(0)
[ f (z− a)− f (x − a)]∂ai ∂a j Gκ(a) da

∣∣∣∣
by the transformations a := x − y in the first and a := z − y in the second integrals. From α-Hölder
continuity of f , we get the estimate∣∣∣∣∫

B1(0)
[ f (z− a)− f (x − a)]∂ai ∂a j Gκ(a) da

∣∣∣∣≤ C |x − z|α
∫

R3\B1(x)
|∂ai ∂a j Gκ(a) da|,

where the integral on the right-hand side is finite because ∂ai ∂a j Gκ(a) behaves as r−1 exp(−r) for r→∞,
which is integrable.

The same integral transformation yields for the third term in (91)∣∣∣∣∫
B1(x)
[ f (x)− f (y)]∂xi ∂x j Gκ(x − y) dy−

∫
B1(z)
[ f (z)− f (y)]∂zi ∂z j Gκ(z− y) dy

∣∣∣∣
=

∣∣∣∣∫
B1(0)
[ f (z)− f (z− a)− f (x)+ f (x − a)]∂ai ∂a j Gκ(a) da

∣∣∣∣.
We now proceed as in [Lieb and Loss 2001] and write B1(0)= A∪ B with

A := {a : 0≤ |a|< 4|x − z|},

B := {a : 4|x − z|< |a|< 1},

where B =∅ for |x − z| ≥ 1
4 , and calculate, using that |∂ai ∂a j Gκ(a)| ≤ C |a|−3,∣∣∣∣∫

A
[ f (z)− f (z− a)− f (x)+ f (x − a)]∂ai ∂a j Gκ(a) da

∣∣∣∣≤ ∫
A

2C |a|α−3 da = C̃ |x − z|α.

It remains to consider the case |x − z|< 1
4 . One has∣∣∣∣∫

B
[ f (z)− f (x)]∂ai ∂a j Gκ(a) da

∣∣∣∣= ∣∣∣∣∫
∂B
[ f (z)− f (x)]∂a j Gκ(a)ei · ν(a) dS(a)

∣∣∣∣,
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and by similar arguments as above,∣∣∣∣∫
∂B
[ f (z)− f (x)]∂a j Gκ(a)ei · ν(a) dS(a)

∣∣∣∣
=

1
3δi j | f (z)− f (x)|

∣∣exp(−
√
κ)(
√
κ + 1)− exp(−4

√
κ|x − z|)(4

√
κ|x − z| + 1)

∣∣.
Note that the real-valued map [0,∞) 3 r 7→ exp(−

√
κr)(
√
κr + 1) is monotonically decreasing. This

yields ∣∣∣∣∫
B
[ f (z)− f (x)]∂ai ∂a j Gκ(a) da

∣∣∣∣≤ C |z− x |α.

By the transformations b := x − a− z and b := −a, we get∣∣∣∣∫
B
[ f (x − a)− f (z− a)]∂ai ∂a j Gκ(a) da

∣∣∣∣
=

∣∣∣∣∫
B

f (z+ b)∂bi ∂b j Gκ(b) db−
∫

D
f (b+ z)∂bi ∂b j Gκ(b− x + z) db

∣∣∣∣ (92)

with D := {b : 4|x − z|< |b− x + z|< 1}.
Note that ∫

B
∂bi ∂b j Gκ(b) db =

∫
D
∂bi ∂b j Gκ(b− x + z) db.

This enables us to rewrite (92) as∣∣∣∣∫
B

f (z+ b)∂bi ∂b j Gκ(b) db−
∫

D
f (b+ z)∂bi ∂b j Gκ(b− x + z) db

∣∣∣∣
=

∣∣∣∣∫
B
[ f (z+ b)− f (z)]∂bi ∂b j Gκ(b) db−

∫
D
[ f (z+ b)− f (z)]∂bi ∂b j Gκ(b− x + z) db

∣∣∣∣. (93)

We consider (93) separately on the sets B ∩ D, B \ D and D \ B.
Note that, by the triangular inequality, B ∩ D ⊂ {b : 3|x − z| < |b| < 1+ |x − z|} and by Taylor’s

theorem

(∂bi ∂b j Gκ)(b)− (∂bi ∂b j Gκ)(b− x + z)=
3∑

k=1

(∂k∂i∂ j Gκ)(b∗)(xk − zk)

for some b∗ = b− β(x − z) with β ∈ (0, 1). Therefore, one has, by the triangular inequality, |b∗| ≥
|b| −β|x − z| ≥ (1− 1

3β)|b| ≥
2
3 |b| on B ∩ D and consequently

|(∂bi ∂b j Gκ)(b)− (∂bi ∂b j Gκ)(b− x + z)| ≤ C |b∗|−4
|x − z| ≤ C̃ |b|−4

|x − z|.



CONVERGENCE TO EQUILIBRIUM 463

This allows us to estimate∣∣∣∣∫
B∩D
[ f (z+ b)− f (z)][∂bi ∂b j Gκ(b)− ∂bi ∂b j Gκ(b− x + z)] db

∣∣∣∣
≤ C |x − z|

∫ 1+|x−z|

3|x−z|
r−4+α+2 dr

≤
C |x − z|

1−α

[
(3|x − z|)α−1

− (1+ |x − z|)α−1] C̃
1−α

|x − z|α.

For the remaining terms, we split up as in [Lieb and Loss 2001]:

B \ D ⊂ E ∪G,

D \ B ⊂ E ′ ∪G ′,
where

E := {b : 4|x − z|< |b| ≤ 5|x − z|},

G := {b : 1− |x − z| ≤ |b|< 1},

E ′ := {b : 4|x − z|< |b− x + z| ≤ 5|x − z|},

G ′ := {b : 1− |x − z| ≤ |b− x + z|< 1}.

Consider at first the real-valued map [0, 1
4 ] 3 s 7→ (1 − s)β for arbitrary β > 0. Obviously, it is

continuously differentiable and therefore α-Hölder continuous because its domain of definition is compact.
Hence, the following holds for all 0≤ s ≤ 1

4 :

1− (1− s)β = (1− 0)β − (1− s)β ≤ Csα. (94)

Now, we estimate the integral on B \ D, where we use again the estimate |∂ai ∂a j Gκ(a)| ≤ C |a|−3:∣∣∣∣∫
B\D
[ f (z+ b)− f (z)]∂bi ∂b j Gκ(b) db

∣∣∣∣≤ C
(∫ 5|x−z|

4|x−z|
rα−3+2 dr +

∫ 1

1−|x−z|
rα−3+2 dr

)
=

C
α
[(5|x − z|)α − (4|x − z|)α + 1− (1− |x − z|)α] ≤

C
α
(5α + C̃)|x − z|α,

where we have used (94) for β := α in the last step.
For the remaining integral on D \ B, we consider the domains E ′ and G ′ separately and note at

first that, using the triangular inequality, E ′ ⊂ {0 < |b| ≤ 6|x − z|}. Subsequently, this yields that
|b− x + z|−3 < (4|x − z|)−3

≤ C |b|−3 on E ′. Hence, by the estimate |∂ai ∂a j Gκ(a)| ≤ C |a|−3,∫
E ′

∣∣[ f (z+ b)− f (z)]∂bi ∂b j Gκ(b− x + z)
∣∣ db ≤ C

∫ 6|x−z|

0
rα−3+2 dr = C̃ |x − z|α.

On G ′, one has |b− x + z| ≥ 1− |x − z|> 3
4 . Consequently, it holds that∫

G ′

∣∣[ f (z+ b)− f (z)]∂bi ∂b j Gκ(b− x + z)
∣∣ db ≤ C

( 3
4

)−3
∫ 1

1−|x−z|
rα+2 dr

= C̃[1− (1− |x − z|)3+α] ≤ C̃ |x − z|α,
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where we have used (94) for β := 3+α in the last step. Together,∣∣∣∣∫
D\B
[ f (z+ b)− f (z)]∂bi ∂b j Gκ(b− x + z) db

∣∣∣∣≤ C |x − z|α,

and the assertion is proved. �
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